Document | Document Title |
---|---|
US09936620B2 |
Component mounting method
A component mounting apparatus includes a component supply device that intermittently feeds a carrier tape, in which components are stored in a plurality of pockets formed with a uniform pitch, based on a predetermined feed pitch to supply the components stored in the pockets to a component suction position, and picks up the components supplied to the component suction position to mount the components onto a board, an imaging unit that images the pockets, and a control unit that measures a formation pitch of the pockets based on obtained image data, and changes a feed pitch of the carrier tape from the predetermined feed pitch to the formation pitch of the pockets when the measured formation pitch of the pockets and the predetermined feed pitch are different from each other, and the component supply device intermittently feeds the carrier tape based on the changed feed pitch. |
US09936619B2 |
Electronic circuit component mounter
An electronic circuit component mounter equipped with a moving type component supply device which supplies electronic circuit components to a component holding tool and which is moved together with the component holding tool. In a state with passage-equipped component case is attached to the head main body, a dropped component catch plate is positioned below the rotational axis path of a suction nozzle and catches dropped components, while the raising/lowering of the suction nozzle is allowed at the component mounting position by opening and components are mounted on a board. Further, a sheet is affixed that prevents the movement of dropped components, and a dropped component catch plate is attached/detached to/from the head main body together with passage-equipped component case, and dropped components are removed in a state removed from the head main body. |
US09936616B2 |
Electric power convertor
An electric power converter includes a stacked semiconductor unit formed by stacking semiconductor modules and cooling tubes, and a case. The case has a rear wall portion, a front wall portion, and a pair of side wall portions. The rear wall portion has an opening hole formed in a shape that an outer profile of the cooler fits inside. The stacked semiconductor unit has a closing member joined to a rear-most cooling pipe that is disposed on a rear side to close the opening hole, a refrigerant introducing pipe extended rearward from the closing member, and a refrigerant discharging pipe extended rearward from the closing member. The refrigerant introducing pipe and the refrigerant discharging pipe, and the closing member are connected in close contact with each other, and the closing member and the case are in close contact by a seal section. |
US09936615B2 |
Power pole isolated heat pipe inverter assembly
A power pole inverter is provided. The power pole inverter includes a housing assembly, a capacitor assembly, a number of arm assemblies, a number of heat sinks, and a support assembly. The housing assembly includes a number of sidewalls. The housing assembly sidewalls defining an enclosed space. The capacitor assembly is coupled to the housing assembly. Each arm assembly includes a plurality of electrical components and a number of electrical buses. Each the electrical bus includes a body with terminals, each the terminal structured to be coupled to, and in electrical communication with, the capacitor assembly, each arm assembly including a neutral terminal. Each arm assembly is coupled to, and in electrical communication with, the capacitor assembly. The support assembly includes a non-conductive frame assembly. The support assembly is structured to support each the heat sink in isolation. |
US09936614B2 |
System and method for automated open loop fan control
An information handling system includes a pressure transducer and a fan controller. The pressure transducer produces a pressure reading in response to airflow through the information handling system. The fan controller is configured to communicate with the pressure transducer, the fan controller to operate a fan of an information handling system at a first duty cycle, to receive a first pressure reading from the pressure transducer, to determine a first airflow amount for the first duty cycle based on the first pressure reading, to create a first updated airflow-duty cycle table based on the first airflow amount at the first duty cycle, and to update a temperature control algorithm based on the first updated airflow-duty cycle table. |
US09936606B1 |
Liquid immersion cooler
A liquid immersion cooler including: a refrigerant tank that stores a silicone oil-based insulating refrigerant immersing an electronic device; a circulation passage that is provided between the refrigerant tank and a refrigerant cooler, and through which the silicone oil-based insulating refrigerant flows; and a pump that is arranged on the circulation passage, and circulates the silicone oil-based insulating refrigerant between the refrigerant tank and the refrigerant cooler. |
US09936601B2 |
Cable management assembly for rack mounted equipment
A cable management assembly for managing cabling of equipment is provided. The cable management assembly may be utilized to manage the movement of cables attached to the enclosures when the enclosures are pulled into and out of the front of a structure during servicing. The cable management assembly may comprise one or more detachable cable support members that form a helix having a first attachment end and a second attachment end. The first attachment end may be attached to an enclosure and the second attachment end may be attached to a rear back plate assembly. The detachable cable support members include a plurality of flat segments having a generally elongated planar configuration or a curved configuration. A combination of planar and curved segments may be secured together forming a loop. A plurality of loops may be secured together forming the assembly. |
US09936596B2 |
Apparatus, system and method for resource distribution
A system for the distribution of resources. The system includes a housing including at least one water vapor distillation device, at least one power generating device, at least one source water reservoir, at least one product water reservoir, and at least one energy storage device. |
US09936595B2 |
Wire retention cover for printed circuit boards in an electronic device
A wire retention cover for an antenna mounting arrangement within an electronic device is configured to be positioned over an edge of a printed circuit board and protect the antenna wires and connectors on the connector side thereof. A non-connector side portion or leg of the cover includes one or more slots for receiving antenna wires. A connector side portion or leg of the cover includes raised and lowered portions. The raised portions are configured to cover and protect antenna wire connections to the PCB. |
US09936593B2 |
Device with a rotatable display
The description relates to devices, such as computing devices having displays that can be rotated through a range of travel. The device can counter-balance the display to create a near weightless feel for the user when repositioning the display. |
US09936586B2 |
Attaching apparatus for chip-on-films
An attaching apparatus for chip-on-films includes: a base; a rotary table; a first driving device configured to drive the rotary table to rotate around the axis of the rotary table; a TCP side adhesive-attaching mechanism configured to attach a conductive film onto a chip-on-film on a carrier located in the TCP adhesive-attaching region; a PCB side adhesive-attaching mechanism configured to attach a conductive film onto a chip-on-film on a carrier located in the PCB adhesive-attaching region; and a pre-pressing mechanism configured to pre-press conductive films attached on a chip-on-film on a carrier located in the pre-pressing region. The rotary table is in a first operating position, a second operating position, a third operating position and a fourth operating position successively during a rotation around its axis. When the rotary table is in any one of the operating positions, there is always one carrier in each region of the base. |
US09936581B1 |
Mechanical and electrical interconnects between conductive threads in fabrics to PCB, FPC, and rigid-flex circuits
An electrically interconnected assembly is a technology enabler for mechanical and electrical interconnects between conductive threads, such as those within fabrics and textiles, to electrical connection points, such as contact pads on a printed circuit board (PCB), a flexible printed circuit (FPC), and/or rigid-flexible circuit board. The electrically interconnected assembly uses an anisotropic conductive coated fabric to make an electrical and mechanical interconnect in fabrics or textiles. All fabrics or textiles can be anisotropic conductive coated and cut into sheet form or supplied in roll form. |
US09936579B2 |
Low profile packaging and assembly of a power conversion system in modular form
Embedded PCB (printed circuit board) is used for the packaging and assembly of a low profile power conversion system module that can be employed in space constrained environment of small computer/electronic systems. The low profile power conversion system module includes an embedded PCB, a power silicon device embedded within the PCB, a magnetic component which is either embedded within the PCB or disposed on the PCB, and input/output terminals disposed on the side of the embedded PCB. The embedded PCB and the magnetic component are thin planar shaped to save vertical space. The low profile power conversion system module can be placed inside a cavity formed in the system PCB to save even more vertical space. |
US09936577B1 |
Dual-channel flexible circuit bridge connector and dual graphics card system using the same
The present disclosure illustrates a dual-channel flexible circuit bridge connector and a dual graphics card system using the same. The dual-channel flexible circuit bridge connector includes a dual-channel flexible circuit board, a first connection interface and a second connection interface. The dual-channel flexible circuit board includes, in a sequential order, a first insulating layer, a first circuit layer, a second insulating layer, a ground layer, a third insulating layer, a second circuit layer and a fourth insulating layer. The first connection interface and the second connection interface can be used to link two graphics cards spaced apart by a non-fixed distance, thereby forming a bridging status. Therefore, the dual graphics card system can manipulate two graphics cards to perform parallel computation, so as to achieve better efficiency in computing process and graphics display. |
US09936575B2 |
Resin multilayer substrate and component module
A resin multilayer substrate includes a first resin layer, a conductive pattern that covers a portion of the first resin layer, a conductive via connected to the conductive pattern, and a second resin layer that is overlaid on the first resin layer. The second resin layer includes an opening through which the conductive pattern is partially exposed. As seen in plan view, the opening includes an inner peripheral edge including a first portion that is spaced from the conductive via by a first distance, and a second portion that is spaced from the conductive via by a second distance. The conductive pattern has a length that starts from the inner peripheral edge of the opening to outside and extends under the second resin layer. The length of the conductive pattern at the second portion is greater than the length of the conductive pattern at the first portion. |
US09936573B2 |
Tamper-respondent assemblies
Methods of fabricating tamper-respondent assemblies are provided which include a tamper-respondent electronic circuit structure. The tamper-respondent electronic circuit structure includes a tamper-respondent sensor. The tamper-respondent sensor includes, for instance, at least one flexible layer having opposite first and second sides, and circuit lines forming at least one resistive network. The circuit lines are disposed on at least one of the first or second side of the at least one flexible layer, and have a line width Wl≤200 μm, as well as a line-to-line spacing width Ws≤200 μm. In certain enhanced embodiments, the tamper-respondent sensor includes multiple flexible layers, with a first flexible layer having first circuit lines, and a second flexible layer having second circuit lines, where the first and second circuit lines may have different line widths, different line-to-line spacings, and/or be formed of different materials. |
US09936570B2 |
Interconnect topology with staggered vias for interconnecting differential signal traces on different layers of a substrate
An interconnect topology is disclosed that includes a plurality of interconnections, each of which is coupled together using a via, where at least two of the vias are staggered with respect to each other. In one embodiment, the interconnect topology comprises a substrate, multiple signal traces routed through the substrate on multiple layers, and a plurality of vias, where each via couples a pair of the signal traces to form an interconnection between different ones of the multiple layers, and where a pair of vias comprise a first via to carry a positive differential signal via and a second via to carry a negative differential signal that are coupled to signal traces to form a differential signal pair. The differential first and second vias are staggered with respect to each other. |
US09936561B2 |
Flexible LED screen
A flexible LED screen includes a flexible printed circuit board having a front surface and a rear surface, a plurality of SMT-LEDs mounted on the front surface of the flexible printed circuit board, and a plurality of integrated circuits mounted on the rear surface of the flexible printed circuit board. |
US09936560B2 |
Organic EL panel control device, light source device, organic EL panel control method, program, and recording medium
The present invention aims to provide an organic EL panel control device, a light source device, and an organic EL panel control method, capable of inhibiting the change (shift) in color temperature of white light produced by an organic EL panel to be controlled. The organic EL panel control device according to the present invention includes a luminance control unit. The luminance control unit controls, among a plurality of organic EL elements with different emission colors in an organic EL panel to be controlled, luminances of organic EL elements other than a reference organic EL element having a shortest luminance life in such a manner that, with reference to a luminance of the reference organic EL element, white light produced by additive color mixture of different colors of light emitted from the plurality of organic EL elements has the same color temperature as a previously set color temperature. |
US09936559B2 |
Light-emitting device
A light-emitting device (10) includes a first light-emitting region (100) and a second light-emitting region (200). The first light-emitting region (100) emits a light ray having a first color by making a first light-emitting layer group including at least two or more kinds of light-emitting layers emit light. In addition, the second light-emitting region (200) emits a light ray having the first color (for example, daylight color, natural white color, white color, warm white color, or incandescent color) by making a second light-emitting layer group including at least two or more kinds of light-emitting layers emit light. In addition, at least one kind of light-emitting layer included in the second light-emitting layer group emits a light ray having a different spectrum peak from all of the light-emitting layers included in the first light-emitting layer group. Therefore, the color-rendering properties of light emitted from the light-emitting device (10) are improved. |
US09936554B2 |
Television backlight driving device and the driving method thereof
The present invention discloses a television backlight driving device and the driving method thereof, the said television backlight driving device comprises: an AC-DC module and an LED driving module; when a power is on, the said AC-DC module transforms an input supplied AC power into a DC power before supplying to the backlight LED lightstrip; comparing to the existing backlight driving methods, there is no second process of DC-DC needed, saving a system cost of the power, and improving an efficiency of the system; when the LED driving module determines the detection current larger than the preset current but smaller than the first threshold, a constant-current output for LED current is controlled by adjusting the duty ratio; when the detection current is larger than the first threshold or smaller than the preset current, the LED driving module feeds back the detection current to the AC-DC module; the AC-DC module then controls the DC voltage according to the detection current; different methods for adjustment may save a power consumption, as well as achieving an effect of stabling the current output; it owns a simple circuit structure, and a high system reliability. |
US09936552B1 |
System having a driver with voltage supply using an auxiliary winding of a transformer
In one example, a system includes a controller, a transformer including at least a primary winding and an auxiliary winding, a voltage supply, and a driver. The controller is configured to output an indication of a target current or a target power. The voltage supply is configured to receive an electrical current having a constant average current over time from the auxiliary winding and to output variable electrical current for supplying the controller. The voltage supply includes a capacitor for storing energy and a current sink for consuming a current. The driver is configured to selectively energize the primary winding for supplying one or more load devices based on the target current or the target power and selectively energize the primary winding for operating the voltage supply based on an indication of a voltage at the voltage supply. |
US09936551B2 |
LED driver for powering an LED unit from an electronic transformer
An LED driver comprising a power converter for powering an LED unit and a control unit for controlling the power converter is provided. The power converter comprising an input terminal for receiving a rectified AC supply voltage, and an output terminal for supplying a current to the LED unit, and the control unit comprising an input for receiving a supply signal representative of the supply voltage and an output for providing a control signal to the power converter. The control unit is further arranged to: determine the control signal for controlling the power converter based on the supply signal, and control the power converter to supply the current to the LED unit based on the control signal, the current being amplitude modulated in synchronism or in phase with the rectified AC supply voltage. |
US09936547B2 |
Multi-mode control for solid state lighting
A multi-mode control scheme for an LED lamp system uses the detected firing angle of an AC input voltage waveform to select from multiple regulation modes. In operation, a current controller compares the detected firing angle to one or more specified thresholds and selects the appropriate regulation scheme based on the comparison result. When the detected firing angle is less than a first firing angle threshold, the controller employs a current shaping regulation mode. When the detected firing angle is greater than a second firing angle threshold, the controller employs a switching cycle-I Peak modulation regulation mode. And when the detected firing angle is greater than the first firing angle threshold and less than the second firing angle threshold, the controller employs a hybrid regulation mode. |
US09936546B2 |
Methods and apparatuses for operating groups of high-power LEDs
A method of driving a number of high-power light-emitting diodes (LEDs) which are divided into two or more groups, each group being separately energizable by a corresponding one of the power supplies, includes: a) energizing or deenergizing a supply current from the corresponding one of the power supplies into a first one of the groups; b) waiting for a predetermined wait time period; and c) repeating step a) and b) for a second one of the groups. Besides, a supply unit for performing the method comprises a control input, a control unit, and at least two power supplies for correspondingly feeding the two or more LEDs groups. |
US09936545B2 |
LED voltage driver circuit
A light emitting diode (LED) voltage driver circuit includes an input terminal to which a voltage is applied, a ground terminal, an input capacitor whose one end is connected to the input terminal and the other end, which is different from the one end, is connected to the ground terminal, wherein the input capacitor is charged by a voltage difference between the voltage applied to the input terminal and a voltage of the ground terminal, and a buck converter circuit connected to the input capacitor and the input terminal and configured to output power to an LED, wherein the voltage charged in the input capacitor is supplied as an input voltage of the buck converter circuit. |
US09936543B2 |
Display device
A display device includes a circular display panel, an encapsulation substrate on the circular display panel, and an optical element interposed between the circular display panel and the encapsulation substrate, the optical element including a light guide member having a ring shape to correspond to a boundary of the circular display panel, the light guide member configuring a boundary of the optical element. |
US09936539B2 |
Seat heater
A seat heater that is a seat including: a planer heating element that has a plurality of electric heating wires on its upper surface and that includes a fiber layer; a cushion member that locates over a lower surface of the planer heating element; and a skin that locates above the planer heating element, wherein the planer heating element has, in voids of the fiber layer, a silica aerogel that is a silica porous body having pores with a mean pore diameter of 10 nm to 68 nm. |
US09936538B2 |
Radiator element
The invention relates to a an electric radiator element having multiple heating zones for the production of energy-efficient eco-design applications, radiator heating flanges and radiator heating pipes in the low-voltage range, having integrated radiators which increase the heating output of a heater resistor without the additional consumption of energy. |
US09936536B2 |
Communication service for machine-to-machine devices
When machine-to-machine (M2M) devices attach to a mobile communication network, the associated communication session can be treated differently than the attachment of other devices. For example, upon determining that a subscriber device that attaches to a communication network is an M2M device and has completed a given network transaction, the M2M device can be immediately detached without waiting on expiration of an inactivity timer. As another example, upon determining that a subscriber device that attaches to a communication network is an M2M device, the M2M device can be excluded from various signaling procedures such as load-balancing procedures. |
US09936529B2 |
Method for performing or supporting D2D communication in wireless communication system and apparatus therefor
Disclosed are a method for performing or supporting D2D communication in a wireless communication system and an apparatus therefor. The method for enabling a D2D terminal to perform D2D communication according to the present invention comprises the steps of: receiving polling interval information allocated to transmit a polling signal for the D2D communication from a base station; and transmitting the polling signal to the base station within the allocated polling interval. The polling signal comprises an identifier of the D2D terminal, an identifier of a target D2D terminal selected through a search, and an indicator for indicating the execution of D2D communication. |
US09936526B2 |
Systems and methods to authenticate a request to modify or access information related to an asset in association with a transfer of management
Systems and methods are described to enable management of an asset to be transferred from a first entity to a second entity such that an Information Manager that stores information for the asset can authenticate the management transfer when the second entity requests the Information Manager to access or modify the stored information for the asset. Authentication is enabled using a token assigned to the asset by the Information Manager which is provided to the first entity by the Information Manager, transferred from the first entity to the second entity following the transfer of management and provided to the Information Manager by the second entity to enable authentication of the request by the second entity to access or modify the stored information for the asset. In an embodiment, the asset may be a WiFi access point or Bluetooth beacon and the Information Manager may be a National Emergency Address Manager. |
US09936523B2 |
PRACH signals with different bandwidths
The present disclosure concerns radio communication. More particularly, the present disclosure concerns random access procedures used in communication between user equipments (UEs) and radio network nodes, such as evolved NodeB's. According to one exemplary embodiment disclosed herein, a method in a UE 10 comprises transmitting 110, 130 two or more Physical Random Access Channel, PRACH, signals, where the two or more PRACH signals have different frequency bandwidths. Hereby it is made possible to improve the resource utilization during the random access procedure. |
US09936521B2 |
User equipment configured to provide synchronization information for sidelink D2D Communications using allocated resource units
A signal structure for use in D2D communications is described. In one embodiment, a preamble for automatic gain control at the receiver end is included in the transmitted signal. Techniques for scheduling of D2D transmissions using carrier sensing multiple access (CSMA) and a power control schemes for interference management are also described. |
US09936515B2 |
Communication control method
A communication control method pertaining to an embodiment of the present invention is for controlling dual connectivity communication which uses a master base station that establishes RRC connection with a user terminal and a secondary base station that provides a supplementary wireless resource to the user terminal. The communication control method comprises: a step in which the master base station receives, from the user terminal, a measurement report which includes measurement results found for each cell in the user terminal; and a step in which the secondary base station receives, from the master base station, a supplementary request for requesting the allocation of resources to the user terminal. In the step for receiving a supplementary request, the master base station includes, in the supplementary request, measurement results for a cell of the secondary base station which is included in the measurement results, and transmits the same. |
US09936510B2 |
Method and apparatus for establishing condition under which network assistance information is provided
In accordance with an example embodiment of the present invention, an apparatus comprising at least one processor and at least one memory storing computer program code with the at least one memory and the computer program code configured to, with the processor, cause the apparatus at least to: determine whether criteria that defines at least one condition under which assistance information is to be provided to a network has been satisfied; and cause the assistance information to be provided to the network in an instance in which the criteria has been satisfied. |
US09936506B2 |
Method for receiving or transmitting uplink signal in wireless communication system and apparatus therefor
According to an embodiment of the present invention, an MTC UE performs frequency retuning in order to perform uplink transmission through different subbands in consecutive first and second subframes, wherein positions of symbols, used for frequency retuning within the range of last n symbols of the first subframe to first n symbols of the second subframe, are determined according to priority between uplink signals to be transmitted. |
US09936501B2 |
Method and apparatus for reducing latency of LTE uplink transmissions
A method and apparatus reduce latency of Long Term Evolution (LTE) uplink transmissions. A Downlink Control Information (DCI) message can be transmitted in a first subframe. The DCI message can indicate a resource assignment and a modulation and coding scheme and indicating a plurality of cyclic shifts from which a User Equipment (UE) may select one cyclic shift for transmission in a second subframe on an uplink carrier. A data packet can be received on a Physical Uplink Shared Channel (PUSCH) in a resource indicated by the resource assignment and modulation and coding scheme, and using a Demodulation Reference Signal (DMRS) based on a selected cyclic shift in the second subframe on the uplink carrier. |
US09936500B2 |
Transmitting acknowledgement messages using a staggered uplink time slot
A downlink communication is transmitted/received in at least one downlink time slot. In response to the received downlink communication, an acknowledgement message is received/transmitted in an uplink time slot a fixed integer number of uplink time slots after transmission/reception of the received downlink communication. The uplink and downlink time slots are staggered by substantially a half of a time slot. |
US09936497B2 |
Node scheduling method and system and device
Embodiments of the present invention disclose a node scheduling method, where the method includes: configuring, for a node, a working period matched with a performance indicator of the node, where duration of the working period is an integer multiple of duration of a super frame, and the super frame is a super frame corresponding to a beacon frame in a network in which the node is located; and sending, to the node, an updated beacon frame that includes information about the working period, so that the node acquires the information about the working period from the updated beacon frame, receives a working beacon frame, establishes a super frame corresponding to the working beacon frame until the working period ends, and then repeats the receiving a working beacon frame and establishing a super frame corresponding to the working beacon frame until the updated beacon frame is received again. |
US09936493B2 |
Traffic optimization in a communications network
A method for optimizing network traffic that is delivered to a client via a RAN is disclosed. The method includes: receiving, at a first node, a request for content transmitted by the client, including an indication pertaining to a first traffic optimization functionality into the request, and forwarding the modified request to a second node located upstream. At the second node, receiving the request and forwarding the request to a server. At the second node, receiving downlink traffic related to the request, optimizing the downlink traffic, and forwarding the downlink traffic to the first node. In optimizing the downlink traffic, the second node omits traffic optimization functionality corresponding to the first traffic optimization functionality. The first node then receives the downlink traffic, optimizes the downlink traffic, and forwards the optimized downlink traffic to the client. |
US09936492B2 |
Methods and systems for multi user uplink compatibility with legacy devices
Methods and apparatus for multiple user uplink are provided. In one aspect, a method of transmitting a physical layer convergence protocol data unit on a wireless medium includes generating a first portion and a second portion of the physical layer convergence protocol data unit, transmitting the first portion at a first data rate, the first portion decodable by a first and second sets of devices, and transmitting the second portion at a second data rate higher than the first data rate, the second portion decodable by the second set of devices. |
US09936486B2 |
Method and user equipment for reporting demodulation reference signal information and method and base station for receiving demodulation reference signal information
The present invention provides a method and a user equipment for reporting a demodulation reference signal pattern preferred by the user equipment among demodulation reference signal patterns of which locations of demodulation reference signals, demodulation reference signal densities and the like are defined differently within a predetermined time-frequency resource region, and a method and a base station for receiving the report of the preferred demodulation reference signal pattern. |
US09936472B2 |
Method and apparatus for counting devices related to broadcast data services
Methods and apparatuses are provided that include counting devices for broadcast data services. The devices can be counted based on registrations received from the devices. This registration count can additionally or alternatively be used to determine whether further counting is desired. In addition, base stations can transmit counting requests to the devices using a paging message or other message such that idle mode devices can receive the counting requests. The idle mode devices can respond to the requests or send autonomous counting report by switching to an active mode for the purpose of responding or another purpose. |
US09936470B2 |
Radio access networks
Among other things, a communication system comprising remote units, a reference timing source, a controller, a controller clock, and a remote unit clock. The remote units exchange radio frequency (RF) signals with mobile devices. The reference timing source is synchronized with a coordinated universal time (UTC) or a Global Positioning System (GPS). The controller clock is synchronized with the reference timing source and provides timing information to the controller. The remote unit clock is synchronized with the controller clock and provides timing information to a remote unit. The controller and the remote unit are configured to transmit time stamp messages to synchronize the controller clock and the remote unit clock, by avoiding contention between time stamp transmissions and baseband data transmissions or between time stamp transmissions of different remote units to the controller. |
US09936467B2 |
Reporting power headroom for aggregated carriers
A method for reporting power headroom-related information for a plurality of aggregated carriers. The method includes reporting in a bitmap the power headroom-related information for a number of the aggregated carriers that is less than or equal to the total number of aggregated carriers, wherein the power headroom-related information is one of a power headroom for at least one of the aggregated carriers and a path loss for at least one of the aggregated carriers. |
US09936463B2 |
Method for detecting a terminal by a base station, base station, and network entity
The application discloses a method implemented by a first base station, including: obtaining, first receive power information, where the first receive power information is receive power information of receiving a signal transmitted by user equipment served by a second base station; determining, according to the first receive power information, a relationship between the user equipment and a coverage area of the first base station; and notifying the second base station of the relationship. Thus, when user equipment approaches a network covered by a first base station, a second base station may know a relationship between the user equipment and the coverage area of the first base station, so as to perform a network handover for the user equipment or establish a wireless connection between the user equipment and the first base station. The embodiments of the present invention further provide a corresponding base station. |
US09936460B2 |
Wireless communication terminal device, wireless communication method and integrated circuit for controlling transmission power of sounding reference signal (SRS)
A radio terminal is provided that can provide a flexible transmission power control for an SRS without restrictions due to the transmission power control of a PUSCH, for the purpose of enabling use of an SRS for various purposes in a HetNet CoMP environment. The radio terminal receives a control signal including a transmission power control command (TPC command) to be applied to an aperiodic sounding reference signal (A-SRS), through a physical downlink control channel (PDCCH), updates a transmission power value of the A-SRS using the TPC command, and transmits the A-SRS using the updated transmission power value in accordance with a transmission request included in a control signal indicating assignment of a physical downlink data channel (PDSCH) or assignment of a physical uplink data channel (PUSCH). |
US09936457B2 |
Ensuring battery reserve for mobile communication
A usage history for a mobile device is determined. The usage history is based upon historical analytics for a user. A battery reserve in the mobile device is monitored. Whether a threshold battery reserve for a battery in the mobile device, based upon the monitored battery reserve, is determined. In response to determining that a threshold battery reserve for the battery in the mobile device has been met, a power save mode is implemented for the mobile device to reduce battery consumption by the mobile device based on the determined usage history. The power save mode includes utilizing at least one of a battery partition and a second battery. |
US09936456B1 |
Power consumption management based on enabling and disabling wireless chains
Methods, systems, and computer readable media can be operable to facilitate power consumption management of a station by enabling and disabling wireless chains. A station may determine minimal QoS requirements for supporting a WLAN service at the station. The station may determine and utilize a minimal number of WLAN chains needed to support the WLAN service while meeting the minimal QoS requirements. In embodiments, an internal temperature of the station may be monitored, and when the internal temperature of the station exceeds a temperature threshold, one or more WLAN chains of the station may be disabled to reduce power consumption by the station. |
US09936455B2 |
Systems and methods for reducing electromagnetic radiation emitted from a wireless headset
Systems and methods for reducing the emission of radiation by wireless headsets during sleep mode are provided. One system comprises a mobile device and a wireless headset. The mobile device includes a transmission module for transmitting data or voice signals over a microwave frequency band. The wireless headset comprises a transceiver that enables the wireless headset to wirelessly communicate with the mobile device during a time when the mobile device and wireless headset are linked within a personal area network (PAN). The wireless headset is configured to receive instructions from the mobile device to enter a sleep mode, wherein the transceiver is turned off during the sleep mode. |
US09936448B2 |
Method for transmitting and receiving data in wireless communication system and apparatus for performing the same
A method for transmitting and receiving data in a wireless communication system, performed by a first device, includes transmitting a first message including device connection information to at least one second device via a first network, receiving a response with respect to the first message from the at least one second device via the first network, transmitting a connection request message for requesting wireless connection of a second network to the at least one second device via the first network on the basis of the response, the connection request message including information regarding connection of a network indicating the second network, receiving a connection response message corresponding to a response with respect to the connection request message from the at least one second device via the first network, and transmitting and receiving data to and from a second device via the second network. |
US09936447B2 |
Control of services at a cell level or a sector level
A device may connect to a base station included in a service provider network. The base station may serve a geographic area where the device is located. The device may receive service information associated with the base station. The service information may correspond to the geographic area served by the base station, and may include an access state associated with a service. The access state may indicate a manner in which the device is permitted to access the service via the base station. The device may provide information associated with the access state to cause the device to access the service in accordance with the access state. |
US09936445B2 |
Session setup in an energy-efficient cellular wireless telecommunications system
The invention relates to a telecommunications system comprising at least a plurality of SA-cells. The invention provides a method for a terminal to facilitate establishment of a data connection between the terminal and at least one of the SA-cells. The method includes steps of, while the terminal is in an idle mode, the terminal transmitting an information request message (IRM) for the plurality of SA-cells and receiving, from each SA-cell of one or more SA-cells of the plurality of SA-cells, a message comprising at least information indicative of a strength with which the each SA-cell received the IRM. The method further includes the step of, at least partially based on the messages received from the one or more SA-cells, the terminal selecting an SA-cell of the plurality of SA-cells for establishing the data connection between the terminal and the selected SA-cell. |
US09936444B2 |
Exchanging configuration information wirelessly
Methods and systems for wireless stations to wirelessly exchange configuration information using the vendor specific field of management frames (e.g. Wi-Fi™ probe request frames, Wi-Fi™ beacon frames or Wi-Fi probe response frames). Each wireless station can then use the configuration information to configure itself for a particular application or task. For example, the wireless stations may use the configuration information to determine the appropriate topology of a collection of wireless stations for the application or task. Using the management frames to exchange configuration information allows the wireless stations to exchange configuration information without being fully connected to a wireless network. This then allows the wireless stations to exchange configuration information while they are operating in a low-power mode (e.g. in a mode where the network stack is disabled). |
US09936440B2 |
Systems and methods for automatic transmission rate control in a vehicle-based wireless network
Techniques for distributing content to mobile computing devices, such as in the context of a vehicle-based wireless network, are described. In some examples, a collection of vehicle-mounted devices forms a cooperative wireless network to distribute content items throughout the network. The devices in the network automatically and independently vary the transmission rates in order to optimize or at least improve throughput, network connectivity, and/or range. Each device may determine a utilization level of a wireless communication channel. If the utilization level is below a threshold level, the device increases the transmission data rate of its transceiver, thereby decreasing range. If the utilization level is above a threshold level, the device decreases the transmission data rate of its transceiver, thereby increasing range. |
US09936438B2 |
System and method for handling stray session requests in a network environment
An example method is provided in one example embodiment and may include receiving a session request for a user equipment (UE) at a node, wherein the session request includes a timestamp for the UE and a retry count; determining if the session request is a stray session request; and maintaining session information for an existing session for the UE at the node if the session request is a stray session request. The method can include identifying the received session request as a stray request if the timestamp received in the request is less than a timestamp stored for an existing session for the UE. The method can also include identifying the received request as a stray request if the timestamp received is equal to the timestamp stored for the existing session and if the retry count received is less than or equal to a retry count stored for the session. |
US09936437B2 |
Method and device for transmitting data in WLAN system
Disclosed are a method and a device for transmitting data in a WLAN system. The method for transmitting data comprising the steps of: assigning a relay device an R-BSS AID resource for being allocated to a terminal connected an R-BSS from a main access point; and allocating, by the relay device, an AID to the terminal connected to the R-BSS within the R-BSS AID resource. |
US09936436B2 |
Apparatus and method for setting wireless mesh network and computer-readable recording medium
The present invention relates to an apparatus and method for setting a wireless network among a plurality of beacon devices constituting a mesh network and a computer-readable recording medium storing a program for carrying out the method, and more particularly, to an apparatus and method for measuring quality of service (QoS), which is a reference for setting a network path, and setting a path of a mesh network using the QoS, and a recording medium storing a computer program for carrying out the method. |
US09936435B2 |
Call flow system and method for use in a VoIP telecommunication system
A method of establishing a communication link between a mobile terminal of a wireless network and a subscriber of a network, such as an enterprise network, and/or a residential network. |
US09936429B2 |
Method and apparatus for setting up SCTP connection and X2 interface in wireless communication system
A method for processing, by a gateway, an X2 message in a wireless communication system, the method includes receiving, by the gateway, an X2 setup request message and first target information from a first eNodeB (eNB); transmitting, by the gateway, the received X2 setup request message to a second eNB based on the received first target information; receiving, by the gateway, an X2 setup response message and second target information from the second eNB; and transmitting, by the gateway, the received X2 setup response message to the first eNB based on the received second target information. |
US09936428B2 |
Wireless local area network offloading through radio access network rules
Methods, systems, and devices are described for Wireless Local Area Network (WLAN) offloading through radio access network rules. In one embodiment of a method of wireless communication, a mobile device may determine that Radio Access Network (RAN) assistance information is unavailable, the RAN assistance information including a first set of thresholds for switching a Packet Data Network (PDN) connection of the mobile device from a WLAN to a Wireless Wide Area Network (WWAN). The mobile device may further access a second set of thresholds based at least in part on the determining, and the mobile device may determine to switch the PDN connection from the WLAN to the WWAN based at least in part on the second set of thresholds. |
US09936417B2 |
Method and system for optimizing bandwidth utilization in an in-home network
Methods and systems for optimizing bandwidth utilization in an in-home network may comprise determining usage and/or quality of communication links operating in accordance with first and second communication protocols in a multi-protocol wired and wireless network. Data communication may be routed from a first communication link operating in accordance with the first communication protocol to a second communication link operating in accordance with the second communication protocol, based on the determining. The first communication protocol may comprise a multimedia over cable alliance (MoCA) standard and the second communication protocol may comprise an IEEE 802.11x standard. The determining and routing may be performed by a MoCA network controller. The first communication protocol may comprise an IEEE 802.11x standard and the second communication protocol may comprise a MoCA standard. The rerouting may increase bandwidth usage efficiency and/or data throughput of the network. The determining and rerouting may be performed dynamically. |
US09936414B2 |
Enabling long-term-evolution/wifi coexistence
Systems and methods for improving Long Term Evolution (LTE)-WiFi coexistence in a network, including configuring one or more LTE nodes for asynchronous access and synchronous transmission to bridge LTE and WiFi access modes. A channel is reserved for LTE transmission in the one or more LTE nodes, and a supplementary WiFi module is provided in the one or more LTE nodes for sensing the channel for occupancy and for broadcasting a reservation signal on the channel prior to the LTE transmission. Contention window sizes are scaled linearly by increasing the contention window sizes proportionally to a subframe collision rate to maintain throughput fairness to the WiFi, and synchronous transmission from the one or more LTE nodes to one or more User Devices (UEs) is performed by activating the unlicensed carrier for a reserved time period. |
US09936413B2 |
Radio measurement collection method and radio terminal
A radio measurement collection method using UE configured to perform a process of retaining a measurement log including a measurement result of a radio environment according to a measurement configuration set by a measurement configuration message received from a network includes a step S109 in which the network transmits a UEInformationRequest message to request a transmission of the measurement log to the UE, and a step S110 in which the UE transmits a UEInformationResponse message to transmit the measurement log to the network. In step S110, the UE transmits the UEInformationResponse message to the network even when the measurement log is not retained. |
US09936411B2 |
Method for radio resource measurement in wireless access system supporting carrier aggregation, and apparatus supporting same
The present invention relates to methods for making radio resource measurements in synchronized cells when quasi co-location is applied, and to apparatuses supporting same. A method for a terminal for making radio resource measurements (RRM) in a wireless access system according to one embodiment of the present invention may comprise the steps of: receiving an upper level signal comprising a reference signal for channel state information (CSI-RS) of a first cell, and quasi co-location (QCL) information for a cell-specific reference signal (CRS) and/or CSI-RS of a second cell; receiving the CRS and/or CSI-RS of the second cell on the basis of the QCL information; and measuring a first RRM for the first cell by means of the CRS and/or the CSI-RS of the second cell. |
US09936410B2 |
Method and device for reporting channel quality information
A method and a device for reporting channel quality information are provided by the present invention, the method comprising that: measuring, by a user equipment (UE), Channel State Information-Reference Signal (CSI-RS) according to the configuration information of the CSI-RS, to acquire a downlink channel transport matrix (101); determining, by the UE, Channel Quality Indicator (CQI) of a frequency domain reporting unit according to the number of CSI-RS ports and the corresponding transmission scheme of the Physical Downlink Shared Channel (PDSCH) used when determining the CQI, and the downlink channel transport matrix acquired by measurement (102); reporting, by the UE, the determined CQI to network side (103). The present invention can realize measurement and reporting of CSI-RS-based channel quality information on the basis of non-Precoding Matrix Indicator (PMI) feedback transmissions. |
US09936408B2 |
Communication method in consideration of carrier types and apparatus for same
The present invention relates to a wireless communication system. In particular, the present invention relates to a method for a terminal to receive a downlink signal in a wireless communication system and to an apparatus for same, the method comprising the steps of: receiving, from a base station, a first piece of information indicating the start point of a multicast broadcast single frequency network (MBSFN) signal, receiving an MBSFN subframe having a plurality of orthogonal frequency division multiplexing (OFDM) symbols, and receiving the MBSFN signal from an OFDM symbol indicated by the first piece of information in the MBSFN subframe. |
US09936404B2 |
Methods and apparatuses for fast recovery
The invention introduces a method and an apparatus for fast recovery. The fast recovery method comprises: evaluating data download qualities of non-current RATs (Radio Access Technologies) to obtain a candidate RAT list; determining whether a PS (Packet Service) download quality of a current RAT becomes worse; and if the PS download quality of the current RAT becomes worse, selecting one RAT from the candidate RAT list and switching to the selected RAT. The method and the apparatus for fast recovery introduced by the invention realize the seamless RAT switch and maintain the continuous data transmission. |
US09936402B2 |
Methods and systems for managing relays in LTE based communication networks
Methods and systems for managing relays in LTE based communication networks. Embodiments herein use of a packet handler node and an additional radio interface in the UE, enabling the creation of an overlay network on top of an existing LTE network. The overlay network helps in the transfer of data between the UE and the AS even when the UE is not directly connected to the LTE network by encapsulating the data from the out-of-coverage UE within the IP packet of at least one nearby relay UE connected to the LTE network and is then forwarded to the LTE core network. The out-of-coverage UE uses the additional radio interface to send packets to the relay UE. |
US09936401B2 |
Systems and methods for high rate OFDM communications
Messages transmitted between a receiver and a transmitter are used to maximize a communication data rate. In particular, a multicarrier modulation system uses messages that are sent from the receiver to the transmitter to exchange one or more sets of optimized communication parameters. The transmitter then stores these communication parameters and when transmitting to that particular receiver, the transmitter utilizes the stored parameters in an effort to maximize the data rate to that receiver. Likewise, when the receiver receives packets from that particular transmitter, the receiver can utilize the stored communication parameters for reception. |
US09936400B2 |
Channel selection in a shared communication medium
Techniques for channel selection in a shared communication medium are disclosed. A communication apparatus may include one or more transceivers, a processor, and memory coupled to the processor and configured to store data and/or instructions. The one or more transceivers may be configured to monitor signaling on a plurality of available channels associated with a communication medium. The processor may be configured to determine an interference level for each of the plurality of available channels based on the monitored signaling, determine that the interference level for each of the plurality of available channels is greater than a first threshold, determine whether a triggering condition is met, and select the first channel of the plurality of channels as an operating channel for a primary radio access technology based on the triggering condition being met, the first channel having an interference level that is greater than a second threshold. |
US09936395B2 |
Communication system, communication device, program and communication control method
There is provided a communication system comprising: a first communication device that senses a communication environment surrounding the first communication device; a second communication device that acquires sensed data sensed by the first communication device; and a third communication device that determines availability of usage of a second communication service using a part or whole of a spectrum assigned to a first communication service based on the sensed data transmitted from the second communication device. |
US09936394B2 |
Method for processing data after unlicensed spectrum is released, and user equipment
A method for processing data after an unlicensed spectrum is released, and user equipment are disclosed. The method includes: when user equipment determines that a base station has released an unlicensed spectrum, monitoring, by the user equipment, release time for which the unlicensed spectrum is released a release time for which the unlicensed spectrum is released; when the release time does not exceed a time threshold, pausing, by the user equipment, a data processing process attached to the unlicensed spectrum, and resuming the data processing process after the base station re-acquires the unlicensed spectrum; and when the release time exceeds the time threshold, terminating, by the user equipment, the data processing process attached to the unlicensed spectrum, and selecting a licensed spectrum to start a new data processing process, or after the base station re-acquires the unlicensed spectrum, starting a new data processing process. |
US09936393B2 |
Method of radio resource scheduling in unlicensed spectrum and related apparatuses using the same
The disclosure is directed to a method of radio resource scheduling in an unlicensed spectrum and related apparatuses using the same method. In one of the exemplary embodiments, the method would include not limited to transmitting a node control information which may include an occupancy pattern of a radio resource of the unlicensed spectrum before receiving an occupancy notification; transmitting an equipment control information which comprises the occupancy pattern of the radio resource of the unlicensed spectrum before receiving the occupancy notification; transmitting a packet data by using the radio resource of the unlicensed spectrum before receiving the occupancy notification; and receiving the occupancy notification which informs an availability of the radio resource of the unlicensed spectrum. |
US09936390B2 |
Method and apparatus of triggering applications in a wireless environment
Receive a first device identifier from a first computing device; determine whether the first device identifier matches the second device identifier stored in a database at the second computing device; locate first user data associated with the first device identifier in the database of the second computing device based on a match; transmit the first user data to the first computing device based on a location of the first user data associated with the first device identifier; select an application to automatically launch on the first computing device based on application information within the first user data; update a user data list with the first user data, wherein the user data list is associated with the application and is stored at the second computing device; and launch the application on the first computing device, wherein the application uses second user data determined from the user data list. |
US09936389B2 |
Methods and systems for preventing a user input device from controlling user equipment
Methods and systems for preventing a user input device from controlling the user equipment are described herein. The method includes receiving, over a first communication path, by a user equipment, data indicative of a first request to restrict control by the user input device over the user equipment. The method includes disregarding a first command from the user input device response to receiving the first request. The method includes receiving, over the first communication path, data indicative of a second request to restore control by the user input device over the user equipment. The method includes receiving a second command from the user input device, the second command intended to alter a second setting of the user equipment, in response to receiving the second request. The method includes altering the second setting of the user equipment in response to receiving the second request and the second command. |
US09936387B2 |
System and method for administration and operation of one or more mobile electronic communications devices
A system for managing mobile electronic communications devices includes a user directory database configured to hold authentication data associated with at least one user, an authentication authority communicatively connected to the user directory database, an administration server configured to send and receive command messages with at least one mobile electronic communications device, a messaging server configured to send and receive communications messages with at least one mobile electronic communications device, and the authentication authority, administration server, and messaging server are configured to send and receive data via a data communications network. The authentication authority accepts or denies authentication data for a user received from at least one mobile electronic communications device, stores status information corresponding to authenticated users in the user directory database, and stores an association between each authenticated user and each mobile electronic device that sent authentication data for an authenticated user in the user directory database. |
US09936384B2 |
Systems and methods for providing security to different functions
Methods and systems are provided that use smartcards, such as subscriber identity module (SIM) cards to provide secure functions for a mobile client. One embodiment of the invention provides a mobile communication network system that includes a mobile network, a mobile terminal, a server coupled to the mobile terminal via the mobile network, and a subscriber identity module (SIM) card coupled to the mobile terminal. The SIM card includes a first key and a second key. The first key is used to authenticate an intended user of the mobile terminal to the mobile network. Upon successful authentication of the intended user to the mobile network, the mobile terminal downloads a function offered from the server through the mobile network. The second key is then used by the mobile terminal to authenticate the intended user to the downloaded function so that the intended user can utilize the function. |
US09936380B2 |
Predictive pairwise master key caching
A client device is authenticated in a wireless local area network using a pairwise master key when the client device associates to a first access point. A set of neighbor devices to the client device is generated. The set includes less than a total number of access points in the wireless local area network. The pairwise master key is distributed to the neighbor devices such that the pairwise master key is not distributed to access points outside of the set of neighbor devices. Data representing the set of neighbor devices for the client device is maintained. |
US09936379B2 |
Mobile device and method of information transmission
A mobile device and information transmission method are provided. The information transmission method is applied to the mobile device in M2M communication and includes the steps of determining whether a base station and the mobile device support transmission of capability information of the mobile device by a General Extension Message; and determining whether the capability information of the mobile device is changed when the base station and the mobile device support transmission of the capability information by the General Extension Message, wherein when the capability information of the mobile device is changed, the changed capability information is tied up with a Registration Message and transmitted to the base station by the General Extension Message. |
US09936378B2 |
Device and method of handling non access stratum procedure
A communication device of handling a Non Access Stratum procedure comprises instructions of accessing a first network by using the first IMSI; transmitting a first NAS request message to the first network by using the first IMSI; receiving a NAS response message comprising a timer value and a cause value from the first network; starting a timer for the first IMSI with the timer value; not transmitting a second NAS request message to the first network by using the first IMSI, if the timer is running for the first IMSI; changing from the first IMSI to the second IMSI without removing the USIM; keeping the timer running, after changing to the second IMSI; accessing a second or the first network by using the second IMSI; and transmitting a third NAS request message to the second or the first network by using the second IMSI, when the timer is running. |
US09936376B2 |
Adaptive D2D discovery operations
First and second level discovery messages for device-to-device discovery are determined to be going to be transmitted, resource(s) are requested for transmission of at least the second level discovery message, and allocated resource(s) of a second type are received. The first level discovery message is transmitted on either a selected resource of the first type or a selected one of the allocated resource(s). The second level discovery message is transmitted on a selected one of the more allocated resource(s) of the second type, A first level discovery message is received on a resource of either a first type or a second type. It is determined whether the received message is of interest or not and if the message is of interest, then it is determined whether a second level discovery message is available and if so, the second level discovery message is received on a resource of the second type. |
US09936374B2 |
Radio communication apparatus, radio communication method, computer-readable medium, slave device, and master device
In CE4, a communication terminal transmits data including a latency_off value “1”. After receiving the data, an environment information measuring apparatus transmits data since a latency counter value is “0”. The latency counter value becomes “2” and a latency_off counter value becomes “1”. In CE5, the communication terminal transmits data including a latency_off value “0”. Since each of the latency counter value and the latency_off counter value is not “0”, the environment information measuring apparatus does not receive the data from the communication terminal. The latency counter value becomes “1” and the latency_off counter value becomes “0”. In CE6, since the latency_off counter value is “0”, the environment information measuring apparatus receives the data from the communication terminal. |
US09936369B2 |
System and method for differential peak signaling
A system and method of operating a device in a wireless communication network including a plurality of user equipment UEs and a BS, including a first device generating a signaling message defining resource elements (REs) as an encoded time slot (TS) and subcarrier pairing. A subset of the REs is encoded, such as to create a discovery signal configured to enable discovery of the first UE by a second UE or the BS. The UE is configured to engage in device-to-device communications, including device centric UEs operable in 5G networks. |
US09936368B2 |
Method and system for discovery of devices in a wireless network with partial coverage
A method at a wireless device outside of base station control, the method comprising: transmitting a device presence signal for a predetermined time period; and listening for a network presence signal sent in response to the device presence signal. Further, a method at a wireless device, the method comprising: listening for a device presence signal; and transmitting a network presence signal in response to the device presence signal. |
US09936364B2 |
Mobile device wireless identifier assignment for emergency calls
An emergency caller location system uses enterprise Wireless Local Area Network (WLAN) location systems to provide more accurate location information on an emergency caller. A cellular telephone modifies its WLAN identifier, such as its Media Access Control (MAC) address, in response to a user initiating an emergency call. The MAC address is modified based on an identifier known to the cellular network, such as the phone number, subscriber name, International Mobile Equipment Identifier (IMEI), International Mobile Subscriber Identifier (IMSI), and/or International Circuit Card Identifier (ICCID). The cellular telephone may additionally modify the probe timer of the WLAN interface to enhance the ability of the WLAN location system to determine the location of the device. |
US09936363B2 |
Multi-standard in building mobile radio access network
A multi-standard indoor mobile radio access network having a centralized device is provided. In one embodiment of the present invention, a centralized device is configured to transmit a wake-up signal to a wireless device once the wireless device has entered a service area, wherein the wake-up signal triggers the downloading and/or opening of an application on the wireless device configured to determine whether a 911 call has been made. If a 911 call has been made, the application transmits a notification signal to the centralized device. In response thereto, the centralized device transmit location information of the wireless device to an emergency responder. The centralized device also transmits a “ping” to the wireless device during predetermined periods of time in order to keep the application open and/or installed on the wireless device. |
US09936361B1 |
Filtering incoming messages of a dedicated short range communication system
Systems and methods for filtering received messages of a dedicated short range communications (DSRC) system are provided. A receiver module receives messages from at least one of a remote vehicle and an infrastructure system. A processing module determines at least one of a central processing unit (CPU) usage and a messages received frequency (MRF) of the DSRC system, determines a received signal strength (RSS) of a received message, determines whether the RSS of the received message is greater than a RSS threshold, and processes the received message in response to the RSS of the received message being greater than the RSS threshold. An RF filter control module adjusts an RSS threshold in response to at least one of the CPU usage being greater than a threshold CPU usage, the MRF being greater than a maximum threshold MRF, and the MRF being less than a minimum threshold MRF. |
US09936355B2 |
Information processing apparatus, information processing method, and computer program
An information processing apparatus including a control unit configured to perform control to detect leaving of a user from the information processing apparatus and transmit at least part of context information exchanged with the user until then to another apparatus. The information processing apparatus can improve user-friendliness by detecting behavior of a user and linking data with each other in advance between equipment to be operated by the user. |
US09936354B2 |
Communication coverage navigation
A processor may be configured to access mapping data for a route to a destination, as well as information associated with a mobile device that may include usage data of the mobile device, a user profile associated with the mobile device, or demographic data associated with a user of the mobile device. The route to the destination may be displayed along with an indicator of the predicted coverage for the mobile device along the route. |
US09936348B2 |
Techniques for establishing and using associations between location profiles and beacon profiles
In one embodiment, techniques are provided to establish and use semantic associations between location profiles and ambient profiles. One or more location profiles are selected from a location database. A first plurality of ambient profiles is selected for a first area surrounding one or more geographic locations of the location profiles. One or more patterns are extracted from the first plurality of ambient profiles and are used to generate associations between location profiles and ambient profiles in an association database which semantically associates location profiles with ambient profiles independent of geographic location. The associations may be used, among other things, to service requests from mobile devices and/or update ambient profiles or location profiles. |
US09936344B2 |
Managing location sharing requests
Systems, methods, devices and computer-readable storage mediums are disclosed for managing location sharing requests. In various implementations, a requesting device or a server computer in communication with the requesting device, receives a location sharing request associated with a user and, in response, sends a notification to a companion device associated with the user. A location of the companion device is received from the companion device together with a list of one or more devices associated with the user that are paired with the companion device and a connection status for at least one of the one or more paired devices. The connection status indicates if there is a direct communication link established between the paired device and the companion device. A notification is sent to each disconnected paired device based on the connection status. Each disconnected device that is worn or carried by the user responds with their location. |
US09936339B1 |
System and method of using spatial and temporal signals to identify and prevent attacks
Systems and methods according to aspects of the invention verify requests for information over a network. Computing devices communicating over a network transmit numerous signals with various types of information including spatial information, temporal information, device-specific information, and transmission specific information. This information may be used to generate statistical records of valid request for information. Various combinations of these signals may be used to determine whether a request for information is a valid request based on the statistical records associated with the signals. Where a request for information has been verified, the system and method may provide the information. Where the request for information has not been verified, the system and method may deny the request for information. Thus the system and method may be used to prevent and block scraping and spamming attacks. |
US09936333B2 |
Location and contextual-based mobile application promotion and delivery
Apparatus and methods are disclosed for selecting one or more mobile device applications using context data describing the current environment of a mobile device and application metadata describing environment conditions where applications are more likely to be relevant, in order to improve the experience of discovering, downloading, and installing mobile device applications. According to one embodiment, a method comprises associating metadata with mobile device applications automatically receiving context data representing a current geographical location from a mobile phone, searching the metadata to determine which applications are likely of interest based on the current geographical location, and transmitting notification data to the mobile phone indicating the determined applications. |
US09936330B2 |
Methods for exchanging data amongst mobile applications using superlinks
In one embodiment, a server receives a first URL link from a first mobile device of a first user. In response to the first URL link, the server determines whether a first mobile application that is associated with the URL link has been installed at the first mobile device. If the first mobile application has not been installed at the first mobile device, interactive data of the first user with respect to the first URL link is collected and stored in an event database of the server. If the first mobile application has been installed at the first mobile device, first data that is associated with the first URL link is retrieved from the link database and a second URL link is generated, the second URL link including the first data embedded therein. The second URL link is transmitted to the first mobile device. |
US09936324B2 |
System and method for generating spatial sound using ultrasound
A novel system and method for spatial sound generation is disclosed. A system and method for generating bodiless mid-air speakers includes the steps of: generating a modulated signal by modulating an ultrasonic carrier signal with an audio signal, determining a phase delay value for each ultrasonic transducer of an array of ultrasonic transducers with respect to one or more focal points, and driving each such ultrasonic transducer with the modulated signal in accordance with the phase delay value determined for each ultrasonic transducer to generate audible sound at the one or more focal points. |
US09936322B2 |
Method for implementing surround sound using a plurality of vehicles
The present inventive concept relates to a method for implementing surround sound system using a plurality of vehicles, which implements the surround sound by outputting a sound source corresponding to a surround sound node of itself according to a synchronization signal after each vehicle located in a local area (AVN system: Audio, Video, Navigation system) identifies the surround sound node of itself based on its position. |
US09936321B2 |
Method and device for applying dynamic range compression to a higher order ambisonics signal
Dynamic Range Control (DRC) cannot be simply applied to Higher Order Ambisonics (HOA) based signals. A method for performing DRC on a HOA signal comprises transforming the HOA signal to the spatial domain, analyzing the transformed HOA signal, and obtaining, from results of said analyzing, gain factors that are usable for dynamic compression. The gain factors can be transmitted together with the HOA signal. When applying the DRC, the HOA signal is transformed to the spatial domain, the gain factors are extracted and multiplied with the transformed HOA signal in the spatial domain, wherein a gain compensated transformed HOA signal is obtained. The gain compensated transformed HOA signal is transformed back into the HOA domain, wherein a gain compensated HOA signal is obtained. |
US09936320B2 |
Test device and test method for microphone arrays
A transfer function calculation unit is configured to calculate a transfer function from a sound source installed in a predetermined target direction to each microphone of a microphone array, and a determination unit is configured to determine whether or not the microphone array is normal on the basis of a difference amount between a transfer function to each microphone and a predetermined ideal transfer function to each microphone. |
US09936314B2 |
Insert member for a hearing device
An insert for a hearing device is disclosed. The insert member is a flexible sealing part configured to be inserted into the ear canal of a hearing device user. The insert member comprises at least one through-going hole permeable for sound generated by the hearing device, the sound being transmitted through the insert member to an eardrum of the hearing device user or the at least one through-going hole being configured to allow an acoustically active part of the hearing device to be releasably fastened thereto. The insert member comprises a bag structure containing a non-hardened shapeable material and wherein an opening for receiving a hardening member is provided in the bag structure. The non-hardened shapeable material is configured to be hardened by means of a temperature increment and/or electromagnetic radiation, such as UV radiation or a chemical reaction. |
US09936313B2 |
Hearing aid system with positioning tool
A hearing aid attachment system includes a positioning tool and an interconnection unit. An upper surface of the interconnection unit has a second shape that matches a corresponding first shape of a cavity in the lower surface of the positioning tool so that the upper surface fits into the cavity with a second front surface of the positioning tool against and radially outside the front side of the interconnection unit, with the connection portion of the positioning tool connected to the connecting portion of the interconnection unit. The positioning tool is further configured to be removable from the interconnection unit without removing the interconnection unit from the skin. |
US09936312B2 |
Acoustic output device with antenna
A hearing aid includes: a hearing aid component configured to be arranged at a head of a user, and away from an ear canal of the user, the hearing aid component configured to provide a signal to an earpiece; the earpiece configured to be arranged at the ear of the user, and configured to provide an acoustic output to the user; and a coupling element configured for coupling the hearing aid component and the earpiece, the coupling element having a tube and an electrically conducting element; wherein the electrically conducting element in the coupling element of the hearing aid is configured to operate as a part of an antenna for wireless communication, and wherein the electrically conducting element is configured for electromagnetic signal emission and/or electromagnetic signal reception. |
US09936310B2 |
Wireless stereo hearing assistance system
A hearing assistance system having an audio signal wireless transmission unit for transmitting a stereo audio signal with left and right ear channels, a first ear unit for being worn at a user's ear and having a hearing instrument and a wireless audio signal receiver unit, the hearing instrument providing the first receiver unit with information as to which ear of the user the hearing instrument is being worn and information as to whether, or not, there is a like second ear unit. The first receiver unit is adapted to decide, depending on the received information as to which ear the first hearing instrument is fitted and whether a second ear unit is worn at the other ear, to receive one of the right and left ear channels, and, in absence of a stereo channel, to supply the respective mono channel of the audio signal to the first hearing instrument. |
US09936308B2 |
Hearing aid apparatus with fundamental frequency modification
A hearing aid apparatus includes a frequency analysis device configured to determine an instantaneous fundamental frequency value of a speech signal for a time portion of the speech signal. A statistical evaluation device is configured to determine an average fundamental frequency value of the speech signal over several time portions. A hearing aid apparatus further includes a fundamental frequency modifier that is configured to modify the instantaneous fundamental frequency value to a modified fundamental frequency value such that a difference or a quotient of the instantaneous fundamental frequency value is changed to the average fundamental frequency value according to a specific function. Thereby, a frequency range may be modified within which the fundamental frequency value varies. The hearing aid apparatus further includes a speech signal generator that is configured to generate, on the basis of the modified fundamental frequency value, a speech signal modified with regard to the fundamental frequency. |
US09936307B2 |
Hearing aid communication system and hearing aid communication method thereof
A hearing aid communication system and a hearing aid communication method thereof are disclosed. The hearing aid communication method includes the steps of: determining whether a sound-providing apparatus is providing a sound signal; when the sound-providing apparatus is providing a sound signal, establishing a connection with a hearing aid; receiving the sound signal from the sound-providing apparatus for transmission to the hearing aid; and when the sound-providing apparatus stops providing the sound signal, breaking the connection with the hearing aid. |
US09936302B2 |
Miniature sounder
Some embodiments of the present invention provide miniature sounder which includes a frame and a vibration system and a magnetic path system fixedly connected to the frame. The magnetic path system includes a lower clamping board, a primary magnet disposed on the lower clamping board, secondary magnets disposed on the lower clamping board and arranged around the primary magnet, and a cushion provided on the lower clamping board and located outside the secondary magnets, a gap being provided between two adjacent secondary magnets. The vibration system includes a voice diaphragm, a voice coil which drives the voice diaphragm to vibrate and generate a sound, and a vibrating diaphragm which elastically supports the voice coil. The vibrating diaphragm includes a first connecting portion connected to the voice coil, a second connecting portion connected to the cushion, and a corrugated rim connecting the first connecting portion and the second connecting portion. |
US09936298B2 |
MEMS component including a sound-pressure-sensitive diaphragm element and piezosensitive signal detection
For a MEMS component, in the layer structure of which at least one sound-pressure-sensitive diaphragm element is formed, which spans an opening or cavity in the layer structure and the deflections of which are detected with the aid of at least one piezosensitive circuit element in the attachment area of the diaphragm element, design measures are provided, by which the stress distribution over the diaphragm surface may be influenced intentionally in the event of deflection of the diaphragm element. In particular, measures are provided, by which the mechanical stresses are intentionally introduced into predefined areas of the diaphragm element, to thus amplify the measuring signal. For this purpose, the diaphragm element includes at least one designated bending area, which is defined by the structuring of the diaphragm element and is more strongly deformed in the event of sound action than the adjoining diaphragm sections. |
US09936297B2 |
Headphone audio and ambient sound mixer
A headphone set can enable the substantially simultaneous output of two or more audio sources to a user. The audio from the multiple sources may be mixed so that a listener can hear and understand audio received from multiple audio sources. Thus, in certain embodiments, a user can consume media and also engage in conversation with other users or listen to ambient sounds, such as a telephone ringing or an alarm. Further, a mobile device, such as a mobile phone, can mix audio from multiple sources enabling a user to consume audio from the device while also listening to ambient sound or audio received from a source other than the device, using currently-available headphones. |
US09936296B1 |
Device, system, and method for multimedia communications
A device for multimedia communications is disclosed herein. The device for multimedia communications includes a power supply, a stereo communication link, a left headset earpiece, and a right headset earpiece. The stereo communication link is configured to communicate at least one of audio signals and video signals over a left channel to the left headset earpiece and over a right channel to the right headset earpiece. The left and the right headset earpieces feature speakers and displays for playing audio and video signals together or independently. |
US09936293B2 |
Sound reproduction apparatus, a non-transitory computer readable medium, and a sound reproduction-correction method
According to one embodiment, a loudspeaker is provided in a case of an earphone. The case closes an external auditory canal extended from a tympanum of a listener. The earphone has an opening toward the external auditory canal. In an apparatus for generating a sound reproduction to the loudspeaker, a storage unit stores a correction filter in which a maximum of a gain at a frequency band lower than or equal to 10 kHz is larger than a maximum of a gain at a frequency band higher than 10 kHz. An acquisition unit acquires a first sound reproduction signal. A correction unit generates a second sound reproduction signal by convoluting the correction filter with the first sound reproduction signal. An output unit outputs the second sound reproduction signal to the loudspeaker. |
US09936292B2 |
Spatial audio apparatus
An apparatus comprising: an input configured to receive at least one audio signal from a further apparatus; an input configured to receive at least one audio signal associated with the apparatus; an orientation/location determiner configured to determine a relative orientation/location difference between the apparatus and the further apparatus; an audio processor configured to process the at least one audio signal from the further apparatus based on the relative orientation/location difference between the apparatus and the further apparatus; and a combiner configured to combine the at least one audio signal from the further apparatus having been processed and the at least one audio signal associated with the apparatus. |
US09936291B2 |
Spherical microphone array including a sound diffracting structure with cavity
A spherical microphone array that includes a sound-diffracting structure having a closed three-dimensional shape of at least one non-regular, regular or semi-regular convex polyhedron with congruent faces of regular or non-regular polygons and at least two omnidirectional microphones disposed in or on the sound-diffracting structure on an oval line whose center is disposed on a center line that subtends the center of one of the faces of the regular polygons. |
US09936289B2 |
Microelectromechanical systems (MEMS) microphone array with dedicated amplifiers
Microelectromechanical systems (MEMS) acoustic sensors are implemented with dedicated preamplifiers. Provided implementations can comprise an array of MEMS acoustic sensor elements each having a dedicated preamplifier. A summation node can add outputs of each preamplifier and an analog to digital converter (ADC) can receive the summed outputs. Other implementations can comprise an array of MEMS acoustic sensors each having dedicated preamplifiers. Some of the preamplifiers receive an invert signal and an ADC can subtract inverted signals from non-inverted signals. |
US09936280B1 |
Headphones system and method
A machine washable headband including a headphones system that is waterproof when submerged up to about one meter deep for up to about thirty minutes, the headphones system including a battery compartment, an electronics and control compartment, an inductive charging antenna, and a pair of speakers. |
US09936271B2 |
System and method for pet behavioral identification
A system and method for behavioral analysis of a household pet. The system includes a sensor unit having at least one 3D accelerator sensor attached to the pet, a control unit connected with the 3D accelerator sensor and configured to collect acceleration data indicative of selected movements from the sensor. The control unit being configured to perform an initial analysis of the collected sensor data. The system further includes an analysis unit communicating with the control unit, the analysis unit configured to upload the collected sensor data and to receive additional data pertaining at least to the household environment and to the pet's historical condition and to define the pet's condition accordingly by neutralizing the additional data effects, wherein the data collection rate from the sensor is selected in accordance with at least the initial analysis results. |
US09936267B2 |
System and method for decreasing an initial buffering period of an adaptive streaming system
System and methods for selecting one of the alternative streams of encoded media from a group of alternative streams of encoded media for use during start-up of playback of the encoded media in accordance with embodiments of this invention are disclosed. The systems and methods begin by determining an estimated stability period for a current bandwidth of a communicative connection between the playback device and a remote system providing the alternative streams of encoded. A test process is then performed on the streams of encoded media to select one of streams of encoded media that provides portions of said encoded media such that an underflow condition does not occur during the estimated stability period. The streaming of encoded media is then commenced by requesting the portions of encoded media be transmitted from the remote server using the selected stream. |
US09936260B2 |
Content reproduction method and apparatus in IPTV terminal
An IPTV terminal is provided. It is possible to provide an additional service allowing a user to watch video content, in addition to a service for reproducing an audio file, by extracting metadata on the audio file if a reproduction command of the audio file is input, searching for the video content related to the audio file based on the extracted metadata, and receiving and reproducing the video content. |
US09936259B2 |
Systems and methods for rendering text onto moving image content
A method for rendering text onto moving image content. The method comprises receiving a request to translate dialog associated with moving image content, transmitting an interface, transmitting a time-stamped transcription, and receiving a translation of the dialog. |
US09936256B2 |
Receiver, reception method, transmitter and transmission method
Disclosed herein is a receiver including: a reception section adapted to receive AV, namely audio and visual content; a registration section adapted to register related content relating to the AV content based on control information included in an application program executed in response to the AV content; and a presentation control unit adapted to exercise control in such a manner that if the registered related content is selected, the selected related content is presented. |
US09936255B2 |
Methods and apparatus to determine characteristics of media audiences
Methods and apparatus to determine characteristics of media audiences are disclosed. An example method includes creating a constraint matrix based on a first activity associated with a first characteristic of a population, the first activity associated with a second characteristic of the population, and a first combination associated with at least one of the first activity, the first characteristic, and the second characteristic. The example method includes creating a combination total set based on a first measurement for the first activity associated with the first characteristic and a second measurement for the first activity associated with the second characteristic. The example method includes computing a first entropy probability based on the constraint matrix and the combination total set. The example method includes estimating a first portion of the population that matches the first combination based on the first entropy probability. |
US09936251B2 |
Television channel display device and method thereof
An Internet Protocol television system includes a set-top box that receives requests to display video streams being transmitted to a household. In response to the request, the set-top box provides a list of the video streams to a display device. The list includes options to terminate transmission of one or more of the streams. This allows a user to determine which video streams should be transmitted when bandwidth limitations are reached. |
US09936250B2 |
Methods and apparatus to adjust content presented to an individual
Methods, apparatus, systems and articles of manufacture to adjust content presented to an individual are disclosed. An example method includes measuring, via sensors, responses of an individual to content during a first time, determining response classifications based on a comparison of the responses and respective thresholds, determining a first mental classification of the individual based on combining the response classifications, determining a baseline during the first time, measuring additional responses to the content during a second time, determining additional response classifications based on a comparison of the additional responses to respective additional thresholds, adjusting the baseline based on the additional responses in the second time, determining a second mental classification of the individual based on combining the additional response classifications, determining a mental state of a user based on a similarity of the first mental classification and the second mental classification, and modifying the content based on the mental state. |
US09936249B1 |
Methods and apparatus to measure audience composition and recruit audience measurement panelists
Methods and apparatus to measure audience composition and recruit audience measurement panelists are disclosed. An example media device includes a memory including machine readable instructions, and a processor to execute the instructions to implement an analyzer to detect and decode a first code embedded in a video stream of media being presented by the media device. The first code contains first audience measurement data associated with the media. The instructions further implement a media output modifier to provide a second code for display in response to detecting the first code. The second code includes information that, when the second code is scanned with a portable device other than the media device, is to direct the portable device to a website to provide additional audience measurement data. |
US09936248B2 |
Media content output control
Control, based upon one or more pre-determined and user-configurable criterion, the loudness or intensity of audio as output by a television or handheld mobile device. |
US09936247B2 |
Method and apparatus for requesting data, and method and apparatus for obtaining data
Disclosed herein are methods and apparatuses for requesting and obtaining data, in which time information is generated by use of a first device, and a data request command requesting data output by a second device is generated at a time point indicated by the time information. The generated data request command is transmitted, wherein the data request command includes the time information. |
US09936245B2 |
Digital television and method of providing graphical user interface using the same
A digital television (DTV) and a method of providing a GUI using the DTV are disclosed. The method of providing a GUI in a DTV comprises: first displaying an image on a display unit provided on the DTV; receiving a display command of a first GUI; and second displaying the image and the first GUI such that a different spatial depth is formed between the image and the first GUI according to the received display command. |
US09936242B2 |
Merging content channels
A method for merging content channels is disclosed. The method includes identifying, by a processing device, target channels to merge into a result channel, wherein the result channel is formed in view of at least one set of users of the target channels viewing at least one of a same set or a similar set of content items from the target channels. The method further includes subscribing, by the processing device, the users of the target channels to the result channel and associating, by the processing device, the set of the content items of the target channels with the result channel. |
US09936241B2 |
Method and apparatus for providing dynamic channel and content provisioning
An approach for implementing a content provisioning platform for accurate provisioning of one or more dynamic multicast data channels (e.g., eMBMS) for initiating multicast transmission of contents. The approach includes analyzing content usage data to determine content consumption trend data associated with a topic in a service area. The approach also includes selecting a content package based on the topic, the content consumption trend data, or a combination thereof. Additionally, the approach includes provisioning a dynamic multicast data channel for initiating a multicast transmission of the content package to a plurality of devices in the service area. |
US09936240B2 |
Dynamic adjustment of electronic program guide displays based on viewer preferences for minimizing navigation in VOD program selection
Items of video content offered for viewing on a video-on-demand (VOD) platform of a digital TV service provider are each assigned a respective title and hierarchical address corresponding to hierarchically-arranged categories and subcategories within which the title for the video content is to be categorized. The title is listed in a location of an electronic program guide (EPG) using the same categories and subcategories as its hierarchical address. Any TV subscriber can access the EPG and navigate through its categories and subcategories to find a title for viewing on the TV. The EPG dynamically adjust its display listings of each level of categories, subcategories, and titles in order to minimize the number of remote control keypresses needed for a viewer to navigate to a title of interest. In one basic form, the EPG display is reordered by listing more frequently visited categories or subcategories first, and other less frequently visited categories or subcategories lower on the listing or out-of-sight on another page of the display. |
US09936237B2 |
Method and apparatus for distributing geographically restricted video data in a television system
A method for distributing geographically restricted video data in an internet protocol television system, the method including but not limited to determining at a television server computer at least three geographic restriction zones for the geographically restricted video data and instructions to determine at least three different duration time delays for each of at least three geographic restriction zones, wherein the at least three geographic restriction zones are based on physical proximity of a television client device to a geographic origin of the geographically restricted video data. |
US09936234B2 |
Methods and apparatus to facilitate gathering of audience measurement data based on a fixed system factor
Methods and apparatus to adaptively gather audience information data are disclosed. The disclosed methods and apparatus monitor system factor(s) and select one or more sensors from a plurality of sensors positioned to gather audience measurement data based on the monitored factor(s). Thus, the disclosed methods and apparatus adapt to the conditions they face by selecting an amount and/or type of audience measurement data they gather. |
US09936233B2 |
Apparatus and method for transmitting/receiving processes of a broadcast signal
A broadcast transmission apparatus is disclosed. The broadcast transmission apparatus includes a delivery object generator configured to generate at least one Delivery Object which is included in a content component of a service and recovered individually, a signaling information generator configured to generate signaling information providing discovery and acquisition of the service and the content component, and a transmitter configured to transmit the at least one Delivery Object and the signaling information through a unidirectional channel. |
US09936228B2 |
System and method for asynchronous uploading of live digital multimedia with guaranteed delivery
A system for asynchronous uploading of live digital multimedia with guaranteed delivery is provided. The system comprises a video encoder and a remote server, wherein the video encoder includes instructions for acquiring video and audio, encoding the video and audio, creating a manifest file, storing the manifest file, adding the manifest file to an upload queue, creating a segment file, storing the segment file, adding the segment file to the upload queue, initiating at least one upload worker thread, taking a first file from the upload queue, attempting to transmit the first file to the remote server, determining if an instability with the connection to the remote server exists, and, if so, repeating the attempting and determining steps, executing a data integrity test on the first file upon a successful upload of the first file, and repeating, if the data integrity test fails, the attempting, determining, and executing steps. |
US09936227B2 |
Entropy coding of motion vector differences
An entropy decoder is configured to, for horizontal and vertical components of motion vector differences, derive a truncated unary code from the data stream using context-adaptive binary entropy decoding with exactly one context per bin position of the truncated unary code, which is common for horizontal and vertical components of the motion vector differences, and an Exp-Golomb code using a constant equi-probability bypass mode to obtain the binarizations of the motion vector differences. A desymbolizer is configured to debinarize the binarizations of the motion vector difference syntax elements to obtain integer values of the horizontal and vertical components of the motion vector differences. A reconstructor is configured to reconstruct a video based on the integer values of the horizontal and vertical components of the motion vector differences. |
US09936225B2 |
Coefficient coding harmonization in HEVC
Coefficient coding for transform units (TUs) during high efficiency video coding (HEVC), and similar standards, toward simplifying design while enhancing efficiency. Elements of the invention include coefficient coding for TUs with up-right diagonal scans being modified, and selectively applying multi-level significance map coding. |
US09936224B2 |
Method and apparatus for intra mode coding
A method and apparatus of predictive Intra coding of a block are disclosed. In one embodiment according to the present invention, a same set of Intra prediction modes is used for PUs corresponding to different block sizes including a 4×4 block size and at least one other block size. In another embodiment of the present invention, the number of Intra prediction modes in the set is reduced by removing at least one Intra prediction mode from the set. For example, when the set of 35 Intra prediction modes is used, intraPredMode corresponding to 18, 34, or 26 can be removed. The current Intra prediction mode can be coded predictively based on said one or more neighboring PUs, wherein the current Intra prediction mode is predicted using 2 most probable modes (MPMs) and 32 remaining modes. The 32 remaining modes can be represented using 5-bit fixed length codes. |
US09936219B2 |
Method and apparatus for processing video signals
According to the present invention, a method for processing video signals can determine an interview motion vector of a current block using an interview motion vector of a temporal neighboring block in consideration of a global motion vector. The present invention can obtain an accurate interview motion vector according to obtaining the temporal neighboring block of the current block in consideration of a motion change according to output sequence information and accordingly, can increase the accuracy of inter-prediction. |
US09936217B2 |
Method and encoder for video encoding of a sequence of frames
A method and encoder for video encoding a sequence of frames is provided. The method comprises: receiving a sequence of frames depicting a moving object, predicting a movement of the moving object in the sequence of frames between a first time point and a second time point; defining, on basis of the predicted movement of the moving object, a region of interest (ROI) in the frames which covers the moving object during its entire predicted movement between the first time point and the second time point; and encoding a first frame, corresponding to the first time point, in the ROI and one or more intermediate frames, corresponding to time points being intermediate to the first and the second time point, in at least a subset of the ROI using a common encoding quality pattern defining which encoding quality to use in which portion of the ROI. |
US09936216B2 |
Video-encoding method and video-encoding apparatus using prediction units based on encoding units determined in accordance with a tree structure, and video-decoding method and video-decoding apparatus using prediction units based on encoding units determined in accordance with a tree structure
Provided are a method and apparatus for encoding a video and a method and apparatus for decoding a video. The encoding method includes: splitting a picture of the video into one or more maximum coding units; encoding the picture based on coding units according to depths which are obtained based on a partition type determined according to the depths of the coding units according to depths, determining coding units according to coded depths with respect to each of the coding units according to depths, and thus determining coding units having a tree structure; and outputting data that is encoded based on the partition type and the coding units having the tree structure, information about the coded depths and an encoding mode, and coding unit structure information indicating a size and a variable depth of a coding unit. |
US09936214B2 |
Geospatial media recording system
A computer implemented geospatial media recording system which receives a global positioning signal from a global positioning system, a video stream from a video recorder and an audio stream from an audio recorder and encodes the global positioning system signal as global positioning data continuously embedded at intervals in the video stream or the audio stream at a frequency at the upper end or outside of the human audible range as a combined data stream which by operation of a geospatial media program can be concurrently displayed as a video in a first display area with a geospatial representation in second display area on a display surface with a plurality of coordinate location indicators located in the geospatial representation each at the coordinate location associated with the global positioning data embedded in the video. |
US09936212B2 |
Video encoding device, video decoding device, video encoding method, video decoding method, and program
A video encoding device includes: pixel bit length increasing means for increasing a pixel bit length of an input image based on pixel bit length increase information; transform means for transforming output data of the pixel bit length increasing means; entropy encoding means for entropy-encoding output data of the transform means; non-compression encoding means for non-compression-encoding input data; multiplexed data selection means for selecting output data of the entropy encoding means or output data of the non-compression encoding means; and multiplexing means for multiplexing the pixel bit length increase information in a bitstream, wherein a pixel bit length of an image corresponding to the output data of the entropy encoding means and a pixel bit length of an image corresponding to the output data of the non-compression encoding means are different from each other. |
US09936210B2 |
Moving picture coding apparatus and moving picture decoding apparatus
A video encoder (70) for coding moving pictures comprising a buffer (16c) with a plurality of memory areas capable of storing frames composed of top fields and bottom fields, a motion estimation unit (19) operable to code, field by field, inputted pictures performing moving estimation and moving compensation by referring, field by field, to the picture data stored in a memory area, a motion compensation unit (16d), a subtractor (11), a transformation unit (13) and a quantization unit (14), a memory management unit (71) operable to manage, frame by frame, a plurality of memory areas, an inverse quantization unit (16a) and inverse discrete cosine transform unit (16b) operable to decode picture data in coded fields and store the picture data in the decoded field in any of the plurality of memory areas under the management by the memory management unit (71). |
US09936208B1 |
Adaptive power and quality control for video encoders on mobile devices
Devices, systems and methods are disclosed for improving encoding techniques for mobile devices by adaptively controlling a resolution or frame rate of content to reduce power consumption while maintaining image quality. For example, a local device may determine when the content may be downscaled without degrading a final image quality and may downscale the content prior to encoding and transmitting the encoded content to a remote device. The remote device may decode and upscale the content to the original resolution prior to displaying the content on a display. As downscaling the content is not power intensive, the local device may reduce a power consumption associated with encoding and transmitting the content to the remote device while maintaining the final image quality of the content. |
US09936206B2 |
Distributed encoding of a video stream
A method includes receiving input at a computing device, where the input indicates a value of a local encoding parameter, indicates a value of a remote encoding parameter, and identifies a first subset of streams and a second subset of streams. The first subset and the second subset correspond to renditions of a video stream. The method further includes sending, to a media server, the first subset and the value of the remote encoding parameter, where the first subset includes a particular rendition of the video stream generated using a lossless encoding scheme, and wherein the media server is configured to generate the second subset of streams based on the value of the remote encoding parameter and based on the particular rendition. |
US09936202B2 |
Method and apparatus for processing a video signal
The present invention discloses a method and apparatus for encoding or decoding a video signal. The method for processing a video signal according to the present invention uses a merging mode in which prediction information on a neighbor unit is used instead of transmitting prediction information on the present unit, so as to improve coding efficiency. In this case, the number of available candidate units for merging among the units in a predetermined position is determined, and information for the merging mode is acquired on the basis of the number of the available candidate units for merging. The unit to be merged is determined using the information for the merging mode, and prediction information on the unit to be merged is acquired. The prediction value for the present unit is acquired using the prediction information on the unit to be merged, and the present unit is restored using the acquired prediction value. |
US09936200B2 |
Rice parameter update for coefficient level coding in video coding process
Techniques are described for updating a value of a Rice parameter used to define Golomb codes for coefficient level coding. The Golomb codes defined by the Rice parameter may be used to code a remaining absolute value of a coefficient level for at least one coefficient in a coefficient group (CG). According to the techniques, the value of the Rice parameter is updated based on a selection of a minimum of either a maximum value of the Rice parameter or a variable increment of the value of the Rice parameter. The variable increment is determined based on the value of the Rice parameter and an absolute value of the coefficient level for the current coefficient being coded. Techniques are also described for adjusting the value of the Rice parameter used to define Golomb codes for coefficient level coding based on whether a transform is applied to a transform block. |
US09936199B2 |
Encoding and decoding perceptually-quantized video content
Compared to traditional gamma-coded video, perceptually quantized video provides greater flexibility for the transmission and display management of high-dynamic range video, but it does not compresses as efficiently using existing standard codecs. Techniques are described to improve the coding efficiency of perceptually coded video by applying a color cross-talk transformation after the RGB/XYZ to LMS transformation. Such a transform increases luma and chroma correlation for color appearance models, but improves perceptual uniformity and overall coding efficiency for wide color gamut, HDR, signals. |
US09936193B2 |
Device for generation of colored virtual three-dimensional images
A device for generation of three-dimensional images in the observer's eye using at least one two-dimensional display and an optical system with an adjustable focal length. The display generates planar images corresponding to the different depths of the designed three dimensional (3D) image and the images are then directed to at least one mirror or lens with the adjustable focal length synchronized to the particular image. The optical system generates virtual images at different virtual planes in such a way that the eye receives a complete 3D virtual image. |
US09936192B2 |
Image processing method and apparatus
An image processing method and apparatus for a three-dimensional (3D) display device that may process image data for a first panel to generate an image for a second panel based 3D display device, is provided. |
US09936191B2 |
Cockpit display systems and methods for generating cockpit displays including enhanced flight visibility indicators
Cockpit display systems and methods are provided for generating cockpit displays including symbology useful in assessing whether enhanced flight visibility requirements are satisfied during approach and landing. In one embodiment, the cockpit display system includes an Enhanced Flight Vision System (EFVS) sensor configured to monitor a region forward of the aircraft for runway reference features, a cockpit display device on which an EFVS image is generated utilizing EFVS sensor data, and a controller coupled to the EFVS sensor and to the display device. The controller determines an enhanced flight visibility requirement for a runway approached by the aircraft, and then visually indicates on the EFVS image whether the enhanced flight visibility requirement is currently satisfied by, for example. generating an enhanced flight visibility indicator (EFVI) graphic on the EFVS image visually identifying a ground location beyond which the appearance of a runway reference feature satisfies the enhanced flight visibility requirement. |
US09936190B2 |
Optical modulation device including liquid crystals, a driving method thereof, and an optical display device using the same
An optical modulation device is provided. The optical modulation device includes first and second plates facing each other, a liquid crystal layer interposed between the first and second plates, and first and second electrodes. The liquid crystal layer includes a plurality of liquid crystal molecules. The first plate includes a first aligner. The second plate includes a second aligner. A first alignment direction of the first aligner and a second alignment direction of the second aligner are substantially parallel to each other. The first and second electrodes extend to cross each other. The first and second electrodes are insulated from each other. The second electrode extends to cross the second alignment direction. An angle θP formed between a vertical axis of the second alignment direction and an extending direction of the second electrode is a value between 5° and 45°. |
US09936183B2 |
Playback device
A client (1) is provisioned with a content selection unit (13) for referencing description information (26), selecting content to be played in a certain period, and at the same time, and selecting content to be played at the next period from an id of a subset that is the same as the subset selected at the period, a request execution unit (14) for requesting the transmission of the selected content, and a content playback unit (15) for continuously playing the content transmitted in response to the request. |
US09936181B2 |
Method and apparatus for projection of BIM information
A system for projecting an image, including layout information, on a surface in a building under construction has a projector mounted on a moveable support for supporting a worker at a work position in the building. The projector projects an image on a surface above the moveable support in response to an image signal defining the image to be projected. The image indicates the location of connectors, anchors, and holes to be affixed to, or cut through, the surface. A system determines the two dimensional position of the projector in the building, and a distance measuring system for determines the distance from the projector to said surface. A processor, responsive to a memory having stored building plan images, provides an image signal to the projector adjusted for the two dimensional location of the projector and for the distance from the projector to the surface. |
US09936180B2 |
Projector and method for controlling the same
A projector calculates an input-output characteristic for converting a tone value of an input image so as to perform display in a given projectable luminance range in a display absolute luminance range of an input signal, in accordance with the brightness of the projection surface. An output signal is generated from the input signal and projected, based on the calculated input-output characteristic. With the disclosed projector, image data having an input luminance range that is different from the output luminance range can be appropriately displayed. |
US09936177B2 |
Seamless tiled displays
A tile and tiled display system having at least two adjacent tiles each having a display screen with display pixels which are picture elements, whereby for colored displays each pixel is comprised of a plurality light emitting or light modulating elements. Each of the tiles has at least one first substrate of a first material and at least one first layer of a second material fixed to the first substrate where the thickness of the at least one first layer is less than the thickness of the first substrate; the coefficient of thermal expansion of the first substrate is less than the coefficient of thermal expansion of the at least one first layer and the distance between the at least two tiles is less than the size of a pixel on the display screen. The first substrates of adjacent tiles can be brought in mechanical contact. |
US09936176B2 |
Image protection device and adjustment method
An image projection device includes: a light source for emitting a light beam; a mirror unit that includes a mirror for reflecting the beam and projects an image onto a surface by rotating the mirror about a rotational axis to scan the beam; and a controller for determining, according to a function representing a relationship between a shift amount, an emitting time of the beam, a position on the surface irradiated by the beam emitted at the emitting time, and a shift angle of the mirror from its position when it is not driven, the emitting time corresponding to a target position. The shift amount is a shift amount of a position of the beam incident on the mirror or a shift amount of a position of the source relative to an optical axis of light incident on the mirror without the shift amount and perpendicularly intersecting the rotational axis. |
US09936171B2 |
Network fraud prevention via registration and verification
An apparatus for controlling fraud in a satellite signal delivery system. An apparatus in accordance with the present invention comprises a receive antenna for receiving at least one satellite signal, and a module, coupled to the receive antenna, for selectively delivering the at least one satellite signal to at least one receiver via an output of the module, wherein the module creates an association between the module and the at least one receiver upon installation of the at least one receiver to the output, such that the module delivers the at least one satellite signal to the at least one receiver only when the association is present. |
US09936170B2 |
View handling in video surveillance systems
A content analysis engine receives video input and performs analysis of the video input to produce one or more gross change primitives. A view engine coupled to the content analysis engine receives the one or more gross change primitives from the content analysis engine and provides view identification information. A rules engine coupled to the view engine receives the view identification information from the view engine and provides one or more rules based on the view identification information. An inference engine performs video analysis based on the one or more rules provided by the rules engine and the one or more gross change primitives. |
US09936167B2 |
Imaging device, imaging method, image processing device, and recording medium storing imaging program
An imaging device, an imaging method, and a recording medium storing an imaging program are provided. Each of the imaging device, imaging device, and the recording medium storing the imaging program outputs image data of an object on an image output unit, stores multiple levels of luminosity of the object in a memory in association with a plurality of set values that are referred to when image processing is performed on image data, specifies the level of luminosity of the object, selects one of the set values stored in the memory based on the level of luminosity specified by the specifying, and performs image processing on the image data output from the image output unit, based on the set value selected by the selecting. |
US09936165B2 |
System and method for avatar creation and synchronization
A video communication system that replaces actual live images of the participating users with animated avatars. A method may include initiating communication between a first user device and a remote user device; receiving selection of a new avatar to represent a user of the first user device; identifying a new avatar file for the new avatar in an avatar database associated with the first user device; determining that the new avatar file is not present in a remote avatar database associated with the remote user device; and transmitting the new avatar file to the remote avatar database in response to determining that the new avatar file is not present in the remote avatar database. |
US09936164B2 |
Media control method and device
A media control method and device are presented. The method includes obtaining media information and receiving a session request sent by the user equipment; obtaining, according to a media object identifier carried in a media control policy, attribute information of a media object corresponding to the media object identifier carried in the media control policy, from the media information, and obtaining a session identifier and channel information that are corresponding to the media object identifier carried in the media control policy, from the session request; and sending a media operation instruction included in the media control policy, the obtained attribute information of the media object, and the obtained channel information to the user equipment that sends the session identifier, where the media operation instruction is used to instruct the user equipment to operate the received attribute information of the media object and the received channel information. |
US09936163B1 |
System and method for mirror utilization in meeting rooms
A video-enabled communication system that includes a processor, coupled with a camera, the camera acquiring an image of an object of interest during a video communication session and a computer readable medium, coupled with the processor, comprising instructions that cause the processor to select a reflected image of the object of interest for use in providing image information to a remote endpoint for display to another participant, wherein the reflected image is a reflection of the object of interest in a mirror having a line-of-sight to the camera. |
US09936161B1 |
Video visitation for the cognitive and/or dexterity impaired
Providing video visitation with cognitive and/or dexterity impaired individuals may call for limiting functionality of a personal cognitive and/or dexterity impaired individual communication and/or media device, such as by an operating system of the personal device. The personal device may play audio and video, accept video communications in response to touching of a screen of the personal device, and establish a video communication in response to such touching of the screen. Providing the video visitation may also include receiving a request to initiate a video communication over the personal device with a cognitive and/or dexterity impaired individual, such as may be requested via a visitor communication and/or media device. Whereupon, an audible message may be played by the personal device, indicating the request, and the video communication between the personal device and the visitor device may be established in response to touching of the screen of the personal device. |
US09936158B2 |
Image processing apparatus, method and program
The present invention enables automatic generation of an image in which only an impressive color is kept, without requiring a complicated operation. A digital camera 100 divides an image obtained by an imaging unit 20 into regions based on color information and luminance information, and determines a characteristic object in accordance with a characteristic degree of each region into which the image is divided. Further, a region for keeping a color is set in which the color of the characteristic object is to be kept. A color conversion process is then performed so as to keep the color of the characteristic object in the region for keeping a color, and to change colors of the other regions to an achromatic color. |
US09936156B2 |
Volume adjusting apparatus and method
The present invention consists of a volume adjusting apparatus and method which automatically regulates a volume output of an electronic device. The volume adjusting apparatus comprises a microprocessor for detecting the volume output of the electronic device, a memory unit for storing the volume output received in the microprocessor, a wireless transmitter for transmitting a plurality of command signals to the electronic device and an electronic control unit. The electronic control unit further configured to transmit via the wireless transmitter the plurality of command signals to the electronic device. At least one recall button installed with the volume adjusting apparatus enables a user to maintain the same average volume across all channels. The method effectively ensures a volume consistency by adjusting the volume on a current television channel based on the volume of previous channel of the electronic device. |
US09936155B2 |
Apparatus and method for configuring access in a wireless network
According to one embodiment, a method for access configuration in a wireless network includes acquiring authentication information of a digital device and information needed to access an Access Point (AP) of the digital device, from a Radio Frequency IDentifier (RFID) tag, and accessing the AP. |
US09936153B1 |
CMOS image sensor with dual floating diffusions per pixel for flicker-free detection of light emitting diodes
Apparatuses and methods for image sensors with pixels that reduce or eliminate flicker induced by high intensity illumination are disclosed. An example image sensor may include a photodiode, a transfer gate, an anti-blooming gate, and first and second source follower transistors. The photodiode may capture light and generate charge in response, and the photodiode may have a charge capacity. The transfer gate may selectively transfer charge to a first floating diffusion, and the anti-blooming gate may selectively transfer excess charge to a second floating diffusion when the generated charge is greater than the photodiode charge capacity. The first source-follower transistor may be directly coupled to the first floating diffusion by a gate, the first source-follower to selectively output a first signal to a first bitline in response to enablement of a first row selection transistor, and the second source-follower transistor may be capacitively-coupled to the second floating diffusion, the second source-follower to selectively output a second signal to a second bitline in response to enablement of a second row selection transistor. |
US09936152B2 |
Image sensor and sensor module
According to one aspect of the present invention, an image sensor and a sensor module have a configuration in which the image sensor outputs first brightness information representing brightness information of first image information obtained with a first exposure time and second brightness information representing brightness information of second image information obtained with a second exposure time separately from a composite image obtained by synthesizing the first image information and the second image information, updates the first and second exposure times based on an exposure time set value externally generated based on the first brightness information and the second brightness information, and changes a synthesis set value used for synthesis of the composite image based on the exposure time set value externally generated based on the first brightness information and the second brightness information. |
US09936151B2 |
Single image sensor for capturing mixed structured-light images and regular images
A method and device for capturing a mixed structured-light image and regular image using an integrated image sensor are disclosed, where the structured-light image is captured using a shorter frame period than the regular image. In order to achieve a shorter frame period for the structured-light image, the structured-light image may correspond to an image captured with reduced dynamic range, reduced spatial resolution, or a combination of them. The capturing process comprises applying reset signals to a pixel array to reset rows of pixels of the pixel array, reading-out analog signals from the rows of pixels of the pixel array and converting the analog signals from the rows of pixels of the pixel array into digital outputs for the image using one or more analog-to-digital converters. |
US09936149B2 |
Imaging apparatus with temperature sensors, imaging system and imaging method
An imaging apparatus includes sensor arrays each having a plurality of subarrays having a plurality of sensors which output signals based on radiation or light, and a plurality of temperature sensors which output signals based on temperatures of the sensor arrays. In this case, a signal output from one subarray of the plurality of subarrays and a signal of one temperature sensor of the plurality of temperature sensors are read out through a line to which the sensor included in the one subarray and the one temperature sensor are commonly connected. |
US09936143B2 |
Imager module with electronic shutter
A method and apparatus are provided for operating a camera. The method includes the steps of providing an array of image sensing pixels, disposing an electronic shutter in an optical path between the array of pixels and an image where the electronic shutter has a reflective state and a transmissive state and applying a predetermined sequence of electrical signals to the electronic shutter to expose the image sensing pixels to the image. |
US09936141B2 |
Image processing apparatus for performing correction processing for effecting virtual light source and method executed by image processing apparatus
The amount of light to be emitted by an auxiliary light source for capturing an image to which correction processing is applied, as well as a parameter used in the correction processing, is determined based on a degree of shadows of an object to be captured using the auxiliary light source. In this way, shadows in an image obtained through image capture using the auxiliary light source can be appropriately corrected with a simple method. |
US09936140B2 |
Image capturing apparatus, control method for the same, and storage medium
An image capturing apparatus comprises an image capturing unit, a memory configured to store the image signal, a writing unit configured to write the image signal to the memory, a readout unit configured to read out at least a partial region of the image signal, a display unit configured to perform live-view display of an image, and a control unit configured to perform control for each frame of the image signal, wherein the control unit sets, when electronic zoom is in operation, the delay time such that the operation of the writing unit writing the image signal to the memory and the operation of the readout unit reading out the image signal from the memory end within a period of one frame of the image signal, regardless of the reading region changing. |
US09936138B2 |
User terminal apparatus and control method thereof
A user terminal apparatus and a control method thereof are provided. The user terminal apparatus includes a display including a main display area which is disposed on a front surface of the user terminal apparatus, and a sub display area which extends from one side of the main display area and is disposed on at least one area of a rear surface of the user terminal apparatus, a camera configured to photograph an image, and a processor configured to display a live view acquired through the camera on one of the main display area or the sub display area, and control the display to display, in response to an orientation of the user terminal apparatus being changed, the live view on another one of the main display area or the sub display area. |
US09936137B2 |
Display control apparatus, method for controlling the same, and storage medium
A display control apparatus includes a viewfinder including an eye contacting portion and an internal display unit, an eye approaching detection unit, a mode switching unit which selects one of a plurality of operation modes including first and second operation modes, and a control unit which performs control such that an on state of the internal display unit is changed to an off state based on detection, by the eye approaching detection unit, of an object which moves away from the eye contacting portion to a position at or further than a first distance from the eye contacting portion in the first operation mode, and the on state is changed to the off state based on detection, by the eye approaching detection unit, of an object which moves away from the eye contacting portion to a position at or further than a second distance, which is larger than the first distance, from the eye contacting portion in the second operation mode. |
US09936133B2 |
Gimbaled camera object tracking system
A system for automatically controlling a gimbaled camera system of a vehicle. The system includes a camera positioned relative to a body of the vehicle and one or more sensors configured to sense the pointing direction of the camera. One or more sensors are configured to monitor movement of the vehicle relative to a surface. A processor is configured to receive the sensed camera pointing direction data and vehicle movement data. The processor establishes and stores a target position representative of the position of a target object relative to the vehicle body based on an object independent association and automatically adjusts the camera pointing direction in response to the vehicle movement data such that the camera remains aimed on the target position. A method for automatically controlling the gimbaled camera system is also provided. |
US09936129B2 |
Generating high resolution images
Techniques are disclosed for generating a high resolution image from a plurality of images captured from a plurality of sensors. The pixels in one sensor have at least one of different size, shape, or orientation than pixels in another sensor. The difference in size, shape, or orientation of the pixels and the interconnection of pixels on respective sensors provides a high level of certainty that there will be sufficient difference in the captured images, with limited loss in image content, to generate a relatively high resolution image from the images captured by the respective sensors. |
US09936124B2 |
Imaging apparatus, method for controlling the same, and storage medium storing program
An imaging apparatus that performs continuous imaging, includes: a focus detection unit that perform focus detection and calculates an amount of defocus in each of a plurality of imaging operations; a position detection unit that detects an image plane position corresponding to a subject position using the amount of defocus; an estimation unit that estimates a next image plane position using a plurality of pairs of data regarding the image plane position and a time at which the amount of defocus has been detected; and a turnabout determination unit that determines whether a subject is a turnabout subject, which is a subject that moves towards the imaging apparatus, changes direction of movement, and then moves away from the imaging apparatus. The number of pairs of data used for the estimation decreases based on a ratio of a highest image plane speed in past scenes to a current image plane speed. |
US09936117B2 |
Method of setting camera profile and apparatus of obtaining image
An apparatus for receiving an image is provided. The apparatus includes: a camera searcher configured to search for a camera connected to a network; a camera register configured to register information about the camera which is identified as a result of the searching by the camera searcher; a profile setter configured to set a profile of the camera by referring to the information obtained from the camera; and an image receiver configured to receive an image from the camera according to the profile. |
US09936115B2 |
Switchable camera system for a firearm
Systems, apparatuses, and methods for improving situational awareness for a user of a firearm are disclosed. An example camera system for a firearm includes a camera assembly, display panel, a mounting fixture, and switching mechanism. An example camera assembly includes a plurality of cameras fixedly oriented in a plurality of different directions. An example mounting fixture is secured to the camera assembly and configured to be removably attached to a firearm. An example switch is configured to select between the plurality of cameras to cause an image from the selected camera to be displayed on the display panel. An example method includes activating a firearm-mounted camera system, receiving a switch input from a user selecting a camera, generating an image of a portion of an environment with the selected camera, and displaying the image on a display panel to alert the user to conditions in the portion of the environment. |
US09936113B2 |
Smart device and controlling method thereof
A smart device and controlling method thereof are disclosed. The smart device includes a camera including a lens and an iris positioned over the lens, the iris including a single layer film; and a controller configured to cause the iris to adjust a size of an aperture formed in the film to adjust quantity of light incident on the lens. A method for controlling the smart device includes obtaining a video of a subject consecutively via the camera, using preset conditions; detecting a relative movement between the subject and the smart device; and adjusting at least one of the conditions based on the detected movement. |
US09936107B2 |
Apparatus and method for generating sensory effect metadata
A sensory effect metadata generating device is disclosed which includes a memory for storing a program for generating a sensory effect metadata corresponding to media and a processor for perform the program. The program is configured to extract characteristic points from the media, produce at least one of an object variation based on the characteristic points, an object zoom-in information, an incline information and a move information; and generate the sensory effect metadata. |
US09936101B2 |
Image forming apparatus, and control method of image forming apparatus
An image forming apparatus includes a first setting unit that sets a setting value of individual setting information for a login user, and a second setting unit that sets, in a case where a logout request is received, a setting value of common setting information, wherein the second setting unit omits, in a case where a login request of a new user is received while the user is logged in, a process for setting the setting value of the common setting information based on the common setting information, and the first setting unit sets a setting value of individual setting information for the new user based on individual setting information associated with user identification information for identifying the new user. |
US09936096B2 |
Image forming apparatus having a docking unit to mount a plurality of portable display apparatuses, a portable display apparatus mountable to the docking unit, a printing control method using the docking unit, and a display method using the docking unit
An image forming apparatus includes a docking unit configured to mount a plurality of portable display apparatuses therein, a communication interface configured to receive data, and a processor configured to control to store the received data in at least one of the plurality of portable display apparatuses. |
US09936092B2 |
Electronic apparatus and method of controlling the same
In an electronic apparatus of this invention, after a security function is canceled, it is determined whether the elapsed time from cancellation of the security function to detection of attachment of a device having a security function of security level higher than that of the canceled security function or the elapsed time until the operation of the attached device is enabled has exceeded a predetermined time. Upon determining that the elapsed time has exceeded the predetermined time, the electronic apparatus enables the canceled security function again. |
US09936089B2 |
Mobile autonomous scalable scanner system
This invention is directed to autonomous document scanning operations. A scanning device and one or more stacks of documents may use motors to autonomously move the documents into position to be scanned by the scanner. The scanning device may detect properties of the documents while scanning. Multiple stacks of documents may be scanned in this manner with minimal user intervention, eliminating the need for manual intervention when scanning groups of documents. |
US09936086B2 |
Wireless image distribution system and method
A system and method for distributing at least one digital photographic image is presented, the system and method comprising at least one capturing device and at least one receiving device disposed in a communicative relation with one another via at least one wireless network. In particular, the capturing device is structured to capture the at least one digital photographic image via, for example, a capture assembly, whereas the receiving device is cooperatively structured to receive the digital photographic image via, for example, the at least one wireless network. In addition, the capturing device(s) and receiving device(s) may be disposed in a selectively paired relationship via one or more common pre-defined pairing criteria. Further, the at least one digital photographic image may be filtered via at least one pre-defined transfer criteria disposed on the capturing device and/or receiving device. |
US09936084B2 |
Wrist computer wireless communication and event detection
A system includes a wrist computer and a portable video camera. The wrist computer acquires physical activity data measured by a sensor device, generates a time marker on the basis of the physical activity data, and transmits the time marker to the portable video camera according to a predefined wireless communication protocol. The portable video camera is configured to record video data, encode the video data into a video data file, and store the received time marker as meta data in the video file. |
US09936079B1 |
Display dependent analytics
Apparatus and methods are disclosed for display dependent analysis of call data in an IBPX. In an example embodiment, an apparatus communicatively coupled to an IPBX server is configured to route VoIP calls in the IPBX. An interface circuit is configured to selected parameters of interest based on capabilities of a set of devices and generate subscription requests to subscribe the devices to the parameters of interest. A first processing circuit is configured to generate call summary metrics from call event messages for calls routed by the IPBX server. A second processing circuit subscribes a device identified in the subscription request to the selected set of parameters of interest identified in the subscription request. The second processing circuit evaluates call summary metrics for each parameter of interest subscribed to by the devices and provides results of the evaluation to devices that are subscribed to the parameter of interest. |
US09936076B1 |
System and method for responding to customer calls
A computer-based system and method for responding to customer calls. The method includes automatically determining whether at least one incoming call meets existing customer criteria and further automatically determining a market segment of the at least one incoming call. The market segment may indicate whether a specific customer prefers: (i) no voice or face-to-face interaction with a representative; (ii) a face-to-face interaction with a representative; and/or (iii) a voice only interaction with a representative. The method further includes automatically routing the at least one incoming call based upon the determined market segment to one of: (1) an automated voice prompt; (2) a gaming system having two-way video capability; or (3) a person-to-person voice call system to facilitate answering incoming calls in a customer-friendly or customer preferred manner. |
US09936073B2 |
Interactive voice response (IVR) system interface
A mobile device, such as a smart phone, receives and presents interactive audio content from an interactive voice response (IVR) system. The mobile device provides an interface that enables a user to navigate through a menu presented in the interactive content. The interface further presents action elements that identify actions that can be requested through the menu, and selection of the one of the action elements may cause the IVR to perform an associated action. For example, the interface may identify representatives at a call center, and a selection of one of the action elements causes the IVR to establish a communication between the mobile device and the selected representative. The action elements may further identify status information associated with the call center, such as an expected wait time. |
US09936072B1 |
Automated response tool
A language processor includes a parser, an invoker, and an extractor. The parser parses a spoken statement to detect a plurality of words in the spoken statement and generates a parse tree based on the detected plurality of words. The invoker determines, based on the parse tree, a plurality of potential services to invoke to respond to the spoken statement. The extractor determines, for each potential service of the plurality of potential services, a parameter used during execution of that potential service and a value of the determined parameter based on the parse tree. The invoker is further configured to issue a command to invoke a potential service of the plurality of potential services using a value of a determined parameter. |
US09936071B1 |
Automated response tool
An automated response tool includes a receiver, a language processor, and a service invoker. The receiver receives a call and a spoken statement from the received call. The language processor detects a plurality of words in the spoken statement and generates a parse tree based on the detected plurality of words. The language processor also determines, based on the parse tree, a service to invoke in response to the spoken statement, determines a parameter used during execution of the determined service, and determines, based on the parse tree, a value of the determined parameter. The service invoker issues a command to invoke the determined service, wherein the command comprises the determined value of the determined parameter. |
US09936068B2 |
Computer-based streaming voice data contact information extraction
Embodiments relate to extracting contact information from streaming voice data. An aspect includes a speech recognition module configured to transcribe a stream of voice data representing at least a portion of a telephone conversation into text data; a contact information extraction module configured to extract contact information from the text data; and a transceiver configured to send at least a portion of the contact information to a recipient calling device. |
US09936063B2 |
Rearranging display of mobile applications based on geolocation
Rearranging a set of generated application display panels is provided. A set of application display icons corresponding to a set of mobile applications installed on a mobile data processing system having matching keyword tags with a geolocation keyword tag corresponding to a defined geographic area is inserted into a set of generated application display panels. The set of generated application display panels with the inserted set of application display icons corresponding to the set of mobile applications having the matching keyword tags is rearranged based on the geolocation keyword tag corresponding to the defined geographic area. The rearranged set of generated application display panels with the inserted set of application display icons corresponding to the set of mobile applications having the matching keyword tags is displayed. |
US09936059B2 |
Management of wireless access points via virtualization
Wireless access point (AP) and methods for providing wireless connectivity to wireless client are provided. According to one embodiment, a wireless AP includes a host hardware platform and a hypervisor for providing a first virtual machine where a first guest operating system (OS) is configured to run on the first virtual machine. A wireless module is configured to run on the first guest OS for managing the wireless connection to at least one wireless client. A wireless AP management console is configured to run on the wireless AP but outside the first guest OS and to manage operations of the wireless module and the first guest OS. |
US09936057B2 |
Electronic device
An electronic device is disclosed. The electronic device according to an embodiment of the present invention may include a first watch module and a second watch module. The first watch module may include a first body, a watch movement, a first window, and a watch hand. The second watch module may include a second body extended from the first body, a circuit board, a second window, and a second display. The first body and the second body may form a bending, and are communicated to each other. |
US09936055B2 |
Using multicasting to concurrently image multiple client devices
An update can be multicast to a number of client devices. By multicasting an update, the update can be concurrently distributed to a large number of client devices using a single network transmission. This greatly reduces the amount of time required to update the client devices as well as the amount of bandwidth that is required to transfer the update over the network. As part of this multicasting process, the client device, which may have missed a segment of the multicast, can request the missed segment. The missed segment can then also be multicast to eliminate or minimize the redundant transmission of the missed segment. |
US09936053B2 |
Encoding parameters for a wireless communication system
In a method for generating a physical layer (PHY) data unit for transmission via a communication channel, information bits to be included in the PHY data unit are received. A number of padding bits are added to the information bits. The number of padding bits is determined based on respective virtual values of each of one or more encoding parameters. The information bits are parsed to a number of encoders and are encoded, using the number of encoders, to generate coded bits. The coded bits are padded such that padded coded bits correspond to respective true values of each of the one or more encoding parameters. The PHY data unit is generated to include the padded coded bits. |
US09936035B2 |
Mobile push notification
In one embodiment, a method includes receiving a first notification through a communications network. The first notification includes a subset of user-facing information of an object having one or more states, the subset being determined at a first point in time. A second notification is received through the communications network. The second notification is an update to the user-facing information of the object, and the update may be a subset of user-facing information determined at a second point in time after the first point in time. |
US09936033B2 |
Systems, methods, and apparatus to identify media presentation devices
Systems, methods, and apparatus to identify media presentation devices are disclosed. An example method includes associating respective ones of a first and a second network device with respective ones of at least two different pseudo domain name service (DNS) servers, wherein the pseudo DNS servers do not provide domain name-to-IP address translation. Crediting the first network device with accessing media in response to receiving a first domain name service query at a first pseudo DNS server from a first public Internet protocol address. Crediting the second network device with accessing media in response to receiving a second domain name service query at a second pseudo DNS server from the first public Internet protocol address. |
US09936030B2 |
User content sharing system and method with location-based external content integration
Described are various embodiments of a user content sharing system and method with automated external content integration. In one embodiment, a system and method are provided in which a graphical user interface (GUI) is rendered on each system users' personal communication device. The GUI produces a content selection function selecting, under user operation, user content for sharing, and a sharing platform selection function selecting, under user operation, one or more sharing platforms. The system further comprise a digital content integrator communicatively linked to the user interface to gain access to the selected user content in response to the content selection function, the integrator having access to stored external content distinct from user content. The integrator integrates the external content with the selected user content to output integrated content. The system further comprises a communication interface communicatively linked to the integrator and selectively operable to interface with each of the distinct content sharing platforms, wherein the integrated content is concurrently relayed to the selected sharing platforms via the communication interface on behalf of system users as originating therefrom. |
US09936029B2 |
Operation triggering method and apparatus for machine-to-machine communications
The present invention provides an operation triggering method and apparatus for machine-to-machine communications. The method implemented in a service capability middleware, includes retrieving a change result of the content of the subject resource stored in the service capability middleware; retrieving a representation of the operation resource associated with the subject resource, where the representation of the operation resource includes a condition for sending an operation request to an object resource and a uniform resource identifier of the object resource; constructing the operation request for the object resource when it is determined that the change result meets the condition for sending the operation request to the object resource in the representation of the operation resource; and sending the operation request to the object resource. |
US09936027B2 |
Methods, systems, and computer readable media for application session sharing
Methods, systems, and computer readable media for application session sharing are disclosed. According to one method, the method includes receiving, from a first client node, a request for initiating a remote application session for interacting with an application instance by one or more users. The method also includes initiating the remote application session and configuring a remote control server for interacting with the remote application session. The method further includes providing communications between the first client node and the application instance associated with the remote application session using the remote control server. |
US09936025B2 |
Application for vehicle-to-vehicle communication
Described herein is a framework for vehicle-to-vehicle communication. In accordance with one aspect, a send message to a receiving driver of a receiving vehicle is generated from a sending end-user device in response to a user event from a sending driver. The send message may be generated to include an image of the receiving vehicle of the receiving driver, and a voice message created by the sending driver. The send message may be sent to a server using the sending end-user device. The send message may further be processed by the server, in which the processing may include identifying the receiving vehicle, searching to find information of a receiving end-user device, and sending the send message to the receiving end-user device if information of the receiving end-user device is found. |
US09936023B2 |
System and method to attach a local file system to a remote disk stack
In certain information handling system environments, storage devices connected to a client are redirected to a server or other information handling system. To increase efficiency and reduce costs, the server may mount a file system on top of the redirected storage device. Mounting the file system permits the redirected storage device to cache data associated with the storage device of a client. Requests from applications to read data or to write data to the storage device may be handled completely at the server by accessing the file system cache at the server. |
US09936020B2 |
Access control of data in a dispersed storage network
A method begins by a dispersed storage (DS) processing module receiving, from a user device, a data access request and accessing hierarchical data access control information. The method continues with the DS processing module obtaining a logical memory access control file from the hierarchical data access control information and determining a data access request type of the request is within access rights of the user device. When the data access request type is within the access rights of the user device, the method continues with the DS processing module obtaining a data object access control file from the hierarchical data access control information. The method continues with the DS processing module determining, from the data object access control file, whether the data access request type is restricted. When the data access request type is not restricted, the method continues with the DS processing module processing the data access request. |
US09936018B2 |
Task-context architecture for efficient data sharing
To provide a more seamless experience across multiple devices, task streaming systems and methods allow a user to create “task-contexts” and manage metadata of files stored across multiple data storage devices and user preferences associated with capabilities of the multiple devices for operating on the file. Furthermore, the task streaming systems and methods are provided to allow task-contexts to be shared from one device to another device. A task-context specifies one or more files and one or more operations to be performed on the one or more files. By providing a task-context from one device to the other device, a user can accomplish a task with a particular file and seamlessly transition between devices with minimal disruption and effort. |
US09936011B2 |
Distributed database, method of sharing data, program storing medium, and apparatus for a distributed database
A distributed database of a peer-to-peer network is provided. In the network, a group is composed of plural nodes, and the nodes in the group each have CPU and a state list memory. CPU of each node sends other node a request for information to obtain and store node-state information. The node-state information is delivered through a prescribed route among the nodes in the group. When the number of nodes participating in the group increases more than a prescribed number, the participating nodes are separated into plural groups. |
US09936001B2 |
Geographic placement of application components by a multi-tenant platform-as-a-service (PaaS) system
Implementations for geographic placement of application components by a multi-tenant Platform-as-a-Service (PaaS) system are disclosed. A method of the disclosure includes providing, by a processing device of a multi-tenant PaaS system, a list of geographic locations to a user of a multi-tenant PaaS system, receiving, by the processing device from the user, a first request to deploy a component of an application corresponding to the user, the first request comprising a selection of one of the geographic locations from the list, and communicating, by the processing device, a second request to deploy the component of the application, the second request directed to a messaging server dedicated to the selected geographic location of the user, the dedicated messaging server of the selected geographic location to handle a configuration of a node in the selected geographic location for the component of the application. |
US09935999B1 |
File download manager
A download module accesses a download queue including at least two file download requests from an application running on a client device of a server. The application and each of the file download requests is associated with a context that comprises a set of context components that each indicates a part of the application. The file download request context components indicate parts of the application that use the requested file and the application context components indicate parts of the application that are active. The download module ranks each of the file download requests based on a comparison of the respective file download request context components of each file download request to the application context components of the application. The download module then selects two or more file download requests in the download queue for concurrent execution based on the respective rankings of the file download requests in the download queue. |
US09935997B2 |
System for transforming mobile app into addressable network for stateless access
A computer system includes a master controller that receives an HTTP request for a first URL. The URL indicates a first state of a first mobile application. A navigation controller navigates to the first state of the first mobile application within a device. A content scraper extracts content from the first state and identifies forward links to corresponding additional states of the first mobile application. The computer system includes an output formatter configured to package the content and the forward links into an HTTP response and transmit the HTTP response to a source of the first HTTP request. The HTTP response includes a forward URL for each additional state of the first mobile application reachable from the first state. For each additional state, the forward URL includes an indicator of the first mobile application and a path to reach the additional state within the first mobile application. |
US09935995B2 |
Embedded script security using script signature validation
A technique allows a client computer with a web browser to receive a web page having active content in response to transmitting a request for content. The active content includes a signature and a set of attributes associated with a web domain. The web browser can interpret the signature and the set of attributes as formatted in the active content. Validation of the signature and the set of attributes can be in a secure mode through a secure enclave module. |
US09935983B1 |
System and architecture for electronic permissions and security policies for resources in a data system
An electronic permissions and security system are disclosed which may be used to determine permissions and policies for resources in a complex multi-dimensional data system. Analysis of resource data hierarchies and/or accessor data hierarchies using the permissions computing systems and methods discussed herein may provide efficient and flexible permissions analysis, determination, and management. The electronic permissions system may include for example, a permissions analysis module or component configured to access, traverse and/or analyze a resource hierarchy and/or an accessor hierarchy to determine permissions with respect to a resource. Permissions may be defined according to various policies which may include specific actions allowed or disallowed for the policy. Specific actions within a policy may also be organized hierarchically such that one particular grant of one permission may imply granting of another permission. |
US09935981B2 |
Dynamic tuple for intrusion prevention systems
Embodiments of the present invention provide systems and methods for exchanging information. Communications between an intrusion prevention system (IPS) and at least one end-point are facilitated by controlling network traffic flow in an IPS and the at least one end-point and formation of an information plane. The formed information plane allows attributes of the IPS and the at least one end-point to reside in the formed information plane. A network access policy (NAP) works in conjunction with an IPS and leverages created customized network objects (CNOs). Upon analyzing data packets, the data packets may or may not be forwarded to the IPS. |
US09935969B2 |
Domain classification based on client request behavior
Systems and methods for domain classification using the network request behavior of clients are provided. The network requests of a plurality of clients are analyzed to determine a domain corresponding to each request. This information can be used to associate a set of domains with each individual client. Because of the reciprocal nature of a network request, the information is also used to associate a set of clients with each individual domain. Within the plurality of domains associated with the plurality of clients, there may exist known domains having a classification and unknown domains having no classification. Based on the correlation of clients and domains from their respective associations, the system generates domain classification information for at least one of the unknown domains. |
US09935968B2 |
Selective traffic analysis at a communication network edge
Embodiments disclosed herein provide systems and methods for recording for analyzing traffic at an edge of a communication network. In a particular embodiment, a method provides processing a first portion of data packets directed into the communication network from outside of the communication network to determine whether a first sampling policy adequately assesses risk to the communication network. Upon determining that the first sampling policy does not adequately assess the risk to the communication network, the method provides adjusting the first sampling policy. The method further provides identifying a second portion of the data packets based on the first sampling policy. An amount of data packets included in the first portion of the data packets is larger than or equal to an amount of data packets included in the second portion of the data packets. |
US09935967B2 |
Method and device for detecting malicious URL
Examples of the present disclosure provide a method and device for detecting a malicious URL, the method includes: a URL detection request is received, contents of a page addressed by a URL in the URL detection request are analyzed, and it is determined that whether the page is a non-text page; when the page is a non-text page, a page image of the page, which is displayed in a browser and addressed by the URL in the URL detection request, is obtained, image detection is performed on the page image, and a page attribute of the URL in the URL detection request is obtained, whether the URL is a malicious URL is determined based on the page attribute of the URL in the URL detection request. |
US09935958B2 |
Reverse access method for securing front-end applications and others
A System that provides a secured connection between servers on the LAN and clients on the WAN comprises the LAN (which includes LAN Server and LAN Controller) and the DMZ (which includes DMZ Server and DMZ Stack Pool Service). Wherein the Client Request reaches the DMZ Server it stores it in the DMZ Stack Pool Service and the LAN Controller establishes outbound TCP based connection to the DMZ Stack Pool Service that passes the Client Connection Information to the LAN Server via the LAN Controller. Then the LAN Server then generates a connection between the Service and DMZ Server. |
US09935957B2 |
Transaction security systems and methods
Outbound traffic of a host application may be received from a host device having a host processor. The secure resource may be configured to provide a secure transaction based on the outbound network traffic. Using a second processor different than the host processor, it may be determined whether the host application is authorized to provide the outbound network traffic to the secure resource. The outbound network traffic may be allowed to be forwarded to the secure resource if the host application is authorized. The outbound network traffic may be disallowed to be forwarded to the secure resource if the host application is not authorized. |
US09935952B2 |
Selectively permitting a receiver device to access a message based on authenticating the receiver device
A device may receive an indication to generate a link associated with accessing a message. The message may be intended for a shared device identifier of a receiver device identified by a receiver device identifier, where the shared device identifier is shared by multiple receiver devices. The device may store information associating the message with the receiver device identifier. The device may generate the link using information associated with the message. The device may provide the link to the receiver device after generating the link. The device may receive a request, from a requesting device, to access the message, the request including a device identifier associated with the requesting device. The device may selectively permit or prevent access to the message, by the requesting device, based on the stored information and the device identifier associated with the requesting device. |
US09935951B2 |
Remote blind hashing
A remote data protection network provides a blind hashing service. A blind hashing server receives a message such as a digest from a client, and uses the message to derive a set of indices or offsets into a huge block of random data that is maintained by the remote data protection network. The corresponding extents of data in the block are combined, e.g. using a hash or HMAC function, and then returned to the invoking client, e.g. as a salt. The message and response may be salted with a unique client salt. |
US09935947B1 |
Secure and reliable protection and matching of biometric templates across multiple devices using secret sharing
Biometric information from an initial sample is used to generate a biometric template for a user. The biometric template is split into multiple template shares using a polynomial secret sharing scheme, such that at least some threshold number of the resulting template shares must be combined to reconstruct the biometric template. After the biometric template is split, the resulting template shares are distributed to multiple components in the system, such as a server, and/or one more user devices, and the original copy of the biometric template is destroyed. To subsequently verify the identity of the user, the threshold number of template shares are obtained and combined to reconstruct the user's biometric template, and the reconstructed template is compared with biometric information extracted from one or more subsequently collected biometric samples. If there is a match between the reconstructed biometric template and the extracted biometric information, the user's identity is verified. |
US09935945B2 |
Trusted management controller firmware
A method for ensuring management controller firmware security, by a security manager of a computing device, includes storing a public key and raw identity data, and obtaining, from a management firmware for a management controller of the computing device, encrypted identity data. The security manager decrypts the encrypted identity data with the public key into decrypted identity data, and compares the decrypted identity data with the raw identity data to determine whether the management firmware is authentic. The security manager protects the computing device from harm by the management firmware, in response to determining that the management firmware is not authentic. |
US09935942B2 |
Authentication processing method and electronic device for supporting the same
An electronic device and authentication processing method for operating the electronic device is provided. The authentication processing method includes transmitting to an external server credential information input in the electronic device through a user interface, receiving an authentication request of the credential information, processing the authentication request based on the credential information stored in the electronic device, or determining whether to transmit the authentication request through the communication module based on the credential information stored in the external server. |
US09935938B2 |
DTCP certificate authentication over TLS protocol
Authenticating devices utilizing Transport Layer Security (TLS) protocol to facilitate exchange of authentication information or other data to permit or otherwise enable access to services requiring authentication credentials, certificates, tokens or other information. The authentication may utilize Digital Transmission Content Protection (DTCP) certificates, Diffie-Hellman (DH) parameters or other information available to the authenticating devices, optionally without requiring device requesting authentication to obtain an X.509 certificate. |
US09935937B1 |
Implementing network security policies using TPM-based credentials
A method for implementing network security policies in a multi-tenant network environment may include receiving a request for implementation of at least one network security policy on one or more computing devices of a service provider cloud environment. The network security policy identified by the request may be retrieved. The network security policy may be encrypted using encrypting credentials of the one or more computing devices. Decrypting credentials corresponding to the encrypting credentials are stored in a Trusted Platform Module (TPM) within the one or more computing devices. The encrypted network security policy may be pushed to the one or more computing devices, for decryption and implementation at the one or more computing devices. |
US09935936B2 |
Federated realm discovery
A federated realm discovery system within a federation determines a “home” realm associated with a portion of the user's credentials before the user's secret information (such as a password) is passed to a non-home realm. A login user interface accepts a user identifier and, based on the user identifier, can use various methods to identify an account authority service within the federation that can authenticate the user. In one method, a realm list of the user device can be used to direct the login to the appropriate home realm of the user. In another method, an account authority service in a non-home realm can look up the user's home realm and provide realm information directing the user device to login at the home realm. |
US09935934B1 |
Token management
A method and system for management access tokens is described. Access tokens for accessing third-party resources are stored and managed in a token repository. An access token may be obtained from a third-party resource. Once a user has authorized the system to access a third-party resource and unless that authorization is revoked, the user is not required to reauthorize the system in a pending or any subsequent interactive session, regardless of which shard of the system and third-party resource the user is connected to. The system can also use the authorization to execute scheduled requests for accessing or obtaining data from the third-party resource. |
US09935932B2 |
Wireless sensor field enumeration
A system for authenticating data acquired by multiple sensors prior to storing the data in a database is described. The system also authenticates users requesting data access and intelligence agents that provide analyses of data stored in the database. As a result, any data or data analysis obtained from the system is traceable and reliable. |
US09935927B2 |
System and method for low energy double authentication between mobile device and server nodes
Disclosed are systems, methods, and computer-readable storage media for Bluetooth low energy (BLE) double authentication between a mobile device and server nodes. A system using BLE authentication can receive at a mobile device, an identifier of a dongle attached to a server that enables wireless communication and can establish a wireless low energy connection with the dongle without paring. The system can receive a server identifier and can determine whether the server has previously been authenticated to yield a determination. When the determination is that the server has not previously been authenticated, the system can receive a baseband management controller username and a password. When the determination is that the server has previously been authenticated, the system can determine whether to perform a double authentication to yield a second determination. The system can perform the double authentication when the second determination indicates that the double authentication should be performed. |
US09935924B1 |
Decentralized authoritative messaging
A secure chat client is described that allows users to exchange encrypted communications via secure chat rooms, as well as one-to-one communications. In particular, the secure chat client allows users to create, configure, and manage secure chat rooms. Furthermore, the secure chat client provides users with the ability to recover secure messages when they obtain a new device or otherwise lose communications. |
US09935923B2 |
Secure data parser method and system
A secure data parser is provided that may be integrated into any suitable system for securely storing and communicating data. The secure data parser parses data and then splits the data into multiple portions that are stored or communicated distinctly. Encryption of the original data, the portions of data, or both may be employed for additional security. The secure data parser may be used to protect data in motion by splitting original data into portions of data, that may be communicated using multiple communications paths. |
US09935919B2 |
Directory partitioned system and method
This disclosure relates in general to the field of directory information systems and/or services. In a method embodiment, a method of arranging objects in a directory information system includes providing a plurality of objects to a computer-readable medium having a directory information structure. Each object may have one or more characteristics and each object may be stored, for example, in the computer-readable medium according to the directory information structure. Storing the objects may further include performing a mathematic operation on at least one of the characteristic(s) of the object, and arranging the object in the directory information structure based at least in part on a result of the mathematical operation performed on at least one of the characteristic(s) of the object. |
US09935918B2 |
Cloud-based infrastructure for determining reachability of services provided by a server
Technologies are described for using a cloud-based computer system to access services provided by a particular server over public Internet Protocol (IP) connections. In one aspect, a system includes a first computer system configured to run the particular server to provide a first service over public IP connections; and a second computer system configured to run a second server, where the particular server transmits, over public IP connections, a request for the second server to check the first service, where, responsive to receipt of the request for the second server to check the first service, the second server provides, to the particular server over public IP connections, information relating to whether the first service is available over public IP connections, and where the particular server updates an availability status of the first service over public IP connections based on the information provided by the second server. |
US09935917B2 |
Methods of detecting and assigning IP addresses to devices with ARP requests
A method of discovering and assigning an IP address to a device to be discovered in a communication network having multiple interconnected nodes includes continuously monitoring, by the device to be discovered, the network for address resolution protocol (ARP) requests. The discoverer node transmits a number of ARP request to the network. The device to be discovered receives the number of ARP requests. The device to be discovered determines whether the number of ARP requests are unanswered by other devices in the network. The device to be discovered answers to the number of ARP requests with an ARP reply to claim an IP address associated with the number of ARP requests. The discoverer node and the device to be discovered exchange a pair of User Datagram Protocol (UDP) packets to complete the detection process. |
US09935915B2 |
System and method that bridges communications between multiple unfied communication(UC) clients
This disclosure describes a system and method that bridges communications between multiple unified communication (UC) clients. This disclosure provides a UC bridging tool configured to execute computer implemented instructions using the processor and memory. The processor is further configured to: receive UC client specific human interface device HID commands from a plurality of UC clients with a UC client driver module, wherein each UC client driver is configured to translate UC client specific human interface device (HID) commands for each UC client driver to a common format; receive HID commands in the common format and translate the HID commands from the common format into a device specific format with a UC audio assistant module; pass the HID commands in the device specific format to an output device with a device specific driver module that further comprises a set of device specific drivers. |
US09935908B2 |
Download of current portions of email messages
In general, this disclosure describes techniques of enabling devices to download only current portions of email messages without downloading historical portions of the email messages. For instance, when an email client generates a reply email message to an original email message, the reply email message includes a current portion and a historical portion. The current portion of the reply email message includes new information and the historical portion of the reply email message includes the original email message. The techniques of this disclosure enable devices to download the current portions of email messages without downloading the historical portions of the email messages. |
US09935907B2 |
System and method for serving a message client
A system and method for synchronizing messages between client application instances and a message service provider includes a connection service communicatively coupled to a plurality of client messaging application instances; a first intermediary transfer layer with an inbound message data queue that queues message updates of a client application instance and an outbound message data queue that queues message updates and notifications from a mailbox service layer; a mailbox service layer communicatively coupled to the connection service through the first intermediary transfer layer; a second intermediary transfer layer with an mailbox message data queue that contains queued message data directed at the mailbox service layer and a message service data queue that contains queued message updates directed at a message service layer; and a message service layer configured for message interactions with an outside message service provider. |
US09935903B2 |
Duplicate-free item creation using EWS by a single client
Processing client requests for duplicate-free server operations is particularly useful for creating and sending items using Microsoft Exchange Web Services (EWS). The system facilitates avoiding creation and sending of duplicate items. In contrast to conventional implementations that send a single command to create and then perform subsequent processing of an item, a feature of the present embodiment is using two commands: a first command to create the item, and a second command to subsequently process the item. In a specific implementation, an EWS item's provided ChangeKey property is used to keep track of the EWS's reply from the server to the client, thereby avoiding duplicate item creation. |
US09935900B2 |
Method for providing protection switching service in virtual tenant network and controller therefor
A method for providing a protection switching service in a virtual tenant network (VTN) and a controller are provided. The method enables a real-time protection switching setup on a VTN path in order to provide reliability of a VTN service. |
US09935897B2 |
Network switching device
Network switching arrangements including: setting an operation mode of a target switching block to a operation mode that is different from an operation mode of a first switching block while the first switching block is handling a switching process, the target switching block being one switching block selected from second switching blocks; performing a switchover process including starting the switching process using the target switching block instead of the first switching block, after completion of setting the operation mode of the target switching block; and copying the switching information held by the first switching block to the target switching block, prior to starting the switching process using the target switching block, after completion of setting the operation mode of the target switching block. |
US09935892B2 |
Integrated capacity and architecture design tool
A method implemented in a computer infrastructure having computer executable code, including consolidating collected capacity architecture information, which includes data for installed resources, allocated resources and reserved resources and determining available resources based on the collected capacity architecture information. Additionally, the method includes displaying an indication the available resources and performing capacity planning based on the collected capacity architecture information and the available resources. |
US09935889B2 |
Communication apparatus and method
A communication apparatus includes a storing unit, a setting unit, a transmitting unit. The storing unit stores the number of transmissions of data to a destination of the data in association with an identifier that identifies the data. The setting unit sets, when the number of transmissions of target data that is data of a target of transmission to the destination reaches a threshold, as alternative data, a combination of the target data and a retaining request for requesting retaining of the target data. The alternative data is data to be transmitted to the destination as an alternative of the target data. The setting unit sets, after transmission of the retaining request, the identifier of the target data as the alternative data. The transmitting unit transmits the alternative data to the destination. |
US09935881B2 |
Method and apparatus of load sharing
A method of load sharing, includes: extracting a factor field capable of distinguishing data flow in a packet header of the classified data flow, and taking the factor field as an input factor of a default load sharing algorithm of a network forwarding device interface, or taking the factor field as an input factor of a load sharing algorithm capable of uniformly allocating the data flows and selected according to the flow characteristic of the data flows, calculating the paths of the data flows, and forwarding the data flows according to respective paths. The method is used for increasing the expansibility of the network forwarding device and achieving load balancing. |
US09935880B2 |
Systems and methods for scalable and resilient load balancing
A method for providing resilient load balancing in a system comprising a first processing unit, a second processing unit, a first active load balancer and a second active load balancer is disclosed. A first set of packet flows may be mapped to the first active load balancer and a second set of packet flows may be mapped to the second active load balancer. The first set of packet flows may include a first packet flow. In some embodiments, the method includes: (a) storing, by the first processing unit, a set of state information associated with the first active load balancer, the set of state information comprising state information associated with a first session associated with the first packet flow; (b) receiving, by the first processing unit, information indicating that the first active load balancer is inoperable; and (c) in response to receiving the information indicating that the first active load balancer is inoperable, transmitting, from the first processing unit to the second active load balancer, the state information associated with the first session. |
US09935868B2 |
Optimizing inter-PAN traffic
In one embodiment, a device identifies inter-personal area network (PAN) traffic between a first PAN and a second PAN. The device identifies a network node in the first PAN associated with the inter-PAN traffic and determines that the network node should join the second PAN. The device causes the network node to join the second PAN, in response to determining that the network node should join the second PAN. |
US09935866B2 |
Systems and methods for last mile optimization of transmission of real-time data
The present invention relates to systems and methods for last mile optimization for the transmission of real-time data. Pseudo-packets are sent to a last mile optimizer located at each of several ‘best’ servers. The last mile optimizers provide feedback regarding jitter, latency and packet loss of the pseudo-packets to determine quality of service for each of the servers. The server with the best quality of service is selected as the ‘single best’ server. A plurality of transporter algorithms may then be applied to pseudo-packets that are then sent to the single best server, and the quality of service for each transporter algorithm is subsequently measured for effectiveness. The transporter algorithms that are shown to be effective are combined together for the actual transmission of real-time data. Continuous monitoring of transmission quality allows for utilizing backup pathways upon detection of a problem, and negotiation of preferred transporter algorithms. |
US09935856B2 |
System and method for determining end user timing
A system automatically determines end user timing across multiple platforms and network browsers. End user timing data may be captured using one or more techniques. The techniques may include utilizing a navigation timing standard and handler call back functionality. The end user timing data may be analyzed to identify which technique's data is most accurate, and the most accurate end user timing data is then reported. |
US09935855B2 |
Method and apparatus for a power-efficient framework to maintain data synchronization of a mobile personal computer to simulate a connected scenario
An apparatus and method for a power-efficient framework to maintain data synchronization of a mobile personal computer (MPC) are described. In one embodiment, the method includes the detection of a data synchronization wakeup event while the MPC is operating according to a sleep state. Subsequent to wakeup event, at least one system resource is disabled to provide a minimum number of system resources required to re-establish a network connection. In one embodiment, user data from a network server is synchronized on the MPC without user intervention; the mobile platform system resumes operation according to the sleep state. In one embodiment, a wakeup alarm is programmed according to a user history profile regarding received e-mails. In a further embodiment, data synchronizing involves disabling a display, and throttling the system processor to operate at a reduced frequency. Other embodiments are described and claimed. |
US09935845B2 |
Cloud migration and maintenance controls
Improved cloud migration tools are provided. In some embodiments, improved cloud migration tools may provide complex cloud migration analysis techniques for automated monitoring of aggregate compliance with cloud migration protocols, including user- and/or organizational defined architectural guidelines. In some embodiments, improved cloud migration tools may provide automated detective cloud controls, particularly in the management across multiple cloud computing platform accounts, virtual private clouds (VPCs), and/or a large numbers of numbers of resources. |
US09935844B2 |
Reducing internodal communications in a clustered system
A clustered system has a subset of nodes coupled to a particular cluster resource. Nodes not coupled to the cluster resource may operate on a cluster resource through a node coupled to that resource. The nodes coupled to the resource form a group, the nodes in the group perform protocols to operate on the cluster resource, nodes not in the group do not participate in the protocols. |
US09935843B1 |
Dissemination of NAT traversal attributes in a control plane protocol
A method for creating a secure network is provided. The method comprises establishing a controller for a plurality of edge nodes in the network; configuring each edge node to perform a discovery operation to discover Network Address Traversal (NAT) information for any NAT device associated with said edge node; and configuring each edge node to transmit any NAT information discovered through said discovery operation to the controller; and configuring the controller to distribute the NAT information received from the plurality of edge node to each edge node. |
US09935838B2 |
Multi-stage network discovery
In a multi-stage network discovery system, a target device is identified by a logical address and associated with a configuration item (CI) record stored in a configuration management database (CMDB). A receiver module receives first probe data from a first probe running against the target device, the first probe data comprising constant attribute data of the target device, stores at least part of the first probe data in a first part of the CI record, receives subsequent probe data from at least one subsequent probe against the target device using the logical address, the subsequent probe data comprising the constant attribute data of the target device, determines that the constant attribute data from the subsequent probe matches the constant attribute data from the CI record, and in response to the determination, stores the subsequent data obtained from the second probe in a second part of the CI record. |
US09935837B2 |
Physical change tracking system for enclosures within data centers
Embodiments for implementing change control management in computing center environments by a processor. A determination is made of a present status of a monitored component of a computing device in the computer center environment. A recording, using at least one sensor device, of a change of the present status of the monitored component, including a time stamp and information identifying an owner of the change is made. An analysis of a trend of status of the monitored component over time is made to generate an accurate prediction of future activity towards the monitored component. |
US09935836B2 |
Exclusive IP zone support systems and method
Network resource monitoring systems and methods are presented. In one embodiment, a network resource monitoring method comprises: gathering network resource pre-monitoring information, including information indicating whether a network resource is associated with a zone, and if associated with a zone also gathering information indicating zone type; performing a network resource monitoring process on the network resource based on results of the gathered network resource pre-monitoring information; including performing a network resource monitoring process when the network resource is in a local zone that does not otherwise make available or share information with a global zone; and analyzing the results of the network resource monitoring process. In one embodiment, if the network resource is included in an exclusive IP zone. In one exemplary implementation, the network resource monitoring process comprises: ascertaining if a monitoring type trigger condition exists; performing a corresponding type of monitoring if the monitoring type trigger condition exists. |
US09935835B2 |
Methods, apparatuses, and computer program products for facilitating synchronization of setting configurations
A method, apparatus, and computer program product are provided for facilitating synchronization of setting configurations. An apparatus may include a processor and a memory storing instructions that when executed by the processor cause the apparatus to configure a setting on the apparatus. The instructions when executed by the processor may further cause the apparatus to generate a settings data package comprising the setting configuration. The instructions when executed by the processor may additionally cause the apparatus to send the settings data package to a settings management service for synchronization of the setting configuration to at least one of a service or a user device. The settings management service may be configured to synchronize the setting configuration by distributing the settings data package to the at least one of the service or the user device. Corresponding methods and computer program products are also provided. |
US09935834B1 |
Automated configuration of virtual port channels
In an example, there is disclosed a computing apparatus for providing an integrated service engine on a service appliance, including one or more logic elements providing a service appliance engine operable for performing a service appliance function; and one or more logic elements providing a protocol engine operable for: detecting that a plurality of upstream network switches are connected to the service appliance in a virtual port channel configuration; and provisioning virtual port channel (VPC) services comprising replicating a routing policy to each of the plurality of upstream network switches. There is also disclosed one or more computer-readable mediums having stored thereon instructions for providing the foregoing, and a computer-implemented method of performing the foregoing operations. |
US09935820B2 |
Transmitter and transmission system
A transmitter used in a transmission system in which a first network is connected, via a second network, to a third network, the transmitter being arranged between the first network and the second network, the transmitter includes: a generator configured to specify an identifier of data area in which communication data affected by a failure occurred in the first network are stored, in a frame transmitted from the second network, and to generate failure information associated with the identifier specified; and a transmitter configured to transmit the failure information generated by the generator, via the second network, to another transmitter arranged between the second network and the third network. |
US09935818B1 |
Diagnostic traffic generation for automatic testing and troubleshooting
A framework in a cloud network that may allow for debugging at multiple vantage points at different layers (e.g., layer 2, layer 3, etc.). The methods may provide tracer or measurement services that filter, capture, or forward flows that may include packets, calls, or protocols to look for particular signatures. |
US09935816B1 |
Border gateway protocol routing configuration
A technology is described for updating an Autonomous System Number (ASN) in a Border Gateway Protocol (BGP) routing configuration. An example method may include receiving a request to update a BGP routing configuration on a gateway with an ASN associated with a customer. In response to the request, the BGP routing configuration on the gateway may be updated to replace a default ASN associated with a computing service provider with the ASN associated with the customer. The BGP routing configuration on the gateway may also be updated to allow the ASN associated with the customer to appear in an Autonomous System (AS) path at least twice, thereby allowing for BGP routes to be exchanged between gateways. |
US09935815B2 |
Data administration unit, data access unit, network element, network, and method for updating a data structure
A data administration unit for updating a first data structure in a first memory may comprise a second memory, a data structure generator for setting up a second data structure in the second memory, a pointer generator for setting at least one of a dynamic change indicator and a pointer in the first data structure, a waiting unit for waiting for a finalization of a data access of a data access unit, and a data structure over-writer for overwriting the first data structure using data of the second data structure. An data access unit for accessing a first data structure in a first memory may comprise a data access driver, a first synchronization signal evaluator for reception and evaluation of a first synchronization signal, and a synchronization approval signal generator for generation and submission of a first synchronization signal. |
US09935814B2 |
Method of obtaining a network address
The present invention comprises a method of and apparatus for simplifying the process of access to a network for a roaming computer user, divides the responsibility of servicing a given user wanting to access the network between multiple parties and minimizes the possibility of improper dissemination of email header data as well as improper use of network resources (including server systems) by non-clients. |
US09935805B2 |
MIMO and MU-MIMO OFDM preambles
Certain aspects of the present disclosure present frame structures to support a plurality of standards, such as the IEEE 802.11ac in addition to the IEEE 802.11a/b/n/g. Preamble of the frame structure can be used by a receiver to detect transmission mode of the packet. |
US09935804B2 |
Apparatus and method for transmitting and receiving of cyclic shift parameter for supporting orthogonality in MIMO environment
A method includes: determining a Cyclic Shift (CS) parameter that implicitly indicates an orthogonality allocation rule and orthogonality-related information, by determining a multiple access state of a User Equipment (UE), and transmitting the determined CS parameter to the UE, wherein the orthogonality-related information includes an Orthogonal Cover Code indicated by the CS parameter, the orthogonality allocation rule is determined as a uniform scheme or a non-uniform scheme according to the CS parameter, determining the CS parameter by which the non-uniform scheme is applied if the UE is in a Single User Multiple Input Multiple Output state, and determining the CS parameter by which the uniform scheme is applied if the UE is in a Multiple User Multiple Input Multiple Output state. |
US09935801B2 |
Method for transmitting data by radiofrequency link in a remote-reading apparatus
The invention relates to a method for controlling digital data transmission in a remote-reading apparatus including a plurality of metering devices, each equipped with a radiofrequency module for communicating with a radiofrequency transmission/reception device of a gateway system of the apparatus, the method comprising a step of transmitting a digital signal from the radiofrequency module to the radiofrequency transmission/reception device and/or from the radiofrequency transmission/reception device to the radiofrequency module, the transmission being carried out via a carrier modulated by frequency shift modulation, the method being characterized in that the frequency shift modulation has a modulation index strictly equal to an integer value divided by two, and in that it includes a step of receiving the signal transmitted according to the modulation, comprising operations of generation of a synchronization signal synchronized with the received signal and synchronous detection of the received signal using the synchronization signal. |
US09935800B1 |
Reduced complexity precomputation for decision feedback equalizer
Techniques for reducing the complexity and power requirements of precompensation units, as well as equalizers, devices, and systems employing such techniques. In an illustrative method for providing high speed equalization, the method comprises: obtaining a channel response that presents trailing intersymbol interference in a signal having a sequence of symbols from a symbol set; determining a distribution of threshold values for a precompensation unit corresponding to said channel response with said symbol set; deriving a reduced set of threshold values from said distribution; and implementing a decision feedback equalizer with a reduced-complexity precompensation unit employing the reduced set of threshold values. In a related illustrative method for providing high speed equalization, the method comprises: obtaining a channel response that presents trailing intersymbol interference in a signal having a sequence of symbols from a symbol set, the channel response and symbol set corresponding to an initial distribution of threshold values for a precompensation unit; deriving a filter that converts the channel response into a modified channel response, the modified channel response and symbol set corresponding to an improved distribution of threshold values in that the improved distribution includes fewer distinct threshold values or reduced spacing between at least some adjacent threshold values; and implementing a decision feedback equalizer with a reduced-complexity precompensation unit employing the threshold values in the improved distribution. |
US09935796B2 |
Superposed signal sampling apparatus and sampling method
The present disclosure relates to a superposed signal sampling apparatus, including: a signal receiving module, a signal extracting module, and a signal output module. The signal receiving module is used to receive a superposed signal. The signal extracting module is used to determine whether the received superposed signal is within a preset threshold range of a direct current signal; if the received superposed signal is within the threshold range, extract a previously received signal as a direct current signal to be output; and if the received superposed signal is beyond the threshold range, extract a currently received signal as a direct current signal to be output. The signal output module is used to integrate the direct current signal extracted by the signal extracting module, and then output the direct current signal. The present disclosure further relates to a superposed signal sampling method. |
US09935789B2 |
Centralized pluggable authentication and authorization
In particular embodiments, a first computing device may receive a request from a second computing device to access a first entity of an infrastructure, the second computing device being coupled to the first computing device, then determining an eligibility of the second computing device to access as least the first entity of the infrastructure, and if the second computing device is determined to be eligible to access the first entity, then assigning a second ticket to the second computing device responsive to the received request. |
US09935787B2 |
Tunneling VoIP call control on cellular networks
Signaling from a mobile device is transparently tunneled through a cellular voice network to a Voice over Internet Protocol (“VoIP”) core network so that multi-party calls, including conference calls and call waiting, can be managed entirely within the VoIP core network. The tunneled signals enable call control to be implemented in the VoIP core network and also establish a way to communicate requests, instructions, and call state. The signaling is transparent to the cellular network because that network does not receive and interpret the signaling. Instead, the cellular network's existing and unmodified control plane is repurposed by the mobile device by placing new, brief outgoing calls through the cellular network to the VoIP core network where the called party number (i.e., the caller-ID) encodes specific information. The VoIP core network immediately releases the new cellular call once the caller-ID is received and the encoded information is interpreted. |
US09935786B2 |
Low power bidirectional bus
A method of sending information between first and second modules connected by a signal bus comprises generating a clock signal in the first module, and imposing the clock signal on a first line of the bus. A first pattern of bit values is transmitted from the second module to the first module on a second line of the bus, during first half-periods of each period of said clock signal. A second pattern of bit values is transmitted from the first module to the second module on the second line of the bus, during second half-periods of each period of said clock signal, wherein the second half-periods of each period of said clock signal are different from the first half-periods of each period of said clock signal. Information can then be transmitted from the first module to the second module by altering the second pattern of bit values; and information can be transmitted from the second module to the first module by altering the first pattern of bit values. |
US09935782B1 |
Scalable internet group management protocol (IGMP) snooping in a switch fabric
Internet Group Management Protocol (IGMP) snooping includes flooding an IGMP query received at a border leaf switch from a multicast router connected to the multicast router to all host devices in a given bridge domain through leaf switches in the bridge domain, and receiving multiple join requests from the connected host devices at the leaf switches. The IGMP snooping also includes consolidating the multiple join requests received at the leaf switches into a multicast groups membership repository to indicate for each leaf switch the multicast group membership of interest in the given bridge domain, and sending the repository to the border leaf switch to enable the border leaf switch to send a consolidated IGMP proxy report on behalf of the leaf switches to the multicast router based on the repository and that indicates the multicast membership of interest in the given bridge domain. |
US09935777B2 |
Electronic signature framework with enhanced security
Improved document processing workflows provide a secure electronic signature framework by reducing attack vectors that could be used to gain unauthorized access to digital assets. In one embodiment an electronically signed document is removed from an electronic signature server after signed copies of the document are distributed to all signatories. The electronic signature server optionally retains an encrypted copy of the signed document, but does not retain the decryption password. This limits the amount of data retained by the electronic signature server, making it a less attractive target for hackers. However, the electronic signature server still maintains audit data that can be used to identify a signed document and validate an electronic signature. For example, a hash of the document (or other document metadata) can be used to validate the authenticity of an electronically signed document based on a logical association between an electronic signature and the signed document. |
US09935774B2 |
Configurable cryptographic controller area network (CAN) device
Embodiments of a device and method are disclosed. In an embodiment, a CAN device includes a security module connected between a CAN bus interface of a CAN transceiver and a microcontroller communications interface of the CAN transceiver and an operational mode controller connected between the security module and the CAN bus interface. The security module is configured to perform a security function on data traffic received from the CAN bus interface or from the microcontroller communications interface. The operational mode controller is configured to set an operational mode for the CAN transceiver such that a CAN Flexible Data-rate (FD) frame or a corresponding CAN frame is output from the CAN bus interface. An identifier of the CAN FD frame is the same as an identifier of the corresponding CAN frame. |
US09935772B1 |
Methods and systems for operating secure digital management aware applications
A system and method for servicing secure data object management aware applications using a cloud-based host environment and a local secure container. The cloud-based host environment creates a controlled digital object from a master digital object, and activates a tether associated with the controlled digital object. The tether includes an access permission, and optionally an operation permission (e.g., view, delete, store, edit, and copy) and a command (e.g., timeout, destroy). The controlled digital object is stored to an isolated storage of the secure container. The tether contents control access and manipulation of the controlled digital object. Certain conditions (e.g., timeout period reached, anomalous data access pattern detected), cause the controlled digital object to be destroyed and/or the tether to be inactivated. In accordance with applicable law, the cloud-based host environment utilizes the tether to detect, identify, and/or thwart unauthorized host environments in possession of the controlled digital object. |
US09935764B2 |
Adaptive synchronous protocol for minimizing latency in TDD systems
Systems and methods are presented that offer significant improvements in the performance of time division duplex (TDD) systems by utilizing an adaptive synchronous protocol. Conventional TDD systems are limited because data is transmitted during discreet and limited intervals of time, and because TDD transceivers may not simultaneously transmit and receive for reasons of insufficiently separated frequencies and limited receiver selectivity. Typically, TDD systems have significant latency due to the time to change from transmission to reception and the propagation delay time. By synchronizing the master nodes and the one or more remotes and by scheduling the traffic loads between these nodes, remote nodes may begin transmitting before the master node is finished with its transmission, and vice versa. This method reduces latency and improves the frame efficiency. Further, the frame efficiency may improve as the distance from the master node to the remote node increases. |
US09935763B2 |
Timing correction in a communication system
One example includes a communication system. The system includes a data transmitter configured to generate a digital communication signal and a data receiver configured to receive the digital communication signal. The system also includes a pulse-width distortion (PWD) correction circuit arranged between the data transmitter and the data receiver and being configured to adjust at least one timing parameter associated with the communication signal. |
US09935762B2 |
Apparatus and method for centering clock signal in cumulative data eye of parallel data in clock forwarded links
An apparatus for setting the timing of a triggering edge of a clock signal with respect to received parallel data. The apparatus includes a set of flip-flops including respective data inputs, respective clock inputs, and respective data outputs, wherein the set of flip-flops are configured to generate a set of output data at the data output based on parallel data applied to the respective data inputs in response to a triggering edge of a clock signal applied to the clock inputs; a variable delay element configured to apply a calibrated delay to the clock signal; and a controller configured to generate a control signal for the variable delay element to apply the calibrated delay to the clock signal based on the set of output data generated at the data outputs of the set of flip-flops. |
US09935760B2 |
Tunable filter for LTE bands
A tunable filter reduces the total number of filters used in TDD (Time-Division Duplex) communication circuitry. The communication circuitry may include a tunable filter and a first switch associated with the tunable filter. The tunable filter may include a tuning component and a filtering component. The tuning component may be located with the first switch on a first die. The filtering component may be located in a laminate underneath the first switch. Power amplifiers for amplifying transmission signals may be located on a second die, and the second die may be located on the laminate. |
US09935755B2 |
Method and apparatus for signaling in digital radio systems
A method of transmitting data by a transmitter in a broadcast system, a transmission device for transmitting at least one data stream in a broadcast system, a method of receiving data by a receiver in a broadcast system, and a receiving device for receiving data in a broadcast system are provided. The method of transmitting data by a transmission device includes generating a first frame comprising a preamble and a payload, wherein the preamble comprises first information related to the payload of the first frame, and wherein the payload comprises the data; and transmitting the first frame, wherein the preamble includes at least one parity bit for third information related to a payload of a second frame, and wherein the second frame is a next frame of the first frame. |
US09935745B2 |
Signal sending method and signal sending device
The present invention provides a signal sending method and a signal sending device, where the signal sending method includes: canceling interference from symbols of a boundary between at least two precoding code blocks in a multiple input multiple output filter bank multicarrier MIMO-FBMC system, where the precoding code block includes at least one time-frequency resource element that uses same precoding; performing precoding on a to-be-sent symbol in the precoding code block to obtain a precoded symbol; and sending the precoded symbol. In the present invention, mutual interference between precoding code blocks at a time-frequency critical location can be completely or partially canceled. |
US09935743B2 |
Network element and method of operating the same
A method of operating a first network element in a wireless communications network to perform WIFI and long term evolution (LTE) communications with a second network element on an unlicensed portion of a radio spectrum, the unlicensed portion being divided into first and second frequency regions, includes performing, at the first network element, WIFI protocol communications over the unlicensed portion, including at least one of transmission to, and reception from, a second network element, of WIFI protocol data using one or more first frequencies of the first frequency region, and performing, at the first network element, LTE protocol communications over the unlicensed portion including at least one of transmission to, and reception from, the second network element, of LTE protocol data using one or more second frequencies of the second frequency region, the WIFI protocol communications and LTE protocol communications being performed by the first network element simultaneously. |
US09935742B2 |
Adaptive HARQ for half duplex operation for battery and antenna constrained devices
A user equipment (UE) implements improved communication methods which enable uplink (UL) transmissions consistent with an UL timeline. The UE may have a transmit duty cycle and may transmit acknowledge/negative acknowledge messages to a base station according to the transmit duty cycle. Additionally, the UE may be configured to determine signal-to-interference-plus noise ratio (SINR) between the UE and the base station and compare SINR to a threshold. The UE may transmit redundancy versions of data in consecutive sub-frames with a duty cycle of two transmissions per X+1 sub-frames if SINR is equal or above the threshold and redundancy versions using a duty cycle of one transmission per X sub-frames if SINR is below the threshold. Further, the UE may be configured to communicate a number of UL HARQ processes supported by the UE, receive first information in a first sub-frame, and send second information X sub-frames after the first sub-frame. |
US09935741B2 |
Providing acknowledgement information by a wireless device
In general, to provide acknowledgment information by a first wireless device, the first wireless device sends repeated instances of acknowledgment information in respective first and second frame structures, in response to receipt of first information from a second wireless device. In addition, the first wireless device also sends further acknowledgment information in the second frame structure that is responsive to second information received from the second wireless device. |
US09935733B1 |
Method of and circuit for enabling a communication channel
A method of enabling a communication channel between a first communication circuit and a second communication circuit is described. The method comprises establishing a communication link according to a communication protocol between the first communication circuit and the second communication circuit, wherein the communication protocol enables the transmission of data between the first communication circuit and the second communication circuit at a standardized data rate; determining a standardized data rate for which the communication link between the first communication circuit and the second communication circuit fails to meet a predetermined quality threshold; and establishing a communication link according to the communication protocol at a non-standardized data rate below the determined standardized data rate. |
US09935731B2 |
Communication apparatus, lens apparatus and image pickup apparatus including the same
A communication apparatus has a communicator configured to communicate with an external device capable of communication at multiple communication rates, a communication rate setter configured to change a communication rate of the communicator, and a period detector configured to detect a change period of the communication rates of the external device. The communication rate setter changes the communication rate based on the change period detected by the period detector. |
US09935730B1 |
Systems and methods for using radio layer information to enhance network transfer protocols
Systems and methods for using radio layer information to enhance network transport protocols are provided. Channel characteristics are obtained from a radio layer in a mobile device. The channel characteristics indicate the quality of a connection between the mobile device and a base station. Based on the channel characteristics, a bandwidth of the connection between the mobile device and the base station is calculated. A server is instructed to transmit data to the mobile device at the data rate determined based on the determined bandwidth. |
US09935722B2 |
Harmonic suppressing local oscillator signal generation
A transceiver includes local oscillator (LO) signal circuitry configured to output an LO signal having an LO frequency and mixer circuitry configured to input the LO signal and an information signal that encodes communication data and output a shifted signal that corresponds to the information signal shifted to a desired frequency. The LO signal circuitry includes selection circuitry and generation circuitry. The selection circuitry is configured to select a pulse pattern and a gap duration based at least on a target harmonic of the LO frequency to be suppressed. The pulse pattern includes at least two pulses spaced apart by a gap having the gap duration. The generation circuitry is configured to generate an LO signal characterized by the selected pulse pattern and gap duration. |
US09935718B1 |
Feed-forward DC-bias acquisition for burst-mode optical receivers
An optical receiver receives a photocurrent from a photosensor and uses a transimpedance element to convert the photocurrent into an input voltage signal. An amplifier then amplifies the input voltage signal to produce a receiver output. During this process, a reference-voltage-generation circuit generates a reference voltage for the amplifier. This reference-voltage-generation circuit includes a data-detection circuit that detects data on the input voltage signal, and an adjustable low-pass filter, which filters the input voltage signal to produce the reference voltage. During a faster operating mode, which occurs when the data-detection circuit does not detect data on the input voltage signal, the filter has a cutoff frequency f1. During a slower operating mode, which starts a bias-delay time tBD after the data-detection circuit detects data on the input voltage signal, and lasts until the data-detection circuit no longer detects data, the filter has a lower cutoff frequency f2. |
US09935709B2 |
Header and payload signals with different optical properties
A method, a system, and a non-transitory computer-readable memory resource containing instructions for transmitting data are provided. In an example, the method includes providing a header signal having a first optical property. The header signal indicates a start of a packet, and has a minimum period between transitions that is less than a frame period of a receiving device and greater than a scanline period of the receiving device. A payload signal of the packet is provided that has a second optical property that is different from the first optical property. The payload signal has a minimum period between transitions that is less than the frame period of the receiving device and greater than the scanline period of the receiving device. |
US09935707B2 |
Methods, systems, and computer readable media for providing traffic generation or forwarding device that compensates for skew between electrical lanes in a manner that allows coherent detection of transmitted data
A method for transmitting and coherently detecting data transmitted over electrical lanes that experience different amounts of skew includes, at a traffic generation or forwarding device, self calibrating transmit and receive-side components of the traffic generation or forwarding device to account for skew between electrical lanes and setting per-electrical lane delays based on the calibration. Data to be transmitted to a network device is generated. The data to be transmitted is spread, using one of the transmit-side components, over a first number of electrical lanes. The data is multiplexed from the electrical lanes onto a second number of optical lanes, the second number being different from the first number. Data is transmitted to and received from the network device over the optical lanes. Transmitted data is reconstructed from the received data using the receive-side components. |
US09935706B2 |
Built-in self test for loopback on communication system on chip
In an example, the present invention includes an integrated system-on-chip device. The device is configured on a single silicon substrate member. The device has a data input/output interface provided on the substrate member. The device has an input/output block provided on the substrate member and coupled to the data input/output interface. The device has a signal processing block provided on the substrate member and coupled to the input/output block. The device has a driver module provided on the substrate member and coupled to the signal processing block. In an example, the device has a driver interface provided on the substrate member and coupled to the driver module and configured to be coupled to a silicon photonics device. In an example, a control block is configured to receive and send instruction(s) in a digital format to the communication block and is configured to receive and send signals in an analog format to communicate with the silicon photonics device. |
US09935703B2 |
Host node device and methods for use therewith
Aspects of the subject disclosure may include, for example, a host node device having a terminal interface that receives downstream channel signals from a communication network and send upstream channel signals to the communication network. An access point repeater launches the downstream channel signals as guided electromagnetic waves on a guided wave communication system and to extract a first subset of the upstream channel signals from the guided wave communication system. A radio wirelessly transmits the downstream channel signals to at least one client node device and to wirelessly receive a second subset of the upstream channel signals from the at least one client node device. Other embodiments are disclosed. |
US09935702B2 |
Method and apparatus for feeding back channel state information for 3D MIMO in wireless communication system
A method of reporting channel state information to a base station at a user equipment (UE) in a wireless communication system is disclosed. The method includes configuring a two-dimensional (2D) antenna array transmission mode of a downlink data channel via a higher layer, receiving an indicator corresponding to one of transmission schemes of the downlink data channel via the higher layer, calculating the channel state information on the assumption of one transmission scheme of the downlink data channel corresponding to the indicator, and reporting the calculated channel state information to the base station. The transmission schemes of the downlink data channel include a demodulation-reference signal (DM-RS) based large delay (LD) cyclic delay diversity (CDD) transmission scheme and a closed loop multiplexing transmission scheme in the 2D antenna array transmission mode. |
US09935700B2 |
Beam scanning method for hybrid beamforming in wireless communication system and apparatus therefor
A method for, at a transmitter, transmitting a signal to a receiver in a wireless communication system is disclosed. The method includes transmitting a first reference signal for omni-directionally providing a uniform reference beam to the receiver, transmitting a second reference signal for providing beams respectively corresponding to a predetermined number of sectors to the receiver, receiving, from the receiver, sector information selected based on the second reference signal and information about a beam gain difference between a beam corresponding to the selected sector and the reference beam, and performing beamforming for transmitting a signal to the receiver based on the sector information and the information about the beam gain difference. |
US09935699B2 |
Communication method and apparatus using beamforming in a wireless communication system
A communication method and an apparatus using beamforming in a wireless communication system are provided. The communication method includes determining a candidate user set including one or more Mobile Stations (MSs), for Multiple User-Multiple Input Multiple Output (MU-MIMO) transmission, transmitting beam information indicating best Base Station (BS) transmission beams of the MSs of the candidate user set to the MSs of the candidate user set, receiving Precoding Matrix Index (PMI) information indicating a PMI to be used for baseband precoding from each of the MSs of the candidate user set, the PMI information being determined based on the beam information, and transmitting a signal precoded based on the PMI information to at least one MS. |
US09935677B2 |
Devices and methods related to high power diode switches with low DC power consumption
Devices and methods are disclosed, related to high power diode switches. In some embodiments, a radio-frequency switch circuit can include a first switchable path implemented between a pole and a first throw, the first switchable path including one or more PIN diodes, and a second switchable path implemented between the pole and a second throw, the second switchable path including one or more PIN diodes. The radio-frequency switch circuit can further include a switchable shunt path implemented between the second throw and a ground, the switchable shunt path including at least one shunt PIN diode and a capacitance between the second throw and the at least one shunt PIN diode. The pole can be an antenna port, and the first and second throws can be transmit and receive ports, respectively. |
US09935676B2 |
Opportunistic antenna switch diversity (ASDIV) in carrier aggregation
Aspects of the present disclosure relate to techniques for switching antennas in devices that have multiple antennas for communicating via aggregation of multiple carriers. |
US09935675B2 |
RF front-end circuitry with transistor and microelectromechanical multiple throw switches
This disclosure relates generally to radio frequency (RF) front-end circuitry for routing RF signals to and/or from one or more antennas. Exemplary RF front-end circuitry includes a multiple throw solid-state transistor switch (MTSTS) and a multiple throw microelectromechanical switch (MTMEMS). The MTSTS may be configured to selectively couple a first pole port to any one of a first set of throw ports. The MTMEMS is configured to selectively couple a second pole port to any one of a second set of throw ports. The second pole port of the MTMEMS is coupled to a first throw port in the first set of throw ports of the MTSTS. The MTSTS helps prevent hot switching in the MTMEMS since the first throw port of the MTSTS may be decoupled from the second pole port of the MTMEMS before decoupling the second pole port from a selectively coupled throw port of the MTMEMS. |
US09935674B2 |
Method and apparatus for radio antenna frequency tuning
A system that incorporates teachings of the present disclosure may include, for example, a non-transitory computer-readable storage medium, which can include computer instructions to determine a subset of use cases from a group of use cases stored in a memory of a communication device, and to determine a target use case from among the subset of use cases based on an operational parameter associated with a transceiver of the communication device. Additional embodiments are disclosed. |
US09935669B1 |
Protection enclosure of portable electronic device
A protection enclosure of an portable electronic device includes a protective frame including a protective frame main body in which the portable electronic device is received and held and multiple protective frame magnetic members, which are arranged in the protective frame main body at intervals and grouped as at least one lateral protective frame magnetic attraction row and at least one longitudinal protective frame magnetic attraction row perpendicular to the lateral protective frame magnetic attraction row; and a protective cover including a protective cover main body having a bottom board, an end board, and a connection board connected between the bottom board and the end board and multiple protective cover magnetic members arranged, at intervals, on the end board to form at least one protective cover magnetic attraction row. Foldability is available between the bottom board and the connection board and also between the connection board and the end board. |
US09935668B1 |
Detachment mechanism and indicator for mobile mount portable radio and method for the same
A ruggedized mobile mount for a portable handheld radio, including a detachment mechanism and indicator for removably attaching the handheld radio to the mobile mount is disclosed. In one embodiment, the detachment mechanism includes a mechanical indicator configured to indicate an attached and detached state of the handheld radio. |
US09935667B2 |
Obtaining on-line service
Method and system for obtaining on-line service are provided. The method may include: a vehicle mounted system sending a first piece of information about its capability and a request for an on-line service to a mobile communication device connected to the vehicle mounted system; and the vehicle mounted system receiving contents of the on-line service from the mobile communication device, where the contents of the on-line service are obtained by processing to match the capability of the vehicle mounted system. Computation load of the vehicle mounted system may be reduced and more utilization may be realized. |
US09935666B2 |
Transceiver using technique for improvement of phase noise and switching of phase lock loop (PLL)
A transceiver may include a reception (Rx) radio frequency (RF) part configured to process a received signal, a transmission (Tx) RF part configured to process a transmitted signal, and a phase lock loop (PLL) configured to provide a reception frequency to the reception RF part and provide a transmission frequency to the transmission RF part. The PLL may be controlled according to whether the reception RF part or the transmission RF part is on. In addition, a transceiver may include quenching waveform generator (QWGs) to control quenching waveforms of the RF parts corresponding to a plurality of antennas. The quenching waveforms may be generated respectively by VCOs operating at a same frequency. The QWGs may control the VCOs such that the quenching waveforms do not overlap. |
US09935658B2 |
Data processing apparatus
A data processing apparatus includes a memory, a processor which outputs write data when making a write request to the memory, and which inputs read data when making a read request to the memory, a first circuit which is coupled between the memory and the processor, and which includes a parity generating circuit generating a parity comprising a plurality of parity bits from the write data, the parity being written with the write data into the memory, and a second circuit which is coupled between the memory and the processor, and which includes a parity check circuit detecting a presence or an absence of an error of one-bit or two-bits in the read data and the parity read from the memory. |
US09935657B2 |
Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
The present invention provides a method of transmitting broadcast signals. The method includes, formatting, by an input formatting block, input streams into plural PLPs(Physical Layer Pipes); encoding, by an encoder, data in the plural PLPs; time interleaving, by a time interleaver, the encoded data in the plural PLPs, wherein the time interleaving includes: cell interleaving, by a cell interleaver, the encoded data by permuting cells in a FEC(Forward Error Correction) block in the plural PLPs; frame mapping, by a framer, the time interleaved data onto at least one signal frame; and waveform modulating, by a waveform block, the mapped data in the at least one signal frame and transmitting, by the waveform block, broadcast signals having the modulated data. |
US09935655B2 |
Reading of distributed erasure-coded data from an enterprise object storage system
Various implementations disclosed herein enable reading of an erasure-coded file striped across one or more storage entities of an enterprise object storage system. For example, in various implementations, a method of reading an erasure-coded file is performed by an ingest entity of a storage system that includes a cluster of storage entities. The ingest entity includes a non-transitory computer readable storage medium, and one or more processors. In various implementations, the method includes querying the storage entities of the cluster to determine where data segments of an erasure-coded file are located within the cluster. In various implementations, the method includes generating a mapping of the data segments across the storage entities. The mapping indicates a sequence for the data segments within the erasure-coded file. In various implementations, the method includes scheduling read requests for the data segments based on the sequence. The scheduling satisfies a storage utilization threshold. |
US09935652B1 |
Data compression by hamming distance categorization
Data is compressed based on non-identical similarity between a first data set and a second data set. A representation of the differences is used to represent one of the data sets. For example, a probabilistically unique value may be generated as a new block label. Probabilistic comparison of the new block label with a plurality of training labels associated with training blocks produces a plurality of training labels that are potentially similar to the new block label. The Hamming distance between each potentially similar training label and the new block label is determined to select the training label with the smallest calculated Hamming distance from the new block label. A bitmap of differences between the new block and the training block associated with the selected training label is compressed and stored as a compressed representation of the new block. |
US09935651B1 |
Data transmission method and apparatus
The present application discloses a data transmission method and apparatus. A specific implementation of the method includes: receiving to-be-transmitted data sent from an information sending end, and determining a sending coding type of the to-be-transmitted data; determining a receiving coding type of an information receiving end receiving the to-be-transmitted data; converting the to-be-transmitted data from the sending coding type to the receiving coding type using a preset transcoding model, to obtain transcoded transmission data, the transcoding model representing a corresponding relationship between the sending coding type and the receiving coding type; and sending the transcoded transmission data to the information receiving end. This implementation improves the data transmission efficiency. |
US09935649B1 |
Low power quantizer with passive summers and interpolated dynamic comparators
A quantizer including passive summers, dynamic comparators and a clock generator. Each passive summer samples the input voltages and a reference voltage scaled by one of multiple graduated gains, and subtracts the scaled reference voltage from the sum of the input voltages. The graduated gains divide a predetermined voltage range into multiple voltage subranges, each between sequential pairs of the passive summers. The dynamic comparators compare each sequential pair of passive summer output voltages according to multiple splitting ratios and provide corresponding quantization bits. The dynamic comparators are activated in groups to reduce comparator kickback. Each dynamic comparator recharges the passive summer output voltages coupled to its inputs back to their initial voltage values to reduce kickback residual. The passive summers eliminate the need for a resistor string to generate the reference voltages. Staggered activation and comparator recharging replace preamplifiers used to suppress kickback and kickback residuals. |
US09935648B1 |
Reducing reference charge consumption in analog-to-digital converters
To reduce the overall reference charge needed to perform operations, analog-to-digital converters can maintain reference voltage connections of the bit trial capacitors of the digital-to-analog converter (DAC) from the end of a current conversion to just prior to the beginning of the next acquisition phase. At the start of the next acquisition phase, the bottom plates of the bit trial capacitors of the DAC can be shorted to generate a common mode voltage. As the conversion phase begins, the bottom plates of the sampling capacitors are disconnected from the input voltage and the bottom plates of each bit trial capacitor are shorted to generate input common-mode voltage. As bit trials progress, the shorts between the bottom plates of the bit trial capacitors are removed and the bit trial results are applied to the bottom plates of the bit trial capacitors. |
US09935646B2 |
Systems and methods for identifying a failure in an analog to digital converter
The present disclosure provides systems and methods for identifying failures in an analog to digital (A/D) converter. An intelligent electronic device (IED) may monitor a digital output of one or more A/D converters. The IED may determine a slope value limit associated with the A/D converter. The IED may determine an output slope value of the digital output based on a difference of a converter output value measured at a first time and a converter output value measured at a later time. If the determined output slope value exceeds the slope value limit, the IED may identify a failure of the A/D converter. An IED may determine that concurrent failures in multiple, parallel A/D converters are indicative of a problem upstream from the A/D converters. |
US09935643B1 |
Adaptive charging systems and methods for a successive-approximation analog-to-digital converter
A successive-approximation register (SAR) analog-to-digital converter (ADC) includes a SAR circuit configured to generate a digital code based on an analog input signal. A digital-to-analog converter (DAC) is configured to convert the digital code to an analog voltage. The SAR circuit is further configured to generate a digital output signal based on a comparison between the analog input signal and the analog voltage. A first capacitor is configured to provide a reference voltage to the DAC. An adaptive charging module is configured to stabilize the reference voltage provided to the DAC by selectively connecting to a supply voltage during a first operating phase of the ADC to store a charge in the adaptive charging module and selectively connecting to the first capacitor during a second operating phase of the ADC to combine the charge stored in the adaptive charging module with a charge of the first capacitor. |
US09935642B2 |
Quantum interference device, atomic oscillator, electronic apparatus, and moving object
An atomic oscillator includes an atom cell having an internal space in which alkali metal is encapsulated, a first light source section for making a resonance light pair, which is circularly polarized in the same direction as each other and resonates the alkali metal, enter the internal space using light from a first light source, a second light source for making adjustment light, which is circularly polarized in a rotational direction opposite to the direction of the resonance light pair and resonates the alkali metal, enter the internal space from the same side as the resonance light pair using light from a second light source, and an aperture member disposed between the internal space, and the first light source and the second light source. |
US09935636B1 |
CMOS input buffer with low supply current and voltage down shifting
A method for implementing a CMOS input buffer that consumes very low current even when input levels are less than full swing. An additional optional stage enables conversion to very low voltage swing. The circuit can be manufactured with a standard CMOS processing technology and with high immunity to variation of process parameters. The circuit provides some hysteresis response, enhancing the input voltage margin. |
US09935634B2 |
Communication between voltage domains
An integrated circuit including a first voltage domain incorporates real time clock circuitry that communicates via communication circuitry with processing circuitry contained within a second voltage domain. The communication circuitry includes first parallel-to-serial conversion circuitry located within the first voltage domain, level shifting circuitry for passing serial signals between the voltage domains and second parallel-to-serial circuitry located in the second voltage domain. |
US09935628B2 |
FET—bipolar transistor combination, and a switch comprising such a FET—bipolar transistor combination
A transistor switch device is provided that exhibits relatively good voltage capability and relatively easy drive requirements to turn the device on and off. This can reduce transient drive current flows that may perturb other components. |
US09935626B2 |
Driver for a power field-effect transistor, related system and integrated circuit
A driver for a power field-effect transistor includes a first and second circuits that apply respective charge currents to a gate of the power field-effect transistor when a control signal has a first logic value and the voltage between the gate and the source is smaller than a first threshold voltage and greater than a second threshold voltage. Third and fourth circuits apply respective discharge currents to the gate when the control signal has a second logic value and the voltage between the gate and the source is greater than a third threshold voltage and smaller than a fourth threshold voltage. The driver may include at least one field-effect transistor configured to generate at least one of the first, second, third or fourth threshold voltage. |
US09935618B1 |
Schmitt trigger circuit with hysteresis determined by modified polysilicon gate dopants
A Schmitt trigger's hysteresis is established by standard and non-standard MOSFETs having different (lower/higher) threshold voltages. For example, a standard n-channel transistor having a relatively low threshold voltage (e.g., 1V) sets the lower trigger switching voltage, and a non-standard n-channel transistor (e.g., an n-channel source/drain and a polysilicon gate doped with a p-type dopant) exhibits a relatively high threshold voltage (e.g., 2V) that sets the higher trigger switching voltage. An output control circuit generates the Schmitt trigger's digital output signal based on the on/off states of the two (non-standard and standard) MOSFETs, whereby the changes digital output signal between two values when the analog input signal falls below the lower threshold voltage (i.e., when both MOSFETs are turned on/off) and rises above the higher threshold voltage (i.e., when both MOSFETs are turned off/on). Self-resetting and other circuits utilize the Schmitt trigger to facilitate, e.g., high dynamic range image sensor pixels. |
US09935617B2 |
Semiconductor device
A semiconductor device that can operate normally with lower power consumption is provided. The semiconductor device includes a pair of first circuits which each include a first transistor and a second transistor capable of controlling the supply of a first signal to a gate of the first transistor, and a second circuit which is capable of generating a second signal which is to be supplied to a gate of the second transistor and which has a larger amplitude than the first signal. One of a source and a drain of one of the first transistors included in the pair of first circuits is electrically connected to one of a source and a drain of the other of the first transistors. The first signals supplied to the gates of the first transistors in the pair of first circuits have potentials with different logic levels. |
US09935611B2 |
Elastic wave filter device
A SAW filter device defines a filter including a high acoustic velocity member, a low acoustic velocity film, a piezoelectric film, and an IDT electrode are stacked in this order. A comb capacitive electrode electrically coupled to the filter is provided on the piezoelectric film. Where λc is a wavelength determined by an electrode finger pitch of the comb capacitive electrode, and, among modes of an elastic wave generated by the comb capacitive electrode, VC−(P+SV) is an acoustic velocity of a P+SV wave, VC−SH is an acoustic velocity of a SH wave, and VC−HO is an acoustic velocity of, out of higher-order modes of a SH wave, a higher-order mode at the lowest frequency side, VC−(P+SV) |
US09935609B2 |
Piezoelectric component
A piezoelectric component which suppress ripples in the range of oscillation frequency and achieves stabilization of oscillation frequency is provided. A piezoelectric component of the invention includes a support substrate; a piezoelectric element having an elongated shape, comprising excitation electrodes disposed on one principal surface and the other principal surface thereof, respectively, the excitation electrodes facing each other; a first support portion and a second support portion which are disposed between both ends in a longitudinal direction of the piezoelectric element and the support substrate; and an electrically conductive joining material which joins the first support portion and the second support portion to the ends of the piezoelectric element, respectively. A center of the piezoelectric element is offset with respect to an intermediate point between the first support portion and the second support portion as seen in a plan view of the piezoelectric component. |
US09935608B1 |
Nano- and microelectromechanical resonators
A resonator includes a piezoelectric plate and interdigitated electrode(s). The interdigitated electrode includes a plurality of conductive strips disposed over a top surface of the piezoelectric plate. A two-dimensional mode of mechanical vibration is excited in a cross sectional plane of the piezoelectric plate in response to an alternating voltage applied through the interdigitated electrode. The two-dimensional mode of mechanical vibration is a cross-sectional Lamé mode resonance (CLMR) or a degenerate cross-sectional Lamé mode resonance (dCLMR). |
US09935602B2 |
Laminated LC filter
In a laminated LC filter, at least four LC parallel resonators are provided inside a multilayer body. At least a pair of loops of inductors in odd numbered-stage LC parallel resonators among the at least four LC parallel resonators are disposed at an angle at which magnetic coupling is obtained therebetween, and winding directions thereof are the same, so as to obtain magnetic coupling between the inductors. In addition, magnetic coupling may also be obtained between a pair of loops of inductors in even numbered-staged LC parallel resonators among the at least four LC parallel resonators. |
US09935600B2 |
Switchable filters and design structures
Switchable and/or tunable filters, methods of manufacture and design structures are disclosed herein. The method of forming the filters includes forming at least one piezoelectric filter structure comprising a plurality of electrodes formed on a piezoelectric substrate. The method further includes forming a micro-electro-mechanical structure (MEMS) comprising a MEMS beam formed above the piezoelectric substrate and at a location in which, upon actuation, the MEMS beam shorts the piezoelectric filter structure by contacting at least one of the plurality of electrodes. |
US09935598B2 |
Differential amplifier design as the preamp of DMM
An amplifying circuit comprises a differential input stage having a first input terminal, a second input terminal, and an intermediate node, wherein the differential input stage is configured to generate a differential current flowing through the intermediate node in response to an input voltage difference between the first and second input terminals. The amplifying circuit further comprises a first current source coupled to the intermediate node, which is configured to provide a first bias current which allows the differential current to vary within a predetermined range. The amplifying circuit further comprises an output terminal coupled to the intermediate node, and a second current source coupled to the intermediate node and configured to provide a second bias current. The second bias current compensates the differential current and the first bias current and produces an output current flowing through the output terminal in a predetermined direction. A measurement device is also described. |
US09935596B2 |
Analog front-end circuit including instrumentation preamplifier and A/D converter
One embodiment provides an analog front-end circuit. When a chopping signal has a first logical value, a non-inverting instrumentation preamplifier subtracts a second input voltage from a first input voltage and generates a first output voltage by amplifying a subtraction voltage while outputting the second input voltage as a second output voltage. When the chopping signal has a second logical value, the non-inverting instrumentation preamplifier subtracts the first input voltage from the second input voltage and generates the first output voltage by amplifying and then inverting the polarity of a subtraction voltage while outputting the second input voltage as the second output voltage. |
US09935592B1 |
Wide-band amplifiers using clipper circuits for reduced harmonics
The present invention breaks up the frequency bands which can be filtered by a simple low-loss band-pass or low pass filter. The second harmonic frequency is reduced by use of a non-linear clipper element which controls the driving waveform symmetry and can reduce the harmonics by as much as 5-15 db which makes the filter much simpler and allows the amplifier to remain wide-band. The output waveform from the amplifier is symmetrical or nearly symmetrical. |
US09935591B2 |
Method and apparatus for current steering in high sensitivity, high linearity and large dynamic range high speed trans-impedance amplifiers
The present invention relates to a linear, high sensitivity, high speed trans-impedance amplifier (TIA) which allows a large dynamic range of input current up to very large values, maintains high linearity and keeps constant output voltage, maintains the same frequency response across the full gain control range, provides very high input sensitivity and large bandwidth, and allows input current monitoring without affecting input sensitivity. In other words, the novel circuit disclosed herein provides for the feedback path to maintain the same level of feedback even while the output signal is varied. This allows a wide and stable bandwidth, as well as a monitor to be placed in the TIA. |
US09935588B2 |
Linearity performance for multi-mode power amplifiers
Circuits, devices and methods related to multi-mode power amplifiers. A power amplifier (PA) assembly can include a radio-frequency (RF) amplification path having a first stage and a second stage, with each stage including a transistor. The PA assembly can further include a biasing circuit having a first bias path between a supply node and the base of a corresponding transistor. The PA assembly can further include a linearizing circuit implemented as either or both of a second bias path and a coupling path relative to the first bias path. The second bias path can be configured to provide an additional base bias current to the base under a selected condition. The coupling path can be configured to improve linearity of the corresponding transistor operating in a first mode while allowing a ballast resistance to be sufficiently robust for the corresponding transistor operating in a second mode. |
US09935585B2 |
RF amplifier operational in different power modes
Embodiments of a radio frequency (RF) amplification are disclosed. The RF amplification device includes a first RF amplification circuit, a second RF amplification circuit, and power control circuitry operable in a first power mode and a second power mode. The first RF amplification circuit has a cascode amplifier stage configured to amplify an RF signal. The cascode amplifier stage has an input transistor and a cascode output transistor that are stacked in cascode. The second RF amplification circuit is configured to amplify the RF signal. The power control circuitry is configured to bias the first cascode output transistor so that the first cascode output transistor operates in a saturation region in the first power mode and bias the first cascode output transistor so that the first cascode output transistor operates in a triode region in the second power mode. The second RF amplification circuit is assisted without introducing additional loading. |
US09935584B1 |
Self-biased gyrator-based receiver for amplification and equalization of single-ended signals
A self-biased gyrator-based input receiver amplifies and equalizes single-ended signals. The input receiver implements inductive impedance useful for high-frequency peaking circuits using an active gyrator-C circuit comprising only resistive, capacitive, and transistor elements, which are easily and efficiently fabricated on a conventional integrated circuit. Transistors comprising the input receiver, along with resistive elements and capacitive elements may be implemented as digitally adjustable circuit elements, providing for adjustment of at least peak frequency, low-frequency gain, and termination impedance. |
US09935576B1 |
Methods and controllers for operation of electric motors
A controller and methods for hybrid operation control of an electric motor in an electric motor system are provided. The controller is configured to receive a speed command for operating the electric motor, measure available voltage on an inverter configured to provide conditioned AC voltage to the electric motor, and determine a winding phase angle difference based on the received speed command and the measured available inverter voltage. The controller is also configured to adjust a phase angle difference between winding voltage commands for the switches of the inverter using the determined winding phase angle difference, and apply the winding voltage commands including the adjusted phase angle difference to the inverter switches to control the electric motor. |
US09935575B2 |
Power conversion device and control method for same, and electric power steering control device
Provided are a power conversion device, relating to control of detecting a bus current in operation, and capable of acquiring an average current through a small amount of calculation and being implemented by an inexpensive microcomputer. A variation in a winding current flowing through a multi-phase winding of an AC rotating machine, namely, a phase current, is small at a timing at which voltage vectors on both sides of an axis having a larger inductance out of d and q axes of the AC rotating machine are output. Thus, switching signals are generated at timings at which the voltage vectors on both sides of the axis having the larger inductance out of the d and q axes are output, and the bus current is detected in accordance with the switching signals, thereby acquiring a value close to an average of the winding current. |
US09935570B2 |
Use of an electronic device for operating a DC motor to control two peak and hold loads
Electronic device (1), capable of operating a DC motor, including an H bridge with an upper left-hand switch (R1), an upper right-hand switch (R2), a lower left-hand switch (R3) and a lower right-hand switch (R4), the second terminal (R1b) of the upper left-hand switch being connected to the second terminal (R3b) of the lower left-hand switch, and the second terminal (R2b) of the upper right-hand switch being connected to the second terminal of the lower right-hand switch, wherein the device is modified by cutting the link between the second terminal of the upper left-hand switch and the second terminal of the lower left-hand switch, and by cutting the link between the second terminal of the upper right-hand switch and the second terminal of the lower right-hand switch. |
US09935565B2 |
Motor control circuit and method
In accordance with an embodiment, motor control circuit has a first selector connected to a second selector through an analog to digital converter. The first selector has an input that is connected to an external pin. In addition, the second selector has a plurality of inputs and a plurality of outputs, wherein a first register is connected to a first input and a second register is connected to a second output of the second selector. In accordance with another embodiment, at a beginning step of a method for setting a duty of a drive signal of a motor, a duty setting signal is applied to an external pin. The duty setting signal is converted into a digital duty setting signal. One of the digital duty setting signal or a predetermined duty signal is transmitted to a storage register. |
US09935564B2 |
Propellant flow actuated piezoelectric igniter for combustion engines
A propellant flow actuated piezoelectric igniter device using one or more hammer balls retained by one or more magnets, or other retaining method, until sufficient fluid pressure is achieved in one or more charging chambers to release and accelerate the hammer ball, such that it impacts a piezoelectric crystal to produce an ignition spark. Certain preferred embodiments provide a means for repetitively capturing and releasing the hammer ball after it impacts one or more piezoelectric crystals, thereby oscillating and producing multiple, repetitive ignition sparks. Furthermore, an embodiment is presented for which oscillation of the hammer ball and repetitive impact to the piezoelectric crystal is maintained without the need for a magnet or other retaining mechanism to achieve this oscillating impact process. |
US09935563B2 |
Electrical energy generation within a vehicle tire
An apparatus for installation within a tire for a vehicle includes a flexible arm and a power generating element coupled to the flexible arm for generating electrical energy. One end of the flexible arm is coupled to a rim of the tire. The opposing end of the flexible arm is configured to be in contact with the inside tread surface of the tire. The flexible arm is capable of deformation in response to a variability of distance between the rim and the inside tread surface during rolling movement of the tire, and the power generating element generates the electrical energy in response to deformation of the flexible arm. The apparatus may be combined with a tire pressure sensor module as a system so as to provide electrical energy for powering the tire pressure sensor module. |
US09935557B2 |
Multi-output power supply
A multi-output power supply includes: a switching element that turns ON and OFF currents flowing through all primary coils of a plurality of transformers connected in parallel at a same time; a plurality of output circuits that rectify and smooth voltages induced in secondary coils of the plurality of transformers to produce a plurality of output voltages; a plurality of feedback voltage detection circuits that detect feedback voltages corresponding to the output voltages of the plurality of the output circuits; an averaging circuit that calculates an average feedback voltage from the feedback voltages detected by the feedback voltage detection circuits; and a control circuit that uses feedback control to turn the switching element ON and OFF according to the average feedback voltage calculated by the averaging circuit. |
US09935555B2 |
Power supply apparatus and power supply method thereof
A power supply apparatus and a method for controlling the power supply apparatus are provided. The power supply apparatus drives an electronic apparatus which may operate in a first mode or a second mode. The power supply includes an input voltage generator that generates an input voltage; an output voltage generator that generates a first output voltage by using the input voltage, and supplies the output voltage to the electronic apparatus; and a detector that determines the mode of the electronic apparatus by detecting a load of the electronic apparatus, and outputs a control signal to the output voltage generator in response to the mode of the electronic apparatus changing from the first mode to the second mode. In response to receiving the control signal, the output voltage generator generates a second output voltage that corresponds to the second mode. |
US09935553B2 |
Control scheme for hysteretic buck controller with inductor coil current estimation
A circuit and method for power converter for improved current monitoring, comprising a buck converter comprising a high side switch, a current sensing circuits parallel to the buck converter configured to sense a current through a low side switch, and a positive slope inductor coil estimator sensing circuit parallel to a buck converter configured to estimate a current magnitude. |
US09935544B2 |
Method for power transfer between DC circuits
A method for transferring power between two DC circuits, each circuit being bipolar or connected at the midpoint thereof, involves: coupling the high voltage bus across a pair of inductors, arranged in parallel; coupling the low voltage bus across the pair of inductors; coupling the high voltage bus, the low voltage bus and the inductors by active switches and diodes, to provide for: (i) a storage configuration, wherein energy is transferred from one of the buses and stored in the inductors; and (ii) a release configuration, wherein energy is released from the inductors and transferred to the other of the buses. |
US09935543B2 |
Digital control power circuit, control circuit thereof, control method, and electronic device using the same
A control circuit of a digital control power circuit is provided. The control circuit includes a feedback controller configured to generate a digital duty command value such that a digital feedback value corresponding to an output voltage of the digital control power circuit is close to a target value thereof, a pulse generator configured to generate a pulse signal having a duty ratio corresponding to the digital duty command value, a non-linear controller configured to correct a pulse width of the pulse signal when a variation in the output voltage is detected, and a driver configured to drive a switching device of the digital control power circuit depending on the pulse signal. |
US09935542B2 |
Methods and apparatuses for adaptive dynamic voltage control for optimizing energy per operation per a given target speed
A method for implementing a Semiconductor Integrated Circuit device using Near/Sub-threshold technology with SOFTWARE programmable Adaptive Dynamic Voltage Control (ADVC) algorithm using different sensors inside the chip in order to improve the target speed and reduce the energy per operation of the final product. This method achieves the best power per performance for a given solution operating at a required speed. |
US09935541B1 |
Floating charge pump voltage converter
A voltage converter includes at least one charge pump voltage converter circuit. The voltage converter generates three voltages (e.g., 1.2 volts, 2.5 volts, and 1.8 volts) for an electronic system, which can be a smartphone or electronic tablet or other device. The charge pump voltage converter circuit provides an output voltage that is an average of its input voltages. Compared to a low dropout regulator, charge pump voltage converter circuit has high efficiency. This voltage converter will save power compared to converters using a low dropout regulator. An implementation of the voltage converter can includes at least two charge pump voltage converter circuits to generate to different output voltages. |
US09935536B2 |
Compact direct-drive actuator generating a constant force
The present disclosure relates to an electromagnetic actuator of the type producing a force due to the current that remains substantially constant over the entirety of its useful travel Y and that has a low force in the absence of current, including at least one stator structure, at least one electrical supply coil, and a moving member, the stator structure having, on the one hand, a central pole running perpendicular to the direction of the travel Y and having a width YC1 in the direction of the travel and terminating at its end in a width YC2 that is greater than or equal to the travel Y of the moving member, YC2 being greater than YC1, and, on the other hand, two lateral poles having widths YL1 in the direction of the travel and terminating at their end in a width YL2 greater than YL1. |
US09935533B2 |
Squirrel-cage motor rotor and squirrel-cage motor
This squirrel-cage motor rotor includes a plurality of conductor bars provided at regular intervals along the circumferential direction of a rotor core, short-circuit rings connected to ends of the conductor bars, and reinforcement covers having axial-direction surfaces being in contact with axial-direction-end surfaces of the short-circuit rings. The reinforcement covers are enclosed by casting in the short-circuit rings. Holding rings are attached to the outer circumferential surfaces of the flange portions of the reinforcement covers and the outer circumferential surfaces of the short-circuit rings by interference fit. |
US09935526B2 |
Electric rotating machine
A power module composite includes a power module (34) in which switching devices (32) included in an electric-power conversion circuit are molded, a driver module (37) that includes a control circuit (35) for controlling the switching devices (32) and is molded, a housing (39) containing the power module (34) and the driver module (37), and a heat sink (38) that is fixed to the housing (39) and refrigerates the switching devices (32); the power module 34 and the driver module 37 are mounted in that order on the heat sink (38) in such a way as to be superimposed on each other. |
US09935517B2 |
Electric motor for power steering apparatus of vehicle
A first end contact portion of a first frame end contacts one end surface of a stator core. A second end contact portion of a second frame end contacts the other end surface of the stator core and includes an inner tubular part, which contacts the other end surface of the stator core, and a fixing part, which projects radially outward from the inner tubular part and contacts the other end surface. A through-bolt is threaded into the fixing part. An outer diameter of the one end surface is smaller than an outer diameter of an opposing surface of the first end contact portion. An outer diameter of an opposing surface of the inner tubular part is smaller than an outer diameter of the other end surface. A yoke of the stator core includes a relief groove, into which a portion of the through-bolt is fitted. |
US09935514B1 |
Printed circuit board layout
A printed circuit board (PCB) includes a first plurality of conductive paths having first ends at an inner radius of the PCB and second ends at an outer radius of the PCB. The PCB further includes a second plurality of conductive paths having first ends at an outer radius of the PCB and second ends at an inner radius of the PCB. The PCB further includes a first plurality of conductive vias that pass through the PCB at the outer radius of the PCB and couple second ends of the first plurality of conductive paths to first ends of the second plurality of conductive paths. The PCB further includes a second plurality of conductive vias that pass through the PCB at the inner radius of the PCB and electrically couple second ends of the second plurality of conductive paths to first ends of the first plurality of conductive paths. |
US09935511B2 |
Component for an electric machine
A component designed to form a rotor for an electric machine includes a shaft, and an active part which is disposed in concentric circumferentially surrounding relation to the shaft. The active part has a radially inwardly open slot. A leg is connected to the shaft and has a tip which points radially outward from the shaft and is received in the slot of the active part. Further received in the slot of the active part is a first end of a connecting element. A fastening element secures the connecting element in a region of a second end to the leg to thereby establish a form-fit connection of the leg and the connecting element to the active part. |
US09935507B2 |
Device comprising an electric machine with a lightweight design
A device comprising a base body is provided. A stator pack of an electric machine is connected to the base body by means of a connecting structure. The electric machine includes a rotor which cooperates electromagnetically with the stator pack and is rotatably mounted relative to the stator pack such that the rotor can rotate about the rotational axis. The stator pack is fixed by means of the connecting structure relative to the base body. The stator pack includes a plurality of stator sheets which are stacked on top of each other when seen in the direction of the rotational axis. Electromagnetically inactive first intermediate layers are arranged at least between certain stator sheets. The first intermediate layers are components of the connecting structure. Torque exerted upon the rotor by means of the stator pack is transferred in the connecting structure by means of the layers. |
US09935503B2 |
Radiative transfer and power control with fractal metamaterial and plasmonics
Systems according to the present disclosure provide one or more surfaces that function as heat or power radiating surfaces for which at least a portion of the radiating surface includes or is composed of “fractal cells” placed sufficiently closed close together to one another so that a surface (plasmonic) wave causes near replication of current present in one fractal cell in an adjacent fractal cell. A fractal of such a fractal cell can be of any suitable fractal shape and may have two or more iterations. The fractal cells may lie on a flat or curved sheet or layer and be composed in layers for wide bandwidth or multibandwidth transmission. The area of a surface and its number of fractals determines the gain relative to a single fractal cell. The boundary edges of the surface may be terminated resistively so as to not degrade the cell performance at the edges. |
US09935502B2 |
Detection and protection of devices within a wireless power system
Exemplary embodiments are directed to detecting and limiting power transfer to non-compliant devices. A method may include detecting one or more non-compliant devices positioned within a charging region of a wireless power transmitter. The method may further include limiting an amount of power delivered to at least one of the one or more non-compliant devices. |
US09935499B2 |
Power transmitting apparatus
A power transmitting apparatus (1) is provided with: a power feeder (13, 14, 15); a power receiver (23) disposed with a space from the power feeder; a power storing device (26) electrically connected to the power feeder and configured to supply power to a load (27); a distance changing device (16) configured to change a distance between the power feeder and the power receiver; a detecting device (25) configured to detect a power storage state associated with the power storing device; and a controlling device (11) configured to control the power feeder to change output power according to the detected power storage state, and configured to control the distance changing device to change the distance. |
US09935497B2 |
Arrangement and method for providing a vehicle with electric energy by magnetic induction
An arrangement for providing a vehicle with electric energy includes a receiving device adapted to receive the magnetic component of an alternating electromagnetic field and to produce an alternating electric current by magnetic induction. The receiving device includes at least one phase line, each phase line being adapted to carry a phase of the alternating electric current. The at least one phase line forms a line arrangement which extends in a longitudinal direction transversely to a flux line direction, in which magnetic flux lines of the electromagnetic field penetrate the line arrangement, so that the line arrangement has a first end and a second end, the ends being located at opposite ends of the line arrangement in the longitudinal direction. The width of the line arrangement, gradually decreases along the extension of the line arrangement towards the first end and/or towards the second end. |
US09935496B2 |
Wireless power transmission system and method for increasing coupling efficiency by adjusting resonant frequency
A wireless power transmission system and a method for increasing a coupling efficiency by adjusting a resonant frequency are provided. A device of the wireless power transmission system includes a resonator configured to transmit a wireless power, and a communication unit configured to receive information from another device. The device further includes a controller configured to determine a power transmission efficiency based on the information, and adjust a resonant frequency of the device, a resonant frequency of a relay device, and a resonant frequency of the other device, if the power transmission efficiency is less than or equal to a predetermined reference efficiency. |
US09935494B2 |
Elevator power supply for inverter controller
A power architecture includes a panel receiving power from a power grid through a breaker, a power supply coupled to the breaker to receive power from the grid, a battery coupled to the power supply through a switch, an elevator motor controller coupled to the power supply, the power supply providing power from at least one of the grid and the battery to the controller, and a charger coupled to the breaker and the battery and configured to receive power from the power grid and provide power to the battery to charge the battery. |
US09935492B2 |
Power control system and method for adjusting an input power limit of a DC-DC voltage converter
A power control system for adjusting an input power limit of a DC-DC voltage converter is provided. The system includes a microprocessor that determines an amount of output power being output by a battery pack, an amount of available power in the battery pack, and an amount of input power being input to the DC-DC voltage converter. The microprocessor determines an amount of power being provided to the DC-AC inverter based on the amount of output power being output by the battery pack and the amount of input power being input to the DC-DC voltage converter. The microprocessor decreases the input power limit of the DC-DC voltage converter if a sum of the amount of power being provided to the DC-AC inverter and the amount of input power being input to the DC-DC voltage converter is greater than the amount of available power in the battery pack. |
US09935481B2 |
Mobile terminal including wireless charging module and battery pack
A mobile terminal is provided, which includes a wireless charging module, a battery pack, and a circuit board substrate. The wireless charging module includes a charging coil formed of a wound conducting wire and a communication coil placed adjacent to the charging coil. The wireless charging module has a substantially planar shape. The battery pack has a substantially planar shape and is configured to store power from the wireless charging module. The circuit board substrate is configured to control operation of the mobile terminal. The wireless charging module overlaps with each of the circuit board substrate and the battery pack. |
US09935477B2 |
Charge/discharge control method and charge/discharge control apparatus for lithium ion battery
In a charge/discharge control method of a lithium ion battery having a negative electrode active material and connected to a charge/discharge control device, battery information regarding a charge/discharge state of the lithium ion battery is acquired by the charge/discharge control device, a degradation state of the lithium ion battery is determined on the basis of the battery information, by the charge/discharge control device, and a voltage range for charge/discharge of the lithium ion battery is changed on the basis of a determination result of the degradation state, by the charge/discharge control device. |
US09935476B2 |
Charging mode switching circuit and method
A circuit and method for switching a charging mode are provided. The circuit for switching a charging mode, is coupled to a cell and externally coupled to a quick-charging adapter, and includes: a switch circuit, configured to connect the charging terminal and the cell terminal if a connection instruction is received from the first controlled terminal, such that the quick-charging adapter charges the cell via the switch circuit; a switching assembly, configured to receive a switching instruction from the controlled terminal; a first controller, configured to: receive a charging instruction, receive a quick-charging instruction at the first data terminal via the data interface terminal, and send the connection instruction from the third controlling terminal if the charging instruction and the quick-charging instruction are received; and a second controller, configured to send the charging instruction to the first controller if an insertion of the quick-charging adapter is detected. |
US09935474B2 |
Mobile device battery charging
A method and apparatus for implementing a charging process is provided. The method includes determining that a charging surface of a mobile device is currently located on a charging surface of a structure including a charging apparatus. The charging surface of the mobile device includes charge receiving contacts electrically connected to a battery and a processor. The charging surface of the structure includes charging contacts electrically connected to a charging circuit and in communication with a controller. The processor determines that at least two contacts of the charge receiving contacts are in electro/mechanical contact with at least two contacts of the charging contacts and in response, a negotiation process with the controller with respect to selecting at least one associated charging voltage and polarity for charging the battery is executed resulting in a charging process between the charging circuit and the battery being enabled. |
US09935473B2 |
Storage battery system
A storage battery system connected to a power system and operative based on a charge/discharge request from an EMS includes: a battery management unit configured to monitor a state of the storage battery; a power conditioning system; a control device configured to receive the charge/discharge request and storage battery information supplied from the battery management unit and to control the power conditioning system based thereon; an on-site monitoring and operating device directly connected to the control device, the on-site monitoring and operating device including a display unit configured to display the storage battery information and an operation unit configured to enable an on-site charge/discharge request to the AC-DC converter to be input. The control device includes an on-site request adjustment unit configured to receive the on-site charge/discharge request and the storage battery information and to determine a charge/discharge command to the power conditioning system based thereon. |
US09935470B2 |
System and method for wireless power transfer using a power converter with a bypass mode
A system and method of wireless power transfer using a power converter with a bypass mode includes a power converter. The power converter includes a pulsed switch, a capacitor configured to supply a drive voltage to the pulsed switch, a first circuit configured to charge the capacitor when the power converter operates in a switched mode of operation, and, a second circuit configured to charge the capacitor when the power converter operates in a bypass mode of operation. |
US09935468B2 |
Power receiving apparatus and power receiving method
A power receiving apparatus (105) is provided with: a power reception unit (106) disposed at a distance from and opposed to a power transmission unit (104) of the power transmitting apparatus (101); a direct current (DC) voltage changing device (108) which constitutes one portion of a power receiving circuit configured to electrically connect the power reception unit and an electrical load (109) and which can change DC voltage supplied to the electrical load; and a controlling device (112) configured to control the DC voltage changing device to change the DC voltage to bring a current phase difference between current of the power transmission unit and current of the power reception unit close to 180 degrees when the electric power is transmitted and received between the power transmission unit and the power reception unit, the current phase difference corresponding to overall resonant frequency. |
US09935467B2 |
Power supply system, electronic device, and electricity distribution method of electronic device
A power supply system, an electronic device and an electricity distribution method, which can enhance, with maximum efficiency, power distribution of the electronic device. The power supply system includes a power source unit, an electricity distribution unit connected to the power source unit, a system load power supply unit connected to the electricity distribution unit, and a peripheral power supply unit connected to the electricity distribution unit. The electricity distribution unit includes a power consumption prediction module configured to detect system load power consumption and calculate a variation trend of the system load power consumption and a power consumption control module configured to adjust power supply capacities of the system load power supply unit and the peripheral power supply unit according to the variation trend of the system load power consumption. |
US09935463B2 |
Redundant point of common coupling (PCC) to reduce risk of microgrid's islanding
A microgrid connecting at least one distributed electricity generator includes a first switch configured for, in a closed position, connecting the microgrid to a first network line at a first point of common coupling (PCC) and for, in an open position, disconnecting the microgrid from the first network line at the first PCC; a second switch configured for, in a closed position, connecting the microgrid to a second network line at a second PCC, and for, in an open position, disconnecting the microgrid from the second network line at the second PCC; and a control unit configured for, when an islanding event has been detected when the second switch is in its closed position and the first switch is in its open position, acting to close the first switch, bringing it to its closed position. |
US09935459B2 |
Power network system, and power adjustment apparatus and method
A central control device is connected to a first power router including some power transmitting ends and a second power router including some power receiving ends, acquires, for each of the power receiving ends, received power information including identification information of each of the power transmitting ends and a value of supply power supplied from each of the power transmitting ends, and power supply priority information defining a priority for determining a power transmitting end for which an adjustment of the supply power to be supplied to each of the power receiving ends should be prioritized, determines a power transmitting end for which the supply power is adjusted from among the power transmitting ends based on the received power information and the priority defined in the power supply priority information, and adjusts the supply power in the determined power transmitting end. |
US09935456B2 |
Wireless power transmission device
A wireless power transmission device includes: a wireless power transmission unit, a power transmission circuit, a wireless communication unit, an interruption circuit, a communication circuit, and a control circuit. The power transmission circuit is connected to the wireless power transmission unit and wirelessly transmits power through the wireless power transmission unit to another party's device. The interruption circuit is connected to the wireless communication unit. The communication circuit is connected through the interruption circuit to the wireless communication unit and communicates with the other party's device via the wireless communication unit. The control circuit is connected to the power transmission circuit and the interruption circuit and, when the power is transmitted, controls the interruption circuit to interrupt between the wireless communication unit and the communication circuit on the basis of a power level transmitted by the power transmission circuit. |
US09935455B2 |
Monitoring and recoverable protection of thermostat switching circuitry
A method of automated sensing of an electrical anomaly associated with a thermostat may include switching a switching circuit within the thermostat to an on state. The switching circuit may be configured to activate an HVAC function when switched to the on state. The method may also include monitoring one or more electrical properties associated with the switching circuit. The method may additionally include determining if an electrical anomaly is associated with the switching circuit based at least in part on the monitored one or more electrical properties. The method may further include switching the switching circuit to an off state if an electrical anomaly is detected. |
US09935451B2 |
Protection monitoring circuit, battery pack, secondary battery monitoring circuit, and protection circuit
A protection monitoring circuit includes a protection circuit which detects overcharge, overdischarge, and overcurrent of a secondary battery, and a secondary battery monitoring circuit which monitors a state of the secondary battery and detects a residual quantity of the secondary battery. The protection circuit includes a first communication terminal that is connected to the secondary battery monitoring circuit, a second communication terminal that is connected to a mobile device, and a level shift circuit that is connected to the first and second communication terminals. The level shift circuit performs a level shift of a signal input of the first communication terminal so as to become a second level and outputs the signal to the second communication terminal, and also performs the level shift of a signal input of the second communication terminal so as to become a first level and outputs the signal to the first communication terminal. |
US09935444B1 |
Electrical panel structures
Electrical panel structures for a modular building system, such as a modular data center. The electrical panel structures provide a standardized structure for attachment of high voltage power, low voltage power, and/or data lines between rooms or components of the modular building system. The panel structures can include multiple conduits that extend between rooms or other components of a modular building structure. The panel structures can include, for example, conduits having couplers for the attachment of high voltage cables and/or pass-throughs for the passage of low voltage lines and/or data lines. |
US09935443B2 |
Cable gland
A cable gland having a first cable gland portion and a second cable gland portion in engagement with each other is disclosed. The cable gland comprises earthing members (60) in electrical engagement with the first and second gland portions, each earthing member including a spike (68) for penetrating through a sheath layer of an electrical cable, following radially inward movement of the spike, thereby forming an electrical earth connection with a conducting portion of a cable. The first gland portion comprises a first cam surface and the second gland portion comprises a second cam surface, wherein the first and second cam surfaces are adapted to engage respective earthing member cam surfaces (72, 74) of the earthing member, the first and second cam surfaces thereby causing the earthing member and the corresponding spike to move radially inwards as the first and second gland portions are brought into threaded engagement with each other. |
US09935440B1 |
Powered wall mount for a portable electronic device
A powered wall mount includes a cover plate and a mount head in electrical communication with one another. The cover plate is configured to cover an electrical outlet in a wall without blocking any sockets. The cover plate includes a pair of resilient contacts that resiliently contact respective terminals of a pair of terminals of the electrical outlet upon mating of the cover plate with the electrical outlet. The mount head, which may be attached to the wall near the electrical outlet, includes a device mounting surface, at least one connector configured to hold a portable electronic device at the device mounting surface, and a power transfer mechanism configured to transfer power to the device when held at the device mounting surface. The connector(s) may be magnetic. Conveniently, the device may be attached to the mount head, used indefinitely while drawing power as needed, and then detached. |
US09935439B2 |
Mounting bracket for electrical or communication device
A stud mounting bracket for a junction box includes a mounting extension extending outward from a longitudinal end margin of a main body. The mounting extension includes a mounting body connected to the longitudinal end margin of the main body and an extension tab connected to the mounting body. The extension tab is pivotable relative to the mounting body about an axis from a compact configuration to an extended configuration to increase the length of the mounting extension. A box mounting bracket for mounting a junction box on a stud mounting bracket includes first and second jaws. The first and second jaws engage the stud mounting bracket for use in attaching the box mounting bracket to the stud mounting bracket. The first and second jaws are resiliently deflectable both relative to the base and independent of one another when attaching the box mounting bracket to the stud mounting bracket. |
US09935436B1 |
Configurable electrical outlet cover enclosure
An electrical outlet cover with a lid having a configurable protrusion or recess to accommodate different uses and weather resistance states. The electrical outlet cover includes a base coupled to an electrical outlet and a lid hingedly coupled to the base along a first side. The lid includes a frame with a central aperture and a telescoping enclosure with a flange at a front edge of a sleeve, the flange extending outward from the sleeve. The sleeve may include a ledge extending outward from the sleeve adjacent a back edge of the sleeve on at least two sides of the sleeve. The sleeve is slidably coupled within the central aperture and movable between an expanded position and a collapsed position. The flange may abut the frame in the collapsed position and the ledge may abut the frame in the expanded position. |
US09935431B2 |
Power supply identification apparatus and power supply identification method
Provided is a power supply identification apparatus including circuitry including a first input terminal, a second input terminal and an output terminal which outputs a driving voltage to an electric device, and a power supply identification section which (i) determines from which of a first power supply and the second power supply a power is being input based on a relationship between an input timing of a first voltage to the first input terminal and a second voltage to the second input terminal, and (ii) switches the driving voltage output from the output terminal according to the power supply the power is being input from to control an initial ON/OFF state of the electric device. |
US09935430B2 |
Spark plug
A spark plug having a of center electrode, a ground electrode, and a noble metal tip that is laser-welded to at least one of the center electrode and the ground electrode The noble metal tip is joined to the electrode through a fused portion formed by laser welding, and the fused portion includes a first fused portion and a second fused portion. |
US09935428B2 |
Semiconductor light-emitting element and method for manufacturing the same
A semiconductor light-emitting element has a distributed Bragg reflector that is grown by depositing an InAlN layer and a GaN layer a plurality of times in that order on a semipolar plane of a semiconductor substrate, and a semiconductor structure layer that is formed on the distributed Bragg reflector and includes an active layer. The InAlN layer has a plurality of projections on an interface with the GaN layer, and the InAlN layer has a low In region which is formed at the top of each of the plurality of projections and which is lower in In composition than the remaining region. |
US09935427B2 |
Vertical cavity light-emitting element and method for manufacturing the same
A vertical cavity light-emitting element includes: a first-conductivity-type semiconductor layer; an active layer; a second-conductivity-type semiconductor layer that are formed in this order on a first reflector; an insulating current confinement layer formed on the second-conductivity-type semiconductor layer; a through opening formed in the current confinement layer; a transparent electrode covering the through opening and the current confinement layer and being in contact with the second-conductivity-type semiconductor layer via the through opening; and a second reflector formed on the transparent electrode. At least one of a portion of the transparent electrode corresponding to the opening and a portion of the second-conductivity-type semiconductor layer corresponding to the opening that are in contact with each other in the through opening includes a first resistive region disposed along an inner circumference of the through opening and a second resistive region disposed on a center region of the through opening. |
US09935425B2 |
Fiber coupled laser source pump with wavelength division multiplexer
A pump laser package may include an input fiber to send signal light on a first optical path. A first lens may be arranged on the first optical path. The pump laser package may include a source to send pump light on a second optical path. A second lens and a negative lens may be arranged on the second optical path. The first lens and the negative lens may be arranged to create a virtual image associated with the pump light. The pump laser package may include an output fiber on a third optical path. The first lens may be arranged on the third optical path. The pump laser package may include a combiner to receive the signal light on the first optical path, receive the pump light on the second optical path, and send the signal light and the pump light on the third optical path. |
US09935419B2 |
Optical fiber device
In an optical fiber device having a configuration in which an optical fiber is joined to a side surface of another optical fiber, a joint portion is suppressed from reaching a high temperature. The optical fiber device includes a first fluoride fiber, a second fluoride fiber, and a heat dissipation member. The first fluoride fiber guides light. The second fluoride fiber has a first end on or from which light is incident or output and a second end at which an end surface of the second fluoride fiber is obliquely joined to a side surface of the first fluoride fiber. |
US09935414B2 |
Commutator of an electric motor
A commutator has a conductive layer, a segment layer and an insulating layer separating the conductive layer and the segment layer. The segment layer includes multiple commutator segments. A mounting hole is defined along an axis of the commutator passing through the conductive layer. The three-layer structure of the commutator forms a capacitor having an increased confronting area and reduced inter-plate distance. The capacitor thus has a greater capacitance and hence greater EMI absorbing capability, making it possible to reduce EMI emissions without additional EMI reduction components outside the commutator. A rotor and a motor employing the commutator are also disclosed. |
US09935413B1 |
Hinge pin with electrical connection through a cylindrical pin body
A hinge pin includes a pin body, a first electrical connector located at a first end of the pin body, a second electrical connector located at a second end of the pin body, and electrical conductors that electrically connect the first electrical connector and the second electrical connector. The hinge pin may be incorporated in a hinge to connect a first hinge part and a second hinge part for rotation. The hinge may be incorporated in an apparatus in which first and second wire harnesses are connected to the first and second electrical connectors of the hinge pin by third and fourth electrical connectors. |
US09935408B1 |
Electronic connector for charging or data transfer
An electronic connector includes a first connecting unit. The first connecting unit includes a housing having a ring hole disposed through the housing large enough for a finger to be inserted through the ring hole to grab the first connecting unit, a first electrical connector shaped for forming a first detachable electrical connection, the first electrical connector disposed at a first distal end of the first connecting unit, and an illuminator disposed within the housing proximate to the ring hole to illuminate an inside perimeter of the ring hole. |
US09935398B2 |
Connector
A connector has a housing and an internal structural body. The housing has a receiving portion while the internal structural body has contacts. The housing has a second upper inner wall surface and a second lower inner wall surface which define a rear portion of the receiving portion. Each of the second upper inner wall surface and the second lower inner wall surface is formed with contact accommodation portions which individually accommodate the contacts. The contact accommodation portions are grooves extending in a mating direction and opening to a front portion of the receiving portion at least in part. Each of the contacts has a spring portion which is resiliently deformable and a contact point supported by the spring portion. The contact point is situated inside the rear portion when the connector is separated from the mating connector. |
US09935394B2 |
Electrical connector
An electrical connection component for a machine cable is described. The electrical connection component is suitable for transmission of power with voltage levels greater than or equal to 1 kV and comprises at least one electrical conductor arranged for electrically coupling with a further electrical conductor of another electrical connection component. The electrical connection component comprises a housing having an internal region, and having a machine cable end, a connection end and a plurality of electrically insulating components positioned within the housing, at least one of the electrically insulating components being arranged so as to form-fit with a further one of the electrically insulating components. A portion of the internal region of the housing that is located at the connection end of the housing, and that would not otherwise be filled with the at least one electrical conductor and/or an associated flame path, is filled by the electrically insulating components. |
US09935393B2 |
Waterproof connector
A waterproof connector including one or more contacts each having a contact-side waterproof shaped section formed around a surface of a contact-side fixed section, a shell having a fitted section with a pair of flat shell outer surfaces and a shell-side waterproof shaped section formed around a surface of a shell-side fixed section, a housing holding the one or more contacts and the shell, and a seamless waterproof member disposed around a periphery of the housing, the shell-side fixed section being positioned closer to a fitting axis between the waterproof connector and a counter connector than the shell outer surfaces of the fitted section is when viewed in a direction of the fitting axis, the shell-side waterproof shaped section, the contact-side waterproof shaped section and the waterproof member being disposed to overlap each other at a position in the direction of the fitting axis. |
US09935391B2 |
Wire adapter assembly
A wire adapter assembly, comprising: a plug, comprising a first housing and a first male connector installed on a first end of the first housing, a second end of the first housing being equipped with a wire in electrical connection with the first male connector; an adapter, comprising a second housing and a first female connector installed at a first end of the second housing, the first female connector being adaptive to the first male connector, a second end of the second housing being equipped with a second male connector in electrical connection with the first female connector, and the first male connector being different from the second male connector; and a flexible connector, the flexible connector being of a flat strip or arc hinge structure, and connected with the first end of the first housing and the first end of the second housing respectively. |
US09935388B2 |
Contact-support mechanism for increased retention force
Circuits, methods, and apparatus that may provide audio jacks capable of providing a sufficient retention force to avoid some inadvertent extractions of an audio plug. Examples may also provide audio jacks that may be readily assembled. Other examples may provide other types of connectors. These audio jacks or other connectors may provide contact structures having one or more contacts, each having a contact support to increase contact retention force. Different materials may be used to form the contacts and the contact supports. In this way, contacts may be formed using a highly conductive material, while the contact supports may be formed of a material having good spring characteristics. While such a contact may not be able to provide an adequate retention force on its own, the use of a contact support may sufficiently increase the retention force to prevent accidental extractions of an audio plug or other connector. |
US09935385B2 |
Receptacle connector with contact assembly
A receptacle connector includes a contact assembly having a dielectric carrier holding contacts, which may be overmolded by the dielectric carrier. The receptacle connector includes a housing holding the contact assembly having a mating end mated with a plug connector and a mounting end mounted to the circuit board. The housing has first and second side walls and first and second end walls. The housing has a card slot open at the top for receiving the plug connector and a contact assembly cavity open at the bottom for receiving the contact assembly. The housing may have positioning ribs extending from the first and second side walls to position the contact assembly within the cavity and/or strengthening ribs extending across the cavity to connect the side walls at a location remote from the end walls. |
US09935381B2 |
Connector, wireless communication module, wireless communication device, and electronic apparatus
A connector includes a plug and a receptacle which are fitted to each other and is used to connect a wireless communication module to an electronic apparatus. The plug includes a plurality of contacts. When the plug is connected to the receptacle in any of the first and second directions which are symmetric with respect to the center of a junction surface with the receptacle, the plurality of contacts are connected to contacts of the receptacle. |
US09935380B2 |
Antenna device
The antenna device includes a first antenna module and a second antenna module. The first antenna module includes a number of first antennas disposed at intervals. The second antenna module includes a number of second antennas disposed at intervals within a space surrounded by the first antennas. The first and second antennas are of different polarization directions. In one embodiment, the first antennas are horizontally polarized antennas having omnidirectional field patterns. The second antennas are inverted F antennas. By arranging the first and second antennas along an outer ring and an inner ring respectively, the distance between the first and second antenna modules are maximized. Furthermore, by having the first and second antennas with orthogonal polarization directions, the mutual interference between the radiation energy of the first and second antenna modules is effectively reduced. |
US09935374B2 |
Multi-band antenna
A multi-band antenna includes a circuit board having an insulation dielectric layer, a first ground plane and an impedance matching circuit formed on a first plane of the circuit board, and a second ground plane formed on a second plane of the circuit board. A slot antenna radiation main body, formed at a location of the second ground plane and corresponding to the exposed part of the insulation dielectric layer, includes first and second radiation main bodies. The first radiation main body includes a first impedance matching part and a first resonance part. The second radiation main body includes a second impedance matching part and a second resonance part. The first resonance part includes a plurality of first bends, a first segment, and a second segment. The second resonance part includes a plurality of second bends, a third segment, and a fourth segment. |
US09935373B2 |
Self-grounded antenna arrangement
A self-grounded antenna arrangement includes a base or central portion in a first plane and a number of arm sections associated with the central portion that taper toward a respective end tip. Each arm section is adapted to form a transition from the central portion and being bent backward toward the central portion by more than 180 degrees so that its end tip approaches a first side of the central portion, at an opening in the central portion. The end tip is connected to a feeder configured to feed, via an arm-section-specific port, one specific port for each arm section. Each arm section has a mixed functionality of a curved monopole antenna and a loop antenna, and the antenna arrangement provides substantially uncoupled ports with far-field functions that are almost orthogonal in polarization, direction, or shape. The arrangement finds use in multiple-input multiple-output antenna systems for statistical multipath environments. |
US09935371B2 |
Antennas
An example method of designing a multi-band antenna includes specifying a first portion of the multi-band antenna in a tangible medium, where the first portion corresponds to an existing design of a single-band monopole antenna for operating in a first frequency band, and specifying in the tangible medium a second portion of the multi-band antenna that is added to the first portion, where the second portion includes a dipole parasitic resonator that is resonant in a second frequency band. |
US09935370B2 |
Multiband radio frequency (RF) energy harvesting with scalable antenna
A radio frequency (RF) energy harvesting device including a scalable metamaterial resonator antenna and a rectifying circuit formed on a flexible plastic substrate. The metamaterial resonator antenna includes a metal (e.g., silver) structure that is conformally fixedly disposed (i.e., either printed or deposited/etched) on the flexible substrate and configured to resonate at RF frequencies using primary and secondary antenna segments connected by linking segments such that captured RF signals are generated at two antenna end points that are 180° out-of-phase with each other. The rectifying circuit including additional metal structures that are also printed or otherwise formed on the flexible substrate, and one or more circuit elements that are configured to pass positive voltage pulses from the captured RF signals to an output node. Various metamaterial resonator antenna configurations are disclosed. |
US09935369B1 |
Method for transmitting and receiving radar signals while blocking reception of self-generated signals
A method and apparatus which enables a facility or entity that transmits and receives radar signals to receive any incoming radar signal, while blocking reception of any signals generated by the facility or entity itself. The method comprises transmitting a primary signal from an rf generator; providing a second signal which is synchronized with the primary signal matching in both phase and amplitude, but with a phase difference of 180 degrees so that the two signals sum to zero. The second signal travels through a voltage controlled attenuator and thru a voltage controlled phase shifter. Combining in a combiner the second signal with a signal radiated by a transmitting antenna and received by a receiving antenna that connects into a transmission enabling mechanism, and then transmitting the combined signal to a detector apparatus. |
US09935367B2 |
System and method for a beamformer
In accordance with an embodiment a beamforming circuit having a radio frequency (RF) front end and a plurality of beamforming delay circuits coupled to the RF front end. Each of the plurality of beamforming delay circuits includes a common delay circuit and a plurality of individual delay circuits coupled to the common delay circuit. Each of the individual delay circuits are configured to be coupled to an antenna element of a beamforming array. |
US09935362B2 |
Systems, apparatuses and methods for biometric sensing using conformal flexible antenna
This invention provides conformal antenna structures, how to make and use the antenna structures, and systems in which the antenna structures may be used for biometric sensing of humans and other animals. The antenna structures of the invention includes at least one relatively flexible section connecting relatively rigid sections. The relatively flexible section connecting relatively rigid sections may flex so that the relatively rigid sections connected to the relatively flexible section can change orientation relative to one another. This allows the relatively rigid sections to be conformed to a region of a surface of a human or animal that is not flat (that is curved). |
US09935358B2 |
Interface and communication device
An antenna of a communication terminal is disposed on a side on which a bottom surface of a reflective plate, which is included in a display, is present. When the reflective plate is irradiated by an LED light source, the antenna cannot be seen from the side on which a display screen of the display is disposed. Accordingly, an antenna coil of the antenna does not need transparent electrodes and can be made of various materials each having a high conductivity. Therefore, the antenna has high sensitivity, low manufacturing cost, and very efficiently performs near field communication with an external device located on the display screen side of the display. |
US09935354B2 |
Frequency tunable balun
Systems and method are provided for making a balun's operational bandwidth tunable around multiple distinct center frequencies by using switches to vary the balun's dimensions. An embodiment of the present disclosure uses a pass gate structure for the switches, and the switches connect additional lengths of line in or out of the balun to change its frequency response. A balun in accordance with an embodiment of the present disclosure is able to switch its response between 2 or more adjacent bands by switching additional length of lines in and out of the balun's core windings. |
US09935352B2 |
Composite transmission line and electronic device
A composite transmission line includes a laminated insulator including insulator layers, signal transmission lines including first and second signal transmission lines and a power transmission line. The power transmission line includes a power transmission conductor pattern along the insulator layers, and an interlayer connection conductor that interlayer-connects power transmission conductor patterns. The first signal conductor pattern of the first signal transmission line, the second signal conductor pattern of the second signal transmission line, and the power transmission conductor pattern are parallel or substantially parallel to each other on the insulator layers that are mutually different from each other. The first and second signal conductor patterns interpose a first ground conductor in the laminating direction of the insulator layers. The power transmission line is in a side portion of the first signal conductor pattern. |
US09935346B2 |
Battery module
The present invention relates to a battery module, which includes one or more battery cell units, and the battery cell unit includes a battery cell, a fixing member located surrounding an outer circumference surface of the battery cell, and a heat absorbing material located between the battery cell and the fixing member, and as a result, heat generation inside the battery module is suppressed, and ignition between the series-connected battery cell units may be suppressed. Accordingly, excellent charge and discharge efficiency, an excellent cycle property and a lifespan property of the battery may be exhibited without concern for explosion or ignition of the battery module. |
US09935345B2 |
Cooling structure of power storage device
A cooling structure of a power storage device includes a cooling plate, a partition member, and a heat conduction material. The cooling plate is to cool a storage battery bank including storage batteries which are stacked. The partition member is disposed between the storage battery bank and the cooling plate and includes divided areas. At least one of the storage batteries is provided in each of the divided areas. The heat conduction material is accommodated in at least one of the divided areas and is in contact with the at least one of the storage batteries and the cooling plate. |
US09935336B2 |
Secondary battery, battery pack, electric vehicle, and electric power storage system
A secondary battery includes: a cathode including a lithium-oxygen-containing compound; an anode; and non-aqueous electrolytic solution including one or more first anions represented by Formula (1). B(XY)xFyRz- (1) where X is one of a divalent chain hydrocarbon group, a divalent fluorinated chain hydrocarbon group, and nothing; Y is one of a cyano group (—C≡N) and an isocyano group (—N+≡C—); R is one of a monovalent fluorinated chain hydrocarbon group and a monovalent fluorinated cyclic hydrocarbon group; and x to z are integers that satisfy x>0, y≥0, z≥0, (x+y+z)=4, and (y+z)>0. |
US09935334B2 |
Electrolyte and rechargeable lithium battery including same
An electrolyte for a rechargeable lithium battery includes a lithium salt, a non-aqueous organic solvent, and an additive. The additive is represented by Chemical Formula 1, and is included in an amount of about 0.05 wt % to about 3 wt % based on the total amount of the electrolyte. A rechargeable lithium battery including the same is also disclosed. Chemical Formula 1 is as described in the present specification. |
US09935332B2 |
Tapered block copolymer electrolytes
Copolymers useful as components of polymer electrolytes are provided in which the copolymer comprises at least one block sequence represented by formula (I): A—(T)—B (I) wherein A is a vinyl aromatic block, T is a tapered copolymer region copolymerized from a vinyl aromatic monomer and an oligo(oxyalkylene) acrylate monomer and B is an oligo(oxyalkylene) acrylate block. |
US09935330B2 |
Battery manufacturing method and battery manufacturing apparatus
In a battery manufacturing method using a battery manufacturing apparatus, the battery manufacturing apparatus including a pressing unit, a measurement device, and a controller, the battery manufacturing method includes steps of (a) pressing a battery member by a pressing unit, (b) measuring, after the pressing step (a), by the measurement device, characteristics of the battery member, which has been pressed by the pressing unit, and (c) controlling, after the measurement step (b), by the controller, a state of pressing of the battery member by the pressing unit in accordance with a measurement result of the measurement device. |
US09935329B2 |
Stepped electrode group stack
Disclosed herein is an electrode group stack including a stacked structure of electrode groups, each including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, in which the electrode groups are stacked in a height direction on the basis of a plane such that the positive electrode and the negative electrode face each other in a state in which the separator is disposed between the positive electrode and the negative electrode, wherein the stacked structure of the electrode groups includes electrode groups having different areas at an interface between the electrode groups, and a ratio of capacity to area of the positive electrode and the negative electrode at the interface between the electrode groups (N/P ratio) is equal to or greater than a ratio of capacity to area of a positive electrode and a negative electrode constituting an electrode group having a relatively large area (N/P ratio). |
US09935322B2 |
Fuel cell system having curved membrane electrode assembly
The disclosure relates to a fuel cell system. The fuel cell system includes a fuel cell module, fuel and oxidizing gas. The fuel cell module includes a container and a membrane electrode assembly located on the container. The container includes a housing and a nozzle connected to the housing. The container defines a number of through holes located on the housing and covered by the membrane electrode assembly. The membrane electrode assembly includes a proton exchange membrane having a first surface and a second surface opposite to the first surface, a cathode electrode located on the first surface and an anode electrode located on the second surface. |
US09935320B2 |
Composite body, collector member, gas tank, and fuel cell device
A composite body includes a substrate containing Cr; and a first composite oxide layer disposed on at least a part of a surface of the substrate, the first composite oxide layer having a spinel type crystal structure, a first largest content and a second largest content among constituent elements excluding oxygen of the first composite oxide layer being Zn and Al in random order. Accordingly, the composite body can suppress diffusion of Cr from the substrate containing Cr to the first composite oxide layer, and has improved long-term reliability. A collector member and a gas tank, each of which is formed of the composite body, can have improved long-term reliability. A fuel cell device having excellent long-term reliability can be obtained using the collector member and the gas tank. |
US09935318B1 |
Solid oxide fuel cell cathode with oxygen-reducing layer
The disclosure provides a SOFC comprised of an electrolyte, anode, and cathode, where the cathode comprises an MIEC and an oxygen-reducing layer. The oxygen-reducing layer is in contact with the MIEC, and the MIEC is generally between and separating the oxygen-reducing layer and the electrolyte. The oxygen-reducing layer is comprised of single element oxides, single element carbonates, or mixtures thereof, and has a thickness of less than about 30 nm. In a particular embodiment, the thickness is less than 5 nm. In another embodiment, the thickness is about 3 monolayers or less. The oxygen-reducing layer may be a continuous film or a discontinuous film with various coverage ratios. The oxygen-reducing layer at the thicknesses described may be generated on the MIEC surface using means known in the art such as, for example, ALD processes. |
US09935310B2 |
Silicon-containing material and secondary-battery active material including silicon-containing material
Providing a silicon-containing material having a novel structure being distinct from the structure of conventional silicon oxide disproportionated to use.A silicon-containing material according to the present invention includes at least the following: a continuous phase including silicon with Si—Si bond, and possessing a bubble-shaped skeleton being continuous three-dimensionally; and a dispersion phase including silicon with Si—O bond, and involved in an area demarcated by said continuous phase to be in a dispersed state. |
US09935309B2 |
Negative electrode active material, raw material for a negative electrode active material, negative electrode, lithium ion secondary battery, method for producing a negative electrode active material, and method for producing a lithium ion secondary battery
A negative electrode active material including: a particle of negative electrode active material containing silicon-based material of SiOx (0.5≤x≤1.6); wherein the intensity A of a peak in a Si-region given in the chemical shift region of from −50 to −95 ppm and the intensity B of a peak in a SiO2-region given in the chemical shift region of from −96 to −150 ppm in a 29Si-MAS-NMR spectrum of the silicon-based material satisfy a relationship that A/B≥0.8. This provides a negative electrode active material which can increase a battery capacity, and can improve cycle characteristics and initial charge/discharge characteristics when used as a negative electrode active material for a lithium ion secondary battery. |
US09935305B2 |
Secondary battery for large current charge and discharge characteristic
There is provided a secondary battery including a battery device that has a thickness of 3 to 20 mm, and a battery discharge capacity of 3 to 50 Ah, and an exterior material that packages the battery device. The battery device includes a positive electrode that has a positive electrode current collector and a positive electrode active material layer, a negative electrode that has a negative electrode current collector and a negative electrode active material layer, a separator that is interposed between the positive electrode and the negative electrode that are alternately laminated, a positive electrode tab that is electrically connected to a positive electrode current collector exposed portion and is led-out to the outside of the exterior material, and a negative electrode tab that is electrically connected to a negative electrode current collector exposed portion and is led-out to the outside of the exterior material. |
US09935301B2 |
Pressure equalization element, housing comprising a pressure equalization element, lithium ion accumulator and motor vehicle
A pressure equalization element for a housing includes a water-impermeable membrane. The membrane is combined with either a pressure relief valve acting in two directions or with a corresponding combination of two pressure relief valves such that a volume of air exchange is reduced. An amount of moisture transported into the housing is thus also reduced. |
US09935300B2 |
Battery retention assembly and method
An illustrative battery retaining assembly comprises a retaining plate, and a casing including mounting devices. One of the mounting devices may include a hinge device, and another of the mounting devices may include a latch device. The retaining plate includes engagement portions engageable with the mounting devices, such that the retaining plate may be mounted to the casing. One of the engagement portions may include a channel engageable with the hinge device, and another of the engagement portions may include a catch engageable with the latch device. The mounting devices and engagement portions may be configured to enable the retaining plate to slide at an oblique angle with respect to the casing, to provide a variable separation distance between the casing and the retaining plate. |
US09935297B2 |
Method for manufacturing flexible display panel and flexible display panel
The disclosure provides a method for manufacturing a flexible display panel and a flexible display panel. Wherein the method comprises: binding a flexible substrate with a supporting column matrix on a supporting plate, and fixing the flexible substrate with the supporting plate by a sealant in vacuum, wherein the sealant is disposed at the edge of the supporting column matrix, such that the supporting column matrix is surrounded in a sealed space formed by the sealant, the supporting plate and the flexible substrate; forming a flexible display panel on the flexible substrate; and cutting the supporting plate and the flexible display panel along the inner side of the sealant, such that the flexible display panel separating with the supporting plate. Thus, the flexible substrate can be separated from the supporting plate without damaging devices disposed on the flexible substrate. |
US09935295B2 |
Organic light-emitting component and method for producing an organic light-emitting component
According to at least one embodiment, an organic light-emitting component includes a substrate, a first electrode arranged on the substrate, and a second electrode. An organic light-generating layer stack is arranged between the first and second electrodes and includes a first organic OLED functional material. A first organic coupling-out layer is in optical contact with the organic light-generating layer stack and includes an organic material containing a second organic OLED functional material. One of the first and second electrodes is translucent, and the first organic coupling-out layer is arranged on that side of the electrode that faces away from the organic light-generating layer stack. |
US09935292B2 |
Light-emitting device, electronic device, and lighting device
To provide a novel light-emitting device with high productivity, the light-emitting device includes a first light-emitting element, a second light-emitting element, and a third light-emitting element. In the first light-emitting element, a first lower electrode, a first transparent conductive layer, a first light-emitting layer, a second light-emitting layer, and an upper electrode are stacked in this order. In the second light-emitting element, a second lower electrode, a second transparent conductive layer, the first light-emitting layer, the second light-emitting layer, and the upper electrode are stacked in this order. In the third light-emitting element, a third lower electrode, a third transparent conductive layer, the second light-emitting layer, and the upper electrode are stacked in this order. The first transparent conductive layer includes a first region. The second transparent conductive layer includes a second region as thick as the third transparent conductive layer. The first region is thicker than the second region. |
US09935289B2 |
Environmental sensitive element package and encapsulation method thereof
A package of environmental sensitive element including a first substrate, a second substrate, a barrier structure between the first substrate and the second substrate, an environmental sensitive element and an adhesive is provided. The second substrate is disposed above the first substrate. The environmental sensitive element is disposed on the first substrate and located between the first substrate and the second substrate. The barrier structure is distributed outside the environmental sensitive element. The adhesive is disposed between the first substrate and the second substrate and encapsulates the environmental sensitive element and the barrier structure, wherein an outgassing of the adhesive under 120 degrees Celsius is less than or equal to 5×10−7 gram/cm2. |
US09935276B2 |
Organic electroluminescent materials and devices
Compounds including a ligand L according to Formula I devices containing the same and formulations including the same are described. In Formula I, B is a 5 or 6-membered carbocyclic or heterocyclic ring; C is a condensed aromatic ring system having at least two carbocyclic or heterocyclic rings; A-B represents a bonded pair of carbocyclic or heterocyclic rings coordinated to a metal M via a nitrogen atom in ring A and an sp2 hybridized atom X6 in ring B; RA, RB and RC can represent no substitutions or the maximum substitutions available on the respective ring; X1, X2, X3, X4, X5, and X6 are carbon or nd nitrogen, and X7 is carbon; at least one of RA and RC substituents adjacent to the bond between A and C is not hydrogen; and the ligand is coordinated to a metal, having an atomic number greater than 40. |
US09935274B2 |
Substituted 12H-indolo[2,3-b]quinoxalino[2′,3′:4,5]pyrrolo[3,2,1-jk]carbazoles as organic electroluminescent materials
The present invention relates to an organic compound represented by the following formula 1. The organic compound according to the present invention can produce an organic electroluminescent device having low driving voltage, excellent current and power efficiencies, and remarkably improved driving lifespan. |
US09935273B2 |
Fluoranthene derivative, light-emitting device material containing same, and light-emitting device
The purpose of the present invention is to provide an organic thin-film luminescent element which exhibits improved luminous efficiency, drive voltage and durability life. This fluoranthene derivative is characterized by having a specific structure that contains a fluoranthene skeleton. |
US09935270B2 |
Electrochemical light emitting cell, composition for forming light emitting layer of electrochemical light emitting cell, and ionic compound for light emitting layer of electrochemical light emitting cell
A light-emitting electrochemical cell 10 includes an emitting layer 12 and electrodes 13 and 14, one on each side of the emitting layer 12. The emitting layer 12 contains a light-emitting material and an ionic compound. The ionic compound has general formula (1), wherein M is N or P; R1, R2, R3, and R4 each independently represent a C1-C20 saturated aliphatic group; and X is preferably an anion having a phosphoric ester bond or a sulfuric ester bond. The light-emitting material is preferably an organic light-emitting polymer, a metal complex, an organic low molecular compound, or a quantum dot. |
US09935262B2 |
Magnetic tunnel junction element and manufacturing method therefor
A magnetic tunnel junction device and a manufacturing method therefor are provided. The magnetic tunnel junction device comprises: a seed layer having an FCC (001) crystal structure; a first ferromagnetic layer located on the seed layer and having perpendicular magnetic anisotropy; a tunneling barrier layer located on the first ferromagnetic layer; and a second ferromagnetic layer located on the tunneling barrier layer and having perpendicular magnetic anisotropy, wherein the first ferromagnetic layer has a BCC (001) crystal structure and does not have boron. Therefore, the magnetic tunnel junction device, which is structurally and thermally more stable, can be provided by using the seed layer configured to assist the crystal growth of a boron-free magnetic layer in a BCC (001) direction and provide perpendicular magnetic anisotropy thereto, that is, W2N or TaN which is a nitrogen-doped metal material having a cubic crystal structure and having a similar lattice constant to that of a magnetic layer material. |
US09935258B2 |
Thermally tolerant perpendicular magnetic anisotropy coupled elements for spin-transfer torque switching device
Perpendicular magnetic anisotropy (PMA) type magnetic random access memory cells are constructed with a composite PMA layer to provide a magnetic tunnel junction (MTJ) with an acceptable thermal barrier. A PMA coupling layer is deposited between a first PMA layer and a second PMA layer to form the composite PMA layer. The composite PMA layer may be incorporated in PMA type MRAM cells or in-plane type MRAM cells. |
US09935256B2 |
Piezoelectric composition, piezoelectric element and sputtering target
The present invention aims to provide a piezoelectric composition containing a composition represented by formula (5) as the main component, wherein the composition represented by formula (5) contains a first perovskite-type oxide represented by formula (1), a second perovskite-type oxide represented by formula (2), a tungsten bronze-type oxide represented by formula (3) and a third perovskite-type oxide represented by formula (4), (K1-x-yNaxLiy)q(Nb1-zTaz)O3 (1), SrZrO3 (2), Ba(Nb1-wTaw)2O6 (3), (Bi0.5Na0.5)TiO3 and/or (Bi0.5K0.5)TiO3 (4), (1−m−n−p)A+mB+nC+pD (5); in formula (1), 0.20≤x≤0.80, 0.02≤y≤0.10, 0.01≤z≤0.30 and 0.800≤q≤1.050; in formula (3), 0.01≤w≤0.30; and in formula (5), A represents the composite oxide represented by formula (1), B represents the composite oxide represented by formula (2), C represents the composite oxide represented by formula (3), D represents the composite oxide represented by formula (4), and 0.04≤m≤0.07, 0≤n≤0.010 and 0.001≤p≤0.020. |
US09935253B2 |
Ceramic device and piezoelectric device
A piezoelectric device is a fired body including a body part 10 and external electrodes 21 and 22. A surface of the side electrode 22 is comprised only of a material for the side electrode 22. On a surface of the surface electrode 21 or a surface of a connection portion where the surface electrode 21 and the side electrode 22 are connected to each other, a protrusion h extending along a direction along which the connection portion extends and sticking out in a thickness direction of the surface electrode 21 is provided. A region, on the surface of the surface electrode 21, farther from the connection portion than the protrusion h is interspersed with a plurality of exposed portions in each of which a surface of a ceramic material having lower solder wettability than a material for the surface electrode 21 is exposed. |
US09935252B2 |
Mechanically tunable superconducting qubit
A system for adjusting qubit frequency includes a qubit device having a Josephson junction and a shunt capacitor coupled to electrodes of the Josephson junction. A cantilevered conductor is separated from the shunt capacitor by a spacing. An adjustment mechanism is configured to deflect the cantilevered conductor to tune a qubit frequency for the qubit device. |
US09935248B2 |
Light emitting device package
Embodiments of the present invention relate to a light emitting device package having uniform color characteristics, wherein the light emitting device package includes: a substrate including first and second lead frames; at least two light emitting devices disposed on the substrate and electrically connected to the first and second lead frames; an integrated wavelength conversion film disposed on the at least two light emitting devices and including a first region which overlaps the light emitting devices and a second region other than the first region; at least one recess which passes through the wavelength conversion film in a region corresponding to a gap between the adjacent light emitting devices; and a lens disposed on the substrate to cover the light emitting devices and the first and second lead frames. |
US09935244B2 |
Light emitting device including a filter and a protective layer
A method according to embodiments of the invention includes providing a plurality of LEDs attached to a mount. A filter is attached to at least one of the plurality of LEDs. A protective layer is formed over the filter. A reflective layer is formed over the mount. A portion of the reflective layer disposed over the protective layer is removed. |
US09935241B2 |
Solvent for manufacture of self-assembled nano-scale LED electrode assembly and method for manufacturing self-assembled nano-scale LED electrode assembly by the same
The present disclosure relates to a method for manufacturing a self-assembled nano-scale LED electrode assembly and more particularly, to a method for manufacturing a self-assembled nano-scale LED electrode assembly in which a nano-scale LED device can be self-aligned on two different electrodes without being chemically and physically damaged and the number of nano-scale LED devices to be mounted can be remarkably increased, and alignment and electrical connection of the LED devices can be further improved. |
US09935237B2 |
Solid state lighting devices with dielectric insulation and methods of manufacturing
Solid state lighting devices and associated methods of manufacturing are disclosed herein. In one embodiment, a solid state lighting device includes a first semiconductor material, a second semiconductor material spaced apart from the first semiconductor material, and an active region between the first and second semiconductor materials. The solid state lighting device also includes an indentation extending from the second semiconductor material toward the active region and the first semiconductor material and an insulating material in the indentation of the solid state lighting structure. |
US09935233B2 |
Additive for preparing suede on polycrystalline silicon chip and use method thereof
The invention disclosed an additive for preparing suede on a polycrystalline silicon chip. The invention also provides a suede preparation liquid for preparing suede on a polycrystalline silicon chip, comprising: an acid solution and the aforementioned additive for preparing suede on a polycrystalline silicon chip. The invention also provides a method for preparing suede on a polycrystalline silicon chip, by using which suede can be prepared on the surface of a polycrystalline silicon chip with the foregoing suede preparation liquid. |
US09935232B2 |
Method of manufacturing semiconductor device
According to one embodiment, a method of manufacturing a semiconductor device includes a step of grinding to thin a first semiconductor wafer on which a semiconductor device is formed in a state in which a surface of a second semiconductor wafer is fixed on a chuck table of a grinding device after bonding the first semiconductor wafer to the second semiconductor wafer. The method includes a step of fixing a surface of the first semiconductor wafer on the chuck table and grinding the surface of the second semiconductor wafer in a state in which the first semiconductor wafer is bonded to the second semiconductor wafer prior to the grinding step to thin the first semiconductor wafer. |
US09935230B1 |
Type IV semiconductor based high voltage laterally stacked multijunction photovoltaic cell
A method of forming a photovoltaic device that includes ion implanting a first conductivity type dopant into first regions of a semiconductor layer of an SOI substrate, wherein the first regions are separated by a first pitch; and ion implanting a second conductivity type dopant into second regions of the semiconductor layer of the SOI substrate. The second regions are separated by a second pitch. Each second conductivity type implanted region of the second regions is in direct contact with first conductivity type implanted region of the first regions to provide a plurality of p-n junctions, and adjacent p-n junctions are separated by an intrinsic portion of the semiconductor layer to provide P-I-N cells that are horizontally oriented. |
US09935226B2 |
Photovoltaic module with simplified connection
Photovoltaic module (11) comprising a plurality of electrically connected photovoltaic cells (12), characterized in that it has a square shape and comprises at least two contact pads (17, 18) in each corner of the module so as to comprise at least four connectors (14, 15) on each edge (21; 22; 23; 24) of the module. |
US09935222B1 |
Shingled array solar cells and method of manufacturing solar modules including the same
A solar cell is provided including a substrate having a front and back side, a metallization pattern deposited on the front side, the metallization pattern including a plurality of front side bus bars each including fingers extending therefrom, and a plurality of back side bus bars deposited on the back side. On the front side, one front side bus bar is formed along an edge of the front side of the substrate, and a remainder of the front side bus bars are unequally spaced across the substrate. On the back side of the substrate, only one back side bus bar is formed along an edge of the back side of the substrate, and a remainder of the back side bus bars are unequally spaced across the substrate. |
US09935218B2 |
Generation of flexible high power pulsed waveforms
A method for generating high power pulsed RF waveforms comprises the steps of charging a transmission line in a pulse forming network with a high-voltage and discharging the voltage on the transmission line to ground utilizing a gallium nitride photoconductive switch. |
US09935217B1 |
High efficiency photovoltaic cells and manufacturing thereof
Novel structures of photovoltaic cells are provided. The cells are based on nanometer or micrometer-scaled wires, tubes, and/or rods, which are made of electronic materials covering semiconductors, insulators, and may be metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells will have enormous applications such as in space, commercial, residential and industrial applications. |
US09935211B2 |
Back contact structure for photovoltaic devices such as copper-indium-diselenide solar cells
A back contact configuration for a CIGS-type photovoltaic device is provided. According to certain examples, the back contact configuration includes an optical matching layer and/or portion of or including MoSe2 having a thickness substantially corresponding to maxima of absorption of reflected light in CIGS-type absorbers used in certain photovoltaic devices. Certain example methods for making the back contact configuration wherein a thickness of the MoSe2 layer and/or portion can be controlled to be within thickness ranges that correspond to maxima of CIGS light absorption for reflected solar light are also provided. |
US09935209B2 |
Multijunction metamorphic solar cell for space applications
A multijunction solar cell assembly and its method of manufacture including interconnected first and second discrete semiconductor body subassemblies disposed adjacent and parallel to each other, each semiconductor body subassembly including first top subcell, second (and possibly third) lattice matched middle subcells; a graded interlayer adjacent to the last middle solar subcell; and a bottom solar subcell adjacent to said graded interlayer being lattice mismatched with respect to the last middle solar subcell; wherein the interconnected subassemblies form at least a four junction solar cell by a series connection being formed between the bottom solar subcell in the first semiconductor body and the bottom solar subcell in the second semiconductor body. |
US09935204B2 |
Static random access memory (SRAM) device for improving electrical characteristics and logic device including the same
A static random access memory (SRAM) device includes a circuit element that includes a first inverter having a first load transistor and a first drive transistor and a second inverter having a second load transistor and a second drive transistor. Input and output nodes of the first inverter and the second inverter are cross-connected to each other. A first transfer transistor is connected to the output node of the first inverter, and a second transfer transistor is connected to the output nodes of the second inverter. Each of the first and second load transistors, the first and second drive transistors, and the first and second transfer transistors includes a transistor having multi-bridge channels. At least one of the first and second load transistors, the first and second drive transistors, and the first and second transfer transistors includes a transistor having a different number of multi-bridge channels from the other transistors. |
US09935202B2 |
Transistor and display device comprising oxide semiconductor layer
To provide a transistor having a favorable electric characteristics and high reliability and a display device including the transistor. The transistor is a bottom-gate transistor formed using an oxide semiconductor for a channel region. An oxide semiconductor layer subjected to dehydration or dehydrogenation through heat treatment is used as an active layer. The active layer includes a first region of a superficial portion microcrystallized and a second region of the rest portion. By using the oxide semiconductor layer having such a structure, a change to an n-type, which is attributed to entry of moisture to the superficial portion or elimination of oxygen from the superficial portion, and generation of a parasitic channel can be suppressed. In addition, contact resistance between the oxide semiconductor layer and source and drain electrodes can be reduced. |
US09935201B2 |
High doped III-V source/drain junctions for field effect transistors
A semiconductor device includes a fin patterned in a substrate; a gate disposed over and substantially perpendicular to the fin; a pair of epitaxial contacts including a III-V material over the fin and on opposing sides of the gate; and a channel region between the pair of epitaxial contacts under the gate including an undoped III-V material between doped III-V materials, the doped III-V materials including a dopant in an amount in a range from about 1e18 to about 1e20 atoms/cm3 and contacting the epitaxial contacts. |
US09935193B2 |
MOSFET termination trench
A method, in one embodiment, can include forming a core trench and a termination trench in a substrate. The termination trench is wider than the core trench. In addition, a first oxide can be deposited that fills the core trench and lines the sidewalls and bottom of the termination trench. A first polysilicon can be deposited into the termination trench. A second oxide can be deposited above the first polysilicon. A mask can be deposited above the second oxide and the termination trench. The first oxide can be removed from the core trench. A third oxide can be deposited that lines the sidewalls and bottom of the core trench. The first oxide within the termination trench is thicker than the third oxide within the core trench. |
US09935192B2 |
Optimized buffer layer for high mobility field-effect transistor
A stack along a z-axis for a high-electron-mobility field-effect transistor, comprises: a buffer layer comprising a first semiconductor material comprising a binary, ternary or quaternary nitride compound having a first bandgap, a barrier layer comprising a second semiconductor material comprising a binary, ternary or quaternary nitride compound and having a second bandgap, the second bandgap wider than the first bandgap, a heterojunction between the buffer and barrier layers and, a two-dimensional electron gas located in an XY plane perpendicular to the z-axis and in the vicinity of the heterojunction wherein: the buffer layer comprises a zone comprising fixed negative charges of density per unit volume higher than or equal to 1017 cm−3, the zone having a thickness smaller than or equal to 200 nm, the product of multiplication of the density per unit volume of fixed negative charges by the thickness of the zone between 1012 cm−2 and 3.1013 cm−2. |
US09935191B2 |
High electron mobility transistor fabrication process on reverse polarized substrate by layer transfer
A method including forming a barrier layer on a polar compound semiconductor layer on a sacrificial substrate; coupling the sacrificial substrate to a carrier substrate to form a composite structure wherein the barrier layer is disposed between the polar compound semiconductor layer and the carrier substrate; separating the sacrificial substrate from the composite structure to expose the polar compound semiconductor layer; and forming at least one circuit device. An apparatus including a barrier layer on a substrate; a transistor device on the barrier layer; and a polar compound semiconductor layer disposed between the barrier layer and the transistor device, the polar compound semiconductor layer including a two-dimensional electron gas therein. |
US09935190B2 |
Forming enhancement mode III-nitride devices
A method of fabricating a III-N device includes forming a III-N channel layer on a substrate, a III-N barrier layer on the channel layer, an insulator layer on the barrier layer, and a trench in a first portion of the device. Forming the trench comprises removing the insulator layer and a part of the barrier layer in the first portion of the device, such that a remaining portion of the barrier layer in the first portion of the device has a thickness away from a top surface of the channel layer, the thickness being within a predetermined thickness range, annealing the III-N device in a gas ambient including oxygen at an elevated temperature to oxidize the remaining portion of the barrier layer in the first portion of the device, and removing the oxidized remaining portion of the barrier layer in the first portion of the device. |
US09935189B2 |
Transistor having germanium channel on silicon nanowire and fabrication method thereof
The present invention provides a transistor and a fabrication method thereof. By a silicon nanowire as a core region being serially wrapped by a germanium channel, a gate insulating film and a gate, the present invention enables to form a potential well for storing holes as a carrier of HHMT in the germanium channel by a valance band energy offset between the silicon core region and the germanium channel, to gain maximum gate controllability to the germanium channel, and to simplify a fabricating process by simultaneously forming the germanium channel and the gate insulating film in one process. |
US09935183B2 |
Multilayer passivation or etch stop TFT
The present invention generally relates to TFTs and methods for fabricating TFTs. For either back channel etch TFTs or for etch stop TFTs, multiple layers for the passivation layer or the etch stop layers permits a very dense capping layer to be formed over a less dense back channel protection layer. The capping layer can be sufficiently dense so that few pin holes are present and thus, hydrogen may not pass through to the semiconductor layer. As such, hydrogen containing precursors may be used for the capping layer deposition. |
US09935181B2 |
FinFET having highly doped source and drain regions
A method of forming a semiconductor device that includes forming an in-situ doped semiconductor material on a semiconductor substrate, and forming fin structures from the in-situ doped semiconductor material. A sacrificial channel portion of the fin structures may be removed, wherein a source region and a drain region portion of the fin structures of the in-situ doped semiconductor material remain. The sacrificial channel portion of the fin structure may then be replaced with a functional channel region. |
US09935178B2 |
Self-aligned channel-only semiconductor-on-insulator field effect transistor
In one example, a field effect transistor includes a fin. The fin includes a conducting channel formed from semiconductor-on-insulator and source/drain regions formed on opposite ends of the conducting channel, wherein the source/drain regions are formed from a material other than semiconductor-on-insulator. A gate is wrapped around the conducting channel, between the source/drain regions. In another example, a method for fabricating a field effect transistor includes forming a fin on a wafer. The fin includes a conducting channel formed from semiconductor-on-insulator and source/drain regions formed on opposite ends of the conducting channel, wherein the source/drain regions are formed from a material other than semiconductor-on-insulator. A gate is also formed between the source/drain regions and wraps around the conducting channel. |
US09935176B1 |
Method for fabricating LDMOS using CMP technology
A method for fabricating a LDMOS device in a well region of a semiconductor substrate, including: etching a polysilicon layer above the well region through a window for a body region; and forming spacers at side walls of the polysilicon layer, to define positions of source regions in the well region. |
US09935168B2 |
Gate contact with vertical isolation from source-drain
A method of forming a semiconductor structure includes forming a gate structure having a first conductive material above a semiconductor substrate, gate spacers on opposing sides of the first conductive material, and a first interlevel dielectric (ILD) layer surrounding the gate spacers and the first conductive material. An upper portion of the first conductive material is recessed. The gate spacers are recessed until a height of the gate spacers is less than a height of the gate structure. An isolation liner is deposited above the gate spacers and the first conductive material. A portion of the isolation liner is removed so that a top surface of the first conductive material is exposed. A second conductive material is deposited in a contact hole created above the first conductive material and the gate spacers to form a gate contact. |
US09935167B2 |
Semiconductor devices
Semiconductor devices include a channel layer on a substrate, the channel layer including a material having a lattice constant different from a lattice constant of the substrate, a first gate electrode on the channel layer, a first source region of a first conductivity type at a first side of the first gate electrode, a first body region of a second conductivity type under the first source region and contacting the first source region, a first drain region of the first conductivity type disposed at a second side of the first gate electrode, a first drift region of the first conductivity type under the first drain region and contacting the first drain region, and a first stud region in the channel layer and the first drift region. The first stud region has an impurity concentration higher than an impurity concentration of the first drift region. |
US09935162B2 |
Organic electroluminescent transistor array substrate and fabrication method thereof, and display device
An embodiment of the present disclosure provides an organic electroluminescent transistor array substrate, including a substrate, and a gate layer, a gate insulating layer, a semiconductor layer, a source layer, a pixel defining layer, an electroluminescent layer and a drain layer formed on the substrate, wherein, the source layer and the drain layer are located in different levels, the source layer includes plural source electrode units corresponding to sub-pixel units respectively, the pixel defining layer includes plural pixel defining units corresponding to the source electrode units respectively, and the respective source electrode units are embedded within the pixel defining units corresponding thereto. |
US09935161B2 |
Display panel and method for manufacturing the same
A display panel including first and second sub pixel electrodes, a first light emitting unit, first and second charge generation layers, a second light emitting unit, and an upper electrode. The first light emitting unit is provided with a first contact hole. The first charge generation layer includes a first contact part being in the first contact hole and coupled to a portion of the first sub pixel electrode exposed by the first contact hole, and a first extension part extending from the first contact part and being on the first light emitting unit. The second charge generation layer and the second light emitting unit are provided with a second contact hole. The upper electrode includes a first upper electrode part being in the second contact hole and coupled to a second contact part of the second charge generation layer exposed by the second contact hole. |
US09935160B2 |
OLED display device having pixel separation layer sidewall comprising curved sections
The present invention provides an OLED display device, which includes: a substrate (1), a plurality of pixel zones arranged in an array on the substrate (1), each of the pixel zones comprising a pixel electrode (2), an organic light-emitting layer (3), and a common electrode (4) that are sequentially stacked on the substrate (1), and a pixel separation layer (5) including a plurality of openings, the openings being each delimited and circumferentially surrounded by a pixel separation layer sidewall (51), each of the openings corresponding to one of the pixel zones. The pixel separation layer (5) is formed of an inorganic material. The pixel separation layer sidewall (51) includes, arranged from top to bottom, a first curved section (511), a linear section (512), and a second curved section (513), so as to overcome a deterioration issue of the organic light-emitting layer (3) caused by the pixel separation layer sidewall (51), prevent the organic light-emitting layer (3) and the common electrode (4) from breaking at a site corresponding to the pixel separation layer sidewall (51), prevent shorting between the common electrode (4) and the pixel electrode (2), which are the cathode and anode of the OLED display device, and improve displaying performance. |
US09935159B2 |
Display panel and display device comprising the same
Disclosed herein are a display panel capable of reducing the amount of reflected light in a non-display area where an alignment key is disposed, and a display device employing the same. The display panel includes a substrate having a display area and a non-display area, an alignment key disposed on a first surface of the substrate, and a planarization layer disposed on the first surface of the substrate and having a via hole above the alignment key. The display panel also includes a first shielding layer disposed on a second surface of the substrate opposite the first surface and having a first opening hole overlapping with the alignment key in plan view, and a second shielding layer disposed on the planarization layer. |
US09935157B2 |
OLED display
The present invention provides an OLED display including a red organic light-emitting element, a green organic light-emitting element, and a blue organic light-emitting element set corresponding to a red filter device, a green filter device, and a blue filter device respectively. Thus, the chromaticity coordinate of the OLED display can be adjusted and NTSC can be increased. Selection of material made of the red, green, and blue light-emitting elements and light-utilizing efficiency are increased. |
US09935152B2 |
X-ray detector having improved noise performance
Exemplary embodiments are directed to imagining detectors and methods of fabricating the imagining detectors for use in medical imagining systems. In exemplary embodiments, a detector for an imaging device include a continuous unpatterned photoelectric material that forms a portion of a photosensor and an electrode disposed with respect to the photoelectric material to form an anode or cathode of the photosensor. Data readout lines connected to the outputs of transistors of the detector can be susceptible electronic noise from capacitive coupling between the electrode of the photosensor. In exemplary embodiments of the present disclosure, a lateral offset and/or vertical offset between the electrode and the data readout lines can be formed to control the capacitive coupling between the electrode and the data readout line. |
US09935151B2 |
Low noise InGaAs photodiode array
A photodiode pixel structure for imaging short wave infrared (SWIR) and visible light built in a planar structure and may be used for one dimensional and two dimensional photodiode arrays. The photodiode arrays may be hybridized to a read out integrated circuit (ROIC), for example, a silicon complementary metal-oxide-semiconductor (CMOS) circuit. The photodiode in each pixel is buried under the surface and does not directly contact the ROIC amplification circuit. Charge is transferred form the detector using a junction field effect transistor (JFET) in each pixel. Disconnecting the photodiode from the ROIC amplification circuit enables low dark current as well as double correlated sampling in the pixel. |
US09935150B2 |
X-ray detection panel of X-ray detector and method of manufacturing the same
An X-ray detection panel for X-ray detectors and a method of manufacturing the same are disclosed. The X-ray detection panel includes a substrate, a photodiode disposed on the substrate and generating an electrical signal in response to light illuminating the photodiode, a first thin-film transistor disposed on the substrate and processing the electrical signal generated by the photodiode, and a second thin-film transistor disposed on the substrate and removing a residual current component accumulated in the photodiode and the first thin-film transistor. The X-ray detection panel can improve actual sensitivity and signal-to-noise ratio (SNR). |
US09935147B2 |
Deep trench isolation structure in image sensor device
An image sensor device includes a substrate having a front surface and a back surface, and a deep trench disposed at the front surface of the substrate. The deep trench has sidewalls, a bottom and an opening. A dielectric layer is disposed along the sidewalls and the bottom of the deep trench. An epitaxial layer is disposed on the front surface of the substrate. The deep trench and the epitaxial layer collectively define an air chamber. The deep trench has a chamfered portion at an interface between the epitaxial layer and the front surface of the substrate. The chamfered portion is free of dielectric layer. |
US09935146B1 |
Phase detection pixels with optical structures
In order to increase angular response or otherwise customize the response of phase detection pixels to incident light, phase detection pixels may include optical structures. The optical structures may be formed between a microlens and at least first and second photodiodes to redirect incident light between the microlens and the photodiodes. The optical structures may include two or more layers with different indices of refraction. For example, a layer of silicon dioxide and a layer of silicon nitride may form a concave lens that increases the angular response of phase detection pixels. The optical structures may have any desired shape to customize the response of the photodiodes to incident light. |
US09935142B2 |
Image sensor including transfer gates in deep trenches
An image sensor is described. The image sensor includes a photodiode that is formed in a substrate, a floating diffusion region that vertically overlaps with a first portion of the photodiode, a shallow trench isolation (STI) region that vertically overlaps with a second portion of the photodiode and has an elbow shape, and a transfer gate that is adjacent to at least two sides of the photodiode and has an elbow shape. |
US09935141B2 |
Semiconductor device and manufacturing method thereof
In a semiconductor device in which a plurality of light receiving elements are provided in each of a plurality of pixels that form a solid-state image sensor, a decrease in the performance of the semiconductor device is prevented, the decrease occurring due to an increase in the number of wires. In the pixel having a first photodiode and a second photodiode, a first transfer transistor coupled to the first photodiode and a second transfer transistor coupled to the second photodiode are respectively controlled by the same gate electrode, thereby allowing the number of wires for controlling the first and the second transfer transistors is reduced. |
US09935138B2 |
Article comprising a photodiode-side integrated fuse for avalanche photodetector focal plane array pixels and method therefor
A scalable fuse design for individual pixels of a focal plane array of photodiodes comprises a fuse disposed on the upper surface of each photodiode in the array, wherein the fuse is situated proximal to a side of each photodiode. The fuse of each photodiode is electrically coupled to the active region thereof via a first bus and is electrically coupled to an ROIC via a second bus. |
US09935137B2 |
Manufacture method of LTPS array substrate
The present invention provides a manufacture method of a LTPS array substrate. By utilizing one halftone mask, the N type heavy doping, the channel doping of the first polysilicon layer of the NMOS region and the P type heavy doping of the second polysilicon layer of the PMOS region, the three processes which previously require three masks are integrated into one mask process, and two exposure processes are eliminated, which significantly raises the exposure capacity, and meanwhile saves the manufacture cost of two masks to effectively reduce the manufacture cost of the LTPS array substrate, and the manufactured LTPS array substrate possesses great electrical property. |
US09935136B2 |
Manufacturing method of display with lighting devices
A manufacturing method of display with lighting devices is disclosed, including providing a tank containing a liquid; disposing a carrying plate with several recessed regions in the tank, and the carrying plate being immersed in the liquid; dropping several lighting devices into the liquid, wherein each of the lighting devices includes two conductive pads, and one of the two conductive pads includes a magnetic material; applying a magnetic field for the lighting devices and the lighting devices will dispose within the recessed regions of the carrying plate; removing the carrying plate with the lighting devices out of the tank, and assembling the lighting devices to an array substrate. |
US09935134B2 |
Transistor substrate and display device
In a transistor substrate of a display device, a plurality of signal lines to which any one of drive signals of a gate signal and a video signal is supplied include a plurality of first signal lines to which the drive signal is supplied. The first signal line is connected to a driving driver, and is formed in an edge region positioned between an end portion of a substrate and a pixel region and in the pixel region. The first signal line is formed to pass through a first wiring formed in a first layer from a second wiring formed in a second layer in the edge region. |
US09935132B2 |
Pixel structure
A pixel structure including scan lines, data lines, and sub-pixels is provided. The scan and data lines are disposed on the substrate. The sub-pixels include switch devices, contact pattern layer, color filter pattern layers, and pixel electrodes. The switch devices are electrically connected to one scan line and one data line respectively. The contact pattern layer and the color filter pattern layer are disposed on the substrate and the switch devices. The contact pattern layer covers part of two adjacent switch devices. At least two color filter pattern layers include a patterned opening respectively, and the contact pattern layer is disposed in the patterned opening. The pixel electrodes are disposed on the color filter pattern layer, the contact pattern layer, and the switch device. At least one pixel electrode is partially disposed between the color filter pattern layer and the corresponding switch device while electrically connected to the switch device. |
US09935128B2 |
Pixel circuit, electro-optical device, and electronic apparatus
An electro-optical device formed on a semiconductor substrate, includes: a first transistor controlling a current level according to a voltage between a gate and a source; a second transistor electrically connected between a data line and the gate of the first transistor; a third transistor electrically connected between the gate and a drain of the first transistor; and a light-emitting element emitting light at a luminance according to the current level, in which one of a source and a drain of the second transistor and one of a source and a drain of the third transistor are formed by a common diffusion layer. |
US09935125B2 |
Semiconductor device and manufacturing method of the same
On a semiconductor substrate having an SOI region and a bulk silicon region formed on its upper surface, epitaxial layers are formed in source and drain regions of a MOSFET formed in the SOI region, and no epitaxial layer is formed in source and drain regions of a MOSFET formed in the bulk silicon region. By covering the end portions of the epitaxial layers with silicon nitride films, even when diffusion layers are formed by implanting ions from above the epitaxial layers, it is possible to prevent the impurity ions from being implanted down to a lower surface of a silicon layer. |
US09935115B2 |
Nonvolatile semiconductor storage device and method of manufacturing nonvolatile semiconductor storage device
A nonvolatile semiconductor storage device includes a memory string including a plurality of memory cells connected in series with each other, and a select gate transistor connected to a first end of the memory string. The film thickness of a first hard mask on a select gate electrode of the select gate transistor is greater than the film thickness of a second hard mask film on a control gate electrode of the memory cells. The level of an upper surface of a first side wall insulating film provided on a side surface of the select gate transistor is higher than the level of an upper surface of the first hard mask film. The level of an upper surface of a second side wall insulating film provided on a side surface of the memory cells is higher than the level of an upper surface of the second hard mask film. |
US09935114B1 |
Methods of forming an array comprising pairs of vertically opposed capacitors and arrays comprising pairs of vertically opposed capacitors
A method of forming an array comprising pairs of vertically opposed capacitors comprises forming a conductive lining in individual capacitor openings in support material. An elevational mid-portion of individual of the conductive linings is removed to form an upper capacitor electrode lining and a lower capacitor electrode lining that are elevationally separate and spaced from one another in the individual capacitor openings. A capacitor insulator is formed laterally outward of the upper and lower capacitor electrode linings. Conductive material is formed laterally outward of the capacitor insulator to comprise a shared capacitor electrode that is shared by vertically opposed capacitors in individual of the pairs of vertically opposed capacitors. Other methods and structure independent of method of manufacture are disclosed. |
US09935113B2 |
Non-volatile memory and method for programming and reading a memory array having the same
A non-volatile memory (NVM) includes a fin structure, a first fin field effect transistor (FinFET), a second FinFET, an antifuse structure, a third FinFET, and a fourth FinFET. The antifuse structure is formed on the fin structure and has a sharing gate, a single diffusion break (SDB) isolation structure, a first source/drain region, and a second source/drain region. The SDB isolation structure isolates the first source/drain region and the second source/drain region. The first FinFET, the second FinFET and the first antifuse element compose a first one time programmable (OTP) memory cell, and the third FinFET, the fourth FinFET and the second antifuse element compose a second OTP memory cell. The first OTP memory cell and the second OTP memory cell share the antifuse structure. |
US09935110B2 |
Memory device with manufacturable cylindrical storage node
A high capacitance embedded capacitor and associated fabrication processes are disclosed for fabricating a capacitor stack in a multi-layer stack to include a first capacitor plate conductor formed with a cylinder-shaped storage node electrode formed in the multi-layer stack, a capacitor dielectric layer surrounding the cylinder-shaped storage node electrode, and a second capacitor plate conductor formed from a conductive layer in the multi-layer stack that is sandwiched between a bottom and top dielectric layer, where the cylinder-shaped storage node electrode is surrounded by and extends through the conductive layer. |
US09935105B2 |
Semiconductor device
Data hold time is controlled without excessively increasing a circuit area. A semiconductor device includes a data buffer and a flip-flop formed of fin. As a delay line, gate wirings being in the same layer as gate electrodes of the fin are provided in a data signal path from a data output node of the data buffer to a data input node of the flip-flop. |
US09935103B2 |
Semiconductor device and manufacturing method thereof
A semiconductor device includes first and second Fin FET and a separation plug made of an insulating material and disposed between the first and second Fin FETs. The first Fin FET includes a first fin structure extending in a first direction, a first gate dielectric formed over the first fin structure and a first gate electrode formed over the first gate dielectric and extending a second direction perpendicular to the first direction. The second Fin FET includes a second fin structure, a second gate dielectric formed over the second fin structure and a second gate electrode formed over the first gate dielectric and extending the second direction. In a cross section a maximum width of the separation plug is located at a height Hb, which is less than ¾ of a height Ha of the separation plug. |
US09935101B2 |
Vertical field effect transistor with uniform gate length
Fabrication of a semiconductor structure includes forming a set of two or more fins on a source/drain region formed on a substrate. A first mask layer and a second mask layer are formed on each fin. A spacer layer is formed on the source/drain region and between each fin, and a dielectric layer is formed on the spacer layer and along an exterior of each fin. A plurality of gate metal portions is created each having a thickness about equal to a target thickness. The first mask layer and an exposed portion of the dielectric layer are removed from each fin. An interlayer dielectric is deposited on the semiconductor structure. Portions of the interlayer dielectric and the gate metal are removed to a top of the second mask layer. The gate metal portions are each recessed to substantially the same depth. |
US09935100B2 |
Power rail inbound middle of line (MOL) routing
In certain aspects, a semiconductor die includes a power rail, a first gate, and a second gate. The semiconductor die also includes a first gate contact electrically coupled to the first gate, wherein the first gate contact is formed from a first middle of line (MOL) metal layer, and a second gate contact electrically coupled to the second gate, wherein the second gate contact is formed from the first MOL metal layer. The semiconductor die further includes an interconnect formed from a second MOL metal layer, wherein the interconnect is electrically coupled to the first and second gate contacts, and at least a portion of the interconnect is underneath the power rail. |
US09935099B2 |
Semiconductor device
The present invention provides a semiconductor device including a semiconductor substrate, a first well, a second well, a gate electrode, an oxide semiconductor structure and a diode. The first well is disposed in the semiconductor substrate and has a first conductive type, and the second well is also disposed in the semiconductor substrate, adjacent to the first well, and has a second conductive type. The gate electrode is disposed on the first well. The oxide semiconductor structure is disposed on the semiconductor substrate and electrically connected to the second well. The diode is disposed between the first well and the second well. |
US09935094B2 |
GOA circuit based on LTPS semiconductor thin film transistor
The present invention provides a GOA circuit based on LTPS semiconductor thin film transistor to control the voltage levels of the first node (Q(n)) and the second node (P(n)) with the forward scan direct current control signal (U2D) and the backward scan direct current control signal (D2U). The clock signal (CK(M)) is merely in charge of the output of the GOA unit of corresponding stage, which can effectively reduce the loading of the clock signal. It ensures that the entire loading of the clock signal after the GOA units of multiple stages are coupled to promote the output stability of the GOA circuit, and to realize the forward-backward scan of the GOA circuit. Moreover, the GOA unit of each stage comprises only ten thin film transistors, which is beneficial to reduce the layout space of the GOA circuit and to achieve the narrow frame design of the display device. |
US09935092B2 |
Radio frequency transistor stack with improved linearity
A RF transistor stack is described. The RF transistor stack comprises a first transistor having a T-gate layout configuration. The first transistor has a body region; a plurality of drain regions; and a plurality of source regions. A second transistor is provided which has a T-gate layout configuration. The second transistor has a body region; a plurality of drain regions; and a plurality of source regions. An interconnect operably couples the source regions of the first transistor with the source regions of the second transistor such that the distortion due to asymmetry in the division of RF voltage between the drain to source and the source to body terminals of first transistor is cancelled by reversing the asymmetry in the division of the RF voltage in the second transistor. |
US09935091B2 |
Package-on-package structures and methods for forming the same
A package includes a package component, which further includes a top surface and a metal pad at the top surface of the package component. The package further includes a non-reflowable electrical connector over and bonded to the metal pad, and a molding material over the package component. The non-reflowable electrical connector is molded in the molding material and in contact with the molding material. The non-reflowable electrical connector has a top surface lower than a top surface of the molding compound. |
US09935090B2 |
Substrate design for semiconductor packages and method of forming same
An embodiment device includes a first die, a first molding compound extending along sidewalls of the first die, and one or more first redistribution layers (RDLs) on the first die and the first molding compound. The device further includes a device package comprising a plurality of second dies, wherein the device package is bonded to an opposing surface of the one or more first RDLs as the first die and the first molding compound. A package substrate is bonded to the opposing surface of the one or more first RDLs. The package substrate is electrically connected to the first die and the plurality of second dies. |
US09935084B2 |
Devices and methods of packaging semiconductor devices
Devices and methods of packaging semiconductor devices are disclosed. In some embodiments, a device includes a first semiconductor device and a second semiconductor device coupled to the first semiconductor device. An underfill material is disposed between the first semiconductor device and the second semiconductor device. The underfill material is also disposed on sidewalls of the first semiconductor device and the second semiconductor device. The underfill material has a first thickness on sidewalls of the first semiconductor device and a second thickness on sidewalls of the second semiconductor device. The second thickness is different than the first thickness. |
US09935083B2 |
Semiconductor package and manufacturing method thereof
A semiconductor package and a method of manufacturing a semiconductor package. As a non-limiting example, various aspects of this disclosure provide a semiconductor package, and method of manufacturing thereof, that comprises shielding on multiple sides thereof. |
US09935082B2 |
Stacked semiconductor dies with selective capillary under fill
Stacked semiconductor dies are provided with selective capillary under fill to avoid wafer warpage during curing. In one embodiment, a method of manufacturing a semiconductor device includes forming at least three stacks of semiconductor dies over a substrate, the stacks spaced apart from one another by gaps. A first sealing material such as a capillary under fill material is deposited into a first subset of the gaps. A second sealing material such as a mold resin is deposited into a second subset of the gaps. The first and second sealing materials are cured, and the die stacks are then singulated. |
US09935076B1 |
Structure and method for fabricating a computing system with an integrated voltage regulator module
Systems that include integrated circuit dies and voltage regulator units are disclosed. Such systems may include a voltage regulator module and an integrated circuit mounted in a common system package. The voltage regulator module may include a voltage regulator circuit and one or more passive devices mounted to a common substrate, and the integrated circuit may include a System-on-a-chip. The system package may include an interconnect region that includes wires fabricated on multiple conductive layers within the interconnect region. At least one power supply terminal of the integrated circuit may be coupled to an output of the voltage regulator module via a wire included in the interconnect region. |
US09935075B2 |
Wire bonding method and apparatus for electromagnetic interference shielding
Apparatuses relating generally to a microelectronic package having protection from electromagnetic interference are disclosed. In an apparatus thereof, a platform has an upper surface and a lower surface opposite the upper surface and has a ground plane. A microelectronic device is coupled to the upper surface of the platform. Wire bond wires are coupled to the ground plane with a pitch. The wire bond wires extend away from the upper surface of the platform with upper ends of the wire bond wires extending above an upper surface of the microelectronic device. The wire bond wires are spaced apart from one another to provide a fence-like perimeter to provide an interference shielding cage. A conductive layer is coupled to at least a subset of the upper ends of the wire bond wires for electrical conductivity to provide a conductive shielding layer to cover the interference shielding cage. |
US09935071B1 |
Semiconductor package with lateral bump structure
A semiconductor package includes a semiconductor device having an upper surface and a side, wherein the upper surface and the side form a corner of the semiconductor device. The semiconductor package also includes a lateral bump structure disposed on the side and implementing a lateral signal path of the semiconductor device. The semiconductor package further includes a vertical bump structure disposed over the upper surface and implementing a vertical signal path of the semiconductor device. |
US09935070B2 |
Interconnect structures and methods of forming same
Embodiments of the present disclosure include interconnect structures and methods of forming interconnect structures. An embodiment is an interconnect structure including a post-passivation interconnect (PPI) over a first substrate and a conductive connector on the PPI. The interconnect structure further includes a molding compound on a top surface of the PPI and surrounding a portion of the conductive connector, a top surface of the molding compound adjoining the conductive connector at an angle from about 10 degrees to about 60 degrees relative to a plane parallel with a major surface of the first substrate, the conductive connector having a first width at the adjoining top surface of the molding compound, and a second substrate over the conductive connector, the second substrate being mounted to the conductive connector. |
US09935069B2 |
Reducing solder pad topology differences by planarization
A technique is disclosed for causing the top surfaces of solder bumps on a chip to be in the same plane to ensure a more reliable bond between the chip and a substrate. The chip is provided with solder pads that may have different heights. A dielectric layer is formed between the solder pads. A relatively thick metal layer is plated over the solder pads. The metal layer is planarized to cause the top surfaces of the metal layer portions over the solder pads to be in the same plane and above the dielectric layer. A substantially uniformly thin layer of solder is deposited over the planarized metal layer portions so that the top surfaces of the solder bumps are substantially in the same plane. The chip is then positioned over a substrate having corresponding metal pads, and the solder is reflowed or ultrasonically bonded to the substrate pads. |