Document | Document Title |
---|---|
US09628649B2 |
Scanning apparatus and computer-readable medium storing program therefor
A scanning apparatus is controlled to extract edges of an original document from an image scanned by a scanning device, execute an end obtaining process which causes the scanning apparatus to obtain a leading end of the original document and a trailing end of the original document based on the edges extracted in the extraction process, an inclination obtaining process to obtain a first inclination of the leading end and a second inclination of the trailing end, and a determination process to determine that a rotational skew has occurred when a difference between the first inclination and the second inclination is greater than a rotational skew threshold, the rotational skew being a change of inclination of the original document during conveyance of the original document. |
US09628647B2 |
Screen generating apparatus, screen generating method, and non-transitory computer-readable recording medium encoded with screen generating program
A screen generating apparatus includes a reference screen information acquiring portion to acquire reference screen information, the reference screen information including a plurality of components classified into one or more sets and layout information for disposing the components in a reference screen, a screen size acquiring portion to acquire a screen size of a display portion, a set area determining portion to determine, for each of the one or more sets, a converted area corresponding to the set in a display screen, on the basis of the acquired screen size and the layout information included in the reference screen information, and a component disposing portion to dispose the components included in the reference screen information, in the converted areas within the display screen corresponding respectively to the one or more sets, each component being disposed in the same size as that in the reference screen. |
US09628644B2 |
Controller for imaging terminal
A controller for an imaging terminal having an imaging device and a first displaying device includes a processor and a memory. The memory stores instructions, when executed by the processor, causing the processor to perform: acquiring shot image data, the shot image data being obtained by shooting a second displaying device which is a part of an apparatus, the apparatus being a target device to be shot, the second displaying device being configured to display a specific state image indicative of a current state of the apparatus; acquiring, by analyzing the shot image data, specific identification information for identifying specific relevant information associated with the specific state image; acquiring the specific relevant information by using the specific identification information; and controlling the first displaying device to display the specific relevant information. |
US09628643B2 |
Mobile device that ensures function extension of image forming apparatus, image forming system, and recording medium
A mobile device includes an operation circuit, a display, an operation screen display, and a function execution circuit. The operation screen display displays an operation screen to operate the image forming apparatus on the display. The function execution circuit performs a function other than a function executable by the image forming apparatus alone and a specific function performed using the image forming apparatus. The function execution circuit performs the specific function according to an operation to an operation part in the operation screen displayed on the display via the operation circuit. |
US09628640B2 |
Method for initial setup of image forming apparatus using near field communication and image forming apparatus for performing the same
An initial setup method of an image forming apparatus using near field communication (NFC) according to an embodiment includes determining whether initial setup of the image forming apparatus is needed; displaying an initial setup menu on a display unit of the image forming apparatus when it is determined that the initial setup is needed; receiving initial setup data stored in the mobile terminal through NFC by the image forming apparatus when the mobile terminal is NFC tagged with the image forming apparatus; and performing initial setup of the image forming apparatus in accordance with the received initial setup data. |
US09628639B2 |
Printer driver that causes a computer to generate a print command to print with decolorable material
A printer driver that is executable in a computer causes the computer to carry out a process including the steps of reading a first number of copies of a document to be printed with a decolorable material and a second number of copies of the document to be printed with a non-decolorable material, and generating a print command for a printer that causes the printer to print the first number of copies with the decolorable material and the second number of copies with the non-decolorable material. |
US09628637B2 |
Information processing system, image forming apparatus, and computer program product configured to combine personal information with document image
The system includes a terminal apparatus and an image forming apparatus that comprises: a communication unit that performs near field wireless communication; a communication controller that controls the communication unit so as to receive document identification information for identifying a document and personal information to be input to the document transmitted from the terminal apparatus through near field wireless communication; a storage unit that stores document identification information for identifying a document, document image information, and entry position information of entries in association with each other for each document; and an information combining unit that searches the storage unit for the document image information and the entry position information stored in association with the same document identification information as the received document identification information and generates a combined image in which the received personal information is combined at a position on a document image indicated by the entry position information. |
US09628636B2 |
Print control device and computer-readable storage medium storing a program
A print control device may include a control device configured to identify a data type of print target data obtained from a clipboard, generate print data based on the print target data in accordance with a print setting appropriate for the identified data type, and send the generated print data to a printing apparatus. |
US09628634B2 |
Method and controller for network charging
Disclosed is a method for network charging, which includes: user state information is received from a mobility management network element and charging strategy information is received from a charging rule network element, then a charging resource request message containing the charging strategy information, the user state information and information of a universal gateway (UGW) are sent to a data centre management network element; information of a processing network element is received from the data centre management network element; a flow table for the UGW is configured according to the information of the processing network element, and the configured flow table is sent to the UGW; and charging processing information fed back from the data centre management network element is received when the processing network element charges for a traffic flow. The disclosure further provides a controller for network charging. |
US09628633B2 |
Method and apparatus for virtual SIM service activation and deactivation via subscription tracking
A method at a user equipment to verify enablement of data billing splitting using a virtual subscriber identity module platform (‘VSP’) service, the method including receiving a credential at the user equipment, the credential including an international mobile subscriber identity (IMSI) from a physical universal integrated circuit card (UICC) subscriber identity module (SIM) application; storing the credential on the user equipment; checking, at a VSP service module on the user equipment, whether the credential matches an IMSI of a UICC currently inserted into the user equipment; if the checking determines a match, enabling the data billing splitting; and if the checking determines a mismatch, preventing enablement of the data billing splitting. |
US09628623B2 |
Graphical user interface for monitoring and visualizing contact center routing strategies
A system and method for monitoring and visualizing contact center routing strategies via a graphical user interface. The graphical user interface displays a routing diagram depicting a contact center routing strategy. The routing diagram includes a plurality of blocks each associated with logic for managing an interaction with the contact center. A processor monitors contact center performance as interactions with the contact center are managed according to the routing strategy. The processor identifies one of the plurality of blocks affected by the contact center performance, and further identifies a threshold associated with the identified block. The processor determines whether the contact center performance satisfies the threshold, and modifies a visual appearance of the identified block based on the determination. |
US09628621B2 |
System and method for providing access to a visual phone menu
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for providing access to a visual phone menu is disclosed. One of the methods includes receiving a call request transmitted from a calling device to initiate a call to a recipient; saving state information associated with the caller's navigation through a voice response system; providing an option for the caller to select between receiving a visual phone menu (VPM) or continuing to listen to the voice response system menu; receiving a selection of the option to receive the VPM; providing the VPM to a client device including providing state information associated with the caller's navigation through the voice response system prior to the selection; and using the state information when the caller navigates back in the response tree using the VPM. |
US09628619B2 |
Nomadic device self user-identification
A controller may send a user-identification request to connected nomadic devices requesting each of the devices to provide an interface to receive user input regarding which device is a driver nomadic device; determine a driver nomadic device based on at least one user-identification response received from the devices responsive to the input; and integrate the connected devices with the controller accounting for which device is the driver nomadic device. |
US09628614B2 |
System and method for controlling free phone calls through an institutional phone system
A method of controlling free phone calls places from within a secured premises through an institutional phone system generally includes assigning a unique access identifier to an individual caller upon entry into the secured premises; receiving a destination number front the individual caller within the secured premises, the destination number being associated with a telephone located outside the secured premises; determining if the destination number is a per se free number, and, if the destination number is not determined to be a per se free number: receiving the unique access identifier from the individual caller; validating the unique access identifier; and, if the unique access identifier is valid, processing a telephone call to the destination number. |
US09628613B1 |
Real-time monitoring of caller experience in a call flow
A method, a system, and computer readable medium comprising instructions for monitoring caller experience in a call flow are provided. The method comprises collecting at least one selection by at least one caller in a call flow, generating performance analysis of a voice response system, combining the at least one selection and the performance analysis into a set of data, applying a monitoring formula to the set of data to form a result representing caller experience; and presenting the result to at least one service provider. |
US09628612B2 |
Mobile phone call handling
A method, system, and computer program product include a processor detecting, ambient noise in the vicinity of the mobile telephone and accessing one or more stored sounds. The processor determines that the ambient noise matches a stored sound of the one or more stored sounds and based on the determining, switches handling of incoming calls to the mobile phone to a predetermined state. |
US09628611B2 |
Call alert options
A device including a processor and a memory that includes instructions that, when executed by the processor, cause the processor to perform operations. The operations include displaying a plurality of call alert options at a user interface. The operations also include receiving, via the user interface, a selection of a first call alert option of the plurality of call alert options and sending information associated with the first call alert option to a server. The operations further include receiving a call request from a second device, where the call request includes data related to the first call alert option. The operations further include, responsive to receiving the call request, generating a call alert based on the first call alert option. |
US09628610B2 |
Network structure and central office equipment (COE) and customer premises equipment (CPE) thereof
A network structure including a central office equipment (COE) and a customer premises equipment (CPE) is provided. The CPE is connected to the COE through a single twisted-pair cable, and configured to convert an external power and supply power to the COE through the single twisted-pair cable. In addition, the data transmission and the transmission of telephone voice are performed between the COE and the CPE through the single twisted-pair cable. |
US09628609B2 |
Device function disablement during vehicle motion
A method and system for disabling functions of a movement detection enabled device is provided. The method includes monitoring a movement detection signal of the movement detection enabled device in a vehicle and determining that the vehicle is currently in motion. An electronic tag in the vehicle is detected and instructions associated with the movement detection enabled device are retrieved. It is determined that the movement detection enabled device is located within a specified proximity to a driver location of the vehicle and that a user of the device is a driver of the vehicle. In response, specified functions of the movement detection enabled device are disabled. |
US09628601B2 |
Electronic device and method of controlling the same
An electronic device with watch phone functionality and a method of controlling the same are provided. Upon receiving predetermined input on the display of the watch phone, the electronic device transmits a control signal for creating a wireless link to a mobile terminal which will connect with the watch phone, and transmits location information on the mobile terminal and a captured image of the surroundings to the watch phone. Accordingly, the user can locate the mobile terminal more easily using the watch phone. |
US09628598B2 |
Method for operating application and electronic device thereof
A method is provided for sharing user information in an electronic device. User information is determined. A sharable item is displayed for the determined user information. A setting is provided for the sharable item indicating whether to restrict sharing for the sharable item. It is determined whether to share the user information based on the setting for the sharable item. |
US09628595B2 |
Second microphone device of a mobile terminal
A second microphone device of a mobile terminal, and more particularly, a second microphone device of a mobile terminal for preventing various limitations caused by mounting of a second microphone, is provided. The second microphone device includes an ear jack connector having an insertion space, a microphone hole connected at one end to the insertion space, and a second microphone connected at the other end of the microphone hole, thereby improving ambient noise removal performance of the mobile terminal without adversely affecting its appearance. |
US09628590B2 |
Method for encoding and decoding scheme using time stamp
An encoding device performing an encoding process according to an encoding scheme using a CTS indicating time at which presentation or reproduction is performed, comprising: an encapsulator that generates a media unit in which one or more access units encoded by the encoding scheme are capsulated, and a transmitter that transmits information indicating an absolute time of an access unit included at a top portion of the media unit, in addition to the media unit, wherein the encapsulator adds a CTS relative value to the nth access unit included in the media unit, the CTS relative value being a difference between the CTS of the nth access unit and the DTS of the n+1th access unit. |
US09628589B2 |
Additional channels using preamble symbols
A method for transmitting information is provided. The method for transmitting information comprises the steps of: mapping signalling information to one or more preamble symbols of a first frame, mapping data to one or more data symbols of the first frame, dividing additional information into two or more parts, mapping a first part of the additional information to one or more preamble symbols of the first frame, mapping a second part of the additional information to at least one of (i) one or more data symbols of the first frame, and (ii) one or more preamble symbols of a second frame and transmitting the frames. |
US09628588B2 |
Packet data unit, a receiving communication device, a radio network controller and methods therein for transmitting data from the radio network controller to the user equipment
Some embodiments herein relate to a method in a radio network controller (14) for transmitting data to a user equipment (18) in a wireless communication system (10). The radio network controller (14) is communicating over a Radio Link Control layer with the user equipment (18). The radio network controller transmits a packet data unit to the user equipment (18). The packet data unit comprises a header with a first field, which first field comprises bits for a sequence number of the packet data unit. The header further comprises a second field comprising at least one bit indicating that a third field of the header comprises bits for the sequence number as an extension of bits to the first field for the sequence number. |
US09628571B2 |
Systems and methods for HTTP callouts for policies
A method of identifying an action of a policy in association with communications between a client and one or more servers includes determining, by an intermediary, a policy action based on using a callout based policy. In one aspect, an intermediary receives communications between a client and one or more servers. The intermediary identifies a policy for the communications, the policy specifying a request and a server to communicate the request. Responsive to the policy, the intermediary transmits the request to the server. Based on the server response to the request, the intermediary determines an action of the policy. In another aspect, a system for the present method includes a an intermediary and a policy engine for identifying a policy to specify a request and a destination server. Responsive to a server response to the request, the intermediary determines an action of the policy. |
US09628570B2 |
Method and apparatus for sharing data between different network devices
Disclosed are a user interface for a data sharing function according to network connection between network electronic devices and a user device for operating a data sharing function using same. The method for sharing data between network electronic devices, includes: searching network electronic devices located at a periphery of a user device when an input for performing a data sharing function is sensed; classifying the searched network electronic devices into transmission side network electronic devices and reception side network electronic devices; allotting the searched network electronic devices to a first region for receiving data and a second region for transmitting the data, respectively; and configuring and displaying a user interface for a data sharing function based on the network electronic devices allotted to the first region and the second regions. |
US09628569B2 |
Method and apparatus of performing peer-to-peer communication establishment and connection change-over
A method and apparatus of monitoring active data communication sessions and potential new connections is disclosed. One example method of operation may include identifying a data communications requirement of a first network device currently communicating via the first communications connection with a second network device, an transmitting a data test message over at least one of the existing first communications connection and the second communications connection. The method may also include receiving a response to the data test message, and determining a change-over from the first communications connection to the second communications connection would provide a more optimal data connection based on the identified data communications requirements of the first network device. Active data sessions are constantly being considered for a change-over by potential new data connections which may provide increased optimal data performance. |
US09628568B2 |
Apparatus, system and method of supporting streaming over a protocol adaptation layer (PAL)
Some demonstrative embodiments include apparatuses, systems and/or methods of supporting streaming over a Protocol Adaptation Layer (PAL). For example, an apparatus may include a first PAL communication unit to communicate PAL traffic with a second PAL communication unit over a communication link, the PAL traffic comprising traffic of a PAL connection, over a PAL, between a first device and a second device, the PAL is above a layer of the communication link, the PAL traffic comprising data to be communicated between the first device and one or more endpoints via the second device, wherein the first PAL communication unit is to communicate an endpoint open stream request and an endpoint open stream response with the second PAL communication unit over the communication link. |
US09628566B2 |
Communication of data of a web real-time communication via a carrier-grade environment
A method, a device, and a non-transitory storage medium having instructions to establish a web connection with a user device and provide access to a carrier-grade network in support of a Web Real Time Communication (WebRTC) session; obtain service data that includes data pertaining to a user of the user device; assign a level of trustworthiness to the service data; generate a message, wherein the message includes a request to initiate the WebRTC session; package the service data in the message based on the level of trustworthiness; and transmit the message to another device. |
US09628564B2 |
Hierarchical information modification and use
Example systems and methods of using and modifying hierarchical information are presented. In one example, a request for information associated with a topic is received from a user device. In response to the request, first topic information corresponding to a first hierarchical level and second topic information corresponding to a second hierarchical level lower than the first hierarchical level are accessed. Combined topic information is generated which includes the first topic information that is modified based on the second topic information. The combined topic information is then transmitted to the user device for display on the user device. |
US09628559B2 |
Optimizing resource downloads or streams using a collection of trusted network connected endpoints
In an approach to improving resource downloads, one or more computer processors detect a request to download a resource from an original source to a user's computing device. The one or more computer processors determine a cost of the download of the requested resource from the original source. The one or more computer processors determine whether the cost of the download of the requested resource from the original source exceeds a predefined threshold. The one or more computer processors determine a group of trusted network connected endpoints. The one or more computer processors determine whether the requested resource exists in the group of trusted network connected endpoints. Responsive to determining the requested resource exists in the group of trusted network connected endpoints, the one or more computer processors download the requested resource from at least one of the trusted network connected endpoints. |
US09628558B2 |
Creating a web proxy inside a browser
Systems and methods may provide for receiving a first request from a remote device for access to content on a second remote device, and invoking a proxy server embedded in an HTML5-compliant browser on a local device. Additionally, the first remote device may be provided with access to the content on the second remote device via the proxy server. Moreover, input may be received from a user interface of the local device, wherein a second request may be transmitted to the first remote device for access to content on a third remote device. In one example, the first remote device is unauthorized with respect to the content on the second remote device, and the local device is unauthorized with respect to the content on the third remote device. |
US09628556B2 |
Decentralized request routing
Systems and methods provide logic for decentralized request routing. In one implementation, a computer-implemented method routes a request. The method includes receiving, by a client server, the request. The client server evaluates feedback information received by the client server from at least one of a plurality of host servers. The client server selects one of the plurality of host servers to process the request, based on the evaluation, and transmits the request to the selected one of the plurality of host servers. |
US09628554B2 |
Dynamic content delivery
Aspects of the present disclosure relate to the generation and delivery of content including unique and shared components. A content delivery network service provider can obtain requests for content from client computing devices. Based on information provided in the request or otherwise managed by executable code on the client computing device, the CDN service provider obtains one or more pieces of content that may be shared by more than one user or client computing devices. Additionally, the CDN service provider obtains one or more pieces of content that will not be shared by more than one user or more than one client computing device. Responsive to the content request, the CDN service provider can combine the one or more pieces of shared content and the one or more pieces of unique content and deliver the combined content to the requested client computing device. |
US09628552B2 |
Method and apparatus for digital media control rooms
A method and apparatus for providing digital streaming media data to client devices via a digital media control room is described. The method may include receiving a request at a server computer system from a mobile device to join a digital media control room, where the digital media control room is a virtual location that provides access to digital media data of a real-world event captured by a plurality of different mobile devices. The method may also include locating one or more available media streams associated with the digital media control room that capture the real-world event as the real-world event occurs. The method may also include transmitting data indicative of the one or more available media streams to the mobile device. |
US09628541B2 |
Runtime grouping of tuples in a streaming application
A system and method for modifying the processing within a streaming application are disclosed. The method may include identifying a grouping location at which it may be possible to group tuples during the runtime execution of a streaming application. In some embodiments, this may include identifying locations at which a runtime grouping condition may be added to one or more stream operators without adversely affecting the performance of a streaming application. The method may add a runtime grouping condition to a processing location within the plurality of stream operators of a streaming application, in some embodiments. |
US09628539B2 |
Method and apparatus for distributed upload of content
A system and method for distributed uploading of content utilizes one or more viewer systems, coupled over a network to a remote content source, to download content to the viewer system(s) at a first time and to retransmit at least a portion of the received content to a remote storage system along with authorization/identification indicia identifying the viewer system. In one embodiment, fractional portions of the same content program from multiple different viewer systems are aggregated at the remote storage system for subsequent download streaming to a requesting of the viewer system for viewing thereby at a second time, which is time-shifted from the initial transmission from the content source. |
US09628536B2 |
Enhanced block-request streaming using cooperative parallel HTTP and forward error correction
A block-request streaming system provides for improvements in the user experience and bandwidth efficiency of such systems, typically using an ingestion system that generates data in a form to be served by a conventional file server (HTTP, FTP, or the like), wherein the ingestion system intakes content and prepares it as files or data elements to be served by the file server, which might or might not include a cache. A client device can be adapted to take advantage of the ingestion process as well as including improvements that make for a better presentation independent of the ingestion process. In the block-request streaming system, the an ingestion system generates data according to erasure codes and the client device, through various selection and timing of requests for media data and redundant data, can efficiently decode media to provide for presentations. |
US09628535B2 |
Data streaming infrastructure for remote execution in a constrained environment
A method, apparatus, and program product stream data between a host element and a target element in a parallel computing system. The method comprises partitioning data used to perform a task into a plurality of data streams based at least in part upon data associated with the task and partitioning a data stream into a plurality of data stream views based at least in part on a memory size associated with a target element configured to process the data stream. The method further comprises sequentially communicating at least a portion of the data stream views to the target element via a data streaming infrastructure implemented on at least a host element and the target element, wherein the portion of the data streaming infrastructure on the host element transfers the portion of the data stream views to the portion of the data streaming infrastructure on the target element. |
US09628534B2 |
Method and apparatus for transmitting and receiving adaptive streaming mechanism-based content
Methods and apparatus are provided for transmitting adaptive streaming mechanism-based content. Representations, which include content components, are combined into a group. At least two of the group, a representation, and a content component type are combined into a subset. The subset is transmitted. |
US09628532B2 |
HTTP adaptive streaming server with automatic rate shaping
An adaptive streaming server and a method are described herein for determining if a congestion level within a network exceeds a predetermined threshold and when this occurs then one or more lower bit rate segments of a content stream will be transmitted to a client. |
US09628531B2 |
Systems and methods for controlling client behavior in adaptive streaming
System and method embodiments are provided for controlling end client behavior in dynamic adaptive streaming over hypertext transfer protocol (HTTP) (DASH). In an embodiment, the method includes receiving, at the end client, a DASH Motion Picture Experts Group (MPEG)-2 stream (TS) segment, wherein the DASH MPEG-2 TS segment includes segmentation descriptors, and performing, with the end client, an action, such as a media presentation description (MPD) reload, indicated by the segmentation descriptor. In an embodiment, the segmentation descriptor conforms to a Society of Cable Telecommunications Engineers (SCTE) 35 protocol or a HTTP live streaming (HLS) protocol. |
US09628530B2 |
System and method for moderated and on-demand visual file distribution
A media file exchange system that supports group collaboration sessions in which media files are being shared with one or more participants. The system augments real-time media collaboration where one or more users have shared media to a group collaboration session. The system allows participants in the collaboration group to indicate their desire to share a media file to one, a few, or an entire group. The media file to be shared and a specific one of the receiving user devices are selected on a participants device other than the device owning the media. The system automatically moderates the exchange of the information between the participants. |
US09628528B2 |
Apparatus and method for providing content
A method of receiving content in a client is provided. The method may include receiving, from a server, a spatial set identifier (ID) corresponding to a tile group including at least one tile, sending, to the server, a request for first content corresponding to metadata, and receiving, from the server, the first content corresponding to the request. |
US09628523B2 |
Method and apparatus of performing remote management of a managed machine
Disclosed are an apparatus and method of remotely communicating with a managed machine. One example method of operation may include selecting the managed machine operating in a communication network, transmitting a connection request message to the managed machine and establishing a secure connection between the managed machine and an administrator machine. The example method may also include responsive to connecting with the managed machine, executing a host service on the managed machine, and connecting to the host service over the communication network via an application client operating on the administrator machine. |
US09628516B2 |
Policy-based data management
Compliance to a policy about how to treat data in a computer network environment is ensured by checking that conditions in the policy are satisfied by the entity before access to the data is provided. |
US09628514B2 |
Device association using an audio signal
A method of associating a first device with a second device is disclosed. The first device through its speaker broadcasts a request for association using an audio signal. The broadcasted audio signal is received by the second device through its microphone. The first and second devices then cooperatively verifies a security code and upon a successful verification of the security code, the first and the second devices are enabled to communicate with each other. |
US09628513B2 |
Electronic message manager system, method, and computer program product for scanning an electronic message for unwanted content and associated unwanted sites
A system, method, and computer program product are provided for scanning an electronic message for unwanted content and associated unwanted sites in response to a request. In use, a request is received via a network to scan an electronic message prior to opening the electronic message, utilizing an electronic message manager. In addition, the electronic message is scanned for unwanted content and associated unwanted sites, in response to the request. Further, a response to the request is sent via the network. |
US09628507B2 |
Advanced persistent threat (APT) detection center
A computerized method is described in which one or more received objects are analyzed by an advanced persistent threat (APT) detection center to determine if the objects are APTs. The analysis may include the extraction of features describing and characterizing features of the received objects. The extracted features may be compared with features of known APT malware objects and known non-APT malware objects to determine a classification or probability of the received objects being APT malware. Upon determination that the received objects are APT malware, warning messages may be transmitted to a user of associated client devices. Classified objects may also be used to generate analytic data for the prediction and prevention of future APT attacks. |
US09628504B2 |
Deploying a security appliance system in a high availability environment without extra network burden
A security appliance system routing strings of data packets in a high availability environment. The security appliance system contains a plurality of intrusion prevention systems connected to a load balancer and a computing device. Each intrusion prevention system contains stored session state information in a local session state data store, the load balancer contains a shared hash algorithm, and the computing device contains a connection state manager containing a network session state data store. The computing device includes a topology manager recording connectivity changes of the intrusion prevention systems and accordingly adjusting the shared hash algorithm for the recorded connectivity changes. Using the shared hash algorithm and routing information, a hash value is assigned to received strings. Strings are forwarded an intrusion prevention system based on assigned hash value and processed using stored session state information within the local session state data store and the network session state data store. |
US09628503B2 |
Systems and methods for network destination based flood attack mitigation
Embodiments are directed towards network address based flood attack mitigation methods. A PTMD disposed between one or more computers may monitor several network flows and generate metrics associated with malicious network activity, such as, flood attacks. If flood attacks are determined to be occurring, the PTMD may determine the network addresses targeted by the flood attack. Further, the PTMD may activate flood attack mitigation procedures for the targeted network addresses such that other network addresses associated with the monitored network flows are excluded from the flood attack mitigation procedure. The PTMD may monitor the network traffic subsequently communicated to the targeted network addresses. Accordingly, the PTMD may determine if the flood attack has ceased based on characteristics of the monitored network traffic. If the flood attack has ceased, the flood attack mitigation procedures for the targeted network addresses may be deactivated. |
US09628502B2 |
Active attack detection system
A method and system of detecting security attacks on a wireless networked computer system includes a remote sensor having a wireless adapter, processor, storage and memory, the remote sensor configured and arranged to emulate a client workstation that is activated and instructed to connect to a wireless computer network having an unknown security status. A secure communications tunnel is established via wired or wireless means between the remote sensor and a server. The server is configured to issue commands to the remote sensor and receive alert information from the remote sensor which detects security events on the wireless computer network. The server determines the threat level the security event poses to a user of the wireless computer network and issues a threat assessment to the user. |
US09628498B1 |
System and method for bot detection
Exemplary systems and methods for detecting a communication channel of a bot. In exemplary embodiments, presence of a communication channel between a first network device and a second network device is detected. Data from the communication channel is scanned and used to determine if a suspected bot communication exists. If a bot communication is detected, then a recovery process may be initiated. |
US09628497B2 |
Method and system for classifying a protocol message in a data communication network
An intrusion detection method for detecting an intrusion in data traffic on a data communication network parses the data traffic to extract at least one protocol field of a protocol message of the data traffic, and associates the extracted protocol field with a model for that protocol field. The model is selected from a set of models. An assessment is made to determine if a contents of the extracted protocol field is in a safe region as defined by the model, and an intrusion detection signal is generated in case it is established that the contents of the extracted protocol field is outside the safe region. The set of models may comprise a corresponding model for each protocol field of a set of protocol fields. |
US09628496B2 |
Information management system and information management method
In the present invention, a control section of a CRM server performs editing processing for TPO (the time, the place, and the occasion) requirements. Next, a control section of a TPO server registers the TPO requirements in order to convert the same to TPO definitions. Then, the control section performs setting processing for the TPO definitions. A portable terminal identifies the current location and the current time. Then, a control section verifies TPO definition state transitioning. If transitioning of the TPO definition state is detected, the control section performs TPO definition state transition notification processing. The control section of the portable terminal performs individual control processing on the basis of the TPO definitions. |
US09628495B2 |
Self-selected user access based on specific authentication types
Embodiments of the invention are directed to a system, method, and a computer program product self-selected user access based on specific authentication types. The system typically including a memory, a processor, and a module configured to receive from a user, a user-selected preference, wherein the user-selected preference comprises one or more authentication types desired by the user; determine a level of authentication from a plurality of levels of authentication are associated with the one or more authentication types associated with the user-selected preference; initiate the presentation of a user interface that enables the user to select one or more application functions, wherein the one or more application functions are associated with the determined level of authentication; receive from a user, a selection of one or more application functions. |
US09628490B2 |
Trusted contact name validation
Embodiments of the present invention address deficiencies of the art in respect to validating a specified identity for a participant to a chat session and provide a novel and non-obvious method, system and computer program product for trusted contact name validation for an instant messaging session. In one embodiment of the invention, an instant messaging contact name validation method can be provided. The method can include establishing a trusted relationship among at least two instant messaging servers in a trusted community of instant messaging servers, receiving a request to add a specified contact to a list of instant messaging contacts in association within one of the instant messaging servers in the trusted community of instant messaging servers, and validating the specified contact with another of the instant messaging servers in the trusted community of instant messaging servers. |
US09628489B2 |
Remote access to resources over a network
Systems and techniques are provided for controlling requests for resources from remote computers. A remote computer's ability to access a resource is determined based upon the computer's operating environment. The computer or computers responsible for controlling access to a resource will interrogate the remote computer to ascertain its operating environment. The computer or computers responsible for controlling access to a resource may, for example, download one or more interrogator agents onto the remote computer to determine its operating environment. Based upon the interrogation results, the computer or computers responsible for controlling access to a resource will control the remote computer's access to the requested resource. |
US09628486B2 |
Access control for data blocks in a distributed filesystem
A method for access control of data in a filesystem is provided. The method includes storing a map in a server, the map coupled to an agent, the map associating access control rules, filenames in a namespace in a first filesystem, and owners of files. The method includes determining a block filename in a namespace in a second filesystem, based on an I/O request from a data node to the second filesystem regarding a data block. The method includes determining a username of the I/O request and determining a filename in the namespace in the first filesystem, based on the block filename in the namespace in the second filesystem. The method includes applying to the data block and the username an access control rule that the map associates with an owner of a file having the filename in the namespace in the first filesystem. |
US09628481B2 |
Method of providing fresh keys for message authentication
The present invention provides a method of operating a mobile unit in a wireless communication system. Embodiments of the method may include providing access request message(s) including information indicative of a first counter and a message authentication code formed using a first key. The first key is derived from a second key and the first counter. The second key is derived from a third key established for a security session between the mobile unit and an authenticator. The first counter is incremented in response to each access request provided by the mobile unit. |
US09628479B2 |
Generating and using ephemeral identifiers and message integrity codes
Systems and methods for generating and using ephemeral identifiers are provided. One example method includes determining, by one or more computing devices, a current time-count. The method includes determining, by the one or more computing devices, a time-modified identifier based at least in part on a static identifier and the current time-count. The method includes determining, by the one or more computing devices, an ephemeral identifier based at least in part on the time-modified identifier and a rotation key. One example system includes a plurality of beacon devices, at least one observing entity, and at least one verifying entity. |
US09628478B2 |
Technologies for secure storage and use of biometric authentication information
Generally, this disclosure describes technologies for securely storing and using biometric authentication information, such as biometric reference templates. In some embodiments, the technologies include a client device that stores one or more biometric reference templates in a memory thereof. The client device may transfer such templates to an authentication device. The transfer may be conditioned on verification that the authentication device includes a suitable protected environment for the templates and will execute an acceptable temporary storage policy. The technologies may also include an authentication device that is configured to temporarily store biometric reference templates received from a client device in a protected environment thereof. Upon completion of biometric authentication or the occurrence of a termination event, the authentication devices may delete the biometric reference templates from the protected environment. |
US09628474B2 |
Method and apparatus for associating identity modules and terminal equipment
The present invention provides method, apparatus and computer program product for facilitating verification of an identity module, such as associated with a UICC, operatively coupled to a terminal equipment, such as a machine-type communication device. Upon determining that the identity module is in a bonded state, one or more bonding identifiers are read from the identity module and compared with at least a predetermined portion of the terminal equipment identifier, such as an IMEI, stored in the terminal equipment. If at least one of the bonding identifiers corresponds with at least a predetermined portion of the terminal equipment identifier, the identity module and/or the terminal equipment are shifted into predetermined operating conditions. A bonding process may also be performed, whereby the identity module acquires the terminal equipment identifier of currently associated terminal equipment and stores a bonding identifier in identity module memory based thereon. |
US09628471B1 |
Protecting user identity at a cloud using a distributed user identity system
A computing system assigns an anonymous cloud account to a user in response to a determination that identity information of the user is validated for a request to access a cloud. The anonymous cloud account does not reveal an identity of the user to the cloud. The computing system creates mapping data that associates the user with the anonymous cloud account. The cloud does not have access to the mapping data. The computing system facilitates user access to the cloud based on the anonymous cloud account. The cloud generates cloud access pattern data for the anonymous cloud account without determining the identity of the user. |
US09628465B2 |
State driven orchestration of authentication components in an access manager
Methods and systems are described for state driven orchestration of authentication components to access a resource protected by an access manager framework. In response to a client request for a protected resource, relevant authentication components and their respective order are determined. Upon successful authentication of the first authentication component, proper state information of the authentication process is stored by the client indicating the next authentication component. In response to a request for additional credential information for the authentication process from the next authentication component, the client provides the stored state information so that the authentication process continues with the second authentication component according to the determined order of the authentication components within an authentication process. |
US09628464B2 |
Mobile-device user authentication
In one embodiment, receiving a notice from a first user associated with a first mobile device indicating that the first user wishes to share information of the first user with one or more second users respectively associated with one or more second mobile devices; accessing information known about one or more users and one or more mobile devices respectively associated with the one or more users; identifying at least one candidate for the first user based on the information known about the one or more users and the one or more mobile devices; and confirming one or more of the at least one candidate as the one or more second users. |
US09628462B2 |
Online signature identity and verification in community
Techniques for electronic signature process management are described. Some embodiments provide an electronic signature service (“ESS”) configured to manage electronic identity cards. In some embodiments, the ESS generates and manages an electronic identity card for a user, based on personal information of the user, activity information related to the user's actions with respect to the ESS, and/or social networking information related to the user. The electronic identity card of a signer may be associated with an electronic document signed via the ESS, so that users may obtain information about the signer of the document. Electronic identity cards managed by the ESS may also be shared or included in other contexts, such as via a user's profile page on a social network, a user's email signature, or the like. |
US09628460B2 |
Method of controlling access to an internet-based application
A novel method of dealing with the problem of phishing, pharming, key-logging and man-in-the-middle attacks on internet-based applications which require the submission of valid login credentials, by permitting a user to control access to an internet-based application (3) (such as an internet banking website) by the simple transmission of a command via the internet to allow access to the internet-based application (3) whenever the user wishes to access the application, and by transmitting a command via the internet to deny access to the internet-based application at all other times, to prevent unauthorized access by any unscrupulous parties. |
US09628457B2 |
System and method for authenticating local CPE
Systems, methods, apparatus and other mechanisms for authenticating wireless customer premises equipment (CPE) at a service location by transmitting an authentication trigger signal via a first communication mechanism associated with the service location toward CPE associated with the service location; monitoring a second communication mechanism associated with the service location to detect therefrom any received authentication trigger response signals; and authenticating only CPE associated with a received authentication trigger response signal, wherein at least one of the first and second communication mechanisms comprises a local infrastructure element. |
US09628449B1 |
Multi party messaging
Multi-party messaging is disclosed. A plurality of public keys is requested by a first device from a server, wherein the plurality of public keys is associated with a plurality of recipients. A message containing one or more components is encrypted using a symmetric key. The symmetric key is encrypted, using each of the respective public keys, resulting in a plurality of encrypted symmetric keys. The encrypted message and the encrypted symmetric keys are encapsulated in an encapsulation. The encapsulation is transmitted to the server. |
US09628448B2 |
User and device authentication in enterprise systems
Methods and systems for authenticating users of client devices to allow access of resources and services in enterprise systems are described herein. An authentication device may validate a user based on authentication credentials received from a client device. Validation data stored by the authentication device, and a corresponding access token transmitted to the client device, may be used to authenticate the user for future resource access requests. A user secret also may be stored by the authentication device and used to validate the user for future resource access requests. Additionally, after validating a user with a first set of authentication credentials, additional sets of credentials for the user may be retrieved and stored at an access gateway for future requests to access other services or resources in an enterprise system. |
US09628447B2 |
Methods and apparatus for protected distribution of applications and media content
Methods, devices, apparatus, computer-readable media and processors are provided that protect the distribution of media content. Media content is encrypted and the associated cryptographic mechanisms are stored and accessible either remotely at a networked database or internally within a data storage device memory. Access to the cryptographic mechanisms is granted by associating the cryptographic mechanisms with a data storage device identification and, optionally, a computing device identification. |
US09628446B2 |
Mapping and obscuring digital representations of a number of user accounts on a social network map
Mapping and obscuring digital representations of a number of user accounts on a social network map includes identifying a primary user account from a number of user accounts of a social network, determining, based on metadata associated with the user accounts, a relationship for each of the user accounts relative to the primary user account, mapping, based on the relationship for each of the user accounts relative to the primary user account, a digital representation of each of the user accounts to a territory on a social network map, determining, based on the relationship for each of the user accounts relative to the primary user account, an obscurity level for each of the user accounts, and obscuring, based on the obscurity level, the territory associated with the digital representation of each of the user accounts on a social network map from the primary user account. |
US09628444B1 |
Protecting network devices by a firewall
Systems and methods provide for scaling and management of a gateway. In one embodiment, a method includes: in response to a request from a client device, establishing, by a computer system implementing a gateway to a private network, a network tunnel between the client device and the gateway; and after establishing the network tunnel, starting a separate firewall service with a separate set of firewall rules on the computer system for selectively blocking and allowing network traffic between the client device and one or more network devices in the private network. |
US09628442B2 |
DNS snooping to create IP address-based trust database used to select deep packet inspection and storage of IP packets
At a network device through which client devices communicate with a network, a database is created that maps Internet Protocol (IP) addresses each to a respective trust metric for a domain name associated with the IP address. An IP packet sent from a client device to the network and that indicates a destination IP address for a network-accessible resource associated with a domain name is intercepted. Using the destination IP address in the intercepted IP packet, the domain name trust metric mapped to the destination IP address is retrieved from the database. IP packets received from the destination IP address are processed based on the retrieved domain name trust metric and a predetermined trust metric criterion. |
US09628440B2 |
Takeover processes in security network integrated with premise security system
An integrated security system is described comprising a gateway located at a first location. The gateway includes a takeover component that establishes a coupling with a first controller of a security system installed at the first location. The security system includes security system components coupled to the first controller. The takeover component automatically extracts security data of the security system from the first controller. The gateway automatically transfers the security data extracted from the controller to a second controller. The second controller is coupled to the security system components and replaces the first controller. |
US09628438B2 |
Consistent ring namespaces facilitating data storage and organization in network infrastructures
Computer-implemented methods and systems for managing data objects within a computer network infrastructure that facilitate more efficient and reliable data storage and access are provided. An exemplary method may comprise establishing a physical identifier for each storage resource. A plurality of unique virtual identifiers for each storage resource is generated based on the physical identifier. The plurality of unique virtual identifiers is stored in a consistent ring namespace accessible to every node. An object identifier associated with a location of a data object to be stored in a storage resource is generated. The object identifier is mapped to the consistent ring namespace. The method may also include enabling traversing the consistent ring namespace from any node in the computer network to locate and access the data object. |
US09628437B2 |
Selective proxying in domain name systems
Systems and methods for processing requests for domain name information in accordance with subscriber information are provided. A request for domain name information can be correlated with subscriber preferences to resolve the domain name information. Domain names may be flagged for blocking or proxying by one or more subscriber preferences. In response to a flagged domain name, a client device can be redirected to a web server that can function as proxy on behalf of the user for accessing the flagged domain. In one example, user preferences and/or network preferences can be used to determine whether a particular user can bypass a blocking preference and access the flagged domain using the proxy. |
US09628432B2 |
Messaging system and method
A method of cross-platform messaging including receiving, by a messaging system, at least one initial message having a message format, an initial message layout and data indicative of at least one user associated with the at least one initial message, and before delivery to a destination communication device associated with the at least one user, converting, by the messaging system, an initial message into an adapted message, and facilitating, by the messaging system, delivery of the adapted message to the destination communication device. The adapted message is characterized by, at least, an adapted message layout, and the adapted message layout differs from the initial message layout in a characteristic associated with respective message layout such as number of media objects, a graphical image of a media object, a size of a placeholder related to a media object, and a location of a media object within a respective message layout. |
US09628431B2 |
E-mail integrated instant messaging
A system and method supporting instant messaging which removes many of the problems and harriers to the use of instant messaging through the use of universally unique identifiers to web pages for instant messaging sessions, with recipients invited to the instant messaging session via email. |
US09628429B2 |
Display of common user interests on subscription to a user's social feed
A system and method is disclosed for determining why a first user has indicated a desire to associate with a second user in an online social network. The first user initiates a request to associate with the second user. When the request is received at the system of the subject technology, one or more signals related to how the first user discovered the second user in the social network are determined, and a message is generated based on the one or more signals. A notification is provided to the second user that includes the message and an indication of the request to convey why the first user indicated a desire to associate with the second user. In some aspects, the subject technology will determine and display, in the notification, common interests that the users share so that the notified user can better evaluate the request. |
US09628428B1 |
Virtual emails for IMAP commands
Some embodiments provide a method to extract metadata of MIME attachments or other distinguishable MIME parts of MIME emails into virtual emails. The virtual emails do not contain the full MIME attachment data but instead include some or all header fields of the parent email which contains the MIME attachment and a link to the MIME part of the MIME attachment in this email. The virtual emails may be stored in a separate namespace, or a folder which may be hidden from some IMAP clients, on an IMAP server. The virtual emails may be indexed by the IMAP server like any other email. Virtual emails may be created when new emails arrive on the IMAP server and synchronized automatically, e.g., when the parent email changes. As such, standard IMAP commands like FETCH, SEARCH, SORT, THREAD, etc. may be used for virtual emails. |
US09628424B2 |
Apparatus and method for sharing time-sensitive data between devices with intermittent connectivity
An apparatus and method for sharing time-sensitive data between devices are provided. The apparatus includes a communication unit for communicating with other devices, a display unit for displaying a notification of a network event originating from another device, and a controller for, when the communication unit receives a first notification message about the network event from the other device, controlling the display unit to present the notification to the user. |
US09628423B2 |
Electronic sticky note system, information processing terminal, method for processing electronic sticky note, medium storing program, and data structure of electronic sticky note
Provided is a technology enable to associate electronic sticky data with any application and to execute the application. An electronic sticky note system includes display means for displaying an electronic sticky note, storage means for storing sticky note information which includes header information to be displayed in a display area for the electronic sticky note, sticky note displaying position information indicating a position to be displayed the electronic sticky note, and application associating information corresponding to information for activating the application associated with the electronic sticky note, control means for displaying, by the display means, the electronic sticky note on the basis of the header information and the electronic sticky note displaying position information and for executing the application on the basis of the application associating information, and input means for inputting the sticky note information. In the electronic sticky note system, an application, which is associated with the electronic sticky note, includes other than the application which is indicated by the sticky note displaying position information. |
US09628419B2 |
System for annotation of electronic messages with contextual information
A system that transforms electronic messages into annotated messages that include contextual information to aid a recipient in utilizing the electronic message, understanding its meaning, and responding to the message. Annotations are additions or modifications to the original message with contextual information that is related to the features and contents of the original message. Message features are extracted and used to search one or more sources of contextual information. Relevant items are retrieved and added to the message, for example as attachments, hyperlinks, or inline notes. Machine learning techniques may be used to generate or refine modules for feature extraction and information selection. Feedback components may be used to track the usage and value of annotations, in order to iteratively improve the annotation system. |
US09628416B2 |
Photo avatars
In one implementation, endpoint computing devices communicate using one or more instant messages. A user interface of an endpoint receives text input from a user for an instant message. The endpoint generates a trigger command in response to the instant message. A camera captures an image in response to the trigger command. The image may depict the user that entered the text input but other images are possible. The endpoint sends the image with the instant message to a recipient of the instant message. |
US09628413B2 |
Low latency messaging chat server
A low latency messaging chat service may provide for receiving from a chat client a connection request via a network; authenticating the chat client by a registration process; allocating to the chat client at least a first topic corresponding to a first message queue and a second topic corresponding to a second message queue, the first topic assigned a first format and the second topic assigned a second format; enabling the chat client to post messages in the first topic; and enabling the chat client to receive messages in the second topic. |
US09628407B2 |
Multiple software versions in a switch group
One embodiment of the present invention provides a switch. The switch includes one or more ports, a switch group module, a persistent storage module, and a synchronization module. The switch group module maintains a membership in a switch group. The persistent storage module stores configuration information associated with the switch group in a data structure, which includes one or more columns for attribute values of the configuration information, in a local persistent storage. The synchronization module obtains update information, which includes a first set of attribute values, from a portable representation. The synchronization module identifies a software version of a second switch in the switch group and generates an update instruction to update the first data structure in a persistent storage in the second switch with target update information. The target update information comprises a second set of attribute values updated from the first set of attribute values. |
US09628406B2 |
Intra switch transport protocol
In one implementation, a network device is configured to implement an intra switch transport protocol. The intra switch transport protocol is configured to determine a window size according to a predetermined bandwidth and a round trip time between a plurality of ingress ports and an egress port. The network device is configured to sending at least one data packet from an ingress port to an egress port without first receiving any acknowledgement from the egress port. The network device continues to send packets and increment a counter accordingly until the counter reaches the window size. The network device ceases transmission of subsequent data packets and/or queues subsequent data packets based on the counter exceeding the window size. |
US09628405B2 |
Merging multicast ABR and unicast ABR with progressive download ABR in a customer premises device within the same video delivery pipe
A method of managing bandwidth allocation across a video pipe that delivers both streaming adaptive bitrate (ABR) content and progressive download ABR content includes receiving a designation of a congestion boundary within a video pipe, the congestion boundary designating a first percentage of the video pipe that is to be used for streaming ABR content when congestion exists on both sides of the congestion boundary, wherein a remaining percentage of the video pipe is to be used for progressive download ABR; allocating bandwidth for streaming ABR content, wherein the gateway device can allocate for streaming content only that portion of the remaining percentage of bandwidth that is not requested for progressive download content; and allocating bandwidth for progressive download content, wherein the gateway device can allocate for progressive download content only that portion of the first percentage of bandwidth that is not requested for streaming content. |
US09628401B2 |
Software product instance placement
A system, method and computer program product for detecting data omissions between intermittently-connected devices. An example system includes physical computing resources available for utilization. A placement server communicates with a client. The client seeks to use a portion of the computer resources to execute the software product instances. The placement server receives resource utilization parameters from the client and assigns the portion of the computer resources to the software product instances based on the resource utilization parameters and the physical computing resources available for utilization. The resource utilization parameters include specification of a hierarchal arrangement of the software product instances. |
US09628400B2 |
Interest forwarding for interactive client anonymity
In one embodiment, an intermediate node in a communication network receives a client interest with an indication of a client-requested reverse private path. The reverse private path is a label switched path toward a corresponding client with encrypted client information. In response to receiving the client interest, the intermediate node allocates a label for the reverse private path. The allocated label is mapped to a node from which the client interest is received. The intermediate node then forwards the client interest with the allocated label toward a server. In another embodiment, the server receives a client interest including a client-requested reverse private path from a particular intermediate node and determines a server interest. The allocated label for the client interest is inserted into the server interest which is forwarded toward the client via the particular intermediate node using the allocated label for the reverse private path. |
US09628396B2 |
Network device and method for outputting data to bus with data bus width at each cycle by generating end of packet and start of packet at different cycles
A method used in a network device for outputting data to a bus with a data bus width at each cycle includes: using a packet generator for generating idle data after an end of packet for a packet at a cycle and generating a start of packet for a next packet at a different cycle; and using an inter-packet gap (IPG) generator for receiving data transmitted from the packet generator, dynamically writing the received data into the buffer, and inserting a gap of idle data between the end of packet and the start of packet according to the end of packet and the idle data generated by the packet generator. |
US09628395B1 |
Interfaces for service requests in a balloon network
Example embodiments may relate to web interfaces for a balloon-network. For example, a computing device may display a graphical interface that that includes one or more interface features to receive a request for use of bandwidth of a balloon network. In particular, the computing device may receive, via the graphical interface, input data corresponding to a bandwidth request for a first location, where the bandwidth request includes: (i) an indication of the first location and (ii) an indication of time. Subsequently, the computing device may receive an indication corresponding to whether or not the bandwidth request is accepted, where acceptance of the bandwidth request is based at least in part on expected movement of one or more balloons from a plurality of balloons in the balloon network. As such, the computing device may display, on the graphical interface, the indication corresponding to whether or not the bandwidth request is accepted. |
US09628393B2 |
Network user priority assignment system
A network user priority assignment system (“NUPAS”) for assigning network user priorities on a network is described. The NUPAS may include a host and a gateway in signal communication with the host. The host may be configured to transmit a request message signal and the gateway may be configured to receive the transmitted request signal and in response generate an acknowledgement signal having a traffic descriptor. |
US09628392B2 |
Method and device for forwarding message
A method for forwarding message, comprising: receiving, by a forwarding plane device, a first message, and looking up a first entry matched with the first message in a flow table of the forwarding plane device, wherein the forwarding plane device is a device compliant with a network architecture in which control and forwarding are separated; performing, by the forwarding plane device, a first operation on the first message for limiting its message forwarding rate according to the first entry. Further, a corresponding device is also provided in an embodiment of this disclosure. With the technical solutions provided in embodiments of this disclosure, the forwarding plane device can put limits on its message forwarding rate. |
US09628391B2 |
Recursive load balancing in a loop-free routing topology using routing arcs
In one embodiment, a method comprises creating, in a computing network, a loop-free routing topology comprising a plurality of routing arcs for reaching a destination device, each routing arc comprising a first network device as a first end of the routing arc, a second network device as a second end of the routing arc, and at least a third network device configured for routing any network traffic along the routing arc toward the destination device via any one of the first or second ends of the routing arc; and load balancing the network traffic along the routing arcs based on traffic metrics obtained at the first and second ends of the routing arcs, including selectively sending a backpressure command to a first one of the routing arcs supplying at least a portion of the network traffic to a congested one of the routing arcs. |
US09628385B2 |
Method of identifying internal destinations of networks packets and an apparatus thereof
Embodiments of the apparatus of identifying internal destinations of network packets relate to a network chip that allows flexibility in handling packets. The handling of packets can be a function of what the packet contents are or where the packets are from. The handling of packets can also be a function of both what the packet contents are and where the packets are from. In some embodiments, where the packets are from refers to unique port numbers of chip ports that the packets arrived at. The packets can be distributed for processing within the network chip. |
US09628384B2 |
Adaptive industrial network
An environment, such as an industrial environment, may include a control network with multiple network devices. A network device in the control network may have groups of communication ports servicing upstream and/or downstream network traffic. The group of communication ports may have, for example, two communication ports. Transmission parameters of the communication ports may be dynamically configured based on a first network port configuration and a second network port configuration for the first and second communication ports, respectively. The first network port configuration may have different transmission parameters than the second network port configuration. The first network port may forward data packets over the control network according to the first network port configuration, while the second network port may forward data packets to the next hop device utilizing the second network port configuration. |
US09628382B2 |
Reliable transport of ethernet packet data with wire-speed and packet data rate match
Method, apparatus, and systems for reliably transferring Ethernet packet data over a link layer and facilitating fabric-to-Ethernet and Ethernet-to-fabric gateway operations at matching wire speed and packet data rate. Ethernet header and payload data is extracted from Ethernet frames received at the gateway and encapsulated in fabric packets to be forwarded to a fabric endpoint hosting an entity to which the Ethernet packet is addressed. The fabric packets are divided into flits, which are bundled in groups to form link packets that are transferred over the fabric at the Link layer using a reliable transmission scheme employing implicit ACKnowledgements. At the endpoint, the fabric packet is regenerated, and the Ethernet packet data is de-encapsulated. The Ethernet frames received from and transmitted to an Ethernet network are encoded using 64b/66b encoding, having an overhead-to-data bit ratio of 1:32. Meanwhile, the link packets have the same ratio, including one overhead bit per flit and a 14-bit CRC plus a 2-bit credit return field or sideband used for credit-based flow control. |
US09628378B2 |
Packet format and communication method of network node for IP routing compatibility and network node therefor
A communication method of a network node for internet protocol (IP) routing compatibility, includes generating a packet including a name of a content that includes first information indicating a location of the content, and second information identifying the content, and transmitting the generated packet. |
US09628372B2 |
Data communication apparatus, data communication system, and data communication method
A data communication apparatus forms a mesh network together with at least one gateway includes a frame generating unit and a frame transferring unit. The frame generating unit generates a meter data frame to transmit to a gateway. The meter data frame is a frame including meter data. The frame transferring unit transfers the meter data frame received from another data communication apparatus. The meter data frame is addressed to the gateway. The frame generating unit transmits the meter data frame to which number of alternate routing that indicates number of allowable transmission attempts from a data communication apparatus adjacent to a destination gateway of the meter data frame to the gateway is added. The frame transferring unit changes the number of alternate routing added thereto to a value smaller by 1 than a value that has been set and transits the meter data frame to another data communication apparatus. |
US09628368B2 |
Method and apparatus for compressing content name
A method and an apparatus for compressing a content name are provided. In the method, a controller constructs a content name tree according to content names in a content database, where a first node of the content name tree stores a first-level prefix of a content name in the content database, and an Nth-level node of the content name tree stores prefixes of first N levels of the content name; and then the controller compresses a content name stored in the Mth-level node into a first content name stored in a father node of the Mth-level node when determining that the content name stored in each Mth-level node in the content name tree is corresponding to a first network node in a network. Thus, compression of a content name in a content name database is achieved, and space occupied by the content name is saved. |
US09628367B2 |
Method for traffic engineering on networks made of asymmetrical network switches
An asymmetrical network switch adapted to auto-discover and advertise into a traffic engineering, TE, domain a switch detailed connectivity matrix, SDCM, containing for each allowed switching combination of interfaces of said asymmetrical network switch at least one switch detailed connectivity matrix entry, SDCME, wherein each said SDCME represents an internal to said asymmetrical network switch potential connection interconnecting the interfaces of said interface switching combination, wherein a SDCME advertisement includes a switch detailed connectivity matrix entry cost vector, SDCME CV, which comprises a set of attributes describing cost penalties in terms of various service characteristics that a network service incurs if it selects a path or a tree traversing the asymmetrical switch in accordance with the SDCME. |
US09628366B2 |
Methods, systems, and computer readable media for sustaining active control over concurrent session connections
Methods, systems, and computer readable media for sustaining active control over concurrent session connections are disclosed. According to one example, the disclosed subject matter describes herein a method that includes opening a plurality of session connections to a device under test (DUT), wherein each of the opened session connections is associated with an initial window size value and receiving data from the DUT via one or more of the opened session connections. The method further includes communicating a packet instructing the DUT to cease sending the data via the one or more of the opened session connections in the event the data received from the DUT equals the initial session window size value and utilizing at least one of the opened session connections not being used to receive the data from the DUT in order to resume active communication of the data with the DUT. |
US09628361B2 |
EDCA operation to improve VoIP performance in a dense network
This disclosure relates to wireless communication techniques for high short packet density scenarios. According to some embodiments, a wireless device may determine whether a wireless medium is experiencing crowded short packet conditions during a first period of time. The wireless device may select an operational mode from at least a first operational mode and a second operational mode based at least in part on whether the wireless medium is experiencing crowded short packet conditions. The wireless device may perform wireless communication on the wireless medium according to the selected operational mode. |
US09628353B2 |
Using cloud resources to improve performance of a streaming application
A streams manager monitors performance of a streaming application, and when the performance needs to be improved, the streams manager automatically requests virtual machines from a cloud manager. The streams manager specifies to the cloud manager streams infrastructure and one or more streams application components for the virtual machines. The cloud manager provisions one or more virtual machines in a cloud with the specified streams infrastructure and streams application components. The streams manager then modifies the flow graph so one or more portions of the streaming application are hosted by the virtual machines in the cloud. |
US09628352B2 |
Method, apparatus and system for downloading file in content delivery network
A method, an apparatus and a system for downloading a file in a content delivery network are provided. A sending rate of a file fragment is determined according to a requirement for playing the file fragment, the sending rate of the file fragment is carried in a request message for downloading the file fragment, so that a content source server or an upper-level cache server can send the file fragment at the sending rate of the file fragment carried in the request message, which solves the problem in the prior art that, the upper-level cache server or the content source server fails to meet diversified downloading requirements of a lower-level cache server, and the lower-level cache server is capable of providing a flexible streaming service for a terminal apparatus, improving user experience. |
US09628351B2 |
Scalable variant configuration platform for online systems
A scalable variant configuration platform separates, behind a defined interface, mechanisms for determining configurations based upon provided variants. Information regarding specific factors, or “variants” is provided and a configuration request object is generated through which services can be configured. A schema is utilized to generate an object model that can assign object-oriented properties, such as type information, to the various factors that can influence configuration. The schema is also utilized to generate a sample configuration file, which can aid in the generation of the configuration file that can specify how one or more factors can affect the configuration of the services. The generation of the configuration request object is based upon self-tuning algorithms that can adapt based upon the types of factors that will be utilized for the configuration of the services being provided. |
US09628349B2 |
Interactivity analyses of web resources based on reload events
The initiation of a reload event by a user of a client-side application who requests a web resource from a server is an implicit indication that the user is dissatisfied with at least some aspect of the loading of the web resource by the client-side application. Information regarding the operational condition of the application at the time of a reload event may be instructive in identifying any issues or deficiencies exist regarding the web resource, the client-side application or the server. Code for displaying the web page may include one or more detection scripts which instruct the client-side application and/or the server-side application to detect a reload event, to capture the information upon the initiation of the reload event and to transfer the captured information back to the server, where the information may be compared against thresholds or tolerances to determine whether any such issues or deficiencies exist. |
US09628348B2 |
Policy driven auto-transitioning framework for governed objects in service registries
A method for automated policy-driven transitioning of governed objects in a service registry is provided. The method includes receiving a request in a service registry executing in memory of a host server computing system to persist a governed object of a service registry. The method also includes identifying a policy to be applied to the governed object in response to the receipt of the request. The method yet further includes applying the policy to the governed object and determining whether or not the application of the policy has been successful. Finally, the method includes triggering a transition of the governed object from a contemporaneous state to a new state in the service registry if the application of the policy has been successful. In this way, governed objects of the service registry can be transitioned from one state to the other driven by policies in an automated way. |
US09628345B2 |
Framework supporting content delivery with collector services network
A framework supporting content delivery includes a plurality of devices, each device configured to run at least one content delivery (CD) service of a plurality of CD services. The plurality of CD services include collector services forming one or more collector service networks. |
US09628343B2 |
Content delivery framework with dynamic service network topologies
A content delivery framework (CDF) includes a plurality of devices, each device configured to run at least one of a plurality of content delivery (CD) services. The plurality of CD services form one or more CD service networks, and each CD service network having a dynamic network topology. |
US09628342B2 |
Content delivery framework
A framework supporting content delivery includes multiple devices, each configured to run at least one content delivery service. The content delivery services include collector services, reducer services, and control services. Event information is provided from the services, and the control services provide control information to control operation or configuration of content delivery services. |
US09628341B2 |
Incorporating FDT/DTM technology into a native control system monitoring application
Provided is a system including at least one server configured for executing one or more system level applications to manage first and second type system components. The first and second type system components are responsive to first and second type interface standards, respectively. The system also includes a graphical user interface (GUI) configured for displaying data associated with the first type system components in accordance with the first type interface standards. An application, representative of the second type system components, is displayed via the GUI in accordance with the first type interface standards. |
US09628339B1 |
Network testbed creation and validation
Embodiments of network testbed creation and validation processes are described herein. A “network testbed” is a replicated environment used to validate a target network or an aspect of its design. Embodiments describe a network testbed that comprises virtual testbed nodes executed via a plurality of physical infrastructure nodes. The virtual testbed nodes utilize these hardware resources as a network “fabric,” thereby enabling rapid configuration and reconfiguration of the virtual testbed nodes without requiring reconfiguration of the physical infrastructure nodes. Thus, in contrast to prior art solutions which require a tester manually build an emulated environment of physically connected network devices, embodiments receive or derive a target network description and build out a replica of this description using virtual testbed nodes executed via the physical infrastructure nodes. This process allows for the creation of very large (e.g., tens of thousands of network elements) and/or very topologically complex test networks. |
US09628337B2 |
Symmetric coherent request/response policy enforcement
A set of service level agreement (SLA) policies and service level definition (SLD) policies that are applied to a request message of a correlated request/response message pair are tracked. A response message of the correlated request/response message pair is detected. A corresponding set of platform-specific policy enforcement processing rules that are used to enforce the set of SLA policies and SLD policies on the response message are identified using the tracked set of SLA policies and SLD policies applied to the request message. The set of SLA policies and SLD policies are enforced on the response message using the identified corresponding set of platform-specific policy enforcement processing rules. |
US09628334B2 |
VLAN tagging in a virtual environment
VLAN tagging in a virtual environment is described, including configuring a set of VLAN tagging parameters for each virtual network device to be used by the virtual network device to correctly perform VLAN tagging of frames in response to configuration changes with respect to the virtual network device. A first example of a configuration change with respect to the virtual network device comprises the virtual network device being transitioned from being attached to a virtual switch tagging (VST) port group to being attached to a virtual guest tagging (VGT) port group. A second example of a configuration change with respect to the virtual network device comprises the virtual network device being migrated from a first host to a second host. |
US09628333B2 |
Operating a dual chipset network interface controller (‘NIC’) that includes a high performance media access control chipset and a low performance media access control chipset
Operating a dual chipset network interface controller (‘NIC’) that includes a high performance media access control chipset and a low performance media access control chipset, including: determining, by a NIC control module, an amount of network traffic being processed by the NIC; determining, by the NIC control module, whether the amount of network traffic being processed by the NIC exceeds a predetermined threshold; responsive to determining that the amount of network traffic being processed by the NIC exceeds a predetermined threshold, configuring, by the NIC control module, the NIC to utilize the high performance media access control chipset for data communications operations; and responsive to determining that the amount of network traffic being processed by the NIC does not exceed the predetermined threshold, configuring, by the NIC control module, the NIC to utilize the low performance media access control chipset for data communications operations. |
US09628332B2 |
Resource allocation to game titles in a remote gaming environment
Embodiments of the present invention monitor and dynamically allocate computing resources to a game service. A game service provides a remote gaming environments to which users connect over a wide area network, such as the internet. A game session runs a single instance of a game title. The game session runs the video game code responsible for creating the playing experience for the users. In another embodiment, the number of active game sessions is monitored and computing resources are allocated dynamically as the number of sessions increases or decreases. |
US09628327B2 |
Method and network infrastructure for the redundant transmission of messages in a distributed real-time system
The invention relates to a method for the redundant transmission of messages in a distributed real-time system, wherein the real-time system comprises two or more computing nodes (101-108) and one or more star couplers (201-209), wherein the computing nodes (101-108) are connected to the star couplers (201-209) by means of bidirectional communication lines (301, 302, 303) and the star couplers (201-209) are interconnected by bidirectional communication lines (310), and wherein the star couplers (201-209) connected by the communication lines (310) form a network infrastructure (200), wherein one or more star couplers (201-209) of the network infrastructure (200) perform one or more activity rasters (1000), wherein an activity raster (1000) consists of alternating active phases (502) and rest phases (501), and wherein any message sent in the network infrastructure is assigned to precisely one activity raster (1000). The invention also relates to a network infrastructure and also a real-time system comprising a network infrastructure of this type. |
US09628321B2 |
Packet filtering based on dynamic usage information
A receiver of network data dynamically filters packets by packet type from a network device CPU based on usage information, such as time, day, location, and feature (e.g., “video” or “application”) selection. |
US09628316B2 |
Multi-waveband OFDM receiver, and frequency offset compensation method and system
A multi-waveband OFDM receiver and a frequency offset compensation method and system are disclosed. The method includes: performing single waveband frequency offset estimation on an optical comb line of each order; classifying the optical comb lines into a low mutation optical comb line and a high mutation optical comb line; performing joint frequency offset estimation on the low mutation optical comb line; and performing compensation for a frequency offset of a radio frequency drive signal by using an estimated joint frequency offset. The present invention improves accuracy and reliability of the frequency offset estimation of the radio frequency drive signal, so that the degree of the compensation for the frequency offset of the radio frequency drive signal is more comprehensive and accurate. |
US09628308B2 |
Circuit, communication unit and method for VCO frequency adjustment
A circuit includes a frequency generation circuit having a phase locked loop, PLL, arranged to generate a carrier frequency; and a controller operably coupled to the frequency generation circuit and arranged to determine a frequency location of one or more signals output by the frequency generation circuit and provide a control signal thereto to adjust the carrier frequency generated by the frequency generation circuit. The controller is arranged to: cooperate with the PLL to introduce a frequency offset in the generated carrier frequency in a first frequency direction; and introduce a compensating frequency offset in a baseband transmit signal in a second frequency direction opposite to the first frequency direction. |
US09628306B2 |
Pulse generation device
Provided is a pulse generation device capable of suitably adjusting and outputting a pulse pattern by a simple configuration. A pulse generation device (100) includes a radio frequency oscillator (110) that generates a carrier wave of a certain frequency, a baseband pulse generating unit (120) that generates a signal having a certain pulse shape at a baseband, a timing generator (130) that controls a timing to generate a pulse through the baseband pulse generating unit (120), and a mixer (140) that modulates the carrier wave output from the radio frequency oscillator (110) using the pulse output from the baseband pulse generating unit (120). The timing generator (130) can adjust a waveform of the pulse output from the baseband pulse generating unit (120). |
US09628304B2 |
Digital equalizer adaptation using on-die instrument
Systems and methods are provided for adjusting gain of a receiver. Adaptation circuitry is operable to identify, based on a matrix representation of a receiver's output generated from horizontal and vertical sweeps of the receiver's output, an eye opening of the receiver's output. The adaptation circuitry is also operable to determine whether a size of the eye opening needs to be changed. When it is determined that the size of the eye opening needs to be changed, the adaptation circuitry is operable to generate a digital signal to change a gain setting of the receiver. When the signal at the receiver's output is under-equalized, the AC gain of the receiver is increased. When the signal at the receiver's output is over-equalized, the AC gain of the receiver is decreased. |
US09628303B2 |
Receiver apparatus and frequency selectivity interference correction method
An OFDM receiver apparatus (100) receives a signal that includes an STF having a plurality of pilot subcarriers and a plurality of null subcarriers that are alternately arranged at predetermined frequency intervals in a transmission band and that includes a data part that is time-multiplexed with the STF. A null carrier extraction unit (151) extracts a plurality of null subcarrier frequency signals from the received signal. A power calculation unit (152) detects, based on the levels of the extracted signals, the interference levels of the plurality of subcarriers in the transmission band. A soft decision unit (112) uses the reliability of the plurality of subcarriers, which is calculated based on the detected interference levels, to perform a soft decision of a demodulated signal of the received data part. An error correction unit (113) performs, based on the result of the soft decision, an error correction, thereby reconstructing the data. |
US09628302B2 |
Decision feedback equalizer
A decision-feedback equalizer for use in a receiving unit for receiving an incoming data stream and for providing a stream of bit data outputs, including at least one decision-feedback equalizer block comprising a plurality of speculation units. Each speculation unit includes a dynamic preamplifier for asynchronously amplifying a voltage difference depending on an input voltage of the incoming data stream and a given threshold voltage; and an arrangement for selectively generating a transconductor current which depends on the amplified voltage difference. Also included is one dynamic regenerator for associating an output data bit to the selectively generated transconductor current. |
US09628300B2 |
Method and signal generating apparatus for generating modulation signals
A method and apparatus for generating and transmitting modulation signals includes generating a plurality of modulation signals each of which is to be transmitted from a different one of a plurality of antennas. Each modulation signal includes a pilot symbol sequence and/or a pilot subcarrier including a plurality of pilot symbols used for demodulation. Each of the pilot symbol sequences and/or pilot subcarriers is inserted at the same temporal point in each modulation signal. The pilot symbol sequences and/or pilot subcarriers are orthogonal to each other, each pilot symbol having a non-zero amplitude. The quantity of the plurality of pilot symbols in each pilot symbol sequence and/or pilot subcarrier is greater than a quantity of the plurality of modulation signals to be transmitted. The plural modulation signals are transmitted from the plurality of antennas in an identical frequency band. Each modulation signal includes different transmission data and one of the pilot symbol sequences and/or pilot subcarriers. |
US09628299B2 |
Method and system for data transfer between compute clusters and file system
A data migrating system and method are provided in which a Burst Buffer Network Aggregator (BBNA) process is configured either on the File Servers or on the File System's dedicated I/O nodes to coalesce data fragments stored in participating Burst Buffer nodes under the direction of a primary BB node appointed by a data generating entity prior to transfer of the full data stripe into the File System. The “write” request in the form of a full data stripe is distributed into a plurality of data fragments among participating BB nodes along with corresponding metadata. The primary BB node gathers the metadata from the participating BB nodes, sends the metadata list to the BBNA unit, responsive to which the BBNA unit allocates a buffer sufficient to store the full data stripe, and transfers data fragments from participating BB nodes into the full data stripe buffer, thereby coalescing the data fragments into the full data stripe, which is subsequently transferred from the buffer in the BBNA unit into the File System. |
US09628296B2 |
Fast mobile mail with context indicators
Facilitating replying to received email messages includes presenting a selectable set of fast reply tokens that correspond to snippets of multimedia content, providing a mechanism to superimpose a selected subset of the fast reply tokens on to different portions of the received email message to compose an annotated email messages, wherein the fast reply tokens are separate from any reply email text, and sending the annotated email message. The fast reply tokens may include action icons, status icons, emoticons, emojis, expressive elements, clip art, highlighters, geometric shapes, arrows, short tunes, audio clips, video clips, abbreviated standard texts, and freehand notes. Facilitating replying to received email messages may also include providing cultural adaptations and localization of fast reply tokens based on a setting provided by a recipient of the annotated email message. |
US09628294B1 |
Methods and apparatus for remapping public network addresses on a network to an external network via a private communications channel
Methods and apparatus for remapping IP addresses of a network to endpoints within a different network. A provider network may allocate IP addresses and resources to a customer. The provider network may allow the customer to remap an IP address to an endpoint on the customer's network. When a packet is received from a client addressed to the IP address, the provider network may determine that the IP address has been remapped to the endpoint. The provider network may translate the source and destination addresses of the packet and encode the packet for transmission over a private communications channel. The encoded packet may be sent to the endpoint via the private communications channel over an intermediate network. Response traffic may be routed to the client through the provider network, or may be directly routed to the client by the customer network. |
US09628290B2 |
Traffic migration acceleration for overlay virtual environments
Embodiments of the invention relate to providing acceleration for traffic migration for virtual machine (VM) migration in overlay networks. One embodiment includes a method that includes migrating of a VM from a first hypervisor to a second hypervisor. The first hypervisor detects incoming encapsulated traffic sent from a third hypervisor that is targeted for the VM. The first hypervisor indicates to a service of incorrect information in the incoming encapsulated traffic for the VM. The third hypervisor is notified with updated information for the VM. |
US09628287B2 |
Method and system for storing session information in universal plug and play telephony service
A method, system and apparatus are provided for storing session information in a home network of an UPnP telephony service. The method is performed at a Telephony Server (TS). The method receives a request from a Telephony Control Point (TCP) to store session information while the session is in progress. The session information includes a session status and session related media. The method then divides the session information into meta information and session control information. Thereafter, the method stores the session information in a memory of the TS. |
US09628286B1 |
Television receiver and home automation system and methods to associate data with nearby people
The disclosure relates to systems and methods for identifying a person using a home automation system, and using data collected from a television distribution system and data collected by sensors in a home automation system to identify a person. An example method or system includes receiving television programming from a television service provider, detecting target data in the television programming associated with a virtual person, identifying characteristics of the virtual person, detecting home automation data associated with a local person, identifying characteristics of the local person, comparing the characteristics of the virtual person and the characteristics of the local person, and transmitting a portion of the target data and a portion of the home automation data to an electronic device for displaying. |
US09628285B2 |
Increasing failure coverage of MoFRR with dataplane notifications
A computing device or control plane device functioning as or implementing the functions of a network node in a multicast communication network. The multicast communication network includes a multicast tree to provide connectivity from a common source node to one or more multicast recipient nodes. The multicast communication network further includes a set of secondary paths to provide redundancy to the multicast tree. The computing device executes a plurality of virtual machines for implementing network function virtualization (NFV), wherein a virtual machine from the plurality of virtual machines is configured to implement a method for an enhanced fast re-route mechanism to provide increased failure coverage to the multicast communication network. |
US09628282B2 |
Universal anonymous cross-site authentication
The device may receive user information associated with a user. The device may generate a user profile for the user that stores user information and authentication confirmation information. The device may provide a particular cryptographic key and information identifying the user profile. The device may receive a request to authenticate a secure session for a user device from an application server. The device may obtain, based on the user identifier, the authentication confirmation information associated with the user from a data structure storing one or more user profiles. The device may validate the particular response to the particular challenge code based on the authentication confirmation information. The device may provide information to the application server indicating that the secure session is validated for the user device based on validating the authentication information. |
US09628281B2 |
Server generating basic signature data using signing target data, electronic signature value and timestamp
A long-term signature verification server receives long-term signature data configured using signing target data, verification information for verifying the signing target data, and long-term verification information for verifying the authenticity of original data from a verifier terminal. The server verifies the signing target data and the verification information for a predetermined period of time, forms long-term verification information forming information by extracting predetermined information included in the long-term signature data, and transmits the long-term verification information forming information to the verifier terminal. The server receives from the verifier terminal a long-term verification information forming function value calculated using a predetermined function by adding the original data to the transmitted long-term verification information forming information, and verifies the long-term verification information using the received long-term verification information forming function value. |
US09628278B2 |
Method for the secure unindirectional transmission of signals
A method transmits a signal using a unidirectional communications link, which is protected by an asymmetric cryptography method. A counter value is incremented by a transmitter during a transmission operation. Subsequently, a challenge is determined by the transmitter on the basis of the counter value and a control command that can be executed by a receiver and, on the basis of the challenge that is determined a response is in turn determined. The challenge and the response are transmitted from the transmitter to the receiver. The challenge received is then checked by the receiver to see whether the counter value used in the challenge is greater than a counter value previously stored by the transmitting transmitter. The response received is checked on the basis of the challenge. Following successful checking of the challenge and response, the control command transmitted in the challenge is executed. |
US09628277B2 |
Methods, systems and apparatus to self authorize platform code
Methods and apparatus are disclosed to self authorize platform code. A disclosed example apparatus to verify safety of a policy data structure (PDS) of a computing platform includes a processor and a memory including instructions that, when executed, cause the processor to, at least retrieve a hash of a PDS stored in a Trusted Platform Module (TPM), the PDS stored in the TPM at a first time and indicative of a combination of platform control registers (PCRs) to be used with the platform, calculate a hash of a PDS associated with platform update code in response to a platform code update request at a second time; and verify the hash of the PDS associated with the platform update code is safe when (a) the comparison between the hash of the PDS associated with the platform update code matches the hash of the PDS in the TPM and (b) the combination of the PCRs in the PDS stored in the TPM at the first time matches a combination of PCRs represented in the platform update code at the second time. |
US09628276B2 |
Discovery of secure network enclaves
A hierarchical key generation and distribution mechanism for a computer system in which devices are organized into secure enclaves. The mechanism enables network access to be tailored to approximate minimum needed privileges for each device. At the lowest level of the hierarchy, keys are used to form security associations between devices. Keys at each level of the hierarchy are generated from keys at a higher level of the hierarchy and key derivation information. Key derivation information is readily ascertainable, either from identifiers for devices or from within messages, supporting hardware offload of cryptographic functions. Because keys may be generated based on the enclaves in which the hosts participating in a security association are located, the system includes a mechanism by which devices can discover the enclave in which they are located. |
US09628275B2 |
Communication device, method and system for establishing communications using the subscriber identity data of another communication device
A communication system may include a pair of mobile wireless communications each including a contactless short-range communication subsystem. The first mobile wireless communications obtains subscriber identity data from the second mobile wireless communication when input matching a shared secret is provided on the second mobile wireless communication. The subscriber identity data from the first mobile wireless communication is subsequently used by the second mobile wireless communication to establish a wireless voice and/or data communication session on the second mobile wireless communication using the subscriber identity data of the first mobile wireless communication. |
US09628268B2 |
Remote key management in a cloud-based environment
Systems and methods are disclosed for facilitating remote key management services in a collaborative cloud-based environment. In one embodiment, the remote key management architecture and techniques described herein provide for local key encryption and automatic generation of a reason code associated with content access. The reason code is used by a remote client device (e.g., an enterprise client) to control a second (remote) layer of key encryption. The remote client device provides client-side control and configurability of the second layer of key encryption. |
US09628266B2 |
System and method for encoding encrypted data for further processing
A method for encoding encrypted data for further processing includes: receiving an input data vector of length m; splitting the input data vector to k multiple vectors; multiplying each of the multiple vectors by a power of 2 to obtain k number of intermediate vectors; summing the k number of intermediate vectors to obtain a single summed vector; encrypting the single summed vector to obtain an encrypted vector; sending the encrypted vector to an operational unit to have the encrypted vector operated on to obtain a processed encrypted vector; receiving the processed encrypted vector; decrypting the received encrypted vector; dividing the processed decrypted vector by a power of 2, modulus a power of 2 to obtain multiple transitional vectors of the same dynamic range and the same length; and concatenating the multiple transitional vectors to obtain a recovered vector of length m. |
US09628265B2 |
Encryption processing device and method capable of defending differential power analysis attack
The invention discloses an encryption processing device and a method capable of defending differential power analysis attack. In the encryption processing device provided by an embodiment of the invention, a SecMasking unit is achieved in a structure that a universal random masking technique services as a basis; a SecPrepare unit is achieved in a structure that a bitwise XOR device services as a basis; and a SecSbox unit is achieved in a mode that table look-up results are updated longitudinally and transversely in real time on the basis of a random masking technique. According to the encryption processing device and method, work power consumption of a cryptographic operation equipment circuit can have no relation with operation data and calculation operations. In addition, the encryption processing device and method can be widely used for encrypting and decrypting operation cryptographic equipment needing high safety performance. |
US09628263B2 |
Signal digitizer and cross-correlation application specific integrated circuit
According to one embodiment, a cross-correlator comprises a plurality of analog front ends (AFEs), a cross-correlation circuit and a data serializer. Each of the AFEs comprises a variable gain amplifier (VGA) and a corresponding analog-to-digital converter (ADC) in which the VGA receives and modifies a unique analog signal associates with a measured analog radio frequency (RF) signal and the ADC produces digital data associated with the modified analog signal. Communicatively coupled to the AFEs, the cross-correlation circuit performs a cross-correlation operation on the digital data produced from different measured analog RF signals. The data serializer is communicatively coupled to the summing and cross-correlating matrix and continuously outputs a prescribed amount of the correlated digital data. |
US09628261B1 |
Carrier generator, radio frequency interconnect including the carrier generator and method of using
A carrier generator includes a phase accumulator configured to receive a frequency command word (FCW) signal. The carrier generator includes an adder connected to the phase accumulator; and a loop filter configured to receive an output of the adder. The carrier generator includes a plurality of tuning arrangements, each tuning arrangement is configured to receive an output of the loop filter. Each tuning arrangement includes an electronic oscillator configured to receive the output of the loop filter. Each tuning arrangement includes a voltage controlled delay line (VCDL) configured to receive an output of the electronic oscillator, and to provide a tuning arrangement output. Each tuning arrangement includes a phase detector configured to receive a corresponding recovered clock signal and a feedback from a corresponding tuning arrangement output. Each tuning arrangement includes a counter configured to receive an output of the phase detector and to provide an output to the VCDL. |
US09628260B1 |
Control physical layer (PHY) data unit
In a wireless communication system where communication devices exchange information utilizing physical layer (PHY) data units that conform to a first format, where the first format includes a short training field (STF) that includes exactly N repetitions of a spreading sequence, a method for generating a PHY data unit that conforms to a second format, where the second format has a longer STF than the first format, includes generating an STF of the PHY data unit that includes M instances of the spreading sequence, where M is greater than N, and generating a channel estimation field (CEF). |
US09628259B2 |
Distributing clock synchronization information within an optical communications network
A method distributes clock synchronization information within an optical communications network having a plurality of network elements. The method receives an ingress clock synchronization message at a first network element. The ingress clock synchronization message includes a clock synchronization message identifier and a correction field. The clock synchronization message identifier is inserted into an optical channel frame overhead and the ingress clock synchronization message is inserted into an optical channel frame payload. The optical channel frame overhead and the optical channel frame payload are transmitted across the first network element, across the network to a second network element, and across the second network element. A transit time of the clock synchronization message identifier is determined across each of the network elements. At the second network element, the correction field of the ingress clock synchronization message is updated with the transit times to form an egress clock synchronization message. |
US09628257B2 |
Communication channel calibration for drift conditions
A method and system provides for execution of calibration cycles from time to time during normal operation of the communication channel. A calibration cycle includes de-coupling the normal data source from the transmitter and supplying a calibration pattern in its place. The calibration pattern is received from the communication link using the receiver on the second component. A calibrated value of a parameter of the communication channel is determined in response to the received calibration pattern. The steps involved in calibration cycles can be reordered to account for utilization patterns of the communication channel. For bidirectional links, calibration cycles are executed which include the step of storing received calibration patterns on the second component, and retransmitting such calibration patterns back to the first component for use in adjusting parameters of the channel at first component. |
US09628256B2 |
MIMO antenna calibration device, integrated circuit and method for compensating phase mismatch
A multiple input multiple output (MIMO) calibration device (360) for calibrating a phase relationship between at least two signals present on at least two radio frequency (RF) paths coupling a wireless communication unit and the MIMO calibration device (360) is described. The MIMO calibration device (360) is operably coupleable via at least two RF paths between a wireless communication unit and an antenna arrangement (219). The calibration device (360) comprises a processing module (490) configured to: process a coupled amount of at least one first signal from a first path operably coupleable to a first polarization of the antenna arrangement (219) to determine at least one pilot signal from said at least one first signal; process a coupled amount of at least one second signal from a second path operably coupleable to at least one second polarization feed of antenna arrangement (219), different to the first polarization, to determine the at least one pilot signal from said at least one second signal; and determine a first phase relationship of the same pilot signal between the at least two RF paths. |
US09628253B2 |
Method and system for implementing time division duplex configuration of secondary serving cell, and base station
A method and a system for implementing time division duplex configuration of a secondary serving cell are provided. A primary base station receives time division duplex TDD configuration information of a secondary serving cell and an identity of the secondary serving cell from a secondary base station, where the TDD configuration information of the secondary serving cell is allocated by the secondary base station to the secondary serving cell. The primary base station sends the TDD configuration information of the secondary serving cell and the identity of the secondary serving cell to a terminal, so that the terminal determines an uplink-downlink subframe allocation of the secondary serving cell according to the TDD configuration information. |
US09628246B2 |
Aggregating acknowledgments transmitted by an access point to a plurality of client stations in a wireless network
An access point including a medium access control module and an acknowledgment generating module. The medium access control module designates a predetermined time period to communicate with a first set of client stations, and instructs a second set of client stations to transmit data at a time other than the predetermined time period. The acknowledgment generating module generates a plurality of acknowledgements in response to receiving data from the first set of client stations during the predetermined time period. The medium access control module aggregates the plurality of acknowledgements in a single aggregated frame. The single aggregated frame includes a plurality of sub-frames. Each sub-frame of the single aggregated frame includes one of the plurality of acknowledgements. The medium access control module transmit the single aggregated frame to the first set of client stations during the predetermined time period. |
US09628245B2 |
Method for transmitting control information and apparatus therefor
A method for transmitting uplink control information by a user equipment (UE) configured with a plurality of cells including a primary cell and a secondary cell in a wireless communication system is discussed. The method includes identifying, by the UE, a Hybrid Automatic Repeat reQuest-Acknowledgement (HARQ-ACK)(0) and a HARQ-ACK(1); and transmitting, by the UE, bits b(0)b(1) using a Physical Uplink Control Channel (PUCCH) resource among a plurality of PUCCH resources based on the HARQ-ACK(0) and the HARQ-ACK(1) to a base station (BS) for identifying the HARQ-ACK(0) and the HARQ-ACK(1). The b(0)b(1) and the PUCCH resource are given according to a relation including Table 1, where the HARQ-ACK(0) indicates an ACK/Negative ACK (ACK/NACK)/Discontinuous Transmission (DTX) response to a data block related to the primary cell, and the HARQ-ACK(1) indicates an ACK/NACK/DTX response to a data block related to the secondary cell. |
US09628243B2 |
Communication method with indications in the PHY header
According to various embodiments, a communication method may be provided. The communication method may include: at least one of sending a first data unit including a physical layer (PHY) header or receiving a first data unit including a PHY header. The PHY header may include at least a field to indicate whether a response data unit is intended to follow the first data unit, and to indicate the type of the response data unit, when a response data unit is intended to follow the first data unit. The type of the response data unit may be used to estimate the duration of the response data unit. |
US09628237B2 |
Method and device for monitoring downlink control channel in wireless communication system
A method and device for monitoring a control channel in a wireless communication system are provided. In particular, in consideration of multiple carrier aggregation, indication information is provided which includes information on a cell for monitoring a downlink control channel and information on a channel type defined to identify whether a downlink control channel to be transmitted from a corresponding cell is a legacy PDCCH (LPDCCH) or an enhanced PDCCH (EPDCCH). The indication information may be set in consideration of whether to arrange cross carrier scheduling. Thus, a terminal uses the indication information to adaptively monitor LPDCCH and/or EPDCCH through a predetermined search section of a corresponding cell. Thus, it is possible to adaptively schedule a downlink control channel and an enhanced downlink control channel. |
US09628231B2 |
Spreading and precoding in OFDM
An OFDM transmitter spreads original data symbols with a complex-valued spreading matrix derived from a discrete Fourier transform. Spread data symbols are mapped to OFDM subcarriers. Spreading and mapping are configured to produce a transmitted spread-OFDM signal with a low peak-to-average power ratio (PAPR) and orthogonal code spaces. In MIMO systems, the complex-valued spreading matrix can comprise a MIMO precoding matrix, and the code spaces can comprise MIMO subspaces. In Cooperative-MIMO, a combination of low code-space cross correlation and low PAPR can be achieved. |
US09628230B2 |
Method of signaling particular types of resource elements in a wireless communication system
A wireless communication terminal including a transceiver coupled to a processor and corresponding methods are disclosed. The processor is configured to determine resource elements that carry data intended for the terminal from a set of allocated resource elements that carry data intended for the terminal excluding at least resource elements associated with a first set of one or more resource elements of a particular type that are shifted relative to a known reference signal pattern. The processor is also configured to decode the resource elements that carry the data intended for the terminal based on the resource elements that carry the data intended for the terminal. |
US09628226B2 |
Block acknowledgement with retransmission policy differentiation
One feature provides a Block Acknowledgement Retransmission Policy (BARP) frame that permits a transmitter to define a retransmission policy on a per-frame basis for frames transmitted in a block of frames. A block acknowledgement retransmission policy (BARP) frame is generated by a transmitter that individually identifies a retransmission policy for each frame in a block of frames. The BARP frame is then transmitted to a receiver, allowing the receiver to know which frames within a block of frames will be retransmitted and which frames will not be retransmitted. |
US09628217B1 |
Comb limiter combiner with sub-band interference negation
Aspects of the present invention provide a system and method for using a filter controller and an adjustable narrow-band filter within each sub-band of a communication system. If a channel of the sub-band is being jammed, the filter controller will adjust the adjustable narrow-band filter to notch-filter out only the channel of the sub-band that is being jammed. In this manner, the remaining channel of the sub-band may be used for communication. |
US09628216B2 |
Data communication using multiple channels
A method of transmitting data may include receiving feedback information that includes effective channel bandwidths, signal-to-noise ratios (SNRs) associated with multiple optical channels on an optical link, and individual SNRs associated with subcarriers on each optical channel. The method may include determining multiple subcarrier power allocation schemes based on the feedback information. Each subcarrier power allocation scheme may be associated with a corresponding optical channel from the multiple optical channels and may be configured to allocate a signal power among subcarriers configured to transmit on the corresponding optical channel. The method may include determining, based on the feedback information, an optical power allocation scheme configured to allocate an optical power among the multiple optical channels. The method may include transmitting data on the multiple optical channels based on the multiple subcarrier power allocation schemes and the optical power allocation scheme. |
US09628212B2 |
Signal timing in device-to-device communication
A method of compensating for transmitting to multiple devices during device-to-device (D2D) communications may include determining that a receiving wireless device of a device-to-device (D2D) pair may experience a timing conflict. The timing conflict may be with respect to the receiving wireless device receiving at least a portion of a D2D communication transmitted by a transmitting wireless device of the D2D pair while the receiving wireless device is transitioning between a transmitting mode and a receiving mode. The method may also include adjusting the D2D communication to compensate for the timing conflict. |
US09628207B2 |
Intelligent switching of audio sources
Intelligent switching of audio sources includes determining, via a computer processor communicatively coupled to an audio system in a vehicle, alternative sources of content that are communicatively available to the vehicle. The audio system renders an instance of a content item that has been received from a content provider, as a source of content, over a network. Upon determining an interruption in a signal from the content provider with respect to the instance of the content item, the intelligent switching of audio sources also includes presenting an alternative content item, through the audio system, from one of the alternative sources of content. |
US09628200B2 |
System and apparatus for providing beamforming vector for wireless network systems, method, program and recording media using thereof
The present invention relates to a system and an apparatus for providing beamforming vector for a very high density cellular networks, a method, a program and a recording medium using thereof a transmitter that comprises a plurality of cell and an apparatus for providing beamforming vector, wherein the apparatus for providing beamforming vector controls a signal transmission of each of the plurality of cell; the apparatus for providing beamforming vector that defines a probability (ψ) for an interference cancelation, expresses a network-wide sum rate as a function of ψ, calculates a value of ψ that maximizes the network-wide sum rate and calculates a range of a magnitude of an interference channel to be canceled corresponding the value of ψ; and a receiver that receives a signal from the transmitter and comprises at least one mobile station and nullifies the range of the magnitude of the interference channel to be canceled. |
US09628199B1 |
Mitigating electromagnetic interference and compatibility issues
A processing device detects an occurrence of the first set of use conditions associated with a power supply line coupled between a power source and a power sink in a user device. The processing device sets a tunable decoupling capacitor on the power supply line to a first capacitance value to reduce a level of electromagnetic interference on the power supply line at a first frequency corresponding to the first capacitance value. When the processing device detects a change from the first set of use conditions associated with the power supply line to a second set of use conditions, the processing device sets the tunable decoupling capacitor to a second capacitance value to reduce a level of electromagnetic interference on the power supply line at a second frequency corresponding to the second capacitance value. |
US09628198B2 |
Apparatus and method for canceling multi-user interference in wireless communication system
Disclosed is a method for canceling multi-user interference (MUI) by a base station (BS) in a wireless communication system. The method includes determining the number of tones to accumulate channel values among tones included in a resource area, based on a minimum delta cyclic shift (CS) that represents a minimum gap between CS values allocated to user equipments (UEs) and a number of UEs to be multiplexed, creating a matrix of amounts of change in phase for the tones to accumulate for the UEs to be multiplexed, and canceling MUI based on a signal matrix. |
US09628197B2 |
Interference reduction method, radio base station, user terminal and radio communication system
A method to reduce interference between a macro cell and a small cell in a radio communication system in which the macro cell and the small cell are allocated to overlap at least in part is disclosed. The interference reduction method includes the steps in which a small base station transmits macro cell identification information that identifies the macro cell, to a user terminal in a small cell, allocates a downlink control signal for the user terminal to a radio resource unit having a different index number from that of a radio resource unit where a downlink control signal to be transmitted from the macro base station is allocated, and interleaves the downlink control signal for the user terminal using an interleaving pattern that is generated based on the macro cell identification information and that is the same as an interleaving pattern used in macro base station. |
US09628194B2 |
Burst-signal reception circuit
A burst-signal reception circuit that receives a differential signal of a burst signal input via a preamplifier. The burst-signal reception circuit includes a differential amplifier to which the differential signal is input via capacitors, an average detection circuit that detects an average of a differential input signal to the differential amplifier, and a differential-offset cancel circuit that operates to cancel a DC voltage level difference of the differential input signal on the basis of output signals of the average detection circuit. Average detection speed of the average detection circuit is configured to be switched according to presence or absence of burst signal reception. The average detection speed is switched to a high-speed side in a head portion of the burst signal and switched to a low-speed side in portions other than the head portion. |
US09628192B2 |
Optical transmitter, wavelength alignment method, and passive optical network system
Embodiments of the present invention disclose an optical transmitter, a 10 G-DML, an MPD 1, an MPD 2, a collimation lens, and a narrowband optical filter are disposed in a TO to achieve monitoring of an optical power, received optical powers are monitored by using the MPD 1 and the MPD 2, the detected optical powers are output to a wavelength locking monitoring circuit by using a TO pin, variations, which are detected by the wavelength locking monitoring circuit, of the optical power and a variation of a wavelength locking factor K0 are separately compared with corresponding thresholds, and a comparison result are sent to a wavelength locking control circuit, to enable the wavelength locking control circuit to adjust, according to the comparison result and by using the TO pin, a temperature of a TEC to perform wavelength alignment. |
US09628191B2 |
Methods, optical transmitter, optical module, and optical communication system for improving the monitoring and/or reporting accuracy of a laser transmitting power
The present application discloses a method and circuitry that improves the monitoring and/or reporting accuracy and of a TOSA transmitter output power. In the method, the output power of an optical transmitter is measured at 25° C. and at N individual temperatures to obtain N tracking error (TE) values corresponding to the N individual temperature values, then a lookup table covering an operating temperature range of the transmitter is created based on a one-to-one mapping relationship between the TE values and the N individual temperatures and a line fitting process. The transmitter output power is reported at an interface of the transmitter according to the TE value at the transmitter operating temperature in the lookup table. The present application also discloses optical modules and optical communication systems. The present method and transmitter effectively improve the monitoring and/or reporting accuracy of the transmitter output power. |
US09628186B2 |
Advanced optical modulation generation by combining orthogonal polarized optical signals
Disclosed are adaptive structures and methods for generating advanced modulation formats using multiple levels such as PAM-4, PAM-8 as well as regular OOK or PM OOK formats. Structures and methods disclosed include an unequal power splitter that may exhibit a fixed or tunable splitting ratio such that adaptive format(s) may be generated. |
US09628185B2 |
Optical transmitter with linear arrangement and stacked laser package and RF path
Described herein is an optical transmitter that includes an RF signal path that is, at least partially, parallel with an optical signal path. In one embodiment, an electrical transmission element, which defines the RF signal path, is disposed between a laser emitting the optical signal and a side wall of a package containing the optical transmitter. Although the RF and optical signals may propagate along different planes within the optical transmitter, both signals are received at an optical modulator. Using the RF signal, the optical modulator modulates the optical signal (e.g., a continuous wave) to generate a modulated optical signal. The optical modulator then outputs the modulated signal to a receptacle coupled to a light carrying medium such as a fiber optic cable. |
US09628181B1 |
Systems and methods for provisioning an optical network unit
Systems and methods are disclosed that generally pertain to provisioning an optical network unit (ONU) by an optical line terminal (OLT) of a passive optical network (PON). An exemplary provisioning system includes a wireless reader incorporated into the ONU and a transponder unit attached to a fiber optic cable coupled to the ONU. The transponder unit includes a storage element in which is stored provisioning information, such a registration ID associated with the ONU. The wireless reader automatically obtains the provisioning information from the transponder when the fiber optic cable is coupled to the ONU and transmits the provisioning information to the OLT via the fiber optic cable as a part of a discovery procedure. The transmission of the provisioning information in this manner eliminates the need for a service technician to visit a customer premise and manually provide the provisioning information via a POTS port of the ONU. |
US09628180B2 |
Configurable frequency domain equalizer for dispersion compensation of multiple sub-carriers
A system may include an optical transmitter and an optical receiver. The optical transmitter may generate optical signals associated with sub-carriers, and may provide the optical signals via an optical link. The optical receiver may receive the optical signals via the optical link, and may generate samples based on the optical signals. The samples may be associated with the sub-carriers. The optical receiver may combine the samples to form a time domain sample vector having a particular size, and may generate a frequency domain sample vector, having the particular size, based on the time domain sample vector. The optical receiver may demultiplex the frequency domain sample vector to generate domain sample vectors corresponding to the sub-carriers. The optical receiver may process the frequency domain sample vectors to generate equalized frequency domain sample vectors, and may output the equalized frequency domain sample vectors. |
US09628179B2 |
System and method for nonlinear self-filtering via dynamical stochastic resonance
A system and method for filtering and enhancing signals from a noise background based on the nonlinear interaction of waves. The system and method amplify low-level signals, hide information in the signals, and then nonlinearly recover the signals. With the present invention, this can be performed for both spatial beams and temporal pulses. The signal self-filters and self-amplifies at the expense of the surrounding noise via the nonlinear medium. |
US09628178B1 |
Expandable dock control system
An expandable dock monitor and control system having a communicating pile light assembly. The communicating pile light assembly has an electrical system with a controller assembly. The communicating pile light assembly is mounted onto a pile at a dock. The expandable dock monitor and control system further has a gateway/controller system, a local interface device and at least one sentinel. The sentinel has transmitting circuitry to transmit specific event information to a nearest and/or respective communicating pile light assembly, which relays the transmitted specific event information to the gateway/controller system, which deciphers then notices the local interface device. The controller assembly has an RGB and white light controller section, an accelerometer/remote sensor inputs/relay outputs section, a transceiver/digital address tag section and a power supply section. The expandable dock monitor and control system additionally has a remote interface device and a remote access gateway. |
US09628174B2 |
Optical channel monitor with integral optical switch
A multiport optical switch (such as an N×1 switch) is used to controllably select a specific incoming optical signal that is to be processed by an associated optical channel monitor (OCM). The OCM includes a tunable optical filter and photodetector arrangement, and is configured to measure the optical spectrum of the incoming optical signal and extract information associated with the various optical channels (wavelengths) forming the incoming optical signal (i.e., power, wavelength, OSNR and the like for each channel). The OCM also includes a signal processing component that generates a pair of output control signals, a first signal to control the wavelength scanning process of the tunable optical filter and a second signal to control the setting of the multiport optical switch. |
US09628173B2 |
Optical transmission line switching apparatus and optical transmission system
A device includes a threshold setting unit that sets a threshold for an input optical power monitor to detect the input optical power to the optical transmission line of an active system; a threshold deciding unit that decides whether the input optical power to the optical transmission line of the active system detected by the input optical power monitor is not greater than the threshold set by the threshold setting unit or not; and an attenuation controller that carries out, when the threshold deciding unit decides that the input optical power is not greater than the threshold, system switching by controlling first variable optical attenuators so as to gradually reduce attenuation of the signal light rays input from the optical transmission line of one backup system, and to gradually increase attenuation of the signal light rays input from the optical transmission line of the active system. |
US09628168B2 |
Dynamic link adaption and/or dynamic allocation of communication resources of a communication system based on external interference information received from external interference information sources
Interference information is obtained from one or more interference information sources external to a particular communication system, wherein the interference information is indicative of non-weather related interference that can adversely affect efficacy of the particular communication system. Configurable link parameters of the particular communication system are dynamically adapted and/or resources of the particular communication system are dynamically allocated based on the interference information obtained from the interference information source(s) that is/are external to the particular communication system. Such embodiments can advantageously be performed proactively to prevent or mitigate adverse effects of non-weather related interference on the efficacy of the particular communication system. |
US09628165B2 |
Signal generating method and signal generating device
A transmission method for transmitting a first modulated signal and a second modulated signal in the same frequency at the same time. Each signal has been modulated according to a different modulation scheme. The transmission method applies precoding on both signals using a fixed precoding matrix, applies different power change to each signal, and regularly changes the phase of at least one of the signals, thereby improving received data signal quality for a reception device. |
US09628164B1 |
Beamforming engine
A system for beamforming employing true time delay. The system includes a deserializer configured to receive a serial data stream and to convert the serial data stream into a plurality of parallel data streams, a zero-insertion block configured to insert zeroes into each of the parallel data streams, and a crossbar switch having a plurality of inputs and an equal number of outputs. The inputs are connected to the zero-insertion block, each of the outputs corresponding to one of the inputs. The crossbar switch is configured, in a first state, to connect each output to the corresponding input, and in a second state, to connect each output to an input different from the corresponding input, the set of outputs being a circular shift of the set of inputs. |
US09628161B2 |
Antenna swapping methods including comparing performance characteristics of first and second antennas, and related portable electronic devices
An antenna switching method includes tuning respective signals provided to first and second antennas in a portable electronic device to at least one frequency band. The method may also include connecting the first antenna to an uplink signal path that is for transmissions through the first and second antennas, and performing impedance matching for the first antenna. The method may further include comparing a real-time performance characteristic of the first antenna with a real-time performance characteristic of the second antenna. The method may additionally include, responsive to determining that the second antenna has a stronger real-time performance characteristic than the first antenna while the first antenna is connected to the uplink signal path, switching from the first antenna to the second antenna by connecting the second antenna to the uplink signal path and disconnecting the first antenna from the uplink signal path, and performing impedance matching for the second antenna. |
US09628160B2 |
Codebook for eight transmit antennas and multiple input multiple output communication system using the codebook
A transmitter and a receiver of a multiple input multiple output (MIMO) communication system may use two codebooks to share channel information. When the transmitter uses eight transmit antennas, two codebooks may be defined. When the receiver generates two precoding matrix indicators from two codebooks, a combination of the two precoding matrix indicators may indicate a single precoding matrix. Precoding matrix candidates may also be defined. |
US09628158B2 |
Signal generation method and signal generation device
A transmission method simultaneously transmitting a first modulated signal and a second modulated signal at a common frequency performs precoding on both signals using a fixed precoding matrix and regularly changes the phase of at least one of the signals, thereby improving received data signal quality for a reception device. |
US09628155B2 |
Transmit power allocation for adaptive multi-carrier multiplexing MIMO systems
The present invention relates to transmit power allocation in multi-carrier, multiplexing MIMO communication systems. The present invention especially relates to a MIMO communication device, a method of assigning transmit power to two or more communication channels and a software program product. A multiple-input-multiple-output, MIMO, communication device according to the present invention comprises a link controller adapted to assign transmit power to two or more transmission channels, each of said transmission channels having preassigned a portion of transmit power for each of a group of subcarriers, said link controller being further adapted to assign, for each subcarrier of said group of subcarriers, at least part of the preassigned transmit power portion of a transmission channel that is not used for transmitting information at the subcarrier, to one or more transmission channels that are used for transmitting information at the subcarrier. |
US09628149B2 |
Emulation of multiple NFC devices inside a communication device
Communication device (T1) comprising—An antenna (A1) and physical circuitry (PHY) for receiving a poll command (PC) from a second communication device (T2).—A plurality of entities (D1, D2, D3 . . . Dn) emulating NFC devices,—An arrangement for deciding, for each entity of said plurality of entities, if a response should be sent and if so sending a response (LF1, LF2, LF3 . . . LFn) to said second communication device (T2), containing information related to the respective NFC device. |
US09628147B2 |
Method of automatically adjusting determination voltage and voltage adjusting device thereof
A method of automatically adjusting a determination voltage used in an induction type power supply system includes detecting an output voltage of a signal analysis circuit; adding a first threshold value to the output voltage to generate a first determination voltage and subtracting a second threshold value from the output voltage to generate a second determination voltage; outputting the first determination voltage as a reference voltage; and comparing a trigger signal of the signal analysis circuit and the reference voltage, in order to generate a first data code; wherein when the step of comparing the trigger signal of the signal analysis circuit and the reference voltage in order to generate the first data code fails, the method further includes outputting the second determination voltage as the reference voltage and comparing the trigger signal of the signal analysis circuit and the reference voltage, in order to generate a second data code. |
US09628146B2 |
Data access in a mobile device with NFC
The disclosure concerns an NFC (near field communications) device having an NFC router. The NFC router includes a memory adapted to store data to be shared with an external device and an NFC antenna circuit. The NFC router is capable of operating in a card emulation mode in which the shared data stored by the memory is accessible via the NFC antenna circuit. |
US09628142B2 |
Optical transmitter
An optical transmitter includes four LDs, four LDDs that drive the LDs, four monitoring PDs that convert some of optical signals emitted from the LDs to electrical sisals and output them, a controller that controls the LDDs in response to the electrical monitoring signals generated by the monitoring PDs, and a switch that receives the electrical monitoring signals though signal lines from the monitoring PDs and electrically connects only a selected signal line selected by the controller to the controller. The controller outputs a selection signal that selects the selected signal line from the signal lines in order to the switch, and controls the LDDs so that an optical power of the LD corresponding to the PD approaches a predetermined value, according to the electrical monitoring signal outputted from the PD corresponding to the selected signal line. |
US09628139B2 |
Base station system and communication apparatus
A base station system according to an aspect of the invention includes a baseband unit (BBU) and a radio frequency (RF) unit (RFU) connected to the BBU via a communication line. The RFU (BBU) measures the frequencies of occurrence of sampled values indicated by sampled data that is a digital signal corresponding to a baseband signal to be transmitted to the BBU (RFU), and generates a frequency distribution representing a relationship between the sampled value having occurred and the frequency of occurrence. Furthermore, the RFU (BBU) determines a plurality of thresholds for compressing the sampled data, which are used for quantization processing of the sampled value, in accordance with the generated frequency distribution, and compresses the sampled data by the quantization processing using the plurality of thresholds. |
US09628138B2 |
Mobile terminal
A processor is configured to control a first communication module and a second communication module by executing a control program stored in a memory module such that communication at a first frequency included in a first frequency band or a second frequency included in a second frequency band is carried out using the first communication module, and such that communication at a third frequency included in a third frequency band is carried out using the second communication module. The first communication module includes an adjustment module. The adjustment module is configured to reduce interference between the first antenna and the second antenna when the communication at the third frequency is carried out. |
US09628132B2 |
Case apparatus
The embodiment relates to a case apparatus including a mounting member, which includes a first mounting member and a second mounting member surrounding the first mounting member; a first antenna device mounted on a top surface of the first mounting member; and a second antenna device mounted on a bottom surface of the second mounting member. Thus, even when the case apparatus is mounted on a mobile communication terminal, short range communication may be smoothly performed between the mobile communication terminal and an external device. |
US09628126B1 |
Method and system for a dual modulation low data rate network
A dual modulation network is disclosed. The dual modulation network includes a primary network hub (PNH) having a PNH Long range transceiver and a PNH microcontroller. The PNH microcontroller has communication firmware for long range spread spectrum (SS) and narrowband frequency shift keying (FSK) signal communication via the PNH Long range transceiver, and includes a PNH clock signal. The dual modulation network also includes a peripheral device (PD). The PD includes an actuation mechanism, a PD Long range transceiver, and a PD microcontroller. The PD microcontroller has actuation firmware, communication firmware for communication via the PD Long range transceiver, and location firmware, and includes a clock signal. The location firmware instructs the PD long range transceiver to transmit a location signal encoded with a PD transmit time stamp notifying a receiving device of the time the PD transmitted the location signal. |
US09628125B2 |
Processing a noisy analogue signal
A device is provided for correlating at least one noisy analog signal which is one of a plurality of signals obtained by a plurality of receivers. The device comprises a 1-bit quantization element to which the noisy signal is supplied; a comparator configured to compare the quantized signal with a reference signal which is a consensus signal obtained by averaging data from the plurality of receivers; and an up/down counter that is configured to be incremented by a subset of the comparison signal. |
US09628122B1 |
Circuits and methods for reducing interference that spectrally overlaps a desired signal based on dynamic gain control and/or equalization
A system is provided with circuits and methods for dynamically reducing interference to maintain linear system operation and mitigate interference degradation to desired signal components. The system can include a binning subcircuit system configured to divide the digitized input signal into a plurality of spectral bins each having a power level. A power analysis subcircuit can be coupled to the binning subcircuit and configured to compare a collective power level of spectral bins to a threshold level that would produce nonlinear system operation. Based upon the collective power level exceeding the threshold level, outputting a gain control signal to a variable gain amplifier so that the system remains linear. This dynamic gain control can be applied to systems that receive and/or transmit signals. Residual interference components that degrade signal components can be dynamically removed by excision and the distortion introduced by the excision process can be reduced with equalization circuitry. |
US09628121B2 |
Programmable transmit continuous-time filter
A programmable-current transmit continuous-time filter (TX-CTF) system can be included in a radio frequency (RF) transmitter. The input of the TX-CTF can receive a baseband transmission signal, and the output of the TX-CTF can be provided to an upconversion mixer for conversion to RF for transmission. The TX-CTF includes amplifier circuitry and passive circuitry that together define the filter parameters. The TX-CTF further includes programmable current circuitry that provides a programmable bias current to the amplifier circuitry. The TX-CTF system also includes control logic that receives one or more transmitter control signals and, in response, generates signals that control the bias current provided to the TX-CTF. |
US09628120B2 |
Adaptively controlled pre-distortion circuits for RF power amplifiers
A system includes a crest-factor reduction circuit, a signal analyzer, and a pre-distortion circuit. The crest-factor reduction circuit reduces a crest factor of a baseband signal and generates a feedforward signal. The signal analyzer generates parameters based on the feedforward signal and an output signal from a power amplifier. The pre-distortion circuit generates a pre-distorted baseband signal based on the parameters for input to the power amplifier. |
US09628106B1 |
Analog to digital converters with oversampling
Embodiments of the invention include an oversampling Analog to Digital Converter that uses uneven non-overlapping clock phases to reduce switched capacitor circuit power consumption. A return-to-zero sub phase of one of the clock phases may also be used for feedback reference capacitors. A delay lock loop may be combined with the non-overlapping clock phase generator to control accurate timing. |
US09628104B2 |
High resolution sigma delta modulator for capacitance sensor terminal displacement measurement
A single plate capacitance sensor includes a sensor capacitor and a reference capacitor that share common plate. A capacitance-to-digital sigma delta modulator provides separate sensor excitation and reference excitation signals to the sensor capacitor and the reference capacitor to provide high resolution detection. Programmable ratio-metric excitation voltages and adaptive excitation voltage sources can be used to enhance modulator performance. |
US09628099B2 |
Load current compensation for analog input buffers
Systems and methods for load current compensation for analog input buffers. In various embodiments, an input buffer may include a first transistor (Q1) having a collector terminal coupled to a power supply node and a base terminal coupled to a first input node (vinp); a second transistor (Q2) having a collector terminal coupled to an emitter terminal of the first transistor (Q1); a third transistor (Q3) having an emitter terminal coupled to an emitter terminal of the second transistor (Q2) and to a ground node, a collector terminal coupled to a current source (Ibias), and a base terminal coupled the collector terminal and to a base terminal of the second transistor (Q2); and a capacitor (C1) coupled to the base terminals of the second and third transistors (Q2 and Q3) and to a second input node (vinn), wherein the first and second input nodes (vinp and vinn) are differential inputs. |
US09628097B2 |
Methods and devices for handling channel mismatches of an I/Q down-converted signal and a two-channel TI-ADC
A method and device for handling an in-phase and quadrature (“I/Q”) channel mismatch of an I/Q down-converted signal, and a use of the device. A discrete-time complex valued signal r(n) based on an analog-to-digital conversion of the I/Q down-converted signal is obtained. The obtained discrete-time complex valued signal r(n) is oversampled by a factor of two or more. An intermediate signal v(n) is formed from the discrete-time complex valued signal r(n). The intermediate signal v(n) corresponds to the real part of a π/2 frequency shifted version of the obtained discrete-time complex valued signal r(n). A procedure for obtaining an estimate of a frequency dependent mismatch of a two-channel time-interleaved analog-to-digital converter (“TI-ADC”) is applied on the formed intermediate signal v(n). Thereby a TI-ADC mismatch estimate is obtained. The I/Q channel mismatch is estimated and/or compensated based on the obtained TI-ADC mismatch estimate. |
US09628093B2 |
Charge pump circuit, phase locked loop apparatus, integrated circuit, and method of manufacture of a charge pump
A charge pump circuit comprises a first bipolar transistor device and a second bipolar switching device arranged in a differential pair configuration. A first terminal of each of the first and second bipolar switching devices are coupled to a supply. A second like terminal of each of the first and second bipolar switching devices are coupled together and to ground potential via a pulsed current source. A field effect switching device is also provided and the first terminal of the first bipolar switching device is coupled to the voltage supply via the field effect switching device. |
US09628090B2 |
Semiconductor device and control method of semiconductor device
While transmission of data to be transmitted and gap data to be transmitted by the same transmission path as that data is controlled so that a frequency of a data signal may become equal to or more than a certain frequency, a data output driver selects and outputs the data or the gap data as the data signal, a valid signal generation circuit outputs a valid signal that indicates whether or not the data is effective, and a reception circuit that is formed in a different die receives the data signal and the valid signal transmitted via the transmission path that includes a through silicon via and acquires the data from the data signal based on the valid signal. |
US09628089B1 |
Supply voltage tracking clock generator in adaptive clock distribution systems
An adaptive clock distribution (ACD) system with a voltage tracking clock generator (VTCG) is disclosed. The ACD system includes a tunable-length delay (TLD) circuit, to generate a TLD clock by adding a preselected delay to a root clock, and a voltage droop detector for detecting a voltage droop in a supply voltage. The VTCG is configured to generate a VTCG clock, wherein a frequency of the VTCG clock is finely tuned to one of two or more values to correspond to a magnitude of the supply voltage during the voltage droop. A clock selector selects the VTCG clock as an ACD clock to be provided to an electronic circuit during the voltage droop and the TLD clock as the ACD clock when there is no voltage droop detected. |
US09628083B1 |
Local routing network with selective fast paths for programmable logic device
A routing network is associated with a logic island in a logic block of a programmable logic device and includes switches for each of feedback, street, and highway networks. Some of the switches include multiple stages. The street network switch receives the signals from the feedback network switch, signals from neighboring highway network switches, and direct feedback from selected logic island outputs and provides outputs to the logic island. The street network switch includes multiple stages, where outputs to the logic island are provided directly by each stage in the street network switch. The output terminals of a first stage of the street network switch that are connected to the logic island are also connected to the second stage of the street network switch. The second stage of the street network switch receives feedback output signals from the feedback network and directly from the associated logic island. |
US09628060B2 |
Semiconductor device and operating method thereof
A semiconductor device may include: a variable delay circuit configured to delay a data strobe signal according to a delay control signal and output a delayed data strobe signal; a data sampler configured to compare a level of a reference voltage and a value of a data signal in synchronization with the delayed data strobe signal, and determine a logic level of the value of the data signal, the data signal having a training pattern; and a control circuit configured to determine a delay amount of the data strobe signal and generate the delay control signal and the reference voltage according to an output signal of the data sampler. |
US09628055B1 |
SR latch circuit with single gate delay
An SR latch circuit with single gate delay is provided. The circuit has an enable input and an SR latch. There is first input stage having an input for receiving a set input and having an output for producing a first component of the SR latch circuit output, the first input stage having only one transistor that receives the enable input, the first input stage becoming transparent while enabled, the first input stage having a single gate delay between the input of the first input stage and the output of the first input stage. There is a second input stage having an input for receiving a reset input and having an output for producing a second component of the SR latch circuit output, the second input stage having only one transistor that receives the enable input, the second input stage becoming transparent while enabled, the second input stage having a single gate delay between the input of the second input stage and the output of the second input stage. |
US09628051B2 |
Circuit for generating a voltage waveform
A circuit for generating a voltage waveform at an output node. The circuit includes a voltage rail connected to the output node via a voltage rail switch; an anchor node connected to the output node via an inductor and a bidirectional switch, wherein the bidirectional switch includes two or more transistors connected in series; and a control unit configured to change the voltage at the output node by controlling the voltage rail switch and the bidirectional switch so that, if a load capacitance is connected to the output node, a resonant circuit is established between the inductor and the load capacitance. The circuit may be included in an apparatus for use in processing charged particles, e.g. for use in performing mass spectrometry or ion mobility spectrometry. |
US09628048B2 |
Multi-band filter module and electronic device comprising the same
A method of fabricating a multi-band filter module is provided. The method includes forming a Film Bulk Acoustic Resonator (FBAR) on a piezoelectric substrate by forming a resonant part on the piezoelectric substrate and then an air gap recessed on a surface of the piezoelectric substrate and positioned under the resonant part; and forming a Surface Acoustic Wave (SAW) device on the piezoelectric substrate in which the steps of forming the FBAR and the SAW are concurrently performed. |
US09628045B2 |
Cooperative tunable RF filters
RF communications circuitry, which includes a first tunable RF filter and a second tunable RF filter, is disclosed. The first tunable RF filter is coupled to the second tunable RF filter. The RF communications circuitry operates in one of a first operating mode and a second operating mode. During the first operating mode, the second tunable RF filter receives and filters an upstream RF signal to provide a filtered RF signal. Further, during the first operating mode, the first tunable RF filter augments a frequency response of the second tunable RF filter. |
US09628037B2 |
Methods and systems for determining audio loudness levels in programming
A program asset is retrieved. The program asset has audio encoded at a first loudness setting and includes metadata specifying the first loudness setting. Dialog of the audio is identified. The loudness of the dialog is determined. The determined loudness is compared to the first loudness setting. The program asset is re-recorded at a second loudness setting corresponding to the determined loudness, if the first loudness setting and the determined loudness are different by more than a predetermined amount. |
US09628030B1 |
Systems and methods using digital predistortion to linearize radio transmitter operation
A method of linearizing a relationship between a signal to an amplifier and an output signal from the amplifier includes applying an inverse of a transfer function of the amplifier to the signal prior to presenting the signal as the amplifier input. The inverse transfer function is represented by a polynomial defined by a set of coefficients. The transmitter output signal is measured by the idle receiver in a time division duplex system. The output signal is filtered to isolate intermodulation products of a selected order and the peak power of the isolated intermodulation products is then estimated. An adaptive algorithm is applied in response to the estimate of the peak power to update the set of coefficients of the polynomial representing the inverse of the transfer function of the amplifier. |
US09628026B2 |
Semiconductor device
Electric charge is stored, in accordance with a bias voltage, in a gate of a transistor performing switching operation between an input terminal and an output terminal, and the gate is brought into an electrically floating state at the time of completing the storage of electric charge in the gate. One electrode of a capacitor is connected to the gate in an electrically floating state, and the potential of the other electrode of the capacitor is increased, so that the voltage of the gate is increased using capacitive coupling. The potential of the gate of the transistor is increased, and the bias voltage is sampled without being decreased. Each of the transistor performing switching operation and a transistor connected to the gate of the transistor is a transistor with an extremely low off-state current. |
US09628025B2 |
Resonance suppression for envelope tracking modulator
An envelope tracking power supply arranged to generate a modulated supply voltage in dependence on a reference signal, comprising a first path for tracking low frequency variations in the reference signal and a second path for tracking high frequency variations in the reference signal, and further comprising a combiner having a low frequency combining element for the first path and a high frequency combining element for the second path, and for generating the modulated supply voltage, wherein there is further provided sensing circuitry for sensing a resonance signal in the low or high frequency combining element, and adjusting circuitry for adjusting a signal in the first path in dependence on the sensed resonance signal. |
US09628020B2 |
Semiconductor circuit, oscillator, electronic apparatus, and moving object
A semiconductor circuit includes an oscillation circuit; an output circuit that receives a first oscillation signal from the oscillation circuit and outputs a second oscillation signal; a DC circuit that receives a voltage based on a power supply voltage and outputs at least one of a DC voltage and a DC current; and a semiconductor substrate on which the oscillation circuit, the output circuit, and the DC circuit are formed. In a plan view of the semiconductor substrate, the DC circuit is disposed between the oscillation circuit and the output circuit. |
US09628017B2 |
Motor control device, and motor control method
In order to highly accurately estimate a temperature of a permanent magnet to be used for a rotor of a motor, provided is a motor control device for a vehicle including a motor as a drive power source, in which an estimation mode setting section sets, when a predetermined condition for estimating the temperature of the permanent magnet to be used for the rotor of the motor is established under a state in which the motor generates drive power to run the vehicle, a current flowing through the motor to 0, and a permanent magnet temperature estimation section estimates the temperature of the permanent magnet based on an induced voltage of the motor in a period during which the current flowing through the motor is 0. |
US09628014B2 |
Personal hygiene device with resonant motor
A personal hygiene device has a resonant motor and a motor control unit for applying a periodic voltage signal with a driving frequency at the resonant motor for driving the resonant motor into an oscillating motion with an oscillating frequency equal to the driving frequency. The motor control unit comprises a synthesizer circuit for digitally synthesizing the periodic voltage signal from voltage pulses of variable length provided with a pulse frequency higher than the driving frequency such that at least two voltage pulses are applied at least in one of two half cycles of each period of the periodic voltage signal. |
US09628013B2 |
Linear Drive with cross-controller vibration damping
A control device, linear device, non-transitory computer readable medium and method by which optimal vibration damping can also be achieved in a simple manner when transferring a carrier from one segment to the next segment, where a primary part includes a plurality of sequentially consecutive segments that are each connected to a supply voltage via a respective converter, such that each of plurality of sequentially consecutive the segments receive respective currents of a three-phase system. |
US09628012B2 |
Motor control device and motor control method
In an αβ coordinate system, vectors of currents flowing in three-phase AC motor are set in directions fixed relative to a zero vector current according to a voltage applied in six non-zero vector switching modes of an inverter. A current vector closest to a command current value is specified from those current vectors. Then, only a non-zero vector current when operating the inverter in the non-zero vector switching mode corresponding to the specified current vector is calculated. |
US09628009B2 |
Method for monitoring and controlling engine speed
A generator having an electronic governor for controlling the speed of an engine to generate an output voltage from an alternator is disclosed. The generator includes an alternator coupled to an engine to generate an output voltage. The variable speed of the engine allows the alternator to generate a variable output voltage. An electronic governor monitors a time period between voltage benchmarks on the output voltage. The electronic governor compares the monitored time period to a reference time period and adjusts the position of the throttle based upon the comparison between the monitored time period and the reference time period. The reference time period is set based upon the desired output voltage frequency. In an alternate embodiment, the electronic governor senses the current draw from the alternator and adjusts the position of the throttle to prevent changes in the frequency of the output voltage. |
US09628008B1 |
Method and generator control unit for configuring an output from a generator
A method and apparatus for operating a generator control unit having power bridge, further including having an input and at least one output, wherein the input is operably coupled with a generator power output, and a controller communicatively coupled with the power bridge and configured to operate the power bridge. |
US09628005B2 |
Device for determining a position of a rotor of an electric motor
A device for determining a rotor position in a polyphase electric motor has a power control unit for applying drive voltages according to a pulse width modulation scheme so as to synchronously drive the motor. A measurement unit is arranged for measuring a voltage value on a respective phase by determining a zero-crossing interval where the phase current is around zero, disconnecting the phase from the respective drive voltage during the zero-crossing interval, and measuring the voltage value when the drive voltage of a first other phase is the supply voltage and the drive voltage of a second other phase is the zero voltage. A position unit is arranged for determining the rotor position based on the voltage value. |
US09628004B2 |
Motor drive device
A motor drive device includes: an inverter circuit that has three switching elements corresponding to three phases of a three-phase motor coil, converts a DC applied voltage of a power source to an AC voltage by a PWM, and output the AC voltage to the motor coil; a voltage detection device for the DC applied voltage; and a control device that controls the PWM. The control device selects a first modulation method, for fixing the on/off-state of a part of the switching elements and for switching the on/off-state of the other part of the switching elements, or a second modulation method, for switching the on/off-state of the switching elements corresponding to three phases. The control device switches from the first modulation method to the second modulation method when the DC applied voltage is equal to or greater than a predetermined voltage, and the first modulation method is selected. |
US09628003B2 |
Direct current power supply device, motor driving device, air conditioner, and refrigerator
A direct-current power supply device includes a rectifier connected to a power supply, a charge storage unit configured by a first capacitor and a second capacitor connected in series, a switching unit configured by a first switching element 4a and a second switching element connected in series and backflow preventing elements that suppress a backflow of electric charges from the charge storage unit, a reactor, a control unit that controls operations of the first switching element and the second switching element, and a direct-current-voltage detecting unit that detects a first both-end voltage, which is a voltage across the first capacitor, and a second both-end voltage, which is a voltage across the second capacitor. The control unit detects, on the basis of a voltage difference between the first both-end voltage and the second both-end voltage, a short-circuit failure of one of the first switching element and the second switching element. |
US09628002B2 |
Circuit and method for detecting missed commutation of a brushless DC motor
The system contains a controller unit comprising a memory device, a processing unit, and at least one analog-to-digital converter. A power stage has a plurality of switches, wherein the power stage receives a control signal from the control circuit and a power signal from a power source. The power stage drives two windings of the set of three stator windings to rotate a rotor and maintains one stator winding of the three stator windings undriven. The memory device stores a plurality of values for the driven current and a plurality of demodulated undriven winding voltages. The processing unit compares the plurality of values and periodically calculates a rotor sextant while the rotor rotates. The processing unit compares at least two demodulated undriven winding voltage values corresponding to at least two current values within the rotor sextant to calculate the rotor sextant parity and verify the calculation of the rotor sextant. |
US09628000B2 |
Method for controlling a motor using pulse width modulation (PWM)
A method controls a motor using pulse width modulation (PWM). The method involves measuring the PWM frequency; determining the carrier frequency of a set radio transmitter; and matching the PWM frequency to the carrier frequency of the radio transmitter in such a manner that an integer multiple of the PWM frequency corresponds to the carrier frequency or an integer multiple of the PWM frequency lies in the middle between two carrier frequencies. |
US09627998B2 |
Electric motor control device
The electric motor control device includes: an inverter circuit 20 which converts DC power of a DC power supply 90 into AC power; and a switching control section 60 which performs on/off control of a semiconductor switching element composing the inverter circuit. The switching control section 60 includes: a power-supply-side abnormality determination section 62 which determines whether a power-supply-side abnormal state is established in which regenerative energy from an electric motor 10 cannot be regenerated to the DC power supply; and a switching frequency changeable section 63 which changes, when the power-supply-side abnormality determination section has determined that the power-supply-side abnormal state has been established, a switching frequency of the semiconductor switching element such that an overall loss, which is a total of loss in the inverter and loss in the electric motor, is increased. |
US09627997B2 |
Power generating system
A power-generating system includes a heat source which is able to produce temporal temperature variation, a first device in which polarization occurs based on the temperature change of the heat source, and a second device for taking out a net generating power from the first device, wherein 80% or higher of the total surface area of the first device is heated and/or cooled with the heat source. |
US09627993B2 |
AC-DC conversion circuit
An AC-DC conversion circuit is disclosed. The AC-DC conversion circuit has an inputting module, a rectifying module, a transforming module, an outputting module, a voltage detecting module, and a controlling module. The voltage detecting module is used to detect the DC voltage outputted from the rectifying module, the controlling module is used to control whether the AC-DC conversion circuit works or not according to a detecting result of the voltage detecting module. This prevents damage of the AC-DC conversion circuit and unstable output voltage by disposing the voltage detecting module and the controlling module. |
US09627992B2 |
Controlling circuit and AC/DC converter thereof
In one embodiment, a controlling circuit configured for an AC/DC converter that receives an AC voltage supply, can include: (i) a compensation signal generator configured to generate a compensation signal that follows an error between an output signal from the AC/DC converter and an expected converter output signal during a first time interval of a half period of the AC voltage supply, the compensation signal being substantially constant during a remaining time interval of the half period; and (ii) a controlling signal generator configured to generate a controlling signal based on the compensation signal to maintain the output signal as substantially consistent with the expected converter output signal. |
US09627986B2 |
Power conversion device and power conversion method
A power conversion method of a power conversion device including a primary side port disposed in a primary side circuit and a secondary side port disposed in a secondary side circuit magnetically coupled to the primary side circuit with a transformer, the power conversion device adjusting transmission power transmitted between the primary side circuit and the secondary side circuit by changing a phase difference between switching of the primary side circuit and switching of the secondary side circuit, and changing a voltage of the secondary side port by a DC-DC converter connected to the secondary side port, the power conversion method including: monitoring a voltage ratio of a voltage of the primary side port and the voltage of the secondary side port; and causing the DC-DC converter to operate when the voltage ratio deviates from the reference value by the specified value or more. |
US09627984B2 |
Isolated power supply circuit with programmable function and control method thereof
The present invention provides an isolated power supply circuit with a programmable function and a control method thereof. The isolated power supply circuit includes: a transformer circuit, a power switch circuit, a control circuit, and a discharge circuit. The control circuit generates an operation signal and a bleeding signal according to a setting signal. The discharge circuit is coupled to an output node, for generating a discharging current. When the programmable output voltage at the output node switches between different predetermined levels, in a transition period, the bleeding signal adjusts the discharging current to discharge the output node, such that the transition period is shortened. |
US09627982B2 |
Flyback power converter and control circuit thereof
A flyback power converter includes a transformer which has a primary winding, a secondary winding, and an auxiliary winding; a power switch controlling the conduction of the primary winding; and a control circuit generating a control signal to control the power switch, wherein the control circuit is an integrated circuit having a current sensing pin for obtaining a current sensing signal of a current through the power switch. The flyback power converter further includes a temperature-sensitive resistor or a mode detection resistor coupled between the auxiliary winding and the current sensing pin. The temperature-sensitive resistor provides a temperature-related signal for the control circuit to perform an over-temperature protection, or the temperature-sensitive resistor provides a mode detection signal for the control circuit to determine an operation mode of the flyback power converter. |
US09627981B2 |
Bidirectional switched mode power supply
Invention is related to a bidirectional switched mode power supply for elevator power systems. The bidirectional switched mode power supply comprises an input for selecting power supply direction of the bidirectional switched mode power supply and a switch having an control pole coupled to the input. The switch is adapted to change the main circuit of the bidirectional switched mode power supply based on the selected power supply direction. |
US09627979B2 |
Dual mode DC-DC converter
In a method of operating a dual mode DC-DC converter having first and second bridge converters connected via a transformer, a capacitor in series with each winding of the transformer, and an inductance, wherein each bridge converter includes a number of switches operating under the control of a controller, in a first mode of operation, the switching of the number of switches is controlled in a manner to transfer DC electrical power from the first bridge converter to the second bridge converter, or vice versa. In a second mode of operation, one switch of each bridge converter is maintained in a closed state and one switch of each bridge converter is maintained in an open state while the switching of the other of the number of switches of the first and second bridge converters is controlled in a manner to transfer DC electrical power from the first bridge converter to the second bridge converter, or vice versa. |
US09627977B2 |
Quasi-resonant switching power supply
A quasi-resonance switching power supply quickly determines the number of bottom skips corresponding to the load condition even in abrupt load change. The quasi-resonance switching power supply is provided with a bottom skipping control function and a capacitor to hold a voltage corresponding to the load condition of the switching element over one switching period of the switching element. The quasi-resonance switching power supply comprises a bottom skipping number determining circuit that compares the voltage held on the capacitor with comparison reference voltages selected from a plurality of reference voltages for determining the number of bottom skips, and revises the comparison reference voltage according to the comparison result. The processing of comparison and revision is executed multiple times in one switching period of the switching element. Thus, the bottom skipping number determining circuit determines the number of bottom skips corresponding to the voltage held on the capacitor. |
US09627976B2 |
Control architecture with improved transient response
A power supply system includes a power source; a load device configured to receive power from the power source; and a power interface device coupled to the power source and the load device and configured to change a first voltage provided by the power source to a second voltage for operating the load device. The power interface device include a main switching converter configured to operate at a first switching frequency and source low frequency current to the load device and an auxiliary switching converter coupled in parallel with the main switching converter and configured to operate at a second and different switching frequency and source fast transient high frequency current to the load device. |
US09627974B1 |
Adaptive voltage regulator
A voltage regulator circuit includes: a comparator configured to have a first input coupled to an output voltage of the voltage regulator circuit; a second input coupled to a reference voltage and an output signal; a first transistor; a second transistor, a drain of the first transistor connected to a drain of the second transistor; an inductor connected to the drain of the first transistor and the drain of the second transistor; a capacitor and a resistor connected in parallel, between the output node and a source of the second transistor; a peak-current detector unit configured to detect peak current in the inductor; a zero-crossing detector unit configured to detect a zero-crossing current in the inductor; and a control unit configured to receive a plurality of input signals including at least an input voltage and a clock signal. |
US09627970B2 |
Voltage converter and method for voltage conversion
A voltage converter (10) comprises a converter input (11), a coil (13) with a first and a second coil terminal (14, 14′), a first switch (15) arranged between the first coil terminal (14) and a reference potential terminal (16), a second switch (17) arranged between the converter input (11) and the first coil terminal (14), a converter output (12) coupled to the second coil terminal (14′) and a control unit (18). The control unit (18) is configured to set the first switch (15) into a blocking state in a first phase (A) of an operating mode of the voltage converter (10) and into a diode mode in a second phase (B) of the operating mode of the voltage converter (10) and to set the second switch (17) into a conducting state in the first phase (A) and into a blocking state in the second phase (B). |
US09627967B2 |
Power management system and method of use thereof
One embodiment of a power management system includes a reservoir configured to collect energy. The system also includes a voltage regulator coupled to the reservoir via an input terminal and configured to convert the energy to an output voltage via an output terminal when enabled. A threshold detector is coupled to the reservoir and is configured to sense the energy and enable the voltage regulator when the energy exceeds a threshold. The system further includes a feedback circuit coupled between the output terminal and the threshold detector, and configured to feedback the output voltage to the threshold detector to compensate for a voltage drop across the threshold detector due to an output current drawn by the load. |
US09627965B2 |
Power converter and power supplying method thereof
A power converter includes a DC/DC converting circuit and a first energy storage element. The DC/DC converting circuit includes a first output terminal and a second output terminal. The first energy storage element includes a first terminal and a second terminal. The first output terminal of the DC/DC converting circuit is electrically connected to one terminal of an external load. The first terminal of the first energy storage element is electrically connected to the second output terminal of the DC/DC converting circuit. The second terminal of the first energy storage element is electrically connected to the other terminal of the external load. The DC/DC converting circuit is configured to provide a variable electric power. The power converter provides the power supply according to the DC/DC converting circuit and the first energy storage element, and the variable electric power is less than the power required by the external load. |
US09627956B2 |
Ride-through and recovery method for DC short circuit faults of hybrid MMC-based HVDC system
A ride-through and recovery method for DC short circuit faults of a hybrid modular multilevel converter based high-voltage direct current transmission (MMC-HVDC) system, the hybrid MMC including multiple full-bridge sub-modules and half-bridge sub-modules, and the method including: 1) detecting whether a DC short circuit fault occurs, and proceeding to step (2) if yes and continuing detecting if no; 2) realizing ride-through of the DC short circuit fault; 3) detecting whether a DC residual voltage increases, and proceeding to step (4) if yes and continuing detecting if no; and 4) realizing DC short circuit fault recovery. |
US09627954B2 |
Multiphase low LC buck regulator
A buck power converter creates a desired output voltage from a greater input voltage with higher efficiency than linear regulators or charge pumps. For compact-size and cost sensitive products, the use of the buck power converter is hindered mainly because of lack of physical space and increases in the cost of the passive components like the inductor and capacitor. Techniques are presented to reduce the sizes of the passive components so that they can be integrated on-chip or in-package or on board. A signal converter in the buck power converter determines the duty cycle of a switching control signal. The switching control signal would ordinarily have driven a power switching circuit that provides current to the inductor in the buck power converter. The signal converter outputs a modified (multiphase) switching control signal that includes multiple separated on-periods that taken together approximate the duty cycle of the switching control signal while maintaining the same control loop frequency. The multiphase switching signal drives the power switching circuit to provide current to the inductor during each of the multiple separated on-periods so that the output voltage ripple decreases by a factor of the number of phases in the modified switching signal. In this way, if the ripple amplitude is kept same, the sizes of the passive components can be reduced by the factor of the number of phases in the modified switching control signal. |
US09627951B2 |
Electric power system with regeneration
A power system with regeneration may include an electric power storage element, an electric motor in electrical communication with the electric power storage element, a rotatable shaft operably coupled to the electric motor for rotation by the electric motor and adapted to provide rotational energy to a power take-off device, and a regeneration component operably coupled to the rotatable shaft and adapted for converting rotational energy of the shaft to electrical energy, the regeneration component being in electrical communication with the electric power storage element and adapted to recharge the electric power storage element. |
US09627948B2 |
Electric machine with combined insulator and terminal assembly
An electronics package for an alternator includes an electrically conductive carrier member and a terminal assembly engaging the carrier member. The carrier member includes an inner side, an outer side, and at least one passage extending from the inner side to the outer side. A plurality of switches are connected to the carrier member. The terminal assembly includes an electrically insulative portion and a plurality of electrical traces extending through the electrically insulative portion. The electrically insulative portion includes a post extending through the at least one passage of the carrier member, a first shoulder engaging the outer side of the carrier member, and a second shoulder engaging the inner side of the carrier member. The post, the first shoulder, and second shoulder are all formed as a unitary component. |
US09627946B2 |
Lead wire connection structure of rotating electric machine
A lead wire connection structure includes a rectifier that is arranged at the outside or the inside in an axis direction of the brackets so as to rectify AC voltage, which is generated on the stator, to DC voltage; in which, when a number of conductors of a connecting portion, at which lead conductors of the stator winding and the rectifier are connected, is “N” (N is integer and greater than or equal to 2) per one position, conductors, of which number is less than or equal to “N−1” per one position, are connected at the connecting portion, and conductors excepted from the conductors, of which number is less than or equal to “N−1”, are welded onto the remaining conductors at a position being nearer the stator winding side than the connecting portion. |
US09627942B2 |
Mounting method of electromagnetic generator and tire with built-in electromagnetic generator
When an electromagnetic generator 10 having a pendulum structure is mounted on an interior surface of a tire 20, an equivalent pendulum length l of a pendulum 14 is adjusted such that an integral multiple of a period λ of the pendulum 14, which is determined by the equivalent pendulum length l of the electromagnetic generator 10, is not in agreement with both of an integral multiple of a circumferential length L of the tire 20 and a length S of a non-grounded part of the tire, which is obtained by subtracting a ground contact length C from the circumferential length L of the tire 20, whereby the power generation capacity of the electromagnetic generator mounted on the tire can be improved regardless of the type of the tire. |
US09627940B2 |
Electromechanical actuator device and method of actuating a ring piston
An electromechanical actuator device (17) and method for use under water in petroleum activity, in which, via a transmission element (30, 34, 36), an electric motor (18), including a stator (20) and a rotor (22), is arranged to move an actuation element (36) between at least a first position and a second position, and in which the rotor (22) of the electric motor (18) surrounds and is connected to an actuator nut (30) which is in threaded engagement with the actuation element (36). |
US09627939B2 |
Motor apparatus having improved connector unit
A motor apparatus provided with a connector unit (40) to which an external connector is connected, wherein the connector unit (40) has a plurality of conductive members (64, 65, 66) arranged over a base portion (50) and a connector connecting portion (70) provided with a plug-in hole in which the external connector is plugged, wherein the conductive members (64, 65, 66) respectively include connector-side connecting portions (64a, 65a, 66a) connected to the external connector so as to face the connector connecting portion (70) from a first direction reversed to a plug-in direction of the external connector to the plug-in hole and base-side connecting portions (64b, 65b, 66b) connected to terminals or wirings provided in the base portion (50), wherein the connector-side connecting portions (64a, 65a, 66a) are respectively inserted into a plurality of insertion holes (74, 75, 76) provided at positions different from each other in a second direction intersecting the first direction, and wherein the base-side connecting portions (64b, 65b, 66b) are respectively arranged at the same position in the second direction. |
US09627938B2 |
Radial lead seal assembly for a generator and method incorporating the same
A radial lead seal assembly of a generator and a method for sealing a radial chamber from an axial chamber of a generator using a radial lead seal assembly are presented. The radial lead seal assembly includes sealing elements disposed around a radial lead to seal an annular space between the radial lead and the radial chamber and thereby seal the axial chamber fluidically from the radial chamber. Conical springs are disposed annularly around the radial lead between the sealing elements and a junction between the radial lead and the axial lead. The radial lead seal assembly includes a nut for exerting a compressive load on the radial lead seal assembly in a radially inward direction such that the conical springs are only partially compressed. |
US09627937B2 |
Stator for an electric motor
A stator for an electric motor includes a plurality of pole pieces and a plurality of electrical windings associated with the pole pieces. Each winding includes a cable having an electrically conductive element. A lossy insulative material is located between the electrical windings and the associated pole pieces. |
US09627936B2 |
Permanent magnet motor
A permanent magnet motor in which electromagnetic excitation force of low spatial order is reduced, and influence of a magnetomotive force harmonic of a rotor and torque ripple is reduced. One set of armature windings receives current from a first inverter, and another set of armature windings receives current from a second inverter. Where a pole number of a rotor is M and the number of slots of a stator core is Q, M and Q satisfy M |
US09627927B1 |
Emergency power module and method for providing emergency power
Technologies are described for an emergency power module and a method of providing emergency power. The emergency power module has an emergency power driver, a DC power supply, and a programmable emergency power controller. The emergency power driver is configured to sense an interruption of power and direct power from the DC power supply, through the programmable emergency power controller, and to the at least one electrical device, upon the interruption of power in the external electrical power source. The programmable emergency power controller is programmable through a program interface and control a programmed voltage of power to flow from the DC power supply to the at least one electrical device. |
US09627926B2 |
Backup power device, system and method of use
The present invention discloses a backup power device, system and method of use. The backup power device includes a panel, a first switch box electrically connected to the panel, a second switch box electrically connected to the panel, a switch box plug for routing electrical power through the panel, and an external power source coupled to the first switch box of the panel to power a connected device. The backup power system includes a service panel connecting a building to a power grid, a hard wired device powered by the service panel, a backup power device, and an external power source providing power for routing through the first switch box of the panel to the hard wired device. The backup power device including a panel, a first switch box, a second switch box, and a switch box plug. A method for using the backup power device is also disclosed. |
US09627917B2 |
Device for wireless charging circuit
The present application discloses a device for wireless charging circuit, comprising: a primary circuit box, which comprises at least one first switch unit; a secondary circuit box, which comprises at least one second switch unit; a transmission plate, which comprises a primary inductor of a transformer and a primary compensation capacitor, the primary inductor being coupled in series with the primary compensation capacitor; a receiving plate, which comprises a secondary inductor of the transformer; the transmission plate and the receiving plate are magnetically coupled with each other; the transmission plate is coupled with the primary circuit box; and the receiving plate is coupled with the secondary circuit box. The voltage between external terminals of transmission plate and the voltage between external terminals of receiving plate can satisfy the safety requirement. |
US09627913B2 |
Mobile device to control a charge pad system
A method of charging a mobile device on a charge pad. The method includes receiving a wireless charge from at least one of a plurality of charge pad power coils. The method also includes enabling communications between the charge pad and the mobile device. The method also includes sending a command from the wireless device to the charge pad to adjust a characteristic of the wireless charge at the charge pad and to enable the wireless device to control the characteristic of the wireless charge of the charge pad. |
US09627912B2 |
Mobile cart with capacitive power supply
A mobile system includes a mobile cart and an electronic device supported by the mobile cart. The mobile cart includes integral power storage structures that store electrical energy. The mobile cart also includes power supply electronics configured to supply the electrical energy to the electronic device to power the electronic device. |
US09627911B2 |
Electric-motor vehicle, power equipment, and power supply system including limiting discharging after the power storage device is externally charged
A vehicle includes a power storage device, a power node, and a controller. The controller controls charging and discharging of the power storage device with respect to the outside of the vehicle when the power storage device is able to be charged or discharged with electric power with respect to the outside of the vehicle via the power node. The controller controls discharging of electric power from the power storage device so as to provide a first period in which discharging of electric power from the power storage device to the outside of the vehicle is limited after the power storage device is externally charged with a power supply outside the vehicle, and so as to provide a second period in which discharging limitation in the first period is released at least after the first period ends. |
US09627909B2 |
Power supply device
Embodiments of the present invention include a power supply device having one or more converters (DC/DC and/or AC/DC) that convert input power supplied from one or more power sources, and a secondary battery which is charged by receiving power supplied from power sources. In addition, however, the power supply device has the unique feature of increasing power output by serially connecting the secondary battery to the DC/DC converter and/or AC/DC converter. In this regard, the secondary battery may comprise a Lithium Ion battery. |
US09627904B2 |
Charging method and charger
A charging method and a charger are provided that relate to the field of electronics, and can adjust a charging current of the charger in real time and avoid a short circuit of the charger. The method in the present invention includes setting a multi-level charging current; when a terminal is charged at a present charging current, acquiring a real-time charging voltage corresponding to the present charging current; determining whether a difference between the real-time charging voltage corresponding to the present charging current and an ideal charging voltage exceeds a voltage drop threshold; when the difference does not exceed the voltage drop threshold, boosting a charging current to a next-level charging current; and when the difference exceeds the voltage drop threshold, reducing the charging current to a previous-level charging current, so as to select an appropriate charging current to charge the terminal. |
US09627903B2 |
Current sensing circuit disconnect device and method
A device and method are provided for saving power and electricity in a charging device including external power supplies and battery chargers having a primary circuit and a secondary circuit where a switch is located in the primary circuit and a current sensing device in the secondary circuit to sense when there is a drop in current in the secondary circuit or no current in the secondary circuit because the load such as a cell phone or tablet is charged and when this occurs the switch in the primary circuit is opened and the primary circuit no longer draws power from the source of power until the switch in the primary circuit is closed by activation of a user of the charging device. |
US09627902B2 |
Charging control apparatus and charging control method
A method for controlling charge after judging as to whether a charging cable CC connected to a charging inlet E1 of a vehicle conforms to standards has detecting whether a control signal is outputted from the charging cable CC and whether power is supplied from the charging cable CC after the charging cable CC is connected to the charging inlet E1 until a main switch E5, E6 of a power feed line E8 of the vehicle is switched ON; judging that the charging capable CC does not conform to the standards at least when no control signal is detected and the power is detected; and forbidding the charge or limiting a charging current through the charging cable CC when judging that the charging cable CC does not conform to the standards. |
US09627900B2 |
Power adapter
A power adapter comprises a cover and a printed circuit board module received in the cover. The cover has a base and an upper cover covering the base, the base has a bottom wall and a plurality of side walls surrounding the bottom wall, the bottom wall and the side walls form a receiving space for receiving the printed circuit board module. The cover has a plurality of latching members at the top of the side wall, the latching members are on both ends of the cover, the latching members are defined above the upper cover and extend to each other. The side walls comprise a first side wall with a rotatablely movable block, the latching member is defined at the top of the movable block, the latching member moves outward with the movable block rotating. |
US09627897B2 |
String current limited battery charging control
Systems and methods for charging a plurality of battery strings are provided. The individual string current of each of the individual battery strings can be monitored and used to regulate a charging output provided by the charger. For instance, the output voltage of charger can be controlled as part of a closed loop control system based on the individual string current of the battery string under the constraint of an individual string current limit and/or a charging voltage limit. As the charging voltage of the charger increases as a result of the closed loop control based on the individual string current, other battery strings can be coupled to the charger when the charging voltage provided by the charger exceeds a battery string voltage associated with the battery string. |
US09627893B2 |
Electronic management system for electricity generating cells, electricity generating system and method for electronically managing energy flow
The invention relates to an electronic management system (5) for electricity generating cells (3), the system comprising: cell connection terminals to be connected to n associated electricity generating cells (3), n being a positive integer number, outputs to be connected to m associated static converters (9); m being a positive integer number and at least m=2, an energy routing module (13) adapted for routing energy flows from and between said cell connection terminals towards said outputs; and an electronic control unit (15) adapted for controlling dynamically the energy routing module (13). |
US09627892B2 |
User configurable electrical subpanel system with back feed prevention
In various embodiments, an electrical subpanel system is disclosed. The subpanel system may include a DC/AC inverter configured to accept a DC electrical input and to provide an auxiliary AC current output; a quick-disconnect coupling, a busbar connected between the auxiliary AC current output and the quick-disconnect coupling, a receptacle for connecting to at least one electrical device coupled in parallel to said busbar, where the quick-disconnect coupling may be configured to be selectively connected to a mains branch circuit current. |
US09627881B2 |
Fault detection in electric power delivery systems using underreach, directional, and traveling wave elements
The present disclosure pertains to systems and methods for detecting faults in an electric power delivery system. In one embodiment, a system may include a data acquisition subsystem configured to receive a plurality of representations of electrical conditions. The system may also include a traveling wave differential subsystem configured to determine an operating quantity based on the plurality of representations of electrical conditions. The traveling wave differential subsystem may also determine a restraint quantity based on the plurality of representations of electrical conditions. The traveling wave differential subsystem may detect a traveling wave generated by the fault based on the plurality of representations. A fault detector subsystem may be configured to declare a fault based on a comparison of the operating quantity and the restraint quantity. A protective action subsystem may implement a protective action based on the declaration of the fault. |
US09627878B2 |
Driving device for semiconductor elements, and semiconductor device
The device for driving the semiconductor element is provided with a drive circuit section, a charging circuit section and a shutting circuit section. The charging circuit section is electrically connected to an external circuit provided with a diode and a capacitive element. The semiconductor element has a first electrode, a second electrode and a control terminal. The cathode of the diode is connected to the first electrode. One of two terminals of the capacitive element is connected to the cathode of the diode, and the other terminal is connected to the second electrode. The charging circuit section enables the capacitive element to be charged at a higher rate after a timed point at which the voltage on the capacitive element becomes equal to a saturation voltage in a case where the input signal is an on-signal. |
US09627876B2 |
Insulated splitters and related methods
Conductors within a multi-conductor electrical cable can be safely and separately connected using a splitter that incorporates smooth and chamfered openings and surfaces, and at least one elongated (e.g., tubular) passageway for covering an uninsulated conductor. |
US09627875B2 |
Wire pass through device
The embodiments herein provide a device for sealing an interface having an opening for a wire to pass through the interface. A pair of sealing blocks may be used where one block contains a protrusion and the opposing block contains a recess. The protrusion and recess preferably have an apex with a round having approximately the same dimension as the radius of the wire. A pair of posts may be positioned on opposing sides of the opening. One sealing block may contain an aperture for accepting one of the posts while the second sealing block may contain an aperture for accepting the opposing post. The posts may be threaded so that they can accept a threaded fastener. Exemplary embodiments may utilize mounting plates which may contain a flange such that squeezing the opposing flanges together can cause inward forces on the sealing blocks. |
US09627872B2 |
Drop cord power and/or data supply assembly
A power supply assembly and method for installing in a retail store environment are described. The power supply assembly is relocatable for providing power and/or data to a particular location within the retail store environment. The power supply assembly can provide power and/or data from a power source above a dropped ceiling to a powered fixture without the ceiling panel being set askew, in a manner that may be more aesthetically pleasing and that can satisfy building code requirements. The power supply assembly can be movable to various locations in the retail store environment and does not require installation of a structure such as, but not limited to, a power pole or other beam-like structure in which power cords may be contained. |
US09627869B2 |
Block for vehicle
Provided is a block for a vehicle. The block for a vehicle includes a main housing, an upper housing, support bars, and temporary fastening portions. The main housing has a first containing space. The upper housing has a second containing space. At least part of the upper housing is inserted into the main housing. The support bars protrude upward from edges of the main housing, and are elastically deformable in a direction away from the main housing. The temporary fastening portions protrude downward from edges of the upper housing. When the temporary fastening portions are seated on the upper portions of the support bars, the upper housing is temporarily fastened to the main housing. When the support bars are elastically deformed, the temporary fastening portions exit the state of being seated on the upper portions of the support bars, and thus the temporary fastening is released. |
US09627864B2 |
Detachable interface for high powered electronic modules
A detachable high powered electronic module of a high powered electronic system capable of receiving high power is disclosed. In one embodiment, the detachable high powered electronic includes a sub-array of the high powered electronic module, a heat exchanger assembly, a power converter module, and a mechanical interface. The mechanical interface is configured to detachably couple the sub-array and the power converter module via the heat exchanger assembly. Further, the detachable sub-array assembly is configured to deliver power received from the power converter module to the sub-array and also to substantially simultaneously extract heat away from the detachable sub-array. |
US09627861B2 |
Utility meter bypass systems, methods, and devices
Bypass systems can be used to connect alternative energy sources to existing distribution panels without the need to replace or upgrade the distribution panel. Some such bypass systems may be integrated directly into an electric meter, while others can be connected to the meter but located laterally or otherwise away from the electric meter. The bypass busbars and breakers may in some devices be interchangeable, allowing for greater flexibility and capacity of the bypass systems. |
US09627859B2 |
Spark gap arrangement
A spark gap arrangement comprises a triggerable spark gap (TF) and a trigger circuit (TRG), which comprises a first and a second charge store (C1, C2), a first resistor (R1), a triggerable dissipation element (SF, SF3, TD, TH) and a transformer (T1). The trigger circuit is set up to intermediately store the energy of an input pulse supplied to the input side of the trigger circuit (TRG), wherein storage takes place at least by means of the first charge store (C1). A part of the stored energy is transferred to the second charge store (C2) via the first resistor (R1). The triggerable dissipation element (SF, TD, TH) is set up to turn on on the basis of a voltage across the second charge store (C2) and to discharge the first charge store (C1) via a primary side (T11) of the transformer (T1). In this case, a secondary side (T12) of the transformer (T1) is connected to a main electrode (HE) of the triggerable spark gap (TF) and to a trigger electrode (TE) of the triggerable spark gap (TF). |
US09627856B2 |
Electrode beam welded spark plugs for industrial electrodes
An industrial spark plug (20) includes a central electrode (24) with a central base (30) formed of a nickel-based material and a central firing tip (32) formed of an iridium-based material. The central firing tip (32) has a tip thickness (tct) of 0.02 to 0.03 inches, a tip diameter (dct) of 0.1184 to 0.1776 inches, and an aspect ratio of 4.736 to 7.104. The central firing tip (32) is electron beam welded to the central base (30) to provide a robust joint therebetween. The central electron beam weld (36) includes a mixture of re-crystallized iridium-based material and re-crystallized nickel-based material extending continuously along and over the entire welding interface. The spark plug (20) also includes a ground electrode (26) with a ground firing tip (38) electron beam welded to a ground base (42). |
US09627852B2 |
Diode laser packages with flared laser oscillator waveguides
A high brightness diode laser package includes a plurality of flared laser oscillator waveguides arranged on a stepped surface to emit respective laser beams in one or more emission directions, a plurality of optical components situated to receive the laser beams from the plurality of flared laser oscillator waveguides and to provide the beams in a closely packed relationship, and an optical fiber optically coupled to the closely packed beams for coupling the laser beams out of the diode laser package. |
US09627845B2 |
Method for manufacturing an optical unit
Disclosed is a method for manufacturing an optical unit, including a step of bringing two side face portions of a ceramic package into contact with two contact portions of a jig, a step of placing plural light-receiving and light-emitting elements in a predetermined region of the ceramic package with reference to the contact portions of the jig, and a step of connecting the plural light-receiving and light-emitting elements to a wiring line part formed in the ceramic package by using a bonding wire, wherein at least one of the plural light-receiving and light-emitting elements is placed between one of the two contact portions of the jig and another one of the plural light-receiving and light-emitting elements in the step of placing the plural light-receiving and light-emitting elements. |
US09627840B2 |
Metamaterial structures for Q-switching in lasers
Techniques described herein are generally related to metamaterial structures for Q-switching in laser systems. The various described techniques may be applied to methods, systems, devices or combinations thereof. Some described metamaterial structures may include a substrate and a first conductive layer disposed on a first surface of the substrate. A dielectric layer may be disposed on a first surface of the first conductive layer and a second conductive layer having a substantially symmetric geometric shape may be disposed on a first surface of the dielectric layer. The second conductive layer may cover a portion of the first surface of the dielectric layer. |
US09627839B2 |
Optical fiber lasers
A fiber gain medium provided by a rare-earth doped fiber (10) is contained in a first resonant cavity by end reflectors (12, 18). The reflector (12) is wavelength selective to limit the frequency band of the first resonant cavity. The first resonant cavity also contains a second resonant enhancement cavity (16) with multiple transmission bands lying within the first resonant cavity's frequency band. Multiple standing wave modes of the first resonant cavity lie within both the frequency band of the first resonant cavity and the transmission bands of the second resonant cavity, and it is these standing wave modes that support laser action when the rare-earth doped fiber is suitably pumped by pump lasers (40). |
US09627831B1 |
Rotating contact ring with legs extending at an angle to a lower surface of the ring
A rotating contact device is described. The rotating contact device can include a contact ring and a pair of legs extending from a lower ring surface of the contact ring. Along an upper ring surface of the contact ring can be disposed one or more raised contacts. The rotating contact device can also include an inside contact held within an inside of the contact ring. Application of a downwards force on the upper ring surface of the contact ring causes the pair of legs to deflect and the contact ring and the inside contact to rotate and translate. When mated with opposing contacts, this rotation can function to radially wipe the opposing contacts and the upper ring surface. |
US09627826B2 |
Power connector assembly with contacts conveniently soldered to cable wires
A power connector assembly (100) includes a cable (7) including a number of wires (70), an insulative housing (1), and a number of electrical contacts (2). The electrical contacts include at least one detection contact (22) and plural contacts (21). Each of the plural contacts includes a pair of mating portions (211), a pair of middle portions (212) extending rearwardly from the mating portions respectively, a connecting portion (213) connected with the middle portions, and a first soldering portion (214) connected with the connecting portion. The at least one detection contact includes a second soldering portion (223). Each of the first soldering portions and the second soldering portion includes a soldering area soldered to respective one of the wires, and all of the soldering areas are disposed at a common horizontal plane, arranged in a straight line, and soldered to corresponding wires at same time. |
US09627820B2 |
Power entry and distribution for network processing systems
Power entry and distribution for network communication systems are disclosed. For certain embodiments depicted, a power distribution board with an open-grid configuration receives power feed/return lines from a power entry connector and distributes the power feed/return lines for a network processing system. The open-grid configuration facilitates airflow through a chassis and thereby provides improved cooling. Further, a modular power entry connector can be used to facilitate connection of power feed/return cables to the chassis for the network processing systems while improving safety for high power implementations. |
US09627819B2 |
Insulation insert with an integrated shielding element
The invention relates to an insulation insert that can be inserted into a plug-in connector housing (11) of a plug-in connector (10), wherein in the insulation insert (1), at least one contacting element for electrically contacting a conductor core of a cable (12) to be connected may be provided, wherein the insulation insert (1) is provided in one area with a conductive coating, wherein the coated area forms a shielding element (3) that can be electrically contacted with a shielding braid of the cable (12) to be connected and at the same time with the plug-in connector housing (11), and wherein the insulation insert (1) and the shielding element (3) are integrally formed in. |
US09627818B1 |
Electrical connector fixed to circuit board
An electrical connector is fixed to a circuit board, and includes an inner insulating body and terminal modules. The inner insulating body includes a docking portion and a mounting portion. Each module has a carrier and terminals. The carrier is disposed on the mounting portion. The contacts are formed from a metal film and fixed to the carrier. Each terminal has a mating portion, a tail portion and a base portion connected between the mating portion and the tail portion. The mating portion extends from outside the carrier to inside the mating hole. The tail portion extends from outside the carrier to a surface of the circuit board. Each tail portion of a portion of the terminals has a soldering surface attached to the surface of the circuit board and a soldering pin passing through the surface of the circuit board respectively. |
US09627817B2 |
Electrical connector having a good high frequency transmission performance
An electrical connector includes an insulating body, multiple terminals received in the insulating body, and a metal member fixed to the insulating body. The terminals includes at least one ground terminal. The metal member has a first section and a second section. The second section is higher than the first section. The first section has at least one first elastic piece, the second section has at least one second elastic piece. The first elastic piece and the second elastic piece contact with a same terminal of the at least one ground terminal. |
US09627816B2 |
High speed grounded communication jack
A method of manufacturing a high speed jack, the method including the steps of forming a housing including a port for accepting a plug, the port including a plurality of pins each connected to a corresponding signal line in the plug, forming a shielding case surrounding the housing, forming a top layer of a substrate, a first shielding layer on a first side of the top layer in the substrate, a second shielding layer adjacent the first shielding layer in the substrate, and forming a bottom layer adjacent to the second shielding layer, forming a plurality of first vias extending through the substrate with each first via being configured to accommodate a pin on the housing, forming a plurality of second vias extending through the substrate with each second via being configured to accommodate a pin on the housing. |
US09627815B2 |
Receptacle connector for cable
A receptacle connector assembly has a first shell including a plurality of side walls, a receiving cavity surrounded by the side walls and extending therethrough along a front-to-back direction. A number of spring fingers are formed on the respective side walls and protruding inwardly into the receiving cavity. A number of punched holes receiving the respective spring fingers communicate with the receiving cavity. An insulative body includes a base assembled to the first shell and a tongue extending forwardly therefrom. The tongue is received in the receiving cavity and has a top face and a bottom face disposed in a vertical direction. A number of contacts are arranged in a side-by-side manner along a transverse direction perpendicular to the front-to-back direction and the vertical direction. A second shell covers the first shell and encloses the punched holes therein. An insulative case encloses the second shell therein. |
US09627814B2 |
Moving part coaxial connectors
A coaxial connector includes a body having a longitudinal axis passing through first and second opposed body ends, the second body end for engaging a male coaxial connector, within the body a coil spring, a connector center conductor, and a second body end insulator supporting the connector center conductor, and a spring for urging an electromagnetic shield to protrude from the body. |
US09627813B1 |
Card connector with identification function
A card connector includes a base member including a bottom wall, two opposite sidewalls, a first space and a second space defined between the two sidewalls at different elevations and disposed in communication with each other and an identification terminal that has an actuation segment upwardly backwardly extended from the bottom wall, conducting terminals mounted in the base member, and a cover member including a mating conduction terminal that has a falling segment downwardly extended from a top portion of the cover member and a horizontal segment horizontally extended from the distal end of the falling segment and suspended below the distal end of the actuation segment of the identification terminal so that the identification terminal is pressable downward into contact with the mating conduction terminal upon insertion of a predetermined card. |
US09627809B2 |
Land grid array socket for electro-optical modules
An LGA socket suitable for electro-optical modules, such as transceivers having channels operable at 25 Gbit/s, or greater. A socket may include a socket body having a bottom side to face a printed circuit board (PCB), and a backstop on a top side to receive a leading edge of a module substrate. The backstop has an overhang to contact a first side of the module substrate when seated into the socket body. The socket further includes a first and a second row of electrical contacts, the first row being more proximate to the backstop than is the second row. Contacts extend through the socket body between the top and bottom sides and are positioned relative to the overhang to be compressed against contact pads on a second side of the module substrate by a torque applied to the module substrate about a fulcrum within the socket body. |
US09627808B2 |
One piece connector with integral latching members
An electrical connector having a housing, a seal and a retainer. The housing includes a component receiving opening which extends through a mating end. The housing is molded from a first material. The seal is provided in the component receiving opening and is integrally molded in the component receiving opening of the housing, the seal being molded from a second material which is different than the first material. The retainer is positioned proximate the mating end and is integrally molded to the housing. The retainer cooperates with a mating component to retain the mating component in the component receiving opening. |
US09627804B2 |
Snap button fastener providing electrical connection
Embodiments are generally directed to a snap button fastener providing electrical connection. An embodiment of a fastener includes a first mechanical part, the first mechanical part including at least a stud portion, the first mechanical part including a first electrical connector; a second mechanical part, the second mechanical part including at least a socket portion with a spring element and the socket portion, the second mechanical part including a second electrical connector. The stud portion of the first mechanical part and the socket portion of second mechanical part, if separated, are to interlock upon the application of a first force towards each other, and, if interlocked, to separate upon the application of a second force away from each other. The first electrical connector and the second electrical connector are to be electrically connected when the first mechanical part and the mechanical part are interlocked, and first electrical connector and the second electrical connector are to be disconnected when the first mechanical part and second mechanical part are separated. |
US09627803B2 |
Connectors with movable magnetic components and method of connecting devices
A connector for an electronic device has a housing with a peripheral surface and guides defining first and second paths. The second path extends from a first location proximate the peripheral surface to a second location farther from the peripheral surface and closer to the first path. A magnetic contact assembly in the housing is magnetically movable along the first path between a first position for joining the connector in data communication with an adjacent connector, and a second position withdrawn from the peripheral surface. A magnet in the housing and is movable by attraction to an adjacent connector along the second path, to magnetically hold the connector to an adjacent connector. The guides are configured so that the magnet and the magnetic contact assembly magnetically bias one another inwardly along the first and second paths. |
US09627802B2 |
Electrical charging devices and assemblies
Electrical charging devices and assemblies are provided herein. An example device includes a housing tray having a sidewall extending perpendicularly from the housing tray, the housing tray being configured to hold a personal electronic device, the housing tray including an electrical connector interface that couples with a charging connector of the personal electronic device. Also, the device includes an electrical connector for electrically coupling with a DC source, the electrical connector capable of being placed in either a deployed configuration where the electrical connector can couple with the DC source or a stored configuration where the electrical connector cannot couple with the DC source. |
US09627798B2 |
Connector part and connector assembly for use in a severe environment
A connector part for use underwater or in a wet or severe environment, the connector part comprising a pin, projecting axially forwardly from a support, the pin comprising an axially extending electrically conductive portion, an axially extending sleeve comprising fiber reinforced plastic around the conductive portion, a protective layer around the sleeve to prevent exposure of the sleeve to ambient conditions when the pin is exposed to ambient conditions, and an axially extending conductive and impermeable layer between the sleeve and the protective layer. |
US09627794B2 |
Connector element having a contact module engagement
An electrical connector has a connector housing and a contact receiving body. The connector housing has a body receiving space, a body receiving end, a terminating end wall positioned opposite the body receiving end and having an inner surface facing the body receiving space, a body receiving opening positioned on the body receiving end, and a first locking mechanism positioned on the inner surface of the terminating end wall. |
US09627780B2 |
System incorporating current path between conductive members
An electrical system having a current path formed in a region between first and second electrodes. When a low pressure is sustained in the region, and a plasma is generated in a portion of a gap between the electrodes, current flows across the gap from the first electrode to the second electrode. In one embodiment the system is operable as a motor or a generator, having a first electrode and a member including a second electrode which is rotatable with respect to the first electrode. In another embodiment a first conductor is positioned to carry current toward or away from a first terminal at a high temperature, and a second conductor is spaced apart from the first terminal to carry current toward or away from a second terminal when the second conductor is at a low temperature relative to the temperature of the first region. |
US09627774B2 |
Antenna device and system having active and passive modules
Embodiments of the present application disclose an antenna device and system. The antenna device includes: an antenna array, configured to radiate or receive an electromagnetic wave signal; a feed network, configured to connect the antenna array and a signal multiplexer; at least one signal multiplexer, configured to divide one path of signal from the feed network into at least two paths of signal, or combine at least two paths of signal to one path of signal and transmit the one path of signal to the feed network; and at least two interface modules connected to a passive module or an active module, is configured to receive a signal sent from the passive module or the active module, or send a signal to the passive module or the active module. The present application can be used for sharing the antenna array and other parts in the active and passive antenna systems. |
US09627763B2 |
Antenna device and mobile terminal
The disclosure provides an antenna device and mobile terminal including such an antenna device. The antenna device includes a coil including a conductor wound around a plate-shaped magnetic core. A flat conductor is positioned adjacent to the coil, and the coil is positioned such that it is closer than the flat conductor to an antenna of a communication partner positioned near the antenna device. The coil conductor includes a first conductor portion adjacent to a first main surface of the magnetic core and a second conductor portion adjacent to a second main surface thereof. The magnetic core and the coil conductor form an antenna coil. A circuit substrate includes a ground electrode formation area and a ground electrode non-formation area. The antenna coil is mounted on the ground electrode non-formation area of the circuit substrate with the first main surface of the magnetic core facing the circuit substrate. |
US09627762B2 |
Antenna device, communication terminal device, and communication terminal device cover
An antenna device includes a feed coil including a coil conductor and being connected to a feed circuit, and an antenna coil including a coil conductor, a portion of the antenna coil being a coupler portion that electromagnetically couples with the feed coil. The winding axis of the coil conductor of the feed coil is not parallel to the direction along which the coil conductor of the antenna coil at the coupler portion extends. Further, at other than the coupler portion, a first magnetic body portion is arranged at a feed coil side of the antenna coil, and at the coupler portion, a second magnetic body portion is arranged at a side of the antenna coil opposite to the feed coil. |
US09627756B2 |
Interlaced element UHF/VHF/FM antenna
A UHF/VHF/FM antenna consisting of two elongated octagonal elements formed individually from ¼″ O.D. (Outer Dimension) flexible copper tubing, interlaced with each other before coupling of the open tubing ends, then concentrically aligned perpendicular to each other, and soldered at a interlacing cross points. Signals received by the interlaced elements are directed to a 300-75 ohm transformer balun through two bare 12-guage copper wires, each bent approximately 90°, then soldered to the mid-points of adjacent element short sides and perpendicular element cross points. |
US09627753B2 |
Antenna structures and methods thereof for determining a frequency offset based on a measured data
A system that incorporates the subject disclosure may include, for example, a circuit for determining a magnitude difference between a first signal supplied to an antenna and a second signal radiated by the antenna, determining a phase difference between the first signal supplied to the antenna and the second signal radiated by the antenna, measuring a change in reactance of an antenna, detecting an offset in an operating frequency of the antenna based on one of the magnitude difference, the phase difference, the change in reactance, or any combination thereof, and adjusting a resonant frequency of the antenna to mitigate the offset in the operating frequency of the antenna. Other embodiments are disclosed. |
US09627752B2 |
Receiving unit driving control method, receiving device and electronic apparatus
An RF receiving circuit unit that receives a GPS satellite signal from a GPS satellite is intermittently driven by a first driving control of intermittently driving the RF receiving circuit unit with a first intermittent driving pattern and a multistage driving control of intermittently driving the RF receiving circuit unit with a multistage intermittent driving pattern in which a driving period in the first intermittent driving pattern is set to a second intermittent driving pattern of which an intermittent cycle is shorter than that of the first intermittent driving pattern. |
US09627751B2 |
Device for decoupling antennas in compact antenna array and antenna array with the device
Devices and methods for decoupling two antennas in a compact antenna array and antenna arrays comprising the devices are disclosed. According to an embodiment, the device comprises a first resonator coupled with a source, the source being connected with a first antenna of the two antennas; and a second resonator coupled with the first resonator and a load, the load being connected with a second antenna of the two antennas, wherein the first and second resonators are configured so that a first coupling between the source and the first resonator, a second coupling between the first and second resonators, and a third coupling between the second resonator and the load are satisfied with a constraint that an isolation coefficient in a whole network composed of a first two-port network consisting of the two antennas and a second two-port network consisting of the first and second resonators in parallel approach zero as well as reflection coefficients of each port of the whole network are minimized. |
US09627750B2 |
Radio device
A radio device includes a rectangular substrate including first and second opposite sides and third and fourth opposite sides; a ground plane formed in the substrate, cut out along the third side from a corner at one end of the second side; a first monopole antenna extending away from the ground plane along the third side from a first feeding unit provided on the third side; a second monopole antenna extending away from the ground plane along the fourth side from a second feeding unit provided on the fourth side; and a ground element formed in the ground plane, extending toward the second side along the third side, from one end of the ground element connected to the ground plane. A length from the first feeding unit through the one end to another end of the ground element corresponds to one fourth of a wavelength of radio waves. |
US09627743B2 |
Antenna device and mobile terminal having the same
A mobile terminal can include a bar type terminal body including a conductive case, and having an upper part and a lower part; and an antenna device disposed on the lower part; the conductive case can include first and second conductive cases forming a side appearance of the mobile terminal, the first conductive case is disposed at a lower end of the terminal body; the second conductive case covers a side surface of the mobile terminal; the first and second conductive cases are separated by an opening with a dielectric therebetween; the antenna can include a first member and a second member extended from an end of the first member and is in a printed circuit board (PCB); the first and second members are near the first conductive case; and the PCB has a socket for connecting an external device, and a key of a user input unit. |
US09627742B2 |
Mobile device housing including at least one antenna
Embodiments of systems and methods for providing in-mold laminate antennas are generally described herein. Other embodiments may be described and claimed. |
US09627741B2 |
Wireless module and wireless device
As a wireless module which is capable of improving heat dissipation while suppressing degradation of antenna characteristics, there is provided a wireless module including: a first substrate having a first surface on which a plurality of antennas and a ground portion are disposed; and a heat dissipating member disposed opposite the first surface of the first substrate. The heat dissipating member includes a plurality of openings corresponding to the plurality of antennas respectively and an intervening portion which intervenes between the plurality of openings. The ground portion is disposed between the first substrate and the heat dissipating member. |
US09627738B2 |
Wideband multilayer transmission line transformer
Embodiments of the invention include transmission line transformers. According to one aspect, a multilayer transmission line transformer (TLT) includes a first set of two conductors forming a first clockwise spiral. The TLT includes a second set of two conductors forming a second counterclockwise spiral that is substantially coaxial with the first spiral. The first and second spirals are arranged to cause a substantial cancellation of common mode currents in the first and second sets of conductors during operation of the TLT. |
US09627735B2 |
High-frequency signal line and electronic device provided with the same
A high-frequency signal line includes a dielectric base with a first line portion and a second line portion each extending along a predetermined straight line parallel or substantially parallel to a predetermined direction, and a third line portion mutually connecting first side ends of the first line portion and the second line portion in the predetermined direction, a signal line, a first ground conductor located on the first side in the layer stacking direction of the signal line, a second ground conductor located on a second side in the layer stacking direction of the signal line, and one or more interlayer connection conductors connecting the first ground conductor and the second ground conductor. In the third line portion, the interlayer connection conductor is provided on the second side in the predetermined direction of the signal line when viewed from the layer stacking direction. |
US09627734B2 |
High-frequency signal line and method for producing base layer with signal line
A high-frequency signal line includes a first base layer having flexibility, a linear signal line provided on the first base layer and including a first line portion having a first width and a second line portion having a second width greater than the first width, and a first reinforcing conductor provided on the first base layer along the first line portion. |
US09627731B2 |
Resonance device and filter including the same
A resonance device and a filter including the same are provided. The resonance device includes a case having a first ground surface and a second ground surface which are facing each other, and a first conductive layer located in the case, and the first conductive layer includes a main part grounded via the first ground surface, and a protruding part which has a width different from that of the main part and is located to be spaced apart from the second ground surface. |
US09627728B2 |
Rechargeable anion battery cell using a molten salt electrolyte
A rechargeable electrochemical battery cell includes a molten carbonate salt electrolyte whose anion transports oxygen between a metal electrode and an air electrode on opposite sides of the electrolyte, where the molten salt electrolyte is retained inside voids of a porous electrolyte supporting structure sandwiched by the electrodes, and the molten salt includes carbonate including at least one of the alkaline carbonate including Li2Co2, NA2CO2, and K2CO2, having a melting point between 400° C. and 800° C. |
US09627727B2 |
Lithium-air battery with cathode separated from free lithium ion
A lithium-air electrochemical cell is provided. The battery comprises: an anode compartment; a cathode compartment; and a lithium ion conductive membrane separating the anode compartment from the cathode compartment. The anode compartment comprises an anode having lithium or a lithium alloy as active metal and a lithium ion electrolyte, while the cathode compartment comprises an air electrode and an ionic liquid capable of supporting the reduction of oxygen. A lithium ion concentration in the cathode compartment is such that the lithium ion concentration is greatest at the lithium ion selective membrane and lowest at the cathode. |
US09627726B2 |
Shutdown system for metal-air batteries and methods of use thereof
This invention provides a shutdown system and methods for battery shutdown followed by a standby mode using a washing solution controlled by pH such that the electrode remains stable. |
US09627725B2 |
Battery pack
A battery pack having a battery module, a thermoelectric heat pump, and a cooling manifold is provided. The battery module has a first battery cell, a housing, and a first solid cooling fin. A first panel portion of the first solid cooling fin is disposed against the first battery cell. A second panel portion of the first solid cooling fin is disposed on an outer surface of the housing and is coupled to an end portion of the first panel portion. A first side of the thermoelectric heat pump is disposed against the second panel portion, and a second side of the thermoelectric heat pump is disposed against the cooling manifold. The thermoelectric heat pump transfers heat energy from the first solid cooling fin to the cooling manifold in response to a first electrical current flowing through the thermoelectric heat pump in a first direction, to reduce a temperature level of the first battery cell. |
US09627723B2 |
Operation of electrochemical energy systems
Electrochemical cells that include resistor switch assemblies that can operate according to temperature and batteries and power systems including such cells are disclosed. |
US09627715B2 |
Non-aqueous electrolyte secondary battery and battery pack
A non-aqueous electrolyte secondary battery of an embodiment includes an exterior member, a negative electrode containing a titanium-containing oxide housed in the exterior member, a positive electrode housed in the exterior member, a separator housed in the exterior member and arranged between the positive electrode and the negative electrode, and a non-aqueous electrolyte solution housed in the exterior member. At least one type or more chain carbonates are contained in a solvent of the non-aqueous electrolyte solution. A self-diffusion coefficient of the chain carbonate in −20° C. is front 1.4×10−10 to 2.0×10−10 m2/sec. |
US09627713B2 |
Composite electrolyte including polymeric ionic liquid matrix and embedded nanoparticles, and method of making the same
A composite electrolyte comprising includes a polymeric ionic liquid matrix; and a plurality of functionalized nanoparticles embedded therein, wherein at least one of a nitrogen cation moiety, a phosphorus cation moiety, and a sulfur cation moiety is tethered to the nanoparticle. |
US09627712B2 |
Heteroaromatic-based electrolytes for lithium and lithium-ion batteries
The present invention provides an electrolyte for lithium and/or lithium-ion batteries comprising a lithium salt in a liquid carrier comprising heteroaromatic compound including a five-membered or six-membered heteroaromatic ring moiety selected from the group consisting of a furan, a pyrazine, a triazine, a pyrrole, and a thiophene, the heteroaromatic ring moiety bearing least one carboxylic ester or carboxylic anhydride substituent bound to at least one carbon atom of the heteroaromatic ring. Preferred heteroaromatic ring moieties include pyridine compounds, pyrazine compounds, pyrrole compounds, furan compounds, and thiophene compounds. |
US09627711B2 |
Non-aqueous electrolyte secondary battery
A non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode. The positive electrode of this secondary battery contains a positive electrode active substance having a hollow structure, which has a shell portion and a hollow portion formed inside the shell portion. In addition, a heat-resistant barrier layer is disposed between the positive electrode and the separator. |
US09627707B1 |
Device for preventing deformation of fuel cell stack
A device for preventing deformation of a fuel cell stack module includes vertical plates and a horizontal plate, The vertical plates and the horizontal plate are combined to form a deformation prevention frame and disposed between a plurality of fuel cell stack modules, which is vertically stacked, and on both surfaces of the respective fuel cell stack modules which are perpendicular to an end plate. Each of the plurality of fuel cell stacks includes an end plate disposed perpendicular to the vertical plates. |
US09627702B2 |
Electrolyte emulsion and process for producing same
A method for producing an electrolyte emulsion, the method including: Step (1) in which an ethylenic fluoromonomer and a fluorovinyl compound having an SO2Z1 group, wherein Z1 is a halogen element, are copolymerized at a polymerization temperature of 0° C. or higher and 40° C. or lower to provide a precursor emulsion containing a fluoropolymer electrolyte precursor; and Step (2) in which a basic reactive liquid is added to the precursor emulsion and the fluoropolymer electrolyte precursor is chemically treated, whereby an electrolyte emulsion with a fluoropolymer electrolyte dispersed therein is provided, wherein the electrolyte emulsion has an equivalent weight (EW) of 250 or more and 700 or less. |
US09627701B2 |
Integrated gaseous fuel CPOX reformer and fuel cell systems, and methods of producing electricity
Integrated gaseous fuel catalytic partial oxidation (CPOX) reformer and fuel cell systems can include a plurality or an array of spaced-apart CPOX reactor units, each reactor unit including an elongate tube having a gas-permeable wall with internal and external surfaces, the wall enclosing an open gaseous flow passageway with at least a portion of the wall having CPOX catalyst disposed therein and/or comprising its structure. The catalyst-containing wall structure and open gaseous flow passageway enclosed thereby define a gaseous phase CPOX reaction zone, the catalyst-containing wall section being gas-permeable to allow gaseous CPOX reaction mixture to diffuse therein and hydrogen rich product reformate to diffuse therefrom. The gaseous fuel CPOX reformer also can include one or more igniters, and a source of gaseous reformable fuel. The hydrogen-rich reformate can be converted to electricity within a fuel cell unit integrated with the gaseous fuel CPOX reformer. |
US09627700B2 |
Liquid fuel CPOX reformer and fuel cell systems, and methods of producing electricity
Integrated liquid fuel catalytic partial oxidation (CPOX) reformer and fuel cell systems can include a plurality or an array of spaced-apart CPOX reactor units, each reactor unit including an elongate tube having a gas-permeable wall with internal and external surfaces, the wall enclosing an open gaseous flow passageway with at least a portion of the wall having CPOX catalyst disposed therein and/or comprising its structure. The catalyst-containing wall structure and open gaseous flow passageway enclosed thereby define a gaseous phase CPOX reaction zone, the catalyst-containing wall section being gas-permeable to allow gaseous CPOX reaction mixture to diffuse therein and hydrogen rich product reformate to diffuse therefrom. The liquid fuel CPOX reformer also can include a vaporizer, one or more igniters, and a source of liquid reformable fuel. The hydrogen-rich reformate can be converted to electricity within a fuel cell unit integrated with the liquid fuel CPOX reactor unit. |
US09627698B2 |
Gas distribution element for a fuel cell
The gas distribution element for a fuel cell or an electrolyzing device including a first layer and a second layer, the first and second layers are disposed with a gas distribution structure forming a pattern for a fluid flow of a first reactant fluid. The second layer is a homogenizing element, which has first apertures, wherein at least some of the first apertures have a length and a width, with the length being greater than the width and the length extending in a transverse direction to the main direction of fluid flow. |
US09627688B2 |
Anode for secondary battery and lithium secondary battery including same
The present disclosure provides an anode for a secondary battery, including: an electrode current collector; a first coating layer formed on the electrode current collector and including an anode active material, a first aqueous binder and a conducting material; and a second coating layer formed on the first coating layer and including a second nonaqueous binder. Since the anode of the present disclosure can reduce volume change of the anode active material, a lithium secondary battery including same may have improved cycle characteristics. |
US09627683B2 |
Anode and lithium battery including the same
An anode includes a plurality of metal fibers with a three-dimensional (3D) network structure, and a silicon-containing layer having a thickness of about 0.3 μm or less formed on a surface of and inside the 3D network structure of the plurality of metal fibers. |
US09627682B2 |
Negative electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery including the same
A negative electrode for nonaqueous electrolyte secondary batteries includes a negative electrode core member and a negative electrode mixture layer attached to the negative electrode core member, wherein the negative electrode mixture layer contains negative electrode active material particles with a graphite structure and a binder, the mixture density of the negative electrode mixture layer is 1.5 g/cm3 to 1.8 g/cm3, the ratio I(002)/I(110) of the diffraction intensity I(002) of the (002) plane to the diffraction intensity I(110) of the (110) plane satisfies 60≦I(002)/I(110)≦120 as determined by measuring the negative electrode mixture layer by an X-ray diffraction method, the amount of particles with a size of 1 μm to 10 μm in the particle size distribution of a crushed product of the negative electrode mixture layer is 12% to 25% by volume. |
US09627677B2 |
Rechargeable battery
A battery includes a plurality of electrode assemblies arranged in a case, each electrode assembly including a first electrode, a second electrode and a separator between the first electrode and the second electrode, and an interior safety member including an interior plate between the electrode assemblies, the interior safety member being electrically connected to at least one of the plurality of electrode assemblies. |
US09627675B2 |
Bus bar module and power-supply unit
A power-supply unit and a bus bar module which can reduce die cost of an insulating cover are provided. Each of the two insulating covers is provided so as to cover both a first receiving portion and a second receiving portion. For this reason, the two insulating covers arranged on a plate and aligned in an overlapping direction of a battery can be formed in the same shape and same size. |
US09627672B2 |
Separator for nonaqueous electrolyte batteries containing a porous membrane
A multilayer porous membrane comprising a porous membrane containing a polyolefin resin as a main component; and a porous layer containing an inorganic filler and a resin binder and laminated on at least one surface of the porous membrane; wherein the porous membrane has an average pore size d=0.035 to 0.060 μm, a tortuosity τa=1.1 to 1.7, and the number B of pores=100 to 500 pores/μm2, which are calculated by a gas-liquid method, and the porous membrane has a membrane thickness L=5 to 22 μm. |
US09627671B2 |
Fabrication method for metal battery electrode with pyrolyzed coating
A method is provided for forming a metal battery electrode with a pyrolyzed coating. The method provides a metallorganic compound of metal (Me) and materials such as carbon (C), sulfur (S), nitrogen (N), oxygen (O), and combinations of the above-listed materials, expressed as MeXCYNZSXXOYY, where Me is a metal such as tin (Sn), antimony (Sb), or lead (Pb), or a metal alloy. The method heats the metallorganic compound, and as a result of the heating, decomposes materials in the metallorganic compound. In one aspect, decomposing the materials in the metallorganic compound includes forming a chemical reaction between the Me particles and the materials. An electrode is formed of Me particles coated by the materials. In another aspect, the Me particles coated with a material such as a carbide, a nitride, a sulfide, or combinations of the above-listed materials. |
US09627668B1 |
Multi-region battery separators
Disclosed is a battery separator, comprising two fiber regions comprising glass fibers, and a middle fiber region disposed between them comprising larger average diameter fibers and specified amounts of silica, or fine fibers, or both; and processes for making the separator. Also disclosed is a battery separator, comprising a fiber region and either one or two silica-containing region(s) adjacent thereto, each of the regions containing a specified amount of silica; and processes for making the separator. Such separators are useful, e.g., in lead-acid batteries. |
US09627663B2 |
Rechargeable battery pack including pack cover
A battery pack includes at least one unit cell with a top end, the unit cell including a vent hole, and a pack cover over the top end of the unit cell. The pack cover includes a discharge part having a bottom member that is sloped with respect to the top end of the unit cell. The bottom member of the pack cover including an aperture corresponding to the vent hole of the unit cell. |
US09627659B2 |
Rectangular secondary battery
An insulation sheet is disposed between a rectangular housing and an electrode body. A first side wall of the insulation sheet is disposed between a large-area side surface of the rectangular housing and the electrode body. The first side wall includes a first folded portion that is folded along an edge of the first side wall near a sealing plate. The first folded portion extends from an edge of the first side wall near the sealing plate toward a bottom surface of the rectangular housing and is disposed between the large-area side surface and the electrode body in such a way that the first folded portion overlaps the first side wall. |
US09627658B2 |
Battery and battery pack
According to one embodiment, a battery includes a container, an electrode group, an electrolytic solution, a sealing plate, a terminal, an injecting port, a sealing plug, a lead and a pressing member. The injecting port is opened in the sealing plate. The sealing plug closes the injecting port of the sealing plate, and is made of an elastic material. The lead electrically connects a positive electrode or a negative electrode of the electrode group to the terminal. The pressing member is integrated with the lead. The pressing member presses the sealing plug to the sealing plate. |
US09627657B2 |
Cylindrical alkaline storage battery
An alkaline storage battery includes: a cylindrical case having a side wall including an opening end portion and a bottom; a sealing plate; a gasket interposed between the sealing plate and the opening end portion; and a sealant between the gasket and the opening end portion. The side wall has an annular groove opened at an outer surface thereof, and an inwardly curl portion at the opening end portion. In at least part of the groove, the minimum width L1 is within 0.2 mm. The sealant includes a polyamide resin formed such that when two test-plate materials are bonded together at bonding faces facing each other via a bonding portion of the sealant, and moved in parallel with the bonding faces and in opposite directions to have a relative displacement within 0.5 to 5 mm, a stress at least 0.02 N/mm2 is applied to the bonding portion. |
US09627656B2 |
Organic light-emitting display apparatus and method of manufacturing the same
In an aspect, an organic light-emitting display apparatus is provided, including a display substrate; a sealing substrate configured to face the display substrate; a sealing material for bonding the display substrate and the sealing substrate and surrounding a circumference of the display unit; and a bonding layer comprising a plurality of through holes, wherein the plurality of through holes comprise partition walls therein. |
US09627652B2 |
Organic light emitting diode with light extracting electrode
An organic light emitting diode (10) includes a substrate (20), a first electrode (12), an emissive active stack (14), and a second electrode (18). At least one of the first and second electrodes (12, 18) is a light extracting electrode (26) having a metallic layer (28). The metallic layer (28) includes light scattering features (29) on and/or in the metallic layer (28). The light extracting features (29) increase light extraction from the organic light emitting diode (10). |
US09627647B2 |
Organic light-emitting diode display and manufacturing method thereof
An organic light-emitting diode display includes an organic light-emitting display device including a first electrode, an intermediate layer including an organic emission layer, and a second electrode; a first inorganic encapsulation layer on the second electrode; a second inorganic encapsulation layer on the first inorganic encapsulation layer; and an organic encapsulation layer on the second inorganic encapsulation layer. A refractive index of the first inorganic encapsulation layer is higher than a refractive index of the second inorganic encapsulation layer. The first inorganic encapsulation layer has an extinction coefficient of 0.02 to 0.07 and a refractive index of 2.1 to 2.3 at a blue wavelength. |
US09627643B2 |
Optoelectronic component
Various embodiments may relate to an optoelectronic component, including a substrate, a first electrically conductive electrode layer, a second electrically conductive electrode layer, an organic layer structure, and a conductor track layer. The first electrically conductive electrode layer, the second electrically conductive electrode layer and the conductor track layer are formed in each case from an optically transparent material. |
US09627641B2 |
Charge carrier modulation for color and brightness coordination in organic light-emitting diodes
The device for charge carrier modulation is a current-controlled component, which has semiconductor layers arranged on top of each other. The organic semiconductor layers arranged on top of each other are an electron transport layer, which is arranged between a first and a second hole transport layer, and/or a hole transport layer, which is arranged between a first and a second electron transport layer. The respective central layer is the modulation layer having a contact for a modulation voltage. By applying a modulation voltage, a modulation current flow is generated over the modulation layer. The modulation current flow influences the component current flow which flows from the first into the second hole or electron transport layer via the respective modulation layer. |
US09627640B2 |
Light-emitting element, light-emitting device, display device, electronic appliance, and lighting device
A multicolor light-emitting element in which light-emitting layers emitting light of different colors are stacked and color adjustment is easily made is provided. A multicolor light-emitting element which is inexpensive and has favorable emission efficiency is provided. A light-emitting element in which at least two light-emitting layers emitting light of different colors are formed in contact with each other and the light emitted from the two light-emitting layers is obtained from exciplexes is provided. In addition, the light-emitting element in which the exciplexes emit delayed fluorescence is provided. |
US09627639B2 |
Organic light emitting display device and lighting apparatus for vehicles using the same
Disclosed are an organic light emitting display device and lighting apparatus for vehicles using the same. The organic light emitting display device includes a first layer including a first organic layer and a first emission layer on a first electrode, a second layer including a second emission layer and a second organic layer on the first layer, a second electrode on the second layer, and a third organic layer between the first layer and the second layer. A thickness of the first emission layer is equal to or greater than a thickness of each of the first organic layer and the second organic layer. |
US09627637B2 |
Flexible display device having a flexible panel with a bending portion and manufacturing method thereof
A flexible display device includes: a flexible panel having a bending portion that is configured to bend about a radius with respect to an inner peripheral surface of the bending portion, and a housing supporting the flexible panel. The bending portion has one or more recesses at the inner peripheral surface of the bending portion, and an entry width of each of the recesses, a number of the recesses, and a thickness of the flexible panel meet the relation equation of πd=nG, where G denotes the entry width of each of the recesses, n denotes the number of the recesses, and d denotes the thickness of the flexible panel. |
US09627636B2 |
Flexible display apparatus and manufacturing method thereof
A flexible display apparatus includes a first flexible substrate including carbon, a second flexible substrate on the first flexible substrate, a metal layer between the first flexible substrate and the second flexible substrate, a barrier layer on the second flexible substrate, a thin film transistor (TFT) on the barrier layer, and an organic light-emitting device (OLED) electrically connected to the TFT. |
US09627635B2 |
Light-emitting device
A novel light-emitting device that is highly convenient or reliable is provided. The light-emitting device includes a framework, a flexible first light-emitting panel supported by the framework so as to form a first developable surface, and a flexible second light-emitting panel supported by the framework so as to form a second developable surface. |
US09627634B2 |
Heterocyclic compound and organic light-emitting diode including the same
Provided is a heterocyclic compound represented by Formula 1 and an organic light-emitting diode including the same: |
US09627633B2 |
Perylene functionalized porphyrin dyes for dye-sensitized solar cells
The invention relates to dyes for dye-sensitized solar cells, and in particular, to perylene functionalized porphyrin dyes for dye-sensitized solar cells. The invention further relates to a dye molecule comprising perylene functionalized porphyrin moiety. |
US09627632B2 |
Materials for organic electroluminescent devices
An uncharged compound of the formula (1) M(L)n(L′)m(L″)o Formula (1) containing a substructure M(L)n of the formula (3) or (4) M is a transition metal; E is identical or different on each occurrence and is in each case a sp2-hybridized carbon or nitrogen atom; Z is identical or different on each occurrence and is in each case C(R)2 or NR; Cy1 and Cy2 are identical or different on each occurrence and are in each case a substituted or unsubstituted heterocycle which coordinates to M via the N atom and may have a bond to the group Z. The compound can also be used in an oligomer, polymer, dendrimer or an electronic component. |
US09627629B2 |
Compound for organic optoelectronic device, organic light emitting diode including the same, and display including the organic light emitting diode
A compound for an organic optoelectronic device represented by Chemical Formula 1 wherein, in Chemical Formula 1, variables A, Y1 to Y4, X1, m, R1 to R4, L1 to L3, n1 to n3, Ar1 and Ar2 are described in the specification. |
US09627626B2 |
Compounds for organic electroluminescent devices
The present invention relates to aromatic nitrogen heterocycles, and to electronic devices, in particular organic electroluminescent devices, which comprise these aromatic nitrogen heterocycles, in particular in a hole-injection layer and/or in a hole-transport layer and/or in a hole-blocking layer and/or in an electron-transport layer and/or in an emitting layer. |
US09627625B2 |
Light-emitting device material and light-emitting device
An organic thin film light-emitting element having both high luminous efficiency and high durability can be provided using a light-emitting element material that comprises a compound having a specified carbazole skeleton. |
US09627624B2 |
Compound for organic optoelectronic device organic light emitting diode including the same and display including the organic light emitting diode
A compound for an organic optoelectronic device is represented by the following Chemical Formula 1. wherein R1, R2, R3, R4, Ar1, Ar2, Ar3, L1, L2, L3, n1, n2, and n3 are further defined in the specification. |
US09627621B2 |
Polymeric semiconductors, devices, and related methods
A polymer comprises a polymeric chain represented by formula (I) or (II). In formula (I) a, b, d, and n are integers, a from 0 to 3, b from 1 to 5, c from 1 to 3, d from 1 to 5, and n from 2 to 5000; R1 and R2 are side chains; R3 and R4 are each independently H or a side chain; and when a is 0, R3 and R4 are side chains. In formula (II), a, b, c, d, e, and n are integers, a from 1 to 3, b and c being independently 0 or 1, d and e being independently 1 or 2, and n from 2 to 5000; R1 and R2 are side chains except —COOalkyl; and X1, X2 and X3 are independently O, S, or Se. Semiconductors and devices comprising the polymer are also provided. |
US09627620B2 |
Organic light-emitting diode display and method of manufacturing the same
An organic light-emitting diode (OLED) display and a method of manufacturing the same are disclosed. In one aspect, the method includes performing a first mask process of forming an active layer of a thin-film transistor (TFT) and a first electrode of a capacitor over a substrate and performing a second mask process of i) forming a gate insulating layer and ii) forming a gate electrode of the TFT and a second electrode of the capacitor over the gate insulating layer. The method also includes performing a third mask process of i) forming first and second interlayer insulating layers and ii) removing portions of the first and second interlayer insulating layers so as to form a contact hole that exposes a portion of the active layer. The method also includes performing a fourth mask process of forming a pixel electrode over the second interlayer insulating layer. |
US09627619B2 |
Thin film forming apparatus and thin film forming method using the same
A thin film forming apparatus includes: a thin film source including a thin film on one surface of the thin film source to be transferred to a substrate; and a light emitter configured to apply light energy to the thin film source to transfer the thin film to the substrate. |
US09627616B2 |
Electronic device and method for fabricating the same
An electronic device comprising a semiconductor memory unit that includes a resistance variable element formed over a substrate, and including stacked therein a bottom electrode, a variable resistance layer and a top electrode, and a barrier layer formed over the resistance variable element, and including an amorphous silicon layer which is doped with at least one kind of impurity. |
US09627613B2 |
Resistive random access memory (RRAM) cell with a composite capping layer
A resistive random access memory (RRAM) cell with a composite capping layer is provided. A tantalum oxide based layer is arranged over a bottom electrode layer. The composite capping layer is arranged over and abutting the tantalum oxide based layer. The composite capping layer includes a first metal layer and a second metal layer overlying the first metal layer. The first metal layer is more reactive with the tantalum oxide based layer than the second metal layer. A top electrode layer is arranged over the composite capping layer. A method for manufacturing the RRAM cell is also provided. |
US09627612B2 |
Metal nitride keyhole or spacer phase change memory cell structures
Non-volatile memory cell having small programming power and a reduced resistance drift are provided. In one embodiment of the present application, a non-volatile memory cell is provided that includes a layer of dielectric material that has a via opening that exposes a surface of a bottom electrode. A metal nitride spacer is located along a bottom portion of each sidewall surface of the layer of dielectric material and in the via opening. A phase change material structure is present in the via opening and contacting a top portion of each sidewall surface of the layer of dielectric material and a topmost surface of each metal nitride spacer. A top electrode is located on a topmost surface of the phase change material structure. |
US09627611B2 |
Methods for forming narrow vertical pillars and integrated circuit devices having the same
In some embodiments, an integrated circuit includes narrow, vertically-extending pillars that fill openings formed in the integrated circuit. In some embodiments, the openings can contain phase change material to form a phase change memory cell. The openings occupied by the pillars can be defined using crossing lines of sacrificial material, e.g., spacers, that are formed on different vertical levels. The lines of material can be formed by deposition processes that allow the formation of very thin lines. Exposed material at the intersection of the lines is selectively removed to form the openings, which have dimensions determined by the widths of the lines. The openings can be filled, for example, with phase change material. |
US09627610B2 |
Method of forming a pattern using ion beams of bilateral symmetry, a method of forming a magnetic memory device using the same, and an ion beam apparatus generating ion beams of bilateral symmetry
A pattern-forming method includes providing a first ion beam at a first incidence angle and a second ion beam at a second incidence angle to a surface of an etch target layer formed on a substrate. Patterns are formed by patterning the etch target layer using the first and second ion beams. The first ion beam and the second ion beam are substantially symmetrical to each other with respect to a normal line that is perpendicular to a top surface of the substrate. Each of the first and second incidence angles is greater than 0 degrees and smaller than an angle obtained by subtracting a predetermined angle from 90 degrees. |
US09627609B2 |
Method of manufacturing a magnetic memory device
A method of manufacturing a magnetic memory device may include forming a lower magnetic layer, a tunnel barrier layer, and an upper magnetic layer on a substrate, forming a magnetic tunnel junction pattern by etching a stacked structure including the lower magnetic layer, the tunnel barrier layer, and the upper magnetic layer, forming a boron-absorption layer covering the magnetic tunnel junction pattern, and performing a heat treatment process so that boron included in the upper and lower magnetic layers may be absorbed by the boron-absorption layer. The heat treatment process may be undertaken in a gaseous atmosphere including at least one of hydrogen, oxygen, and nitrogen. |
US09627608B2 |
Dielectric repair for emerging memory devices
Systems and method include providing a non-volatile random access memory (NVRAM) stack including a plurality of layers. The plurality of layers includes a dielectric layer and a metal layer. The metal layer of the NVRAM stack is patterned. The patterning causes damage to lateral side portions of the dielectric layer. The lateral portions of the dielectric layer are repaired by depositing dielectric material on the lateral side portions of the dielectric layer. |
US09627605B2 |
Displacement sensor having a piezoelectric layer comprising polylactic acid, displacement detecting device and operation device having the same
A displacement sensor having a rectangular shaped elastic member. A piezoelectric element is attached to a first main face of the elastic member. The piezoelectric element has a rectangular-shaped piezoelectric sheet and electrodes on both main faces of the piezoelectric sheet. The piezoelectric sheet is made of poly-L-lactic acid and is at least uniaxially-stretched. The piezoelectric element is attached so that the uniaxial-stretching direction of the piezoelectric sheet is 45° relative to a long-side direction of the elastic member. When the elastic member is bent along the long-side direction, the piezoelectric sheet is stretched along the long-side direction, and the piezoelectric element generates voltage of predetermined level. |
US09627603B2 |
Quartz vibrator having a dome-shaped cap
A quartz vibrator that includes a substrate, a quartz vibrating element, and a dome-shaped cap. The quartz vibrating element is mounted on the substrate. The cap is bonded to the substrate. The cap defines and forms a sealed space that seals the quartz vibrating element along with the substrate. The cap has a side wall portion, a ceiling portion, and a connecting portion. The side wall portion encloses the quartz vibrating element. The ceiling portion is positioned above the quartz vibrating element. The connecting portion connects the side wall portion and the ceiling portion. The connecting portion is thinner than the side wall portion and the ceiling portion. |
US09627597B2 |
Package, light-emitting device, and method for manufacturing the same
A package includes a plurality of electrode pairs, each electrode pair including a first electrode on one side and a second electrode on another side in a plan view. The first electrode is electrically connected to the second electrode included in an electrode pair adjacent to a first or second lateral side of the one electrode pair, and is not electrically connected to the first electrode included in the electrode pair adjacent to the first or second side of the one electrode pair. The second electrode is electrically connected to the first electrode included in an electrode pair adjacent to a lower side of the one electrode pair, and is not electrically connected to the second electrode included in the electrode pair adjacent to the first or second lateral side of the one electrode pair. |
US09627596B2 |
Light emitting device, light emitting device package including the device and lighting apparatus including the package
Embodiments provide a light emitting device including a substrate, a light emitting structure disposed under the substrate, the light emitting structure including a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer, a sub-mount, first and second metal pads disposed on the sub-mount and electrically spaced apart from one another, a one first bump disposed between the first conductive semiconductor layer and the first metal pad and a second bump located between the second conductive semiconductor layer and the second metal pad. A plurality of active areas in which The first semiconductor layer and the active layer are disposed are spaced apart from one another when viewed in plan. |
US09627594B2 |
Light emitting device and method for manufacturing the same
A light emitting device in an embodiment includes first and second light transmissive insulators and a light emitting diode arranged between them. First and second electrodes of the light emitting diode are electrically connected to a conductive circuit layer provided on a surface of at least one of the first and second light transmissive insulators. Between the first light transmissive insulator and the second light transmissive insulator, a third light transmissive insulator is embedded which has at least one of a Vicat softening temperature of 80° C. or higher and 160° C. or lower and a tensile storage elastic modulus of 0.01 GPa or more and 10 GPa or less. |
US09627591B2 |
Mounting substrate and electronic device including the same
A mounting substrate includes: a base; and at least one pair of wiring patterns disposed apart from each other on the base. At least one of the wiring patterns has a mounting portion, which is configured to support an electronic part thereon and which is rectangular in a plan view. The at least one of the wiring patterns defines a hole, which exposes a part of the base and which is disposed in at least a part of an outer edge of the mounting portion. |
US09627589B2 |
LEDs with efficient electrode structures
Aspects include Light Emitting Diodes that have a GaN-based light emitting region and a metallic electrode. The metallic electrode can be physically separated from the GaN-based light emitted region by a layer of porous dielectric, which provides a reflecting region between at least a portion of the metallic electrode and the GaN-based light emitting region. |
US09627588B2 |
Method for producing an optoelectronic semiconductor chip, and optoelectronic semiconductor chip
A method for producing an optoelectronic semiconductor chip is specified, comprising the following steps: providing an n-conducting layer (2), arranging a p-conducting layer (4) on the n-conducting layer (2), arranging a metal layer sequence (5) on the p-conducting layer (4), arranging a mask (6) at that side of the metal layer sequence (5) which is remote from the p-conducting layer (4), in places removing the metal layer sequence (5) and uncovering the p-conducting layer (4) using the mask (6), and in places neutralizing or removing the uncovered regions (4a) of the p-conducting layer (4) as far as the n-conducting layer (2) using the mask (6), wherein the metal layer sequence (5) comprises at least one mirror layer (51) and a barrier layer (52), and the mirror layer (51) of the metal layer sequence (5) faces the p-conducting layer (4). |
US09627587B2 |
Radiation-emitting semiconductor chip comprising a structured mirror layer which is electrically non-conductive during operation
A radiation-emitting semiconductor chip (1) is specified, comprising—a semiconductor layer sequence (2) having a first main surface (3) and a second main surface (4) situated opposite the first main surface (3) wherein the semiconductor layer sequence (2) has an active zone (5) suitable for generating electromagnetic radiation, —a structured mirror layer (6), which is electrically non-conductive during operation and is arranged on the side of the first main surface (3) of the semiconductor layer sequence (2), wherein the mirror layer (6) has at least one mirror region (6A, 6B, 6C) which regionally covers the first main surface (3), —at least one encapsulation region (7A, 7B, 7C) which surrounds the at least one mirror region (6A, 6B, 6C) on all sides and is in direct contact with the mirror region (6A, 6B, 6C), wherein the at least one encapsulation region (7A, 7B, 7C); is electrically non-conductive during operation. |
US09627579B2 |
Semiconductor device and a method of making a semiconductor device
An LED device capable of emitting electromagnetic radiation ranging from about 200 nm to 365 nm, the device. The device includes a substrate member, the substrate member being selected from sapphire, silicon, quartz, gallium nitride, gallium aluminum nitride, or others. The device has an active region overlying the substrate region, the active region comprising a light emitting spatial region comprising a p-n junction and characterized by a current crowding feature of electrical current provided in the active region. The light emitting spatial region is characterized by about 1 to 10 microns. The device includes an optical structure spatially disposed separate and apart the light emitting spatial region and is configured to facilitate light extraction from the active region. |
US09627578B2 |
Epitaxial wafer for light-emitting diodes
The present invention relates to an epitaxial wafer for a light-emitting diode wherein the peak emission wavelength is 655 nm or more, and it is possible to improve reliability. The epitaxial wafer for light-emitting diodes includes a GaAs substrate (1) and a pn-junction type light-emitting unit (2) provided on the GaAs substrate (1), wherein light-emitting unit (2) is formed as a multilayer structure in which a strained light-emitting layer and a barrier layer are alternately stacked, and the composition formula of the barrier layer is (AlXGa1-X)YIn1-YP (0.3≦X≦0.7, 0.51≦Y≦0.54). |
US09627577B2 |
Semiconductor light-emitting device and method for forming the same
A method of applying a fluorescent material to a surface includes providing a substrate, providing a semiconductor light-emitting stack on the substrate, bonding the substrate to the semiconductor light-emitting stack, and overlaying top and side surfaces of the semiconductor light-emitting stack with the fluorescent material, wherein the fluorescent material contains no binding material. |
US09627576B2 |
Monolithic tandem chalcopyrite-perovskite photovoltaic device
Monolithic tandem chalcopyrite-perovskite photovoltaic devices and techniques for formation thereof are provided. In one aspect, a tandem photovoltaic device is provided. The tandem photovoltaic device includes a substrate; a bottom solar cell on the substrate, the bottom solar cell having a first absorber layer that includes a chalcopyrite material; and a top solar cell monolithically integrated with the bottom solar cell, the top solar cell having a second absorber layer that includes a perovskite material. A monolithic tandem photovoltaic device and method of formation thereof are also provided. |
US09627573B2 |
Optical sensor having a light emitter and a photodetector assembly directly mounted to a transparent substrate
An optical sensor is described that includes a light emitter and a photodetector assembly directly attached to a transparent substrate. In one or more implementations, the optical sensor comprises at least one light emitter and a photodetector assembly (e.g., photodiodes, phototransistors, etc.). The light emitter(s) and the photodetector assembly are directly mounted (e.g., attached) to a transparent substrate. |
US09627569B2 |
Integrated Avalanche Photodiode arrays
The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed. |
US09627566B2 |
Foil-based metallization of solar cells
Approaches for the foil-based metallization of solar cells and the resulting solar cells are described. In an example, a solar cell includes a substrate. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the substrate. A conductive contact structure is disposed above the plurality of alternating N-type and P-type semiconductor regions. The conductive contact structure includes a plurality of metal seed material regions providing a metal seed material region disposed on each of the alternating N-type and P-type semiconductor regions. A metal foil is disposed on the plurality of metal seed material regions, the metal foil having anodized portions isolating metal regions of the metal foil corresponding to the alternating N-type and P-type semiconductor regions. |
US09627558B2 |
Methods and apparatuses for manufacturing self-aligned integrated back contact heterojunction solar cells
Methods and apparatuses for manufacturing self-aligned integrated back contact heterojunction solar cells are provided. In some embodiments, systems for forming a solar cell on a substrate are provided, the systems comprising: a master shadow mask positioned adjacent to the substrate on a first side of the master shadow mask; a first blocking mask placed adjacent to a second side of the master shadow mask; and a deposition machine that deposits material on the substrate through holes in the master shadow mask and the first blocking mask. |
US09627557B2 |
Solar cell
The solar cell (1) of the present invention is provided with an n-side electrode (14), a p-side electrode (15), and a photoelectric conversion unit (20) having a first main surface (20a) and a second main surface (20b). The first main surface (20a) includes an n-type surface (20an) and a p-type surface (20ap). The photoelectric conversion unit (20) has a semiconductor substrate (10) and a semiconductor layer (12n). The semiconductor substrate (10) has first and second main surfaces (10b, 10a). The semiconductor layer (12n) is arranged on a portion of the first main surface (10b). The semiconductor layer (12n) constitutes either the n-type surface (20an) or the p-type surface (20ap). The semiconductor layer (12n) includes a relatively thick portion (12n1) and a relative thin portion (12n2). The n-side electrode (14) or the p-side electrode (15) is arranged on at least the relatively thin portion (12n2) of the semiconductor layer (12n). The solar cell of the present invention, by means of the aforementioned configuration, is able to extend the lifetime of the minor carriers by means of the relatively thick portion (12n1), to maintain low resistance between the semiconductor substrate (10) and the n-side electrode (14) by means of the relatively thin portion (12n2), and to increase hole and electron collection efficiency. |
US09627556B2 |
Composition for forming electrode of solar cell and electrode manufactured by using same
The present invention relates to a composition for preparing solar cell electrodes including: a silver (Ag) powder; a glass frit containing about 0.1 mole % to about 50 mole % of elemental silver; and an organic vehicle, the composition introduces a glass frit including a silver cyanate or a silver nitrate to enhance contact efficiency between an electrode and a wafer, and solar cell electrodes prepared from the composition have minimized contact resistance (Rc) and serial resistance (Rs), thereby exhibiting excellent conversion efficiency. |
US09627546B2 |
Oxide thin film transistor, array substrate, methods of manufacturing the same and display device
An oxide thin film transistor, an array substrate, methods of manufacturing the same and a display device are disclosed. The oxide thin film transistor includes: a base substrate; and a gate electrode, a gate insulating layer, an oxide active layer, drain/source electrodes sequentially disposed on the base substrate. The oxide TFT transistor further includes an ultraviolet barrier layer disposed on the oxide active layer, the ultraviolet barrier layer is made of a resin material contains an ultraviolet absorbent. The stability of the oxide TFT is enhanced by disposing the ultraviolet barrier layer over the oxide active layer of the oxide TFT, since the ultraviolet barrier layer blocks the impact of UV light on the oxide TFT. |
US09627545B2 |
Semiconductor device
Provided is a semiconductor device in which deterioration of electrical characteristics can be suppressed. The semiconductor device includes a first oxide semiconductor layer over an insulating surface, a second oxide semiconductor layer over the first oxide semiconductor layer, a source electrode layer and a drain electrode layer whose one surfaces are in contact with part of the first oxide semiconductor layer and part of the second oxide semiconductor layer, a third oxide semiconductor layer over the first oxide semiconductor layer and the second oxide semiconductor layer, a gate insulating film over the third oxide semiconductor layer, and a gate electrode layer over the gate insulating film. The second oxide semiconductor layer wholly overlaps with the first oxide semiconductor layer. Part of the third oxide semiconductor layer is in contact with the other surfaces of the source electrode layer and the drain electrode layer. |
US09627544B2 |
Method of forming semiconductor device
A method of forming a semiconductor device is disclosed. At least one suspended first semiconductor nanowire and two first semiconductor blocks at two ends of the first semiconductor nanowire are formed in a first area, and at least one suspended second semiconductor nanowire and two second semiconductor blocks at two ends of the second semiconductor nanowire are formed in a second area. A transforming process is performed, so the first semiconductor nanowire is transformed into a nanowire with stress, and the second semiconductor blocks are simultaneously transformed into two blocks with stress. First and second gate dielectric layers are formed respectively on surfaces of the nanowire with stress and the second semiconductor nanowire. First and second gates are formed respectively across the nanowire with stress and the second semiconductor nanowire. |
US09627540B1 |
Semiconductor device and manufacturing method thereof
A semiconductor device includes first channel layers disposed over a substrate, a first source/drain region disposed over the substrate, a gate dielectric layer disposed on each of the first channel layers, a gate electrode layer disposed on the gate dielectric. Each of the first channel layers includes a semiconductor wire made of a first semiconductor material. The semiconductor wire passes through the first source/drain region and enters into an anchor region. At the anchor region, the semiconductor wire has no gate electrode layer and no gate dielectric, and is sandwiched by a second semiconductor material. |
US09627539B2 |
Replacement channels for semiconductor devices and methods for forming the same using dopant concentration boost
A replacement channel and a method for forming the same in a semiconductor device are provided. A channel area is defined in a substrate which is a surface of a semiconductor wafer or a structure such as a fin formed over the wafer. Portions of the channel region are removed and are replaced with a replacement channel material formed by an epitaxial growth/deposition process to include a first dopant concentration level less than a first dopant concentration level. A subsequent doping operation or operations is then used to boost the average dopant concentration to a level greater than the first dopant concentration level. The replacement channel material is formed to include a gradient in which the upper portion of the replacement channel material has a greater dopant concentration than the lower portion of replacement channel material. |
US09627538B2 |
Fin field effect transistor and method of manufacturing the same
A fin field effect transistor (FinFET) with improved electrical performance and a method of manufacturing the same are disclosed. A FinFET includes a substrate having a top surface and an insulation. At least a recessed fin is extended upwardly from the top surface of the substrate, and at least a gate stack is formed above the substrate, wherein the gate stack is extended perpendicularly to an extending direction of the recessed fin, and the recessed fin is outside the gate stack. The insulation includes a lateral portion adjacent to the recessed fin, and a central portion contiguous to the lateral portion, wherein a top surface of the lateral portion is higher than a top surface of the central portion. A top surface of the recessed fin is lower than the top surface of the central portion of the insulation. |
US09627536B2 |
Field effect transistors with strained channel features
A method is provided for forming an integrated circuit. A doped silicon layer is formed on a silicon substrate. A silicon-germanium layer is subsequently formed on the doped silicon layer. The silicon-germanium layer is pattered to form a silicon-germanium feature. A silicon shell is formed on the silicon-germanium feature. At least a portion of the dopes silicon layer is converted to a porous silicon layer. Following the last step, the silicon shell is tensily stressed, making it a good candidate for use as a channel feature in an n-type field effect transistor. |
US09627535B2 |
Semiconductor devices with an etch stop layer on gate end-portions located above an isolation region
A device includes a gate structure having an axial length that is positioned above an active region of a semiconductor substrate and includes a first gate structure portion positioned above the active region and second gate structure portions positioned above an isolation region formed in the semiconductor substrate. An etch stop layer is positioned on the gate structure and covers sidewall surfaces of the second gate structure portions but does not cover any sidewall surfaces of the first gate structure portion. First and second contact trenches extend continuously along the first gate structure portion for less than the axial length of the gate structure and are positioned above at least a portion of the active region on respective opposing first and second sides of the gate structure. An epi semiconductor material is positioned on the active region within each of the first and second contact trenches. |
US09627529B1 |
Well-tap structures for analog matching transistor arrays
In one embodiment, an integrated circuit includes an array of active structures, an array of dummy structures and multiple well-tap structures. The array of dummy structures surrounds the array of active structures. The well-tap structures may be interposed between the array of active structures and the array of dummy structures. In one embodiment, each of the well-tap structures may include a well, a diffusion region and a gate-like structure. The well may be formed in a substrate and is of a first doping type. The diffusion region may be formed in the well and is also of the first doping type. The gate-like structure may be formed above the substrate and adjacent to the diffusion region. |
US09627528B2 |
Semiconductor device having gate structures and manufacturing method thereof
A semiconductor device includes a substrate having a first conductivity type, a high-voltage well having a second conductivity type and disposed in the substrate, a high-voltage doped region having the first conductivity type and disposed in the high-voltage well, a drain region disposed in the high-voltage well and spaced apart from the high-voltage doped region, a source region disposed in the high-voltage doped region, a first gate structure disposed above a first side portion of the high-voltage doped region between the source region and the drain region, and a second gate structure disposed above a second and opposite side portion of the high-voltage doped region. |
US09627527B2 |
Semiconductor device
In a semiconductor device, a lightly doped second semiconductor layer of a first conductive type is joined with a heavily doped first semiconductor layer of the first conductive type. A power transistor having a first conductive type channel and a transistor are formed in surface regions of the second semiconductor layer, respectively. A first diffusion layer of a second conductive type is formed in a surface region of the second semiconductor layer to provide a boundary between the power transistor and the transistor. The first semiconductor layer functions as a drain of the power transistor. The first diffusion layer region is set to the same voltage as that of the drain. |
US09627526B2 |
Assymetric poly gate for optimum termination design in trench power MOSFETs
A semiconductor device having a plurality of transistors includes a termination area that features a transistor with an asymmetric gate. |
US09627525B2 |
Silicon carbide semiconductor device
Provided is a silicon carbide semiconductor device that enables integration of a transistor element and a Schottky barrier diode while avoiding the reduction of an active region. A silicon carbide semiconductor device includes a silicon carbide layer, a gate insulating film, a Schottky electrode being Schottky functioned to a drift layer via a first contact hole and an opening, a gate electrode being arranged on the gate insulating film, an insulating layer being arranged so as to cover the gate insulating film, the gate electrode, and the Schottky electrode and having a second contact hole for exposing the gate electrode, and a gate pad electrode being arranged on the insulating layer so as to overlap the Schottky electrode in a plan view and being electrically connected to the gate electrode via the second contact hole. |
US09627524B2 |
High voltage metal oxide semiconductor device and method for making same
The present invention discloses a high voltage metal oxide semiconductor (HVMOS) device and a method for making same. The high voltage metal oxide semiconductor device comprises: a substrate; a gate structure on the substrate; a well in the substrate, the well defining a device region from top view; a first drift region in the well; a source in the well; a drain in the first drift region, the drain being separated from the gate structure by a part of the first drift region; and a P-type dopant region not covering all the device region, wherein the P-type dopant region is formed by implanting a P-type dopant for enhancing the breakdown voltage of the HVMOS device (for N-type HVMOS device) or reducing the ON resistance of the HVMOS device (for P-type HVMOS device). |
US09627521B1 |
Trench IGBT with tub-shaped floating P-well and hole drains to P-body regions
A trench IGBT has a gate electrode disposed in a trench. A tub-shaped floating P-well is disposed on one side of the trench. The tub-shaped floating P-well has a central shallower portion and a peripheral deeper portion. An inner sidewall of the trench is semiconductor material of the peripheral deeper portion of the floating P-well. On the other side of the trench is a P type body region involving a plurality of deeper portions and a plurality of shallower portions. Each deeper portion extends to the trench such that some parts of the outer sidewall of the trench are semiconductor material of these deeper P-body portions. Other parts of the outer sidewall of the trench are semiconductor material of the shallower P-body portions. A shallow N+ emitter region is disposed at the top of the outer sidewall. The IGBT has fast turn off and enhanced on state conductivity modulation. |
US09627520B2 |
MOS transistor having a cell array edge zone arranged partially below and having an interface with a trench in an edge region of the cell array
A semiconductor component is disclosed. One embodiment includes a semiconductor body including a first semiconductor layer having at least one active component zone, a cell array with a plurality of trenches, and at least one cell array edge zone. The cell array edge zone is only arranged in an edge region of the cell array, adjoining at least one trench of the cell array, and being at least partially arranged below the at least one trench in the cell array. |
US09627519B2 |
Semiconductor device
A semiconductor device includes: a first conductivity-type collector region; a second conductivity-type field stop region disposed on the collector region; a second conductivity-type drift region, which is disposed on the field stop region and has an impurity concentration lower than the field stop region; a first conductivity-type base region disposed on the drift region; and a second conductivity-type emitter region disposed on the base region, wherein an impurity concentration gradient in a film thickness direction of the field stop region is larger in a region adjacent to the collector region than in a region adjacent to the drift region. |
US09627515B2 |
Method of manufacturing thin-film transistor substrate
A method of manufacturing a thin-film transistor substrate that includes a thin-film transistor having a semiconductor layer, includes: forming a CuMn alloy film (third conductive film) above a substrate; forming a first silicon oxide film (first insulation film) on the CuMn alloy film at a first temperature; forming an aluminum oxide film (second insulation film) on the first silicon oxide film; and forming a second silicon oxide film (third insulation film) on the aluminum oxide film at a second temperature higher than the first temperature. |
US09627509B2 |
Semiconductor device and method of fabricating the same
Provided are a semiconductor device and a method of fabricating the same. The semiconductor device may include a substrate with an active pattern, a gate electrode provided at the active pattern, and a gate capping structure disposed above the gate electrode. The gate capping structure may include two or more gate capping patterns with different properties from each other, and the use of the gate capping structure makes it possible to form contact plugs in a self-aligned manner and improve operational speed and characteristics of the semiconductor device. |
US09627507B2 |
Strained asymmetric source/drain
The present disclosure provides a semiconductor device and methods of making wherein the semiconductor device has strained asymmetric source and drain regions. A method of fabricating the semiconductor device includes receiving a substrate and forming a poly gate stack on the substrate. A dopant is implanted in the substrate at an implant angle ranging from about 10° to about 25° from perpendicular to the substrate. A spacer is formed adjacent the poly gate stack on the substrate. A source region and a drain region are etched in the substrate. A strained source layer and a strained drain layer are respectively deposited into the etched source and drain regions in the substrate, such that the source region and the drain region are asymmetric with respect to the poly gate stack. The poly gate stack is removed from the substrate and a high-k metal gate is formed using a gate-last process where the poly gate stack was removed. |
US09627502B2 |
Circuit arrangement and method of forming a circuit arrangement
A circuit arrangement may be provided. The circuit arrangement may include a semiconductor substrate including a first surface, a second surface opposite the first surface, and a first doped region of a first conductivity type extending from the first surface into the semiconductor substrate. The circuit arrangement may include at least one capacitor including a first electrode including a doped region of the first conductivity type extending from the second surface into the semiconductor substrate, a dielectric layer formed over the first electrode extending from the second surface away from the semiconductor substrate, and a second electrode formed over the dielectric layer opposite the first electrode. The circuit arrangement may further include at least one semiconductor device monolithically integrated in the semiconductor substrate. The first doped region of the first conductivity type may extend from the first surface into the semiconductor substrate to form an electrically conductive connection with the first electrode. |
US09627501B2 |
Graded dielectric structures
Graded dielectric layers and methods of fabricating such dielectric layers provide dielectrics in a variety of electronic structures for use in a wide range of electronic devices and systems. In an embodiment, a dielectric layer is graded with respect to a doping profile across the dielectric layer. In an embodiment, a dielectric layer is graded with respect to a crystalline structure profile across the dielectric layer. In an embodiment, a dielectric layer is formed by atomic layer deposition incorporating sequencing techniques to generate a doped dielectric material. |
US09627496B2 |
Semiconductor with a two-input NOR circuit
A semiconductor device includes a two-input NOR circuit including four MOS transistors arranged in a line. Each of the MOS transistors is disposed on a planar silicon layer disposed on a substrate. The drain, gate, and source of the MOS transistor are arranged in the vertical direction. The gate surrounds a silicon pillar. The planar silicon layer is constituted by a first activation region of a first conductivity type and a second activation region of a second conductivity type. The first and second activation regions are connected to each other via a silicon layer disposed on a surface of the planar silicon layer, so as to form a NOR circuit having a small area. |
US09627494B2 |
Pillar-shaped semiconductor device and production method therefor
A SiO2 layer is formed at a middle of a Si pillar. An opening is formed in a gate insulating layer and a gate conductor layer in a peripheral portion that includes a side surface of the SiO2 layer. Two stacks of layers, each stack being constituted by a Ni layer, a poly-Si layer containing a donor or acceptor impurity atom, and a SiO2 layer, are formed in a peripheral portion of the opening, and heat treatment is performed to silicidate the poly-Si layers into NiSi layers. The NiSi layers protrude and come into contact with the side surface of the Si pillar by silicidation, and a donor or acceptor impurity atom diffuses from the NiSi layers into the Si pillar. Thus an N+ region and a P+ region serving as a source and a drain of surrounding gate MOS transistors are respectively formed above and under the SiO2 layer. |
US09627493B2 |
Forming a conductive connection between a common electrode of an optical front plane and an electrical contact part of an opposite back plane
A technique for creating a conductive connection between a contact part (24) of a display back plane (34) and a common electrode (20) of a display front plane (32), comprising the step of compressing a compressible conductive component (30) between the display front plane (32) and the display back plane (34), wherein the method further comprises the step of interposing one or more layers (10, 36) having a low modulus of elasticity not larger than 5 GPa between the contact part (24) and the compressible conductive component (30) prior to the compressing step. |
US09627492B2 |
Semiconductor device
A semiconductor device includes a semiconductor substrate having a first conductivity type, an epitaxial layer having a second conductivity type, an isolation area in the epitaxial layer to define an active area of the semiconductor substrate, a body area having a first conductivity type and a drift area having a second conductivity type adjacent to each other in the epitaxial layer, a LOCOS insulating layer in the drift area and surrounded by the drift area, a drain area adjacent to a side part of the LOCOS insulating layer and surrounded by the drift area, a body contact area and a source area in the body area and surrounded by the body area, and a gate area overlapping the drift area and a part of the LOCOS insulating layer from a direction of the body area. |
US09627491B2 |
Aspect ratio trapping and lattice engineering for III/V semiconductors
A semiconductor structure including a III/V layer on a SiGe layer, edges of the SiGe layer are relaxed, the III/V layer is a semiconductor in a III/V semiconductor group, the SiGe layer is directly on an insulator layer, barrier layers on two adjacent sides of the SiGe layer and the III/V layer, and the barrier layer is directly on the insulator layer. |
US09627488B2 |
Silicon carbide semiconductor device and method for manufacturing same
A method for manufacturing a silicon carbide semiconductor device includes the following steps. A silicon carbide substrate is prepared. A first heating step of heating the silicon carbide substrate in an atmosphere of oxygen is performed. A second heating step of heating the silicon carbide substrate to a temperature of 1300° C. or more and 1500° C. or less in an atmosphere of gas containing nitrogen atoms or phosphorus atoms is performed after the first heating step. A third heating step of heating the silicon carbide substrate in an atmosphere of a first inert gas is performed after the second heating step. Thus, the silicon carbide semiconductor device in which threshold voltage variation is small, and a method for manufacturing the same can be provided. |
US09627482B2 |
Reduced current leakage semiconductor device
A method for fabricating a semiconductor device may include receiving a gated substrate comprising a substrate with a channel layer and a gate structure formed thereon, over-etching the channel layer to expose an extension region below the gate structure, epitaxially growing a halo layer on the exposed extension region using a first in-situ dopant and epitaxially growing a source or drain on the halo layer using a second in-situ dopant, wherein the first in-situ dopant and the second in-situ dopant are of opposite doping polarity. Using an opposite doping polarity may provide an energy band barrier for the semiconductor device and reduce leakage current. A corresponding apparatus is also disclosed herein. |
US09627480B2 |
Junction butting structure using nonuniform trench shape
The present invention relates generally to semiconductor devices and more particularly, to a structure and method of forming a partially depleted semiconductor-on-insulator (SOI) junction isolation structure using a nonuniform trench shape formed by reactive ion etching (RIE) and crystallographic wet etching. The nonuniform trench shape may reduce back channel leakage by providing an effective channel directly below a gate stack having a width that is less than a width of an effective back channel directly above the isolation layer. |
US09627476B2 |
Fin structure of semiconductor device
A semiconductor device and method of formation are provided herein. A semiconductor device includes a fin having a first wall extending along a first plane, the fin including a doped region defining a first furrow on a first side of the first plane. A dielectric is disposed within the first furrow, such that the dielectric is in contact with the first furrow between a first end of the dielectric and a second end of the dielectric. The first end is separated a first distance from the first plane. The dielectric disposed within the furrow increases the isolation of a channel portion of adjacent fins, and thus decreases current leakage of a FinFET, as compared to a FinFET including fins that do not include a dielectric disposed within a furrow. |
US09627475B2 |
Dummy gate structure for semiconductor devices
A structure and method for fabricating a spacer structure for semiconductor devices, such as a multi-gate structure, is provided. The dummy gate structure is formed by depositing a dielectric layer, forming a mask over the dielectric layer, and patterning the dielectric layer. The mask is formed to have a tapered edge. In an embodiment, the tapered edge is formed in a post-patterning process, such as a baking process. In another embodiment, a relatively thick mask layer is utilized such that during patterning a tapered results. The profile of the tapered mask is transferred to the dielectric layer, thereby providing a tapered edge on the dielectric layer. |
US09627473B2 |
Parasitic channel mitigation in III-nitride material semiconductor structures
III-nitride materials are generally described herein, including material structures comprising III-nitride material regions and silicon-containing substrates. Certain embodiments are related to gallium nitride materials and material structures comprising gallium nitride material regions and silicon-containing substrates. |
US09627464B2 |
Display module
An organic display device includes a pixel driving circuit having a TFT connected to a current supply line and a capacitor. A first insulation layer, with a first electrode thereon, covers a source electrode of the TFT. The first electrode is connected to the TFT through a contact hole in the insulation layer. A second insulation layer including an aperture is formed on the first insulation layer and electrode layers. An organic light emitting layer, with a second electrode thereon is formed in the aperture and connected to the first electrode. The second insulation layer includes an inner wall at the aperture, said inner wall having a surface of a convex plane on an edge of the recessed part of the first electrode. The convex plane is located between the organic light emitting layer and the edge of the first electrode, and the second electrode is formed over pixels. |
US09627461B2 |
Array substrate, its manufacturing method and display device
The present disclosure provides an array substrate, its manufacturing method and a display device. The array substrate includes a thin film transistor. A source electrode and a drain electrode are located above a pattern of an active layer, and the source electrode and the drain electrode are in electrical contact with the pattern of the active layer through a first via-hole penetrating an insulating structure. Before the formation of the source electrode and the drain electrode, the pattern of the active layer is subjected to ion injection through the first via-hole, so as to form an ion injection region. |
US09627451B2 |
Pixel structure and display apparatus
A pixel structure includes a plurality of pixel cells each including two sub-pixel cells. Each of the two sub-pixel cell includes: a first sub-pixel; and at least two second sub-pixels parallelly adjacent to each other. Herein, organic material parts of the at least two second sub-pixels are interconnected and the first sub-pixel is arranged staggered with any of the at least two second sub-pixels in both a first direction and a second direction, and the first direction is perpendicular to the second direction. |
US09627449B2 |
Pixel arrangement structure for organic light-emitting diode display
A pixel arrangement structure for an organic light-emitting diode display includes at least one first sub-pixel line having alternately disposed first and second sub-pixel units in a first direction. Each first sub-pixel unit includes four diagonally disposed red sub-pixels. Each second sub-pixel unit includes four diagonally disposed green sub-pixels. At least two second sub-pixel lines are respectively located on two sides of the first sub-pixel line. Each second sub-pixel line includes third sub-pixel units arranged in the first direction. Each third sub-pixel unit is located between one of the first sub-pixel units and one of the second sub-pixel units in a second direction perpendicular to the first direction and includes two blue sub-pixels arranged in the second direction. A red sub-pixel, a green sub-pixel, and a blue sub-pixel, which are adjacent to each other and which are respectively of the first sub-pixel line and the second sub-pixel line, form a pixel. |
US09627448B2 |
OLED panel
The present invention provides an OLED panel. The OLED panel includes a substrate and a plurality of walls formed on the substrate. The substrate and the walls define a plurality of containing areas. Each of the containing areas is corresponding to each of a plurality of sub-pixels. The sub-pixels are separated from each other by the walls. Each of the sub-pixels includes one of emitting materials formed in one of the containing areas. At least one of the containing areas corresponding to the sub-pixel includes a first partition. The height of the first partition is lower than the walls. |
US09627446B2 |
Display device
A display device includes a substrate and subpixel groups disposed on the substrate. Each subpixel group includes four first subpixels for emitting four first color lights, four second subpixels for emitting four second color lights, and eight third subpixels for emitting eight third color lights. The first subpixels, the second subpixels, and the third subpixels are respectively arranged adjacent to each other along a first axis and a second axis intersecting the first axis, in which each of the first subpixels is located adjacent to another one of the first subpixels along the first axis or the second axis, each of the second subpixels is located adjacent to another one of the second subpixels along the first axis or the second axis, and each of the third subpixels is located adjacent to another one of the third subpixels along at least one of the first axis and the second axis. |
US09627445B2 |
Optoelectronic component and a method for manufacturing an optoelectronic component
Various embodiments relate to an optoelectronic component including: an electronic circuit structure including an electronic circuit and a metallization structure disposed over the electronic circuit, the metallization structure including one or more contact pads electrically connected to the electronic circuit; and an optoelectronic structure disposed over the metallization structure, the optoelectronic structure including at least one electrode structure being in direct contact with the one or more contact pads, wherein the electrode structure includes an electroless plated electrically conductive material. |
US09627443B2 |
Three-dimensional oblique two-terminal memory with enhanced electric field
Providing for three-dimensional memory cells having enhanced electric field characteristics is described herein. By way of example, a two-terminal memory cell can be constructed from a layered stack of materials, where respective layers are arranged along a direction that forms a non-zero angle to a normal direction of a substrate surface upon which the layered stack of materials is constructed. In some aspects, the direction can be orthogonal to or substantially orthogonal to the normal direction. In other aspects, the direction can be less than orthogonal to the normal direction. Where an internal angle of the memory cell forms a non-orthogonal angle, an enhanced electric field or current density can result, providing improved switching times and memory performance. |
US09627440B2 |
Phase change memory apparatuses
Phase change memory apparatuses include memory cells including phase change material, bit lines electrically coupled to aligned groups of at least some of the memory cells, and heating elements electrically coupled to the phase change material of the memory cells. The heating elements include vertical portions extending in a bit line direction. Additional phase change memory apparatuses include dummy columns positioned between memory columns and base contact columns. The dummy columns include phase change memory cells and lack heating elements coupled to the phase change memory cells thereof. Additional phase change memory apparatuses include heating elements operably coupled to phase change memory cells. An interfacial area between the heating elements and the phase change memory cells has a length that is independent of a bit line width. Methods relate to forming such phase change memory apparatuses. |
US09627435B2 |
Light emitting device
A light emitting device includes a substrate and a plurality of light emitting cells disposed on the substrate. Each light emitting cell includes a first semiconductor layer and a second semiconductor layer, an active layer between the first and the second semiconductors, a conductive material on the second semiconductor layer, an inclined surface, a first insulation layer overlaps each light emitting cell, an electrically conductive material overlaps the first insulation layer to couple two of the plurality of light emitting cells, and a second insulation layer overlaps the electrically conductive material. A light-transmitting material is used in both the first insulation layer and the second insulation layer. The inclined surface is continuous and has a slope of approximately 20° to approximately 80° from a horizontal plane based on the substrate. |
US09627433B2 |
Method of manufacturing junction field effect transistor
A method of manufacturing a junction field effect transistor having a channel region disposed in a semiconductor substrate, deeper than one of a source region and a drain region, the method includes a first step of forming a first mask having a first opening portion over the semiconductor substrate in which a first semiconductor region of a first conductivity type is disposed, a second step of forming a second semiconductor region of a second conductivity type defined as the channel region, in the first semiconductor region by implantation of ions of second conductivity type opposite to the first conductivity type using the first mask, and a third step of forming a third semiconductor region of the second conductivity type defined as the one of the source region and the drain region, by implantation of ions of the second conductivity type, using the first mask. |
US09627430B2 |
Method and apparatus for low resistance image sensor contact
A method and apparatus for a low resistance image sensor contact, the apparatus comprising a photosensor disposed in a substrate, a first ground well disposed in a first region of the substrate, the first ground well having a resistance lower than the substrate, and a ground line disposed in a region adjacent to the first ground well. The first ground well is configured to provide a low resistance path to the ground line from the substrate for excess free carriers in the first region of the substrate. The apparatus may optionally comprise a second ground well having a lower resistance than the first ground well and disposed between the first ground well and the ground line, and may further optionally comprise a third ground well having a lower resistance than the second ground well and disposed between the second ground well and the ground line. |
US09627429B2 |
Semiconductor device and electronic device having bonded substrates
A solid-state imaging device has a sensor substrate having a pixel region on which photoelectric converters are arrayed; a driving circuit provided on a front face side that is opposite from a light receiving face as to the photoelectric converters on the sensor substrate; an insulation layer, provided on the light receiving face, and having a stepped construction wherein the film thickness of the pixel region is thinner than the film thickness in a periphery region provided on the outside of the pixel region; a wiring provided to the periphery region on the light receiving face side; and on-chip lenses provided to positions corresponding to the photoelectric converters on the insulation layer. |
US09627423B2 |
Solid-state image pickup apparatus and image pickup system having a clipping circuit arranged close to an N-row signal mixing region
Provided is a solid-state image pickup apparatus, including: a pixel region, in which a plurality of pixels each including an amplifier transistor are arranged two-dimensionally in rows and columns, and which includes an n-row signal mixing region in which outputs of n amplifier transistors are mixed, where n is a natural number of 1 or more, and an m-row signal mixing region in which outputs of m amplifier transistors are mixed, where m>n; a column signal line to which a voltage from the amplifier transistor is output; and a clipping circuit, which is configured to clip a voltage in the column signal line, and is arranged at a position that is closer to the n-row signal mixing region than to the m-row signal mixing region. |
US09627422B2 |
Photodetector
There is provided a photodetector, comprising a semiconductor heterostructure having in sequence: a first collection layer having substantially uniform doping of a first doping type; a radiation-absorbing layer having substantially uniform doping of the first doping type and having a band gap less than or equal to that of the first collection layer; and a barrier layer having a band gap greater than that of the radiation-absorbing layer, the top of the valence band of the barrier layer being substantially equal in energy to that of the radiation-absorbing layer where the first doping type is n-type or the bottom of the conduction band of the barrier layer being substantially equal in energy to that of the radiation-absorbing layer where the first doping type is p-type; wherein a first portion of the barrier layer is of the first doping type and a second portion of the barrier layer is of a second doping type, the first portion of the barrier layer being adjacent to the radiation-absorbing layer, forming a heterojunction within the barrier layer which gives rise to a depletion region within each portion of the barrier layer. |
US09627421B2 |
Array substrate and method for manufacturing the same, and display device
An array substrate and manufacturing method thereof and a display device. The display device includes a pixel electrode (8), including a first portion (b) in a non-display region and a second portion (a) in a display region; a first electrode (6) formed on the first portion (b) of the pixel electrode (8); a passivation layer (9) formed on the pixel electrode (8) and the first electrode (6), the passivation layer (9) includes a via hole (11) located over the first electrode (6); an active layer (4) and a second electrode (7) that are formed on the passivation layer (9), the active layer (4) being connected to the first electrode (6) through the via hole (11) of the passivation layer (9). With the array substrate and the manufacturing method thereof, the manufacturing cost is reduced, materials of the electrodes are less subjected to corrosion, and quality of the array substrate is enhanced. |
US09627420B2 |
Method for forming an electronic device on a flexible substrate supported by a detachable carrier
A method for forming an electronic device provides a carrier formed from a composite material comprising a plastic binder and an embedded material. A substrate material is attached to the carrier. The substrate is processed to form the electronic device thereon. The substrate is then detached from the carrier to yield the resultant electronic device. |
US09627419B2 |
Display device and method of manufacturing the same
A display device and a method of manufacturing the same are disclosed, in which a sensing electrode for sensing a touch of a user is built in a display panel, whereby a separate touch screen is not required on an upper surface of the display panel unlike the related art and thus thickness and manufacturing cost are reduced. |
US09627417B2 |
Method of manufacturing display apparatus and display apparatus manufactured through the method
A method of manufacturing a display apparatus includes: preparing a substrate including a pixel circuit region and a driving circuit region; forming a first active layer at the pixel circuit region; forming a second active layer at the driving circuit region; forming gate electrodes that overlap the first active layer and the second active layer, respectively, with a gate insulating layer disposed therebetween; forming a first insulating layer covering the first and second active layers; forming a first contact hole that passes through the first insulating layer until a portion of the first active layer is exposed; heat-treating the substrate where the first insulating layer, in which the first contact hole is formed, is formed; and forming a second contact hole that passes through the first insulating layer disposed on the heat-treated substrate until a portion of the second active layer is exposed. |
US09627414B2 |
Metallic oxide thin film transistor, array substrate and their manufacturing methods, display device
The present invention provides a metallic oxide thin film transistor and its manufacturing method, an array substrate and its manufacturing method, as well as a display device, which is belong to the field of thin film transistor manufacturing technology. The method for manufacturing the metallic oxide thin film transistor comprises a step of forming patterns of an oxide active layer and an etch stopping layer through a one-time patterning process. |
US09627413B2 |
Semiconductor device and display device
The semiconductor device includes a transistor including an oxide semiconductor film, a first gate electrode overlapping with the oxide semiconductor film, a gate insulating film between the oxide semiconductor film and the first gate electrode, a first insulating film over the oxide semiconductor film, a pair of electrodes that are over the first insulating film and electrically connected to the oxide semiconductor film, a second insulating film over the first insulating film and the pair of electrodes, and a second gate electrode that is over the second insulating film and overlaps with the oxide semiconductor film. The first insulating film includes a region having a thickness of 1 nm or more and 50 nm or less, and the pair of electrodes includes a region in which a distance between the electrodes is 1 μm or more and 6 μm or less. |
US09627410B2 |
Metallized junction FinFET structures
FinFET devices are provided wherein the current path is minimized and mostly limited to spacer regions before the channel carriers reach the metal contacts. The fins in the source/drain regions are metallized to increase the contact area and reduce contact resistance. Selective removal of semiconductor fins in the source/drain regions following source/drain epitaxy facilitates replacement thereof by the metallized fins. A spacer formed subsequent to source/drain epitaxy prevents the etching of extension/channel regions during semiconductor fin removal. |
US09627407B2 |
Semiconductor device comprising a NOR decoder with an inverter
A semiconductor device includes a 2-input NOR decoder and an inverter that have six MOS transistors arranged in a line. The MOS transistors of the decoder are formed in a planar silicon layer disposed on a substrate and each have a structure in which a drain, a gate, and a source are arranged vertically and the gate surrounds a silicon pillar. The planar silicon layer includes a first active region having a first conductivity type and a second active region having a second conductivity type. The first and second active regions are connected to each other via a silicon layer on a surface of the planar silicon layer. |
US09627399B2 |
Three-dimensional memory device with metal and silicide control gates
An alternating stack of insulating layers and sacrificial material layers is formed on a substrate. Separator insulator structures can be optionally formed through the alternating stack. Memory opening are formed through the alternating stack, and the sacrificial material layers are removed selective to the insulating layers. Electrically conductive layers are formed in the lateral recesses by deposition of at least one conductive material. Metal-semiconductor alloy regions are appended to the electrically conductive layers by depositing at least a semiconductor material and inducing reaction of the semiconductor material with the material of the electrically conductive layers and/or a sacrificial metal layer. Memory stack structures can be formed in the memory openings and directly on the metal-semiconductor alloy regions of the electrically conductive layers. |
US09627395B2 |
Enhanced channel mobility three-dimensional memory structure and method of making thereof
A stack including an alternating plurality of first material layers and second material layers is provided. A memory opening is formed and at least a contiguous semiconductor material portion including a semiconductor channel is formed therein. The contiguous semiconductor material portion includes an amorphous or polycrystalline semiconductor material. A metallic material portion is provided at a bottom surface of the semiconductor channel, at a top surface of the semiconductor channel, or on portions of an outer sidewall surface of the semiconductor channel. An anneal is performed to induce diffusion of a metal from the metallic material portion through the semiconductor channel, thereby inducing conversion of the amorphous or polycrystalline semiconductor material into a crystalline semiconductor material. The crystalline semiconductor material has a relatively large grain size due to the catalytic crystallization process, and can provide enhanced charge carrier mobility. |
US09627392B2 |
Method to improve floating gate uniformity for non-volatile memory devices
The present disclosure relates an integrated circuit (IC) for an embedded flash memory device. In some embodiments, the IC includes a memory array region and a boundary region surrounding the memory array region disposed over a semiconductor substrate. A hard mask is disposed at the memory array region comprising a plurality of discrete portions. The hard mask is disposed under a control dielectric layer of the memory array region. |
US09627390B2 |
Semiconductor device having fin-type active patterns and gate nodes
A semiconductor device is provided. The semiconductor device includes: a plurality of fin-type active patterns which extend along a first direction, and are arranged with respect to each other along a second direction different from the first direction; a contact which is electrically connected to the plurality of fin-type active patterns; a first gate electrode which extends along the second direction and is formed on at least two of the plurality of fin-type active patterns; and a second gate electrode which extends along the second direction and is formed on at least one of the plurality of fin-type active patterns. The first gate electrode is disposed between the contact and the second gate electrode, and the number of fin-type active patterns intersected by the first gate electrode is greater than the number of fin-type active patterns intersected by the second gate electrode. |
US09627388B2 |
Memory system having overwrite operation control method thereof
The memory system has an overwrite operation and an operation control method thereof. A nonvolatile memory device has a plurality of memory blocks including a plurality of memory cells stacked in a direction perpendicular to a substrate. When data of memory cells connected to a word line of a selected memory block is read, the need of reclaim is determined based on an error bit level of the read data. In the case that memory cells having an erase state among the memory cells connected to the word line become a soft program state, the read data is overwritten in the memory cells connected to the word line of the selected memory block. |
US09627387B2 |
Semiconductor device and method for manufacturing the same
A semiconductor device includes a semiconductor substrate including active portions including first and second dopant regions, word lines on the substrate and extending in a first direction to intersect the active portions, first and second bit lines on the substrate and extending in a second direction to intersect the word lines, and contact structures in regions between the word lines and between the first and second bit lines when viewed from a plan view. The first and second bit lines are connected to the first dopant regions. The contact structures are in contact with the second dopant regions, respectively. The contact structures each include a contact plug and a contact pad. The contact pads contact the second dopant regions. A separation distance between the contact plugs and the first bit lines is less than separation distance between the contact pads and the first bit lines. |
US09627386B2 |
Memory device and electronic device
A selection operation is performed for individual memory cells. A device includes a first memory cell and a second memory cell provided in the same row as the first memory cell, each of which includes a field-effect transistor having a first gate and a second gate. The field-effect transistor controls at least data writing and data holding in the memory cell by being turned on or off. The device further includes a row selection line electrically connected to the first gates of the field-effect transistors included in the first memory cell and the second memory cell, a first column selection line electrically connected to the second gate of the field-effect transistor included in the first memory cell, and a second column selection line electrically connected to the second gate of the field-effect transistor included in the second memory cell. |
US09627382B2 |
CMOS NFET and PFET comparable spacer width
Embodiments of the present disclosure provide a structure including: a p-type field effect transistor (pFET device) and an n-type field effect transistor (nFET device) each having sidewall spacers on opposite sidewalls of a gate and source drain region adjacent to the sidewall spacers, a distance between the pFET source drain region and the pFET gate is substantially equal to a distance between the nFET source drain region and the nFET gate. |
US09627381B1 |
Confined N-well for SiGe strain relaxed buffer structures
Techniques for effectively confining n-well dopants during fabrication of relaxed SiGe on SRB devices are provided. In one aspect, a method for forming a semiconductor device includes the steps of: forming a SiGe stress relief buffer layer on a substrate; growing a bottom confinement layer on the stress relief buffer layer; growing a SiGe layer on the bottom confinement layer; growing a top confinement layer on the SiGe layer; forming STI regions extending through the top confinement layer, through the SiGe layer, and at least down to the bottom confinement layer, wherein the STI regions define at least one active area in the SiGe layer; and implanting at least one well dopant into the at least one active area which is confined to the at least one active area by the top confinement layer, the bottom confinement layer, and the STI regions. A semiconductor device is also provided. |
US09627379B1 |
FinFET devices and methods of forming the same
FinFET devices and methods of forming the same are disclosed. One FinFET device includes a substrate with first and second fins in a first region and third and fourth fins in a second region, and first to fourth gates respectively across the first to fourth fins. The first end sidewall of the first gate is faced to the second end sidewall of the second gate, and a first opening is formed between the first and second end sidewalls. The third end sidewall of the third gate is faced to the fourth end sidewall of the fourth gate, and a second opening is formed between the third and fourth end sidewalls. The first and second regions have different pattern densities, and the included angle between the sidewall of the first opening and the substrate is different from the included angle between the sidewall of the second opening and the substrate. |
US09627376B2 |
Semiconductor device with active fins separated by shallow and deep trench isolations and method for fabricating the same
A semiconductor device includes first and second memory cell regions adjacent to each other on a substrate. At least one active base and a shallow trench isolation may be sequentially laminated at a boundary between the first and second memory cell regions. First and second active fins are formed on respective sides of the shallow trench isolation, and the first and second active fins projecting from the active base. At least one deep trench isolation is formed on one side of the active base. |
US09627372B2 |
Electrostatic discharge protection device
An ESD protection device for shunting an electrostatic discharge current from a first node to a second node, and an integrated circuit including the same. The device includes a first bipolar transistor having a collector and an emitter located in a first n-type region. The emitter of the first transistor is connected to the first node. The device also includes a second bipolar transistor having a collector and an emitter located in a second n-type region. The emitter of the second transistor is connected to the collector of the first bipolar transistor. The device further includes a pn junction diode including a p-type region located in a third n-type region. The p-type region of the diode is connected to the collector of the second bipolar transistor and the third n-type region is connected to the second node. |
US09627369B2 |
Packages and methods for forming the same
A device includes a package component having conductive features on a top surface, and a polymer region molded over the top surface of the first package component. A plurality of openings extends from a top surface of the polymer region into the polymer region, wherein each of the conductive features is exposed through one of the plurality of openings. The plurality of openings includes a first opening having a first horizontal size, and a second opening having a second horizontal size different from the first horizontal size. |
US09627367B2 |
Memory devices with controllers under memory packages and associated systems and methods
Memory devices with controllers under stacks of memory packages and associated systems and methods are disclosed herein. In one embodiment, a memory device is configured to couple to a host and can include a substrate, a stack of memory packages, and a controller positioned between the stack and the substrate. The controller can manage data stored by the memory packages based on commands from the host. |
US09627366B2 |
Stacked microelectronic packages having at least two stacked microelectronic elements adjacent one another
A microelectronic semiconductor package includes first and second microelectronic elements and a substrate positioned between them. Each of the microelectronic elements has active and passive surfaces, first edges bounding the surfaces in a first lateral direction and second edges bounding the surfaces in a second lateral direction transverse to the first lateral direction. The first microelectronic overlies the second microelectronic element and the active surface of the first microelectronic element faces toward the passive surface of the second microelectronic element. Each of the first edges of the first microelectronic element are disposed beyond each of the adjacent first edges of the second microelectronic element. Each of the second edges of the second microelectronic element are disposed beyond each of adjacent second edges of the first microelectronic element. |
US09627365B1 |
Tri-layer CoWoS structure
A package includes an Integrated Voltage Regulator (IVR) die, wherein the IVR die includes metal pillars at a top surface of the first IVR die. The package further includes a first encapsulating material encapsulating the first IVR die therein, wherein the first encapsulating material has a top surface coplanar with top surfaces of the metal pillars. A plurality of redistribution lines is over the first encapsulating material and the IVR die. The plurality of redistribution lines is electrically coupled to the metal pillars. A core chip overlaps and is bonded to the plurality of redistribution lines. A second encapsulating material encapsulates the core chip therein, wherein edges of the first encapsulating material and respective edges of the second encapsulating material are vertically aligned to each other. An interposer or a package substrate is underlying and bonded to the IVR die. |
US09627363B2 |
Display device using semiconductor light emitting devices
A display device including a wiring substrate having a wiring electrode; a plurality of semiconductor light emitting devices which form pixels; and a conductive adhesive layer configured to electrically connect the wiring electrode with the plurality of semiconductor light emitting devices. Further, the conductive adhesive layer includes a body provided with a resin having an adhesive property; and a metallic aggregation part disposed in the body, and formed as metallic atoms precipitated from a metal-organic compound and aggregated with each other. |
US09627362B2 |
Illumination device
An illumination device includes a light-emitting device and a diffusion member. The light-emitting device has a plurality of light-emitting elements that emit light having a peak wavelength in a wavelength region of 380 to 420 nm, a first phosphor that emits visible light having a peak wavelength in a wavelength region of 560 to 600 nm, a second phosphor that is excited by ultraviolet ray or short-wavelength visible light and emits visible light in complementary color relationship with the visible light emitted by the first phosphor, and a light-transmitting member that covers the plurality of light-emitting elements and contains the first phosphor and the second phosphor dispersed therein. The diffusion member diffuses at least a part of the light emitting from the light-emitting device. |
US09627360B2 |
Circuit board having bypass pad
An electronic device having a printed circuit board is provided. In one embodiment, the printed circuit board includes a plurality of external pads to be coupled with an external device and a plurality of bypass pads for testing an electric circuit. The external pads are exposed and at least one of the plurality of bypass pads are not exposed from an outer surface of the PCB. A system using the electronic device and a method of testing an electronic device are also provided. |
US09627354B1 |
Semiconductor memory device
A semiconductor memory device includes a thin-film capacitor disposed at a position facing a circuit surface of a memory chip except for a center pad region. The thin-film capacitor includes a first plane electrode, a thin-film dielectric layer, and a second plane electrode. The first plane electrode includes a first power supply input portion to which a power supply voltage of one polarity is provided, and a first power supply output portion disposed near the center pad region to output the power supply voltage of one polarity to a center pad. The second plane electrode is formed on the dielectric layer and includes a second power supply input portion to which the power supply voltage of the other polarity is provided, and a second power supply output portion disposed near the center pad region to apply the power supply voltage of the other polarity to the center pad. |
US09627353B2 |
Method of manufacturing a semiconductor package
Methods for a semiconductor device package formed in a chip-on-wafer last process using thin film adhesives are disclosed and may include bonding a first carrier to a first surface of an interposer in wafer form, forming conductive bumps on a second surface of the interposer, bonding a second carrier to the conductive bumps utilizing a film adhesive, removing the first carrier from the interposer, bonding a semiconductor die to the first surface of the interposer, and encapsulating the die and the first surface of the interposer in an encapsulant material. The second carrier and the film adhesive may be removed from the conductive bumps utilizing a slide-off process. The interposer and encapsulant may be diced into a plurality of interposer and die structures. One of the die and interposer structures may be bonded to a substrate. The die may be bonded to the interposer utilizing a mass reflow process. |
US09627348B2 |
Laser assisted bonding for semiconductor die interconnections
Laser assisted bonding for semiconductor die interconnections is disclosed and may, for example, include forming flux on a circuit pattern on a circuit board, placing a semiconductor die on the circuit board where a bump on the semiconductor die contacts the flux, and reflowing the bump by directing a laser beam toward the semiconductor die. The laser beam may volatize the flux and make an electrical connection between the bump and the circuit pattern. A jig plate may be placed on the semiconductor die when the laser beam is directed toward the semiconductor die. Warpage may be reduced during heating or cooling of the semiconductor die by applying pressure to the jig plate. Jig bars may extend outward from the jig plate and may be in contact with the circuit board during the application of pressure to the jig plate. The jig plate may comprise one or more of: silicon, silicon carbide, and glass. |
US09627347B2 |
Method of manufacturing semiconductor device and semiconductor device manufacturing apparatus
A method of manufacturing a semiconductor device according to the present invention comprises: a bump forming step of forming a bump electrode 100 on a semiconductor chip 1, the bump electrode 100 protruding in a substantially conical shape; a pad forming step of forming a pad electrode 200 on a substrate 10, the pad electrode 200 having a recess 210 with inner lateral surfaces thereof defining a substantially pyramidal shape or a prism shape; a pressing step of pressing the bump electrode 100 and the pad electrode 200 in a direction which brings them closer to each other, with the bump electrode 100 being inserted in the recess 210 so that the central axis of the bump electrode 100 and the central axis of the recess 210 coincide with each other; and an ultrasonic joining step of joining the bump electrode 100 and the pad electrode 200 by vibrating at least one of the bump electrode 100 and the pad electrode 200 using ultrasonic waves. |
US09627346B2 |
Underfill pattern with gap
An embodiment is a structure comprising a package, a substrate, and external electrical connectors mechanically and electrically coupling the package to the substrate. The package contains a die. The external electrical connectors are between the package and the substrate. An underfill material is around a periphery region of the package and between the periphery region and the substrate. A gap is between a central region of the package and the substrate, and does not contain the underfill material. The underfill material may seal the gap. The gap may be an air gap. In some embodiments, the underfill material may fill greater than or equal to 10 percent and no more than 70 percent of a volume between the package and the substrate. |
US09627345B2 |
Semiconductor-mounted product and method of producing the same
A semiconductor-mounted product includes a semiconductor package, a circuit board, a solder bonding part, and a resin reinforcing part. Wiring is formed on the surface of the circuit board, and the semiconductor package is mounted on the circuit board. The solder bonding part electrically connects the semiconductor package with the wiring. The resin reinforcing part is formed on a side surface of the solder bonding part such that the solder bonding part is partially exposed. The bonding part has a first solder region formed closer to the semiconductor package than the circuit board, and a second solder region formed closer to the circuit board than the semiconductor package. |
US09627344B2 |
Semiconductor device
The semiconductor device of the present invention includes an insulating layer, a copper wiring for wire connection formed on the insulating layer, a shock absorbing layer formed on an upper surface of the copper wiring, the shock absorbing layer being made of a metallic material with a hardness higher than copper, a bonding layer formed on the shock absorbing layer, the bonding layer having a connection surface for a wire, and a side protecting layer covering a side surface of the copper wiring, wherein the side protecting layer has a thickness thinner than a distance from the upper surface of the copper wiring to the connection surface of the bonding layer. |
US09627341B2 |
Wafer arrangement, a method for testing a wafer, and a method for processing a wafer
According to various embodiments, a wafer arrangement may be provided, the wafer arrangement may include: a wafer including at least one electronic component having at least one electronic contact exposed on a surface of the wafer; an adhesive layer structure disposed over the surface of the wafer, the adhesive layer structure covering the at least one electronic contact; and a carrier adhered to the wafer via the adhesive layer structure, wherein the carrier may include a contact structure at a surface of the carrier aligned with the at least one electronic contact so that by pressing the wafer in direction of the carrier, the contact structure can be brought into electrical contact with the at least one electronic contact of the at least one electronic component. |
US09627338B2 |
Semiconductor device and method of forming ultra high density embedded semiconductor die package
A semiconductor device has a plurality of semiconductor die. A first prefabricated insulating film is disposed over the semiconductor die. A conductive layer is formed over the first prefabricated insulating film. An interconnect structure is formed over the semiconductor die and first prefabricated insulating film. The first prefabricated insulating film is laminated over the semiconductor die. The first prefabricated insulating film includes glass cloth, glass fiber, or glass fillers. The semiconductor die is embedded within the first prefabricated insulating film with the first prefabricated insulating film covering first and side surfaces of the semiconductor die. The interconnect structure is formed over a second surface of the semiconductor die opposite the first surface. A portion of the first prefabricated insulating film is removed after disposing the first prefabricated insulating film over the semiconductor die. A second prefabricated insulating film is disposed over the first prefabricated insulating film. |
US09627336B2 |
Semiconductor device allowing metal layer routing formed directly under metal pad
The present invention provides a semiconductor device. The semiconductor device comprises: a metal pad and a first specific metal layer routing and a second specific metal layer routing. The metal pad is positioned on a first metal layer of the semiconductor device. The first specific metal layer routing and the second specific metal layer routing are formed in a second metal layer of the semiconductor device, wherein the first specific metal layer routing is directly under the metal pad and the second specific metal layer routing is not directly positioned under the metal pad. |
US09627335B2 |
Method for processing a semiconductor workpiece and semiconductor workpiece
A method for processing a semiconductor device in accordance with various embodiments may include: depositing a first metallization layer over a semiconductor workpiece; patterning the first metallization layer; and depositing a second metallization layer over the patterned first metallization layer, wherein depositing the second metallization layer includes an electroless deposition process including immersing the patterned first metallization layer in a metal electrolyte. |
US09627331B1 |
Method of making a wire support leadframe for a semiconductor device
A leadframe includes a plurality of interconnected support members. A pair of die pads is connected to the support members and configured to receive a pair of dies electrically connected by at least one wire. A support bracket extends between the die pads and includes a surface for maintaining the at least one wire at a predetermined distance from the die pads during overmolding of the leadframe. |
US09627327B2 |
Semiconductor package and method of manufacturing the same
Provided is a method of manufacturing a semiconductor package. The method includes mounting a semiconductor device on a substrate; disposing a mold on the substrate, wherein the mold is formed to cover the semiconductor device such that at least one inner side surface of the mold has a slope; providing a molding material into the mold to encapsulate the semiconductor device; removing the mold from the substrate; and forming an electromagnetic shielding (EMS) layer to cover a top surface and side surfaces of the molding material. |
US09627321B2 |
Methods and apparatuses to form self-aligned caps
At least one conductive line in a dielectric layer over a substrate is recessed to form a channel. The channel is self-aligned to the conductive line. The channel can be formed by etching the conductive line to a predetermined depth using a chemistry comprising an inhibitor to provide uniformity of etching independent of a crystallographic orientation. A capping layer to prevent electromigration is deposited on the recessed conductive line in the channel. The channel is configured to contain the capping layer within the width of the conductive line. |
US09627316B1 |
Field effect transistor devices having interconnect structures and manufacturing method thereof
A field effect transistor comprising a substrate, at least one gate stack structure, source and drain regions and an interconnect structure is described. The interconnect structure comprises a metal interconnect connected to a conductive region, an adhesion sheath structure and a cap layer. The adhesion sheath structure is disposed between the metal interconnect and inter-dielectric layers and surrounds the metal interconnect. The cap layer is disposed on the metal interconnect and covers a gap between the metal interconnect and the inter-dielectric layer. |
US09627315B2 |
Semiconductor device having a multi-level interconnection structure
A semiconductor device includes a semiconductor substrate, and a multi-level interconnection structure that is provided on the semiconductor substrate and that has a plurality of interconnection layers stacked one on another. Each interconnection layer includes a real interconnection and a dummy interconnection covered with an insulative film. The interconnection layers include a first interconnection layer including a first real interconnection, a second interconnection layer stacked on the first interconnection layer and including an overlapping dummy interconnection that overlaps the first real interconnection in a stacking direction of the plurality of interconnection layers in a sectional view, and a third interconnection layer stacked on the second interconnection layer and including a second real interconnection that overlaps the overlapping dummy interconnection in the stacking direction of the plurality of interconnection layers in the sectional view. |
US09627313B2 |
Opening fill process and structure formed thereby
Methods of forming conductive structures and the conductive structures are disclosed. A method includes forming an opening in a dielectric layer over a substrate, performing a cleaning process on the dielectric layer with the opening, forming a nucleation layer in the opening, etching the nucleation layer in the opening, and forming a conductive material in the opening and on the nucleation layer after the etching. An upper portion of the opening is distal from the substrate, and a lower portion of the opening is proximate the substrate. After the etching, a thickness of an upper portion of the nucleation layer in the upper portion of the opening is less than a thickness of a lower portion of the nucleation layer in the lower portion of the opening. |
US09627310B2 |
Semiconductor device with self-aligned interconnects
A multilayer device and method for fabricating a multilayer device is disclosed. An exemplary multilayer device includes a substrate, a first interlayer dielectric (ILD) layer disposed over the substrate, and a first conductive layer including a first plurality of conductive lines formed in the first ILD layer. The device further includes a second ILD layer disposed over the first ILD layer, and a second conductive layer including a second plurality of conductive lines formed in the second ILD layer. At least one conductive line of the second plurality of conductive lines is formed adjacent to at least one conductive line of the first plurality of conductive lines. The at least one conductive line of the second plurality of conductive lines contacts the at least one conductive line of the first plurality of conductive lines at an interface. |
US09627309B2 |
Wiring substrate
A wiring substrate includes a first wiring substrate, a first insulation layer stacked on the first wiring layer, and second and third insulation layers sequentially stacked on the first insulation layer. An electronic component is mounted on the first insulation layer in a cavity extending through the second and third insulation layers. The cavity is filled with a fourth insulation layer that entirely covers an upper surface of the third insulation layer and covers the electronic component. A second wiring layer is incorporated in the second and third insulation layers and electrically connected to the first wiring layer. The second wiring layer is electrically connected to a third wiring layer, which is stacked on the fourth insulation layer, by a first via wiring extending through the second and third insulation layers. |
US09627308B2 |
Wiring substrate
A wiring substrate includes a first wiring substrate, a first insulation layer covering the first wiring layer, a second insulation layer stacked on the first insulation layer, and a cavity extending through the second insulation layer and exposing a portion of the upper surface of the first insulation layer. The cavity includes an opening, which is defined by an upper portion of a stepped inner wall surface of the second insulation layer, and a recess, which is defined by a lower portion of the stepped inner wall surface that contacts the upper surface of the first insulation layer. The recess is wider than the opening. An electronic component is mounted on the upper surface of the first insulation layer. The opening and the recess are filled with a third insulation layer that covers the electronic component and the second insulation layer. |
US09627299B1 |
Structure and method for diminishing delamination of packaged semiconductor devices
A semiconductor device (100) comprising a leadframe with a pad (101) and elongated leads (103) made of a base metal plated with a layer enabling metal-to-metal bonding; a semiconductor chip (110) attached to the pad, the chip having terminals. A metallic wire connection (130) from a terminal to a respective lead, the connection including a first ball bond by a first squashed ball (131) attached to the terminal, and a first stitch bond (132) attached to the lead. A second squashed ball (150) of the wire metal attached to the lead as a second ball bond adjacent to the first stitch bond (132). A package (170) of a polymeric compound encapsulating the chip, wire connection, second ball and at least a portion of the elongated lead, the compound adhering to the materials of the encapsulated entities. |
US09627298B2 |
Semiconductor device
To enable a semiconductor device excellent in usability to be provided. A semiconductor device has a main surface surrounded by a plurality of sides, a semiconductor chip having a plurality of electrode pads arranged over the main surface, and a plurality of leads coupled to the electrode pads by way of wires respectively. The electrode pads include a plurality of first electrode pads supplied with a plurality of bits temporally in parallel. The first electrode pads include second and third electrode pads. A fourth electrode pad different from the first electrode pads is arranged between the second and third electrode pads. |
US09627296B2 |
Semiconductor package with cantilever leads
A semiconductor package includes a metallic leadframe having a plurality of cantilever leads, a mounting area for mounting a die, and one or more non-conductive supports adjacent to a recessed surface of the cantilever leads to support the leads during die mount, wire bond, and encapsulation processes. Encapsulant encapsulates and supports at least a portion of the die, the leadframe. |
US09627294B2 |
Semiconductor device and method of manufacturing the same
A semiconductor device includes: a stacked unit including a semiconductor module and a plurality of coolers each having a flow passage through which a coolant flows, the semiconductor module being disposed between the coolers; a coolant supply-discharge pipe configured to supply the coolant to the coolers or discharge the coolant from the coolers, the coolant supply-discharge pipe being passed through the stacked unit in a stacking direction of the stacked unit; a displacement restricting member provided at a first end portion of the coolant supply-discharge pipe, the displacement restricting member being configured to restrict displacement of the stacked unit in the stacking direction of the stacked unit; and a pressurizing member provided at a second end portion of the coolant supply-discharge pipe, the pressurizing member being configured to apply force to the stacked unit in a direction toward the first end portion. |
US09627292B2 |
Semiconductor housing with rear-side structuring
A semiconductor housing includes a fixing mechanism and at least one side having structurings. A method for producing a semiconductor device is provided in which a thermally conductive paste is applied on the at least one side of the semiconductor housing and/or of a heat sink. The semiconductor housing is fixed to the heat sink by means of the fixing mechanism. A pressure is exerted on the thermally conductive paste by means of the fixing mechanism and the thermally conductive paste is diverted by means of diversion channels depending on the pressure exerted. |
US09627290B2 |
Bump structure design for stress reduction
Low stress bumps can be used to reduce stress and strain on bumps bonded to a substrate with different coefficients of thermal expansion (CTEs) from the die. The low stress bumps include multiple polymer layers. More than one type of bump is coupled to a die, with low stress bumps placed on areas subjected to high stress. |
US09627284B2 |
Semiconductor device
A semiconductor device includes: a resin case that houses a semiconductor element; a parallel plate that is disposed inside the resin case while being connected with the semiconductor element, the parallel plate including two flat plates parallel to each other with an insulating material therebetween; and two electrodes that are each led out from an upper end of the parallel plate and are disposed on an upper surface of the resin case at a predetermined interval. Upper end portions of the two flat plates of the parallel plate between two electrode lead-out portions are bent toward the outside being a direction in which the upper end portions of the two flat plates become more distant from each other, the two electrodes being led out from the corresponding two electrode lead-out portions. |
US09627279B2 |
Method for removing defective light emitting diode (LED) package from LED package arrary
An apparatus for manufacturing an light emitting diode (LED) package, includes: a heating unit heating an LED package array in a lead frame state in which a plurality of LED packages are installed to be set in an array on a lead frame; a testing unit testing an operational state of each of the LED packages in the LED package array by applying a voltage or a current to the LED package array heated by the heating unit; and a cutting unit cutting only an LED package determined to be a functional product or an LED package determined to be a defective product from the lead frame to remove the same according to the testing results of the testing unit. |
US09627275B1 |
Hybrid semiconductor structure on a common substrate
A semiconductor structure includes a first device and a second device. The first device has a first surface. The first device includes a first active region defined by a first material system. The second device has a second surface. The second surface is coplanar with the first surface. The second device includes a second active region defined by a second material system. The second material system is different from the first material system. |
US09627274B1 |
Methods of forming self-aligned contacts on FinFET devices
One illustrative method disclosed herein includes, among other things, forming a first sacrificial layer comprising amorphous silicon or polysilicon material around a fin in a lateral space between a plurality of laterally spaced apart gate structures that are positioned around the fin, performing a first selective etching process to remove a first sacrificial layer selectively relative to surrounding material so as to expose the fin in the lateral space, forming an epi material on the exposed portion of the fin, and forming a second layer of a sacrificial material above the epi material. The method also includes selectively removing the second layer of sacrificial material relative to at least the first layer of material to thereby define a source/drain contact opening that exposes the epi material and forming a self-aligned trench conductive source/drain contact structure that is conductively coupled to the epi material. |
US09627273B2 |
Methods of manufacturing semiconductor devices having a nanowire channel structure
A semiconductor device includes a first transistor and a second transistor. The first transistor includes a first nanowire extending through a first gate electrode and between first source and drain regions. The second transistor includes a second nanowire extending through a second gate electrode and between a second source and drain regions. The first nanowire has a first size in a first direction and a second size in a second direction, and the second nanowire has a second size in the first direction and substantially the second size in the second direction. The first nanowire has a first on current and the second nanowire has a second on current. The on current of the first nanowire may be substantially equal to the on current of the second nanowire based on a difference between the sizes of the first and second nanowires. In another arrangement, the on currents may be different. |
US09627269B2 |
Transistor and fabrication method thereof
A method for forming transistors is provided. The method includes providing a substrate having a base and at least a fin on the base; and forming a gate layer on the fin, the gate layer has first side surfaces parallel to a longitudinal direction of the fin and second side surfaces perpendicular to the fin. The method also includes forming a protective layer on the first side surfaces of the gate layer to protect a vertex of the top of the gate layer from having EPI particles; and forming sidewall spacers on side surfaces of the protective layer and the second side surfaces of the gate layer. Further, the method includes forming a stress layer in the fin at both sides of the sidewall spacers and the gate layer. |
US09627262B2 |
Method of patterning features of a semiconductor device
A method of semiconductor device fabrication including forming a mandrel on a semiconductor substrate is provided. The method continues to include oxidizing a region the mandrel to form an oxidized region, wherein the oxidized region abuts a sidewall of the mandrel. The mandrel is then removed from the semiconductor substrate. After removing the mandrel, the oxidized region is used to pattern an underlying layer formed on the semiconductor substrate. |
US09627261B1 |
Multi-chip integrated circuit
An integrated circuit (IC) combines a first IC chip (die) having a first on-chip interconnect structure and a second IC chip having a second on-chip interconnect structure on a reconstructed wafer base. The second IC chip is edge-bonded to the first IC chip with oxide-to-oxide edge bonding. A chip-to-chip interconnect structure electrically couples the first IC chip and the second IC chip. |
US09627259B2 |
Device manufacturing method and device
A device manufacturing method according to an embodiment includes forming a film on the second surface side of a substrate having a first surface and the second surface, forming a trench in part of the substrate from the first surface side, while leaving the film to remain, and injecting a substance onto the film from the second surface side, to remove the film at the portion on the second surface side of the trench. |
US09627256B2 |
Integrated circuit interconnects and methods of making same
A dielectric layer is formed on a substrate and patterned to form an opening. The opening is filled and the dielectric layer is covered with a metal layer. The metal layer is thereafter planarized so that the metal layer is co-planar with the top of the dielectric layer. The metal layer is etched back a predetermined thickness from the top of the dielectric layer to expose the inside sidewalls thereof. A sidewall barrier layer is formed on the sidewalls of the dielectric layer. A copper-containing layer is formed over the metal layer, the dielectric layer, and the sidewall barrier layers. The copper-containing layer is etched to form interconnect features, wherein the etching stops at the sidewall barrier layers at approximately the juncture of the sidewall of the dielectric layer and the copper-containing layer and does not etch into the underlying metal layer. |
US09627252B2 |
Semiconductor device with air gap and method of fabricating the same
A method of fabricating a semiconductor device and a semiconductor device formed by the method. The method includes form a stack conductive structure by stacking a first conductive pattern and an insulation pattern over a substrate; forming a sacrificial pattern over sidewalls of the stack conductive structure; forming a second conductive pattern having a recessed surface lower than a top surface of the stack conductive structure; forming a sacrificial spacer to expose sidewalls of the insulation pattern by removing an upper portion of the sacrificial pattern; reducing a width of the exposed portion of the insulation patters; forming a capping spacer to cap the sidewalls of the insulation pattern having the reduced width over the sacrificial spacer; and forming an air gap between the first conductive pattern and the second conductive pattern by converting the sacrificial spacer to volatile byproducts. |
US09627247B2 |
Semiconductor device and method of fabricating the same
Provided is a method of fabricating a semiconductor device, including the following. A first material layer, a second material layer and a mask layer are formed on a substrate. A portion of the second material layer is removed by performing a first etching process with the mask layer as a mask, so as to expose the first material layer and form a first pattern layer and a second pattern layer. A portion of the first material layer is removed by performing a second etching process with the mask layer as a mask, so as to expose a portion of the substrate. A portion of the substrate is removed by performing a third etching process with the mask layer as a mask, so as to form first trenches and second trenches. Sidewalls of the second trenches and a surface of the substrate form at least two different angles. |
US09627246B2 |
Method of forming shallow trench isolation (STI) structures
A method of forming a trench isolation (e.g., an STI) for an integrated circuit includes forming a pad oxide layer and then a nitride layer over a semiconductor substrate, performing a trench etch through the structure to form a trench, depositing a trench oxide layer over the structure to form a filled trench, depositing a sacrificial planarizing layer, which is etch-selective to the trench oxide layer, over the deposited oxide, performing a planarizing etch process that removes the sacrificial planarizing layer and decreases surface variations in an upper surface of the trench oxide layer, performing an oxide etch process that is selective to the trench oxide layer to remove remaining portions of the trench oxide layer outside the filled trench, and removing the remaining nitride layer such that the remaining oxide-filled trench defines a trench isolation structure that projects above an exposed upper surface of the semiconductor substrate. |