Document Document Title
US09042481B2 Transmitter and transmission method
A transmitter is capable of suppressing a PAPR to be low and efficiently amplifying transmit power. The transmitter generates a transmission signal by oversampling a modulated signal, and includes a modulation unit that performs a modulation process on an information sequence and that generates a constant envelope signal and a phase interpolation unit that inserts a predetermined number of signals identical in amplitude to signal points of the constant envelope signal between the signal points so that signal points including original signal points are located equidistantly.
US09042476B2 Methods and a device for multi-resolution precoding matrix indicator feedback
Disclosed are methods and a device for Multi-resolution PMI Feedback. In one implementation, a user equipment finds a rank 1 or rank 2 Precoding Matrix Indicator based on the signal channel matrix and interference covariance matrix, defines an error vector, obtains an orthonormal basis for the projection matrix, finds the (M−1)-dimensional vector from a codebook (e.g., oversampled Discrete Fourier Transform) with the minimum Euclidean distance, and sends a feedback representing to the base station regarding the vector that it found in the codebook.
US09042475B2 Signal transmitting method and device in a multi-node system
Provided is a signal transmitting method of a terminal in a multi-node system including and configured to control a plurality of nodes and a base station connected to each of the plurality of nodes. The method includes: estimating a channel of at least one node by receiving a reference signal from at least one node among the plurality of nodes; selecting a preferred rank and a precoding matrix index by applying at least one precoding matrix to the estimated channel; selecting one of a plurality of codeword-layer mappings (CLMs) by applying a precoding matrix indicated by the rank and the precoding matrix index; and transmitting the selected rank, the selected precoding matrix index, and a CLM indicator to the base station.
US09042474B2 Method and apparatus for information feedback and precoding
Methods and apparatuses for information feedback and precoding have been provided. A method for processing communication data at a user equipment in a wireless communication system may comprise: deriving a spatial correlation matrix R of multiple transmit antennas of a base station based on an obtained downlink channel transmission matrix H; transforming a precoding codebook F according to the spatial correlation matrix R; selecting a precoding matrix Fs based on the transformed precoding codebook; and feeding back information about the spatial correlation matrix R and information about the selected precoding matrix Fs to the base station. A method for data precoding at a base station in a wireless communication system may comprise: obtaining, from a user equipment, information about a spatial correlation matrix R of multiple transmit antennas of the base station and information about a precoding matrix Fs selected by the user equipment; determining a desired precoding matrix FR,s based on the obtained information and a precoding codebook; and precoding downlink data to be transmitted to the user equipment with the desired precoding matrix FR,s.
US09042470B2 Measurement method and apparatus
The disclosure discloses a measurement method. The method includes: a conjugate multiplication operation is performed on reference signals corresponding to a subcarrier within adjacent time slots to remove phase interference of the reference signals; the reference signals from which the phase interference has been removed are descrambled; and all the descrambled reference signals are accumulated. The disclosure further provides a measurement apparatus. With the technical solution of the disclosure, the operation complexity of measurement can be reduced.
US09042465B2 Method and apparatus for updating channel information in mobile communication terminal
An apparatus and method for updating channel information in a mobile communication terminal supporting Digital Multimedia Broadcasting (DMB) are provided. The method includes sending a broadcasting information request to an Over The Air (OTA) server over a mobile communication network, receiving broadcasting information from the OTA server over the mobile communication network, and updating stored broadcasting information based on the received broadcasting information.
US09042460B1 Method and apparatus for encoding video by using transformation index, and method and apparatus for decoding video by using transformation index
Encoding and decoding a video using transformation index that indicates information that indicates a structure of a transformation unit transforming data of a current coding unit.
US09042459B1 Method and apparatus for encoding video by using transformation index, and method and apparatus for decoding video by using transformation index
Encoding and decoding a video using transformation index that indicates information that indicates a structure of a transformation unit transforming data of a current coding unit.
US09042458B2 Multi-threaded implementations of deblock filtering
Multi-threaded implementations of deblock filtering improve encoding and/or decoding efficiency. For example, a video encoder or decoder partitions a video picture into multiple segments. The encoder/decoder selects between multiple different patterns for splitting operations of deblock filtering into multiple passes. The encoder/decoder organizes the deblock filtering as multiple tasks, where a given task includes the operations of one of the passes for one of the segments. The encoder/decoder then performs the tasks with multiple threads. The performance of the tasks is constrained by task dependencies which, in general, are based at least in part on which lines of the picture are in the respective segments and which deblock filtering operations are in the respective passes. The task dependencies can include a cross-pass, cross-segment dependency between a given pass of a given segment and an adjacent pass of an adjacent segment.
US09042453B2 Method to derive at least one motion vector of a bi-predictive block in a current picture
In one embodiment, a method for a moving picture coding system to derive at least one motion vector of a bi-predictive block in a current picture from a motion vector of a first block in a first picture includes selecting, by the moving picture coding system, a list 1 motion vector of the first block in the first picture as a motion vector for deriving list 0 and list 1 motion vectors of the bi-predictive block if the first block only has the list 1 motion vector, the first picture being permitted to be located temporally before the current picture and permitted to be located temporally after the current picture, scaling the selected motion vector and deriving the list 0 and list 1 motion vectors of the bi-predictive block by applying a bit operation to the scaled motion vector, the bit operation including 8 bits right shift.
US09042449B2 Systems and methods for dynamic transcoding of indexed media file formats
Methods and systems for transcoding from an input media stream to an output media stream, wherein the input media stream and the output media stream are in an indexed file format. The methods and systems are capable of generating an efficiently coded media file where the movie box is generated and sent before transcoding is complete, while maintaining acceptable and consistent quality throughout and minimizing the total size of the file.
US09042448B2 Moving picture encoding system, moving picture encoding method, moving picture encoding program, moving picture decoding system, moving picture decoding method, moving picture decoding program, moving picture reencoding sytem, moving picture reencoding method, and moving picture reencoding program
A first super-resolution enlarger 103 works on moving pictures input with a standard resolution, implementing a process for a super-resolution enlargement including information on frequency components in the spatial direction and the temporal direction that has been potentially contained in the input moving pictures but unable to express to a sufficient degree by the standard resolution, and provides super-resolution enlarged signals, which are returned to the standard resolution at a first resolution converter 104, and the super-resolution enlarged signals as returned to the standard resolution are encoded at a second encoder 107. There is a first encoder 102 for encoding moving pictures input with the standard resolution, and a multiplexer 109 working to multiplex a sequence of encoded bits from the first encoder 102, a sequence of encoded bits from the second encoder 107, and the like. The second encoder 107 is adaptive to employ local decoded signals in the first encoder 102 or processed signals thereof, as reference signals.
US09042441B2 Apparatus and method for media streaming
A system that incorporates teachings of the subject disclosure may include, for example, dividing a media content item into a plurality of media content segments, at each media content segment of the plurality of media content segments, applying motion estimation between at least two video frames of the media content segment to determine a content weight for the media content segment, determining a bit rate for the media content segment according to the determined content weight for the media content segment, and encoding the media content segment at the determined bit rates to generate a data stream for the media content segment, whereby a plurality of data streams for the plurality of media content segments of the media content are generated, and transmitting the plurality of data streams for the plurality of media content segments of the media content to the one or more media devices. Other embodiments are disclosed.
US09042436B2 Asymmetric multi-channel adaptive equalizer
An apparatus is disclosed to compensate for non-linear effects resulting from the transmitter, the receiver, and/or the communication channel in a communication system. A receiver of the communication system contains an image cancellation module that compensates for images generated during the modulation and/or demodulation process. The image cancellation module includes a fine carrier correction loop to correct for frequency offsets between the transmitter and receiver. The image cancellation module includes a coarse acquisition mode and a decision directed mode. The decision directed mode allows for a larger signal-to-noise ratio for the receiver when compared against the coarse acquisition mode.
US09042434B2 Filter
Method and filter for filtering a signal, in which the signal is applied to a delay line having a plurality of taps. Respective weighting coefficients of a windowing function are applied to outputs from the plurality of taps to thereby generate a plurality of weighted outputs. The method comprises repeatedly selecting, for output, whichever of the weighted outputs has the highest value.
US09042432B2 Adaptive filter bank for dynamic notching in powerline communication
An adaptive filter bank can be implemented on a PLC device to dynamically adapt to variations in notching requirements and the performance of the PLC medium. The PLC device can apply filter coefficients to one or more filter elements of the adaptive filter bank to generate one or more notched subcarriers in the PLC band. A performance measurement of one or more subcarriers in the PLC band can be determined and evaluated against corresponding performance measurement thresholds. For a given notched subcarrier, if the performance measurement of the corresponding subcarriers is not in accordance with the performance measurement threshold, updated filter coefficients for the filter element configured to generate the notched subcarrier can be determined based, at least in part, on the performance measurement of the one or more subcarriers. The filter coefficients of the filter element can then be updated using the updated filter coefficients.
US09042429B2 Interference cancellation radio receiver
A radio receiver apparatus includes a serving cell detector configured to generate a detected serving cell signal based on a serving cell detector input signal. The radio receiver apparatus further includes a first interfering cell detector configured to generate a detected first interfering cell signal based on a first interfering cell detector input signal and a first interfering cell synthesizer configured to generate synthesized first interfering cell signal based on the detected first interfering cell signal. A serving cell interference removing unit is configured to remove the synthesized first interfering cell signal from a serving cell signal to generate the serving cell detector input signal.
US09042428B2 Efficient frequency domain (FD) MMSE equalization weight updates in a multi-stage parallel interference cancellation receiver
A system and method to more efficiently compute updated Frequency Domain (FD) Minimum Mean Squared Error (MMSE) equalization weights in a multi-stage Parallel Interference Cancellation (PIC) receiver after initial interference cancellation. The updated equalization weights (which are to be used during re-equalization) can be obtained using the old equalization weights already computed for initial interference cancellation. There is no need to invert an nR by nR matrix (where nR is the number of receive antennas) at each stage of the PIC receiver during each iteration of equalization and decoding operations. Rather, the matrix to be inverted to obtain updated equalization weights may be of the dimension n×n (where “n” equals the total number of transmission layers in a transmission scheme used in the wireless network). This significantly reduces complexity of determining updated equalization weights during FD MMSE equalization, thereby saving computational resources in a digital receiver performing such equalization.
US09042426B1 Wireless communication system
A wireless communication system includes a mobile device carried by a user and an in-vehicle apparatus equipped to a vehicle and communicatively connected with the mobile device. The in-vehicle apparatus includes a transmission unit, a transmission control unit, a reception determination unit, and a position determination unit. The transmission unit transmits low-frequency band request signals generated by spread modulating transmission data with predetermined spreading factors. The transmission control unit controls the transmission unit to generate and transmit first and second request signals having first and second attainable ranges by spread modulation using first and second spreading factors, respectively. The reception determination unit performs reception determination to response signal transmitted from the mobile device in response to the request signal. The position determination unit specifies the first attainable range or the second attainable range as a mobile device position area in response to a reception determination result.
US09042421B2 Surface emitting laser, surface emitting laser array, and optical apparatus having surface emitting laser array
There is provided a surface emitting laser allowing a direction of a far-field pattern (FFP) centroid to be inclined from a normal direction of a substrate providing the surface emitting laser, comprising: a substrate; a lower reflecting mirror, an active layer, an upper reflecting mirror stacked on the substrate; and a surface relief structure located in an upper portion of a light emitting surface of the upper reflecting mirror, the surface relief structure being made of a material allowing at least some beams emitted from the surface emitting laser to be transmitted therethrough, a plurality of regions having a predetermined optical thickness in a normal direction of the substrate being formed in contact with other region in an in-plane direction of the substrate, and a distribution of the optical thickness in the in-plane direction of the substrate is asymmetric to a central axis of the light emitting regions.
US09042412B2 Method and apparatus for detecting communication channel delay asymmetry
The invention provides a method and apparatus for detecting communication channel delay asymmetry between transmission line protection devices. The method comprises: calculating, repeatedly, clock disparity between clocks of the protection devices and communication delays at different paths of the communication channel; comparing the latest calculated clock disparity and communication delays with previously calculated clock disparities and communication delays, respectively; determining a channel switching has happened if a change of the calculated clock disparity exceeds a first threshold, or a change of the calculated communication delays for any path exceeds a second threshold; and determining the channel delays as asymmetrical if a difference between the calculated communication delays of the different paths after the channel switching exceeds a third threshold.
US09042411B1 System and method for accurate time sampling in presence of output delay
A system and method for accounting for delay to accurately schedule a data packet for transmission between communicating devices. According to an aspect of the invention, a data packet to be scheduled is identified and the packet modified time, reflecting an estimation of the transmission time of the packet, and the scheduled transmission time, reflecting the time the packet should be scheduled to be transmitted, are calculated. A time stamp in the packet is adjusted to reflect the packet modified time and the packet is stored until either the packet modified time or the scheduled transmission time, when the packet is then transmitted.
US09042409B2 Packet processor and method for processing packets by means of internal control packets
A packet processor for processing an input packet includes an information generator for generating process control information for processing the input packet, an internal packet generator for receiving the input packet as an packet to be processed and adding the process control information to the packet to be processed to produce an internal packet, an internal packet processor for processing the internal packet supplied from the internal packet generator on the basis of the process control information added to the internal packet, and a packet transmitter for extracting an output packet from the internal packet processed by the internal packet processor to transmit the output packet. The packet processor can reduce the amount of communication between modules even when the packet processor includes plural modules.
US09042406B2 Method for obtaining IPV6 configuration information in IPV6 transition network, system and apparatus
The present invention discloses a method for obtaining IPv6 configuration information in an IPv6 transition network. The network includes an IPv4 network and an IPv6 network. An apparatus for providing IPv6 configuration information in the IPv4 network receives an IPv6 configuration information obtaining request packet sent by a user side device. In response, the apparatus sends a response packet to the user side device, where the response packet is a DHCPv4 packet, and carries the requested IPv6 configuration information. Some of the advantages of the present invention are that automatic configuration for a user side device which needs to traverse the IPv4 network to access the IPv6 network is implemented, and efficiency is greatly improved compared with a manual configuration method in the prior art.
US09042405B1 Interface mapping in a centralized packet processor for a network
A method for processing packets in a centralized packet processor includes configuring the centralized packet processor to operate as a part of a communication system that includes a plurality of component systems configured to operate as components of the communication system, where each of the plurality of component systems includes a respective set of physical interfaces to provide interfaces to ports associated with other devices on a network, and where each of the plurality of component systems is configured to forward selected packets to an external device via a dedicated physical interface, receiving the selected packets via a plurality of physical ports of the centralized packet processor, generating, for use at the centralized packet processor, a plurality of virtual ports to uniquely identify a plurality of physical interfaces of the component systems, where a quantity of the plurality of virtual ports is larger than a quantity of physical interfaces available at the centralized packet processor, and performing a processing operation on the selected packets at the centralized packet processor using the plurality of virtual ports.
US09042404B2 Scalable interconnect modules with flexible channel bonding
The present application discloses apparatus and methods for increasing channel utilization for a high-speed serial interface of an integrated circuit (IC). A new circuit architecture is disclosed which provides circuitry that may be programmed flexibly to support a multitude of different channel bonding schemes. In accordance with one aspect of the invention, the new architecture decouples the granularity of control-signal channel bonding from the granularity of data-aggregation channel bonding. This advantageously allows optimization of configurations for both types of channel bonding. In another aspect of the invention, the logical boundaries of bonded user channels are decoupled from the physical boundaries of the PCS modules. This decoupling advantageously eliminates a rigid constraint of previous architectures.
US09042402B1 Methods and apparatus for control protocol validation of a switch fabric system
In some embodiments, an apparatus includes a first network control entity within a control plane of a switch fabric system. The first network control entity is configured to receive a first test signal including a test instruction to be implemented within the switch fabric system. The first network control entity is configured to send a second test signal including the test instruction to a second network control entity such that the second network control entity implements the test instruction for a predetermined amount of time.
US09042400B2 Multi-detection of heartbeat to reduce error probability
A communications system improves performance of detecting a signal having an indication of a request to change communications states by making at least two positive identifications of the request in a given time frame. The system may further improve performance by applying a difference in power levels for a non-request state (i.e., steady state or ‘control hold’ state) versus a request state (i.e., ‘request to change’ state). In one particular application, a base station determines a request to change communications states with a reasonably high probability of detection and a reasonably low probability of false detection. The system has a reduced number of erroneous communications states, such as erroneous traffic channel allocations. The detection technique is compatible with 1xEV-DV systems and I-CDMA systems, but general enough to support systems employing various other communications protocols used in wired and wireless communications systems.
US09042399B2 Signaling separate unicast and broadcast information with a common pilot
Aspects describe conveying unicast information and broadcast information in a resource set for a transmission request. The unicast information and broadcast information can be transmitted at substantially the same time. Power control can be applied separately to the unicast information and the broadcast information for reliable decoding. A null request can be indicated by “00” bits in a unicast portion and a zero power level in the broadcast portion.
US09042398B2 Dynamically adjusted credit based round robin scheduler
A credit based queue scheduler dynamically adjusts credits depending upon at least a moving average of incoming packet size to alleviate the impact of traffic burstiness and packet size variation, and increase the performance of the scheduler by lowering latency and jitter. For the case when no service differentiation is required, the credit is adjusted by computing a weighted moving average of incoming packets for the entire scheduler. For the case when differentiation is required, the credit for each queue is determined by a product of a sum of credits given to all queues and priority levels of each queue.
US09042395B2 E-spring support of Ethernet protection
A method of routing traffic through a packet network having a mesh physical topography. At least two types of network primitive are defined, each type of network primitive providing a respective model of traffic forwarding through at least two neighbor nodes of the network. A network model encompassing at least a portion of the network is constructed using a set of two or more interconnected network primitives. The network model has nodes and links corresponding to respective nodes and lines of the network. Respective forwarding information is computed for each node of the network model. For each node of the network model, the respective computed forwarding information is installed in a forwarding database of the corresponding node of the network, such that traffic is forwarded by each node of the network in accordance with the respective computed forwarding information.
US09042393B2 Method and apparatus for setting up uplink common bearer in wireless communication network
A method and apparatus for setting up an UpLink common bearer shared by a plurality of User Equipments (UEs) in a wireless communication network is provided. The apparatus includes a Serving GateWay (S-GW) for receiving a group identifier of a UE from a Mobility Management Entity (MME), sending a create bearer request message including the group identifier to a Packet Data Network (PDN) GateWay (P-GW), receiving a create bearer response message including UL common S5 bearer information (UL common S5 info) for a group corresponding to the group identifier from the P-GW, and sending a create bearer response message including UL common S1 bearer information (UL common S1 info) to the MME, and the P-GW for receiving the create bearer request message from the S-GW, and generating and sending the create bearer response message including the UL common S5 info.
US09042388B2 Lawful interception for 2G/3G equipment interworking with evolved packet system
A method, system, and a computer program product for reducing consumption of resources for lawful interception or retention data related to traffic concerning a 2G/3G target mobile connected to a telecommunications network interworking with Evolved Packet System is provided. At least a first parameter value in data for which lawful interception or data retention has been activated is detected at a first node. Based on at least the first parameter value, whether the traffic is intercepted or retained at a second node crossed by the traffic in the same network is evaluated. If the second node is located downstream of the first node, lawful interception requests or intercepted data are filtered out.
US09042382B1 Application update using multiple disparate networks
A system and method that enables an application to retrieve application update from the software vendor using one or more network connection. The application checks for updates when it is invoked by the user. The checking of updates is done by sending a request to the vendor server via one or multiple network connections. The network connection can be wired or wireless. By using multiple network connections, the update process can send and receive update data faster than using one network connections. Another aspect of the invention is if the checking for update request failed via the default or 1st network connection, the application will check for the next available network connection to send the update request. By checking for update from the vendor, the application will always have the most up to date patches, fixes, and/or new features.
US09042380B2 Crossbar switch and recursive scheduling
A crossbar switch has N input ports, M output ports, and a switching matrix with N×M crosspoints. In an embodiment, each crosspoint contains an internal queue (XQ), which can store one or more packets to be routed. Traffic rates to be realized between all Input/Output (IO) pairs of the switch are specified in an N×M traffic rate matrix, where each element equals a number of requested cell transmission opportunities between each IO pair within a scheduling frame of F time-slots. An efficient algorithm for scheduling N traffic flows with traffic rates based upon a recursive and fair decomposition of a traffic rate vector with N elements, is proposed. To reduce memory requirements a shared row queue (SRQ) may be embedded in each row of the switching matrix, allowing the size of all the XQs to be reduced. To further reduce memory requirements, a shared column queue may be used in place of the XQs. The proposed buffered crossbar switches with shared row and column queues, in conjunction with the row scheduling algorithm and the DCS column scheduling algorithm, can achieve high throughput with reduced buffer and VLSI area requirements, while providing probabilistic guarantees on rate, delay and jitter for scheduled traffic flows.
US09042377B2 System and method for web telephone services
A web telephone service system comprises a client web page adapted to be displayed on a screen of a computer, the client web page including an element associated with the web telephone service and embedded software code, a client web server hosting the web page and an authentication key, an application server adapted to authenticate the client using the authentication key and determining a client telephone number associated with the client, a media server adapted to translate IP traffic to and from a real-time protocol traffic, a media gateway in communication with a private branch exchange adapted to associate the client telephone number with a dial plan, a SIP trunk adapted to translate VOIP traffic to and from POTS traffic, and whereby a user clicking on the visual element is operable to cause a voice communication line to be automatically established between the computer and a client POTS telephone device.
US09042374B2 Selective bandwidth connectivity through network line cards
Public communication networks increasingly need to provide customers with a range of communication services, from baseband voice service, to computer data communications, to high speed digital data communications for multimedia and the like. Many such services would be blocked by existing telephone network line cards, which provide coding and decoding (CODEC) between analog and digital signals and process digital signals only at a relatively low, fixed bit rate. In accord with the invention, intelligent signal detection and control added to a line card selectively bypasses the CODEC and the associated connection to a time slot limited telephone exchange. The selective bypass connection provides a connection to an alternative network functionality capable of providing higher bandwidth digital services. In the preferred embodiment, the bypass provides a connection through an adaptive digital signal processor with a programmed controller. The digital signal processor provides coding and decoding functions, adapted to the particular communication service requested and the physical level signal protocol used over the customer's line. The digital signal processor also provides a two-way digital communication link to a relatively fast data switch, such as an edge device of an asynchronous transport mode (ATM) network. The data switch and associated data network provide a full range of digital communication services of various bandwidths or bit rates as may be requested by individual.
US09042367B2 System and method for synchronizing phases and frequencies of devices in multi-user, wireless communications systems
A system and method for synchronizing the phases and frequencies of devices in multi-user, wireless communications systems are provided. A primary beacon signal is transmitted by a destination node in a wireless communications network to a plurality of source nodes. Secondary beacon signals are also exchanged between the source nodes. Using the primary and secondary beacon signals, the nodes generate local phase and frequency estimates which are used to control local phases and frequencies of the source nodes. The source nodes then transmit common information to the destination at carrier frequencies based on the estimated local frequencies and phases, so that the phases and frequencies of the transmitted information are synchronized to facilitate coherent combining of the bandpass signals at the destination. Phase and frequency synchronization can be applied to wireless communications systems having any number of source nodes, and effects of Doppler shifts and moving platforms are accounted for. Acoustic and radio-frequency signaling can be utilized.
US09042364B2 Method of detecting and handling an endless RLC retransmission
Disclosed is a radio (wireless) communication system providing a radio communication service and a terminal, and more particularly, to a method of effectively detecting and handling endless RLC retransmission so as to prevent endless RLC re-transmission occurring between the terminal and a network in an Evolved Universal Mobile Telecommunications System (E-UMTS) that has evolved from a Universal Mobile Telecommunications System (UMTS) or a Long Term Evolution (LTE) system.
US09042360B2 Modifying remote service discovery based on presence
Modifying remote service discovery based on presence involves identifying service discovery data using ad-hoc, peer-to-peer, service discovery protocols of a local network. The service discovery data is aggregated via an entity of the local network. Presence data associated with a remote device located outside of the local network is identified and the aggregated service discovery data is altered based on the presence data. The altered aggregated service discovery data is made available to the remote device using out-of-band communications. The out-of-band communications are different from the service discovery protocols of the local network.
US09042355B2 Quality of service (QoS) for satellite communications network
A device stores a traffic management profile for satellite network traffic that provides default percentages for classes of traffic that can pass when contention for limited bandwidth exists. The device receives packets having class markings and designated for transmission over a Demand-Assigned Time Division Multiple Access (DA-TDMA) network and identifies each of the received packets as one of a transmission control protocol (TCP) packet or a non-TCP packet. The device assigns the received packets to different queues based on the class markings and the identifying as a TCP packet or non-TCP packet, and determines available transmission bandwidth for a particular time slot of the DA-TDMA network associated with the device. The device also schedules packets from the different queues based on the default percentages in the traffic management profile and the transmission bandwidth for the particular time slot.
US09042354B2 Controlling stations' access to a communications medium
Managing access to a time-slotted communications medium by masking interrogatory codes that are contained in signals demarcating time slots of the medium and comparing the masked interrogatory codes against masked response codes. Access to the medium is dependent on the outcome of these comparisons.
US09042351B2 Radio communication apparatus
A radio communication system includes a mobile station configured to: intermittently receive information indicating a transmission format used for a shared channel via which data is received from a radio communication apparatus, intermittently transmit Channel Quality Indicator (CQI) information relating to the transmission format used for the shared channel in a first mode, set the timing of the intermittent transmission of the CQI information a given time before the reception of the information indicating a transmission format used for the shared channel, the CQI information being transmitted periodically, and switch from the first mode to a second mode in which the CQI information is transmitted more frequently than in the first mode; and the radio communication apparatus configured to communicate with the mobile station.
US09042350B2 Firmware processing for downlink F-DPCH
A channel receiver operable to implement fractional dedicated physical channel (F-DPCH) for high-speed data packet access is provided. A received RF signal is processed to produce a set of soft symbol outputs. The receiver detects whether transmit power control (TPC) command bits are present in the set of soft symbol outputs. The TPC command bits are conveyed with the RF signal over non-dedicated pilot bits in the processed baseband signal. When TPC command bits are detected, the set of soft symbol outputs are processed to produce estimated TPC command bits. A TPC quality estimate is generated based on the estimated TPC command bits. A signal-to-interference ratio for the WCDMA dedicated physical channel is adjusted based upon a comparison of the TPC quality estimate with a TPC quality target to effect F-DPCH power control.
US09042349B1 Allocation of wireless resources based on media codec
In response to receiving a first resource request from a first wireless communication device (WCD) and a second resource request from a second WCD, a radio access network (RAN) may determine that the first WCD and second WCD are contending for a resource of a wireless coverage area that is defined by the RAN. The RAN may further determine that the first WCD supports a first media codec, and that the second WCD supports a second media codec but does not support the first media codec. The RAN may compare the first media codec to the second media codec, and based on a result of this comparison, may allocate the resource to the first WCD.
US09042346B2 Mobile relay station and handover method thereof
A mobile relay station (RS) and a handover method thereof are provided. When it is determined that a mobile RS performs handover from a superordinate base station (BS) to a target BS, information indicating admission of handover is received from the superordinate BS. The mobile RS transmits a service unavailability section to a subordinate terminal, whereby the subordinate terminal is prevented from performing handover to a different BS or a different RS.
US09042344B2 Base station, user equipment, radio network controller and methods therein
Some embodiments herein relate to a method in a base station (12) for informing a user equipment (10) of a power offset to be used at the user equipment (10), which base station (12) is controlled by a radio network controller (15). The base station (12) evaluates a quality of a High Speed Dedicated Packet Control Channel, HS-DPCCH, from the user equipment (10). The base station (12) transmits information, which information is generated at the base station (12) and indicates a power offset to the user equipment (10). The power offset is based on the evaluation and to be used for a HS-DPCCH transmission from the user equipment (10).
US09042342B2 Radio communication base station device and correlation setting method
Provided is a radio communication base station device which can suppress a use amount of an SRS communication resource. In this device, a correlation rule setting unit (102) sets a rule for correlating a preamble with an SRS transmission time interval so that the preamble transmission time band and the SRS transmission time band are in the same transmission time band. An SRS transmission band decision unit (103) decides a time interval of a transmission time band which can transmit the SRS according to the preamble transmission time interval inputted from a preamble transmission band decision unit (101) and the correlation rule setting unit (102).
US09042341B2 Method of zone switch in a broadband wireless access system
A method for performing zone switch carried out by an advanced mobile station (AMS) operating in a first zone of a serving advanced base station (serving ABS) supporting a legacy mobile station (MS). The method includes receiving a handover command (AAI-HO-CMD) message indicating zone switching to a second zone of the serving ABS from the first zone, in which the handover command message is received in the first zone and provides information on a Connection Identifier (CID) to be used by the AMS in the second zone; performing network reentry in the second zone using the information on the CID; receiving an unsolicited ranging response (RNG-RSP) message in the second zone after the network reentry in the second zone is finished, in which the unsolicited RNG-RSP message indicates zone switching to the first zone of the serving ABS from the second zone; and performing network reentry in the first zone of the serving ABS. Further, the first zone supports AMSs and the second zone supports legacy MSs.
US09042339B2 System and method for supporting robust header compression in wireless communication system
A system and method support robust header compression (ROHC) for a mobile station (MS) handover in a wireless communication system. If a mobile station (MS) accesses a base station (BS) controlled by the ASN-GW through a handover, ROHC parameter information is received from a previous ASN-GW controlling a previous BS accessed by the MS before the handover. An ROHC parameter for ROHC-based communication with the MS is determined on the basis of the ROHC parameter information received from the previous ASN-GW. The determined ROHC parameter is transmitted to the MS by using a path modification request message for an ROHC service flow.
US09042333B2 Cooperative wireless networks
A cooperative multi-user multiple input, multiple output (MIMO) system coordinates spatially distributed transceiver stations for communicating with wireless client devices. The system comprises a network interface communicatively coupled to the transceiver stations via a backhaul network, which may comprise a wireless local area network. A MIMO processor pre-codes NR original data streams to generate NT subspace-coded data streams, wherein each subspace-coded data stream comprises a linear combination of at least some of the original data streams. NT may denote a number of transmitting antennas, and NR may denote a number of receiving antennas. A network controller conveys the subspace-coded data streams to the transceiver stations via the backhaul network and coordinates the simultaneous transmission of the subspace-coded data streams over wireless links to the wireless client devices. The pre-coding causes the transmissions to coherently combine at a first wireless client device to produce at least a first data stream while suppressing inter-user interference from at least a second data stream intended for at least a second wireless client device. The client devices and/or the transceiver stations may be selected based on channel state information and/or measured channel quality.
US09042328B2 Channel quality indicator reporting in communications system
A solution for periodic channel quality indicator reporting in a communications system is disclosed. A user equipment performs the method steps of receiving radio resource configuration signalling from a network apparatus, and checking a channel quality indicator mode of the received radio resource configuration signalling. Based on said checking, the user equipment determines a container for a periodic channel quality indicator report, and based on said determining, selects a physical uplink control channel transmission format for the periodic channel quality indicator report. If the determined container of the periodic channel quality indicator report is a reduced-bit container, a modified physical uplink control channel format 1b is selected as the physical uplink control channel transmission format for the periodic channel quality indicator report.
US09042325B2 Blind decoding
A method includes selecting, in a system in which a communication device searches for unscheduled transmissions of downlink control information for said communication device, a combination of search spaces for unscheduled transmissions of downlink control information for a communication device by a number of transmission techniques. The method includes transmitting an indication of the result of the selected combination to said communication device. Apparatus and program products are also disclosed.
US09042324B2 Enhanced active scanning in wireless local area networks
A method for active scanning in a wireless network may include two transmitters. In such a method, the following steps may take place: detecting a first probe request having a scanning target originating from a first transmitter; desiring to send a probe request to the scanning target from a second transmitter; and canceling the second probe request on a condition that the second transmitter detects the first probe request.
US09042319B2 Transmission of acknowledgement signals from a user equipment for orthogonal reception at multiple points
Method and apparatus for a User Equipment (UE) determining a resource for a transmission of a control signal in response to a detected control channel including Control Channel Elements (CCEs), where transmission of the control signal is with a first sequence or with a second sequence, if a first resource or a second resource is used, respectively. The first resource is determined from the CCE index while the second resource is determined from a group of consecutive CCE indexes. The UE is also signaled a bit-map associating the subframe of the control channel detection with the use of a first resource or of a second resource.
US09042318B2 Distributed channel assignment
Disclosed, in example embodiment herein, is an apparatus comprising an interface and channel selection logic coupled to the interface. The channel selection logic is operable to receive data representative of neighboring wireless devices to a wireless device occupying a channel for a plurality of channels via the interface. The channel selection logic is responsive to receiving the data representative of neighboring wireless devices occupying the plurality of channels to generate a graph for each of the plurality of channels, wherein vertices of the graph represent the wireless device and neighboring wireless devices occupying the channel and edges of the graph represent wireless devices with overlapping coverage areas. The channel selection logic selects the channel for the wireless device whose graph has the smallest radius.
US09042314B2 Method for performing retransmission in MIMO wireless communication system and apparatus therefor
A method for performing retransmission at a user equipment of a MIMO wireless communication system is disclosed. The method comprises transmitting multiple transport blocks to a base station for a transmission unit time in accordance with uplink grant information, which includes a first new data indicator; receiving ACK/NACK (Acknowledgement/Negative-ACK) responses corresponding to the respective transport blocks and uplink grant information, which includes a second new data indicator, from the base station; and performing new transmission or retransmission for the multiple transport blocks in one transport block unit for a transmission unit time in accordance with the ACK/NACK responses and the second new data indicator, if transport rank is reduced to 1.
US09042312B2 Heterogeneous network partition in TDD beyond radio frame
Maintaining uplink hybrid automatic repeat request (HARQ) compatibility with extended radio frames includes partitioning subframe groups over an extended radio frame having a length of time greater than a time defined for a single radio frame. User equipment (UE) suspends PUSCH (physical uplink shared channel) retransmission in the extended radio frame, in accordance with hybrid automatic repeat request (HARQ) timing of a subframe group assigned to the UE.
US09042310B2 Transmit power allocation for adaptive multi-carrier multiplexing MIMO systems
The present invention relates to transmit power allocation in multi-carrier, multiplexing MIMO communication systems. The present invention especially relates to a MIMO communication device, a method of assigning transmit power to two or more communication channels and a software program product. A multiple-input-multiple-output, MIMO, communication device according to the present invention comprisesa link controller adapted to assign transmit power to two or more transmission channels, each of said transmission channels having preassigned a portion of transmit power for each of a group of subcarriers, said link controller being further adapted to assign, for each subcarrier of said group of subcarriers, at least part of the preassigned transmit power portion of a transmission channel that is not used for transmitting information at the subcarrier, to one or more transmission channels that are used for transmitting information at the subcarrier.
US09042308B2 System and method for connecting a wireless terminal to a network via a gateway
A system including (i) a first gateway providing access to a first network and a second network, and (ii) a second gateway providing access to the second network. A network device determines whether a wireless terminal is communicating with the first network via the first gateway and attempting to communicate with the second network via the second gateway. The network device determines whether the first gateway permits the wireless terminal to communicate with the second network. In response to determining that the wireless terminal is communicating with the first network via the first gateway and is attempting to communicate with the second network via the second gateway and that the first gateway permits the wireless terminal to communicate with the second network, the network device permits the wireless terminal to access the second network via the first gateway prior to the wireless terminal establishing a connection with the second gateway.
US09042304B2 Controlling a paravirtualized wireless interface from a guest virtual machine
A method, system and an apparatus to paravirtualize a wireless interface is disclosed. In one embodiment, a method receives a frame of data for a wireless service through a wireless interface of a host device using a processor. If the frame of data is associated with a first type of category, the frame of data is processed through a first standard interface. If the frame of data is associated with a second type of category, the frame is processed through a second standard interface. The method then sends the frame of data processed through the first standard interface or the second standard interface to a guest. A virtual wireless interface associated the guest that is emulating the wireless interface of the host device converts the frame of data processed through the first standard interface to the second standard of communication.
US09042302B2 Data breakout at the edge of a mobile data network
Mobile network services are performed in a mobile data network in a way that is transparent to most of the existing equipment in the mobile data network. The mobile data network includes a radio access network and a core network. A first service mechanism in the radio access network breaks out data coming from a basestation, and performs one or more mobile network services at the edge of the mobile data network based on the broken out data. These services may include caching of data, data or video compression techniques, push-based services, charging, application serving, analytics, security, data filtering, and new revenue-producing services, as well as others. This architecture allows performing new mobile network services at the edge of a mobile data network within the infrastructure of an existing mobile data network.
US09042295B1 Transponded anti-jam satellite communications
A method and apparatus for processing a signal. The signal is received in a receiver system in a satellite. The signal has a range of frequencies in which information is carried in a number of channels having a number of frequencies within the range of frequencies. The number of frequencies for a channel in the number of channels changes within the range of frequencies over time. The signal is transmitted using a transmitter system in the satellite. The signal is unprocessed to identify the number of frequencies for the channel used to carry the information by the satellite.
US09042294B2 System and method for relaying transmissions in wireless communications
A system and method for relaying transmissions in wireless communications is provided. A method for combined relay node operation includes determining an operating mode of the combined relay node, where the combined relay node includes a repeater and a relay. The method also includes if the operating mode is repeater on mode, amplifying and forwarding received signals, and storing subframes, where subframes are demodulated and decoded versions of the received signals. The method further includes if the operating mode is repeater off mode, amplifying and forwarding a control zone of signals received while the operating mode is repeater off mode, and transmitting subframes stored while the operating mode is repeater on mode.
US09042293B2 Communication method using relay station in mobile communication system
A communication method using a relay station (RS) in a mobile communication system is disclosed. A base station transmits identification information, which designates a position of a relay station region during at least one next frame, to a mobile subscriber station through the relay station, and the mobile subscriber station identifies the position of the relay station region during the at least one next frame. Thus, the mobile subscriber station does not need to synchronize with a relay station preamble to retrieve the relay station region for every frame, and a start point of the relay station region can be retrieved quickly and exactly even in the case that the position of the relay station region is varied.
US09042292B2 Method and system for determining mapping relationship between multicast broadcast single frequency network area and service area
The present invention discloses a method and system for determining a mapping relation between the MBSFN area and the service area, wherein the method includes: an eNB sends an M2 setup request message to an MCE; the MCE allocates MBSFN area identities and sends a message with a mapping relation between the MBSFN area and the service area to the eNB; and the eNB acquires the mapping relation between the MBSFN area and the service. By the technical scheme of the invention, the mapping relation between the MBSFN area and the MBMS area can be defined, thus ensuring the synchronization transmission demand of the MBSFN with air interfaces.
US09042291B2 Methods for assigning a plethora of group communications among a limited number of pre-established MBMS bearers in a communication system
An infrastructure device in a 3GPP compliant system performs a method to allocate MBMS bearers. The 3GPP compliant system includes a RAN partitioned into a plurality MBMS services areas, wherein each MBMS service area has a plurality of pre-established MBMS bearers for transporting media streams. The infrastructure device: receives a request to transmit a media stream to a communication group; selects a set of the MBMS service areas for transporting the media stream; determines an available MBMS bearer in each selected MBMS service area to assign to transport the media stream; and identifies the assigned MBMS bearers to members of the communication group. In addition, a UE performs a method for MBMS service area location update in the 3GPP compliant system. Accordingly, the UE: determines a 3GPP MBMS service area in which the UE is currently located; and identifies the 3GPP MBMS service area to an infrastructure device.
US09042290B2 Method and apparatus for efficient addressing and power savings in wireless communications
A method and apparatus may be used for assigning groups of stations in wireless communications to one or more groups. Groups may be assigned by an access point (AP) based on information received from a station (STA). Group information may be signaled to each station and a group identifier may be indicated in a frame. The group information may be applied to a performance enhancement, for example power savings for the station, wherein the station enters a power saving mode on a condition that the station determines that it is not a member of the group.
US09042288B2 System and method for traffic signaling and control in a wireless network
A system and method are provided for traffic signaling in wireless or sensor networks. The system and method use information or bits in a Signal Field (SIG) of Physical Layer (PHY) preamble in a packet to provide traffic control information. An embodiment method implemented by a network component comprises indicating a traffic direction and a traffic type for traffic control in a SIG in a frame and transmitting the frame including the SIG. Another method comprises receiving in a frame a SIG for traffic control that indicates a transmission type and decoding the SIG field to determine whether to process remaining information in the frame if the frame comprises data payload or a Media Access Control (MAC) header.
US09042287B2 Methods and apparatus for improving network loading
Certain aspects of the present disclosure provide methods, apparatus, and computer-program products for improving network loading (e.g., by enabling inter-frequency handover and/or traffic offloading between neighboring base stations). In aspects, the proposed methods may include transmitting a beacon signal on a frequency (e.g., carrier frequency) other than the frequency currently used by a base station. The base station may select a cell identity (ID) and transmit one or more beacon signals on the frequency using the selected cell ID. The beacon signal may be used to decide whether or not to perform an inter-frequency handover.
US09042272B2 Distributed proxy addressing operations
An addressing redirection mechanism is initiated at a switch or a router in a computing network in order to enable the switch to perform one or more distributed proxy addressing operations on behalf of a connected router. An address request transmitted from a first host device to a second host device to obtain addressing information of the second host device is received at the switch, and the switch inspects the address request to identify addressing information for the first host device. The switch is configured to forward the addressing information for the first host device to the router.
US09042271B2 Transport networks supporting virtual private networks, and configuring such networks
A layer 2 transport network, and components thereof, supporting virtual network functionality among customer edge devices. Virtual private network configuration can be accomplished with merely local intervention by preprovisioning extra channel (or circuit) identifiers at each customer edge device and by advertising label base and range information corresponding to a list of channel (or circuit) identifiers.
US09042262B2 Method and apparatus for adjusting sound reference signal transmission power
A method of adjusting a transmit power for sounding reference signals in a wireless communication system supporting a plurality of cells, performed by a user equipment, including determining a first transmit power for a first sound reference signal (SRS) to be transmitted on a first serving cell and a second transmit power for a second SRS to be transmitted on a second serving cell, and if a total transmit power for the first SRS and the second SRS exceeds a maximum transmit power, scaling the first SRS and the second SRS with a same scaling factor.
US09042260B2 Multi-hop wireless networks
A path configuration message is sent to nodes in a multi-hop network along a path between a source node and destination nodes. The path configuration message includes path information and one or more special channel access parameters associated with the path information. The path configuration message temporarily changes the channel access priority for packets matching the path information in the special message. The nodes along the path therefore have higher channel access priority relative to other nearby nodes and other traffic flows. At the end of the a length of a time determined by a time to live parameter in the special message, the nodes resume using default channel access parameters in place of the special channel access parameters for packets matching the path information.
US09042258B2 Method for performing limited measurement in wireless communication system and apparatus supporting same
Provided is a method for measuring, which is performed by a user equipment in a wireless communication system. The method for measuring comprises the following steps: receiving from a serving cell a report request message on measured resource limitation; attempting to acquire the information on the measured resource limitation; and transmitting the report request message on the measured resource limitation including the information on the measured resource limitation to the serving cell; receiving from the serving cell the measured resource limitation setting; and performing the limited measurement, when the information on the measured resource limitation is successfully acquired.
US09042257B2 Information processing apparatus and method
A computer having a communication function is caused to receive user instructions designating execution of a process other than a process for acquiring information relating to a communication environment; execute the process designated by the user instructions; acquire information relating to the communication environment of the computer, when the user instructions are received or when the process indicated by the user instructions is executed; and acquire position information of the computer, when the user instructions are received or when the process indicated by the user instructions is executed.
US09042255B2 Methods and apparatus for device scheduling
Systems and techniques for crosstalk estimation. One or more user devices feed back preceding matrix indicator rank information to one or more base stations, which generated channel state information reference sources, at least one of which includes weightings based on the preceding matrix indicator rank information. One or more user devices estimates channel information based on active preceding matrix indicator information received by the base station from at least one user device. One or more user devices computes channel estimates for a desired transmission channel and one or more other potential transmission channels associated with other user devices and performs crosstalk estimation for the estimated channels. Crosstalk estimation information is fed back to a base station, which performs scheduling based at least in part on the crosstalk estimation from the one or more user devices.
US09042254B2 Communication method between two distinct networks with radio communication nodes, associated processing module and computer program
A communication method between two distinct networks with radio communication nodes, includes the following steps: collecting geographical location information for the nodes of the first and second network, deducing a geographical coverage area of the first and second network as a function of geographical location information; determining an intersection zone of the geographical coverage areas; identifying, as a function of the collected location information, nodes of the first and second network, located inside said intersection zone; and sending said nodes of the first identified network data indicating the collected geographical locations of the nodes of the second identified network.
US09042252B2 Inter-packet interval prediction learning algorithm
An appliance receives packets that are part of a flow pair, each packet sharing an application protocol. The appliance determines the application protocol of the packets by performing deep packet inspection (DPI) on the packets. Packet sizes are measured and converted into packet size states. Packet size states, packet sequence numbers, and packet flow directions are used to create an application protocol estimation table (APET). The APET is used during normal operation to estimate the application protocol of a flow pair without performing time consuming DPI. The appliance then determines inter-packet intervals between received packets. The inter-packet intervals are converted into inter-packet interval states. The inter-packet interval states and packet sequence numbers are used to create an inter-packet interval prediction table. The appliance then stores an inter-packet interval prediction table for each application protocol. The inter-packet interval prediction table is used during operation to predict the inter-packet interval between packets.
US09042248B2 Radio communication system, radio terminals, radio base stations, radio communication method and program
Disclosed is a radio communication system wherein radio terminals can communicate using a plurality of component carriers having different frequencies. The communication system has a reception start timing control means for commonly controlling the cycle of reception start timing for predetermined channels in at least some of the component carriers assigned to the radio terminals; and a reception control means for controlling the reception interval of said predetermined channels, said reception intervals being started at the reception start times in at least some of the component carriers assigned to the radio terminals.
US09042245B2 Network measurements and diagnostics
A network diagnostics equipped device(s), such as a Domain Master, node, test and measurement system, transceiver, or the like, is configured to be capable of performing one or more of data rate measurements in a network, Signal-to-Noise Ratio per subcarrier (SNRps) measurements in a network, Bit Allocation Value per subcarrier (BATVps) measurements in a network, Channel Attenuation per subcarrier (CATps) measurements in a network, Quiet Line Noise per subcarrier (QLNps) measurements in a network and Nonlinear Noise per subcarrier (NLNps) measurements in a network. The above information can be further used to address network performance issues as well as to map and assist with identification of one or more problems within the network.
US09042230B2 Real time and high resolution buffer occupancy monitoring and recording
Presented herein are techniques for detection and characterization of buffer occupancy of a buffer in a network device. Packets are received at a network device. The packets are stored in a buffer of the network device as they are processed by the network device. An occupancy level of the buffer is sampled at a sampling rate. Occupancy levels of the buffer over time are determined from the sampling, and traffic flow through the network device is characterized based on the occupancy levels.
US09042229B2 Partitioning a network switch into multiple switching domains
A distributed fabric system includes multiple switches coupled to a cell-based switching fabric. A logical system port that is globally unique within the distributed fabric system is mapped to each physical network port in the distributed fabric system. To partition the system into multiple non-overlapping switching domains, each system port is associated with a look-up table having at least one table entry for each other system port to be allocated to the same switching domain as that system port. Each switch that receives a packet over a given system port is limited to switching the packet to only those other system ports for which the look-up table associated with the given system port has a table entry.
US09042228B2 Automatic protection switching method, device and system
Embodiments of the present invention provide an automatic protection switching method, device and system. The method includes: determining a part of services as to-be-switched service(s) according to change of bandwidth when monitoring that the bandwidth of the first transmission path changes; and switching the to-be-switched service(s) between links on the second transmission path and the first transmission path. Another method includes: receiving a partial switching message from a peer network edge node through the first transmission path or the second transmission path; and determining the to-be-switched service(s) according to indication information about the to-be-switched service(s) or bandwidth change information in the partial switching message, and switching the to-be-switched service(s) between links on the first transmission path and the second transmission path.
US09042227B2 Systems , methods, and computer program products providing feedback for network congestion management
A computer program product having a computer readable medium tangibly recording computer program logic for providing feedback in a network, the computer program product including code to receive first data and second data over the network at a receiving device, code to increment a first counter and a second counter in response to the first data and second data, respectively, code to generate a plurality of feedback signals reflecting states of the first and second counters using at least three bits, the bits defining a set of code points mapped to the states of the first and second counters so that each individual code point represents a different one of the states and each one of the states is represented by one code point, and code to transmit the plurality of feedback signals to a sending device in the network.
US09042224B2 Method and system for weighted fair queuing
A system for scheduling data for transmission in a communication network includes a credit distributor and a transmit selector. The communication network includes a plurality of children. The transmit selector is communicatively coupled to the credit distributor. The credit distributor operates to grant credits to at least one of eligible children and children having a negative credit count. Each credit is redeemable for data transmission. The credit distributor further operates to affect fairness between children with ratios of granted credits, maintain a credit balance representing a total amount of undistributed credits available, and deduct the granted credits from the credit balance. The transmit selector operates to select at least one eligible and enabled child for dequeuing, bias selection of the eligible and enabled child to an eligible and enabled child with positive credits, and add credits to the credit balance corresponding to an amount of data selected for dequeuing.
US09042220B2 Network traffic scheduler and associated method, computer program and computer program product
Aspects of the disclosure provide a method for network traffic scheduling. The method includes selecting, at a present node within a node hierarchy that multiplexes a plurality of input nodes to an output node, a winning node from a plurality of lower level nodes, obtaining first parameters provided from the winning node, the first parameters being in association with the winning node, determining second parameters in association with the present node at least partially based on the first parameters, and providing the second parameters in association with the present node to an upper level node in the node hierarchy for scheduling at the upper level node. To determine the second parameters in association with the present node, in an embodiment, the method includes using the first parameters to look up an entry in a lookup table that stores the second parameters in association with the first parameters.
US09042218B2 Apparatus, method, and system for incentivizing open access to closed subscriber group low-power base stations
Apparatus and methods are disclosed that provide various incentive schemes for owners of low-power base stations to allow others nearby to use their base station, enabling offloading of some users from a nearby macrocell, thus helping improve overall network performance. For example, a “win-win” scenario might exist when a sharing opportunity at a low-power base station overlaps with a sharing opportunity at the neighboring macrocell. During this overlap, when the low-power base station provides access to its air interface to one or more UEs outside of a set of UEs associated with the low-power base station, an incentive credit may be received. Incentive credits can take various forms, and in some examples, may be in an amount that is a function of an amount of contribution to the network resulting from the provision of access to the air interface.
US09042215B2 Simultaneous acquisition of a TD-SCDMA network in circuit-switched fallback from TDD-LTE systems
In mobile user equipment (UE) configured to allow for operation on multiple wireless communication networks, such as on a TD-SCDMA network or on a TDD-LTE network, an improved method for handing over a circuit-switched call is offered. The proposed circuit-witched fallback procedure, employing an improved UE hardware architecture, allows for certain connection setup procedures to occur in parallel, such as the UE pre-acquiring the TD-SCDMA cell. The parallel operations thus speed up the circuit-switched fallback procedure and reduce existing delays in executing circuit-switched fallback from TDD-LTE to TD-SCDMA networks.
US09042214B2 Router and rapid response network
A router includes a plurality of wireless network carrier cards, each of the network carrier cards adapted for use with one of a like plurality of different carrier networks, means for determining which of the plurality of network carrier cards provides a suitable connection to a carrier network and means for selecting one or more suitable connections to one or more carrier networks and for connecting the EVDO router to the carrier network through a particular one of the plurality of network carrier cards and a load balancing processor for load balancing between a plurality of different backbone networks and wherein the load balancing processor directs traffic among multiple networks to provide a desired throughput. In one embodiment, the router is provided as an evolution-data optimized (EVDO) wireless router.
US09042213B2 Communication apparatus and a communication method for combining signals mapped on a plurality of frequency bands and transforming the combined signal into a symbol in a time domain
Provided is a radio communication device which can reduce ISI caused by destruction of an orthogonal DFT matrix even when an SC-FDMA signal is divided into a plurality of clusters and the clusters are respectively mapped to discontinuous frequency bands. The radio communication device includes a DFT unit (110), a division unit (111), and a mapping unit (112). The DFT unit (110) uses the DFT matrix to execute a DFT process on a symbol sequence in a time region to generate a signal (SC-FDMA signal) of the frequency region. The division unit (111) generates a plurality of clusters by dividing the SC-FDMA signal with a partially orthogonal bandwidth corresponding to the vector length of some of the column vectors constituting the DFT matrix used in the DFT unit (110) and orthogonally intersecting at least partially. The mapping unit (112) maps the clusters to discontinuous frequency bands.
US09042210B2 Multi-purpose near-field transducer having a temperature coefficient of resistance
An apparatus includes a writer, an arrangement comprising a plasmonic near-field transducer (NFT) adjacent the writer and comprising a material having a temperature coefficient of resistance (TCR), and a lead arrangement connected to the NFT arrangement. In some configurations, the NFT arrangement includes a heat sink, and the lead arrangement is connected to the heat sink. In other configurations, the lead arrangement is connected directly to the NFT.
US09042206B2 Mechanism for driving an indicator for a timepiece
A mechanism for driving an indicator for a timepiece includes: a mobile for driving the indicator; a first lever mounted about a first pivot and including a beak to cooperate with a toothing of the mobile; a first cam arranged to rotate the first lever about the first pivot; a second lever mounted about a second pivot and to which the first pivot is rigidly connected; a second cam arranged to rotate the second lever about the second pivot; and elastic elements for maintaining the cooperation between the levers and cams; the levers and the cams being arranged so that the beak of the first lever cyclically describes a closed curve, each cycle including a first motion during which the beak leaves the toothing of the mobile without changing the angular position thereof and a second motion during which the beak re-enters the toothing to move the mobile.
US09042203B2 High-frequency content boost for vibratory seismic source and method
Computer software, controller and method for generating a desired pilot signal for driving a vibratory source. The method includes steps for selecting a pilot target amplitude spectrum for the vibratory source; determining an initial pilot signal that matches the pilot target amplitude spectrum; associating the initial pilot signal with first and second frequency bands, the second frequency band including a high-frequency end of a range of the vibratory source; band-passing a first part of the initial pilot signal associated with the first frequency band with a first band-pass configuration; band-passing a second part of the initial pilot signal associated with the second frequency band with a second band-pass configuration; level compressing the first and second parts of the initial pilot signal; recombining the first and second parts of the initial pilot signal to form a recombined pilot signal; and processing the recombined pilot signal to obtain the desired pilot signal.
US09042201B2 Method and system for direct communication
Information is communicated to an individual by directing an acoustic signal transcranially to a target region in the brain. The target region is stimulated to produce a cognitive effect, and the cognitive effect is modulated or encoded to carry the desired information.
US09042198B2 Nonvolatile random access memory
According to one embodiment, a memory includes a memory cell array with banks, each bank including rows, a first word lines provided in corresponding to the rows, an address latch circuit which latches a first row address signal, a row decoder which activates one of the first word lines, and a control circuit which is configured to execute a first operation which activates one of the banks based on a bank address signal when a first command is loaded, and a second operation which latches the first row address signal in the address latch circuit, and execute a third operation which activates one of the first word lines by the row decoder based on a second row address signal and the first row address signal latched in the address latch circuit when a second command is loaded after the first command.
US09042194B2 Refresh method, refresh address generator, volatile memory device including the same
A refresh method for a volatile memory device includes refreshing memory cells of a first set of rows of an array at a first refresh rate having a first refresh period, the first refresh rate being a lower rate having a longer refresh period than a second refresh rate having a second refresh period, wherein each memory cell in the first set of rows of the array has a retention time longer than the first refresh period; and refreshing memory cells of a second set of rows of the array at a third refresh rate having a third refresh period, the third refresh rate being a higher rate having a shorter refresh period than the second refresh rate having the second refresh period, wherein at least one memory cell of each row of the second set of rows has a retention time longer than the third refresh period and shorter than the first refresh period. The second refresh period corresponds to a refresh period defined in a standard for the volatile memory device.
US09042193B2 Sense amplifier scheme
A sense amplifier circuit comprising a pair of cross-coupled inverters and a data line charging circuit is disclosed. The cross-coupled inverters comprise a first inverter and a second inverter. The first inverter has a first pull-up transistor with a first pull-up terminal. The second inverter has a second pull-up transistor with a second pull-up terminal. The output of the first inverter is coupled to the input of the second inverter at a first sense amp node. The output of the second inverter is coupled to the input of the first inverter at a second sense amp node. The data line charging circuit has a first node connected to a data line and the first pull-up terminal. The data line charging circuit also has a second node connected to a complementary data line and the second pull-up terminal. The first and second pull-up transistors are coupled to different voltage levels when a sense amplifier enable signal is activated.
US09042189B2 Semiconductor memory device
A semiconductor memory device includes: a burst start signal generation unit configured to generate a first burst start signal by delaying a write pulse by a first period, generate a second burst start signal by delaying the write pulse by a second period, and selectively transmit the first or second burst start signal as a select burst start signal in response to a test signal; an input control signal generation unit configured to generate an input control signal in response to the first burst start signal; and a write command generation unit configured to generate a write driver enable signal in response to the select burst start signal.
US09042188B2 Memory controller and method of calibrating a memory controller
A memory controller transmits a data signal, a data strobe signal and a mask signal to a memory, wherein each transition of the data strobe signal indicates a sample point for the data signal and the mask signal indicates a validity of the data signal. A mask signal training procedure is carried out comprising three steps. Writing first and second values to the memory for a predetermined plurality of transitions of the data strobe signal with the mask signal set to indicate that the first data signal is valid and the second data signal is valid except for a selected transition of the predetermined plurality. Reading from the memory for the predetermined plurality of transitions of the data strobe signal. Determining a timing offset for the mask signal for which the value read at the selected transition matches the first value.
US09042186B2 Solid state drive and data erasing method thereof
A data erasing method of a solid state drive is provided. The solid state drive includes a memory module. The memory module includes a block. A data to be erased is stored in the block. The data erasing method includes steps of performing a first erasing operation to erase the block, programming the block after the first erasing operation, and performing a second erasing operation to erase the block.
US09042181B2 Periodic erase operation for a non-volatile medium
An apparatus, system, and method are disclosed for managing erase operations for a data storage medium. A method includes determining whether a use threshold for one or more non-volatile storage cells is satisfied. A method includes performing a default erase operation for the one or more storage cells in response to determining that the use threshold is not satisfied. A method includes performing an extended erase operation for the one or more storage cells in response to determining that the use threshold is satisfied. An extended erase operation may include a greater number of erase pulse iterations than a default erase operation.
US09042180B2 Charge pump redundancy in a memory
An integrated circuit includes a circuit block to utilize a load current at a load voltage from a power input and two or more charge pump arrays. The outputs of the charge pump arrays are coupled to the power input of the circuit block. The integrated circuit includes one or more modifiable elements to disable one or more of the two or more charge pump arrays.
US09042179B2 Method for writing in and reading data from a semiconductor storage device and semiconductor storage device
A method for writing data in a semiconductor storage device and a semiconductor storage device are provided, that can reduce variations in readout current from a sub storage region which serves as a reference cell for the memory cells of the semiconductor storage device, thereby preventing an improper determination from being made when determining the readout current from a memory cell. In the method, data is written on a memory cell in two data write steps by applying voltages to the first and second impurity regions of the memory cell, the voltages being different in magnitude from each other.
US09042178B2 Program and read trim setting
A method and apparatus for setting trim parameters in a memory device provides multiple trim settings that are assigned to portions of the memory device according to observed or tested programming speed and reliability.
US09042169B2 Shifting cell voltage based on grouping of solid-state, non-volatile memory cells
Cells of a solid-state, non-volatile memory are assigned to one of a plurality of groups. Each group is defined by expected symbols stored in the cells in view of actual symbols read from the cells. Based on cell counts within the groups, it can be determined that a shift in a reference voltage will reduce a collective bit error rate of the cells. The shift can be applied to data access operations affecting the cells.
US09042168B1 System and method for improving error distribution in multi-level memory cells
A system including a state set module to arrange states of a memory cell in three sets. The memory cell stores three bits when programmed to a state. Each set includes three rows of bits. In a set, a row includes one of the three bits of the states. The first, second, and third rows of the first, second, and third sets include a first number of state transitions. The second, third, and first rows of the first, second, and third sets include a second number of state transitions. The third, first, and second rows of the first, second, and third sets include a third number of state transitions. A write module writes first, second, and third portions of data to a plurality of memory cells, each memory cell storing the three bits when programmed to a state, using states selected respectively from the first, second, and third sets.
US09042166B2 Magnetoresistive effect element and method of manufacturing magnetoresistive effect element
A magnetoresistive effect element includes first and second conductive layers, a first magnetic layer between the first and second conductive layers having a magnetization direction that is unchangeable, a second magnetic layer between the first and second conductive layers having a magnetization direction that is changeable, a tunnel barrier layer between the first and second magnetic layers, a nonmagnetic layer between the second magnetic layer and the second conductive layer, and a conductive sidewall film that provides a current path between the second magnetic layer and the second conductive layer that has a lower resistance than a current path through the nonmagnetic layer.
US09042165B2 Magnetoresistive effect element, magnetic memory cell using same, and random access memory
A magnetoresistive effect element uses a perpendicularly magnetized material and has a high TMR ratio. Intermediate layers composed of an element metal having a melting point of 1600° C. or an alloy containing the metal on an outside of a structure consisting of a CoFeB layer, an MgO barrier layer, and a CoFeB layer. By inserting the intermediate layers, crystallization of the CoFeB layer during annealing is advanced from an MgO (001) crystal side, so that the CoFeB layer has a crystalline orientation in bcc (001).
US09042164B2 Anti-tampering devices and techniques for magnetoresistive random access memory
A system may include circuitry and a magnetoresistive random access memory (MRAM) die including at least one MRAM cell. The circuitry may be configured to detect attempted tampering with the MRAM die and generate a signal based on the detected attempted tampering. The signal may be sufficient to damage or destroy at least one layer of the at least one MRAM cell or a fuse electrically connected to a read line of the at least one MRAM cell.
US09042163B2 Memory device having a local current sink
A memory device having a local current sink is disclosed. In a particular embodiment, an electronic device is disclosed. The electronic device includes one or more write drivers. The electronic device includes at least one Magnetic Tunnel Junction (MTJ) coupled to a bit line and coupled to a source line. The electronic device also includes a current sink circuit comprising a single transistor, the single transistor coupled to the bit line and to the source line.
US09042162B2 SRAM cells suitable for Fin field-effect transistor (FinFET) process
A static random access memory (SRAM) cell includes first and second n-channel transistors, first and second p-channel transistors, first and second enable transistors, and first and second pass gates. The first n-channel transistor, the first p-channel transistor, and the first enable transistor are connected in series between first and second reference potentials. The second n-channel transistor, the second p-channel transistor, and the second enable transistor are connected in series between the first and second reference potentials. The first pass gate is configured to selectively connect a first bitline to a first node. The first node is connected to a gate of the first n-channel transistor and a gate of the first p-channel transistor. The second pass gate is configured to selectively connect a second bitline to a second node. The second node is connected to a gate of the second n-channel transistor and a gate of the second p-channel transistor.
US09042159B2 Configuring resistive random access memory (RRAM) array for write operations
A system includes a resistive random access memory cell and a driver circuit. The resistive random access memory cell includes a resistive element and a switching element, and has a first terminal connected to a bit line and a second terminal connected to a word line. The driver circuit is configured to apply, in response to selection of the resistive random access memory cell using the word line, a first voltage of a first polarity to the bit line to program the resistive random access memory cell to a first state by causing current to flow through the resistive element in a first direction, and a second voltage of a second polarity to the bit line to program the resistive random access memory cell to a second state by causing current to flow through the resistive element in a second direction.
US09042158B2 Nonvolatile semiconductor memory device with protective resistance film
A nonvolatile semiconductor memory device according to an embodiment includes a memory cell block that includes a memory cell array, the memory cell array including: a plurality of first lines; a plurality of second lines intersecting the plurality of first lines; and a memory cell that is provided at each of intersections of the plurality of first lines and the plurality of second lines and includes a variable resistance element, the memory cell array further including a protective resistance film that is provided respectively at each of the intersections of the plurality of first lines and the plurality of second lines and that is connected in series with the memory cell and ohmically contacts the memory cell, and the protective resistance film being configured from a material having a resistivity of 1˜100 Ω·cm.
US09042157B2 Programmable volatile/non-volatile memory cell
The invention concerns a memory device comprising at least one memory cell comprising: a first transistor (102) coupled between a first storage node (106) and a first supply line (GND, VDD); a second transistor (104) coupled between a second storage node and said first supply line (GND, VDD), control terminals of said first and second transistors being coupled to said second and first storage nodes respectively; a third transistor (110) coupled between said first storage node and a first access line (BL) and controllable via a first control line (WL1); a fourth transistor (112, 712) coupled between said second storage node (108) and a second access line (BLB) and controllable via a second control line; and a first resistance switching element (202) coupled in series with said first transistor and programmable to have one of first and second resistive states.
US09042155B2 Reactive metal implanted oxide based memory
Methods, devices, and systems associated with oxide based memory can include a method of forming an oxide based memory cell. Forming an oxide based memory cell can include forming a first conductive element, forming an oxide over the first conductive element, implanting a reactive metal into the oxide, and forming a second conductive element over the oxide.
US09042153B2 Programmable resistive memory unit with multiple cells to improve yield and reliability
A method and system for a programmable resistive memory to improve yield and reliability has a plurality of programmable resistive units. Each programmable resistive unit can have at least one programmable resistive cell. Each programmable resistive cell can have a programmable resistive element with a first end coupled to a first supply voltage line and a second end coupled to at least one diode serving as program selector. Each diode can have at least first and second terminals with first and second types of dopants, with the second terminal being coupled to a second supply voltage line. The first and second terminals of the diode can be fabricated from source/drain of MOS in a well for MOS devices or fabricated on the same polysilicon structure.
US09042146B2 DC pre-charge circuit
Systems and methods are provided for pre-charging the DC bus on a motor drive. Pre-charging techniques involve pre-charge circuitry including a manual switch, an automatic switch, and pre-charge control circuitry to switch the automatic switch between pre-charge and pre-charge bypass modes in response to an initialized pre-charge operation, input voltage sags, and so forth. In some embodiments, the pre-charge operation may be initialized by switching the manual switch closed. In some embodiments, the pre-charge operation may also be initialized by a detected voltage sag on the DC bus. The pre-charge circuitry may also be configured to disconnect to isolate a motor drive from the common DC bus under certain fault conditions.
US09042145B2 Circuit configuration with a step-up converter, and inverter circuit having such a circuit configuration
An inverter circuit contains a first and second DC sources for providing a DC voltage, a common step-up converter for boosting the DC voltage, an intermediate circuit capacitor connected between the outputs of the common step-up converter, and an inverter for converting the DC voltage provided by the capacitor into an AC voltage. The common step-up converter contains a series circuit having a first inductance and a first rectifier element and is connected between an output of the first DC source and one side of the intermediate circuit capacitor as well as a series circuit which includes a second inductance and a second rectifier element and is connected between an output of the second DC source and another side of the intermediate circuit capacitor. The common step-up converter further contains a common switching element which is connected between the first and second DC sources.
US09042144B1 High voltage rectifier and voltage doubler using low voltage CMOS process transistors
A high voltage full wave rectifier and doubler circuit having complementary serially connected low voltage MOSFET stacks to provide high voltage capability. The state of the MOSFETs in the MOSFET stacks is controlled by means of resistors coupled between the circuit's outputs and a time varying input signal. The resistance values of the resistors are selected to maintain operation of the stacked MOSFETs below their breakdown voltages.
US09042143B2 Low forward voltage rectifier using capacitive current splitting
A Low Forward Voltage Rectifier (LFVR) circuit includes a bipolar transistor, a parallel diode, and a capacitive current splitting network. The LFVR circuit, when it is performing a rectifying function, conducts the forward current from a first node to a second node provided that the voltage from the first node to the second node is adequately positive. The capacitive current splitting network causes a portion of the forward current to be a base current of the bipolar transistor, thereby biasing the transistor so that the forward current experiences a low forward voltage drop across the transistor. The LFVR circuit sees use in as a rectifier in many different types of switching power converters, including in flyback, Cuk, SEPIC, boost, buck-boost, PFC, half-bridge resonant, and full-bridge resonant converters. Due to the low forward voltage drop across the LFVR, converter efficiency is improved.
US09042141B2 Control of energy storage system inverter system in a microgrid application
A system that manages a supplemental energy source connected to a power grid uses a two stage control strategy to manage power transfers in and out of the power grid as well as in and out of an energy storage system, such as a battery bank. One stage uses a non-linear transfer function to control an output frequency of a DC-to-AC inverter to limit undesired effects of power transients that occur on the grid. A second stage uses control strategy for transferring energy between the energy storage system and an internal DC link based on a relationship between a voltage on a DC link connecting the first and second stages and a DC link reference voltage, the voltage on the DC link, and a voltage at the energy storage system. The control strategy includes rapid charging, over-charging protection, and grid transient stabilization.
US09042136B2 Magnetic flux conversion device
Embodiments provide a magnetic flux conversion device (MFCD) that may produce a regulated output signal with a target value (e.g., target voltage and/or target current) from a source signal on a power line. The MFCD may include a secondary stage configured to be inductively coupled with the power line. The source signal may cause a secondary electrical signal to flow in the secondary stage. A regulator module may be coupled to the secondary stage and configured to produce the output signal with the target value across output nodes by sensing the output signal and shunting the secondary stage if a value of the output signal is above the target value.
US09042132B2 Noise suppression circuit for power adapter
A noise suppression circuit for a power adapter is disclosed. The noise suppression circuit can reduce or eliminate adapter-induced noise that could interfere with an electronic device powered by the adapter. In one example, the noise suppression circuit can include an active circuit to detect and attenuate or cancel the induced noise. In another example, the noise suppression circuit can include an RLC circuit in parallel with the adapter choke to suppress the induced noise at the operating frequencies of the powered electronic device. In still another example, the noise suppression circuit can include a modified adapter Y capacitor connection so as to bypass the adapter choke, thereby reducing or eliminating the choke's induced noise.
US09042129B2 System and method for controlling power in a distribution system
An integrated power quality control system includes a transformer with a primary winding, a secondary winding and a compensation winding wound on a magnetic core. A power electronic converter in the system provides a reference voltage to the compensation winding for injecting a series voltage in the secondary winding of the transformer. A controller is utilized to generate a reference control voltage for the power electronic converter based on a power quality control requirement.
US09042123B2 Full bridge DC-DC converter that applies current doubler
A full bridge DC-DC converter to which a current doubler is applicable is provided and includes a transformer and a switching circuit that converts a high direct current voltage into a high alternating current voltage and then outputs the high alternating current voltage to the primary side of the transformer. In addition, an output circuit receives and processes the output of the secondary side of the transformer and supplies the processed output to an electric load. The output circuit includes a first inductor, a first contact resistor, a second inductor, a second contact resistor, a first diode, a third contact resister, a second diode, and a fourth contact resister.
US09042120B2 Grounded lid for micro-electronic assemblies
An apparatus for reducing EMI at the micro-electronic-component level includes a substrate having a ground conductor integrated therein. A micro-electronic component such as an integrated circuit is mounted to the substrate. An electrically conductive lid is mounted to the substrate, thereby forming a physical interface with the substrate. The electrically conductive lid substantially covers the micro-electronic component. A conductive link is provided to create an electrical connection between the electrically conductive lid and the ground conductor at the physical interface.
US09042117B2 Semiconductor device
A semiconductor device effectively suppress the problem of mutual interaction occurring between an inductor element and wires positioned above the inductor element formed over the same chip. A semiconductor device includes a semiconductor substrate and a multi-wiring layer formed overlying that semiconductor substrate, and in which the multi-wiring layer includes: the inductor element and three successive wires and a fourth wire formed above the inductor element; and two shielded conductors at a fixed voltage potential and covering the inductor element as seen from a flat view, and formed between the inductor element and three successive wires and a fourth wire formed above the inductor element.
US09042111B2 Secure raceway with lockable access
A system for securing an access opening of a cable raceway using a single padlock includes a cover having a securing wall and opposed first and second sidewalls, which form a channel for accommodating at least a portion of the cable raceway with the securing wall covering the access opening. First and second insert bars engage the first and second sidewalls and a lock bar engages the first and second insert bars and may be locked in an engaged position to prevent the first and second insert bars from being disengaged with the cover and to secure the cover about the cable raceway preventing access to the access opening.
US09042109B2 Mounting structure of flexible printed circuit board and sliding-type electronic device
A mounting structure of a flexible printed circuit board and a sliding-type electronic device is provided by which a too large increase in thickness of devices can be avoided and a pair of housings can be slid relatively in a bending and slanting direction. In the mounting structure, an upper housing 12 and a lower housing 22 coupled in a freely slidable manner are electrically connected to each other by a flexible printed circuit board folded back to be routed between slide facing surfaces 12b and 22a of both the housings and the height of a side wall surface 12c and 22c of the upper housing and lower housing changes in a bending manner along the direction of freely sliding and, in the slide facing surfaces of the upper housing and lower housing, concave space portions 15 and 25 to accommodate the change in curvature and in position of a folding-back portion 31a caused by sliding motion between the upper housing and lower housing are disposed.
US09042107B2 Display device and electronic apparatus
Disclosed herein is a display device including a main board part configured to have a display area including drive wiring and have a display panel disposed in the display area; and an auxiliary board part configured to be monolithic with the main board part and have extraction wiring from the drive wiring.
US09042106B2 Thin film type chip device and method for manufacturing the same
Disclosed herein is a thin film type chip device, including: a plurality of unit circuit structures laminated on a substrate; and an adhesive layer adhering the unit circuit structures to each other.
US09042104B2 Portable electronic device and electronic module fixing structure thereof
A portable electronic device includes an electronic module and an electronic module fixing structure. The electronic module fixing structure includes a main body, a sliding component, a rod and an elastic component connected between the main body and the sliding component. The main body has a track with a positioning portion. The sliding component is slidably disposed on the main body. The rod is rotatably connected with the sliding component. An end of the rod is adapted to move along the track. When the end is located at the positioning portion, the end and the positioning portion are interfered with each other to position the sliding component. When the electronic module pushes the sliding component, the rod is rotated to drive the end to move away from the positioning portion, and the sliding component pushes the electronic module away from the main body through elastic force of the elastic component.
US09042102B2 Waterproof controller used for electric power steering
A waterproof controller used for electric power steering includes a shell, a chamber, at least one sealing block, a circuit board, at least one cable, and at least one board mounting accessory. The chamber is formed in the shell. The sealing block is disposed on the shell, and includes at least one hole. The circuit board is accommodated in the chamber. The cable includes a first terminal and a second terminal opposite to the first terminal. The first terminal passes through the hole of the sealing block. The board mounting accessory covers the second terminal, in which the board mounting accessory and the second terminal insert into the circuit board together.
US09042101B2 Electric power conversion apparatus
An electric power conversion apparatus includes a channel case in which a cooling water channel is formed; a double side cooling semiconductor module that has an upper and lower arms series circuit of an inverter circuit; a capacitor module; a direct current connector; and an alternate current connector. The semiconductor module includes first and second heat dissipation metals whose outer surfaces are heat dissipation surfaces, the upper and lower arms series circuit is disposed tightly between the first heat dissipation metal and the second heat dissipation metal, and the semiconductor module further includes a direct current positive terminal, a direct current negative terminal, and an alternate current terminal which protrude to outside. The channel case is provided with the cooling water channel which extends from a cooling water inlet to a cooling water outlet, and a first opening which opens into the cooling water channel.
US09042096B2 Thermal management of a communication transceiver in an electrical communication device
Disclosed herein are various systems and methods relating to communication devices that include modular transceivers, such as small form pluggable transceivers. According to one embodiment, a communication device may include a chassis defining an interior and an exterior of the communication device. The chassis includes a top, a bottom, and a plurality of sides that together with the top and the bottom form an enclosure. One of the sides may include a first segment disposed in a first plane and a second segment disposed in a second plane. The second segment includes an outwardly extending communication transceiver housing configured to receive a communication transceiver. The communication transceiver may extend through an aperture in the second segment and into interior of the communication device to contact an electrical connector, while a second portion of the communication transceiver in the communication transceiver housing remains on the exterior of the communication device.
US09042095B2 Mobile terminal with waterproof sheet and manufacturing method
A mobile terminal has a waterproof sheet interposed between a first body portion and a second body portion. The waterproof sheet is formed with a curved shaped or step-like cross-section in consideration of characteristic of internal component or a battery arranged on the first body portion of the mobile terminal, the curved shaped or step-like cross-section is configured to encase, in part or in whole, the internal component or the battery.
US09042088B2 Battery-mounting structure
According to one embodiment, a battery-mounting structure includes a first housing, a second housing including a display device including a display screen, a hinge configured to attach the second housing to the first housing rotatably between a first position in which the display screen is covered with the first housing and a second position in which the display screen is exposed, and a battery configured to be attached to the first housing and including a recess configured to accommodate a part of the second housing in the second position.
US09042085B2 Component cover having variable light transmissivity
In a broad aspect, embodiments described herein are generally directed to an electronic device comprising: a housing; a component mounted within the housing; a component cover in fixed relation to the housing; wherein the component cover is configurable between at least a first state and a second state; and wherein light transmissivity through the component cover is greater when in the second state than when in the first state. In some implementations, in the first state the component cover is substantially opaque, or in the second state the component cover is substantially transparent.
US09042075B2 Apparatus and method for water protection of an electronic device
An apparatus comprises a sensor having a sensing film and at least two electrodes; and a plurality of electronic components operably associated with the sensor. The sensing film is configured to provide a signal based on humidity immediately prior to contact with liquid water. The electronic components are configured to provide a change in output voltage to trigger an electronic switch that disconnects an electronic device from a power source.
US09042070B2 Overcurrent protection circuit and power supply device
According to one embodiment, an overcurrent protection circuit for controlling an output transistor connected between a power source and an output terminal is provided. The overcurrent protection circuit has an overcurrent limiting circuit, a current-voltage control circuit, and a first control circuit. The current-voltage control circuit configured to control a gate voltage of the output transistor so that an output current is proportional to an output voltage of the output terminal Tout. The first control circuit is configured to allow the current-voltage control circuit to control the output transistor so that the output current is proportional to the output voltage when the output voltage is equal to or lower than a predetermined threshold voltage. The first control circuit is configured to allow the current-voltage control circuit to stop controlling the output transistor when the output voltage exceeds the threshold voltage.
US09042069B2 Power supply controller
The power supply controller performs the power-supply-path protection operation to restrict power supply through the switch element if a value of temperature increase of the power supply path W with respect to the reference temperature To exceeds the temperature threshold value and remove the restriction if the temperature decreases to the temperature threshold value or lower. And the controller performs the switch protection operation to restrict the power supply through the switch element if the value of the flowing current exceeds the current threshold value and remove the restriction after the reference time H elapses. And also the controller adds the additional value F to the value of temperature increase on condition that the value of the flowing current exceeds the current threshold value in the power supply protection operation and compares a post-addition temperature to the temperature threshold value.
US09042059B1 Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor structure with multiple stacked sensors and improved center shield
A two-dimensional magnetic recording (TDMR) read head has upper and lower read sensors wherein the lower read sensor has its magnetization biased by side shields of soft magnetic material. The center shield between the lower and upper sensors may be an antiparallel structure (APS) with two ferromagnetic layers separated by an antiparallel coupling (APC) layer. The center shield has a central region and two side regions, but there is no antiferromagnetic (AF) layer in the central region. Instead the two side regions of the upper ferromagnetic layer in the APS are pinned by AF tab layers that are electrically isolated from the upper sensor. The upper ferromagnetic layer and the APC layer in the APS may also be located only in the side regions. The thickness of the center shield can thus be made thinner, which reduces the free layer to free layer spacing.
US09042058B1 Shield designed for middle shields in a multiple sensor array
A method and system provide a magnetic transducer having an air-bearing surface (ABS). The method provides a first read sensor stack and defines a first read sensor in a stripe height direction from the first read sensor stack. The stripe height direction is perpendicular to the ABS. A shield is provided on the first read sensor stack and in a down track direction from the first read sensor stack. A second read sensor stack is provided. The shield is between the first read sensor and the second read sensor stack in the down track direction. Both the first read sensor and the second read sensor are defined from the first read sensor stack and from the second read sensor stack, respectively, in a cross-track direction. The cross-track direction is substantially perpendicular to the down track direction and substantially perpendicular to the stripe height direction.
US09042057B1 Methods for providing magnetic storage elements with high magneto-resistance using Heusler alloys
Methods for providing magnetic storage elements with high magneto-resistance using Heusler alloys are provided. One such method includes depositing a substrate including NiFe, depositing a seed layer on the substrate, depositing a buffer layer on the seed layer, and growing, epitaxially, an upper layer on the buffer layer, the upper layer including a Heusler alloy.
US09042051B2 Gradient write gap for perpendicular magnetic recording writer
The present disclosure provides for a magnetic writer pole for use in a hard drive. The magnetic writer pole comprises a first bevel formed by a non-magnetic layer, the first bevel formed at a first angle and extending to a first throat height. The magnetic writer pole further comprises a second bevel formed by the non-magnetic layer and extending distally from the first bevel at a second angle that is greater than the first angle and extending to a second throat height. The magnetic writer pole further comprises a third bevel formed by the non-magnetic layer and extending distally from the second bevel at a third angle that is greater than the second angle.
US09042050B2 Head transducer with multiple resistance temperature sensors for head-medium spacing and contact detection
A head transducer, configured to interact with a magnetic recording medium, includes a first sensor having a temperature coefficient of resistance (TCR) and configured to produce a first sensor signal, and a second sensor having a TCR and configured to produce a second sensor signal. One of the first and second sensors is situated at or near a close point of the head transducer in relation to the magnetic recording medium, and the other of the first and second sensors spaced away from the close point. Circuitry is configured to combine the first and second sensor signals and produce a combined sensor signal indicative of one or both of a change in head-medium spacing and head-medium contact. Each of the sensors may have a TCR with the same sign (positive or negative) or each sensor may have a TCR with a different sign.
US09042047B1 Mitigating write faults arising from disturbed lubrication events
Apparatus and method for detecting and compensating for lubrication disturbance (lube disturb) events on a rotatable data recording medium. In some embodiments, a lube disturb event is detected responsive to displacement of a data transducer away from a first memory location on a rotating data recording medium during a write operation to write data thereto. The lube disturb event arises responsive to a transfer of accumulated contamination from a data transducer to a lubrication layer on the rotating data recording medium and a smearing of the transferred accumulated contamination along the first memory location. The write data are stored to a different, second memory location instead of to the first memory location responsive to the detected lube disturb event.
US09042046B2 Variable stopwrite threshold using kurtosis
A method according to one embodiment includes measuring a current position error signal, and calculating a statistical derivative using the current position error signal sample. A kurtosis value is calculated using a current position error signal sample or derivative thereof. A threshold value is adjusted using the kurtosis value. The statistical derivative is compared to the threshold value, and writing is enabled when the statistical derivative does not exceed the threshold value. A determination is made whether to enable or disable writing based on a stopwrite threshold when the statistical derivative exceeds the threshold value.
US09042042B2 Lens drive device
The lens drive device is equipped with a first supporting body that holds the lens and is movable in the direction of the optical axis, a second supporting body that holds the first supporting body, a fixed body that holds the second supporting body in a manner enabling movement in directions that are roughly orthogonal to the optical axis direction, a first drive mechanism for driving the first supporting body, a second drive mechanism for driving the second supporting body in a first direction, and a third drive mechanism for driving the second supporting body in a second direction. The first supporting body is supported by the second supporting body by means of first supporting members which are formed from an elastic material; and the second supporting body is supported by the fixed body by means of second supporting members, which are formed from an elastic material.
US09042041B2 Optoelectronic module and lighting device including the optoelectronic module
An optoelectronic module 1 having at least a first 2A and a second 2B radiation-emitting source and a first optical element 5 including a cavity 10 wherein the surface 5A of the cavity 10 is able to reflect the radiation 3A, 3B of the at least two radiation sources. An outlet 15 in the optical element 5 is provided for coupling radiation out of the cavity 10, wherein the radiation emitted by the radiation sources 2A, 2B is reflected by the surface 5A of the cavity resulting in a mixing of the radiation.
US09042036B2 Image lens assembly system
An image lens assembly system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element and a seventh lens element. The first lens element has refractive power. The second lens element has positive refractive power. The third lens element has refractive power. The fourth lens element has refractive power. The fifth lens element has refractive power. The sixth lens element with refractive power is made of plastic material, and has at least one surface being aspheric. The seventh lens element with refractive power is made of plastic material and has a concave image-side surface, wherein the image-side surface thereof changes from concave in a paraxial region thereof to convex in a peripheral region thereof, and at least one surface thereof is aspheric.
US09042033B2 Imaging lens
An imaging lens includes a first lens having positive refractive power; a second lens having negative refractive power; a third lens; a fourth lens having negative refractive power; a fifth lens having positive refractive power; and a sixth lens, arranged in this order from an object side to an image plane side. The first lens is formed so that a surface thereof on the object side has a positive curvature radius. The sixth lens is formed so that a surface thereof on the object side and a surface thereof on the image plane side have positive curvature radii. Each of the first to sixth lenses has an Abbe's number within a specific range.
US09042032B2 Optical arrangement for converting an incident light beam, method for converting a light beam to a line focus, and optical device therefor
In a method for converting a light beam to a line focus, wherein the line focus extends according to its length along a first direction (y) and is narrow in a second direction (x) perpendicular to the first direction (y), the light beam is directed onto at least one conical optically operative surface, by which it is converted to the line focus. The light beam is directed onto the at least one optically operative surface with a ring-segment-shaped cross section transversely with respect to the light propagation direction. A device, in particular for carrying out the method, and an optical arrangement for generating a light beam with a ring-segment-shaped cross section are likewise described. In accordance with a further method and a further device, a line focus is generated only with spherical and/or cylindrical elements.
US09042031B2 Zoom lens and image pickup apparatus having the same
A zoom lens includes, in order from an object side to an image side, a first lens unit having positive refractive power, a second lens unit having negative refractive power, a reflecting unit for bending an optical path, and a rear lens group including two or more lens units, wherein, during zooming, the first and second lens units are moved and the reflecting unit is not moved, and wherein an amount of movement of the first lens unit during zooming from a wide-angle end to a telephoto end, a distance on an optical axis from a reflecting surface of the reflecting unit to an image plane, a distance on the optical axis from a lens surface of the second lens unit closest to the image side to the reflection surface of the reflecting unit at the wide-angle end, and a focal length of the second lens unit are appropriately set.
US09042027B2 Fluid-filled lenses and actuation systems thereof
An actuator assembly for an adjustable fluid-filled lens is provided. In some embodiments, the actuator assembly includes a clamp configured to adjust the optical power of the fluid lens module when the clamp is compressed. In some embodiments, a magnetic element is configured to adjust the optical power of the fluid-filled lens. In some embodiments, a plunger changes the optical power of the fluid lens module. In some embodiments, a reservoir is configured such that deformation of the reservoir changes the optical power of the fluid-filled lens. In some embodiments, a balloon is configured to deform the reservoir. In some embodiments, an adjustable fluid-filled lens includes a septum configured to be pierceable by a needle and automatically and fluidly seal a fluid chamber after withdrawal of the needle. In some embodiments, a thermal element can heat fluid within a fluid chamber to change an optical power of the lens module.
US09042025B2 Eyepiece optical system
In order from the object side, a first lens having positive power with a convex observation-side surface, a second lens having negative power and a meniscus shape with a concave object-side surface, and a third lens having positive power with an observation-side surface having a smaller radius of curvature than that of an object-side surface are provided. The first, second and third lenses are single lenses. The conditional expressions (1): 0.9
US09042018B2 Leaky-mode resonant retarders and related methods
A leaky-mode resonant retarder is described. The retarder may include a substrate and a spatially modulated periodic layer coupled to the substrate, where the spatially modulated periodic layer is configured to shift a phase between two perpendicular electric-field components of incident light. The retarder may operate as a half-wave plate or a quarter-wave plate.
US09042016B2 Optical film, method of producing optical film, antireflective film, polarizing plate and image display device
An optical film has a cellulose acylate film base material containing cellulose acylate and a plurality of sugar ester compounds having different ester substitution degrees in which an average ester substitution degree of the plurality of sugar ester compounds is from 60 to 94%, and an antistatic hardcoat layer formed from a coating composition containing at least an organic antistatic agent and a curable compound having a (meth)acryloyl group in a molecule of the curable compound.
US09042008B2 Optical semiconductor device
An optical semiconductor device includes: semiconductor lasers; a wave coupling section multiplexing light output by the semiconductor lasers; first optical waveguides respectively optically connecting respective semiconductor lasers to the wave coupling section; a phase regulator regulating phase of reflected light that is reflected at a reflecting point located in the optical semiconductor device and that returns to the semiconductor lasers; a second optical waveguide optically connecting the wave coupling section to the phase regulator; an optical amplifying section amplifying output light of the phase regulator; and a third optical waveguide optically connecting an output of the phase regulator to the optical amplifying section. The phase regulator adjusts the phase of reflected light that returns to the semiconductor lasers to decrease line width of the light output by the semiconductor lasers.
US09042006B2 Solid state illumination source and inspection system
An exemplary illumination source for an inspection system includes a pulsed seed laser having a wavelength of approximately 1104 nm and a continuous wave, Raman seed laser having a wavelength of approximately 1160 nm. An optical coupler can combine outputs of the pulsed seed laser and the continuous wave, Raman seed laser. Pre-amplification stages can receive an output of the optical coupler. A power amplifier can receive an output of the pre-amplification stages. A sixth harmonic can be generated using the amplified, combined wavelength. Systems for inspecting a specimen such as a reticle, photomask or wafer can include one of the illumination sources described herein.
US09042002B2 Modulated signal detecting apparatus and modulated signal detecting method
A phase difference error detecting unit detects a phase difference error component included in a phase difference component; a phase difference correcting unit corrects a first signal having the phase difference component as an angle of a cosine function and a second signal whose angle of the cosine function differs from that of the first signal by approximately π/2 based on the detected phase difference error component; a phase operating unit operates a phase difference component from the first signal and the second signal corrected by the phase difference correcting unit; and the phase difference correcting unit obtains the corrected first signal and the corrected second signal by rotating a coordinate point represented by the first signal and the second signal on a polar coordinate plane by an angle corresponding to the phase difference error component.
US09042001B2 Electrophoretic display apparatus and method thereof
An electrophoretic display apparatus includes an array substrate, an opposite substrate facing the array substrate, and an electrophoretic layer disposed between the array substrate and the opposite substrate. The electrophoretic layer includes a non-polar solvent and a plurality of polar particles dispersed in the non-polar solvent. At least one of the array substrate or the opposite substrate includes a plurality of electric field forming electrodes respectively.
US09041999B2 Electrowetting device and method of manufacturing the same
In one embodiment, the electrowetting device includes a first medium; a second medium that is not mixed with the first medium and has a refractive index different from a refractive index of the first medium; an upper electrode that adjusts an angle of a boundary surface between the first medium and the second medium; and a barrier wall that has a side surface surrounding the first and second mediums, allows the upper electrode to be disposed on a portion of the side surface, and has irregular widths.
US09041989B2 Holographic direct view display having an apodization device
The invention relates to apodization in a holographic direct view display. Known apodization functions are utilized/modified for an apodization mask such that the functions reduce the intensities of selected higher magnitudes of diffractions. The holographic direct view display comprises a controllable light modulator having modulator cells and modulating impinging coherent light into a phase and/or amplitude, and an array of apodization masks. The apodization masks have the same apodization function for a predetermined group of modulator cells, by means of which function a complex amplitude transparency can be set for the modulator cells. This transparency corresponds to an individually predefined course of intensity in a far field of the light modulator, wherein the predefined course of intensity includes a reducing of the light intensity of higher magnitudes of diffractions, and/or of the interfering light emitted by the light modulator.
US09041985B2 Image reading apparatus
An image reading apparatus includes a casing that blocks ambient light and has an opening portion in a bottom surface, an image capturing unit that captures an image of a medium exposed to an internal portion of the casing in the opening portion, and a plurality of light sources that are arranged on the internal portion of the casing and irradiate light toward the opening portion. The plurality of light sources irradiate light to different areas on a plane in the opening portion.
US09041984B2 Image reading device and image forming apparatus
An image reading device includes a light source, an imaging section, and a controller. The light source includes a plurality of light emitting elements. The light source irradiates light to an original document, while moving relative to the original document. The imaging section obtains scan data read from the original document by light irradiated to the original document from the light source. The controller controls the light source and the imaging section. The controller determines a read target region and a non-read target region in the original document, turns on a light emitting element out of the plurality of light emitting elements, which corresponds to the read target region, and turns off a light emitting element out of the plurality of light emitting elements, which corresponds to the non-read target region.
US09041982B1 Portable device scanner support with contour correction and automatic copying
Systems and methods use a supporting arm having a first end and a second end, and a program of scanning instructions readable by a computerized processor. The first end of the supporting arm is connected to a secondary device. The second end of the supporting arm holds a portable device comprising a camera. The camera has a field of view within which images are captured. The portable device maintains the scanning instructions. The second end of the supporting arm is positioned to hold the camera in a location, relative to the secondary device, to maintain the surface of the secondary device within the field of view of the camera. The camera of the portable device obtains images of objects placed on the surface of the secondary device when the portable device is held by the portable device holder.
US09041979B2 Image processing apparatus with edge outline definition on edge outside mask range of black determination range
An image processing apparatus includes: a color converting portion and an edge-outline-to-be-defined specifying portion. The color converting portion is configured to convert a portion near one of edges of a black determination range determined as having a composite black and a portion near the other of the edges thereof, so as to have a pure black. The edge-outline-to-be-defined specifying portion is configured to set a range, of the black determination range, positioned inward of one of the edges of the black determination range and the other of the edges of the black determination range, as a mask range, for a black plane, and specify an edge outside the mask range as an edge on which edge outline definition is to be performed.
US09041976B2 Server device, association process flow determining method, and image processing system
A server device includes an external device information managing unit which manages external device information regarding plural external devices, and an association process flow determining unit which determines an association process flow that defines how plural processes in image processing are performed on image data by the external devices, based on the external device information. The association process flow determining unit is configured to determine plural association process flows for the image processing, and the determined association process flows include first and second association process flows such that first external devices defined in the first association process flow differ from second external devices defined in the second association process flow.
US09041975B2 Printing device for executing two-sided printing, and control method and non-transitory computer-readable medium for printing device that executes two-sided printing
A printer device has a two-sided printing function and a circulatory transporting path for transporting a printing medium. The printer device is configured such that after creating a set of print data for a first recording surface to be printed with two-sided printing, the printer device adds a set of dummy print data for a second recording surface corresponding to a back side of the first recording surface to the set of print data for the first recording surface.
US09041973B2 Support system, control device, image forming apparatus, and support method utilizing cards on which written information is printed
Having specified written information on a first card newly placed at a base A which is a first workspace and the position where the first card is placed, a PC (100A) which is a control device at base A stores, in a memory, the written information and the position where the first card is placed as card information. A PC (100B) connected to this PC instructs a printing device (200B) to print a second card based on the specified written information. The PC (100B) presents the position where the second card is to be placed at a base B which is a second workspace based on the specified position where the first card is placed.
US09041967B1 Printing system and data transmission method thereof
A printing system and a data transmission method thereof are provided. The printing system includes a peripheral unit and a controller. The peripheral unit is configured to execute a data printing function and includes a digital data. The controller is coupled to the peripheral unit. The controller converts a digital control command to obtain an analog control signal, and transmits the analog control signal to the peripheral unit. The peripheral unit converts the analog control signal into the digital control command when the analog control signal is received by the peripheral unit. The peripheral unit converts a corresponding digital data into an analog signal according to the digital control command to transmit the analog signal to the controller.
US09041958B2 Non-transitory computer readable storage medium storing distributed printing control program
A non-transitory computer readable storage medium stores therein a distributed printing control program executed in a system to perform distributed printing by outputting a specified number of sets of paper sheets by using plural image forming apparatuses, where the number of the sets is instructed by a job. The program causes an apparatus belonging to the system to function as a control section. The control section divides the job into plural jobs, where each of the jobs causes one of the image forming apparatuses to eject plural sets of paper sheets shifted in alternate directions such that, when sets of paper sheets ejected by the plural image forming apparatuses are stacked up together, all the sets of paper sheets are shifted in alternate directions to enable each of the sets to be separated from others. The control section further subjects the divided jobs to the plural image forming apparatuses.
US09041955B2 Printing system and methods using a printer server homepage from a print server
In one embodiment, a printing method includes accessing a printer server homepage with a browser and adding a bookmarklet to the browser from the homepage. The method includes accessing a content server web page with the browser, and, in response to activation of the bookmarklet, accessing and executing a toolbar script from the printer server to append a webprint toolbar to the web page. In response to activation of a print icon on the webprint toolbar, a proxy script is accessed from the printer server and executed to send the web page from the browser to the printer server.
US09041952B2 Input device, image reading device, and image forming apparatus to authenticate the user based on a result received by input section
An input device includes a display section, an input section, and an authentication section. The display section has a display area and displays a plurality of symbols in respective first regions of the display area. The input section receives an input indicating which of the plurality of symbols displayed on the display section is selected by a user by specifying a position in the display area. The authentication section authenticates the user based a result received by the input section. The input section receives an input indicating which of the plurality of symbols is selected, by receiving an input indicating which of a plurality of second regions allocated to each first region is selected. The authentication section authenticates the user based on the first region corresponding to the selected symbol from among the plurality of first regions and the second region selected from among the plurality of second regions.
US09041951B2 Program creation apparatus and computer-readable non-transitory storage medium with program creating program stored thereon
An information processing apparatus includes: a package holding section; a package designation receiving section; and a program creating section. The package holding section holds a plurality of packages each containing: a command to output to an image forming apparatus an instruction to perform an operation performable by the image forming apparatus or a designation of a setting value for an item adjustable in the image forming apparatus, the setting value indicating an operating level of an operation shown by the item; and image data showing the operation for which the command instruction to perform is intended or the item for which the command designates the setting value. The package designation receiving section receives a designation of packages and an order of execution of the packages. The program creating section uses the designated packages to create a program for executing the commands in the packages in the designated order of execution.
US09041950B2 Image forming apparatus, method for controlling image forming apparatus, and program
An image forming apparatus includes a switching unit configured to switch a power supply source from a main power source to a power storage unit according to shifting to a power failure state, a calculation unit configured to calculate a power amount to be consumed by a received job if the power supply source is the power storage unit when the job is received, a detection unit configured to detect a power amount stored in the power storage unit, a determining unit configured to determine whether the received job can be executed based on the detected power amount and the calculated power amount to be consumed for the received job, and a control unit configured to start processing the job if it is determined that the received job can be executed and to perform control during the processing of the job so as not to accept a subsequently received job.
US09041948B2 Image processing apparatus, security system supplied with image processing apparatus, image processing method and storage medium
An image processing apparatus includes an intrusion detection unit that detects an intrusion of an intruder; an imaging unit that images a monitor area; an imaging control unit that activates the imaging unit and causes the imaging unit to start imaging; and an imaging instruction unit that instructs the imaging control unit to activate the imaging unit and cause the imaging unit to start imaging, in a case where the image processing apparatus is in an energy-saving mode, in which the imaging unit is inactive, when the intrusion detection unit detects the intrusion of the intruder, without switching the energy-saving mode to a normal mode, in which the imaging unit and an image forming unit for forming an image on a recording medium are active.
US09041945B2 System, method and program for controlling setting values in an image forming apparatus
An image forming apparatus and method includes executing a series of processes utilizing a plurality of functions based on a plurality of setting values, storing, as a history, an execution result of the processing, a plurality of setting values, and an error content in a case where the execution result is failure, determining whether the execution result of a previous processing is successful based on the stored in a case where the processing execution unit re-executes processing, specifying a setting value potentially causing the failure based on the error content in a case where the determination unit determines that the execution result of the previous processing is failure and performing display control of a setting field for setting the setting value.
US09041941B2 Optical system for occupancy sensing, and corresponding method
An optical system for occupancy sensing according to the invention includes a plurality of optical line sensors, each consisting of a linear array of light sensing elements; and an optical light integrating device that integrates light from rays with incidence angles subject to geometric constraints to be sensed by a light sensing element.
US09041939B2 Apparatus and method for compensating for sample misalignment
A method of compensating for sample misalignment in an optical measurement apparatus (40), comprises the steps of: determining an expected response from a detector (58) in said optical measurement apparatus given a particular set of parameters defining a path that light can take through the optical measurement apparatus from a source (42), via a sample (50), to the detector (58); measuring a response from the detector for the sample under test; and refining the set of parameters until the expected response and the measured response converge so as to determine the set of parameters giving rise to the measured response.
US09041938B2 Surface wave assisted structures and systems
A surface wave assisted system having an aperture layer with a surface and an aperture, and a plurality of grooves around the aperture. The plurality of grooves is configured to generate an optical transfer function at the aperture by inducing a surface wave for interfering with transmission of light of a range of spatial frequency.
US09041937B2 Interference measurement device and measurement method
[Problem to be Solved] To improve the measurement accuracy of an interference measurement device which utilizes interference of light.[Means for Solution] An interference measurement device includes a light source 10 for emitting supercontinuum light (SC light), an optical fiber coupler 11 for splitting the SC light into measurement light and reference light, a dispersion compensation element 12, a drive unit 13 for moving the dispersion compensation element 12, and light-receiving means 14 for measuring an interference waveform produced as a result of interference between the measurement light and the reference light. A measurement object 15 to be measured is an Si substrate having a thickness of 800 μm. The dispersion compensation element 12 is an Si substrate having a thickness of 780 μm. Namely, the dispersion compensation element 12 is formed of the same material as that of the measurement object 15 and is 20 μm thinner than the measurement object 15. The interference caused by reflection on the back surface of the measurement object 15 and reflection on the back surface of the dispersion compensation element 12 has a narrow peak width because wavelength dispersion is cancelled almost completely. Thus, the accuracy in measuring the peak position improves. As a result, the accuracy in measuring temperature, etc., improves.
US09041935B2 Measuring polarization crosstalk in optical birefringent materials and devices based on reduction of line broadening caused by birefringent dispersion
Techniques and devices for measuring polarization crosstalk in birefringence optical media including polarization maintaining fiber.
US09041931B2 Substrate analysis using surface acoustic wave metrology
A system for imposing and analyzing surface acoustic waves in a substrate to determine characteristics of the substrate is disclosed. Optical elements and arrangements for imposing and analyzing surface acoustic waves in a substrate are also disclosed. NSOM's, gratings, and nanolight elements may be used to impose surface acoustic waves in a substrate and may also be used to measure transient changes in the substrate due to the passage of surface acoustic waves therethrough.
US09041929B2 Method for securing a display diagnostic device to a display
An apparatus for securing a diagnostic tool proximate to and in front of a display device between the corners thereof. A harness is adapted to releasably hold the diagnostic tool, a restraining bracket extends from the harness, and there is at least one elastic cord having a first end, an intermediate portion and a second end. The cord is threaded through the restraining bracket and is sized so as to impart elastic tension to the corners of the display device while concomitantly protecting the front surface from pressure due to the position of the harness and diagnostic tool.
US09041926B2 Apparatus and method for in-flight detection of airborne volcanic ash
A method of optically determining the presence of volcanic ash within a cloud comprises emitting a circularly polarized illuminating beam within a cloud and analyzing backscatter light to identify the presence of volcanic ash within the cloud. The method further includes determining the degree to which the cloud has altered the polarization state of the emitted beam. The index of refraction of the backscatter light and the opacity of the backscatter light are also analyzed.
US09041922B1 System and method for biological specimen mounting
A system and method for mounting a section onto a substrate, the system comprising: a fluid channel including: a fluid channel inlet that receives the section, processed from a bulk embedded sample by a sample sectioning module positioned proximal the fluid channel inlet, a section-mounting region downstream of the fluid channel inlet, and a fluid channel outlet downstream of the section-mounting region; a reservoir in fluid communication with the fluid channel outlet; and a manifold, fluidly coupled to the reservoir, that delivers fluid from the reservoir to the fluid channel inlet, thereby transmitting fluid flow that drives delivery of the section from the fluid channel inlet toward the section-mounting region.
US09041921B2 Defect inspection device and defect inspection method
A defect inspection device has: an illumination optical system which irradiates a predetermined region of an inspection target with illumination light; a detection optical system which has a detector provided with a plurality of pixels by which scattered light from the predetermined region of the inspection target due to illumination light from the illumination optical system can be detected; and a signal processing portion which is provided with a correction portion which corrects pixel displacement caused by change in a direction perpendicular to a surface of the inspection target with respect to a detection signal based on the scattered light detected by the detector of the detection optical system, and a defect determination portion which determines a defect on the surface of the inspection target based on the detection signal corrected by the correction portion.
US09041918B2 Measuring apparatus and referencing method for a digital laser distance meter, and laser distance meter
A handheld distance measuring instrument includes a first emission device, a first reception device and a second reception device. The first emission device is configured to emit an optical measurement radiation onto a target object. The first reception device is configured to detect the radiation returning from the target object. The second reception device is configured in order to detect a reference radiation internal to the instrument. The reception devices respectively include a first detector unit, a second detector unit, a first time measurement unit, and a second time measurement unit. The first time measurement unit is configured to be connected selectively to the first detector unit and to the second detector unit. The second time measurement unit is configured to be connected selectively to the first detector unit and to the second detector unit.
US09041917B2 Range sensor and range image sensor
The range image sensor is a range image sensor which is provided on a semiconductor substrate with an imaging region composed of a plurality of two-dimensionally arranged units (pixel P), thereby obtaining a range image on the basis of charge quantities QL, QR output from the units. One of the units is provided with a charge generating region (region outside a transfer electrode 5) where charges are generated in response to incident light, at least two semiconductor regions 3 which are arranged spatially apart to collect charges from the charge generating region, and a transfer electrode 5 which is installed at each periphery of the semiconductor region 3, given a charge transfer signal different in phase, and surrounding the semiconductor region 3.
US09041916B2 Three-dimensional image sensor and mobile device including same
A 3D image sensor includes a depth pixel that includes; a photo detector generating photo-charge, first and second floating diffusion regions, a first transfer transistor transferring photo-charge to the first floating diffusion region during a first transfer period in response to a first transfer gate signal, a second transfer transistor transferring photo-charge to the second floating diffusion region during a second transfer period in response to a second transfer gate signal, and an overflow transistor that discharges surplus photo-charge in response to a drive gate signal. Control logic unit controlling operation of the depth pixel includes a first logic element providing the first transfer gate signal, a second logic element providing the second transfer gate signal, and another logic element providing the drive gate signal to the overflow transistor when the first transfer period overlaps, at least in part, the second transfer period.
US09041915B2 Systems and methods of scene and action capture using imaging system incorporating 3D LIDAR
The present invention pertains to systems and methods for the capture of information regarding scenes using single or multiple three-dimensional LADAR systems. Where multiple systems are included, those systems can be placed in different positions about the imaged scene such that each LADAR system provides different viewing perspectives and/or angles. In accordance with further embodiments, the single or multiple LADAR systems can include two-dimensional focal plane arrays, in addition to three-dimensional focal plane arrays, and associated light sources for obtaining three-dimensional information about a scene, including information regarding the contours of the objects within the scene. Processing of captured image information can be performed in real time, and processed scene information can include data frames that comprise three-dimensional and two-dimensional image data.
US09041914B2 Three-dimensional coordinate scanner and method of operation
A noncontact optical three-dimensional measuring device that includes a projector, a first camera, and a second camera; a processor electrically coupled to the projector, the first camera and the second camera; and computer readable media which, when executed by the processor, causes the first digital signal to be collected at a first time and the second digital signal to be collected at a second time different than the first time and determines three-dimensional coordinates of a first point on the surface based at least in part on the first digital signal and the first distance and determines three-dimensional coordinates of a second point on the surface based at least in part on the second digital signal and the second distance.
US09041913B2 Lithographic apparatus and device manufacturing method with bearing to allow substrate holder to float with respect to substrate table
A lithographic apparatus includes an illumination system configured to condition a radiation beam; a support constructed to support a patterning device, the patterning device being capable of imparting the radiation beam with a pattern in its cross-section to form a patterned radiation beam; a substrate table including a substrate holder constructed to hold a substrate; and a projection system configured to project the patterned radiation beam onto a target portion of the substrate, wherein the substrate table is constructed and arranged to reduce or eliminate slip and hysteresis in position and orientation between the substrate table and the substrate holder.
US09041912B2 Spectral purity filters for use in a lithographic apparatus
According to an aspect of the present invention, a spectral purity filter includes an aperture, the aperture being arranged to diffract a first wavelength of radiation and to allow at least a portion of a second wavelength of radiation to be transmitted through the aperture, the second wavelength of radiation being shorter than the first wavelength of radiation, wherein the aperture has a diameter greater than 20 μm.
US09041909B2 Exposure apparatus and exposure method
The present invention provides an exposure apparatus and an exposure method. The method comprises: utilizing an exposure light source to provide light rays to the photo-resist layer, wherein the light rays pass through the mask and the transparent substrate to reach the photo-resist layer; and utilizing a reflective plate to reflect the light rays passing through the transparent substrate and the photo-resist layer back to the photo-resist layer. The present invention can reduce a line space of a pattern of the photo-resist layer.
US09041908B2 Method for operating a projection exposure apparatus with correction of imaging aberrations induced by the mask
The disclosure relates to a method for adapting a projection exposure apparatus for microlithography to a mask having structures with different pitches and/or different structure widths in different structure directions. Wavefront aberrations induced by the mask are reduced by a manipulator of the projection exposure apparatus for microlithography.
US09041906B2 Immersion exposure apparatus and method that detects liquid adhered to rear surface of substrate
An exposure apparatus exposes a substrate via a projection optical system and a liquid. The exposure apparatus includes a stage that is movable below the projection optical system while holding the substrate and a detector that is capable of detecting a liquid adhered to a rear surface of the substrate. As an alternative, or in addition, the apparatus can include a detector that is capable of detecting a liquid adhered to an optical member disposed at the stage.
US09041903B2 Mask inspection with fourier filtering and image compare
A mask inspection system with Fourier filtering and image compare can include a first detector, a dynamic Fourier filter, a controller, and a second detector. The first detector can be located at a Fourier plane of the inspection system and can detect a first portion of patterned light produced by an area of a mask. The dynamic Fourier filter can be controlled by the controller based on the detected first portion of the patterned light. The second detector can detect a second portion of the patterned light produced by the section of the mask and transmitted through the dynamic Fourier filter. Further, the mask inspection system can include a data analysis device to compare the second portion of patterned light with another patterned light. Consequently, the mask inspection system is able to detect any possible defects on the area of the mask more accurately and with higher resolution.
US09041901B2 Liquid recovery apparatus, exposure apparatus, exposure method, and device manufacturing method
A lithographic projection apparatus includes a substrate table by which a substrate is held, a projection system via which a patterned beam is projected onto the substrate to expose the substrate through liquid, and a liquid supply system. The liquid supply system includes a supply flow path, and supplies the liquid via the supply flow path during the exposure. The liquid supply system also includes a device by which the supply flow path is connected with a vacuum system to prevent liquid in the supply flow path from leaking.
US09041900B2 High heat load optics with a liquid metal interface for use in an extreme ultraviolet lithography system
Methods and apparatus for cooling mirrors in an extreme ultraviolet (EUV) lithography system using a liquid metal interface are described. According to one aspect of the present invention, an apparatus which may be used in an EUV lithography system includes a heat exchanger, a mirror assembly, and a first liquid metal interface. The heat exchanger including at least a first surface. The mirror assembly includes a first mirror block having a first mirrored surface, as well as at least a first well. Finally, the first liquid metal interface includes liquid metal which is contained in the first well. The first surface is in contact with the liquid metal such that heat may be transferred from the first mirror block to the heat exchanger.
US09041895B2 Display apparatus having spacers with different heights and different upper and lower surface areas
A display apparatus includes a lower substrate, an upper substrate, a spacer and an image display layer. The spacer includes a main spacer, a first sub-spacer and a second sub-spacer. The main spacer has a height greater than that of the first and second sub-spacers. The second sub-spacer has an area wider than that of the main spacer and the first sub-spacer.
US09041894B2 Liquid-crystal display device
One of the objects of the present invention is to provide a liquid crystal display device with high transmittance or viewing angle characteristics. A liquid crystal display device of the present invention includes: a first substrate (10) which includes a pixel electrode (30); a second substrate (20) which includes a counter electrode (25); and a liquid crystal layer (21) and a spacer (40) which are provided between the first substrate (10) and the second substrate (20). The pixel electrode (30) includes a first portion which is formed by a plurality of first branch portions (34A) extending in a first direction, a second portion which is formed by a plurality of second branch portions (34B) extending in a second direction, a third portion which is formed by a plurality of third branch portions (34C) extending in a third direction, and a fourth portion which is formed by a plurality of fourth branch portions (34D) extending in a fourth direction. The spacer (40) is provided at a position in the pixel (50) which is surrounded by the first to fourth portions of the pixel electrode (30) when viewed from a direction perpendicular to a plane of the first substrate (10).
US09041890B2 Pixel structure, array substrate, and liquid crystal display panel
A pixel structure comprises a plurality of pixel regions, and each of the pixel regions includes first and second electrodes that are overlapped with each other, the first electrode is disposed above the second electrode, and each of the pixel regions is divided at least into a first to fourth domain display regions; strip-shaped first electrodes in the first to fourth domain display regions make first to fourth angles with a reference direction; the sum of the first angle and the second angle is 180 degrees, the sum of the third angle and the fourth angle is 180 degrees, and the first, the second, the third and the fourth angles are different from one another.
US09041888B2 Display device substrate, display device substrate manufacturing method, display device, liquid crystal display device, liquid crystal display device manufacturing method and organic electroluminescent display device
The present invention provides a display device substrate, a display device substrate manufacturing method, a display device, a liquid crystal display device, a liquid crystal display device manufacturing method and an organic electroluminescent display device that allow suppressing faults derived from occurrence of gas and/or bubbles in a pixel region. The present invention is a display device substrate that comprises: a photosensitive resin film; and a pixel electrode, in this order, from a side of an insulating substrate. The display device substrate has a gas-barrier insulating film, at a layer higher than the photosensitive resin film, for preventing advance of a gas generated from the photosensitive resin film, or has a gas-barrier insulating film, between the photosensitive resin film and the pixel electrode, for preventing advance of gas generated from the photosensitive resin film.
US09041884B2 Liquid crystal display panel
A transverse electric field type liquid crystal display panel includes a pair of substrates opposed with a liquid crystal layer interposed therebetween. A plurality of sub-pixels having at least one curved portion in a display area are provided in a matrix on one side of the pair of substrates, and a pair of electrodes having at least one curved portion are formed in the plurality of sub-pixels. A light shield layer shielding a non-display area positioned on an outer peripheral side of the display area and between the plurality of sub-pixels is formed on the other side of the pair of substrates. The light shield layer of the non-display area is formed in a shape in which the outermost peripheral side of the display area is rectangular.
US09041876B2 Back plate component having reflective sheet reinforcing structure and liquid crystal display device including the same
Provided is a back plate component having reflective sheet reinforcing structure. The back plate component includes: a frame, a reflective sheet and a plurality of supporting film sheets. The frame includes a plurality of lateral beams and vertical beams, and at least one hollow part is included between the lateral beams and the vertical beams. The reflective sheet is attached to the frame, and includes a reflective surface and a back surface corresponding to the reflective surface. A portion of the back surface covers the whole hollow part. The plurality of supporting film sheets is attached to the back surface at a region corresponding to the hollow part, and includes a material the same as that of the reflective sheet. A liquid crystal display device is further disclosed herein.
US09041875B2 Semiconductor device and method of manufacturing the semiconductor device
In a semiconductor device, a first interlayer insulating layer made of an inorganic material and formed on inverse stagger type TFTs, a second interlayer insulating layer made of an organic material and formed on the first interlayer insulating layer, and a pixel electrode formed in contact with the second interlayer insulating layer are disposed on a substrate, and an input terminal portion that is electrically connected to a wiring of another substrate is provided on an end portion of the substrate. The input terminal portion includes a first layer made of the same material as that of the gate electrode and a second layer made of the same material as that of the pixel electrode. With this structure, the number of photomasks used in the photolithography method can be reduced to 5.
US09041873B2 Liquid crystal display element and liquid crystal module
A liquid crystal display element disclosed includes: a first substrate; a second substrate; a liquid crystal layer sandwiched between the first substrate and the second substrate; a first transparent electrode provided at a display region of the first substrate; and a second transparent electrode provided at a display region of the second substrate, at least one of d1 and d2 being not larger than 60 nm, where d1 represents a thickness of the first transparent electrode and d2 represents a thickness of the second transparent electrode.
US09041872B2 Switching liquid crystal panel and display device
Provided is a switching liquid crystal panel and a display device that have novel structures that are capable of preventing luminous regions from appearing in the light transmitting parts, in the vicinities of boundaries thereof with the light shielding parts. The switching liquid crystal panel includes a pair of substrates (26a, 26b) having a twisted nematic type liquid crystal layer (24) interposed therebetween, and a plurality of light shield forming electrodes (30) that are formed on at least one of the pair of the substrates (26a, 26b) and that form light shielding parts (40) of a parallax barrier (16) in cooperation with a counter electrode (34) when a voltage is applied, the counter electrode (34) being is opposed to the light shield forming electrodes (30) with the liquid crystal layer (24) interposed therebetween. A rubbing direction for an alignment film (36a) provided on the substrate (26a) side on which the light shield forming electrodes (30) are formed is at an angle of 45° or less to a lengthwise direction of the light shield forming electrodes (30).
US09041869B2 Sensor substrate, method of manufacturing the same and sensing display panel having the same
A sensor substrate includes a blocking pattern disposed on a base substrate, a first electrode disposed on the base substrate and overlapping the blocking pattern, the first electrode including a plurality of first unit parts arranged in a first direction, each of the first unit parts including a plurality of lines connected to each other in a mesh-type arrangement, a color filter layer disposed on the base substrate, a plurality of contact holes defined in the color filter layer and exposing the first unit parts, and a bridge line between and connected to first unit parts adjacent to each other in the first direction, through the contact holes.
US09041855B2 Interchangeable lens camera, camera body, lens unit, and busy signal control method
An aspect of the present invention provides an interchangeable lens camera having a camera body and a lens unit that is freely attachable and detachable to the camera body. In the interchangeable lens camera, a communications unit in the camera body sends via communications terminals (MT_MOSI and MT_MISO) an INTR_BUSY control instruction that instructs whether to make notification with a busy signal (INTR_BUSY signal) for any operation out of a plurality of types of operations that can be executed, and the lens unit or camera body communications unit sets the busy signal (INTR_BUSY) to an ON state (low level) only during the period of operation of the type indicated by the INTR_BUSY control instruction.
US09041854B2 Image-pickup apparatus and method of detecting defective pixel thereof
An image pickup apparatus which can detect, when pixels have a structure in which part of electrical construction is shared therebetween, a defective pixel by taking into account a high possibility of the other pixels sharing the part of electrical construction becoming defective pixels, thereby making it possible to obtain an excellent image. A ROM stores in advance position information on each defective pixel. A defective pixel-detecting section detects a new defective pixel on which position information is not stored by the storage unit, from the pixels forming each pixel group, by performing one of different types of defective pixel detection processing. A system controller causes the defective pixel-detecting section to execute one of the different types of detection processing, according to the number of defective pixels which are included in each pixel group and on which the position information is stored in the storage unit.
US09041853B2 Mobile terminal, method of image processing, and program
A mobile terminal includes a camera unit that captures a subject while moving a lens back and forth in an optical axis direction and outputs a plurality of images with different angles of view, a storage unit that stores the plurality of images output from the camera unit, an angle-of-view correction unit that takes any one image of the plurality of images stored in the storage unit and corrects the other images of the plurality of images so that the angles of view of the other images match the angle of view of the one image, and a display that outputs the one image and the other images corrected by the angle-of-view correction unit.
US09041851B2 Organic electronic detectors and methods of fabrication
The present invention is directed to a an organic imaging device having organic detectors on a curved surface. The device may be used for imaging applications such as photography, lightweight camera systems, very high-resolution imaging, lightweight “night vision”, robotic vision, and others. A concave housing with a deformable lens is provided. The deformable lens allows for a range of fields of view and focal lengths. The invention may be configured to detect a range of electromagnetic radiation. It may then provide input to a computer, display, or other device for processing or display of the detected radiation as an image.
US09041847B2 Method and apparatus for self camera shooting
A method enables self-camera shooting in a mobile terminal. In the method, whether a first user input is detected is determined. When the first user input is detected, a half shutter mode is entered. Whether a second user input is detected is determined. When the second user input is detected, self-camera shooting is performed.
US09041846B2 Imaging device, finder, and display method therefor
A display method for a finder includes, when at least one of a blown-out-highlight region and a blocked-up-shadow region is detected in an image signal indicating a subject image, setting a region corresponding to the detected region of a shutter unit placed in an optical path of an optical view finder in a non-light-shielding state, and setting regions other than the detected region in a light-shielding state; and superposing a subject image passing through the shutter unit and a subject image displayed on a display unit based on the image signal each other so that superposed subject images are made visible.
US09041845B2 Imaging device having multiple optics
Disclosed is an imaging device that has a base and a plurality of image capture devices. The base includes a bottom portion and an elongate stem portion that is pivotally attached at one of its ends to the bottom portion. An arm is pivotally attached to the stem portion. The arm has an elongate flap pivotally attached to the arm's mid-portion. A plurality of image capture devices are embedded in at least one of the bottom portion, the stem portion, the arm and the flap. An additional embodiment of the image capturing system includes a housing, a light capture mechanism and an image display mechanism The housing, includes a base and a linkage having a plurality of elongate sections. The light capture mechanism simultaneously captures first and second images and is contained within at least one of the elongate sections. First and second lenses make up the light capturing mechanism.
US09041843B2 Imaging apparatus and camera
An imaging apparatus including a pixel, a current source, and a signal processing circuit. The pixel outputs signal charge, obtained by imaging, as a pixel signal. The current source is connected to a transmission path for the pixel signal and has a variable current. The signal processing circuit performs signal processing on a signal depending on an output signal to the transmission path and performs control so that a current of the current source is changed in accordance with the result of signal processing.
US09041842B2 Image sensor pixel cell readout architecture
An image sensor includes a pixel array including a plurality of pixel cells each including a floating diffusion node, a photosensitive element coupled to selectively transfer image charge to the floating diffusion node, and a feedback coupling capacitor coupled between the floating diffusion node and an output line. A bit line is coupled to selectively readout image data output from each one of a group of the plurality of pixel cells. An integrator is capacitively coupled to the bit line. The integrator is coupled to output an output signal on the output line in response to the image data. The output signal on the output line is capacitively coupled to the floating diffusion node through the feedback coupling capacitor to suppress a potential swing at the floating diffusion node of each one of the group of the plurality of pixel cells in response to the output signal.
US09041840B2 Backside illuminated image sensors with stacked dies
An image sensor unit may have a backside-illuminated imager and an image co-processor stacked together. The image co-processor may be mounted in a cavity in a permanent carrier. The permanent carrier may include fluid channels that allow cooling fluid to flow past the image co-process and past the imager, thereby removing excess heat generated by the image sensor unit during operation.
US09041838B2 High dynamic range imager system
An imaging system configured to capture an image is provided, the imaging system including a high dynamic range imager configured to capture at least one high dynamic range image, and circuitry, wherein scheduling tasks within a row time interval is arranged to permit sharing of circuits used for correlated double sampling with selective reset tasks and with pixel readout tasks, and wherein scheduling tasks within a row time interval is arranged to permit sharing of comparator with selective reset tasks and with pixel readout tasks, while also providing at least one selectable integration period for which the integration period is adjustable and set to substantially less than a row time interval.
US09041837B2 Image sensor with reduced blooming
An image sensor for an electronic device. The image sensor includes a first light sensitive element for collecting charge and having a first saturation value and a well surrounding at least a portion of the first light sensitive element and having a first doping concentration. The image sensor further includes a bridge region defined in the well and in communication with the first light sensitive element and having a second doping concentration and a blooming node in communication with the bridge region and a voltage source. The second doping concentration is less than the first doping concentration and when light sensitive element collects sufficient charge to reach the first saturation value, additional charge received by the light sensitive element travels to the blooming node via the bridge region.
US09041836B1 Digital picture noise reduction by combining high-noise and low-noise processed pictures
A method for processing a digital picture is disclosed. The method may include steps (A) to (C). Step (A) may generate a first picture by processing the digital picture using a first noise reduction technique in a circuit. Step (B) may generate a second picture by processing the digital picture using a second noise reduction technique. The first noise reduction technique may achieve a higher noise reduction than the second noise reduction technique. Step (C) may generate an output picture by combining the first picture and the second picture.
US09041835B2 Selective combining of image data
In an image capturing apparatus, a first image data is stored in a first storage; second image data of a low resolution is generated by the first reducing; enlarged image data is generated; low resolution image data is generated from the first image data through processing that is different from that performed by the first reducing, the low resolution image data have the same pixel count as the first image data and a lower resolution than that of the first image data; one of first image processing in which the first image data is combined with the enlarged image data or second image processing in which the first image data is combined with the low resolution image data is executed; and the processing is switched between the first image processing and the second image processing, according to a shooting operation.
US09041832B2 Imaging apparatus and method for controlling the same
Even when as an object targeted for registering feature data, an object for which registered feature data has reached an upper limit is selected, replacement of the registered feature data is prompted to register new feature data. An imaging apparatus includes a registration unit configured to register a plurality of feature data up to an upper limit number in association with the same object, a selection unit configured to select one of registered objects for which new feature data is to be registered, and a control unit configured to perform control to display a selection screen for allowing, when the object selected by the selection unit is the object for which the upper limit number of feature data has been registered, a user to select the feature data to be replaced with the new feature data among the upper limit number of feature data registered for the object.
US09041830B2 Image signal processing circuit, image capture device, image signal processing method, and program
The present invention relates to an image signal processing circuit, an image capture device, and image signal processing method, and a program capable of reading special information, such as a bar code, using normal lenses with high precision without needing dedicated EDOF lenses and signal processing circuits. The image signal processing circuit has a processing circuit 131 which performs image processing using one color signal (B) having resolution on a near point side from among a plurality of color signals, and an enhancement processing unit 132 which performs enhancement processing by applying an inverse function of a point spread function (PSF) to a signal subjected to the image processing using the one color signal by the processing circuit.
US09041829B2 Capturing and processing of high dynamic range images using camera arrays
A camera array, an imaging device and/or a method for capturing image that employ a plurality of imagers fabricated on a substrate is provided. Each imager includes a plurality of pixels. The plurality of imagers include a first imager having a first imaging characteristics and a second imager having a second imaging characteristics. The images generated by the plurality of imagers are processed to obtain an enhanced image compared to images captured by the imagers. Each imager may be associated with an optical element fabricated using a wafer level optics (WLO) technology.
US09041827B2 Solid-state image pickup device and signal processing method therefor
The invention makes it possible to perform effective A/D conversion on pixel signals read from a pixel array part, to achieve a reduction in power consumption and reductions in the size and the price of an image pickup device as well as simplification of the construction of the device, and to realize a high-quality image output. The device includes an pixel array part having a plurality of unit pixels, a CDS (correlated double sampling) circuit, and an A/D converter. A pixel signal read from a pixel array part via a signal line is subjected to CDS processing (noise elimination processing) in the CDS circuit, and then this pixel signal is inputted into the A/D converter which performs A/D conversion on the pixel signal. The A/D converter includes a ΔΣ modulator and a digital filter to perform highly accurate A/D conversion. The invention can also be applied to a construction in which an A/D converter is provided at the front stage of the CDS circuit.
US09041825B2 Image processing apparatus
An image processing apparatus of the present invention includes: a video input section to which live video obtained by picking up an image of an object is inputted; a frame interpolation processing section which, by inserting an interpolated image between images of frames constituting the live video, performs processing for generating and outputting interpolated video of a frame rate set in advance; and a control section which, when an instruction for freezing video displayed on a display section is made, operates so as to cause a still image of a frame constituting the live video to be displayed on the display section.
US09041824B2 Systems and methods for dynamic refocusing of high resolution images generated using images captured by a plurality of imagers
Systems and methods in accordance with embodiments of the invention are disclosed that use super-resolution (SR) processes to use information from a plurality of low resolution (LR) images captured by an array camera to produce a synthesized higher resolution image. One embodiment includes obtaining input images, determining an initial estimate of at least a portion of a high resolution image using a plurality of pixels from the input images, and determining a high resolution image that when mapped through the forward imaging transformation matches the input images to within at least one predetermined criterion using the initial estimate of at least a portion of the high resolution image. In addition, each forward imaging transformation corresponds to the manner in which each imager generates the input images, and the high resolution image has a resolution that is greater than any of the input images.
US09041819B2 Method for stabilizing a digital video
A method for stabilizing an input digital video. Input camera positions are determined for each of the input video frames, and an input camera path is determined representing input camera position as a function of time. A smoothing operation is applied to the input camera path to determine a smoothed camera path, and a corresponding sequence of smoothed camera positions. A stabilized video frame is determined corresponding to each of the smoothed camera positions by: selecting an input video frame having a camera position near to the smoothed camera position; warping the selected input video frame responsive to the input camera position; warping a set of complementary video frames captured from different camera positions than the selected input video frame; and combining the warped input video frame and the warped complementary video frames to form the stabilized video frame.
US09041814B2 Automatic tracking camera system
An automatic tracking camera system includes: a rotating unit for panning and tilting an image pickup unit including a lens apparatus and an image pickup apparatus; a tracking object detector; a motion vector detector for detecting a motion vector of the object to be tracked; a capture position setting unit for setting a capture position of the object to be tracked in the picked up image; and a controller for controlling drive of the rotating unit. The controller controls the rotating unit in a capture mode to capture the object to be tracked at the capture position based on the motion vector detected by the motion vector detector after the tracking object detector has detected the object to be tracked in the picked up image, and a maintenance mode to continuously capture the object to be tracked at the capture position after the capture mode.
US09041812B2 Automated authorization to access surveillance video based on pre-specified events
Real-time access by a requestor to surveillance video is conditionally pre-authorized dependent on the existence of at least one pre-specified automatically detectable condition, and recorded in a data processing system. A requestor subsequently requests real-time access to the surveillance video (e.g., as a result of an alarm), and if the pre-specified automatically detectable condition is met, access is automatically granted, i.e., without the need for manual intervention. An automatically detectable condition could, e.g., be an alarm condition detected by a sensor at the site of the video surveillance. Alternatively, it could be a locational proximity of the requestor to the site of the video surveillance. Alternatively, it could be a previously defined time interval.
US09041809B2 Periphery monitoring apparatus
A periphery monitoring apparatus capable of photographing a vicinity of a vehicle without impairing the outer appearance of the vehicle includes a light source configured to be provided in the vehicle for illuminating the periphery of the vehicle, and a camera photographing a condition of the periphery of the vehicle with an optical axis changed by a mirror toward the underside of the circumferential edge of the vehicle illuminated by at least a portion of light irradiated from the light source reflected by the mirror configured to be disposed on the outer side of the circumferential edge of the vehicle.
US09041807B2 Image processing device and image processing method
An image processing device configured to be installed in a vehicle includes an image acquirer, an image selector, a first luminance adjuster, a synthetic image generator, and an image provider. The image acquirer acquires camera images captured by cameras provided on the vehicle. The image selector selects one of the camera images as a representative image based on luminances of the camera images. The first luminance adjuster adjusts a luminance of at least one of the other camera images based on a luminance of the representative image. The synthetic image generator generates a synthetic image showing a periphery of the vehicle, based on the representative image and the other camera images the luminance of at least one of which has been adjusted by the first adjuster. The image provider outputs, to a display device installed in the vehicle, information corresponding to the synthetic image.
US09041804B2 Input device, vehicle environment monitoring apparatus, icon switch selection method, and recording medium
An input device, wherein the screen (18a) of a display device (18) is divided into two regions, a region (A1) and a region (A2), and the icon switch displayed in the region including the position of an invisible pointer (P′) is selected. Thus, one of an icon switch (1) and an icon switch (2) that are displayed on the screen (18a) is selected at any time. Consequently, the user will no longer have to watch the screen carefully and perform an operation for moving an instruction marker such as a visible pointer to a desired icon switch, for example as in conventional devices. Accordingly, the user can enter a desired instruction in a short time by selecting a desired icon switch in a short time.
US09041799B2 Food item positional display system and method
A system and method for displaying the actual position of one or more food items on a conveyorized oven system on a display monitor. Digital images of each food item are captured, stored and processed into positional imaging data using data transmitted from sensors adjacent to the conveyorized oven system. Characteristic data for each food item may be associated with the positional imaging data. The characteristic and positional imaging data of the food items may be stored or communicated to a display monitor for the user to view.
US09041798B1 Automated pointing and control of high resolution cameras using video analytics
An automated method for cueing a high resolution video camera to a mobile object involves first detecting the presence of an object by a wide-area surveillance asset such as a radar and using the radar's positional information to cue the video camera iteratively, while updating the positional information each time. Then, a video analytics algorithm detects the object and generates more accurate positional and rate information on the object, which is then used to cue the video camera into a higher resolution setting for classifying/identifying the object. Once the object is identified, the positional and rate information is updated and the updated information is used to further cue the video camera into a higher resolution setting for recording a video clip of the moving object while the video camera is dynamically steered.
US09041796B2 Method, tool, and device for determining the coordinates of points on a surface by means of an accelerometer and a camera
A method, tool, and device for determining the coordinates or a plurality of points on a substantially plane surface by means of an accelerometer and a camera. The coordinates of each point are computed by determining a perpendicular projection of the camera onto the surface, identifying each point, measuring an inclination (the angle between the line of sight of the camera and gravity) using the accelerometer, and determining an azimuth (the angle of the line of sight of the camera around gravity).
US09041792B2 Generation of a multicolour image of an unstained biological specimen
At least two chemically different substances of interest of an unstained biological specimen that for each a substance image is generated, indicating for every region of the image an amount of the substance. A multicolor image is generated on the basis of the substance images.
US09041790B2 Microscopy imaging
Among other things, an imaging device has a photosensitive array of pixels, and a surface associated with the array is configured to receive a specimen with at least a part of the specimen at a distance from the surface equivalent to less than about half of an average width of the pixels.
US09041789B2 System and method for determining driver alertness
A driver alertness detection system includes an imaging unit configured to image an area in a vehicle compartment where a driver's head is located; an image processing unit configured to receive the image from the imaging unit, and to determine positions of the driver's head and eyes; and a warning unit configured to determine, based on the determined position of the driver's head and eyes as output by the image processing unit, whether the driver is in an alert state or a non-alert state, and to output a warning to the driver when the driver is determined to be in the non-alert state.
US09041787B2 Portable eye tracking device
A portable eye tracker device is disclosed which includes a frame, at least one optics holding member, and a control unit. The frame may be adapted for wearing by a user. The at least one optics holding member may include at least one illuminator configured to selectively illuminate at least a portion of at least one eye of the user, and at least one image sensor configured to capture image data representing images of at least a portion of at least one eye of the user. The control unit may be configured to control the at least one illuminator for the selective illumination of at least a portion of at least one eye of the user, and receive the image data from the at least one image sensor.
US09041782B2 Multiple-viewer auto-stereoscopic 3D display apparatus
A multiple-viewer auto-stereoscopic display apparatus includes a display unit, an eye-tracking unit, a light transmission control unit, a light separation unit, and a synchronization control unit. The display unit is configured to display a view sequence of a plurality of view images of a 3D image in multiple viewing zones to one or more viewers. The light transmission control unit is configured to control light transmission to a particular viewing zone. The light separation unit is configured to separate the plurality of view images for the viewers to perceive 3D display. Further, the synchronization control unit is configured to synchronize refreshing of the display unit and the light transmission control unit, wherein a refreshing rate of the display unit equals to a refreshing rate of the light transmission control unit, and to dynamically adjust the view sequence based on the position information of the one or more viewers.
US09041781B2 Image processing apparatus, image processing method, and program
An image processing apparatus includes a stereoscopic effect adjustment unit that receives left eye images and right eye images applied to three-dimensional image display, and performs stereoscopic effect adjustment by correcting the received images which are input images, wherein the stereoscopic effect adjustment unit performs a reduction process or an enlargement process in a transverse direction for at least any ones of the left eye images and the right eye images, and generates corrected images where parallax is adjusted.
US09041768B1 Multiparty communications systems and methods that utilize multiple modes of communication
Improved methods, systems, and devices for managing communications are provided. A user device may display all ongoing communications so that a user can visualize the communications network or some subset thereof (e.g., a subgroup or group of users). A system may maintain the user device in an instant ready-on mode of communication with the other user devices. A user may then initiate communications with a subgroup (e.g., a pair) or group without initiating a new connection. Accordingly, a user can simultaneously and fluidly communicate at the subgroup level, at the group level, or at the inter-group level. Moreover, users can function as independent actors that can freely form and leave subgroups as well as groups.
US09041767B2 Method and system for adapting a CP layout according to interaction between conferees
A system and method is disclosed for adapting a continuous presence videoconferencing layout according to interactions between conferees. Using regions of interest found in video images, the arrangement of images of conferees may be dynamically arranged as displayed by endpoints. Arrangements may be responsive to various metrics, including the position of conferees in a room and dominant conferees in the videoconference. Video images may be manipulated as part of the arrangement, including cropping and mirroring the video image. As interactions between conferees change, the layout may be automatically rearranged responsive to the changed interactions.
US09041764B2 Method, device, and system for highlighting party of interest in video conferencing
Embodiments of the present invention provide a method, device, and system for highlighting a party of interest in video conferencing, relating to the communication field and capable of effectively utilizing network bandwidth and enhancing conference efficiency. The method includes: converting received audio and video signals sent by multiple conferencing terminals into multiple independent video images corresponding to the multiple conferencing terminals, and displaying the multiple video images through a display device; and adjusting display factors of the multiple video images according to obtained video image display priority signals, so that the multiple video images present different visual characteristics in the display device. The embodiments of the present invention are applied in video conferencing.
US09041763B2 Method for establishing video conference
A method for establishing a video conference is provided. The method is applied in a video conferencing system. The system has a first electronic device, a second electronic device, a third electronic device, a fourth electronic device, and a server. The first and second electronic devices are associated with a first user. The third and fourth electronic devices are associated with a second user. The method is capable of building an audio communication between the first electronic device and the third electronic device over a telecommunications network; and building a video communication between the second electronic device and the fourth electronic device over an IP network simultaneously, wherein the video communication is parallel to the audio communication.
US09041762B2 2-D straight-scan on imaging surface with a raster polygon
A 2-D scanning system uses a fast-rotating raster-polygon as a single scanning component to produce straight scan lines over a 2-D image surface. An approach angle of incident light beams to the raster-polygon is selected to minimize pin-cushion distortion of scan lines introduced by polygon scanning on the image surface, and a tilt angle of the rotational axis of the raster-polygon is selected to position said polygon-scanning distortion symmetrically on the image surface. In addition, scan optics are configured to generate a predetermined amount of barrel distortion of scan lines on the image surface to compensate for pin-cushion distortion introduced by polygon scanning.
US09041756B2 Optical writing controller, image forming apparatus, and optical writing control method
An optical writing controller that controls a light source to expose a photoconductor and forms an electrostatic latent image on the photoconductor calculates a correction value for correcting a superimposing position where the developed images for different colors developing each of the electrostatic latent images formed on each of the multiple photoconductors are superimposed based on the detection signal output by a pattern detection sensor that detects a pattern for correcting the superimposing position, controls the multiple light sources to draw a predetermined pattern repeatedly in the sub-scanning direction so that stepwise patterns whose width in the main scanning direction varies with repetition are formed, and determines the width in the main scanning direction of the patterns for correcting based on the strength of the detection signal output by the pattern detection sensor.
US09041755B2 Marking apparatus
The invention relates to a marking apparatus (10) for marking an object comprising a marking head (20) having a plurality of marking devices (40, 40a, 40b) for applying a marking on the object and a driving mechanism for providing a relative movement of the object relative to the marking head in an advance direction (16) during a marking operation. The marking head comprises in addition to the plurality of marking devices a plurality of sensor devices and the sensor devices (50) are arranged down-stream of the marking devices in the advance direction, so that the marking applied by the marking devices is detectable by the sensor devices, when the object is moved relative to the marking head in the advance direction. The invention also relates to a method for marking an object.
US09041753B2 Sheet discharging device and erasing device
A sheet discharging device includes a first conveying path that guides a sheet to be conveyed. A second conveying path branches from the first conveying path. A sorting section sorts a sheet being conveyed on the first conveying path into either a downstream side of the branch point or the second conveying path. A first discharge tray is placed at a position downstream of the first conveying path and receives a sheet discharged from the first conveying path at a first sheet loading surface. A second discharge tray is placed at a position downstream of the second conveying path and below the first discharge tray, and receives a sheet discharged from the second conveying path at a second sheet loading surface whose distance to the first sheet loading surface increases toward a downstream side thereof in a sheet discharging direction.
US09041748B2 Display device and driving method thereof
A method of driving a display device includes driving a light source unit with a first driving ratio and outputting received image data to a display panel of the display device, storing the received image data upon receipt of a signal indicating a still image is displayed, calculating a second driving ratio of the light source unit from a representative value of the stored image data, compensating the stored image data according to the second driving ratio, driving the light source unit with the second driving ratio that is lower than the first driving ratio, and outputting the compensated image data to the display panel.
US09041741B2 User interface for a head mounted display
A user interface (UI) of a head mounted display (HMD) is provided that allows a user to access one or more persistent data elements that are otherwise outside the user's initial field of view by using a head movement, such as a head tilt (i.e., movement about a horizontal axis) and/or rotation (i.e., movement about a vertical axis). Embodiments also can provide for further movement and/or other manipulation of data of persistent data elements with further detected movement of the user's head.
US09041740B2 Vehicular display device and vehicular display system
A vehicular display device includes a display unit that displays visible information and a light projection unit that guides light including the visible information displayed on the display unit to a predetermined projection surface, and displaying the visible information as a virtual image. The vehicular display device includes a guide display unit and a guide display control unit. The guide display unit indicates a relationship between at least positions of a first display region in which the virtual image is displayed by projection of the light projection unit and a second display region in which detailed information is displayed. The detailed information has an association with a content of particular information that is displayed on the display unit under a predetermined condition. The guide display control unit controls the guide display unit into a display state when the particular information is displayed on the display unit.
US09041739B2 Matching physical locations for shared virtual experience
Embodiments for matching participants in a virtual multiplayer entertainment experience are provided. For example, one embodiment provides a method including receiving from each user of a plurality of users a request to join the virtual multiplayer entertainment experience, receiving from each user of the plurality of users information regarding characteristics of a physical space in which each user is located, and matching two or more users of the plurality of users for participation in the virtual multiplayer entertainment experience based on the characteristics of the physical space of each of the two or more users.
US09041732B2 Apparatus and method for clipping for 3D graphic rendering
Provided are a clipping apparatus and clipping method for a three-dimensional (3D) graphic rendering. The clipping apparatus may reset or convert a triangular object based on distance information of vertices configuring or comprising the triangular object where a perspective projection scheme is applied.
US09041720B2 Static image retiling and power management method and circuit
A circuit includes memory retiling methods which distribute image information among a plurality of memory channels producing reconfigured image information distributed among a subset of the plurality of memory channels allowing memory channels outside of the subset to be placed into a power save mode to reduce power consumption. Additional methods are disclosed for further reductions in power consumption.
US09041713B2 Dynamic spatial index remapping for optimal aggregate performance
By mapping leaf nodes of a spatial index to processing elements, efficient distribution of workload in an image processing system may be achieved. In addition, processing elements may use a thread table to redistribute workload from processing elements which are experiencing an increased workload to processing elements which may be idle. Furthermore, the workload experienced by processing elements may be monitored in order to determine if workload is balanced. Periodically the leaf nodes for which processing elements are responsible may be remapped in response to a detected imbalance in workload. By monitoring the workload experienced by the processing elements and remapping leaf nodes to different processing elements in response to unbalanced workload, efficient distribution of workload may be maintained. Efficient distribution of workload may improve the performance of the image processing system.
US09041712B2 Slice view
A method, apparatus, article of manufacture, and computer program product display multiple slices of a three-dimensional body in a computer drawing application. A first view of a 3D body is displayed. One or more slice sketches are defined on the first view. A single slice view of the three dimensional body is displayed. The single slice view simultaneously depicts all of the slices with a zero-depth representation of each slice.
US09041711B1 Generating reduced resolution textured model from higher resolution model
An exemplary method for simplifying a texture of a three-dimensional model includes simplifying a first three-dimensional model to determine a second three-dimensional model. The first three-dimensional model has a higher resolution than the second three-dimensional model. The method also includes allocating a texture atlas for the second three-dimensional model. The method further includes filling in the texture atlas for the second three-dimensional model. Filling in the texture atlas may include determining a location on the second three-dimensional model corresponding to a pixel in the texture atlas for the second three-dimensional model, determining a location on the first three-dimensional model corresponding to the determined location on the second three-dimensional model, determining a color value texture mapped to the first three-dimensional model at the determined location on the first three-dimensional model, and setting the determined color value to the pixel in the texture atlas for the second three-dimensional model.
US09041710B2 Support apparatus and design support method for differentiating between holes and projection graphics
An apparatus includes a determination unit to determine a shape of a ridge line that is provided in a plane surface included in a three-dimensional model of a verification target and forms an entrance of a hole or a base of a projection in the plane surface, an extraction unit to extract a graphic that includes a ridge line coinciding with at least a portion of the shape of the ridge line determined by the shape determination unit, a creation unit to create a comparison-use vector to be compared with the direction of a normal vector of the plane surface, in response to the type of the extracted graphic, and a determination unit to determine whether the graphic extracted by the extraction unit is a graphic forming a hole or a graphic forming a projection, in response to an angle between the normal vector and the comparison-use vector.
US09041709B2 Saliency based disparity mapping
A three dimensional [3D] image signal is processed for rendering 3D image data (33) on a specific 3D display, e.g. an auto-stereoscopic display. A first depth map (34) and saliency of the 3D image data are determined. A display depth sub-range (35) of a usable depth range (36) of the 3D display is determined and provides a higher 3D image quality for a viewer than the 3D image quality across the usable depth range. A depth mapping function is determined in dependence of the saliency data. The depth mapping function maps the first depth map to a second depth map for generating views for the 3D display. Advantageously the salient range of depth values is mapped towards the display depth sub-range.
US09041697B2 Apparatus and method for using an LED for backlighting and ambient light sensing
Embodiments of a backlight module for illuminating a liquid crystal display (LCD) and sensing ambient light are provided herein. The backlight module includes a light-emitting diode (LED) array and a backlight controller. The backlight controller is configured to forward bias the LED array to backlight the LCD and reverse bias the LED array to sense the ambient light level. The backlight controller is configured to adjust the brightness of the LED array based on the current ambient lighting conditions sensed.
US09041691B1 Projection surface with reflective elements for non-visible light
A passive projection screen presents images projected thereon by a projection system. A surface of the screen includes elements that are reflective to non-visible light, such as infrared (IR) light. When non-visible light is directed to the screen, the non-visible light is reflected by the reflective elements back. Part of the reflected light may contact and reflect from a user's fingertip or hand (or other object, such as a stylus) while another part is reflected to the projection system. The projection system differentiates among distances to the surface and distances that include the additional travel to the fingertip. As the fingertip moves closer to the surface, the distances approach equality. When the distances are approximately equal, the finger is detected as touching the surface. In this manner, a projection surface equipped with reflective elements facilitates more accurate touch detection.
US09041689B1 Estimating fingertip position using image analysis
A computing device and/or application executing on the device can utilize fingertip tracking using a camera. However, when the fingertip is in a dead zone (an area that is not viewable by the camera), the fingertip tracking cannot function properly. Nevertheless, the position of the fingertip, when in the dead zone, can still be estimated. An image of a user's hand can be captured by at least one camera. A portion of a pointing finger can be detected in the captured image. An orientation of the portion of the pointing finger can be determined. One or more joint lines of the pointing finger can be identified. Based on data about a slant and/or a bend of the pointing finger obtained using information relating to the identified joint line(s), and/or on data obtained via calibration and/or historic/current usage, the position of the fingertip, when in the dead zone, can be approximated.
US09041686B2 Electronic device component stack
Electronic devices that include reflective displays for rendering content, touch sensors layered atop the reflective displays for detecting touch inputs, front lights layered atop the touch sensors for lighting the reflective displays and antiglare components for reducing glare caused by ambient light. This disclosure also describes techniques for assembling electronic devices including these component stacks.
US09041684B2 Senseline data adjustment method, circuit, and system to reduce the detection of false touches in a touch screen
A touch controller processes a captured data frame and detects the presence of touch points in the data frame. The data frame includes a plurality of digital capacitance values organized as groups of sense line data and the touch controller determines for each digital capacitance value in a group of sense line data the difference between the digital capacitance value and an associated no-touch threshold to generate a baseline delta value for each digital capacitance value in the group. The touch controller selects the minimum baseline delta and adjusts each digital capacitance value in the group by the minimum baseline delta to generate adjusted sense line data. The touch control generates adjusted sense line data for each group of sense line data in the data frame and thereafter processes the groups of adjusted sense line data to detect the presence of touch points in the data frame.
US09041682B2 Driving electrodes with different phase signals
A controller includes drive circuitry to drive one target drive electrode of a touch sensitive device with a series of predetermined phase pulses and to drive at least one other drive electrode of the touch sensitive device with a corresponding series of out-of-phase pulses. Sense circuitry receives signal transferred to sense electrodes from the drive electrodes of the touch sensitive device. The received signal is responsive to one or more touches on the touch sensitive device.
US09041680B2 Computer-readable storage medium, coordinate processing apparatus, coordinate processing system, and coordinate processing method
A following coordinate which follows an input coordinate late is calculated. Then, an inference moving amount is calculated on the basis of a moving amount of an input coordinate, and an inference moving direction is calculated on the basis of a moving direction of the following coordinate. An inference movement vector is set on the basis of the inference moving amount and inference moving direction calculated thus. The following coordinate has low correlation with an actual moving amount of a linger of an operator, and the moving direction of the input coordinate has low correlation with an actual moving direction of the finger of the operator due to fluctuation of the input coordinate. Thus, the inference movement vector which is set as described above more accurately reflects the actual moving amount and moving direction of the finger of the operator.
US09041679B2 3D manipulation using applied pressure
Placement by one or more input mechanisms of a touch point on a multi-touch display device that is displaying a three-dimensional object is detected. A two-dimensional location of the touch point on the multi-touch display device is determined, and the touch point is matched with a three-dimensional contact point on a surface of the three-dimensional object that is projected for display onto the image plane of the camera at the two-dimensional location of the touch point. A change in applied pressure at the touch point is detected, and a target depth value for the contact point is determined based on the change in applied pressure. A solver is used to calculate a three-dimensional transformation of the three-dimensional object using an algorithm that reduces a difference between a depth value of the contact point after object transformation and the target depth value.
US09041678B2 Input device, contact position detection method, and display device provided with input device
Detection accuracy is improved without reducing a driving frequency and an S/N ratio.Driving electrodes (DL(j−2) and DL(j−1)) of a driving electrode group (GDL(i)) overlap a driving electrode group GDL(i−1), and driving electrodes (DL(j+1) and DL(j+2)) thereof overlap a driving electrode group GDL(i+1). A first changeover terminal of a changeover switch (SW(i)) is connected to a wire to which a burst clock signal (BCK) is given, and a ground potential is given to a second changeover terminal thereof. A common terminal of the changeover switch (SW(i)) is connected to a driving electrode (DL(j)) located at a center of the driving electrode group (GDL(i)), is connected to the driving electrodes (DL(j−1) to DL(j−3)), respectively, via one to three resistive elements (Rd), and is connected to the driving electrodes (DL(j+1) to DL(j+3)), respectively, via one to three resistive elements (Rd).
US09041676B2 Mechanism for employing and facilitating an edge thumb sensor at a computing device
A mechanism is described for employing and facilitating a thumb sensor at a computing device. A method of embodiments of the invention includes extending a touch panel of a computing device into a flap of the touch panel to be used as a side sensor of the computing device, and sensing a use of the side sensor, the use including touching of the side sensor by a user, where sensing may include detecting a change at one or more intersecting points of a plurality of intersecting points of conductive lines. The method may further include facilitating an action in response to the use of the side sensor.
US09041668B2 Mobile touch-generating device and communication with a touchscreen
A mobile touch-generating device having logic and a touch-generating system. The touch-generating system includes one or more touch-generating elements. The touch-generating system is operatively coupled to the logic to generate touch events via the one or more touch-generating elements, the touch events detectable by a touchscreen, such as, a capacitive sensing touchscreen. Also provided are: (i) a method of bidirectional communication between a mobile touch-generating device and a touchscreen device; and (ii) a computer readable non-transitory medium containing a computer program which, when executed, causes a computer to execute the steps of the above method.
US09041659B2 System and method for diagnostics of a grid based digitizer
A method for testing a digitizer to determine an operative property of the digitizer, wherein the digitizer includes a sensor grid, comprises providing an input signal on a first portion of the sensor grid, detecting at least one output signal in a second portion of the sensor grid responsive to the input signal in the first portion, and determining at least one operative property of the sensor based on the at least one output signal, wherein at least the transmitting, detecting and determining is performed autonomously by the digitizer.
US09041658B2 Touch screen device and operating method thereof
A touch screen device and an operating method are provided in which only a specific position on a touch screen is activated to receive signals. The touch screen device includes a screen including a display configured to display menu images thereon and a detector configured to detect a screen touch, and a controller configured to control operations of the device according to the screen touch detected by the detector. The controller may cause the detector to be divided into an execution area configured to execute a menu when the menu placed on the execution area is touched, and a selection area configured to sequentially move the menu images to the execution area when the selection area is touched. Alternatively, the controller may cause the detector to be divided into a moving area configured to move a menu from a touch point along a drag line while the menu is dragged, and an execution area configured to execute the relevant menu when the touch on the execution area is released. With a touch screen device so configured, the menus are executed only in a limited execution area.
US09041654B2 Virtual touchscreen keyboards
A dynamically updated virtual keyboard may be presented on a touchscreen of a user device by detecting a first hand position on the touchscreen. A virtual keyboard may then be displayed on the touchscreen, the virtual keyboard based on the first hand position. Characteristics of the virtual keyboard, such as size, position, orientation, and selection of the keys can also vary based on the first hand position and on other input features.
US09041653B2 Electronic device, controlling method thereof and computer program product
A method of controlling an electronic device, an electronic device using the same, and a computer program product are provided. The method includes detecting a plurality of touch areas on a touch screen so that a plurality of touch points contained within each of the touch areas are obtained, respectively determining a typical coordinate value corresponding to each of the touch areas according to a coordinate value of each of the touch points within the touch areas, selecting one or more active objects displayed on the touch screen according to the typical coordinate value corresponding to each of the touch areas, and triggering an action associated with the one or more active objects.
US09041652B2 Fusion keyboard
Touch sensitive mechanical keyboards for detecting touch events and key depressions on the keyboard are provided. The keyboard can include a set of individually depressible mechanical keys having a touch sensitive area located on their surface. A touch sensor can be included to detect touch events on the surface of the keys. A keypad can also be included to detect a depression of the mechanical keys. One or more of the depressible mechanical keys can be multi-purpose keys capable of being depressed to multiple levels. The touch sensitive mechanical keyboard can receive key depression input, touch event input, or combinations thereof at the same time. The touch sensitive mechanical keyboard can further include a processor for distinguishing detected touch events from detected key depressions. The processor can generate a key depression command or a touch event command in response to the detected touch events and key depressions.
US09041648B2 Portable device and control method thereof
A portable device including a main display; a flexible display; a sensor unit configured to sense at least one of expanding of the flexible display and an input signal; and a processor configured to control the main display, the flexible display and the sensor unit, when a first page of a plurality of pages having a sequence is being displayed in the main display. The process also displays an indicator in the main display when the input signal is sensed, the indicator indicating a display direction of additional pages to be displayed when the flexible display is expanded, and indicating a forward direction or a reverse direction based on the first page as the display direction, and displays at least one additional page in the display direction indicated by the indicator when the expanding of the flexible display is sensed.
US09041645B2 Transparent display field of view region determination
A method and system for determining a field of view region on a transparent display is provided. The method includes receiving from a user facing device, a user image. User image key features of the user image are identified and user image attributes of said image key features are analyzed. An object image of objects is received and a first object is identified. Object key features of the first object are identified and object attributes of object key features are analyzed. A specified position on a transparent display for displaying a first image associated with the first object is determined. The first image is displayed at the specified position on the transparent display.
US09041644B2 Electro-phoretic display and display method thereof
The present invention discloses an electro-phoretic display and display method thereof. The method comprises: To form a first electric field so that reflective particles in electro-phoretic layer in an area corresponding to a color resist for display have a first distance from the color substrate. Light incident to the reflective particles partly or completely emerges from the electro-phoretic layer after being reflected by them when the distance is the first distance. To form at least one second electric field in an area corresponding to color resists not for display so that the reflective particles in the electro-phoretic layer in that area have a second distance from the color substrate. Light incident into the electro-phoretic layer is absorbed by the light absorbing liquid when the distance is the second distance. The color resist for display is the one used for displaying a color intended to be displayed by the electro-phoretic display.
US09041643B2 Light emitting element drive apparatus and portable apparatus using same
A light emitting element drive apparatus capable of outputting the lowest voltage satisfying drive conditions and having high light emitting efficiency and low power loss, and a portable apparatus using the same, comprising an LED drive apparatus to which LEDs of different drive voltages required for emitting light are connected in parallel and driving one or more LEDs, wherein the LED drive apparatus 10 has drive circuits connected to the corresponding LEDs among a plurality of LEDs and driving the corresponding LEDs with luminances based on set values and power supply circuits for deciding a drive voltage value required for the highest light emission among one or more LEDs driven to emit light based on drive states of drive circuits (for example terminal voltages of the current source) and supplying a drive voltage having at least the decided value to LEDs in parallel.
US09041642B2 Large audience 3D display system without glasses
A three dimensional (3D) display apparatus for without 3D glasses. The display apparatus includes a display element operated to display left and right eye images. A back light assembly back lights the display element and includes light bars with a row of infrared (IR) light receivers that are each paired to a white light emitting diode (LED). Viewers in seats in tiered rows such that their heads are in known viewing locations. Left and right side illuminators illuminate the left and right sides of the faces of the viewers with IR light. The IR light is synchronized with display of the left and right eye images. IR reflected from viewers' faces pass through the display element and is focused onto IR light receivers, which causes LEDs to emit light onto the display element and provide left or right eye images to the viewers at their left or right eyes.
US09041640B2 Display driver and manufacturing method thereof
Disclosed is a display driver which includes a serial-to-parallel converter outputting parallel RGB data in response to a clock and serial RGB data, a shift register unit sequentially shift the clock to store the shifted clocks, a data latch unit receiving the parallel RGB data based on the shifted clocks, a digital-to-analog converter converting data stored in the data latch unit to analog data using gamma reference voltages, and an output buffer unit outputting the converted analog data to corresponding output pads. The output buffer unit includes sharing switches respectively corresponding to the output pads, the output pads are connected to sharing pads via the sharing switches, and the sharing pads are interconnected via a film having a conductive material.
US09041639B2 Driving device including charge sharing for driving liquid crystal display device
The present disclosure provides a driving device for driving a liquid crystal display (LCD) device. The driving device comprises a plurality of first charge sharing switches and a plurality of second charge sharing switches. Each of the plurality of first charge sharing switches is individually coupled between two adjacent odd data channels of a plurality of data channels. Each of the plurality of second charge sharing switches is individually coupled between two adjacent even data channels of the plurality of data channels.
US09041638B2 Liquid crystal driving circuit having a common-signal output circuit and a segment-signal output circuit and method
A liquid-crystal-driving circuit includes: a plurality of resistors connected in series between a first and second potentials; one or more voltage follower circuits to impedance-convert one or more intermediate potentials between the first and second potentials, to be outputted, respectively, the intermediate potentials generated at one or more connection points between the resistors, respectively; a common-signal-output circuit to supply common signals to common electrodes of a liquid-crystal panel, respectively, the common signals each being at the first and second potentials, and the intermediate potentials; and a segment-signal-output circuit to supply segment signals to segment electrodes of the panel, respectively, the segment signals each being at the first and second potentials, and the intermediate potentials according to the common signals, the segment-signal output circuit to change the potentials of the segment signals in a ramp form, at least if the potentials of the segment signals are changed with a maximum-possible-potential difference.
US09041634B2 Pixel structure of organic light emitting diode and driving method thereof
The present invention provides a pixel structure of an organic light emitting display device and driving method thereof. The pixel structure comprises first to fifth thin film transistors, a capacitor and an OLED device. Following steps are performed for the pixel structure in a refresh process of each frame of images: during a pre-charging period, the scan line and a first control signal (EM) are at a low level, a second control signal (EMD) is at a high level; during a compensation period, the scan line is at a low level, the first control signal (EM) and the second control signal (EMD) are at a high level; and during a light emitting period, the scan line is at a high level, the first control signal (EM) and the second control signal (EMD) are at a low level.
US09041632B2 Device for displaying a text message
A device for displaying a text message, comprising a display (10) having a plurality of characters, each of said characters being arranged at a fixed position, not overlapping with any other of said characters, and being adapted to be switched on and off, and a controller being connected to said plurality of characters and being adapted to switch on and off selected characters so that at a given time, a selected sub-group of said characters is switched on, the selected sub-group displaying a text message.
US09041630B2 Semiconductor device, display device, and electronic device
A pixel includes a load, a transistor which controls a current supplied to the load, a storage capacitor, and first to fourth switches. By inputting a potential in accordance with a video signal into the pixel after the threshold voltage of the transistor is held in the storage capacitor, and holding a voltage of the sum of the threshold voltage and the potential, variations of a current value caused by variations of threshold voltage of a transistor can be suppressed. Consequently, a predetermined current can be supplied to the load such as a light-emitting element. Further, by changing the potential of a power supply line, a display device with a high duty ratio can be provided.
US09041629B2 Laminated structure, display device and display unit employing same
A laminated structure which can reduce defect by preventing deposition failure or holes of an insulating film, manufacturing method, and a display unit that employ same are provided. The laminated structure as an anode for organic light-emitting devices is provided on a flat surface of a substrate. In the laminated structure, an adhesive layer made of ITO, a reflective layer made of silver or an alloy containing silver, and a barrier layer made of ITO are layered in this order from the substrate side. A cross sectional shape of the laminated structure in the laminated direction is a forward tapered shape. A sidewall face of the adhesive layer, the reflective layer, and the barrier layer is totally covered by an insulating film, and deposition failure or holes of the insulating film is prevented. A taper angle made by the sidewall face and the flat surface is preferably from about 10° to about 70°. The laminated structure can be used as a reflective electrode, a reflective film, or a wiring for a liquid crystal display.
US09041627B2 Display apparatus and method of driving same
A display apparatus including a pixel array and a driver configured to drive the pixel array, the pixel array having scanning lines as rows, signal lines as columns, a matrix of pixels disposed at respective intersections of the scanning lines and the signal lines, and power supply lines disposed along respective rows of the pixels, the driver having a main scanner for successively supplying control signals to the scanning lines to perform line-sequential scanning on the rows of the pixels, a power supply scanner for supplying a power supply voltage, which selectively switches between a first potential and a second potential, to the power supply lines in synchronism with the line-sequential scanning, and a signal selector for supplying a signal potential, which serves as a video signal, and a reference potential to the signal lines as the columns in synchronism with the line-sequential scanning.
US09041626B2 Organic light emitting display and power supply method thereof
An organic light emitting display and power supply method thereof operate an organic light emitting display panel using a high voltage EVLDD and a low voltage ELVSS supplied from a driver integrated circuit during a low power display mode. The organic light emitting display a first power supply configured to supply a first power including a first high voltage and a first low voltage, a second power supply configured to supply a second power including a second high voltage and a second low voltage, and an organic light emitting display panel configured to receive the first power from the first power supply in a standard display mode and configured to receive the second power from the second power supply in a low power display mode.
US09041625B2 Subpixel arrangement structure for a display device and display device
A subpixel arrangement structure for a display device, including a plurality unit pixels each having a red subpixel, a green subpixel and a blue subpixel, wherein openings of the red and green subpixels of each unit pixel are aligned along a direction of a column axis, and wherein an opening of the blue subpixel of each unit pixel is aligned along a direction of a row axis that is perpendicular to the column axis or arranged in zigzags along the direction of the row axis.
US09041608B2 Portable electronic device and hinge mechanism
A portable electronic device includes a casing unit, a first support unit, a second support unit, a first antenna unit, a second antenna unit, a first conducting unit and a second conducting unit. The casing unit includes a first outer casing and a second outer casing pivotally connected with the first outer casing. The first outer casing includes a hinge structure pivotally connected with the second outer casing. The first support unit includes a first support body disposed in the hinge structure, and the second support unit includes a second support body disposed in the hinge structure. The first antenna unit includes a first antenna structure disposed on the first support body and separated from the second outer casing. The second antenna unit includes a second antenna structure disposed on the second support body and separated from the second outer casing.
US09041607B2 Radio wave receiver
The radio wave receiver includes the metallic case body, the metallic rear case, and the antenna inside the case body. The screw portion is formed in the metal wall of the case body. The coupling resin member having an electrical insulating property is coupled to the rear case through a great number of fine irregularities formed in the metal wall thereof. The screw portion which engages with the screw portion is formed on the coupling resin member. The case body and the rear case are coupled to each other with the screw portions. The case body and the rear case are electrically insulated from each other by the electrical insulating function of the coupling resin member so as to improve receiving sensitivity of the antenna.
US09041602B2 Phased array transmission methods and apparatus
A phased array transmitter includes a plurality of vector modulators, an in-phase/quadrature (I/Q) signal generator, and a multiphase generator. The output phases of the plurality of vector modulators, and hence the direction of transmission of the phased array transmitter, are set and controlled by adjusting both the magnitude ratios of I/Q signal pairs generated by the I/Q signal generator and applied to I and Q inputs of the plurality of vector modulators and phases of a plurality of local oscillator (LO) signal phases generated by the multiphase generator and applied to LO inputs of the plurality of vector modulators. Setting and controlling the output phases of the vector modulators by varying both the magnitude ratios of the I/Q signal pairs and the phases of the LO signal phases allows the output phases of the plurality of vector modulators to be more precisely set and controlled than if the output phases were to be set and controlled only through the LO paths or only through the I/Q signal paths of the plurality of vector modulators.
US09041598B2 Non Doppler-tolerant pulse compression in radar systems
A method for processing return radar waveforms in response to transmitted radar waveforms. The method includes receiving, with a processor, a return radar waveform having a Doppler shift larger than Doppler tolerance. The method also includes separating, with the processor, the return radar waveform into a plurality of shortened waveforms. The method also includes compressing, with the processor, each of the plurality of shortened waveforms with a shortened form of the return radar waveform. The method also includes summing, with the processor, the plurality of compressed, shortened waveforms by computing a Doppler Fourier transform for each radar range bin of the return radar waveform using the plurality of compressed, shortened waveforms.
US09041597B2 Method for filtering of clutter by scan-to-scan correlation using doppler information
The present disclosure concerns a method for post-processing of radar data that uses information of Doppler speed as obtained by coherent processing of the input data, to reduce clutter due to waterbodies, in particular the sea clutter. The present disclosure further concerns a coherent radar provided with means suitable to implement the invention method.
US09041594B2 RF based tracker for rotating objects
An RF beam is used to probe the presence or absence of a rotating blade in a known field of view. Timing of appearance or disappearance or “zero-crossing” of a reflected signal is correlated with timing of the blade movement. Blades which are leading or lagging versus other blades will produce different timing signatures representative of alignment of the blades.
US09041591B2 Method, device and program for processing signals, and radar apparatus
A signal processing device, which includes an echo signal input module for inputting echo signals from an antenna discharging electromagnetic waves to a predetermined area and receiving the echo signals reflected on a target object, an echo signal level detection module for detecting a level of each of the echo signals from each location within the predetermined area, a target object detection module for detecting the target object based on the levels of the echo signals, a correlation processing module for performing scan-to-scan correlation processing of a plurality of scans, and a level adjustment module for adjusting the levels of the echo signals after the scan-to-scan correlation processing. The level adjustment module adjusts the levels of the echo signals corresponding to the locations where the target object detection module detects the target object.
US09041590B2 Device and method for controlling tracking information, and radar device
This disclosure provides a tracking information control device. The device includes a receiver for receiving, from two radar devices, data relating to a target echo received by a radar antenna of one of the radar devices, and data relating to a target echo received by a radar antenna of the other radar device, the data being obtained from tracking the target echoes, respectively, a determiner for determining whether the target echoes indicate the same target object, an ID applier for applying the same ID to the target echoes when the determiner determines that the target echoes indicate the same target object, and a transmitter for transmitting the same IDs to the radar devices in order to inform whether the target echoes displayed by the radar devices, respectively, indicate the same target object.
US09041589B2 Systems and methods for determining a radar device coverage region
A system for determining a coverage region of a radar device is disclosed. The system may have one or more processors and a memory. The memory may store instructions that, when executed, enable the one or more processors to receive radar data generated by a radar device and lidar data generated by a lidar device. The radar data may include radar data points representing objects detected by the radar device and the lidar data may include lidar data points representing objects detected by the lidar device. The one or more processors may be further enabled to determine a radar coverage region for the radar device by comparing one or more radar data points to one or more lidar data points, and to generate data used to display a graphical representation of the radar coverage region.
US09041585B2 SAR autofocus for ground penetration radar
A method of synthetic aperture radar autofocus for ground penetration radar. The method includes transmitting a signal via an antenna; receiving a reflected signal comprising a plurality of image blocks via the antenna; reading each image block from the reflected signal via a processor; locating prominent targets in each image block via the processor; estimating ground penetration phase error via the processor in each image block via phase error inputs including pulling range and quantization level by generating a 1D phase error and converting the 1D phase error into a 2D phase error of an image spectra; refocusing each image block according to estimated ground penetration phase error for that image block via the processor; and forming an image mosaic comprising each refocused image block via the processor.
US09041583B2 Comparator, solid-state imaging device, electronic apparatus, and driving method
A comparator includes: a first amplifying unit that includes a differential pair configured with a pair of transistors which are first and second transistors, and amplifies a difference of signals input to each of the gate electrodes of the first and second transistors, to output; a second amplifying unit that amplifies the signal output from the first amplifying unit; a first condenser that is disposed between a gate electrode of the first transistor and a reference signal supply unit; a second condenser that is disposed between a gate electrode of the second transistor and a pixel signal wiring; a third transistor that connects a connection point of the gate electrode of the first transistor and the first condenser to the pixel signal wiring; and a fourth transistor that connects a connection point of the gate electrode of the second transistor and the second condenser to the pixel signal wiring.
US09041581B2 Analog-to-digital conversion
An analog-to-digital conversion apparatus 10 comprises a plurality of analog-to-digital converters 30 and a ramp generator 20. Each of the analog-to-digital converters 30 comprises an analog signal input for receiving an analog signal level and a ramp signal input. A control stage is arranged to compare the ramp signal with the analog signal level and, based on the comparison, to enable a counter provided at the analog-to-digital converter or to latch a digital value received from a counter. The control stage comprises a comparator in the form of a first differential amplifier with a first branch connected to the input for receiving the ramp signal, a second branch connected to the analog signal input and an output, and a biasing current source for biasing the first differential amplifier. A feedback circuit controls the biasing current source. The feedback circuit comprises a second differential amplifier OP1 with a first input connected to a node 46 on the first branch and a second input connected to a reference voltage VB such that the node on the first branch is maintained at a substantially constant voltage.
US09041575B2 Analog-to-digital conversion apparatus and method capable of achieving fast settling
A method utilized in an analog-to-digital conversion apparatus, for converting an analog input signal into a digital output signal including a first portion and a second portion, includes: using a comparator circuit to compare the analog input signal with at least one first reference level to generate a preliminary comparison result, the at least one first reference level being used for determining the first portion; estimating the first portion according to the preliminary comparison result; based on the preliminary comparison result, performing the successive approximation procedure to obtain a posterior comparison result according to a plurality of second reference levels, the second reference levels being used for determining the second portion; and, estimating the second portion according to the posterior comparison result. The preliminary and posterior comparison results are generated by the comparator circuit.
US09041570B2 Analog-to-digital converter and analog-to-digital conversion method
An analog-to-digital converter according to the present invention includes first and second analog-to-digital conversion cells (11, 12), control means (10) for, when a mode specifying signal MD indicates a first mode, generating a control signal that sets first and second input ranges to the same voltage range and sets first and second clocks to different phases, and when the mode specifying signal MD indicates a second mode, generating the control signal that sets the first and second input ranges to one continuous voltage range and sets the first and second clocks to the same phase, ADC cell control means (111) for controlling the voltage ranges of the first and second input ranges according to the control signal, and a sampling clock generation unit (112) that generates the first and second sampling clocks according to the control signal.
US09041568B2 Estimator for estimating a probability distribution of a quantization index
The invention relates to an estimator for estimating a probability distribution of a quantization index generated from a source coder encoding a source signal, into a sequence of quantization indices, the source signal being described by a signal model, the source coder providing a current quantization index and current side information, the estimator being configured to obtain auxiliary parameters based on a configuration of the source coder and the current available side information and the signal model, the estimator being further configured to adaptively update the probability distribution of a quantization index upon the basis of a probability density function relating to a previous state of the estimator, the auxiliary parameters, the current quantization index and the current side information.
US09041567B2 Using variable encodings to compress an input data stream to a compressed output data stream
Provided are a computer program product, system, method, and data structure for compressing an input data stream. A determination is made of consecutive data units in the input data stream that match consecutive data units in a history buffer. A copy pointer symbol indicates a copy pointer symbol referencing previously received data units in the history buffer. A determination is made of a relative displacement count in the history buffer at which the number of matching consecutive data units start. A determination is made of a range of relative displacement counts comprising one of a plurality of ranges of displacement counts including the determined relative displacement count. A determination is made of the encoding scheme associated with the determined range. An encoding of the relative displacement count is determined from the determined encoding scheme. The determined encoding of the relative displacement count is indicated in the copy pointer.
US09041564B2 Bus signal encoded with data and clock signals
A CODEC includes a transmission path between an encoder and a decoder. The encoder receives bits of data in a first form in which each bit of the data is represented by switching between first and second logic states and no voltage change between consecutive bits of the same logic state and serially transmits the bits in a second form in which the first logic state is maintained at a high voltage, the second logic state is maintained at a low voltage, and an intermediate voltage is maintained between consecutive bits. The decoder receives the bits in the second form and derives a clock from the occurrences of the intermediate voltage. The clock, repetitively, is maintained at a logic high, then switches directly from the logic high to a logic low, then is maintained at the logic low, and then switches directly between the logic low and the logic high.
US09041563B2 Legend highlighting
A method for manufacturing keycap includes applying a first coating layer on a surface of a keycap layer, applying a second coating layer on top of the first coating layer, etching at least a portion of the first coating layer to a first depth to form a first etched area, and etching at least a portion of the first etched area to a second depth to form a second etched area.
US09041562B2 Controlling a voice site using non-standard haptic commands
An apparatus and an article of manufacture for controlling a voice site using a haptic input modality include validating a haptic input from an instrument capable of accessing a voice site, processing the haptic input on a server to determine a voice site command corresponding to the haptic input, and processing the voice site command at the server to control an interaction with the voice site.
US09041561B2 Method for controlling power usage of a reporting device
A system and method for controlling power usage of a reporting device associated with an asset is disclosed. According to one embodiment, a method determines whether the reporting device is in a sleep mode or an active mode and in response to determining the reporting device is in the sleep mode, the method maintains the sleep mode and in response to determining a state change associated with the reporting device, the method powers up the reporting device to the active mode.
US09041559B2 Method and a monitoring device for monitoring a cabin region, and also an aircraft cabin
Disclosed is a method for the monitoring of a cabin region of a transport system located outside a field of view, wherein at least one light beam is emitted, passing through the cabin region in the longitudinal direction, and in the event of a disturbance of the at least one light beam path a message is generated. A monitoring device is also provided, with at least one emitter unit for purposes of emitting at least one light beam, with at least one receiver unit for purposes of receiving the emitted light beam, and with at least one messaging unit for purposes of generating a message in the event of a disturbance of the at least one light beam path; also disclosed is an aircraft cabin with at least one such monitoring system.
US09041558B1 Parking sensor device
A parking sensor device has a casing, a front cover, a sensor module and an assembling clamp. The casing has two first hooking elements. The front cover is mounted on the casing. The sensor module is mounted in the casing and the front cover. The assembling clamp detachably engages the casing and has two second hooking elements. The second hooking elements selectively hook the first hooking elements of the casing respectively. The casing and the assembling clamp are engaged quickly with each other, thereby facilitating the easy fabrication of the parking sensor device and improving the convenience of maintenance of the parking sensor device.
US09041557B2 Method for making a parking arrangement equipped with an automatic vehicle detection system ready for operation, and parking arrangement for use of the method
Parking arrangement and method for making a parking arrangement equipped with an automatic vehicle detection system ready for operation, which parking arrangement comprises a central computer with a database and at least a number of parking places identifiable by a location code, which parking places are each provided with at least one wirelessly operating parking sensor module, which is connected with the central computer via a UHF radio link and which is provided with an identification code, which parking sensor module comprises at least one vehicle sensor which in operation provides measuring values representative of the presence or absence of a vehicle in the respective parking place, wherein use is made of parking sensor modules which have an RFID identification circuit in which the identification code is stored, which identification code is wirelessly readable.
US09041551B2 Nth leadless electrode telemetry device, system and method of use
A disclosed telemetry system comprises an Nth number of telemetry devices and an equal number of standard disposable circular electrode patches. A body of each telemetry device in the system includes a female snap receptor configured to attach to a single male snap post of an electrode patch. A wireless transmitter module is disposed immediately around and in direct connection with each female snap receptor. Each wireless transmitter module transmits a signal from the respective female snap receptor to a receiver. A wireless receiver module is configured to receive and to process an Nth number of transmitted signals from the Nth number of telemetry devices into an Nth−1 number of signals where the number of signals is greater than zero. There are Nth−1 number of signals because at least one of the Nth telemetry devices is configured as a ground reference for the rest of the Nth telemetry devices.
US09041547B2 System and method for stick-slip correction
A method of processing downhole measurement data includes: receiving formation measurement data generated by a downhole tool during a logging-while drilling operation over a selected time period; receiving a measured depth corresponding to the selected time period based on data taken at a surface location; receiving tool rotation data generated by measurements of a rotational rate of the downhole tool taken by a downhole sensor during the selected time period; calculating a new depth of the tool as a function of time over the selected time period based on a relationship between the tool rotation data and the measured depth; and correcting an original depth of the measurement data with the new depth.
US09041546B2 System and method for position detection
A system and method for detecting a position of a person or second machine relative to a machine is provided. The system includes a transmitter system located on the machine, a locator for being carried by the person, means for determining the position of said locator relative to the transmitter system, means for defining one or more safety zones around the machine; and warning means for generating a signal when said locator enters into any of said one or more safety zones. The transmitter system includes a controller for generating a uniquely encoded magnetic signal and a plurality of drivers in communication with the controller for transmitting the uniquely encoded magnetic signal. According to the method a uniquely encoded magnetic signal is generated and transmitted around the machine from a transmitter system located on the machine. The magnetic signal is received and processed at a locator carried by the person. A locator radio frequency signal is transmitted from the locator in response to the received and processed magnetic signal. The locator radio frequency signal is received at the transmitter system. An algorithm is performed at the transmitter system based on the magnetic signal and locator radio frequency signal to determine the position of the locator relative to the transmitter system.
US09041540B2 Radio frequency identification tag gripper device
The present invention provides a radio frequency identification tag gripper device, the technical scheme including: a first gripper portion; a second gripper portion, which generates a gripping force together with the first gripper portion; a radio frequency identification tag, a circuit portion of which is divided into at least a first section and a second section, an upper surface of the first section and a lower surface of the second section being coated with strong glue, wherein the upper surface of the first section is used to bond with a grip surface of the first gripper portion when gripped tightly, and the lower surface of the second section is used to produce a coupling force with a surface of the gripped object when gripped tightly. Utilizing the technical solution of the present invention, it is possible to further improve the security of monitoring of the radio frequency identification tag.
US09041539B2 RFID tag and method for receiving signal thereof
Provided are a radio frequency identification (RFID) tag and a method for receiving a signal of the RFID tag. The RFID tag includes a voltage generator configured to generate a voltage signal from a received signal, a common gate circuit configured to convert the voltage signal into a current signal, a current/voltage converter configured to the current signal into a voltage signal by using a resistance value, a low-pass filter configured to perform low-pass filtering on the converted voltage signal, a buffer configured to buffer the low-pass-filtered voltage signal within an operation range, and a peak detector configured to detect a peak value from the buffered signal to demodulate information data. The current/voltage converter controls the resistance value to convert the current signal into a voltage signal included within the operation range of the buffer.
US09041537B2 Pre-alarm for abnormal merchandise handling
Security systems and methods configured for use with an item of merchandise for retail display are provided. In one example, a security system includes at least one sensor operably coupled to the item of merchandise and at least one alarm module operably coupled to, and configured to communicate with, the at least one sensor. The alarm module is configured to generate a first alarm signal in response to the item of merchandise being handled in an abnormal manner, and the alarm module is further configured to generate a second alarm signal in response to the item of merchandise continuing to be handled in an abnormal manner. In general, the second alarm signal is different than the first alarm signal.
US09041536B2 Asset retention device for an asset retention system
An asset retention device, including: a housing including a base portion and a cap portion, the base portion and the cap portion containing a plurality of electrical contacts; and an asset attachment structure securely coupled to the cap portion and making electrical contact with the plurality of electrical contacts, thereby completing an electrical circuit through the asset attachment structure and the housing; wherein, if the continuity of the asset attachment structure is broken, the electrical circuit is broken. The base portion of the housing is configured to be selectively coupled to a main console including a controller/processor operable for detecting a break in the continuity of the asset attachment structure and the associated electrical circuit. The asset retention device also includes an identifying chip. The asset attachment structure includes a plurality of hooked ends that extend through channels manufactured into an interior portion of the cap portion of the housing.
US09041534B2 Fluid container resource management
Fluid tanks in a hospital or similar environment include sensors to detect, e.g., state and location, which can be communicated to a central station where this data can be processed to permit predictions of resource usage and enable automated management of the fluid tanks.
US09041533B1 Automatic part mapping system
A method, apparatus, and computer program product for identifying parts in a vehicle. Signals are received from a plurality of transponders associated with the parts in the vehicle. Locations of the parts are identified based on signal strengths for the signals received from the plurality of transponders and an identification of the parts in the signals.
US09041529B2 Identification devices
An identification device comprising an ultrasound transmitter unit (16) and an outer housing (6) which receives said transmitter unit (16), said outer housing (6) comprising one or more apertures (32) which are sealed by a membrane, said membrane being substantially transparent to ultrasound when compared to the rest of the housing.
US09041521B2 Floor-based haptic communication system
The present relates to a system for providing vibration feedback to at least one foot. The system comprises at least one rigid surface for receiving the at least one foot, one vibrotactile actuator for each of the at least one rigid surface, and a suspension mechanism. The vibrotactile actuator is installed underneath the corresponding rigid surface and provides vibration feedback there through. The suspension mechanism supports the at least one rigid surface.
US09041519B2 Model helicopter attitude control and receiving device with reduced size and self-learning features
A model aircraft control and receiving device in a housing, comprising an electronic, gyroscopic multi-axis programmable flight attitude controller, having control inputs for a plurality of control channels and inputs for gyroscope signals, wherein the flight attitude controller provides at least one input for a receiver module disposed inside or outside of the housing of the flight attitude controller. The device may be used in a method for controlling and stabilizing a model helicopter, wherein the control comprises a self-learning function and/or the control comprises a coupling of the tail controller to the swashplate controller and/or the control comprises a stopping support function.
US09041517B2 RFID reading device, RFID system, method for controlling the transmitting power of an RFID reading device, and computer program product
The invention relates to an RFID reading devices having: transmitting means for generating a field for inductively coupling to an RFID transponder; measuring means for measuring a field strength of the field; and control means for controlling the transmitting power on the basis of the measured field strength.
US09041516B2 Context aware detection and mobile platform wake
A device includes a processor having a standby state, a control unit coupled to the processor to receive wireless identification information, and a storage device to store a processor wake policy. The control unit applies the policy to received wireless identification information to wake the processor.
US09041503B2 Amorphous transformer
An amorphous transformer which includes an amorphous core formed of an amorphous material with a lap provided at an upper portion and allowed to stand in substantially a vertical direction while being supported at a core support member, and a coil which is fitted with the amorphous core. The core support member is formed by integrating a core support member for supporting a side surface of the amorphous core and a corner support member for supporting a corner portion of the core. The core support member is provided in substantially a vertical direction along at least one of the side surfaces of the core.
US09041501B2 Amorphous transformer core
The disclosure relates to an amorphous transformer core including at least one transformer core disc with a plurality of layers of strip-like amorphous core material arranged concentrically around at least one winding window. At least one heat dissipating plate extends into an interior of the amorphous transformer core and is fed from there into at least one heat exchange region outside the amorphous transformer core. This can enhance dissipation of heat energy which is produced inside the amorphous transformer core.
US09041500B2 Magnetic core
A magnetic core includes a first core having a predetermined magnetic permeability and a second core formed of the same material as the first core. The second core forms a closed magnetic circuit together with the first core. The second core is configured to radiate heat through a heat radiating unit. At least one of the first core and the second core is configured to be wound with a coil. The magnetic core includes a third core that is arranged between the first core and the second core and has a lower magnetic permeability than the first core.
US09041499B2 Nano-electromechanical switch
A nano-electromechanical switch and a method for designing a nano-electromechanical switch. The nano-electromechanical switch includes at least one actuator electrode and a curved cantilever beam. The curved cantilever beam is adapted to flex in response to an activation voltage applied between the actuator electrode and the curved cantilever beam to provide an electrical contact between the curved cantilever beam and an output electrode of the nano-electromechanical switch. Before, during and after the curved cantilever beam flex in response to the activation voltage, a remaining gap between the curved cantilever beam and the actuator electrode is uniform.
US09041498B1 Mechanically short multi-carriage tuner
Mechanically short multi-carriage impedance tuners use meandering slabline structures. The meandering structure reduces the overall tuner length by a factor of 2.5 at 0.4 GHz. The critical issue of slabline bends is addressed with several low loss, low reflection alternatives. A preferred configuration comprises a vertical-horizontal slabline transition. Cable connections are discarded because of reflections and insertion loss. Measured results show acceptable performance. The tuner is mostly interesting for relatively lower microwave frequencies, such as 1 GHz.
US09041497B2 Minimal intrusion very low insertion loss technique to insert a device to a semi-rigid coaxial transmission line
A signal conditioning apparatus can include a coaxial cable having at least one slot formed therein. A conductive film can be applied to the coaxial cable so as to cover each slot. A device mounting surface can be formed within the slot and a protection device can be mounted on the device mounting surface. A housing consisting of one or more interlockable portions can be coupled to the coaxial cable.
US09041496B2 Adjustable resonator
The adjustable resonator according to the invention has a casing, which is composed of walls, a lid and a bottom, a resonator cavity inside the casing and an internal conductor inside the resonator cavity, which internal conductor is in electric contact with the casing. The resonator further comprises a moveable adjustment piece, which comprises a conductive adjustment member, a conductive upper plate, and a dielectric support member. The adjustment member has a stem, which is vertical, and a cap as an expansion thereof. The adjustment member can be moved downwards so that its stem and the fixed internal conductor connected to the bottom of the resonator go within each other. The movement of the adjustment piece in the coaxial resonator first decreases the resonance frequency and then slowly increases it. Therefore the resonator provides a very wide adjustment area for the resonance frequency.
US09041493B2 Coupling structure for multi-layered chip filter, and multi-layered chip filter with the structure
A coupling structure for a multi-layered chip filter includes a resonator layer including a resonator pattern with spaced areas and a coupling layer including at least two separated overlap portion patterns overlapped with the spaced areas of the resonator pattern respectively and a connecting portion pattern having multiple linear portions connecting the separated overlap portion patterns in an area not-overlapped with the resonator pattern.
US09041490B2 De-noise circuit and de-noise method for differential signals and chip for receiving differential signals
A de-noise circuit and a de-noise method for differential signals and a chip for receiving differential signals are provided. The de-noise circuit includes a filter and a register. Both the filter and the register are disposed in the chip. The chip receives a differential signal through a first input terminal and a second input terminal. The filter is coupled between the first input terminal and the second input terminal of the chip. The filter filters out noises in the differential signal. The filter includes at least one filter unit. Each filter unit has at least one resistance value or at least one capacitance value. The register is coupled to the filter. The register receives and stores a control value. The register controls the resistance value or the capacitance value of at least one of the filter units based on the control value.
US09041487B2 Surface acoustic wave filter and duplexer using same
An SAW filter and a duplexer excellent in electrical characteristics will be provided. An SAW filter has a piezoelectric substrate 40, a surface acoustic wave element 10 having a first IDT electrode 1 on the piezoelectric substrate 40, a first signal line 31 electrically connected to the first IDT electrode 1, and a ring-shaped reference potential line 9 which has a first intersecting portion intersecting with the first signal line 31 through an insulation member 41 and surrounds the surface acoustic wave element 10.
US09041484B2 Method, system, and apparatus for resonator circuits and modulating resonators
Embodiments of resonator circuits and modulating resonators and are described generally herein. One or more acoustic wave resonators may be coupled in series or parallel to generate tunable filters. One or more acoustic wave resonances may be modulated by one or more capacitors or tunable capacitors. One or more acoustic wave modules may also be switchable in a filter. Other embodiments may be described and claimed.
US09041483B2 Attenuator
An attenuator includes, on a substrate: a resistor section; an insulating film covering the resistor section; and connection terminals covering the insulating film and connected in part to the resistor section. A total thickness of the insulating film and the connection terminal in a region where the insulating film and the connection terminal overlap with the resistor section is from 50 μm to 200 μm.
US09041475B1 Thermally stable low power chip clocking
A method of controlling an integrated circuit chip including first and second clock sources, the first clock source being more thermally stable and having a higher power consumption, the integrated circuit chip being operable in a first mode in which the first clock source is inactive and the second clock source active and in a second mode in which the first and second clock sources are active, the method including operating the integrated circuit chip in the first mode; taking a measurement indicative of temperature; if the measurement indicates that the temperature is outside of a temperature band: activating the first clock source so as to operate the integrated circuit chip in the second mode; recalibrating the second clock source against the first clock source; and following the recalibration, deactivating the first clock source so as to return the integrated circuit chip to the first mode.
US09041472B2 Power amplifier modules including related systems, devices, and methods
A power amplifier module includes a power amplifier including a GaAs bipolar transistor having a collector, a base abutting the collector, and an emitter, the collector having a doping concentration of at least about 3×1016 cm−3 at a junction with the base, the collector also having at least a first grading in which doping concentration increases away from the base; and an RF transmission line driven by the power amplifier, the RF transmission line including a conductive layer and finish plating on the conductive layer, the finish plating including a gold layer, a palladium layer proximate the gold layer, and a diffusion barrier layer proximate the palladium layer, the diffusion barrier layer including nickel and having a thickness that is less than about the skin depth of nickel at 0.9 GHz. Other embodiments of the module are provided along with related methods and components thereof.
US09041470B2 Wireless communication unit and semiconductor device having a power amplifier therefor
A semiconductor package device comprises a radio frequency power transistor having an output port operably coupled to a single de-coupling capacitance located within the semiconductor package device. The single de-coupling capacitance is arranged to provide both high frequency decoupling and low frequency decoupling of signals output from the radio frequency power transistor.
US09041467B2 Power amplifier with feedback impedance for stable output
An amplifier circuit amplifies a signal for wireless transmission. A feedback circuit, including a capacitor, is coupled to the amplifier circuit. Components of the feedback circuit are selected based on a feedback factor such that an input impedance to the amplifier circuit has a same impedance characteristic as a feedback circuit impedance of the feedback circuit.
US09041463B2 Low noise amplifier for multiple channels
An amplifier system has an amplifier for amplifying a plurality of input signals from a plurality of different channels, and a plurality of demodulators each operatively coupled with the amplifier for receiving amplified input signals from the amplifier. Each demodulator is configured to demodulate a single amplified input channel signal from a single channel of the plurality of different channels. The system thus also has a plurality of filters, coupled with each of the demodulators, for mitigating the noise.
US09041461B2 Pop-free single-ended output class-D amplifier
A pop-free single-ended output class-D amplifier includes: an input signal generator for generating an input signal; a power supply for supplying input power; a reference voltage generator for generating a reference voltage; a gain-adjustable stage for generating an amplified signal according to the reference voltage and adjusting a gain of the single-ended output class-D amplifier; a pulse width modulation module for outputting a pulse width modulation signal according to the reference voltage, the amplified signal, and the input power; a low-pass filter for low-pass filtering the pulse width modulation signal to generate an output voltage; and a logic controller for generating at least one control signal to control the reference voltage generator, the gain-adjustable stage, and the pulse width modulation module according to the input power, the reference voltage, and the pulse width modulation signal.
US09041458B2 Universal filter implementing second-order transfer function
An apparatus includes a biquad filter having first and second lossy integrators and multiple input networks. Each lossy integrator includes an amplifier, and each input network is coupled to an input of the amplifier in one of the lossy integrators. Each input network includes multiple resistors and a capacitor arranged in a T-structure. In a single-ended configuration, each input network includes a grounded capacitor. In a fully-differential configuration, each input network includes one of: a grounded capacitor and a floating capacitor coupled to another input network. The amplifiers and resistors could form a portion of an integrated circuit chip, which also includes multiple input/output pins. A single grounded capacitor could be coupled to a single input/output pin of the integrated circuit chip for an input network. A single floating capacitor could be coupled to two input/output pins of the integrated circuit chip for a pair of input networks.
US09041455B2 Semiconductor device and communication interface circuit
A semiconductor device prevents recognition failure in mutual recognition between a host and a device compliant with USB Specifications. The semiconductor device includes: an interterminal opening/closing section having a plurality of first conductivity type MOS transistors, the respective sources or drains of which are cascaded, in which the source or drain of a first-stage MOS transistor among the cascaded MOS transistors is used as a first terminal, the source or drain of a final-stage MOS transistor among the cascaded MOS transistors is used as a second terminal, and the respective gates of the cascaded MOS transistors receive a control signal for controlling the opening or short-circuiting between the first and second terminals; and a current bypass section that reduces a current flowing into either one connection node coupling the respective sources or drains of the cascaded MOS transistors.
US09041449B2 Semiconductor storage device
A semiconductor storage device which stops and resumes the supply of power supply voltage without the necessity of saving and returning a data signal between a volatile storage device and a nonvolatile storage device is provided. In the nonvolatile semiconductor storage device, the volatile storage device and the nonvolatile storage device are provided without separation. Specifically, in the semiconductor storage device, data is held in a data holding portion connected to a transistor including a semiconductor layer containing an oxide semiconductor and a capacitor. The potential of the data held in the data holding portion is controlled by a data potential holding circuit and a data potential control circuit. The data potential holding circuit can output data without leaking electric charge, and the data potential control circuit can control the potential of the data held in the data holding portion without leaking electric charge by capacitive coupling through the capacitor.
US09041448B2 Flip-flops in a monolithic three-dimensional (3D) integrated circuit (IC) (3DIC) and related methods
Flip-flops in a monolithic three-dimensional (3D) integrated circuit (IC)(3DIC) and related method are disclosed. In one embodiment, a single clock source is provided for the 3DIC and distributed to elements within the 3DIC. Delay is provided to clock paths by selectively controllable flip-flops to help provide synchronous operation. In certain embodiments, 3D flip-flop are provided that include a master latch disposed in a first tier of a 3DIC. The master latch is configured to receive a flip-flop input and a clock input, the master latch configured to provide a master latch output. The 3D flip-flop also includes at least one slave latch disposed in at least one additional tier of the 3DIC, the at least one slave latch configured to provide a 3DIC flip-flop output. The 3D flip-flop also includes at least one monolithic intertier via (MIV) coupling the master latch output to an input of the slave latch.
US09041447B2 Receiver circuit
A receiver circuit includes a first amplification unit, a second amplification unit, a first equalizing unit, and a second equalizing unit. The first amplification unit is configured to differentially amplify an input signal and a reference signal and generate a first intermediate output signal and a second intermediate output signal. The second amplification unit is configured to differentially amplify the first and second intermediate output signals and generate an output signal. The first equalizing unit is configured to control the level of the second intermediate output signal in response to the output signal. And the second equalizing unit is configured to control the level of the first intermediate output signal in response to the output signal.
US09041435B2 Method of forming electronic components with reactive filters
An electronic component comprising a half bridge adapted for operation with an electrical load having an operating frequency is described. The half bridge comprises a first switch and a second switch each having a switching frequency, the first switch and the second switch each including a first terminal, a second terminal, and a control terminal, wherein the first terminal of the first switch and the second terminal of the second switch are both electrically connected to a node. The electronic component further includes a filter having a 3 dB roll-off frequency, the 3 dB roll-off frequency being less than the switching frequency of the switches but greater than the operating frequency of the electrical load. The first terminal of the filter is electrically coupled to the node, and the 3 dB roll-off frequency of the filter is greater than 5 kHz.
US09041434B2 Control device and method for actuating a semiconductor switch
A control device for influencing a flow of energy in a load circuit between an electrical voltage source and an electrical load, having a semiconductor switch including a conductive section which is formed between an input connection and an output connection, can be looped into the load circuit, and has an electrical resistance adjustable by means of an electrical potential which can be applied to a control connection associated with the semiconductor switch, and having a control circuit which is coupled to the control connection and includes a freewheeling means connected in parallel to the load. The control circuit is designed to supply a control current at the control connection which is proportional to a voltage via the freewheeling means.
US09041429B2 Sequential state elements for triple-mode redundant state machines, related methods, and systems
The disclosure relates generally to sequential state elements (SSEs), triple-mode redundant state machines (TMRSMs), and methods and systems for testing triple-mode redundant pipeline stages (TMRPSs) within the TMRSMs using triple-mode redundant SSEs (TMRSSEs). The SSEs, TMRSMs, TMRPSs, and TMRSSEs may be formed as integrated circuits on a semiconductor substrate. Of particular focus in this disclosure are SSEs used to sample and hold bit states. Embodiments of the SSEs have a self-correcting mechanism to protect against radiation-induced soft errors. The SSE may be provided in a pipeline circuit of a TMRSM to receive and store a bit state of a bit signal generated by combinational circuits within the pipeline circuit. More specifically, the SSEs may be provided in a TMRSSE configured to perform self-correction. Also disclosed are methods for using the TMRSSE to test redundant pipeline stages of the TMRSM.
US09041422B2 Circuit arrangement with a plurality of on-chip monitor circuits and a control circuit and corresponding methods
Implementations are presented herein that include a plurality of on-chip monitor circuits and a controller. Each of the plurality of on-chip monitor circuits is configured to measure a parameter of a semiconductor chip. The controller is coupled to the plurality of on-chip monitor circuits. The controller is configured to receive a measurement result from at least one of the plurality of on-chip monitor circuits and to control a calibration of another one of the plurality of on-chip monitor circuits in accordance with the measurement result.
US09041419B2 Thermally activated magnetic and resistive aging
Examples of the present invention include apparatus and methods for monitoring aging of an item. A solid-state structure is located within, adjacent to, or otherwise proximate the item, the solid-state structure including nanostructures. The electrical resistance and/or magnetization of the solid-state structure is determined to determine the degree of aging of the item. In representative examples, the solid-state structure includes nanostructures of a metal, such as a ferromagnetic metal, within a non-magnetic matrix, such as a semimetal, semiconductor, or insulator.
US09041417B2 Noncontact determination of interface trap density for semiconductor-dielectric interface structures
Embodiments of the subject method and apparatus relate to a sequence of noncontact Corona-Kelvin Metrology, C-KM, that allows the determination and monitoring of interface properties in dielectric/wide band gap semiconductor structures. The technique involves the incremental application of precise and measured quantities of corona charge, QC, onto the dielectric surface followed by determination of the contact potential difference, VCPD, as the material structure response. The V-Q characteristics obtained are used to extract the surface barrier, VSB, response related to the applied corona charge. The metrology method presented determines an intersection of the VCPD-QC characteristic obtained in the dark with the VOX-QC characteristic representing the dielectric response. The specific VSB-QC dependence surrounding the reference VFB value is obtained from this method and allows the noncontact determination of the dielectric interface trap density and its spectrum. Application of embodiments of the subject metrology method to thermal oxide on n-type 4H—SiC demonstrates the modification of the Dit distribution by Fowler-Nordheim stress. In addition, an ability to quantify and separate trapped charge components is provided.
US09041415B2 Waveguide, method of manufacturing the same, and electromagnetic wave analysis apparatus
Provided is a waveguide for guiding an electromagnetic wave between a first conductor layer and a second conductor layer each having a negative dielectric constant real part for the electromagnetic wave, the waveguide including a tapered structure in a part of the waveguide at which the electromagnetic wave exits or enters, in which a spatial profile of the tapered structure perpendicular to an optical axis extends to both sides with respect to the optical axis at least in one direction orthogonal to the optical axis as being closer to an opening plane at an outermost part of the tapered structure.
US09041414B2 Differential signal transmission cable property evaluating mechanism and evaluating method therefor
A differential signal transmission cable property evaluating mechanism includes a substrate having a signal line pad to be connected with a signal line conductor of a differential signal transmission cable and a ground pad to be connected with a shield conductor of the differential signal transmission cable, a pressing member for pressing the signal line conductor to the signal line pad, a shield conductor holding sheet including an elastic insulating sheet and a metal foil provided over one side of the elastic insulating sheet, the shield conductor holding sheet provided for indirectly connecting the shield conductor and the ground pad to each other by contacting the metal foil with the shield conductor and the ground pad, and a clip for fixing the shield conductor holding sheet.
US09041412B2 Methods of testing a connection between speakers and a power amplifier and devices therefor
The present disclosure provides methods and devices for testing a connection between speakers and a power amplifier. The disclosed methods and devices solve a problem that, upon a connection test for a power amplifier which has a booster power source, when a midpoint potential of the power amplifier and the voltage of the speaker connection terminal are compared, and it is determined that short-circuiting occurs on a ground side when the potential of the speaker connection terminal is lower than the midpoint potential, a wrong test is conducted if a midpoint potential is higher than a battery voltage.
US09041407B2 Oscillation circuit and test circuit
Disclosed herein is an oscillation circuit including: a control transistor changing an electric potential at an output terminal thereof by proceeding to one of a conduction state and a non-conduction state in accordance with an electric potential at an input terminal thereof; a transistor as an object of a measurement having a polarity of a channel identical to that of the control transistor, and connected in series with the control transistor between a power source and a ground; a capacitor delaying the change in the electric potential at the output terminal in accordance with a value of a leakage current leaked from the transistor as an object of a measurement when the control transistor proceeds from the conduction state to the non-conduction state; and an inversion circuit inverting the electric potential at the output terminal, thereby feeding the inverted electric potential back to the input terminal.
US09041406B2 Insulation deterioration detection apparatus
An apparatus capable of detecting reduction in insulation resistance between a vehicle body and a high-voltage circuit. In the apparatus, a filter for removing noise included in a potential to ground at a terminal of a coupling capacitor includes a digital filter and an aliasing suppression circuit for suppressing aliasing in the digital filter. In addition, a protection circuit, which protects the digital filter and a determiner operable to detect the reduction in insulation resistance from high-voltage noise generated in the high-voltage circuit, is electrically disposed between a resistor of the aliasing suppression circuit and a signal input of the digital filter, where a potential at a junction between the resistor of the aliasing suppression circuit and the signal input of the digital filter is lower than a potential at the terminal of the coupling capacitor upon application of the high-voltage noise to the apparatus.
US09041404B2 Electric power storage system
When a continuous short circuit occurs between both terminals of a battery pack, fault, destruction and rupture of the battery can occur. Further, when a momentary short circuit occurs, a user may continue to use, without knowing thermal and electrical damage to the batteries, and reliability for the batteries is impaired, To overcome the problem, in a battery pack configured by connecting a plurality of storage batteries in series, at least one first storage battery is included which has a low capacity compared to second storage batteries during high-rate discharge, and the first storage battery undergoes polarity inversion during external short circuit, thereby preventing the other batteries from becoming damaged. There are also included a detector that detects voltage of the first storage battery, and a fault signal generator that generates an output fault signal when a voltage detected by the detector inverses.
US09041399B2 Helical gradient coil for magnetic resonance imaging apparatus
A gradient coil is provided. The gradient coil comprises: a first layer comprised of a first plurality of turns of wires; and a second layer of coil comprised of a second plurality of turns of wires. Each turn of wire in the first and second plurality of turns of wires circles along the side walls of a cylindrical substrate and each turn of wire in the first and second plurality of turns of wires include a first portion wound along the inner side wall of the substrate and a second portion wound along the outer side wall of the substrate.
US09041398B2 RF antenna for MRI with a removable conductor
An RF transmit and/or receive antenna is disclosed, especially in the form of a coil structure or coil or loop arrangement, having one or more removable conductors, especially for use in a magnetic resonance imaging (MRI) system or a magnetic resonance (MR) scanner, for transmitting RF excitation signals (Bi field) for exciting nuclear magnetic resonances (NMR), and/or for receiving NMR relaxation signals. The RF antenna is provided such that it can be adapted in an easy way according to an application which either requires a large opening through the RF antenna or a parallel imaging capability.
US09041397B2 Radio frequency (RF) body coil assembly for dual-modality imaging
A radio frequency (RF) body coil assembly includes a coil support structure including an inner tubular member, an outer tubular member disposed radially outwardly from the inner tubular member, and a structural material disposed between the inner and outer tubular members, an RF coil mounted to an inner surface of the coil support structure, and a positron emission tomography (PET) detector assembly mounted to an outer surface of the coil support structure. A dual-modality imaging system is also described.
US09041396B2 Dynamic B0 field detection by magnetic resonance navigators, and correction for multichannel reception and/or transmission RF coil configurations
In a method for calculating a B0 field map (a map of the basic magnetic field) in a magnetic resonance apparatus, a navigator pulse is emitted and navigator response resulting from the navigator pulse are detected in at least some channels of a multichannel RF coil array. Each channel of the multichannel RF coil array includes an RF coil and spatial information regarding the respective positions of the individual RF coils is made available to a processor, together with the multiple navigator signals. Using the spatial information obtained from the position of the RF coils that respectively detected the navigator response signals, a B0 field map is generated, without the need for spatial encoding the respective navigator response signals.
US09041392B2 Current sensor
There is provided a current sensor capable of performing malfunction determination with high accuracy even under the influence of an adscititious magnetic field. A current sensor includes first and second current sensor units, a computation unit, a storage unit, and a determination processing unit. The first current sensor unit measures a target current. The first and second current sensor units have almost the same sensitivity. The computation unit calculates and outputs an addition value and a difference value of outputs of the first and second current sensor units. In the storage unit, the addition and difference values output from the computation unit are stored. The determination processing unit determines whether a malfunction has occurred by using the addition and difference values stored in the storage unit. The determination processing unit determines that a malfunction has occurred, in a case where there is a correlation between the addition and difference values.
US09041391B2 Partial magnetic biasing of magnetoresistive sensor
Various embodiments can be generally directed to a magnetoresistive stack with a first stripe height and a biasing magnet positioned adjacent the magnetoresistive stack. The biasing magnet can have a second stripe height that is less than the first stripe height. The first and second stripe heights may correspond to a minimum signal to noise ratio in the magnetoresistive stack.
US09041388B2 Non-contact current sensor
A non-contact current censor includes a spin valve structure (2), an electrical unit (4) that applies a varying current to the spin valve structure (2), and a resistance reading unit that electrically reads out a resistance value of the spin valve structure (2). When a current-induced magnetic field is detected, a coercive force of a free layer (14) is configured to be larger than the current-induced magnetic field as a detection target, and the electrical unit (4) allows the magnetization directions of a pinned layer (12) and the free layer (14) to transition between a mutually parallel state and a mutually anti-parallel state by applying the current to the spin valve structure (2). The resistance reading unit (5) detects a threshold value corresponding to the transition.
US09041387B2 360-degree angle sensor
This disclosure is directed to techniques for magnetic field angular position sensing. A device designed in accordance with this disclosure may include a magnetoresistive sensor configured to generate a signal indicative of an angular position of a magnetic field, the signal having an angular range of 180 degrees, a first polarity sensor configured to generate a signal indicative of a polarity of the magnetic field sensed from a first location, and a second polarity sensor configured to generate a signal indicative of a polarity of the magnetic field sensed from a second location different from the first location.
US09041386B2 Linear position measuring system and method for determining the position of a carriage in relation to a slide rail with an incremental scale placed along the slide rail and a scanner secured to the slide scale
A linear position measuring system (10) and a method for determining a position of a carriage in relation to a slide rail (12), with an incremental scale (14) placed along the slide rail (12) and a scanner secured to the slide scale. The scanner is designed to scan a plurality of incremental markings along the incremental scale (14), wherein the incremental markings can be scanned as an essentially analog signal progression. The scanner is designed to scan the incremental markings with a variable scanning frequency. The scanning frequency can be adaptively varied in relation to a currently acquired frequency of the analog signal progression, wherein the variable scanning frequency measures at least twice the currently acquired frequency of the analog signal progression.
US09041380B2 Reference voltage circuit and image-capture circuit
A reference voltage circuit for generating a reference voltage to be referred when a pixel signal is digitally converted, includes ramp voltage generating means for generating a ramp voltage which drops from a predetermined initial voltage at a certain gradient, a transistor for forming, together with the ramp voltage generating means, a current mirror circuit, and gain change means for changing a current value of a current flowing from a predetermined power supply via the transistor to change the gradient of the ramp voltage generated by the ramp voltage generating means.
US09041378B1 Dynamic maneuvering configuration for multiple control modes in a unified servo system
Systems and methods that provide control circuits having multiple sub-control inputs that control operation of a power electronics device (e.g., a power converter). Each of the multiple sub-control inputs are output from a separate sub-control circuit that includes a feedback circuit having an input tied to a common control node. The common control node is coupled to an input of a controller (e.g., a PWM controller). Outputs of each of the sub-control circuits are coupled to the common control node by a respective switch (e.g., diode, transistor, etc.) so that each of the sub-control circuits may be selectively coupled to the common control node to provide a control signal to a controller. Since components of each of the feedback compensations circuits are biased at a regulation voltage instead of a higher power supply voltage, the control circuit may switch between control modes with minimal delay.
US09041375B2 High resolution control for a multimode SMPS converter and high resolution slope generator
In various embodiments a controller for controlling the operation of a switched mode power supply is provided, the controller comprising: a first signal source configured to provide a first set of signals including a set signal and a clear signal, wherein the first set of signals may correspond to a first mode of operation of the switched mode power supply; a second signal source configured to provide a second set of signals including a set signal and a clear signal, wherein the second set of signals may correspond to a second mode of operation of the switched mode power supply; a selecting circuit coupled to the first signal source and to the second signal source, the selecting circuit being configured to select either the first set of signals or the second set of signals; a switching signal generating circuit coupled to the selecting circuit and configured to provide a switching signal to the switched mode power supply based on the set of signals received from the selecting circuit.
US09041372B2 Wide output voltage range switching power converter
A switching power converter includes a voltage source that provides an input voltage Vin to an unregulated DC/DC converter stage and at least one buck-boost converter stage to produce a desired output voltage Vout. The unregulated DC/DC converter stage is adapted to provide an isolated voltage to the at least one regulated buck-boost converter stage, wherein the unregulated DC/DC converter stage comprises a transformer having a primary winding and at least one secondary winding and at least one switching element coupled to the primary winding. The at least one buck-boost converter stage is arranged to operate in a buck mode, boost mode or buck-boost mode in response to a mode selection signal from a mode selection module. By influencing the pulse width modulation output power controller the at least one buck-boost converter stage is arranged to produce one or multiple output voltages.
US09041369B2 Method and apparatus for optimizing linear regulator transient performance
A voltage regulator compensation circuit provides power to a dynamic load and includes a power transistor configured to drive the dynamic load, a reference determining transistor configured to establish a voltage reference proportional to a regulated output voltage of the power transistor, and a control circuit coupled to a gate input of both the power transistor and the reference determining transistor. Also included is a comparison engine configured to compare the regulated output voltage and the voltage reference, and a current consuming transistor operatively coupled to an output of the power transistor and configured to provide a varying secondary load. The comparison engine is configured to control the current consuming transistor to increase current draw or decrease current draw from the power transistor based on the difference between the regulated output voltage and the voltage reference.
US09041366B2 Delay compensation circuit
A device (200) includes a circuit (202) and a driver stage (204) therefor. The circuit includes two sub-circuits (231 and 232). The driver stage includes switcher logic (206) that produces signals that control switching on and off of the sub-circuits. The switcher logic also produces other signals in advance of the signals that control the switching of the sub-circuits. The driver stage includes delay compensations circuits (221 and 222), coupled to the switcher logic and to the circuit, that produce timing signals for the switcher logic. The timing signals are closely aligned with moments that a changing voltage at a node between the sub-circuits passes through threshold voltages. The timing signals compensate for all delays of signals through the device such that a period that both sub-circuits are off is minimized, while ensuring that both sub-circuits are not on at a same time.
US09041361B2 Discharge device and discharge method for the active discharge of a capacitor for use in the electric-power system of an electric-drive vehicle
A discharge device actively discharges a main capacitor in an electric-power system of an electric-drive vehicle and comprises a discharge branch of a circuit connected in parallel to the capacitor and including a discharge transistor biased to “conduction” mode when the capacitor must be discharged. A control device is connected to a “gate/base” terminal of and controls the transistor, biasing the transistor to the mode when the capacitor is required to fee discharged. A control transistor maintains the discharge transistor in a “non-conductive” state when the control transistor is in the mode. The control transistor is in the state for the discharge transistor to be in the mode. A safety capacitor is interposed between the terminal and a power supply and charges when the discharge transistor is in the mode, causing a progressive decrease of current at the terminal, until the discharge transistor is biased to the state.
US09041359B2 Battery pack with integral non-contact discharging means and electronic device including the same
A battery pack and an electronic device are disclosed. The battery pack includes a battery for storing electric energy, and a non-contacting discharging unit for receiving the stored electric energy from the battery and for transferring the stored electric energy to a power receiving unit in a non-electrically contacting manner. The electronic device includes a main body and the battery pack. The main body includes a power receiving unit. The battery pack is for mounting to and supplying power to the main body.
US09041353B2 Battery fuel gauge apparatus
A battery fuel gauge apparatus comprises a current amplifier formed by a first transistor and a second transistor. Both transistors operate in the same operation conditions except that the second transistor has a smaller channel width in comparison with that of the first transistor. The first transistor is connected in series with a battery pack. The second transistor is connected in series with a sensing device. The sensing device comprises a first resistor and a second resistor connected in series. The first resistor has a positive temperature coefficient and the second resistor has a negative temperature coefficient.
US09041351B2 Electronic cassette charger
A charger includes a loading chamber into which a battery pack is insertably/removably loaded. An insertion opening into which the battery pack is inserted is formed on an upper surface of the main body. The loading chamber is forwardly inclined to a front surface of the main body, and a bottom surface of the insertion opening is inclined with respect to a horizontal direction so that one end of the front surface side is located at a lower end and the other end of the back surface side is located at an upper end. A connector for supplying power is disposed at the upper end side of the bottom surface. Even when the dust, rubbish or fluid entered from the insertion opening drops to the bottom surface, it flows down to the lower end side, so that less dirt adheres to the connector.
US09041350B2 Battery pack having improved strength
Disclosed herein is a battery pack including a battery cell array including two or more battery cells, each of which has an electrode assembly of a cathode/separator/anode structure disposed in a battery case together with an electrolyte in a sealed state, arranged in a lateral direction, a protection circuit module (PCM) connected to an upper end of the battery cell array to control an operation of the battery pack, a pack case in which the battery cell array and the protection circuit module are disposed, and a plate-shaped reinforcing member mounted between the pack case and the battery cell array to increase mechanical strength of the pack case.
US09041349B2 System and method for managing load distribution across a power grid
A method for scheduling a charge of a plug-in electric vehicle (PEV) includes receiving, by a load management system, PEV information from a PEV plugged into an electric vehicle supply equipment (EVSE); transformer information from a transformer management system, the transformer information relating to a transformer associated with the EVSE; determining, by the charging information based on the PEV information and transformer information; providing the charging information to the PEV.
US09041348B2 Electric power supply system and electric power supply method
An electric power supply system includes a connecting device that connects a secondary battery provided in a vehicle to a building, and a control apparatus that i) identifies the type of the vehicle that is connected to the connecting device, the type of the secondary battery, or the type of electric power that is distinguishable by the charging source of the electric power stored in the secondary battery, ii) determines a preset electric power supply method based on the identification results, and iii) controls a supply of electric power from the secondary battery to the building based on the determined electric power supply method.
US09041347B2 Multi-orientation stand for a portable electronic device
A stand for a portable electronic device includes a device receiving side including a coupling component for engaging with the portable electronic device when the portable electronic device is in a first orientation relative to the device receiving side and when the portable electronic device is in a second orientation relative to the device receiving side. The stand also includes a first support side adjacent to the device receiving side to act as a base when the portable electronic device is in the first orientation, and a second support side adjacent to the first support side to act as a base when the portable electronic device is in the second orientation.
US09041346B2 Charging apparatus and method for controlling charging apparatus
A charging apparatus including a charging unit adapted to charge, in a non-contact manner, an apparatus to be charged placed in a charging region, a detector adapted to detect a charged state of the apparatus to be charged placed in the charging region, and a controller adapted to change a mode of the apparatus to be charged to a mode that inhibits vibration, according to the charged state detected by the detector.
US09041344B2 Standby battery box for electric cylinder
A standby battery box for an electric cylinder is electrically connected to a control box for driving the electric cylinder and includes a charge-discharge device and a rechargeable battery. The charge-discharge device includes a protection unit, a power conversion unit, a voltage detection unit, a control unit, a discharge unit, a display unit, and a switch unit. The rechargeable battery is electrically connected to the charge-discharge device. When a startup switch of the switch unit is pressed, the charge-discharge device delivers the electricity of the rechargeable battery into the control box. When a shutoff switch of the switch unit is pressed, the charge-discharge device does not supply power, thereby protecting the standby battery box from being exhausted.
US09041343B2 System and method for protecting a power consuming circuit
A system for protecting a power consuming circuit, the system comprising two terminals for receiving power and two terminals for providing received power. Between one of the receiving terminals and a providing terminal, a transistor is provided which is controlled by a Zener diode and to break the connection between one of the receiving terminals and a providing terminal, if a voltage over the providing terminals or the receiving terminals exceeds the breakdown voltage of the Zener diode.
US09041342B2 Battery charging apparatus
An apparatus for charging an automobile battery is presented. The device provides a surface charge with a time limited window in which to start a vehicle. Use of used batteries provides for environmentally effective manner in which to deal with the tremendous amount of used batteries that are discarded worldwide each year. The apparatus may optionally include a charging circuit to allow for recharging the used batteries. An LED display may be included to provide indication when a target battery has sufficient surface charge to warrant an attempt to start an engine. The apparatus is a small portable device that can be stored anywhere in a vehicle.
US09041340B2 Systems and methods for in-vehicle charging of pallet jack batteries
Systems and methods for in-vehicle charging of pallet jack batteries are provided. An example system allows using a power source of a host vehicle configured to provide power at voltage levels lower than the operating voltage of the pallet jack battery stack. The system may allow, for example, charging a 24 volts pallet jack battery stack from a 12 volts power source of the host vehicle. The system may further comprise an interconnecting circuit having a plurality of contactors electrically coupling the batteries in parallel for charging and serially for discharging. The system may further comprise a voltage monitoring circuit to detect whether the pallet jack is connected to the host vehicle power source for charging. Based on the detection, the voltage monitoring circuit may reconfigure the interconnecting circuit to electrically couple the pallet jack batteries in parallel.
US09041339B2 Battery power delivery module
A system and method for digital management and control of power conversion from battery cells. The system utilizes a power management and conversion module that uses a CPU to maintain a high power conversion efficiency over a wide range of loads and to manage charge and discharge operation of the battery cells. The power management and conversion module includes the CPU, a current sense unit, a charge/discharge unit, a DC-to-DC conversion unit, a battery protection unit, a fuel gauge and an internal DC regulation unit. Through intelligent power conversion and charge/discharge operations, a given battery type is given the ability to emulate other battery types by conversion of the output voltage of the battery and adaptation of the charging scheme to suit the battery.
US09041338B2 Portable solar power supply
A portable solar power supply includes a solar-powered charger including a solar cell; a circuit board including a power management unit, a buck-boost converter unit, a charging control unit, a data management unit, an on/off switch, a set of indicators, a power inlet, a power outlet, a first connector, a wireless communications member, a line transmission member, a data storage member, an RFID member, an SD card member, a USB port, a Micro USB port, and a solar charging member; and holes; and a rechargeable battery including at least one electrochemical cell each shaped to partially contain the solar-powered charger and including a second connector, a third connector, snapping members, and slots. The second connector is capable of connecting to the first connector or the third connector, and the snapping members are capable of being retained in the holes or the slots.
US09041337B2 Motion profile generator
Systems and methods are provided for generating a constraint-based, time-optimal motion profile for controlling the trajectory of a point-to-point move in a motion control system. A profile generator can calculate an ST-curve motion profile that includes a jerk reference that varies continuously over time for at least one of the motion profile segments, thereby producing a smooth, time-optimal trajectory. The profile generator can create the motion profile to conform to a set of motion constraints provided by the user. The profile generator also supports calculation of time-optimal motion profiles having segments that align to the sample time of the motion control system. In some embodiments, the profile generator can efficiently generate the motion profile by performing reference calculations only for those segments that will be used in the final motion profile for a given point-to-point move.
US09041335B2 Driver circuit and driving method
A driver circuit for driving an electrical load includes an input terminal pole connecting the driver circuit to an AC voltage source, an output terminal pole connecting the driver circuit to the load, a rectifier circuit connected to the input terminal pole for converting an AC voltage into a pulsating DC voltage, and a control element connected to the rectifier circuit and to the output terminal pole. The control element has a switch and a controller, the controller switching the switch on and off by means of a pulse train signal, wherein an electrical output value of the driver circuit is adjustable by switching the switch. The controller is configured to vary at least one time-based value of the pulse train signal within one period of the pulsating DC voltage such that a driver current is adjusted at the output terminal pole having a defined waveform within the period.
US09041332B2 System, method and apparatus for computing, monitoring, measuring, optimizing and allocating power and energy for a rod pumping system
A system and methods are provided for controlling a motor of a rod pumping system using previous RPMs of the motor and predicting an RPM of the motor; correcting a power factor of a motor of a rod pumping system; allocating energy consumption and allocating energy generation for a set of wells connected to an electricity meter using an amount of energy generated by each well; and generating an alert if a set of data is beyond a threshold for the set of data.
US09041331B2 Motor controlling apparatus
A motor controlling apparatus includes a first target torque value calculator, a frequency detector, a second target torque value calculator, a torque command value calculator, a torque limiter, and a controller. The first target torque value calculator calculates a first target torque value, which is a target value of an output torque of a motor. The frequency detector detects a motor rotational frequency. The second target torque value calculator calculates a second target torque value based on the rotational frequency. The torque command value calculator mathematically combines (e.g., adds) the first and target torque values to calculate a torque command value. The torque limiter sets the signs of the first target torque value and the torque command value to be equal to limit the torque command value according to the first target torque value. The controller controls the motor based on the limited torque command value.
US09041330B2 Sensorless brushless motor control device
A sensorless brushless motor control device includes a first amplification module common to all motor phases and generating an intermediary voltage signal, a voltage divider between each motor phase and a node on which the intermediary voltage signal is generated, and a computation unit. Each voltage divider generates a first corrected electromotive force with a predetermined average value. The computation unit controls the motor on the basis of the first corrected electromotive forces. By using only hardware components, the control device maintains the average of the corrected electromotive forces at the center of the analog acquisition zone of the computation unit.
US09041329B2 Vehicle electric machine control strategy
A vehicle having a traction battery and at least one electric machine for propelling the vehicle is provided. A high voltage DC bus electrically connects the traction battery to the electric machine. A controller monitors and commands power flow through the DC bus, the electric machine, and the battery. In response to a key-off event, the controller immediately discharges the DC bus by providing a current to the electric machines. This discharge continues until the voltage on the DC bus reaches a threshold. As the speed of the electric machine decreases towards a speed threshold, the voltage in the DC bus is maintained. Once the electric machine speed reduces past the threshold, the DC bus discharges the remaining voltage in the DC bus at a rate slower than the first immediate discharge.
US09041324B2 AC motor control apparatus
A control apparatus of an AC motor improves an electric current estimation accuracy of the AC motor. The control apparatus includes an electric current estimation unit that repeatedly performs an inverted dq conversion, a dq conversion, and a correction process. Based on a d/q axis electric current estimate values of a previous cycle, the inverted dq conversion calculates an electric current estimate value of a sensor phase. The dq conversion calculates a d/q axis electric current correction values based on an electric current estimation error of the sensor phase, which is derived from the electric current estimate value and the electric current detection value detected by an electric current detector. The correction process calculates the d/q axis electric current estimate values of a current cycle by correcting the d/q axis electric current estimate values of the previous cycle by using the d/q axis electric current correction values.
US09041316B2 Adjustable solid state illumination module having array of light pixels
Techniques for constructing a solid-state lighting module that includes solid-state light emitters that emit light of different colors and are selected from separated groups of solid-state light emitters that emit light of two or more separated colors, wherein one or more solid-state light emitters are selected from each of the separated color groups of solid-state light emitters. The lighting module includes a programmable device that stores or remembers desirable optical intensities of the separated color groups of solid-state light emitters, and a control circuit that individually controls light intensity of each of the separated color groups of solid-state light emitters. The light control circuit is coupled to or in communication with the programmable device to receive the desirable optical intensities of the separated groups of solid-state light emitters and is operable to adjust the intensities of the separated color groups of solid-state light emitters based on the desirable intensities.
US09041307B1 Method for brightness control
A method for brightness control, adapted to a light emitting device emitting a light of an output brightness, comprises: setting the output brightness to be an initial value, and controlling the light emitting device emitting the light accordingly; setting a target value, and controlling the output brightness changing from the initial value toward the target value with the brightness changing rate of the brightness zone corresponding to the initial value; controlling the output brightness changing toward the target value with the following brightness changing rate when the output brightness crossing one of the brightness thresholds and entering the following brightness zone, wherein the following brightness changing rate corresponds to the following brightness zone; stopping changing the output brightness when reaching the target value.
US09041299B2 Light emitting device and electronic equipment using the same
A light emitting device is provided which is capable of displaying in desired colors stably by controlling a change in luminance of OLED when an organic light emitting layer is degraded or there is a change in temperature of the surroundings. A reference value for the amount of current flowing into a pixel portion is calculated from data of a video signal. Then, the pixel portion displays an image in accordance with the data of the video signal and the drive current at the time is measured for all of OLEDs in the pixel portion. The two voltage values supplied from a variable power supply to the pixel portion are corrected such that the measured drive current approaches the reference value. With the above structure, lowering of luminance which accompanies degradation of an organic light emitting layer is prevented and a clear image can be displayed as a result.
US09041296B2 System and method for physical association of lighting scenes
A controller for a lighting arrangement is provided, comprising a detector unit having a field of view and a pointing direction. The controller furthermore includes an interface unit for interfacing with the lighting arrangement, and a processing unit connected to the detector unit and the interface unit. The detector unit is arranged to provide detection data including parameters related to one or more identifiable beacons within the field of view of the detector unit. The processing unit is arranged to associate the detection data with a set of lighting parameters for the lighting arrangement and to control the lighting arrangement via the interface unit in accordance with the set of lighting parameters. Also a method of controlling alighting arrangement is provided.
US09041287B2 High-pressure discharge lamp having an arc tube in which a pair of electrode rods are disposed, lump unit, and projector-type image display apparatus
A high-pressure discharge lamp having an arc tube with a casing made of glass. The arc tube includes a light-emitting part and sealing parts connected to the light-emitting part. A pair of electrode rods are disposed within the glass casing such that their tips face each other with a gap therebetween and project into the discharge space, and their base ends are embedded in the sealing parts and overlap surfaces of metal foils provided in the sealing parts. Each base end is coated with a coating foil made of metal and having a C-like cross section with a slit formed between edges thereof. An end of the coating foil farthest from the light-emitting part is located closer to the light-emitting part than an end of the metal foil closest to the light-emitting part.
US09041285B2 Phosphor distribution in LED lamps using centrifugal force
A method of manufacturing an LED lamp is disclosed. The method includes admixing an uncured curable liquid resin and a phosphor, dispensing the uncured admixture on an LED chip, centrifuging the chip and the admixture to disperse the phosphor particles in the uncured resin, and curing the resin while the phosphor particles remain distributed.
US09041281B2 Self-light emitting display unit and electronic device
A self-light emitting display unit capable of improving manufacturing yield is provided. Sizes of color pixel circuits corresponding to pixels for R, G, and B are respectively set unevenly within a pixel circuit according to a magnitude ratio of drive currents which allow color self-light emitting elements in the pixel to emit with a same light emission luminance. Thereby, the pattern densities of color pixel circuits respectively corresponding to the pixels for R, G, and B become even to each other, and the pattern defect rate as the whole pixel circuit is decreased.
US09041279B2 Production machine having an operating state warning light device
A production machine (12) is proposed, in particular a machine tool or the like, having a machine housing (13) for at least partially enclosing the production machine (12) and having an operating state warning light device (1) for the optical display of at least one operating state of the production machine (12), in particular of multiple different operating states, wherein at least one warning light element (1) is provided, which is implemented as a light-emitting diode (1) and has a warning light surface, wherein the warning light element (1) is arranged on a carrier layer, wherein the warning light element (1) has at least one luminescent layer, which emits a warning light and is arranged between a first and a second electrode, in particular a cathode and an anode, wherein better perceptibility is achieved than in the prior art. This is achieved according to the invention in that the machine housing (13) at least comprises the warning light element (1), and in that the electrode surfaces of the electrodes substantially correspond to the warning light surface of the warning light element (1), and in that at least one of the electrodes is light-transmitting and/or transparent.
US09041275B2 Spark plug for internal combustion engine and method of manufacturing the same
In a spark plug, a center electrode includes a base member and a discharge chip that has a higher melting point than the base member. The base member and the discharge chip are joined to each other by both a weld and a diffusion layer. The weld is formed, by fusion welding, along an outer periphery of an interface between the base member and the discharge chip into an annular shape. The weld is made up of those parts of the base member and the discharge chip which are molten and mixed together during the fusion welding and solidified after the fusion welding. The diffusion layer is formed radially inside the annular weld. The diffusion layer is made up of those parts of the base member and the discharge chip which are diffused into each other across the interface between the base member and the discharge chip.
US09041266B2 Magnetic bearing structure and turbo machine having the same
Disclosed is a magnetic bearing structure including a permanent magnet, levitating a rotation body without a bias current, and easily magnetizing the permanent magnet. The magnetic bearing structure includes a ring-shaped permanent magnet provided on a side of a rotation shaft and magnetized in a direction parallel with a shaft direction of the rotation shaft, a coil installed on a side of the permanent magnet, and a conductor installed on an external side of the coil and used to form a magnetic field path. According to the configuration, when an additional bias current is not supplied to the coil installed in the magnetic bearing, a rotation body levitates according to the magnetic field caused by the permanent magnet, and a magnetized direction of the permanent magnet is in parallel with a shaft direction of the rotation shaft thereby allowing easy magnetization and increasing productivity of the magnetic bearing.
US09041265B2 Magnetic bearing device
Provided is a magnetic bearing device capable of facilitating manufacture of the magnetic bearing device and improving precision in production thereof while maintaining eddy current reducing effects. The magnetic bearing device 10 supporting a rotating shaft 3 with a magnetic force includes a plurality of magnetic poles 5 arranged in the circumferential direction of the rotating shaft 3. Each magnetic pole 5 includes an inner end surface 5b facing the outer surface of the rotating shaft in proximity thereto. The magnetic poles which are adjacent to each other in the circumferential direction respectively extend in the axial directions of the magnetic poles 5 to the inner end surfaces 5b of the magnetic poles so as to virtually interfere with each other in the vicinity of the outer surface of the rotating shaft. The virtual interfering portions 5a of both the magnetic poles 5 capable of interfering with each other are removed by cutting.
US09041264B2 Axial flux electrical machine
An axial flux electrical machine including a housing, a stator located within the housing, a rotatable shaft carried by the housing by means of at least a main bearing, and a rotor fixed to the shaft within the housing. Magnetic attractive forces between the rotor and the stator produce an axial thrust on the main bearing and a biasing means (preferably in the form of a spring) is arranged to urge the shaft in a direction opposite to the axial thrust so as to reduce the net load on the main bearing. This reduction in net load on the main bearing increases bearing life and improves motor efficiency.
US09041262B2 Stator for electric rotating machine
A stator coil includes first to fourth in-slot portions and first and second turn portions. Both the first and third in-slot portions are received in one slot of a stator core, while both the second and fourth in-slot portions are received in another slot. The first and second turn portions both protrude from an axial end face of the stator core and respectively connect the pair of the first and second in-slot portions and the pair of the third and fourth in-slot portions. The second turn portion is located inside the first turn portion. When viewed along an axial direction of the stator core, the first and second turn portions extend so as to cross each other with a reference line C interposed therebetween; the reference line C is defined to extend along a circumferential direction of the stator core through an intersection between the first and second turn portions.
US09041261B2 Rotating electrical machine having radial communication passages in permanent magnet rotor
A rotating electrical machine includes a rotor which has a rotor core formed by stacking magnetic plates having an annular plate shape in an axial direction, a permanent magnet is inserted into a magnet insertion hole formed in the rotor core, and a rotor shaft is inserted into a shaft insertion hole surrounded by an inner peripheral surface of the rotor core; and a stator. A radial communication passage is formed by a communication penetration hole group that is formed by sequentially communicating a plurality of the penetration holes from a shaft insertion hole to a magnetic resistance hole in the radial direction. The plurality of the penetration holes are divided into at least two specific magnetic plates and formed such that the radial positions of the penetration holes are different from each other and the penetration holes partially overlap each other when viewed in the axial direction.
US09041259B2 Actuator assembly having a motor with heat dissipation
An actuator assembly includes a housing with a motor compartment, a gear compartment, a bulkhead separating the motor compartment from the gear compartment, and an aperture through the bulkhead. The actuator assembly also includes a motor assembly in the motor compartment defining a space radially between the motor assembly and the gear motor compartment. A high thermal conductivity material is disposed within the space to transfer heat from the motor assembly to the housing. The bulkhead includes one of a groove and a rib surrounding the aperture on the side of the bulkhead facing the motor compartment and the motor assembly includes the other of the groove and the rib such that the rib fits within the groove to prevent the high thermal conductivity material from migrating radially inward of the groove and the rib when the high thermal conductivity material is injected into the space.
US09041256B2 Power control device using status latch module and electronic device using the same
A power control device for an electronic device includes a power switching unit for switching to output a dc power source to a load of the electronic device according to a power switching signal, a switching detection unit for responding a power switching status to generate a switching detection signal, a status latch module for generating the power switching signal according to the switching detection signal, a first status signal and a second status signal, and a logic unit for generating the first status signal and the second status signal for the status latch module according to the power switching signal, such that the status latch module latches the first status signal and the second status signal.
US09041254B2 Primary unit control of resonant inductive power transfer system for optimum efficiency
A circuit and method for wirelessly coupling an electrical energy between an electrical energy source and at least one load is provided. The circuit comprises a primary unit and at least one secondary unit. The primary unit includes an input node for receiving an input voltage produced by the energy source; a transmitter circuit including a transmitter coil configured to generate an electromagnetic field; and a regulator. The regulator is configured to sense a current consumption of the primary unit, determine a gradient of the current consumption with respect to different input voltages, and determine an optimal input voltage based on the gradient. The at least one secondary unit comprises a receiver circuit and a load. The receiver unit includes a coil that wirelessly and inductively couples with the electromagnetic field of the primary unit to receive power therefrom. The receiver unit further includes a regulator circuit configured to provide a constant power to an output node.
US09041253B2 Direct feeding apparatus for impedance matching of wireless power transmission device, and transmitter and receiver using the same
A direct feeding apparatus for impedance matching of a wireless power transmission device includes a helical type resonator, and a feeding unit configured to directly feed power to a region having a relatively small current value as compared to a center of a conductive line of the resonator.
US09041247B2 Method and apparatus for controlling distribution of power
Aspects of the invention are directed to apparatus and methods for controlling power distribution to a plurality of devices including a primary device and at least one secondary device, the primary device having at least a first mode of operation and a second mode of operation, with the second mode of operation being a lower power mode of operation than the first mode of operation.
US09041246B2 System and method for phase balancing in a power distribution system
A phase balancing system includes a load forecasting module, a phase unbalance identification module and a demand response module. The load forecasting module determines a load forecast for the distribution system for the period of interest and the phase unbalance identification module determines voltage unbalance on the distribution system for the period of interest. The demand response module estimates an available demand response on the distribution system for the period of interest and allocates an optimized demand response from the available demand response to minimize the voltage unbalance on the distribution system for the period of interest.
US09041245B2 Power supply apparatus and method to control the same
A power supply apparatus includes a converter to convert AC power into DC power, an SMPS to convert the DC power into DC powers desired by loads, a capacitor to interconnect the converter and the SMPS, a PTC element connected to the converter, a first switch connected in parallel with the PTC element, and a second switch connected in series with the first switch. The method includes turning on the second switch to start charging of the capacitor, turning on the first switch to charge the capacitor to a target voltage level, and turning off both the first switch and second switch if a voltage across the capacitor rises over the target voltage level, to discharge the voltage across the capacitor so as to lower the voltage across the capacitor to the target voltage level or lower.
US09041243B2 Power control apparatus
A power control apparatus is mounted on an electrically driven vehicle which includes an electrical storage device configured by connecting a plurality of batteries in parallel, a voltage detection unit which detects a voltage of each battery, and a load, and the power control apparatus includes, a voltage deviation calculation unit which is connected to the electrical storage device, and calculates voltage deviation between the plurality of batteries based on the voltage detected by each voltage detection unit at the time of driving the load which is driven by power supply from the electrical storage device, a comparator which compares the voltage deviation calculated by the voltage deviation calculation unit and a first predetermined threshold, and a cutoff detection unit which detects a presence or absence of the battery, which comes into a cutoff state in the electrical storage device, when the voltage deviation is equal to or more than the first threshold in a comparison result by the comparator.
US09041242B2 Method of powering mobile equipment
A method of providing operating electrical power from a stationary power source to a mobile conveyor utilized in material handling at a mine site as the conveyor moves over a predetermined path at the site without having to move long lengths of cable as the conveyor moves away from the power source. The method utilizes a cable reel that features a power receptacle into which a cable connector can be easily plugged and unplugged.
US09041237B2 Wind turbine drive train and wind turbine
A wind turbine drive train is provided. The wind turbine drive train includes a hub, a bearing system supporting the hub and having an inner race connected to the hub, and a generator gearlessly coupled to the inner race using a flexible coupling member.
US09041235B1 Hydrokinetic power generation system
A system for generating electrical power includes one or more turbine systems, a linking system, a power receiving station, and a transmission line. The turbine systems includes a turbine, a turbine carrier that can hold the turbine in a flow of water, and a generator that produces electricity from rotation of a runner of the turbine. The linking system couples the turbine carriers to a fixed location. The transmission line transmits power from the generator to the power receiving station.
US09041231B2 Power generation apparatus and switch
A power generation apparatus includes an operation member that has a first operation part or a second operation part operated upon power generation; a power generation part that generates an induced electromotive force upon being driven by a slide member that moves in a first direction or a second direction; first and second elastic units that accumulate an elastic force; a first connection release mechanism that prompts the first elastic unit to accumulate elastic force when the first operation part is operated and allows the elastic force to be output to move the slide member in the second direction when accumulation is completed; and a second connection release mechanism that prompts the second elastic unit to accumulate the elastic force when the second operation part is operated and allows the elastic force to be output to move the slide member in the first direction when accumulation is completed.
US09041229B1 Merged fiducial for semiconductor chip packages
Systems, manufactures, methods and/or techniques for a merged fiducial for chip packages are described. According to some embodiments, an integrated circuit package may include a package substrate having a first side and a second side, a plurality of conductive traces coupled to the first side and a plurality of balls disposed on the second side. The balls may be adapted to electrically connect the laminate package to a circuit board. The integrated circuit package may include a plurality of ball pads disposed on the second side, the ball pads being adapted to electrically connect the plurality of balls to the plurality of conductive traces. One or more of the ball pads may be uniquely shaped when compared to the rest of the plurality of ball pads, optionally, to serve as a fiducial to designate an A1 pin or ball of the laminate package.
US09041226B2 Chip arrangement and a method of manufacturing a chip arrangement
In various embodiments, a chip arrangement is provided. The chip arrangement may include a chip carrier and a chip mounted on the chip carrier. The chip may include at least two chip contacts and an insulating adhesive between the chip and the chip carrier to adhere the chip to the chip carrier. The at least two chip contacts may be electrically coupled to the chip carrier.
US09041218B2 Semiconductor device having through electrode and method of fabricating the same
A semiconductor device includes a substrate, and a through electrode passing through the substrate. The semiconductor device has a pad region and a through electrode region. A pad covers the pad region, extends into the through electrode region, and delimits an opening in the through electrode region. A through electrode extends through the semiconductor substrate below the hole in the pad in the through region.
US09041214B2 Bonded processed semiconductor structures and carriers
Methods of fabricating semiconductor structures include implanting atom species into a carrier die or wafer to form a weakened region within the carrier die or wafer, and bonding the carrier die or wafer to a semiconductor structure. The semiconductor structure may be processed while using the carrier die or wafer to handle the semiconductor structure. The semiconductor structure may be bonded to another semiconductor structure, and the carrier die or wafer may be divided along the weakened region therein. Bonded semiconductor structures are fabricated using such methods.
US09041211B2 Semiconductor package and method for manufacturing the semiconductor package embedded with semiconductor chip
A semiconductor package includes a first semiconductor chip including a target circuit surface and a side surface, a first sealing insulating layer including a first surface positioned toward the target circuit surface and a second surface positioned opposite to the first surface, the first sealing insulating layer sealing the target circuit surface and the side surface, a wiring layer formed on the first surface of the first sealing insulating layer, an insulating layer formed on the wiring layer, a second semiconductor chip mounted on the second surface of the first sealing insulating layer, and a second sealing insulating layer formed on the second surface and sealing the second semiconductor chip.
US09041209B2 Method and apparatus to improve reliability of vias
In a disclosed embodiment, a method for tiling selected vias in a semiconductor device having a plurality of vias comprises generating a layout database for the semiconductor device; creating zones around the plurality of vias; measuring density of covering metal in each zone; selecting a low density zone as being a zone that has a metal density less than a threshold metal density; and adding at least one tiling feature on a metal layer above the plurality of vias in the low density zone so that metal density of the low density zone increases to at least the same as the threshold metal density.
US09041201B2 Integrated circuit device
An integrated circuit device including a substrate, a first internal bonding pad, a second internal bonding pad, an external bonding pad and a bonding wire is provided. A first circuit and a second circuit are embedded in the substrate. The first internal bonding pad is disposed on a surface of the substrate and electrically coupled to the first circuit. The second internal bonding pad is disposed on the surface of the substrate and electrically coupled to the second circuit. The second internal bonding pad is electrically coupled to the first internal bonding pad via the bonding wire. The external bonding pad is electrically coupled to the first internal bonding pad.
US09041200B2 Semiconductor devices having solder terminals spaced apart from mold layers and related methods
A method of forming an electronic device may include providing a solder structure on a surface of a substrate, and a surface of the solder structure spaced apart from the substrate may be planar. A mold layer may be formed on the surface of the substrate, wherein the mold layer surrounds the solder structure and wherein the planar surface of the solder structure is exposed through the mold layer. After forming the mold layer, the solder structure is heated to form a solder terminal having a curved surface spaced apart from the substrate. Related devices are also discussed.
US09041199B2 Semiconductor device and method of fabricating the same
A semiconductor device includes: a mount body; a semiconductor chip mounted on the mount body via projecting connecting terminals; and a filling resin filled between the mount body and the semiconductor chip to seal the connecting terminals, the filling resin being retained inside the semiconductor chip in such a way as not to run out of at least one side portion in four side portions defining an outer peripheral portion of the semiconductor chip.
US09041197B2 Semiconductor device
A semiconductor device includes a semiconductor element having a substrate of GaAs, InP, or GaN, and an element securing member bonded to the semiconductor element by solder. The element securing member is a composite material of Cu and carbon or a composite of Al and carbon. A stem is connected to the element securing member, and a cap is secured to the stem. The cap covers the semiconductor element and the element securing member. The stem and the element securing member are made of the same material.
US09041196B2 Semiconductor module arrangement and method for producing and operating a semiconductor module arrangement
A semiconductor module arrangement includes a semiconductor module having a top side, an underside opposite the top side, and a plurality of electrical connection contacts formed at the top side. The semiconductor module arrangement additionally includes a printed circuit board, a heat sink having a mounting side, and one or a plurality of fixing elements for fixing the printed circuit board to the heat sink. Either a multiplicity of projections are formed at the underside of the semiconductor module and a multiplicity of receiving regions for receiving the projections are formed at the mounting side of the heat sink, or a multiplicity of projections are formed at the mounting side of the heat sink and a multiplicity of receiving regions for receiving the projections are formed at the underside of the semiconductor module. In any case, each of the projections extends into one of the receiving regions.
US09041193B2 Semiconductor substrate including a cooling channel and method of forming a semiconductor substrate including a cooling channel
A semiconductor substrate for use in an integrated circuit, the semiconductor substrate including a channel defined on a surface of the substrate. The channel includes a first wall, a second wall, and a third wall. The first wall is recessed from the surface. The second wall extends from the surface to the first wall. The third wall extends from the surface to the first wall and faces the second wall across the channel. At least one of the second wall and the third wall includes a plurality of structures projecting into the channel from the second wall or the third wall.
US09041191B2 Power semiconductor package
A semiconductor package that includes a conductive can, a power semiconductor device electrically and mechanically attached to the inside surface of the can, and an IC semiconductor device copackaged with the power semiconductor device inside the can.
US09041190B2 Semiconductor package
A semiconductor package, wherein, in bonding of members constituting the semiconductor package, by using bonding layers containing 98 wt % or more of one metallic element such as silver having a melting point of 400° C. or higher, the bonding is performed in a temperature range where the occurrence of warpage or distortion of the members is suppressed, and after the bonding, a high melting point is obtained; and by configuring the members so that all the surfaces of the members which become bonding surfaces of bonding layers are parallel to each other, all the thickness directions of the bonding layers are aligned to be in the same direction, and during the formation of the bonding layers, the pressing direction is set to be one-way direction which is the direction of laminating the members.
US09041189B2 Semiconductor package and method of fabricating the same
A method of fabricating a semiconductor package is provided, including: providing a carrier having a plurality of chip areas defined thereon, and forming a connection unit on each of the chip areas; disposing a semiconductor element on each of the connection units; forming an insulating layer on the carrier and the semiconductor elements; and forming on the insulating layer a circuit layer electrically connected to the semiconductor elements. Since being formed only on the chip areas instead of on the overall carrier as in the prior art, the connection units are prevented from expanding or contracting during temperature cycle, thereby avoiding positional deviations of the semiconductor elements.
US09041185B2 Semiconductor device and connection checking method for semiconductor device
A semiconductor device includes a substrate, a first land formed in a first surface of the substrate, a second land formed in a second surface of the substrate, a first terminal coupled to the second land, a line coupled to the first land and the second land, a second terminal formed in the second surface of the substrate and a branch line coupled to the line and the second terminal. The second terminal is coupled to the first land and the second land and is not coupled to other lands in the first surface. The second surface is different surface from the first surface.
US09041184B2 Chip-housing module and a method for forming a chip-housing module
A chip-housing module is provided, the chip-housing module including a carrier configured to carry one or more chips; the carrier including a first plurality of openings, wherein each opening of the first plurality of openings is separated by a first pre-determined distance, and is configured to receive a chip connection for providing a voltage lying within a first range of voltage values to a chip; the carrier including a second plurality of openings, wherein each opening of the second plurality of openings is separated by a second pre-determined distance, and is configured to receive a chip connection for providing a voltage lying within a second range of voltage values to a chip; and wherein a pair of openings consisting of one opening of the first plurality of openings and one opening of the second plurality of openings is separated by a distance different from at least one of the first pre-determined distance and the second pre-determined distance.
US09041181B2 Land grid array package capable of decreasing a height difference between a land and a solder resist
A land grid array (LGA) package including a substrate having a plurality of lands formed on a first surface of the substrate, a semiconductor chip mounted on a second surface of the substrate, a connection portion connecting the semiconductor chip and the substrate, and a support layer formed on part of a surface of a first land.
US09041179B2 Semiconductor device and method of manufacturing the same
A semiconductor device including a semiconductor substrate having oppositely facing first and second surfaces, the first surface being an active surface and provided with an electronic element thereon, a pad electrode to be connected to the electronic element in a peripheral portion of the electronic element on the active surface, a first opening extending from the second surface toward the pad electrode so as not to reach the first surface of the semiconductor substrate, a second opening formed to reach the pad electrode from a bottom surface of the first opening and having a diameter smaller than that of the first opening, an insulating layer formed to cover sidewall surfaces of the first opening and the second opening, and a conductive layer formed, inside of the insulating layer, to cover at least an inner wall surface of the insulating layer and a bottom surface of the second opening.
US09041178B2 Semiconductor device
A semiconductor device including a chip stack structure having a plurality of semiconductor chips, the semiconductor chips being stacked such that they are electrically connected using through-electrodes, and a support frame attached to a side surface of the chip stack structure.
US09041177B2 Semiconductor device with sealing resin
Various embodiments of the present invention include a semiconductor device, the semiconductor device including a first semiconductor chip disposed on a substrate, a first sealing resin sealing the first semiconductor chip, a built-in semiconductor device disposed on the first sealing resin, and a second sealing resin sealing the first sealing resin and the built-in semiconductor device and covering a side surface of the substrate. According to an aspect of the present invention, it is possible to provide a high-quality semiconductor device, in which downsizing and cost reduction can be realized.
US09041175B2 Monolithic power converter package
According to an exemplary embodiment, a monolithic power converter package includes a monolithic die over a substrate, the monolithic die integrating a driver integrated circuit (IC) with a control power transistor and a sync power transistor connected in a half-bridge. A high side power input, a low side power input, and a power output of the half-bridge are each disposed on a top surface of the monolithic die. The high side power input is electrically and mechanically coupled to the substrate by a high side power strip. Also, the low side power input is electrically and mechanically coupled to the substrate by a low side power strip. Furthermore, the power output is electrically and mechanically coupled to the substrate by a power output strip.
US09041172B1 Semiconductor device for restraining creep-age phenomenon and fabricating method thereof
The present invention relates generally to a semiconductor device and, more specifically, to optimizing the creep-age distance of the power semiconductor device and a preparation method thereof. The power semiconductor device includes a chip mounting unit with a die paddle and a plurality of leads arranged side by side located close to one side edge of the die paddle in a non-equidistant manner, a semiconductor chip attached on the die paddle, and a plastic packaging body covering the die paddle, the semiconductor chip, where the plastic packing body includes a plastic extension portion covering at least a part of a lead shoulder of a lead to obtain better electrical safety distance between the terminals of the semiconductor device, thus voltage creep-age distance of the device is increased.
US09041171B2 Programmable interposer with conductive particles
An exemplary implementation of the present disclosure includes a programmable interposer having top and bottom interface electrodes and conductive particles interspersed within the programmable interposer. The conductive particles are capable of forming an aligned configuration between the top and bottom interface electrodes in response to application of an energy field to the programmable interposer so as to electrically connect the top and bottom interface electrodes. The conductive particles can have a conductive outer surface. Also, the conductive particles can be spherical. The conductive particles can be within a bulk material in an interface layer in the programmable interposer, and the bulk material can be cured to secure programmed paths between the top and bottom interface electrodes.
US09041170B2 Multi-level semiconductor package
A semiconductor package includes a semiconductor die having a first electrode at a first side and a second electrode at a second side opposing the first side, a first lead under the semiconductor die and connected to the first electrode at a first level of the package, and a second lead having a height greater than the first lead and terminating at a second level in the package above the first level, the second level corresponding to a height of the semiconductor die. A connector of a single continuous planar construction over the semiconductor die and the second lead is connected to both the second electrode and the second lead at the same second level of the package.
US09041169B2 Semiconductor packaging container, semiconductor device, electronic device
A semiconductor packaging container allowing to use in millimeter band is provided at a low cost. The inner SIG pads and the inner GND pads, capable of a direct connection with a signal terminal of a semiconductor chip 10 are provided on the bottomed cylindrical dielectric case formed of the liquid crystal polymer. Further, the external SIG pads integrally formed with the inner SIG pads 201, 202 and the external GND pad 303 integrally formed with the inner GND pad are provided on the back of the bottom surface of the dielectric case as the external terminal. The inner GND pads and are to form the coplanar waveguide with the inner SIG pads and. Also, the inner GND pads and are to add capacitive reactance for canceling the inductance caused by the space at the semiconductor chip portion to the coplanar waveguide.
US09041167B2 Radiation hardened SOI structure and method of making same
An SOI substrate including a buried insulator layer positioned between a base substrate and a top semiconductor active layer is first provided. A semiconductor device can then be formed on and/or within a portion of the top semiconductor active layer. A bottommost surface of the buried insulator layer which is opposite a topmost surface of the buried insulator layer that forms an interface with the top semiconductor active layer can be then exposed. Ions can then be implanted through the bottommost surface of the buried insulator layer and into a portion of the buried insulator layer. The ions are implanted at energy ranges that do not disturb the buried insulator layer/top semiconductor active layer interface, while leaving a relatively thin portion of the buried insulator layer near the buried insulator layer/top semiconductor active layer interface intact.
US09041165B2 Relaxation and transfer of strained material layers
A method for the formation of an at least partially relaxed strained material layer, comprises providing a seed substrate; patterning the seed substrate; growing a strained material layer on the patterned seed substrate; transferring the strained material layer from the patterned seed substrate to an intermediate substrate; and at least partially relaxing the strained material layer by a heat treatment.
US09041161B2 Semiconductor device with a chip prevention member
There is provided a semiconductor device including a semiconductor layer, a protective layer including a transparent material, and a transparent resin layer that seals a gap between the semiconductor layer and the protective layer. A chip prevention member with a higher Young's modulus than the transparent resin layer is formed to come into contact with the semiconductor layer in a dicing portion of a layer structure before fragmentation, and dicing is performed in the dicing portion for the fragmentation.
US09041158B2 Method of forming fin field-effect transistors having controlled fin height
A semiconductor apparatus includes fin field-effect transistor (FinFETs) having controlled fin heights. The apparatus includes a high fin density area and a low fin density area. Each fin density area includes fins and dielectric material between the fins. The dielectric material includes different dopant concentrations for different fin density areas and is the same material as deposited.
US09041157B2 Method for doping an electrically actuated device
An electrically actuated device comprises an active region disposed between a first electrode and a second electrode, a substantially nonrandom distribution of dopant initiators at an interface between the active region and the first electrode, and a substantially nonrandom distribution of dopants in a portion of the active region adjacent to the interface.
US09041154B2 Contact structure and semiconductor memory device using the same
A semiconductor memory device includes a substrate having thereon a memory array region and a periphery circuit region. A first dielectric layer covers the memory array region and the periphery circuit region on the substrate. A second dielectric layer covers the memory array region and the periphery circuit region on the first dielectric layer. At least a capacitor structure is provided in the memory array region. The capacitor structure includes an electrode material layer embedded in the second dielectric layer. The semiconductor memory device further includes a contact structure comprising the electrode material layer.
US09041150B2 Vertically integrated systems
Embodiments of the present invention provide an integrated circuit system including a first active layer fabricated on a front side of a semiconductor die and a second pre-fabricated layer on a back side of the semiconductor die and having electrical components embodied therein, wherein the electrical components include at least one discrete passive component. The integrated circuit system also includes at least one electrical path coupling the first active layer and the second pre-fabricated layer.
US09041147B2 Semiconductor substrate, thin film transistor, semiconductor circuit, liquid crystal display apparatus, electroluminescent apparatus, semiconductor substrate manufacturing method, and semiconductor substrate manufacturing apparatus
According to a semiconductor substrate (40), a space (A) between a plurality of Si thin film (16), which are provide apart from one another on the insulating substrate (30), is (I) larger than a difference between elongation of part of the insulating substrate which part corresponds to the space (A) and elongation of each of Si wafers (10) when a change is made from room temperature to 600° C. and (II) smaller than 5 mm. This causes an increase in a region of each of a plurality of semiconductor thin films which region has a uniform thickness, and therefore prevents transferred semiconductor layers and the insulating substrate from being fractured or chipped.
US09041138B2 Organic light emitting diode
An organic light emitting diode includes a substrate, a first electrode, an organic functional layer; and a second electrode. One of the first electrode and the second electrode includes a treated patterned carbon nanotube film. The treated patterned carbon nanotube film includes at least two carbon nanotube linear units spaced from each other; and carbon nanotube groups spaced from each other. The carbon nanotube groups are located between the at least two carbon nanotube linear units, and combined with the at least two carbon nanotube linear units.
US09041135B2 Monolithic sun sensors assemblies thereof
Under one aspect of the present invention, a monolithic sun sensor includes a photosensor; a spacer material disposed over the photosensor; and a patterned mask disposed over the spacer material and defining an aperture over the photosensor. The spacer material has a thickness selected such that the patterned mask casts a shadow onto the photosensor that varies as a function of the monolithic sun sensor's angle relative to the sun. The sun sensor may further include a substrate in which the photosensor is embedded or on which the photosensor is disposed. The spacer material may be transparent, and may include a layer of inorganic oxide, or a plurality of layers of inorganic oxide. The patterned mask may include a conductive material, such as a metal. The aperture may be lithographically defined, and may be square. The sun sensor may further include a transparent overlayer disposed over the patterned mask.
US09041133B2 BSI image sensor package with embedded absorber for even reception of different wavelengths
A microelectronic image sensor assembly for backside illumination and method of making same are provided. The assembly includes a microelectronic element having contacts exposed at a front face and light sensing elements arranged to receive light of different wavelengths through a rear face. A semiconductor region has an opening overlying at least one of first and second light sensing elements, the semiconductor region having a first thickness between the first light sensing element and the rear face and a second thickness between the second light sensing element and the rear face. A light-absorbing material overlies the semiconductor region within the opening above at least one of the light sensing elements such that the first and second light sensing elements receive light of substantially the same intensity.
US09041121B2 Integrated voltage divider
A semiconductor structure including a high-voltage transistor; voltage dropping circuitry, at least part of which is overlapping the high-voltage transistor; at least one intermediate contact point to the voltage dropping circuitry, connected to at least one intermediate position between a first and a second end of the voltage dropping circuitry; and at least one external connection connecting the at least one intermediate contact point to outside of the semiconductor structure.
US09041114B2 Contact plug penetrating a metallic transistor
In one embodiment, a semiconductor device includes a semiconductor substrate, and a gate insulator arranged on the semiconductor substrate. The device further includes a gate electrode including a semiconductor layer and a metal layer which are sequentially arranged on the gate insulator. The device further includes a contact plug arranged on the gate electrode to penetrate the metal layer, and having a bottom surface at a level lower than an upper surface of the semiconductor layer.
US09041111B2 Flat panel detector and manufacturing method thereof, camera device
A flat panel detector includes a photoelectric conversion layer and a pixel detecting element disposed under the photoelectric conversion layer. The pixel detecting element includes: a pixel electrode for receiving charges, a storage capacitor for storing the received charges, and a thin film transistor for controlling outputting of the stored charges. The storage capacitor includes a first electrode and a second electrode. The first electrode includes an upper electrode and a bottom electrode that are disposed opposite to each other and electrically connected. A second electrode is sandwiched between the upper electrode and the bottom electrode. It is insulated between the upper electrode and the second electrode and between the second electrode and the bottom electrode.
US09041110B2 Semiconductor device for electrostatic discharge protection
A semiconductor device includes a substrate, a gate positioned on the substrate, a drain region and a source region formed at respective two sides of the gate in the substrate, at least a first doped region formed in the drain region, and at least a first well having the first doped region formed therein. The source region and the drain region include a first conductivity type, the first doped region and the first well include a second conductivity type, and the first conductivity type and the second conductivity type are complementary to each other.
US09041109B2 Field effect transistor including a recessed and regrown channel
At least one doped semiconductor material region is formed over a crystalline insulator layer. A disposable gate structure and a planarization dielectric layer laterally surrounding the disposable gate structure are formed over the at least one doped semiconductor material region. The disposable gate structure is removed selective to the planarization dielectric layer to form a gate cavity. Portions of the at least one doped semiconductor material region are removed from underneath the gate cavity. Remaining portions of the at least one doped semiconductor material region constitute a source region and a drain region. A channel region is epitaxially grown from a physically exposed surface of the crystalline insulator layer. The channel region has a uniform thickness that can be less than the thickness of the source region and the drain region, and is epitaxially aligned to the crystalline insulator layer.
US09041101B2 Power semiconductor device
A power semiconductor device according to an embodiment includes an element portion in which MOSFET elements are provided and a termination portion provided around the element portion, and has pillar layers provided respectively in parallel to each other in a semiconductor substrate. The device includes a first trench and a first insulation film. The first trench is provided between end portions of the pillar layers, in the semiconductor substrate at the termination portion exposed from a source electrode of the MOSFET elements. The first insulation film is provided on a side surface and a bottom surface of the first trench.
US09041100B2 Semiconductor device, and manufacturing method for same
A semiconductor device has a source region, channel region, and drain region disposed in order from the surface of the device in the thickness direction of a semiconductor substrate. The device includes a source metal embedded in a source contact groove penetrating the source region and reaching the channel region, a gate insulating film formed on the side wall of a gate trench that is formed to penetrate the source region and channel and reach the drain region, a polysilicon gate embedded in trench so that at least a region facing the channel region in the insulating film is covered with the gate and so that the entire gate is placed under a surface of the source region, and a gate metal that is embedded in a gate contact groove formed in the gate so as to reach the depth of the channel region and in contact with the gate.
US09041099B2 Single-sided access device and fabrication method thereof
The present invention provides a single-sided access device including an active fin structure comprising a source region and a drain region; an insulating layer interposed between the source region and the drain region; a trench isolation structure disposed at one side of the active fin structure; a single-sided sidewall gate electrode disposed on the other side of the active fin structure opposite to the trench isolation structure so that the active fin structure is sandwiched by trench isolation structure and the single-sided sidewall gate electrode; and a gate protrusion laterally and electrically extended from the single-sided sidewall gate electrode and embedded between the source region and the drain region under the insulating layer.
US09041097B2 Semiconductor device
A semiconductor device includes a channel layer formed on a substrate, an insulating layer formed in contact with the channel layer, an impurity-doped first semiconductor layer formed on an opposite side of the insulating layer from the channel layer, an impurity-doped second semiconductor layer formed on an opposite side of the first semiconductor layer from the insulating layer, and a gate electrode formed on an opposite side of the second semiconductor layer from the first semiconductor layer. A quotient of an impurity density of the first semiconductor layer divided by a relative permittivity of the first semiconductor layer is greater than a quotient of an impurity density of the second semiconductor layer divided by a relative permittivity of the second semiconductor layer.
US09041095B2 Vertical transistor with surrounding gate and work-function metal around upper sidewall, and method for manufacturing the same
A method of manufacturing a semiconductor device includes a first step of forming a fin-shaped semiconductor layer, a first insulating film around the fin-shaped semiconductor layer, and a pillar-shaped semiconductor layer on the fin-shaped semiconductor layer. A second step forms a gate insulating film around the pillar-shaped semiconductor layer, a gate electrode around the gate insulating film, and a gate line. A third step forms a first first-conductivity-type diffusion layer in an upper portion of the pillar-shaped semiconductor layer and a second first-conductivity-type diffusion layer in a lower portion of the pillar-shaped semiconductor layer and an upper portion of the fin-shaped semiconductor layer. A fourth step includes depositing, planarizing, and etching-back a first interlayer insulating film to expose an upper portion of the pillar-shaped semiconductor layer, depositing a first metal, and etching the metal to form a first sidewall around the upper portion of the pillar-shaped semiconductor layer.
US09041094B2 Finfet formed over dielectric
A method for semiconductor fabrication includes patterning one or more mandrels over a semiconductor substrate, the one or more mandrels having dielectric material formed therebetween. A semiconductor layer is formed over exposed portions of the one or more mandrels. A thermal oxidation is performed to diffuse elements from the semiconductor layer into an upper portion of the one or more mandrels and concurrently oxidize a lower portion of the one or more mandrels to form the one or more mandrels on the dielectric material.
US09041091B2 Nonvolatile semiconductor memory device
According to one embodiment, a device includes a fin type active area on a semiconductor substrate, the active area having an upper surface with a taper shape, having a width in a first direction, and extending in a second direction intersect with the first direction, a first insulating layer on the active area, a charge storage layer on the first insulating layer, the charge storage layer having an upper surface with a taper shape, a second insulating layer covering the upper surface of the charge storage layer, and a control gate electrode on the second insulating layer, the control gate electrode extending in the first direction.
US09041090B2 Methods for forming a string of memory cells and apparatuses having a vertical string of memory cells including metal
Methods for forming a string of memory cells and apparatuses having a vertical string of memory cells are disclosed. One such string of memory cells can be formed at least partially in a stack of materials comprising a plurality of alternating levels of control gate material and insulator material. A memory cell of the string can include floating gate material adjacent to a level of control gate material of the levels of control gate material. The memory cell can also include tunnel dielectric material adjacent to the floating gate material. The level of control gate material and the tunnel dielectric material are adjacent opposing surfaces of the floating gate material. The memory cell can include metal along an interface between the tunnel dielectric material and the floating gate material. The memory cell can further include a semiconductor material adjacent to the tunnel dielectric material.
US09041088B2 Non-volatile memory devices having air gaps and methods of manufacturing the same
Disclosed are non-volatile memory devices and methods of manufacturing the same. The non-volatile memory device includes device isolation patterns defining active portions in a substrate and gate structures disposed on the substrate. The active portions are spaced apart from each other in a first direction and extend in a second direction perpendicular to the first direction. The gate structures are spaced apart from each other in the second direction and extend in the first direction. Each of the device isolation patterns includes a first air gap, and each of a top surface and a bottom surface of the first air gap has a wave-shape in a cross-sectional view taken along the second direction.
US09041087B2 Semiconductor devices having dielectric caps on contacts and related fabrication methods
Semiconductor device structures are provided. An exemplary semiconductor device structure includes a substrate of a semiconductor material and a gate structure overlying the substrate. The semiconductor substrate further includes a doped region formed in the substrate proximate the gate structure and a first dielectric material overlying the doped region. The semiconductor substrate also includes a conductive contact formed in the first dielectric material, the conductive contact being electrically connected to the doped region, and a dielectric cap overlying the conductive contact.
US09041082B2 Engineering multiple threshold voltages in an integrated circuit
An integrated circuit and method for forming an integrated circuit. There are at least three field-effect transistors with at least two of the field-effect transistors having the same electrically insulating material which is ferroelectric when unstrained or is capable of being ferroelectric when strain is induced. It is optional for the third field-effect transistor to have an electrically insulating material which is ferroelectric when unstrained or is capable of being ferroelectric when strain is induced. The at least three field-effect transistors are strained to varying amounts so that each of the three field-effect transistors has a threshold voltage, Vt, which is different from the Vt of the two other field-effect transistors.
US09041078B1 Three-dimensional integrated circuit with inter-layer vias and intra-layer coupled transistors
A circuit comprises a first layer and a second layer separate from the first layer. The first layer comprises a power line, a first transistor coupled to the power line, a second transistor coupled to the power line, and a first line coupling the first transistor and the second transistor. The second layer comprises a ground line, a third transistor coupled to the ground line, a fourth transistor coupled to the ground line, and a second line coupling the third transistor and the fourth transistor. The circuit also comprises an inter-layer interconnect that couples the first transistor and the third transistor. The inter-layer interconnect also couples the second transistor and the fourth transistor.
US09041073B2 Image sensors including channel stop regions surrounding photodiodes and methods of fabricating the same
Image sensors are provided. In the image sensor, an area of a device isolation layer may be reduced and elements may be isolated from each other by a channel stop region extending between the photoelectric conversion region and the device isolation layer, such that a dark current property of the image sensor may be improved.
US09041070B2 Vertical power MOSFET
When forming a super junction by the embedded epitaxial method, adjusting a taper angle of dry etching to form an inclined column is generally performed in trench forming etching, in order to prevent a reduction in breakdown voltage due to fluctuations in concentration in an embedded epitaxial layer. However, according to the examination by the present inventors, it has been made clear that such a method makes design more and more difficult in response to the higher breakdown voltage. In the present invention, the concentration in an intermediate substrate epitaxy column area in each substrate epitaxy column area configuring a super junction is made more than that in other areas within the substrate epitaxy column area, in a vertical power MOSFET having the super junction by the embedded epitaxial method.
US09041069B2 Distributed metal routing
A system and method for a distributed metal routing is disclosed. An embodiment comprises a metal_0 layer with a metal_1 layer overlying the metal_0 layer. The metal_1 layer comprises separate parallel lines, with lines having different signals being distributed across the metal_1 layer. Such a layout decreases the parasitic resistance within the metal_0 layer as it decreases the distance current travels. Additionally, the distributed layout in metal_1 allows connections to be made to a metal_2 layer without the need for a hammer head connection of vias.
US09041066B2 Protection device for normally-on and normally-off high electron mobility transistors
A transistor device includes a compound semiconductor body, a normally-on high electron mobility field effect transistor (HEMT) formed in the compound semiconductor body and a protection device monolithically integrated in the same compound semiconductor body as the normally-on HEMT. The normally-on HEMT has a source, a drain, a gate, and a threshold voltage. The protection device has a source and a drain each shared with the normally-on HEMT, a gate and a positive threshold voltage that is less than a difference of the threshold voltage of the normally-on HEMT and a gate voltage used to turn off the normally-on HEMT. The protection device is operable to conduct current in a reverse direction when the normally-on HEMT is switched off. A transistor device including a normally-off HEMT and a monolithically integrated protection device is also provided.
US09041061B2 III-V device with overlapped extension regions using replacement gate
A structure and method for fabricating a III-V compound semiconductor-containing heterostructure field-effect transistor (FET) with self-aligned and overlapped extensions using a replacement gate process is disclosed. The a III-V compound semiconductor-containing heterostructure field-effect transistor (FET) structure may be formed by forming a III-V compound semiconductor-containing heterostructure having multiple layers and a T-shaped gate structure using a gate replacement process. The T-shaped gate structure may be formed with a bottom surface substantially below an upper surface of the III-V compound semiconductor-containing heterostructure and an upper surface above the III-V compound semiconductor-containing heterostructure. An undoped region may be formed below the bottom surface of the T-shaped gate structure on a layer of the III-V compound semiconductor-containing heterostructure.
US09041060B2 III-V FET device with overlapped extension regions using gate last
A structure and method for fabricating a III-V compound semiconductor-containing heterostructure field-effect transistor (FET) with self-aligned and overlapped extensions using a gate last process is disclosed. The a III-V compound semiconductor-containing heterostructure field-effect transistor (FET) structure may be formed by forming a III-V compound semiconductor-containing heterostructure having at least one layer; forming a doped contact layer on the III-V compound semiconductor-containing heterostructure; and forming a gate structure having a bottom surface substantially below an upper surface of the III-V compound semiconductor-containing heterostructure and an upper surface above the doped contact layer. An undoped region may be formed below the bottom surface of the T-shaped gate structure on a layer of the III-V compound semiconductor-containing heterostructure.
US09041057B2 Field effect transistor device with shaped conduction channel
A field effect transistor device includes a substrate, a silicon germanium (SiGe) layer disposed on the substrate, gate dielectric layer lining a surface of a cavity defined by the substrate and the silicon germanium layer, a metallic gate material on the gate dielectric layer, the metallic gate material filling the cavity, a source region, and a drain region.
US09041054B2 High holding voltage electrostatic discharge protection device
A high holding voltage (HV) electrostatic discharge (ESD) protection circuit comprises a silicon controlled rectifier (SCR) device and compensation regions located within the length between the anode and cathode (LAC) of the SCR device which increase the holding voltage of the SCR device. The compensation regions may introduce negative feedback mechanisms into the SCR device which may influence the loop gain of the SCR and cause it to reach regenerative feedback at a higher holding voltage.
US09041050B2 IE type trench gate IGBT
In a method of further enhancing the performance of a narrow active cell IE type trench gate IGBT having the width of active cells narrower than that of inactive cells, it is effective to shrink the cells so that the IE effects are enhanced. However, when the cells are shrunk simply, the switching speed is reduced due to increased gate capacitance. A cell formation area of the IE type trench gate IGBT is basically composed of first linear unit cell areas having linear active cell areas, second linear unit cell areas having linear hole collector areas and linear inactive cell areas disposed therebetween.
US09041047B2 Organic light emitting diode display and method for manufacturing the same
An exemplary embodiment described technology relates generally to an organic light emitting diode (OLED) display and a manufacturing method thereof. The organic light emitting diode (OLED) display according to an exemplary embodiment includes: a substrate; an encapsulation member; an organic light emitting element between the substrate and the encapsulation member; a middle sealing member including one side disposed between the substrate and the encapsulation member and another side extended from the one side to be bent and enclosing an edge of the encapsulation member; a first sealant sealing and combining the one side of the middle sealing member and the substrate to each other; a second sealant sealing and combining the other side of the middle sealing member and the encapsulation member to each other; and a getter at the one side of the middle sealing member and the encapsulation member.
US09041046B2 Method and apparatus for a light source
A light-emitting device having a light source die mounted within an aperture is disclosed. The aperture is covered by a die attach pad on one side. The light source die is mounted on a die attach pad within the aperture. In one embodiment, an optical coupling layer can be formed within an aperture encapsulating a light source die. A wavelength converting layer can be formed on the substrate above the optical coupling layer. The wavelength converting layer can comprise a high density layer and a low density layer. The high density layer can comprise wavelength-converting material precipitated on one side of the wavelength converting layer. The low density layer can comprise the wavelength-converting material in particle form suspended within the wavelength converting layer. In one embodiment, the wavelength converting layer may be confined within the aperture of the substrate.
US09041045B2 Transparent LED wafer module and method for manufacturing same
A transparent LED wafer module and a method for manufacturing the same are provided. In a conductor LED device epitaxial process, the conductor LED device is grown on a transparent material wafer, where both surfaces of the conductor LED device are entirely grown on the transparent material, and then a transparent glass substrate is restacked, thereby securing a high amount of light.
US09041042B2 High density multi-chip LED devices
High density multi-chip LED devices are described. Embodiments of the present invention provide high-density, multi-chip LED devices with relatively high efficiency and light output in a compact size. An LED device includes a plurality of interconnected LED chips and an optical element such as a lens. The LED chips may be arranged in two groups, wherein the LED chips within each group are connected in parallel and the groups are connected in series. In some embodiments, the LED device includes a submount, which may be made of ceramic. The submount may include a connection bus and semicircular areas to which chips are bonded. Wire bonds can be connected to the LED chips so that all the wire bonds are disposed on the outside of a group of LED chips to minimize light absorption.