Document | Document Title |
---|---|
US08953727B2 |
Method of detection of signal in communication systems with MIMO channel
An apparatus and a method for detecting signals are provided. The method for detecting signals in a receiving end having a plurality of antenna in wireless communication system includes performing Minimum Mean Square Error (MMSE) estimation for a transmitted symbol vector, determining a covariance matrix for the MMSE estimation, determining a triangular matrix based on the covariance matrix, and determining accumulated metrics for each symbol vector candidate based on the triangular matrix. |
US08953719B2 |
Signal detector, signal detection method, and communication terminal apparatus
There is provided a signal detector which includes a correlation emphasis unit configured to generate correlation emphasis signals corresponding to the respective fixed intervals, an autocorrelation matrix generation unit configured to generate an autocorrelation matrix, a noise power estimation unit configured to estimate noise power in the correlation emphasis signals, a noise power matrix generation unit configured to generate, a noise power matrix having noise power components, a noise removal unit configured to remove an influence of noise from the autocorrelation matrix, an eigenvalue calculation unit configured to calculate an eigenvalue of the autocorrelation matrix from which the influence of noise has been removed by the noise removal unit, and a signal judgment unit configured to determine whether a signal transmitted from an external apparatus is included in the received signals. |
US08953717B2 |
Receiving method, apparatus, and system in cooperative communications
A method includes: demodulating a signal transmitted by a first source end that is received to obtain a first log-likelihood ratio; demodulating a signal transmitted by a second source end that is received to obtain a second log-likelihood ratio; demodulating a signal transmitted by a relay node that is received to obtain a third log-likelihood ratio; based on an exclusive OR feature of network coding, processing the first log-likelihood ratio, the second log-likelihood ratio, and the third log-likelihood ratio to obtain a posterior log-likelihood ratio of the first source end; and decoding the signal transmitted by the first source end that is received by using the posterior log-likelihood ratio of the first source end. |
US08953715B1 |
Multi-band direct sampling receiver
A radio signal reception technique includes selecting a sample rate from a plurality of predefined sample rates so that the radio signal is contained entirely within a Nyquist zone corresponding to the sample rate. The radio signal is passed through a selected one of a plurality of selectable bandpass filters to provide an analog signal. The analog signal is sampled at the sample rate and converted to a digital signal. |
US08953707B2 |
Differential codebook for temporally-correlated MISO dual-polarization antenna
A code word selection method performed by a User Equipment (UE) in a wireless communication system is provided. The method includes generating a rotation matrix using previously selected codeword; generating a new differential code book using the rotation matrix and a differential code book; selecting a code word from the new differential code book; and performing data transmission using the selected code word. |
US08953706B1 |
Method for computing sub-stream invariant steering matrices for MIMO beamforming
In a method for generating steering matrices for beamforming, one or more subsets of one or more maximum transmit steering matrices are selected, where the maximum transmit steering matrices correspond to a maximum number of spatial streams able to be transmitted from a transmitter to a receiver. The subsets correspond to an actual number of spatial streams to be transmitted, and the subsets are applied to spatial streams to be transmitted. In an apparatus for generating steering matrices, a steering matrix calculator is configured to determine, from maximum transmit steering matrices, a plurality of steering coefficients corresponding to an actual number of spatial streams. |
US08953704B2 |
Wireless communication apparatus, wireless communication system and wireless communication method
In a MIMO system using a cross-polarized antenna structure, even if no ideal XPD can be obtained, the interference between different polarized waves can be reduced to allow an effective precoding to be executed. When a MIMO communication is performed between a transmitter and a receiver each using a cross-polarized antenna structure, a channel estimating and precoding selection section of the receiver performs a channel estimation of MIMO channels from the transmitter to the receiver, decides a precoding matrix of a projection matrix for mutually orthogonalizing or substantially orthogonalizing the channel response matrixes for respective different polarized waves, and feeds the determined precoding matrix back to the transmitter. In the transmitter, a precoding processing section applies the precoding matrix to the spatial stream corresponding to one of the polarized waves to perform a precoding, thereby allowing the transmitter to transmit the polarized waves with the orthogonality therebetween maintained. |
US08953703B2 |
Interleaving method and deinterleaving method
Bit permutation to bits of a codeword is performed such that: at least one spatial-multiplexing block is made up of bits from B/2 different cyclic-blocks; each constellation word of the at least one spatial-multiplexing block is made up of bits from Bt/2 different cyclic blocks, Bt being the number of bits of the constellation word; and each of the bit pairs of the constellation word is made up of bits from a common one of the Bt/2 different cyclic blocks. |
US08953702B2 |
Precoding matrix index selection process for a MIMO receiver based on a near-ML detection, and apparatus for doing the same
A process selects a Precoding Matrix Index (PMI) in a Multiple In Multiple Out (MIMO) receiver used in a wireless communications system including a base station communicating with User Equipments (UE) through a downlink and uplink channel. The base station applies a precoding on the transmit symbol vector based on a matrix selected from a set of predefined matrices and identified by a PMI index computed by the UE and forwarded to the base station via the uplink. The process includes estimating the MIMO channel matrix H of a given set of resources blocks comprising received symbol vectors, estimating the variance σ2 of the additive noise (AWGN), and computing for each particular matrix comprised within the set of predefined matrices a cost function representative of the orthogonality of the matrix MIMO channel matrix H. The process further includes comparing the values of the cost function and transmitting to the base station the index corresponding to the matrix corresponding to the best conditioned MIMO channel matrix according to the comparison of the values. |
US08953694B2 |
Communication apparatus and control method therefor
Regarding an apparatus capable of transmitting data using a high-rate transmission channel having narrow directivity and a low-rate transmission channel having wide directivity, data is not correctly sent in some cases because a communication path for the high-rate transmission channel is easily interrupted. In contrast, it is not possible to realize sending of high-quality data using the low-rate transmission channel. The same data is simultaneously transmitted using the high-rate transmission channel and the low-rate transmission channel. The data that has been received using the high-rate transmission channel or the data that has been received using the low-rate transmission channel is selected in accordance with a state of reception using the high-rate transmission channel. |
US08953691B2 |
Block error compensating apparatus of image frame and method thereof
An apparatus and method are provided for compensating a block error in an image frame. This may include a video codec decoder for decoding an inputted image frame, and outputting a decoded image frame. An error concealment block may detect an error-generated block in the decoded image frame and compensate the detected error block through a median filter, and output the compensated image frame. |
US08953690B2 |
Method and system for processing video data
In various embodiments, a significance map of a matrix of video data coefficients is encoded or decoded using context-based adaptive binary arithmetic coding (CABAC). The significance map scanned line-by-line along a scanning pattern. Each line may be a vertical, horizontal, or diagonal section of the scanning pattern. Context models for each element processed in a particular line are chosen based on values of neighboring elements that are not in the line. The neighboring elements may be limited to those contained within one or two other scanning lines. Avoiding reliance on neighbors that are in the same scanning line facilitates parallel processing. |
US08953687B2 |
Video interpolation
A method and apparatus are provided for motion compensated video interpolation. Each field or frame in a sequence of video images is subdivided into a plurality of blocks and a motion vector field is derived using block matching for a current video field using data matched to a previous video field or frame. A first time instance is determined at which an interpolated block is to be displayed and a second time instance is determined at which a corresponding interpolated block is to be created. Video data for each block is interpolated at its second time instance for each block and is then output for display at the first time instance. |
US08953682B2 |
Method and apparatus for encoding video, and method and apparatus for decoding video
Disclosed is a method of encoding a video, the method including: splitting a current picture into at least one maximum coding unit; determining a coded depth to output a final encoding result according to at least one split region obtained by splitting a region of the maximum coding unit according to depths, by encoding the at least one split region, based on a depth that deepens in proportion to the number of times the region of the maximum coding unit is split; and outputting image data constituting the final encoding result according to the at least one split region, and encoding information about the coded depth and a prediction mode, according to the at least one maximum coding unit. |
US08953677B2 |
Methods and systems for inter-layer image prediction signaling
Embodiments of the present invention comprise systems and methods for predicting high dynamic range (HDR) image blocks with block-specific prediction data, where the systems and methods may comprise low dynamic range (LDR) image data and HDR image data for a target image block, where a scaled, offset LDR image block may be combined with HDR residual image block to form an HDR image block corresponding to the target image block. |
US08953676B2 |
Information processing apparatus, computer-readable storage medium storing image transmission program, and computer-readable non transitory storage medium storing image display program
An information processing apparatus that generates images for displaying a computer execution result on a display unit of a terminal device connected through a network and that transmits the images to the terminal device. The apparatus includes an image memory that holds the images; a first transmitting unit that transmits the images, a detecting unit that detects an area obtained by updating accumulated changes between frames of the images or a frequency of changes between frames of the images, and a second transmitting unit that compresses the images by a compression method and that transmits the compressed images, when the area or the frequency detected by the detecting unit is larger than or equal to a predetermined threshold, the compression method being different from a compression method for the first transmitting unit. |
US08953672B2 |
Method and device for compressing a video sequence
The present invention relates to the field of video compression and, specifically, to controlling the bit rate of the generated compressed sequence. This invention relates to a method for constant bit rate compression, using a step of normalizing the compression ratio. Variations in said ratio can thus be smoothed out, eliminating sudden variations in image quality in the resulting sequences. The perceived quality of the service is thereby improved. |
US08953664B2 |
Method, equipment, system, and program product for activating DSL
Embodiments of the present invention provide a method for activating a DSL. The method includes: sending, by a central office equipment, a sync frame period indication message to a customer premises equipment, where a sync frame period indicated by the sync frame period indication message is smaller than a specified sync frame period threshold; receiving a reply message sent by the customer premises equipment in response to the sync frame period indication message, where the reply message indicates whether the customer premises equipment accepts the sync frame period indicated by the sync frame period indication message; and if the reply message indicates that the customer premises equipment accepts the sync frame period, performing, by the central office equipment, vectoring training by using a corresponding sync frame within the sync frame period. The embodiments of the present invention further provide corresponding equipments, a system, and a program product. |
US08953659B2 |
Response frame modulation coding set (MCS) selection within single user, multiple user, multiple access, and/or MIMO wireless communications
Response frame modulation coding set (MCS) selection within single user, multiple user, multiple access, and/or MIMO wireless communications. With respect to any exchange between communication devices in which there is a response frame, a first frame (e.g., an eliciting frame) is a first transmitted from the eliciting communication device to the responding communication device, and a second frame (e.g., a response frame) is transmitted from the responding communication device to the eliciting communities device. Appropriate selection of MCS to be used within the response frame may be determined explicitly or implicitly. One or more parameters (e.g., a limit parameter, a reduction parameter, etc.) may be used to determine the MCS of the response frame. The MCS employed for a response frame may be selected from a basic MCS set that ensures all response frames from any responding communication device may be properly received by the eliciting communication device. |
US08953657B2 |
Packet detector
There are several exemplary ways to more efficiently communicate an out-of-domain seed to a receiver—in a first technique, the seed can be indicated in the header portion or data portion of a packet. For example, the header portion of the packet could contain one or more bit fields that indicate the value of the LFSR seed used for the preamble portion of the packet. The receiver would learn the out-of-domain seed after receiving a first out-of-domain packet and decoding the header portion of that packet. After learning the out-of-domain seed, the receiver could send a packet indicating the value of the out-of-domain seed to the local master. The local master could then transmit the value of the out-of-domain seed in the header portion or data portion of a local MAP frame. |
US08953655B2 |
Optical transmitter suppressing excess emission of laser diode
A laser diode (LD) driver to suppress the excess emission of an LD is disclosed. The LD driver has the shunt configuration with a driving transistor connected in parallel to the LD to shunt the bias current provided to the LD. The driver further provides a protection circuit to divide the bias current when the bias current is active but the driving transistor is turned off at an instant of the power on and off of the LD driver. |
US08953654B2 |
Semiconductor laser driving circuit and semiconductor laser device including the same
A semiconductor laser driving circuit supplies a drive current to a semiconductor laser diode connected to an output terminal based on an input signal inputted thereto through an input terminal, thereby controlling the semiconductor laser diode. The semiconductor laser driving circuit includes a first supply portion supplying a bias current, and a first supply signal having a frequency component whose frequency is equal to or lower than a first frequency of the input signal, and a second supply portion supplying a second supply signal having a frequency component whose frequency is higher than a second frequency of the input signal. |
US08953652B2 |
Method and apparatus for differentially controlling population inversion in gain medium
A method and apparatus are operative to control the desired level of population inversion in a gain medium having an amplified spontaneous emission (ASE) spectrum which is characterized by distinct short- and long-wavelength regions. The control is realized by the apparatus configured to determine a relationship between the regions of the ASE spectrum represented by respective frequencies which are filtered by respective frequency discriminators. The apparatus includes a controller operative to process the filtered frequencies by determining a relationship between amplitudes of the respective filtered frequencies which represents a measured level of population inversion. Upon mismatch between the measured level and desired level of the population inversion, a control signal is coupled into a pulse generator or pump or both. In response, the pulse generator may output a pulse, or/and the pump may be completely shut down to lower the level of the measured inversion. |
US08953649B2 |
Grating external-cavity semiconductor laser and quasi-synchronous method thereof
A method for quasi-synchronous tuning of wavelength or frequency of grating external-cavity semiconductor laser and a corresponding semiconductor laser are provided. A grating or mirror is rotated around a quasi-synchronous tuning point (Pq) as rotation center, so as to achieve the frequency selections by grating and resonance cavity in quasi-synchronous tuning, wherein the angle of the line between the quasi-synchronous tuning point (Pq) and a conventional synchronous tuning point (P0) with respect to the direction of light incident on the grating is determined according to the angle difference between the incidence angle and diffraction angle of light on the grating. According to present invention, approximately synchronous tuning of laser is achieved with a simple and flexible design. |
US08953648B2 |
Fiber laser pumping configuration and method
The invention is an apparatus and method for free space pumping of active double-clad fiber based lasers and amplifiers. The apparatus comprises a laser emitting a signal laser beam; an active double-clad fiber having a core defining an optical axis of the apparatus and a pump cladding defining a cone of numerical aperture; an optical arrangement directing the signal laser beam along the optical axis through the core of the active double-clad fiber; at least one pump source emitting a pump beam; at least one delivery means coupling the pump beam to the pump cladding of the active double-clad fiber; and an optical arrangement coupling the amplified signal laser beam exiting the active double-clad fiber out of the apparatus. |
US08953647B1 |
High-power laser using thulium-doped fiber amplifier and frequency quadrupling for blue output
An apparatus, method and associated fiber-laser architectures for high-power pulsed operation and pumping wavelength-conversion devices. Some embodiments generate blue laser light by frequency quadrupling infrared (IR) light from Tm-doped gain fiber using non-linear wavelength conversion. Some embodiments use a fiber MOPA configuration to amplify a seed signal from a semiconductor laser or ring fiber laser. Some embodiments use the frequency-quadrupled blue light for underwater communications, imaging, and/or object and anomaly detection. Some embodiments amplitude modulate the IR seed signal to encode communication data sent to or from a submarine once the modulated light has its wavelength quartered. Other embodiments transmit blue-light pulses in a scanned pattern and detect scattered light to measure distances to objects in a raster-scanned underwater volume, which in turn are used to generate a data structure representing a three-dimensional rendition of the underwater scene being imaged for viewing by a person or for other software analysis. |
US08953646B2 |
Method and apparatus of multiplexing media streams
An apparatus and method for generating a multiplex of media streams, the method includes the steps of: (i) receiving a set of media streams that comprises first type media stream components and second type media stream components; (ii) applying a modification process that is not adapted to modify second type media stream components, such as to provide at least one modified first type media stream component; and (iii) multiplexing at least the second type media stream components and the modified first type media stream components. |
US08953643B2 |
Measurement configuration method of multi-carrier system and equipment thereof
The present invention discloses Measurement configuration method of multi-carrier system and equipment thereof, and the method comprises the following steps: the terminal determines whether the frequency of target PCC exists in the measurement configuration after inter-frequency handover or inter-frequency RRC connection re-establishment is completed successfully, exchanges relevant measurement configuration of source PCC with that of target PCC when that of target PCC exists in the determined measurement configuration; and, deletes or reserves relevant measurement configuration of SCC, or exchanges relevant measurement configuration of source SCC with that of target SCC. The present invention solves the problem of measurement exchange and configuration of terminal under CA working condition when RRC connection re-establishment and handover of inter-frequency are completed successfully, saves air interface signaling and reduces the realization complexity. |
US08953639B2 |
Method and apparatus of processing digital broadcasting signal including transmission ensemble number fields in transmitter and receiver
According to one embodiment, a method of processing a digital broadcasting signal in a transmitter includes: performing RS (Reed-Solomon) encoding on signaling data containing cross layer information between a physical layer and a upper layer; interleaving the RS encoded signaling data, wherein interleaving the RS encoded signaling data includes writing the RS encoded signaling data row-by-row from left-to-right and top-to-bottom in a signaling data block, and outputting the signaling data in the signaling data block by reading column-by-column from top-to-bottom and left-to-right; and transmitting the digital broadcasting signal including the mobile service data and the interleaved signaling data during slots. |
US08953638B2 |
Systems and methods for transmitting radio link control (RLC) data blocks
In one aspect, the invention provides apparatuses and methods for wirelessly transmitting application data utilizing priority information for each radio link control (RLC) data block transmitted. Advantageously, the application data with a relatively high transmission priority is not substantially delayed by the transmission of application data with substantially lower transmission priorities. |
US08953637B1 |
Media and speed independent interface
A networking device includes a media access controller, a first rate adaptation layer communicating with the media access controller, a first physical extension module communicating with the first rate adaptation layer, a second physical extension module communicating with the first physical extension module, a second rate adaptation layer communicating with the second physical extension module, and a physical layer device communicating with the second rate adaptation layer. The physical layer device communicates with the second rate adaptation layer using an extended 10 Gbps media independent interface (EXGMII). The EXGMII includes a plurality of signal interconnections, a first mapping of signals of a media independent interface (MII) to the signal interconnections, a second mapping of signals of a 1 Gbps MII (GMII) to the signal interconnections, and a third mapping of signals of a 10 Gbps MII (XGMII) to the signal interconnections. |
US08953625B2 |
Applying backpressure to a subset of nodes in a deficit weighted round robin scheduler
A scheduler in a network element may include a dequeuer to dequeue packets from a set of scheduling nodes using a deficit weighted round robin process, where the dequeuer is to determine whether a subset of the set of scheduling nodes is being backpressured. The dequeuer may set a root rich most negative credits (MNC) value, associated with a root node, to a root poor MNC value, associated with the root node, and set the root poor MNC value to zero, when the subset is not being backpressured, and may set the rich MNC value to a maximum of the root poor MNC value and a root backpressured rich MNC value, associated with the subset, and set the root poor MNC value to a root backpressured poor MNC value, associated with the subset, when the subset is being backpressured. |
US08953622B2 |
Method and apparatus for jitter buffering within a communication system
A method and apparatus for performing jitter buffering is provided herein. During operation, a system will utilize variable-length jitter buffers within each receiver. Each receiver will then be assigned an appropriate jitter-buffer size based upon system constraints. In one embodiment of the present invention jitter-buffer size is adjusted on a per call (or even per call/speech segment) basis and is based on both the source and destination capabilities. |
US08953617B2 |
System and method for utilizing a unique identifier while registering a device in a network
An information handling system includes a server having a management system module. The management system module broadcasts an address resolution protocol request including a unique identifier in the information handling system. The management system module also receives multiple address resolution protocol responses to the address resolution protocol request. Each of the multiple address resolution protocol responses includes a different media access control address associated with the unique identifier. The management system module also creates a unique identifier table correlating each of the media access control addresses with the unique identifier. |
US08953615B2 |
Flexible OFDM/OFDMA frame structure for communication systems
A flexible OFDM/OFDMA frame structure technology for communication systems is disclosed. The OFDM frame structure technology comprises a configurable-length frame which contains a variable length subframe structure to effectively utilize OFDM bandwidth. Furthermore, the frame structure facilitates spectrum sharing between multiple communication systems. |
US08953611B2 |
Methods and apparatus for increasing data throughput by grouping data packets into maximum transmissible units
A technique for use in a communication device for communicating data involves receiving a plurality of transport data packets in an ordered sequence; rearranging at least some of the transport data packets in a group with a reordered sequence different from the ordered sequence, for increasing the total size of the group to be at or near a maximum transmissible unit size of a transport data frame; formatting the transport data packets of the group having the total size at or near the maximum transmissible unit size into the transport data frame, for data transmission from the communication device; and repeating, for a plurality of transport data frames, the acts of rearranging and formatting, for communicating the data. |
US08953610B2 |
Method and system for transit between two IPV6 nodes of a utility network connected VIA an IPV4 network using encapsulation technique
One example embodiment provides a method and system where a node in an IPv6 utility network communicates with an IPv6 destination node through and IPv4 network. IPv6 utility nodes are reachable through at least one access point. IPv6 packets to be transmitted between an IPv6 access point an and an IPv6 destination node through a IPv4 communications network are encapsulated in IPv4 packets for transmission through the IPv4 communications network. Packets received after transmission through the IPv4 communications network at the destination node are extracted to retrieve the IPv6 packet. |
US08953608B1 |
Method and system for frame aggregation
Method and system for aggregating frames at a network device coupled to computing system is provided. The network device includes an aggregator module that is configured to determine that a frame received by the device meets a first level eligibility criterion for aggregation, where the frame meets the first level eligibility criterion when the frame is a data frame for the I/O exchange identified as a large I/O operation; and a frame header meets an eligibility criterion. When the frame does not meet the first level eligibility criterion and an active aggregation exists for the exchange, then a previous aggregation data unit with an appended header and the received frame are sent to a transport layer for further processing. When the frame meets the first level eligibility criterion, the aggregator module checks a data structure maintained by the network device to determine that an aggregation flow exists for the exchange. |
US08953606B1 |
Flexible edge access switch and associated methods thereof
A network device is provided. The network device includes a processor having access to a memory storage device storing instructions for execution by the processor; and a first flexible port having a physical layer that can be configured to operate as a first link type or a second link type based on a control signal sent by the processor. The first flexible port receives a packet from the computing system. The first flexible port determines an egress flexible port for transmitting the packet to its destination. A routing module generates a route control tag for the packet that includes an identifier identifying the egress flexible port, a location identifier identifying where the packet is stored at the first flexible port and a translation identifier identifying an action that is to be performed on the packet at the egress port before sending the packet to the destination. |
US08953601B2 |
Internet protocol version six (IPv6) addressing and packet filtering in broadband networks
A method comprising sending a dynamic host configuration protocol (DHCP) message comprising an Identity Association for Prefix Delegation (IA_PD) Prefix option comprising a Internet Protocol version 6 (IPv6) prefix and a length of the IPv6 prefix to a device having a media access control (MAC) address, receiving from the device a packet comprising a source MAC address and a source IPv6 address, and dropping the packet when the MAC address is equal to the source MAC address and the leftmost bits of the source IPv6 address defined by the length are not equal to the IPv6 prefix. |
US08953600B2 |
Telemetry data routing
Among other things, one or more techniques and/or systems are provided for routing telemetry data to one or more receivers. That is, telemetry data, such as activity data associated with a network device (e.g., a switch, a router, etc.), may be routed to one or more receivers in-flight (e.g., while the telemetry data is being processed by a network device, as opposed to being stored within a storage device for processing). In one example, telemetry data may be forked into a first telemetry data stream for a first receiver, a second telemetry data stream for a second receiver, and/or other telemetry data streams. Respective telemetry data streams may be formatted according to a receiver destination policy. In this way, one or more telemetry data streams, forked from the telemetry data in-flight, may be delivered to one or more receivers in-flight. |
US08953599B1 |
Traffic cut-through within network device having multiple virtual network devices
In general, techniques are for providing a direct forwarding path between virtual routers within a single virtualized routing system. In one example, a method includes combining forwarding information from a plurality of virtual routers into collapsed forwarding information that comprises one or more direct forwarding paths between the respective virtual routers. The method also includes determining a direct forwarding path to an egress interface of the second virtual router, in response to receiving a network packet at an ingress interface of a first virtual router. The method also includes forwarding the network packet from the ingress interface of the first virtual router to the egress interface of the second virtual router using the direct forwarding path, wherein the network packet traverses a switch fabric directly from the ingress interface of the first virtual router to the egress interface of the second virtual router. |
US08953598B2 |
Method and system for determining the existence of broadcast and multicast frames buffered in an access point
A method and a system for determining the existence of broadcast/multicast frames buffered in an access point (AP) are used to avoid wakening a station (STA) unnecessarily. The method includes: when receiving broadcast/multicast frames sent from a service network and/or multicast group, an AP sets a broadcast/multicast indication bit that associates the service network and/or multicast group to the valid state and sends frames that carry the broadcast/multicast indication bit to a STA; the STA determines whether there are broadcast/multicast frames buffered in the AP according to the associated service network and/or multicast group and the received broadcast/multicast indication bit. Embodiments of the present disclosure also disclose an AP and a STA. The AP can identify whether there are broadcast/multicast frames buffered in an AP. |
US08953596B2 |
Conserving network capacity by releasing QoS resources
A broadband service is provided by allocating air interface resources in a wireless network that conforms to the 1xEV-DO standard. The air interface resources are characterized by various quality of service (QoS) parameters, such as bandwidth, packet priority and error rate. Packetized information is transmitted in data flows between a base station and cell phones. A particular QoS level is reserved for each of the data flows that support the broadband service. An operating system on a cell phone monitors one data flow as well as another data flow in the opposite direction. When the base station runs out of an air interface resource, the base station suspends the QoS reservation of a data flow. The operating system determines that the QoS reservation in one direction has been suspended and sends an unsolicited message to the base station releasing the QoS reservation in the opposite direction, thereby conserving network resources. |
US08953592B2 |
Network address translation for application of subscriber-aware services
In general, techniques are described for informing services nodes of private network address information in order to apply subscriber-aware services with the services node. In some examples, a services node includes an Authentication, Authorization, and Accounting (AAA) interface to receive a AAA message, wherein the AAA message has been extended from a AAA protocol to specify a private network address of a subscriber device authenticated to an access network by the AAA server and assigned the private network address that is not routable external to the access network. A mapping module associates the public network address of subscriber data traffic with the private network address received by the AAA message. One or more service modules select one or more of a plurality of subscriber policies using the associated private network address and apply services to the subscriber data traffic in accordance with the selected subscriber policies. |
US08953590B1 |
Layer two virtual private network having control plane address learning supporting multi-homed customer networks
This disclosure describes techniques for supporting an and Multi-Protocol Label Switching (MPLS)-based Virutal Private Network (VPN) service that provides layer two (L2) connectivity between the customer edge device. In particular, the techniques support a Border Gateway (BGP) MPLS-based MAC VPNs (“MAC-VPN” or “MAC VPN”). The techniques provide a MAC VPN in which L2 MAC address learning occurs in the control plane via inter-device BGP signaling in the control plane rather than the data plane, in response to VPN traffic, as may be typical with other VPN technologies. |
US08953583B2 |
Method and system for selective call forwarding based on media attributes in telecommunication network
A method of forwarding a call based on media attributes of the call in a telecommunications network is disclosed. The call forwarding services includes call forwarding based on SDP attributes, media-based partial call forwarding and partial call forwarding to multiple destinations. The method comprises comparing parameters of SDP with call forwarding parameter of the user, obtaining a match between one of the SDP parameters and the call forwarding parameters, sending a REFER message in case of partial call forwarding, multiple REFER messages in case of partial call forwarding to multiple destinations to network of calling user, and forwarding the call to other terminals as specified in the call forwarding parameters. The call forwarding based on media attributes enables a served user to forward communications based on media attributes conveyed over SDP for an IMS/SIP user. |
US08953582B2 |
Information delivery system and information delivery method using the same
A mobile type service provider terminal registers a service providing area to a presence management server before a service starts. The presence management server creates a status management table of the mobile type service provider terminal. When the presence of the mobile type service provider terminal is detected in an area, the terminal registers information contents, which are delivered to subscribers, to an information delivery server. When the information delivery server stores the registered information contents to an information contents database and completes the creation of an information providing table, it notifies a service control server of the information. The service control server creates a message with reference to the information notified from the information delivery server and delivers it to the subscribers. |
US08953581B1 |
Timing synchronization for wireless networks
A system for synchronizing nodes in a wireless network comprises a first node and a second node. The first node comprising a transmitter, a receiver, and a first time keeper. The second node comprising a transmitter, a receiver, a second time keeper, a timing error measurer for making a timing error measurement between the first time keeper and the second time keeper. The second timekeeper is adjusted to target minimizing the timing error measurement. |
US08953579B2 |
Frequency duplication mode for use in wireless local area networks (WLANs)
In generating a physical layer (PHY) frequency duplication mode data unit for transmission via a communication channel, a preamble of the PHY frequency duplication mode data unit is generated. The preamble includes a signal field, and the preamble is configured so that a receiver can determine that the data unit is a frequency duplication mode-type data unit prior to decoding the signal field of the preamble. A payload of the PHY frequency duplication mode data unit is generated, and the PHY frequency duplication mode data unit is transmitted. |
US08953578B2 |
Method and system for contention avoidance in multi-user multiple-input-multiple-output wireless networks
Wireless medium reservation for simultaneous transmission of multiple downlink spatial streams to multiple receiver wireless stations during a multi-user transmit opportunity over a wireless medium, is provided. Such a reservation includes reserving a transmission period for simultaneously transmitting data from a transmitting station to multiple intended receiving stations on multiple downlink spatial streams over a wireless communication medium. Reserving the transmission period includes transmitting a request-to-send (RTS) frame to the multiple receiving stations, the RTS frame including a receiver address (RA) field comprising compressed addresses for the multiple receiving stations. |
US08953574B2 |
Wireless bridging in a hybrid communication network
A hybrid device can be configured to use WLAN communication links for bridging network traffic between any pair of network devices in a hybrid communication network, irrespective of whether the bridged network devices support WLAN communication. The hybrid device receives a first data frame in a first frame format for transmission to a destination device. The hybrid device accesses its hybrid forwarding tables and identifies a transmit interface from which to transmit the first data frame for transmission to the destination device. If the transmit interface is a WLAN interface, WLAN forwarding tables associated with the WLAN transmit interface are accessed to identify a receiving WLAN device to which the first data frame should be transmitted. The WLAN transmit interface converts the first data frame into a second data frame in a WLAN frame format and transmits the second data frame to the receiving WLAN device. |
US08953573B2 |
Method and apparatus for determining and managing congestion in a wireless communications system
A method and apparatus may be used for network management via MAC measurements. The measurements may include WTRU uplink traffic loading measurement, and an AP service loading measurement. The measurements may be applicable to at least to layers 1 and 2 as applied to, for example, 802.11k in the context of OFDM and CDMA 2000 systems, but may be applicable to other scenarios as well. A method for determining and transmitting congestion information may be provided for a Wireless Local Area Network (WLAN) system. The method and apparatus may be used for managing congestion when congestion is detected. The method and apparatus may be used in wireless systems that use a Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) mechanism. The methods may be implemented in wireless transmit/receive units (WTRU)s and access points (AP)s of various forms. |
US08953570B2 |
Radio frequency identification system and related operating methods
A method of operating a radio frequency identification (RFID) system is provided. The method interrogates RFID tags with an RFID reader and provides at least some of the collected tag data to a mobile device that is unable to communicate with RFID tags using the over-the-air interface. In some situations, the RFID system obtains the current location of the mobile device and determines the location of a target tag relative to the current location of the mobile device. Locating the target tag in this manner involves the interrogation of a reference tag located at the mobile device, along with the target tag, using one RFID reader. The position of the target tag relative to the reference tag is calculated in response to the tag response signals obtained from the target and reference tags. Moreover, location of the target tag can be independently determined relative to the location of a mobile reader, by using a reference tag attached to a fixed reader or to the mobile reader. |
US08953569B2 |
Wireless mobile communication device with autonomous Wi-Fi control based on location of device
A wireless mobile communication device may include a Wi-Fi data communication system, an operational condition detection system, and a Wi-Fi activation system. The operational condition detection system may include a location sensor. The operational condition detection system may be configured to detect an operational condition of the wireless mobile communication device, other than actuation of a user-operated control, including when the location sensor determines that the wireless mobile communication device is near a Wi-Fi access point. The Wi-Fi activation system may be configured to autonomously turn power on to the Wi-Fi data communication system upon detection of an operational condition of the wireless mobile communication device by the operational condition detection system, other than actuation of a user-operated control, including when the location sensor senses that the wireless mobile communication device is near a Wi-Fi access point. |
US08953567B2 |
System and method for utilizing IP-based wireless telecommunications client location data
A location provision facility communicates with a mobile telecommunications device over an IP-based telecommunications network to obtain information that enables the facility to determine a location of the telecommunications device. The facility and/or the telecommunications device store the determined location. In response to requests from location-based applications for the location of the telecommunications device, the facility can provide the location-based applications with the stored or calculated location. |
US08953563B2 |
Method and system for multi-layer beamforming
A base station includes a reference signal sequence generator configured to generate a reference signal sequence for each of n antenna ports using one initialization seed, n being a positive integer. The base station also includes n spreaders. Each spreader corresponds to a respective one of the n antenna ports and is configured to receive a respective reference signal sequence for the respective antenna port from the reference signal sequence generator and spread the respective reference signal sequence using a respective Walsh code. The base station further includes n resource element mappers. Each mapper corresponds to a respective one of the n antenna ports and is configured to receive a respective spread reference signal sequence from a respective spreader and map the respective spread reference signal sequence to a set of reference signal resource elements corresponding to a respective antenna port. |
US08953559B2 |
Method and apparatus for supporting network-based flow mobility
The present invention relates to a method and apparatus for supporting location registration and mobility for each service flow in relation to a Mobile Node (MN) having a plurality of wired/wireless network interfaces in a wired/wireless integrated network environment. A method includes receiving a location registration message from a specific Handover Control Agent (HCA) connected to an MN, determining a movement of a flow, configured in another HCA to which the MN is connected, based on predetermined static flow binding information or a network status, sending a location registration Ack. message, comprising information on a HCA in which the flow is configured and to which a Corresponding Node (CN) is connected, to the specific HCA, and sending a location notification message, comprising information on the specific HCA to which the flow will be moved and to which the CN is connected, to the HCA. |
US08953556B2 |
Method of transmitting and handling CountingResponse message and related communication device
A method of transmitting CountingResponse message for a mobile device in a wireless communication system is disclosed. The method comprises steps of receiving a CountingRequest message from a network; activating security between the mobile device and a network in the wireless communication system; and transmitting a CountingResponse message to the network. |
US08953554B2 |
Cell reselection based on use of relative thresholds in a mobile telecommunication system
A user equipment performs downlink measurement on neighbour cells, but the measurement performance on a target cell (in terms of measurement period/sampling/accuracy etc) is dependent on the relative performance difference between the target cell and a reference cell. The reference cell may be the serving cell, or may be the strongest cell. The network is thus able to keep track of the required number of target cells without degrading the measurement performance of important cells. The UE on the other hand is still able to save its battery as much as possible while making full use of DRX. |
US08953552B2 |
Method and apparatus for allocating resources of a control channel in a mobile communication system using orthogonal frequency division multiplexing
A method is provided for allocating resources of a control channel in a mobile communication system using Orthogonal Frequency Division Multiplexing (OFDM). The method includes, when a time index and a frequency index of available Resource Elements (REs) are defined as l and k, respectively, dividing the available REs in a two-dimensional structure of (k, l); and time-first-allocating each RE to a plurality of RE groups while increasing the time index l for each frequency index k from an initial value up to a predetermined range. |
US08953541B2 |
Method, user equipment, base station, and system for detecting sharing of timing advance value
Embodiments of the present invention disclose a method, user equipment, base station, and system for detecting sharing of a timing advance value, relate to the field of communications technologies, and solve a problem in the prior art that a normal service cannot be provided because a TA value cannot be shared between different uplink CCs. According to the embodiments of the present invention, the user equipment may determine, through a time offset between synchronization of downlink component carriers corresponding to uplink component carriers, that a too large time offset indicates that a same TA value cannot be shared; the base station may calculate a TA value directly through a dedicated preamble sequence, and then compares the TA value with a TA value of one of the component carriers, where a too large difference between the TA values indicates that a same TA value cannot be shared. |
US08953540B2 |
Method and apparatus for efficient feedback in a wireless communication system supporting multiple antennas
The present invention relates to a method for transmitting channel state information regarding downlink transmission through an uplink may comprise the steps of: receiving a downlink signal through a downlink channel; generating a rank indicator (RI) for the downlink channel, a first precoding matrix indicator (PMI), and a second PMI, and generating channel quality information (CQI) on the basis of pre-coding information which is determined by a combination of the first and second PMIs; and transmitting the RI, first PMI, second PMI, and/or CQI through the uplink channel. The CQI may comprises a first type of CQI calculated on the basis of the number N of layers in which the downlink signal is received and/or a second type of CQI calculated on the basis of the assumption that the number of layers in which the downlink signal is transmitted is K (where K>N). |
US08953536B2 |
Method and a user equipment for transmitting a signal, and a method and a base station for receiving a signal
A method for transmitting or receiving an uplink signal is disclosed. If a user equipment is connected to a base station in accordance with a legacy system support mode, it performs permutation for an uplink signal on a frequency axis in accordance with a first rule. If the user equipment is connected to the base station in accordance with a legacy system non-support mode, it performs permutation for the uplink signal on the frequency axis in accordance with a second rule. Cell ID corresponding to a secondary advanced preamble (SA-preamble) received from the base station is used for permutation based on the first rule and/or the second rule. |
US08953531B2 |
Method and apparatus for managing resources for P2P communication in wireless communication system
A method and apparatus for managing resources for Peer-to-Peer (P2P) communication in a wireless communication system. A mobile station (MS) attempting to establish P2P communication receives a P2P amble signal transmitted on at least one adjacent P2P link, measures a signal strength for the P2P amble signal, reports the measurement results to a base station (BS), and performs the P2P communication using a P2P resource that is assigned by the BS according to the measurement results. The BS assigns a resource different from the resource assigned to a P2P link having a highest signal strength measured, as a resource for the P2P communication, thereby preventing possible interference caused by adjacent P2P links. |
US08953527B2 |
Orthogonal frequency domain multiplexing (OFDM) communication system
An OFDM communication system employs a cell time division time frame for a plurality of overlapping cells wherein the time frame comprises time slots with each time slot allocated to one of the overlapping cells and each time slot being either an information exchange time slot or a data time slot. Remote nodes (101-105) transmit resource requests for at least one subcarrier in a data time slot to one or more of the central nodes (107, 109) in the information exchange time slots of those nodes (107, 109). The central nodes (107, 109) broadcast information of uplink channel characteristics received in the request messages and the remote nodes (101-105) use this to determine whether to abandon or continue the resource request. Eventually, the remote node may decide to use the resource and thus to transmit in the associated data time slot. A distributed multi-cell resource allocation can be achieved based on distributed decisions in the remote stations. |
US08953525B2 |
Method and apparatus for performing uplink ranging in a wireless access system
The present description relates to a method in which a terminal in an idle mode performs network reentry in a wireless access system, wherein the method comprises: a step of receiving, from a base station, control information containing a first parameter and a second parameter for determining a frame in which uplink ranging is to be performed; and a step of performing uplink ranging for network reentry with the base station on the basis of the control information, wherein the first parameter indicates the location of a superframe in which uplink ranging is to be performed, and the second parameter indicates the frame duration in the superframe which is indicated by the first parameter and in which uplink ranging is performed. |
US08953522B2 |
Method and apparatus for controlling retransmission on uplink in a wireless communication system supporting MIMO
A method is provided for controlling retransmission by a User Equipment (UE) in a wireless communication system supporting Multiple Input Multiple Output (MIMO) technology. A plurality of transport blocks is initially transmitted to a Node B. A retransmission request for at least one transport block among the plurality of transport blocks is received from the Node B. A precoding matrix for retransmission of the at least one transport block is determined based on the retransmission request for the at least one transport block. The at least one transport block is retransmitted using the determined precoding matrix. |
US08953519B2 |
Wireless communication system and method for determining the size allocated to a field in the header of a packet based on the length of the packet payload
A method of transmitting a data signal in a wireless communication system from a primary station to a secondary station, where the data signal includes a medium access control header (MAC-hs header) and a protocol data unit associated with the medium access control header. The medium access control header includes a set of fields (TSN, SEG, LI, LCid). The method includes determining a size allocated to at least one field of the set based at least in part on a length of the protocol data unit. For example, the size allocated to a segmentation indication field (SEG) determined for a first length of the protocol data unit is lower than the one determined for a second length of the protocol data unit, where the second length being higher than said first length, where the segmentation indication indicates in how many segments the protocol data unit is subdivided. |
US08953516B2 |
Facilitating asynchronous transmissions using a protocol having asynchronous and synchronous portions
One or more repeaters enable the conveyance of both asynchronous and synchronous transmissions. This can comprise receiving, via a first carrier, a transmission from a message source that is asynchronous with respect to a time slot partitioning of the communication protocol and then, when the asynchronous transmission is received during an asynchronous source transmission portion, buffering a corresponding message until a next available synchronous time slot opportunity during the asynchronous source transmission portion and then transmitting the message via the first carrier to at least attempt to forward the message. |
US08953515B2 |
Receiving cell broadcast (CB) messages
A method for receiving cell broadcast messages is described. The method includes communicating with a first cell. The method also includes switching to communicating with a second cell. A cell broadcast channel is read after switching cells. The method further includes switching from a dedicated mode to a packet idle mode. The cell broadcast channel is reread once after switching from a dedicated mode to a packet idle mode. Other aspects, embodiments and features are also claimed and described. |
US08953513B2 |
Scalable IP-services enabled multicast forwarding with efficient resource utilization
Methods, apparatus and data structures are provided for managing multicast IP flows. According to one embodiment, active multicast IP sessions are identified by a router. A data structure is maintained by the router and contains therein information regarding the multicast sessions, including a first pointer for each of the multicast sessions, at least one chain of one or more blocks of second pointers and one or more transmit control blocks (TCBs). Each first pointer points to a chain of one or more blocks of second pointers. Each second pointer corresponds to an outbound interface (OIF) participating in the multicast session and identifies a number of times packets associated with the multicast session are to be replicated. The TCBs have stored therein control information to process or route packets. Each second pointer points to a TCB that identifies an OIF of the router through which packets are to be transmitted. |
US08953510B2 |
Method for power saving in wireless local area network and apparatus for the same
A method of power saving in a wireless local area network is provided. The method is performed by a wireless device that acquires TXOP (transmission opportunity) from an access point (AP), and the TXOP indicates an interval of time when the AP has the right to transmit at least one data block for multi user-multiple input multiple output (MU-MIMO) transmission. The method includes receiving a power saving indicator from the AP, the power saving indicator indicating whether the AP is allowed to enter doze state during the TXOP; and entering the wireless device into the doze state until the end of the TXOP if the power saving indicator indicates an allowance of entering the doze state. |
US08953507B2 |
Frequency and time domain range expansion
For range expansion, a determination to enter range expansion may be made based on a signal strength differential for user equipment (UE) communications between a first class of base stations and a second class of base stations. If the signal strength differential is beyond a certain threshold, range expansion may be implemented. In range expansion, a signal is transmitted, on a resource coordinated with at least one of the first class of base stations, from one of the second class of base stations to the UE which could experience dominant interference from one of the first class of base stations if coordination were not performed. Transmission power may be reduced from one of the first class of base stations on that resource. The second signal may be transmitted within the region of the Physical Downlink Shared Channel. |
US08953505B2 |
Communication method and apparatus between a terminal and a base station via a frame in a communication system including a relay station
The present invention provides an embodiment of a method and system for applying a hybrid automatic repeat request (HARQ) scheme to a system employing a relay station. According to one embodiment of the present invention, a frame including an access zone and a relay zone can be configured based on the HARQ timing which can be calculated based on the structure of the access zone and relay zone. Also, according to one embodiment of the present invention, the structure of the access zone and relay zone can be determined by multiplexing communication systems that support two kinds of systems different from each other. According to one embodiment of the present invention, the HARQ scheme can be applied even to a frame including an access zone and a relay zone, by calculating the HARQ timing. |
US08953499B2 |
Method and apparatus for establishing spanning trees
The invention includes a method and apparatus for configuring a spanning tree. Specifically, one method according to the present invention includes determining a network topology associated with at least a portion of a network where the network topology includes at least one bridge and at least one link, obtaining network information associated with the network, and computing the spanning tree according to the network topology information and the network information. The network information is operable for evaluating the at least one bridge and the at least one link for inclusion in the spanning tree. The spanning tree includes at least one spanning tree segment, where the at least one spanning tree segment includes at least one communication path operable for supporting network traffic. |
US08953492B2 |
Route determination device, node device, and route determination method
A route determination device includes a memory to store a piece of route information of the route which is already calculated; and a processor to execute a process including: receiving a calculation request which requests route calculation; determining the route which conforms to the calculation request by performing the route calculation when the route information stored in the memory does not include the route which conforms to the calculation request; obtaining the route which conforms to the calculation request from the route information when the route information stored in the memory includes the route which conforms to the calculation request; storing the route information of the route determined by route determining processing in the memory; and sharing, with another route determination device which determines the route going through another node device among the plurality of node devices, the route information of the route determined by the route determining processing. |
US08953491B2 |
System and method for providing wireless network configuration information
A portable computing device for configuring wireless network settings based on received network configuration information includes an input device configured to receive wireless network information from a network device independent of whether the portable computing device is connected to a wireless network that is implemented by the network device and a network configuration application for configuring one or more wireless network settings to initiate wireless network communication through the network device based on the received network information. The network configuration application is configured to facilitate communication of the received wireless network information to a client device. The network information may include a security key and may be entered into a client device either manually after being displayed on the portable computing device or by being transmitted to client device. |
US08953483B2 |
Method and apparatus for transmitting aperiodic sounding reference signal in wireless communication system
A method and apparatus for transmitting an aperiodic sounding reference signal (SRS) in a wireless communication system is provided. The method include receiving a downlink control information (DCI) format including a triggering signal for triggering a transmission of an aperiodic SRS from a base station (BS) via a physical downlink control Channel (PDCCH), blind-decoding the PDCCH in a UE-specific search space, and transmitting the aperiodic SRS triggered based on the triggering signal to the BS. |
US08953482B2 |
Methods and apparatuses to improve on-time throughput for integrated multi-rat heterogeneous networks
Methods and devices for optimizing on-time throughput in a wireless network. An enhanced node B (eNodeB) integrating two or more air interfaces schedules transmissions, for a measurement period, over at least one of the two or more air interfaces. The eNodeB estimates, based on the transmissions, a metric of on-time throughput for the user equipment (UE) within the cell, where on-time throughput is a measure of an amount of data that arrives at a destination before a delay threshold has been reached and at a bit-rate greater than or equal to a target bit-rate. The eNodeB then assigns UEs within the cell to an air interface of the two or more air interface to maximize the metric of on-time throughput for the UEs within the cell. |
US08953481B2 |
Methods and systems for scheduling in a virtual MIMO communication environment
A system and method for scheduling cooperative uplink transmissions in a virtual multiple input multiple output (MIMO) wireless communication environment are provided. More specifically, both random and channel aware orthogonal scheduling techniques for identifying a sub-set of N mobile terminals to provide cooperative uplink transmissions for each transmit time interval are provided. |
US08953478B2 |
Evolved node B and method for coherent coordinated multipoint transmission with per CSI-RS feedback
An evolved Node B (eNB) and method for coherent coordinated multipoint transmission with per CSI-RS feedback are generally described herein. The eNB may configure a first cooperating point and a second cooperating point to jointly transmit a multi-node channel-state information (CSI) reference signal (RS) (CSI-RS) in predetermined resource elements of a resource block. The eNB may receive CSI reports as feedback from user equipment (UE). The CSI reports may include a precoding matrix indicator (PMI) indicating relative phase information between the cooperating points based on the multi-node CSI-RS. The CSI reports for the multi-node CSI-RS may be restricted to a PMI of rank-1. The eNB may configure the cooperating points for a coherent joint transmission to the UE based at least on the relative phase information. The coherent joint transmission may also be jointly beamformed based on single-node PMIs. |
US08953476B2 |
Method and apparatuses for data transfer within a relay enhanced telecommunication network
A method for scheduling a first user equipment, UE, with a first performance causing a first self interference of a relay system between a first access link extending between the relay system and the first UE and a relay link extending between the relay system and a base station, BS, and scheduling a second UE with a second performance causing a second self interference of the relay system between a second access link extending between the relay system and the second UE and the relay link extending between the relay system and the BS. Thereby, if the first self interference is larger than the second self interference, the first performance is smaller than the second performance. Alternatively, if the first self interference is smaller than the second self interference, the first performance is larger than the second performance. |
US08953474B2 |
Optimized uplink performance via antenna selection
Embodiments of the invention provide systems and methods for improving user equipment performance in up-link transmission by implementing antenna selection based on channel measurements in the down-link. In various embodiments, first and second antennas are used to receive signals on a downlink and to transmit signals on an uplink. A plurality of signals received on the downlink are used to generate a plurality of antenna parameter measurements derived from multiple correlations of a known reference sequence of data signals transmitted on the downlink. The plurality of antenna parameter measurements is then used to select either the first antenna or the second antenna or a combination of both through splitting of the signal for transmitting data signals by said user equipment device on the uplink. |
US08953471B2 |
Counteracting spam in voice over internet protocol telephony systems
An approach is provided to detect a spam message transmitted over a packetized, network-based telephony system. A request to initiate a first voice communication session is received from a requestor. A voice communications session is established with the requestor over the computer network. An audible ringing tone is sent to the requestor over the established voice communications session. While the audible ringing tone is being sent, audio data that is received from the requestor is analyzed. If the analysis detects an audible message in the audio data, then the requestor is identified as a possible spam source. On the other hand, if the analysis fails to detect the audible message in the audio data then the established voice communications session is handled as a non-spam event. |
US08953470B2 |
System and method for enhancing network stability by selectively controlling adjacency formation
A system and method for facilitating connecting a switch to a network to improve network performance. In an illustrative embodiment, the system includes a first module for determining when the switch is initially connected to a network and providing a signal in response thereto. A second module selectively forms adjacencies with peers of the switch in response to the signal and based on one or more predetermined parameters. In a more specific embodiment, the switch is a router or Layer-3 (L3) switch. The one or more predetermined parameters include a load factor, values pertaining to capabilities of a processor included in the router, bandwidth capabilities of the interface and/or the router, internal router queue counts, and so on. The router employs a routing protocol such as Enhanced Interior Gateway Routing Protocol (EIGRP). The second module throttles and adjacency-formation rate based on the predetermined parameters. |
US08953467B2 |
Adaptive transmission modes for transparent relay
There is transmitted to a user equipment UE in a first subframe of a radio frame a downlink shared channel DSCH according to a first relay-transmission mode (e.g., mode A or A′ in the examples); then switch to a second relay-transmission mode (e.g., mode C or C′ in the examples) within the radio frame based on a channel quality of the DSCH. After switching, then transmit to the UE, in a subsequent subframe of the radio frame, the DSCH according to the second relay-transmission mode. In this embodiment the HARQ process is synchronous and non-adaptive for mode C: the eNB re-transmits packets to the UE in a predetermined fashion to be concurrent with transmission of those same packets from the relay node, as scheduled by the eNB. In this embodiment the eNB receives the UE's NACK for the data that is to be retransmitted via relay through the relay node. |
US08953464B2 |
Systems, methods, and computer program products for compensating for interference in sector transmissions
A method for interference cancellation in a device that receives transmissions from multiple sources is disclosed. The method includes receiving multiple slots, each including a pilot segment and a traffic segment. A first one of the slots includes information indicating an activity level of a traffic segment of the first one of the slots. The method also includes calculating a value associated with interference among the plurality of slots, utilizing the information indicating the activity level to account for an amount of interference attributable to the first one of the slots. Furthermore, channel conditions are estimated for a second one of the slots using the value associated with the amount of interference. The method also includes processing the second one of the slots according to the estimated channel conditions. |
US08953463B2 |
Channel interleaved multiplexed databus
A serial communication system includes a controller, a channel interleaved multiplexed data bus coupled to the controller, and a transceiver coupled to the channel interleaved multiplexed data bus. The channel interleaved multiplexed data bus is arranged as a two dimensional array of time domain interleaved data channels on a backplane of the communication system, the two dimensional array being based on a number of channels available on the backplane and fixed pattern sequence of data transmitted on the backplane. |
US08953457B2 |
Method and system for a radio frequency management in a mesh network with a path distance factor
A method and system for radio frequency management (RFM) in a mesh network using a path distance factor (PDF) is disclosed. According to one embodiment, a computer-implemented method, comprises calculating a path distance factor (PDF) between a first mesh router and a portal. A frame is transmitted to a second mesh router, wherein the frame includes the path distance factor. |
US08953454B2 |
Apparatus for policing traffic in a communication network
An apparatus for policing traffic in a communication network is provided. The apparatus includes a packet distributor, a plurality of policing units, and a token management unit. The packet distributor evenly distributes packets that have arrived at the apparatus. Each policing unit determines whether a packet distributed from the packet distributor is permitted to be passed or discarded in accordance with an amount of tokens remaining in a first token bucket provided for the each policing unit, and issues a token request for requesting supply of tokens when an amount of tokens remaining in the first token bucket falls below a first threshold value. The token management unit supplies tokens in units of a predetermined amount to the first token bucket for which the token request has been issued, in accordance with an amount of tokens remaining in a second bucket provided for the token management unit. |
US08953453B1 |
System and method for throttling service requests using work-based tokens
A system that provides services to clients may receive and service requests, various ones of which may require different amounts of work. An admission control mechanism may manage requests based on tokens, each of which represents a fixed amount of work. The tokens may be added to a token bucket at rate that is dependent on a target work throughput rate while the number of tokens in the bucket does not exceed its maximum capacity. If at least a pre-determined minimum number of tokens is present in the bucket when a service request is received, it may be serviced. Servicing a request may include deducting an initial number of tokens from the bucket, determining that the amount of work performed in servicing the request is different than that represented by the initially deducted tokens, and deducting additional tokens from or replacing tokens in the bucket to reflect the difference. |
US08953449B2 |
Virtual subport data traffic management
A network element includes an ingress interface, a VSP queue, and a switch fabric (SWF). The ingress interface includes a first virtual subport (VSP) and a second VSP. The first VSP is configured to receive data traffic. The VSP queue is coupled to the second VSP such that data traffic transmitted to the VSP queue is transmitted from the network element via the second VSP. The SWF is configured to receive data traffic from the first VSP, determine whether an intended recipient of the data traffic is associated with the second VSP, and hairpin the data traffic to the VSP queue when the SWF determines that the intended recipient is associated with the second VSP. |
US08953445B2 |
Hierarchical flow-level multi-channel communication
Embodiments herein provide systems and methods of transferring data in a communication system. An embodiment transfers data by assigning a portion of data among groups of channels coupled to a remote node, such assigning being based on the respective flows to which the portion is associated. The portion of data across is at least two channels in the assigned group of channels, and the split portions are transferred substantially simultaneously among the channels to which they are assigned. |
US08953443B2 |
Method and apparatus for providing congestion management for a wireless communication network
A method and apparatus for providing a congestion management of a wireless communication network are disclosed. For example, the method projects dynamically a trend for a network element of the wireless communication network, using a functionality metric associated with the network element of the wireless communication network, and determines if there is a potential congestion in accordance with the trend. The method then provides a notification of the potential congestion, if there is a potential congestion for the network element of the wireless communication network. |
US08953442B2 |
Congestion detection in a network interconnect
A method and system for detecting congestion in a network of nodes, abating the network congestion, and identifying the cause of the network congestion is provided. A congestion detection system may comprise a detection system, an abatement system, and a cauzation system. The detection system monitors the performance of network components such as the network interface controllers and tiles of routers to determine whether the network is congested such that a delay in delivering packets becomes unacceptable. Upon detecting that the network is congested, an abatement system abates the congestion by limiting the rate at which packets are injected into the network from the nodes. Upon detecting that the network is congested, a cauzation system may identify the job that is executing on a node that is the cause of the network congestion. |
US08953438B2 |
Multiple source virtual link reversion in safety critical switched networks
In a system that uses a switched network and virtual links (for example, an AFDX, TT-ETHERNET, or TT-Gigabit ETHERNET switched ETHERNET network), the system is configured so that, for at least one virtual link, the end system that sources frames for that virtual link can change (for example, when an end system that was previously sourcing frames for that virtual link fails). The switches used in such a system are configured to be able to accept frames if there is such a change. |
US08953437B1 |
Graceful restart for label distribution protocol downstream on demand
In general, techniques are described for performing a graceful restart for a computing network utilizing downstream on demand (DOD) label distribution. In one example, a method is provided that includes establishing a communication session for Label Distribution Protocol (LDP) that uses a downstream on demand label distribution mechanism for distributing labels. A first label mapping message is exchanged between two routers that defines at least a first label to be applied by an upstream router when forwarding one or more of the data packets to a destination. When the communication session fails, a forwarding state comprising the first label is preserved, and one or more data packets are forwarded based on the first label. The communication session is gracefully restarted. Once the communication session is reestablished, a second label mapping message is exchanged between the routers. |
US08953435B2 |
Methods and systems for automatically tracking the rerouting of logical circuit data in a data network
An example method involves generating, without manual intervention, a table to store current reroute statistics based on rerouting of data from a logical circuit that has failed to a logical failover circuit in a network. The current reroute statistics include trap data corresponding to the logical circuit. The trap data includes a committed burst size. The logical circuit is identified by a first logical circuit identifier. The logical failover circuit is identified by a second logical circuit identifier. The first and second logical circuit identifiers are renamed until the logical circuit has been restored from failure. The table is updated, without manual intervention, to store updated reroute statistics. The updated reroute statistics include updated trap data corresponding to the logical circuit. The updated reroute statistics are based on a change in status of the logical circuit corresponding to a dropped frame when the committed burst size has been exceeded. |
US08953432B2 |
Softrouter dynamic binding protocol
A dynamic binding protocol has three tasks that run in parallel: discovery, association, and operation. During discovery, control elements (CEs) and forwarding elements (FEs) learn about immediate neighbors and CEs in a SoftRouter network that has separate control and data planes. During association, FEs associate with CEs and are configured with basic parameters, such as IP interface addresses, hostnames, and the like. During operation, failover and packet tunneling between CEs and FEs is handled. |
US08953431B2 |
Apparatus and method for estimating channel in digital video broadcasting system
A method of operation of a transmitting node in an Orthogonal Frequency Division Multiplexing (OFDM) communication system is provided. The method includes generating a frame including a plurality of physical layer zones, each of the plurality of physical layer zones applying different Fast Fourier Transform (FFT) sizes and different pilot patterns; and transmitting the frame. |
US08953430B2 |
Insertion of downlink demodulation reference signals into OFDM frames
A method of inserting downlink demodulation Reference Signals into Resource Blocks of slots within Orthogonal Frequency Division Multiplexing (OFDM) frames at an OFDM transmitter forming part of an OFDM system, the transmitter having at least one antenna and the system having at least one transmission layer, includes the steps of: for each antenna, inserting cell-specific Reference Signals at sub-carriers indices evenly spaced by a fixed sub-carrier spacing; and selectively inserting UE-specific Reference Signals into nodes of a rectangular lattice formed from unused Resource Elements in a group of Resource Blocks of two consecutive slots, the nodes being located at the same sub-carrier indices as the cell-specific Reference Signals and further being equally spaced by a fixed number of symbol indices within the group of Resource Blocks. |
US08953427B2 |
Optical information recording medium
An optical information recording medium 10 comprises a plurality of recording layers 14 and intermediate layers 15 each provided between the recording layers 14. Each of the recording layers 14 includes a polymer binder and dye dispersed in the polymer binder, and a thickness of each recording layer is equal to or greater than 50 nm. A first interface (near-side interface 18) is formed between a recording layer 14 and an intermediate layer 15 that is adjacent to the recording layer 14 on one side of the recording layer 14 in a thickness direction of the recording layer 14, and a second interface (far-side interface 19) is formed between the recording layer 14 and an intermediate layer 15 that is adjacent to the recording layer 14 on the other side of the recording layer 14 in the thickness direction of the recording layer 14. When the dye is irradiated with a recording beam and generates heat by absorption of the recording beam, the polymer binder undergoes a change in shape by the generated heat, so that at least one of the first interface and the second interface undergoes a change in shape and sticks out toward the intermediate layer 15 to form a protrusion, whereby information is recorded in the optical information recording medium 10. |
US08953426B2 |
Information reproducing apparatus and information reproducing method
An information reproducing apparatus includes a photodetector (200A) divided by a dividing line parallel to a recording track scanning direction into a first light-receiving section (202, 203) that receives reflected light of a center section of a recording track and a second light-receiving section (201, 204) that receives reflected light of a portion adjacent, in a radial direction of an optical disc, with respect to the center section, a first adaptive equalization filter (107) that performs waveform equalization of an output signal from the first light-receiving section (202, 203), a second adaptive equalization filter (120) that performs waveform equalization of an output signal from the second light-receiving section (201, 204), and a data decoder (108) that decodes reproduction data based on an output waveform from the first adaptive equalization filter (107) and an output waveform from the second adaptive equalization filter (120). |
US08953423B2 |
Disc cartridge and changer
There is provided a cartridge including a plurality of optical information recording media having unique information recorded thereon, an accommodation body configured to accommodate the plurality of optical information recording media, and an identification device configured to store the unique information of the plurality of optical information recording media and supply the unique information to a changer in a non-contact manner, the identification device being provided in the accommodation body. |
US08953422B1 |
Near field transducer using dielectric waveguide core with fine ridge feature
An apparatus for energy assisted magnetic recording of a storage disk includes a plurality of dielectric waveguide cores disposed near an air bearing surface of a magnetic recording device. Each waveguide core has a fine ridge feature on a first surface of the waveguide core and configured to receive incident light energy from an energy source. A near field transducer (NFT) is formed at the air bearing surface for focusing light energy received from the waveguide core and transmitting the focused light energy onto the storage disk surface to generate a heating spot. The NFT includes at least one plasmonic metal element disposed above the fine ridge features of the waveguide cores to form an interface for delivering propagating surface plasmon polaritons (PSPPs) to the air bearing surface. Each fine ridge feature is configured with a width approximately equivalent to a width of the heating spot. |
US08953421B2 |
Submount layers configured to enhance absorption of light proximate a bonding feature
An apparatus includes a submount having a mounting surface and a top surface opposite the mounting surface. A slider has a bonding feature that interfaces with the mounting surface of the submount, and two or more layers are disposed between the mounting surface of the submount and the bonding feature. The two or more layers are configured to enhance light absorption of light in proximity to the bonding feature. The light originates from a source of electromagnetic energy that illuminates the top surface of the submount. |
US08953416B2 |
Electronic timepiece and control method for an electronic timepiece
An electronic device comprises a receiver configured to receive a satellite signal; a time generator configured to generate time; and a processor configured to selectively execute a first time correction processing or a second time correction processing. The first time correction processing includes acquiring time information based on the received satellite signal and correcting the time based on the acquired time information. The second time correction processing includes calculating the position of the electronic device based on satellite orbit information and the received satellite signal, and correcting the time based on the calculated position. |
US08953415B2 |
Timepiece movement including an instantaneous actuator controlled by the movement
The timepiece movement has an instantaneous actuator controlled by the movement and arranged to actuate a mechanism of the movement by pushing away one element (126) of the mechanism against a return force. The actuator includes a trailing wheel (205) driven by the movement, an eccentric (207) free to rotate coaxially to the trailing wheel and arranged to abut against and therefore be driven by the trailing wheel, a small wheel (219) returned by a spring against the periphery of the eccentric, a pivoting wheel set having a projecting portion (213) free to rotate coaxially to the trailing wheel and arranged to abut against and therefore be driven by the eccentric, the projecting portion (213) of the pivoting wheel set being arranged to push the element (126) of the mechanism away in passing against a return force. |
US08953409B2 |
Semiconductor device capable of minimizing mutual effects between two different operations therein
A device includes a control circuit that triggers a first operation every time a specific signal is supplied thereto, and that triggers a second operation in place of the first operation in response to the first specific signal supplied after the number of the first operation performed has reached a predetermined number. |
US08953407B2 |
Sub word line driver and semiconductor integrated circuit device
A sub word line driver and a semiconductor integrated circuit device having the same are provided. The semiconductor integrated circuit device includes adjacent four sub word line drivers configured to drive four sub word lines in response to signals of four main word lines, wherein first and second sub word line drivers of adjacent sub word line drivers share one keeper transistor with each other, and third and fourth sub word line drivers of the adjacent sub word line drivers share one keeper transistor with each other. |
US08953406B2 |
Semiconductor module includes semiconductor chip initialized by reset signal
Disclosed herein is a device that includes a plurality of semiconductor chips mounted on a module substrate. Each of the semiconductor chips includes a reset terminal to which a reset signal is supplied, and an internal circuit that is initialized based on the reset signal. The module substrate includes a reset signal line connected commonly to the reset terminals of the semiconductor chips, and an anti-resonance element connected to the reset signal line. |
US08953405B2 |
Switching circuit
A first transistor is turned on based on a first control signal provided to a first terminal of the first transistor. A second transistor is turned on based on a second control signal delayed by a time delay from the first control signal. A second terminal of the first transistor is coupled with a second terminal of the second transistor. The second control signal is used to control a first input signal of a logic device. The logic device receives a second input signal inversed from the first control signal. An output signal of the logic device is used to control a first terminal of the second transistor. |
US08953403B1 |
Semiconductor memory device
A semiconductor memory device includes a plurality of banks; a counting block suitable for counting the activation number of the respective banks, and selecting a bank of which the activation number is larger than or equal to a given number; and a refresh control block suitable for performing a normal refresh operation on the banks in response to a refresh command, and performing an additional refresh operation N times on the selected bank, N being a positive integer. |
US08953402B2 |
Semiconductor memory with sense amplifier
In an exemplary aspect, the present invention provides a semiconductor memory device including sense amplifiers that drive bit lines to which memory cells are connected, and driver transistors that supply a power supply to the sense amplifiers, wherein the sense amplifiers are arranged in rows and constitutes a first sense-amplifier row in which transistors of a first conductive type are arranged and a second sense-amplifier row in which transistors of a second conductive type are arranged, and the driver transistors constitutes at least one transistor row including a first driver transistor of the first conductive type corresponding to the first sense-amplifier row and a second driver transistor of the second conductive type corresponding to the second sense-amplifier row between the first sense-amplifier row and the second sense-amplifier row. |
US08953396B2 |
NAND interface
A NAND interface having a reduced pin count configuration, in which all command and address functions and operations of the NAND are provided serially on a single serial command and address pin, and data is transmitted over data pins in response to commands and addresses received on the serial command and address pin. |
US08953395B2 |
Memory with variable strength sense amplifier
Embodiments of a memory are disclosed that may reduce the likelihood of a misread while reading a weak data storage cell. The memory column may include a number of data storage cells, a column multiplexer, and a sense amplifier. The sense amplifier may have two or more gain elements which can be individually selected to adjust the gain level of the sense amplifier. |
US08953392B2 |
Latency control device and semiconductor device including the same
A latency control device and a semiconductor device including the same are disclosed. The latency control device includes: a code setting unit configured to output a plurality of coding signals by setting a code value having a specific delay amount in response to a code signal; a latch unit configured to latch a command signal for a predetermined time; a period control unit configured to control a delay amount of a period signal in response to an output signal of the latch unit; a selection unit configured to output an oscillation signal synchronized with the clock signal in response to the selection signal, or synchronize the oscillation signal with an output signal of the period control unit; a register unit configured to output a plurality of period signals by dividing the oscillation signal; and a comparator configured to compare the plurality of coding signals with the plurality of period signals so as to output the self-latency signal. |
US08953391B1 |
Semiconductor apparatus
A semiconductor apparatus includes an input buffer configured to buffer and output data inputted from a data input/output pad; a data input control unit configured to transfer data outputted from the input buffer; a data output control unit configured to transfer inputted data to an output buffer; the output buffer configured to buffer data outputted from the data output control unit, and output the buffered data to the data input/output pad; a test data input/output unit configured to latch test inputted data inputted and output test latch data or latch an output of the input buffer and output the test latch data; and a test loop control unit configured to transfer data or the test latch data to the data output control unit. |
US08953388B2 |
Memory cell assembly including an avoid disturb cell
A memory array assembly and a method for performing a write operation without disturbing data stored in other SRAM cells are provided. The memory array assembly comprises a plurality of SRAM cells, a plurality of avoid-disturb cells, a plurality of sense amplifiers and a plurality of write drivers. The SRAM cells are arranged in rows and columns, wherein each column is coupled to an avoid-disturb cell, a sense amplifier, and a write driver. The avoid-disturb cell receives a select signal capable of assuming first or second states. An output of the sense amplifier is coupled to an input of the write driver when the select signal is in the first state. A data-in bus is coupled to the input of the write driver if the select signal is in the second state. The write driver then sends the output signal to the SRAM cell. |
US08953381B2 |
Semiconductor memory device and method of operating the same
A semiconductor memory device includes a memory cell array having memory cells coupled to a plurality of word lines and a peripheral circuit group configured to supply a pass voltage to unselected word lines among the plurality of word lines, wherein the peripheral circuit group stepwise raises the pass voltage supplied to the unselected word lines to a target level. |
US08953380B1 |
Systems, methods, and apparatus for memory cells with common source lines
Systems, methods, and apparatus are disclosed for implementing memory cells having common source lines. The methods may include receiving a first voltage at a first transistor. The first transistor may be coupled to a second transistor and included in a first memory cell. The methods include receiving a second voltage at a third transistor. The third transistor may be coupled to a fourth transistor and included in a second memory cell. The first and second memory cells may be coupled to a common source line. The methods include receiving a third voltage at a gate of the second transistor and a gate of the fourth transistor that may cause them to operate in cutoff mode. The methods may include receiving a fourth voltage at a gate of the first transistor. The fourth voltage may cause, via Fowler-Nordheim tunneling, a change in a charge storage layer included in the first transistor. |
US08953376B2 |
Nonvolatile memory device and read method thereof
According to example embodiments, a read method of a nonvolatile memory device includes Disclosed is a read method of a nonvolatile memory device which includes selecting one of a plurality of vertical strings in a nonvolatile memory device, judging a channel length between a common source line and a selected one of the plurality of vertical strings, selecting a sensing manner corresponding to the judged channel length, and performing a sensing operation according to the selected sensing manner. The plurality of vertical strings may extend in a direction perpendicular to a substrate of the nonvolatile memory device. |
US08953375B2 |
Semiconductor memory device and operation method thereof
A semiconductor memory device includes an information generation unit configured to convert positions of threshold voltages of memory cells in threshold voltage distributions based on determination voltages included in an overlapping portion between the threshold voltage distributions to generate a plurality of position information codes, and an error correction unit configured to sequentially receive the plurality of position information codes and perform an error correction operation for data of the memory cells. |
US08953374B2 |
Programming based on controller performance requirements
Methods and solid state drives are disclosed, for example a solid state drive that is adapted to receive and transmit analog data signals representative of bit patterns of three or more levels (such as to facilitate increases in data transfer rates relative to devices communicating data signals indicative of individual bits). Programming of the solid state drive, comprising an array of non-volatile memory cells, might include adjusting the level of each memory cell being programmed in response to a desired performance level of a controller circuit. |
US08953372B2 |
Memory device readout using multiple sense times
A method for data storage includes storing data in a group of analog memory cells by writing respective storage values into the memory cells in the group. One or more of the memory cells in the group are read using a first readout operation that senses the memory cells with a first sense time. At least one of the memory cells in the group is read using a second readout operation that senses the memory cells with a second sense time, longer than the first sense time. The data stored in the group of memory cells is reconstructed based on readout results of the first and second readout operations. |
US08953363B2 |
Nonvolatile semiconductor memory device and read method for the same
A cross point nonvolatile memory device capable of suppressing sneak-current-caused reduction in sensitivity of detection of a resistance value of a memory element is provided. The device includes perpendicular bit and word lines; a cross-point cell array including memory cells each having a resistance value reversibly changing between at least two resistance states according to electrical signals, arranged on cross-points of the word and bit lines; an offset detection cell array including an offset detection cell having a resistance higher than that of the memory cell in a high resistance state, the word lines being shared by the offset detection cell array; a read circuit (a sense amplifier) that determines a resistance state of a selected memory cell based on a current through the selected bit line; and a current source which supplies current to the offset detection cell array in a read operation period. |
US08953362B2 |
Resistive devices and methods of operation thereof
In accordance with an embodiment of the present invention, a method of operating a resistive switching device includes applying a signal including a pulse on a first access terminal of an access device having the first access terminal and a second access terminal. The second access terminal is coupled to a first terminal of a two terminal resistive switching device. The resistive switching device has the first terminal and a second terminal. The resistive switching device has a first state and a second state. The pulse includes a first ramp from a first voltage to a second voltage over a first time period, a second ramp from the second voltage to a third voltage over a second time period, and a third ramp from the third voltage to a fourth voltage over a third time period. The second ramp and the third ramp have an opposite slope to the first ramp. The sum of the first time period and the second time period is less than the third time period. |
US08953357B2 |
Semiconductor memory device
A semiconductor memory device according to an embodiment includes a memory cell array including memory cells each formed from a transistor formed over an active area of a well and disposed at intersections of a word line and a bit line group, the memory cell having different connection states including a state in which a source or a drain of the transistor is not electrically connected to any one of bit lines belonging to the bit line group and states in which the source or the drain is electrically connected only to a specific one of the bit lines, and an active area serving as a gate of the transistor being continuously formed in arrangement areas of the bit lines of the bit line group and spaces between the bit lines. |
US08953355B2 |
Memory dies, stacked memories, memory devices and methods
Memory die, stacks of memory dies, memory devices and methods, such as those to construct and operate such die, stacks and/or memory devices are provided. One such memory die includes an identification configured to be selectively coupled to an external select connection node depending on how the die is arranged in a stack. The identification circuit can determine an identification of its respective memory die responsive to how, if coupled, the identification circuit is coupled to the external select connection node. |
US08953353B2 |
Power converter
A power converter including a cooler having a cooling flow path in which a refrigerant flows, a base plate to which switching elements are attached, a control circuit board on which power-generating elements are attached, and securing pins that secure the base plate onto the lower cooler wall of the cooler and support the control circuit board so as to be spaced apart from the base plate. Upper end parts of the securing pins pass through the base plate and the cooler lower wall, reaching inside the cooling flow path. First pass-through parts of the securing pins for the lower cooler wall are fitted by pressure into the lower cooler wall . Support column parts of the securing pins extend in a direction opposite the lower cooler wall, and the control circuit board is secured to lower flanges thereof. |
US08953350B2 |
Photovoltaic power converters
Photovoltaic power converter systems and methods are described. In one example, a method for use in operating a solar power converter includes sampling a DC link voltage of a DC link during a first cycle of an alternating output voltage of a second stage at one instance when the alternating output voltage is crossing zero volts in a first direction. A voltage difference a voltage difference between the DC link voltage sampled during the first cycle and a DC link voltage sampled during a previous cycle when the alternating output voltage was crossing zero volts in the first direction is determined. A DC link power is estimated based at least in part on the determined voltage difference. The AC power output by the second stage in a second cycle is controlled based at least in part on the estimated DC link power. |
US08953349B2 |
Systems and methods for providing AC/DC boost converters for energy harvesting
The present invention describes systems and methods for harvesting energy from an alternating magnetic field. An exemplary embodiment can include a flux concentrator having an open core coil wherein a first current with a first voltage is induced in the flux concentrator when placed proximate an alternating magnetic field. Additionally, the system can include a transformer, having a first and second winding, connected to the flux concentrator and inducing a second current in the second winding, wherein the second current has a second voltage higher than the first voltage and a threshold voltage of a first and second diode. Furthermore, the system can include a converter, connected to the secondary winding for charging the leakage inductance of the secondary winding by creating a short circuit between the secondary winding and the converter; and the diodes connected to the secondary winding and the converter for discharging the leakage inductance. |
US08953347B2 |
Capacitor discharging circuit and power converter
A capacitor discharging circuit and a power converter having the capacitor discharging circuit are disclosed. The capacitor discharging circuit comprises a conversion module connected with the two terminals of the capacitor, an AC power-off detecting unit used to detect on-off state of AC power, and a control unit. The conversion module comprises an energy consumption unit. When AC power is disconnected, the AC power-off signal generated by the AC power-off detecting unit intervenes the control unit to control the energy consumption unit to consume the energy stored in the capacitor. |
US08953346B2 |
Converting circuit for converting input voltage into output current
A converting circuit for receiving an input voltage and generating an output current, including: a transistor, coupled to a supply voltage at a drain of the transistor, and a source of the transistor is coupled to a first voltage, and a gate of the transistor is coupled to the input voltage and a fixed voltage; and a resistor, coupled to the input voltage and the gate of the transistor, and the output current flows through the resistor, wherein the output current is related to the fixed voltage, the input voltage and the resistor. |
US08953344B2 |
Power converter control method associated to a generator
Optimizes the operation and control of electric generators against events produced in the power grid, such as voltage dips or overvoltages, comprising the following steps: detecting that the DC bus voltage level (Vbus) (301) exceeds the maximum operating limit established in normal conditions; enabling activation permission of the chopper (201); activating the different operating states (304) of the chopper (201) according to the DC bus voltage level (Vbus) (301) and to the current entering the DC bus (Iin.bus) from the generator; detecting that the DC bus voltage level (Vbus) (301) is within the normal operating range; enabling deactivation permission of the chopper (201); deactivating the different operating states (304) of the chopper (201) according to the DC bus voltage level (Vbus) (301) and to the current entering the DC bus (Iin.bus) from the generator. |
US08953341B2 |
Converter with reduced power consumption
A converter may include a transformer; a first circuit arrangement coupled to a first transformer side; a second circuit arrangement coupled to a second transformer side, wherein the second circuit arrangement is configured to provide an output voltage; a first coupler configured to provide information about the output voltage to the first circuit arrangement; wherein the first circuit arrangement is configured to determine a state of the secondary side based on the received information about the output voltage, and to generate a switch control signal dependent on the determined state; a switch circuit arranged on the second side; and a second coupler configured to provide a switch control signal from the first circuit arrangement to the switch circuit; wherein the switch circuit is coupled to the first circuit arrangement to provide a first circuit arrangement control signal to the first circuit arrangement depending on the switch control signal. |
US08953340B2 |
Single phase power supply for inductively coupled power transfer systems
An ICPT system has a single phase power supply which energises a conductive path (13) and has an inverter (5) to provide an alternating current at an operating frequency greater than the single phase utility supply frequency in the conductive path. The inverter modulates the amplitude of the alternating current with respect to the utility supply frequency such that the amplitude of the alternating current varies. The pick-up has an energy storage element (26) to provide a continuous supply of power to a load (27) irrespective of the varying amplitude of the alternating current in the conductive path. |
US08953335B2 |
Semiconductor control device
A semiconductor control device is provided with: a plurality of semiconductor modules each having a cooling member and a semiconductor element; a circuit board mounted with a control element that controls the plurality of semiconductor modules; and a case in which the plurality of semiconductor modules and the circuit board are respectively mounted. The case is provided with a cylindrical sidewall that forms an internal space within the case, and on both ends of the sidewall, a first opening and a second opening are correspondingly formed to be opposite to each other. The plurality of semiconductor modules include a first semiconductor module mounted on the sidewall on a side of the first opening, and a second semiconductor module mounted on the sidewall on a side of the second opening. The circuit board is positioned between the first semiconductor module and the second semiconductor module, in the internal space. |
US08953334B2 |
Apparatus for performing communication control
An apparatus for performing communication control includes a control module implemented with at least one integrated circuit (IC) whose package includes a plurality of sets of terminals, each set of the plurality of sets of terminals corresponding to one of a plurality of sub-modules of the control module, and within the sets of terminals, a set of terminals corresponding to a specific sub-module of the sub-modules include a power-input terminal arranged to input power from outside the control module. For example, on a printed circuit board (PCB) of the apparatus, arrangement of some modules is similar to that of some contact pads associated to the sets of terminals. In another example, the control module includes a power distribution system including at least one power distribution wire. In another example, a PCB within the apparatus includes at least one signal transmission wire and at least one set of co-plane ground wires. |
US08953329B1 |
Server chassis bracket
A server chassis bracket (SCB), including: a first set of holes configured to secure a first set of grommets gripping a first server component; a second set of holes configured to secure a second set of grommets gripping a second server component; a first shared guide configured to: guide a first grommet of the first set of grommets towards a first hole of the first set of holes; and guide a second grommet of the second set of grommets towards a second hole of the second set of holes; and a latch covering a portion of the first shared guide, including a tail, and configured to: generate a first audio verification of a successful installation of the first server component into the server chassis bracket; and generate a second audio verification of a successful installation of the second server component into the server chassis bracket. |
US08953328B2 |
Electronic device with detachable module
An electronic device includes a chassis, a detachable module received in the chassis, and a latching member. The detachable module includes an end plate defining an opening. One end of the latching member is fixed in the detachable module, and the other end of the latching member extends out of the detachable module through the opening. The detachable module defines a through hole. The chassis defines a latching hole corresponding to the through hole. A latching block protrudes out from one side of the latching member and extends through the through hole to engage in the latching hole. A shielding piece comes across to block and shield the opening. |
US08953327B1 |
Self-winding membrane device
A device having a self-winding element is described. The self-winding element is built on a flexible membrane; it has an extended form and a retracted form. Stiffness in the extended form may be provided using membrane curvature, or a retractable support member may be used, or both. Transitions between the extended form and the retracted form are preferably accomplished using sequential activation of tensile members that are configured in segments of the membrane. Activation of the tensile elements is preferably implemented using a processor or controller that activates tri-state drivers in a predetermined sequence in order to pass a current through each element when heating is desired. A preferred material used for the tensile elements is thin film NITINOL. |
US08953324B2 |
Media content device chassis with internal extension members
A media content receiving device, such as a set top box, includes a chassis that incorporates a heat bridge, a heat shield or both. The heat bridge may take the form of a structural wall coupled to, but preferably integrated with, the chassis to facilitate conductive heat transfer into a chassis panel. The heat bridge may be configured to receive heat radiated from a chip having a die to be cooled. The heat shield may take the form of a wall-type structure protruding from a chassis panel. For example, the heat shield may extend from a top panel of the chassis in a fin-like or flange-like manner to provide a thermal barrier between adjacent electrical components arranged on a circuit board. While the heat shield protects the adjacent component from potential thermal damage or degradation, it may also operate to transfer heat into the chassis. |
US08953323B2 |
Display device
A display device is disclosed. In one embodiment, the device includes a display panel, a printed circuit board (PCB) disposed opposite to a rear of the display panel, and supplying a driving signal to the display panel, and a substrate bracket attached to an edge of the rear of the display panel, and supporting the PCB. The substrate bracket includes a bracket main body portion facing the PCB, a bracket coupling ledge bent and extending from a top of the bracket main body portion and enclosing a top of the PCB, and a bracket hook portion protruding from a bottom of the bracket main body portion in a direction toward the PCB, and supporting a bottom of the PCB. |
US08953322B2 |
Electronic control unit for the motor of an electric fan
An electronic control unit for a motor of an electric fan, has a support casing including a metal body adapted to act as a heat dissipator, a shell of an electrically insulating material coupled with the metal body, and a circuit board, mounted in contact with the dissipator body. The circuit board has a conductive connection member in the form of a flexible metal blade, electrically connected to the dissipator body, to provide an earth connection for the circuit board. The blade has a portion that projects beyond the edge of the board. The insulating shell has an internal formation which, upon coupling the shell with the dissipator body, interacts with the projecting portion of the blade, deforming it so as to bring it and thereafter maintain it in contact with the dissipator body in a resiliently loaded manner. |
US08953318B1 |
Passive cooling systems and methods for electronics
Embodiments of the present disclosure generally pertain to passive cooling systems and methods for electronics. An exemplary passive cooling system for electronics has a circuit package and dielectric liquid. The circuit package has a cover positioned over a circuit element coupled to a substrate. The cover is attached to the substrate and creates a water-tight seal around the circuit element. The circuit package further has a porous media. The dielectric liquid directly contacts the circuit element, and heat from the circuit element is transferred to the dielectric liquid. As the liquid reaches its boiling point, vapor from the liquid is passed through the porous media for further cooling. |
US08953316B2 |
Container-based data center having greater rack density
A container includes first and second long sides parallel to the container's length. Racks are organized in rows parallel to the container's width. Each rack is receptive to installation of equipment along a height of the data rack parallel to the container's height. Openings are defined within the first and/or second long sides of the container. Heat exchangers may be installed, where each exchanger is installed on a rack to cool air exhausted by any equipment installed on this rack. Each row may include as many of the racks positioned side-to-side, length-wise, and parallel to the width of the container as can fit within the container. The racks of each row may be slidable in unison back and forth along the length of the container, between a first position at which the racks block an opening and a second position at which the racks block another opening. |
US08953315B2 |
Axial fan and electronic device including the same
In an axial fan, a housing includes a side wall arranged to surround an outer circumference of an impeller, and a substantially square or substantially rectangular flange arranged to project radially outward from an outer circumferential surface of the side wall. The side wall preferably includes three slit groups each including a plurality of slits arranged in a circumferential direction and arranged to extend through the side wall from an inner circumferential surface to the outer circumferential surface thereof. Two of the slit groups are defined in portions of the side wall which correspond to two adjacent corner portions in an upper half portion of the flange, while the remaining slit group is defined in a portion of the side wall which corresponds to a lower half portion of the flange. The upper and lower half portions are divided at a line parallel or substantially parallel to two opposing sides of the flange and passing through a central axis. |
US08953311B2 |
Electronic media distribution system
A portable media storage device is provided. The device includes persistent digital storage programmed to contain digital media content. Two or more connectors of different types can be provided for engagement with a variety of electronic reader devices. The media storage devices can be sold at retail, alongside alternative traditional formats for consumption of the same media. |
US08953310B2 |
Magnetic systems for electronic devices and accessories
A cover is described that is magnetically attached to a tablet device. The cover includes at least as flap. In the described embodiment, the flap includes a plurality of segments where the first segment includes a first plurality of edge attach magnets arrayed along a first edge of the flap and where a second segment includes a second plurality of edge attach magnets arrayed along a second edge of the flap opposite the first edge. |
US08953309B2 |
Electronic device
An electronic device is provided, including a main body, a bottom shell, and an electrical connection port. The bottom shell is pivotally connected to the main body, and the electrical connection port is disposed on the bottom shell. When the bottom shell is in a closed position relative to the main body, the electrical connection port is covered by the main body. When the bottom shell rotates from the closed position to an opened position relative to the main body, an opening is formed between the main body and the bottom shell, and the electrical connection port is exposed to the opening. |
US08953307B2 |
Display device
A display device is provided. The display device includes a front panel forming a front exterior of the display device and transmitting images therethrough, a back cover forming a rear exterior of the display device and comprising an edge portion making contact with a backside of the front panel, and a display module accommodated in a space formed by the front panel and the back cover. |
US08953305B2 |
Electrical switching apparatus and levering assembly therefor
A drive shaft extension assembly is provided for an electrical switching apparatus which is removably disposed in a cassette. The electrical switching apparatus includes a levering assembly with a drive shaft. The drive shaft extension assembly includes a housing assembly, a shaft extension including an elongated body, and a racking gear. The shaft extension is structured to be coupled to the drive shaft in a fixed orientation, thereby increasing the width of the levering assembly. |
US08953304B2 |
Solid electrolytic capacitor
There is provided a high performance solid electrolytic capacitor that can be manufactured stably. The present invention provides the solid electrolytic capacitor comprising an anode foil and a cathode foil, and a separator arranged between the anode foil and the cathode foil, wherein the anode foil, the cathode foil, and the separator are wound around, so that the separator is intervened between the anode foil and the cathode foil, the anode foil has a dielectric oxide film layer, the separator comprises a solid electrolyte and a nonwoven fabric holding the solid electrolyte, the nonwoven fabric composing the separator is a laminated nonwoven fabric having at least two layers of the nonwoven fabric layers, and the laminated nonwoven fabric comprises a nonwoven fabric layer (layer I) composed of ultra fine fiber having a fiber diameter of 0.1 to 4 μm, and a nonwoven fabric layer (layer II) composed of a thermoplastic resin fiber having a fiber diameter of 6 to 30 μm. |
US08953303B2 |
Cathode active material for a lithium ion capacitor, and method for producing the cathode active material
The present invention relates to a lithium ion capacitor having excellent capacitance characteristics and high energy density. More particularly, the present invention relates to a cathode active material for a lithium ion capacitor, which utilizes a lithium composite metal oxide having a large initial irreversible capacitance as a specific cathode additive in addition to a carbon-based material applied as a cathode active material, and a production method thereof, and a lithium ion capacitor including the same.According to the present invention, lithium can be electrochemically doped on an anode without using metal lithium, and the capacitance characteristics of a lithium ion capacitor and the safety of a lithium-doping process can be significantly improved. |
US08953300B2 |
Multilayer ceramic capacitor and method of manufacturing the same
There is provided a multilayer ceramic capacitor including: a ceramic body in which a plurality of dielectric layers are laminated; a plurality of first and second internal electrodes formed to be alternately exposed to both end surfaces of the ceramic body with the dielectric layer interposed therebetween; and first and second external electrodes formed on both end surfaces of the ceramic body and electrically connected to the first and second internal electrodes, wherein when it is defined that a thickness of a band of the first and second external electrodes is T1 and a thickness of the ceramic body is T2, a ratio (T1/T2) of the thickness of the band of the first or second external electrode to the thickness of the ceramic body is equal to or less than 0.18. |
US08953294B2 |
Circuit arrangement with an overcurrent fuse
A circuit arrangement includes a semiconductor switch having a control terminal and a load path. A drive circuit is coupled to the control terminal of the semiconductor switch. The drive circuit has a current measuring arrangement for determining a load current flowing through the load path and is designed to prevent the semiconductor switch from being driven in the off state if the load current exceeds a predetermined load current threshold value. A fuse is coupled in series with the load path of the semiconductor switch triggers if a triggering condition dependent at least on the load current is present. |
US08953292B2 |
Bus interface and method for short-circuit detection
Embodiments of bus interface circuitry and methods for short circuit detection are generally described herein. Other embodiments may be described and claimed. In some embodiments, the bus interface circuitry comprises logic circuitry to compare a driver stage output signal at a bond pad to internal reference voltages to generate control signals indicative of whether a short-circuit condition exists on a bus. The driver stage of the bus interface may be temporarily disabled when a short-circuit condition is indicated by the control signals. |
US08953289B2 |
Electrical wiring device
The present invention is directed to an electrical wiring device that includes a detection assembly coupled to a plurality of line terminals and a plurality of load terminals, the detection assembly being configured to detect a wiring state associated with the plurality of line terminals and the plurality of load terminals. The detection assembly includes a primary wiring state detection circuit coupled to the plurality of line terminals, and a secondary wiring state detection circuit coupled to the plurality of load terminals. |
US08953286B2 |
Magnetoresistive element with aluminum or iron concentration ratio changed in film-thickness direction
A magnetoresistive element according to an embodiment includes: a magnetoresistance effect film including: a first and second magnetic films; and an intermediate film disposed between the first and second magnetic films, at least one of the first and second magnetic films being formed of a Heusler alloy expressed as Co100-x(AyB1.0-y)x (40 at %≦x≦60 at %, 0.3≦y≦0.7) where A is an alloy containing at least Fe and Mn, and B is an alloy containing at least Si, Al, and Ge, a composition of the at least one of the first and second magnetic films being changed in a film-thickness direction so that a ratio of Fe/(Fe+Mn) is less than 60% in a first region disposed near an interface with the intermediate film in the film-thickness direction, and is 60% or more in a second region that is disposed at more distance from the interface than the first region in the film-thickness direction. |
US08953278B1 |
Disk drive selecting disturbance signal for feed-forward compensation
A disk drive is disclosed comprising a disk, a head, and control circuitry comprising a servo control system operable to actuate the head over the disk. A plurality of disturbance signals is generated in response to a vibration. A plurality of correlations is generated in response to each disturbance signal and an error signal of the servo control system. At least one of the disturbance signals is selected in response to the correlations. A feed-forward compensation value is generated in response to the selected disturbance signal, and the feed-forward compensation value is applied to the servo control system to compensate for the vibration. |
US08953273B1 |
Magnetic disk apparatus
According to one embodiment, a magnetic disk apparatus includes a main magnetic pole configured to apply a recording magnetic field to a recording medium, a recording coil configured to magnetize the main magnetic pole, a spin-torque oscillator adjacent to the main magnetic pole, and configured to generate a high frequency magnetic field, a recording current control circuit configured to supply a recording current to the recording coil, a driving current control circuit configured to supply a fixed driving current to the spin-torque oscillator, and an overshoot control circuit configured to control overshoot current of the recording current in proportion to the magnitude of the driving current after the recording current has reversed. |
US08953270B2 |
Library device, control method and program
A library device in which, even if the relation between the number of pulses of a stepping motor and an encoder count number changes, a movement distance of a medium transfer means can be verified by an encoder count number counted by an encoder sensor is provided.A control means (2) determines a proof factor used when calculating an assumed encoder count number assumed based on the number of pulses according to a movement distance of a medium transfer means (5). When a movement distance of the medium transfer means (5) is verified, an assumed encoder count number, which is assumed based on the above-mentioned determined proof factor and the number of pulses according to the movement distance of the medium transfer means (5), and an actual encoder count number, which is counted by an encoder sensor when a stepping motor is driven by the number of pulses according to the movement distance of medium transfer means (5), are compared. |
US08953269B1 |
Management of data objects in a data object zone
Managing data objects in a Data Storage Device (DSD) including a disk and a volatile memory for storing data. A data object is written from the volatile memory in a data object zone of the disk of the DSD. At least one most recent version of a previously written data object is rewritten in the data object zone so that an earlier version of the data object written from the volatile memory does not interrupt a contiguous plurality of most recent versions of data objects stored in the data object zone. |
US08953266B2 |
Method and structure for improving performance and storage density in a data storage device
A data storage device with improved data storage densities, coupled with lower hard error and write-inhibit events is described. A feed-forward write inhibit (FFWI) method enables data tracks to be written more densely. Alternatively, the FFWI method may reduce the hard error and write inhibit events to improve data storage performance. A concept of virtual tracks enables the FFWI method to be applied to the writing of circular data tracks with non-circular servo tracks, or to the writing of non-circular data tracks with PES data from circular servo tracks—in both cases, improvements to performance and/or storage densities are enabled. The FFWI method may also be applied to the case of both non-circular servo and data tracks. |
US08953261B2 |
Six-piece optical lens system
A six-piece optical lens system includes, in order from the object side to the image side: a first lens element with a negative refractive power has a concave image-side surface, a second lens element with a positive refractive power has a convex image-side surface, a third lens element with a positive refractive power has a convex object-side surface, a fourth lens element with a negative refractive power has a concave image-side surface, a fifth lens element with a positive refractive power has a convex object-side surface, and a sixth lens element with a negative refractive power has a concave image-side surface. Each of the first, second, fourth and sixth lens elements has at least one aspheric surface, and one of the third and fifth lens elements is made of glass. Thereby, such a system can be applied to a high resolution mobile phone. |
US08953258B1 |
Imaging lens, and portable electronic apparatus including the same
An imaging lens includes a first lens element, a second lens element, an aperture stop, a third lens element, a fourth lens element, and a fifth lens elements arranged from an object side to an image side in the given order. Through designs of surfaces of the lens elements and relevant optical parameters, a short system length of the imaging lens may be achieved while maintaining good optical performance. |
US08953249B2 |
Method of manufacturing an apodizer, and optical module
An optical module comprises an apodizer includes a black resin layer having a concavity the diameter of which gradually changes in a direction light passes through the apodizer, and, provided in the concavity, a transparent resin layer having the same refractive index as the black resin layer, the black resin layer and the transparent resin layer having a total thickness of 0.001 to 0.10 mm, an input lens opposed to the black resin layer of the apodizer and an output lens opposed to the transparent resin layer of the apodizer. |
US08953248B2 |
Gaming machine
A gaming machine according to an embodiment of the present invention includes: a first display panel configured to display game images of a game, the first display panel including a screen facing downward; a plurality of first beam splitters disposed under the first display panel and inclined with respect to the screen to partially reflect the images from the first the display panel into a forward direction; a background image generator disposed rear to the first beam splitters and generating background images, the background images from the background image generator passing through the first beam splitters toward the forward direction to overlap the game images; and a controller configured to execute the game and to control the first display panel. |
US08953247B2 |
Positioning system for head-up display
The invention relates to a positioning system for a head-up display which comprises a combiner carrier being moved between a first position and a second position; a combiner rotatbly disposed on the combiner carrier and a tilt angle of the combiner being adjusted; and a driving mechanism for alternatively driving the movement of the combiner and the tilt angle adjustment of the combiner. |
US08953246B2 |
Lens-based image augmenting optical window with intermediate real image
An image augmenting window and method of operation. An image augmenting window has at least one selectably transmissive internally focused intermediate image lens with a first portion that receives light and focuses it into a focused image on an internal focal plane. An output optical structure refracts the focused image out as a projected image. A selectably transmissive shutter located in the internal focal plane selectably blocks at least a portion of light passing through the lens. At least one controllable light source has a respective light source lens that is separate from and positioned adjacent to a lateral side of a respective selectably transmissive internally focused intermediate image lens and that emits an afocal projection of respective projected light. A controller independently controls each shutter and each controllable light source. |
US08953243B2 |
Anti-reflection structure using surface plasmon and high-K dielectric material and method of manufacturing the anti-reflection structure
An anti-reflection structure using surface plasmons and a high-k dielectric material, and a method of manufacturing the anti-reflection structure. The anti-reflection structure may include a high-k dielectric layer formed on a substrate, the high-k dielectric layer configured to allow incident light to pass therethrough, and a nano-material layer on the high-k dielectric layer. The high-k dielectric layer may include at least one of zirconium oxide (ZrO2), hafnium oxide (HfO2), titanium oxide (TiO2), tantalum oxide (Ta2O5), lanthanum oxide (La2O3), yttrium oxide (Y2O3) and aluminum oxide (Al2O3). |
US08953237B2 |
Spectrum sliced photonic signal processor
A photonic signal processor providing finite impulse response filtering of an external input signal, the processor including: a photonic signal input having a predetermined wavelength range, a Bragg grating structure interconnected to the photonic signal input and having a series of localized modifications to the periodicity of the grating structure so as to provide a predetermined transmission output window within the stopband of the Bragg grating structure and predetermined wavelength range; a modulator interconnected to the grating structure for modulating the output from the grating structure in accordance with the external signal input; a delay structure for providing a wavelength variable delay to the output from the modulator; an intensity detector interconnected to the delay structure for determining and outputting the intensity of the delay structure output. |
US08953228B1 |
Automatic assignment of note attributes using partial image recognition results
Assigning attributes to an image includes determining a particular capturing device used to obtain the image and detecting attributes of the image based on image data, where an expected location and content of the image data varies according to a particular set of rules that is chosen based on the particular capturing device used and/or a type of document represented by the image. The capturing device may be a scanner, a facsimile device, or a camera. The image may have an expected form factor. Some of the attributes of the image may be fully recognized and some of the attributes may be partially recognized and, for at least some of the partially recognized attributes, a lookup table may be used to clarify unrecognized portions thereof. A user may be prompted to facilitate identifying partially recognized attributes. Partially recognized attributes may be indicated to a user with question marks. |
US08953225B2 |
Image reading device
An image reading device includes a feeding unit, a reading unit, and a processor. The feeding unit is configured to feed a plurality of sheets of original document one by one. The reading unit is configured to read an image on each of the plurality of sheets fed by the feeding unit and generate image data representing the image. The processor is configured to function as a selecting unit and a determining unit. The selecting unit is configured to select a criterion from among a plurality of criteria. The determining unit is configured to determine, according to the criterion selected by the selecting unit, whether or not a sheet of the original document is actually fed while being overlapped with another sheet of the original document based on image data corresponding to the sheet. |
US08953224B2 |
Operating device usable with image forming apparatus and image forming apparatus having the same
An operating device usable with an image forming apparatus to increase free movement thereof and an image forming apparatus having the same. A sliding unit and a hinge unit provided at a rear surface of the operating device can provide increased free movement of the operating device. A horizontal sliding motion of the operating device can be provided by a the sliding unit, and the sliding unit can be rotated relative to a body of the image forming apparatus with the hinge unit. The sliding unit can include a first sliding member and a second sliding member to slide on the first sliding member. The hinge unit can include a hinge shaft and a bracket rotatably coupled to the hinge shaft. |
US08953223B2 |
Image processing apparatus for processing multi-values image data corresponding to a predetermined area of a recording medium
Multi-valued image data corresponding to a pixel area is divided into the first scanning multi-valued data, first and second scanning common multi-valued data, and second scanning multi-valued data. A quantization processing is executed on each of the multi-valued data to generate first scanning quantized data, first and second scanning common quantized data, and second scanning quantized data. After that, these pieces of quantized data are combined for each scanning to generate first scanning combined quantized data and second scanning combined quantized data. According to this, the amount of pixels where dots are both recorded by performing a scanning by plural times (the amount of overlapping dots) is controlled, and while suppressing the image density variations, the granularity is held to a low level. |
US08953222B2 |
Image forming apparatus, image forming method, and computer program product
An image forming apparatus includes a printer engine, a storage unit, a print data interpreting unit, and a print control unit. The print data interpreting unit interprets print data and identifies both a first job type and a second job type. The first job type specifies any one of a special print job using special toner and a normal job using normal toner, and the second job type specifies a print function to be used. The print control unit makes a decision to permit or prohibit accumulation of print data in view of security based on the first job type and the second job type, accumulates the print data in the storage unit when the decision to permit the accumulation of the print data is made, and prohibits the accumulation of the print data when the decision to prohibits the accumulation of the print data is made. |
US08953221B2 |
Image forming apparatus, image forming system, and control method for specifying color names of sheets
The present invention prevents a printing result desired by a user from being unable to be printed out, due to registration of the same color name for sheets of different colors. To accomplish this, an image forming apparatus includes a reading unit that reads in a sheet; a generating unit that generates color data indicating a color of the sheet read by the reading unit; an obtaining unit that obtains a color name corresponding to the color data generated with the generating unit, by searching a color sample database, wherein color data and color names corresponding to the color data are stored in the color sample database; and a setting unit that sets a sheet feed cassette to the color name obtained by the obtaining unit. |
US08953220B2 |
Image processing for rotation of compressed image data
An image processing apparatus which can rotate input image data in a compressed state, comprises a storage unit which stores a rotation angle of the image data; a holding unit which holds, for each tile including blocks each including a predetermined number of pixels in the image data, information on a color arrangement in the block obtained by compressing the image data, color information corresponding to the color arrangement, and information on a position of the tile in the image data; and a rotation unit which converts the color arrangement in the block in accordance with the rotation angle of the image data stored in the storage unit to form rotated image data based on the converted color arrangement, color information corresponding to the color arrangement, and information on a position of the tile. |
US08953218B2 |
Imaging data stream method and apparatus for full-color support
A method and apparatus for extending LCDS imaging data stream imaging capabilities. An imaging data stream can be modified to permit the imaging data stream to implement at least one full-color call for rendering full-color forms and full-color jobs via at least one rendering device within a rendering system. This can be accomplished by creating and associating at least one full-color extension with a syntax of the imaging data stream in order to implement the at least one full-color call in an extensible set of color spaces, and also compactly decoding, storing indexing and searching the at least one full-color call within a particular job. In addition, an LCDS imaging data stream can be modified to provide an image substitution pathway to permit at least one full-color image included in said LCDS imaging data stream to be substituted for monochrome images or highlight color images. |
US08953213B2 |
Image reading apparatus, control method thereof, and recording medium
An image reading apparatus includes a reading unit that, after reading an image of a first side of a first document and an image of a first side of a second document, reads an image of a second side of the first document and an image of a second side of the second document, and an output unit configured to output the image of the first side of the first document read by the reading unit, store the image of the second side of the first document read by the reading unit in a storage unit, and after outputting the image of the first side of the second document read by the reading unit, output the image of the second side of the first document stored in the storage unit, and output the image of the second side of the second document read by the reading unit. |
US08953210B2 |
Function execution device
A function execution may device determine whether the function execution device can communicate with an external device using a short-range communication protocol when a first screen is displayed on a display screen. When the function execution device determines that the function execution device can communicate with the external device using the short-range communication protocol, the function execution device may display a second screen that indicates an operation to be performed using the external device to start executing a predetermined function of the function execution device. |
US08953202B2 |
Image forming apparatus, information processing apparatus, image forming system, and method for forming images
Image forming apparatuses are connected to a network. Each image forming apparatus communicates with remaining ones of the image forming apparatuses. An image forming section forms an image in accordance with the image information. A memory stores management information, the management information including an item of information about one of remaining ones of the plurality of image forming apparatuses. The one of remaining ones of the plurality of image forming apparatuses holds the image information therein. An information management section performs a synchronization processing in which the management information in the plurality of image forming apparatuses is updated to become identical. An image formation controlling section obtains the image information held in the one of remaining ones of the plurality of image forming apparatuses identified by the item of information, and drive the image forming section to form the image in accordance with the obtained image information. |
US08953195B2 |
Receipt issuing device, control method for a receipt issuing device, printing device, and control method for a printing device
A receipt issuing device, control method for a receipt issuing device, printing device, and a control method for a printing device can eliminate issuing unnecessary receipts without requiring changing the application of the host device. A transaction information reception unit 61 receives transaction information from a host device 2 that outputs transaction information and specific commands. A transaction identification command reception unit 62 receives a specific command after the transaction information is received. A decision unit 64 decides whether or not to issue a receipt R based on whether or not the specific command was received and/or the content received. A receipt issuing unit 65 prints the transaction information and issues a receipt R when the decision unit 64 decides to issue a receipt. |
US08953189B1 |
Method and apparatus for verifying print jobs to prevent confidential data loss
A method and apparatus for verifying print jobs to prevent confidential data loss is described. In one embodiment, the method for verifying print jobs using one or more processors to prevent confidential data loss from memory comprises processing a print job information associated with a document, comparing the plurality job information with a policy for identifying confidential data to produce a comparison result and communicating instructions to print at least one portion of the document based on the comparison result. |
US08953181B2 |
Virtual print job preview and validation
Apparatuses, systems and methods are provided for previewing and submitting print jobs. A printer apparatus generates and outputs preview data based on printer resources and print data received from an external terminal, in response to a preview request received along with the print data from the external terminal. Such preview data is in a printer-independent format that is acceptable to a plurality of printing devices, and images generated by the plurality of printers based on the preview data are substantially the same. |
US08953169B2 |
Apolarized interferometric system, and apolarized interferometric measurement method
An interferometric system includes a polarization separation element (10), a first polarization conversion element (11), a Mach-Zehnder interferometer (2) including a first (4) and second (5) arms connected to one another by a first (6) and second (7) ends in order for a first and second beams (20, 21) having the same polarization to pass through the interferometer in a reciprocal manner in opposite directions of propagation, respectively, so as to form a first and second interferometric beam (22, 23), a second polarization conversion element (11) for obtaining an interferometric beam (24), the polarization of which is converted, a polarization-combining element (10), and a detection element (8) suitable for detecting an output beam (25). |
US08953167B2 |
OCT system with tunable clock system for flexible data acquisition
An OCT system and particularly its clock system generates a k-clock signal but also generates an optical frequency reference sweep signal that, for example, indicates the start of the sweep or an absolute frequency reference associated with the sweep at least for the purposes of sampling of the interference signal and/or processing of that interference signal into the OCT images. The clock system is also tunable to allow the control or flexibility over the relationship between the scanning of the swept optical signal and the sampling of the interference signal by the data acquisition system. Specifically, the absolute frequencies of the swept optical signal at which the k-clock signals are generated can be adjusted. Also, the absolute frequency of the swept optical signal at which sampling of the interference signal is initiated can also be changed or stabilized. Moreover, optical frequency sampling interval defined by the k-clock signal can be changed under user control or simply stabilized. |
US08953166B2 |
Extreme light pulse-front tilt and its application to single shot measurement of picosecond to nanosecond laser pulses
Various methods and systems are provided for generation of a laser pulse with massive pulse-front tilt (PFT) and its use for measurement of laser pulses. In one embodiment, a method includes directing a laser pulse into an etalon and propagating the laser pulse through the etalon to form a tilted pulse. Another embodiment involves directing pulses into an etalon and propagating the pulses through the etalon in opposite directions to form a pair of massively tilted pulses that are tilted in opposite directions. In another embodiment, a system includes a Fresnel biprism configured to produce a pair of pulses from an input pulse and a lens configured to direct each pulse through an opening (or openings) in an input surface of an etalon, where the etalon is configured yield a pair of pulses tilted in opposite directions, each pulse having a massive PFT. |
US08953165B2 |
Validation and correction of spectrometer performance using a validation cell
Light intensity data quantifying intensity of light generated by a light source and received at a detector during a validation mode of an absorption spectrometer can be compared with a stored data set representing at least one previous measurement in a validation mode of an analytical system. The validation mode can include causing the light to pass at least once through each of a zero gas and a reference gas contained within a validation cell and including a known amount of a target analyte. The zero gas can have at least one of known and negligible first light absorbance characteristics within a range of wavelengths produced by the light source. A validation failure can be determined to have occurred if the first light intensity data and the stored data set are out of agreement by more than a predefined threshold amount. Related systems, methods, and articles of manufacture are also described. |
US08953162B2 |
Apparatus and methods for concentration determination using polarized light
Methods and apparatus for concentration determination using polarized light. The apparatus includes a first polarized light source having a first light source polarization axis and a second polarized light source having a second light source polarization axis generally perpendicular to the first light source polarization axis. Also, a first polarized light receiver having a first polarized light receiver polarization axis and configured to measure an intensity of light transmitted from the first light receiver polarizer and a second polarized light receiver having a second polarized light receiver polarization axis substantially perpendicular to the first light receiver polarization axis and configured to measure an intensity of light transmitted from the second light receiver polarizer, wherein the first and second light receiver polarization axes are generally +/−45 degrees relative to the first and second light source polarization axes. |
US08953161B2 |
Optical spectrum analyzer with continuously rotating tunable filter
An optical spectrum analyzer is implemented with a detector combined with a tunable filter mounted on a stage capable of 360-degree rotation at a constant velocity. Because of the constant rate of angular change, different portions of the input spectrum are detected at each increment of time as a function of filter position, which can be easily measured with an encoder for synchronization purposes. The unidirectional motion of the mirror permits operation at very high speeds with great mechanical reliability. The same improvements may be obtained using a diffraction grating or a prism, in which case the detector or an intervening mirror may be rotated instead of the grating or prism. |
US08953160B2 |
Systems having a reflected light sensor and methods of use
Various systems and methods of monitoring laser safety by sensing contact of the system with a sample are provided. The system includes a focusing element for focusing an incident light from a laser light source onto a sample, an optical element having a collection zone for collecting a signal from the sample, a reflected light sensor for sensing a reflected light from the sample, wherein the reflected light sensor is located outside the collection zone of the optical element and on an inner surface of a housing of the system, an electrical circuit operably connected to the reflected light sensor and the laser light source and configured to control power to the laser light source in accordance with the reflected light sensed by the reflected light sensor and a spectral analyzer for processing the signal. Methods and other systems are also described and illustrated. |
US08953159B2 |
Surface enhanced raman spectroscopy nanodome biosensors and methods of manufacturing the same
Tubing such as clear plastic disposable tubing or glass tubing includes a photonic sensor formed in or placed within the tubing. The photonic sensors can take the form of photonic crystal sensors, distributed feedback laser sensors, and surface enhanced Raman spectroscopy (SERS) sensors, including photonic crystal enhanced SERS sensors. Detection arrangements for the sensors are described. The invention has many applications including tubing used in hospital care (e.g., urinary catheters, intravenous fluid delivery tubing, tubing used in dialysis, e.g. heparin lines or blood tubing sets), food manufacturing, pharmaceutical manufacturing, water quality monitoring, and environmental monitoring. |
US08953152B2 |
Depth sensors, depth information error compensation methods thereof, and signal processing systems having the depth sensors
According to at least one example embodiment, a depth information error compensation method includes outputting modulated light to a target object, detecting a plurality of first pixel signals at different detection time points in a first time interval, the first pixel signals representing light reflected from the target object during the first time interval, detecting a plurality of second pixel signals at different detection time points in a second time interval, the second pixel signals representing light reflected from the target object during the second time interval, comparing each of the plurality of first pixel signals with each of the plurality of second pixel signals and calculating depth information to the target object according to the comparing. |
US08953146B2 |
Exposure apparatus for improving alignment accuracy of a pattern generated by light modulating elements
An exposure apparatus is provided with: a conveying device that conveys the subject to be exposed in a given direction; a spatial light modulating device having a plurality of light modulating elements, which are composed of an electro-optical crystalline material and arranged at least in one row in a direction intersecting a conveying direction of the subject to be exposed; an optical beam shaping device that limits the width of light emitted from each light modulating element in the conveying direction to a predetermined width; and a control device that on/off-controls light transmitted through the spatial light modulating device so as to generate a predetermined pattern. The light modulating element is formed tilted by a predetermined angle with respect to an axis parallel to the conveying direction. The control device shifts the optical beam shaping device in the conveying direction. |
US08953141B2 |
Immersion lithographic apparatus and device manufacturing method with asymmetric acceleration profile of substrate table to maintain meniscus of immersion liquid
A lithographic apparatus includes a liquid supply system configured to supply an immersion liquid between a downstream optical element of a projection system of the lithographic apparatus and the substrate, and a control system which is arranged to drive the substrate table so as to perform an acceleration profile to accelerate the substrate table from a first velocity in a first direction to a second velocity in a second direction. The acceleration profile is asymmetric in time and is dimensioned so that when the substrate table is accelerated according to the acceleration profile, a force to break a meniscus of the immersion liquid remains lower than a force to maintain the meniscus of the immersion liquid. |
US08953140B2 |
Method for setting pre-tilt angle of liquid crystal molecule
A method for setting a pre-tilt angle of liquid crystal molecules includes (1) providing liquid crystal material, a CF substrate, and a TFT substrate; (2) arranging the substrates to form a gap therebetween in which the liquid crystal material is filled to form a liquid crystal cell; (3) providing a drive control circuit that generates driving voltages and connecting the drive control circuit to the TFT substrate; (4) providing a small-amplitude oscillation device and an irradiation intensity variable ultraviolet light source and positioning the liquid crystal cell on the oscillation device; (5) activating the oscillation device to cause the liquid crystal cell to make small-amplitude oscillation and conducting on the drive control circuit to supply driving voltages to drive the liquid crystal material, the ultraviolet light source being applied to irradiate the liquid crystal cell with ultraviolet lights of different intensities; and (6) repeating step (5) for at least one time. |
US08953139B2 |
Stabilization of antiferroelectric liquid crystals
Example embodiments disclosed herein relate to the stabilization of the orthoconic state in orthoconic antiferroelectric liquid crystal devices. According to some of the example embodiments, the stabilization may be obtained by tuning a device cell as well as material parameters. The orthoconic state may be stabilized by means of the cell surfaces, electric fields, and/or polymer-stabilization, and combinations thereof, under selected conditions. The example embodiments presented herein advances several new working modes as well as new types of applications of orthoconic antiferroelectric liquid crystals. |
US08953138B2 |
Flat panel display and method of fabricating the same
In a flat panel display and a method of fabricating the same, the flat panel display includes a substrate having a pixel region and alignment mark regions. The alignment mark regions are disposed at opposite sides of the pixel region and along the pixel region. A unit pixel array is arranged on the pixel region in a matrix manner. The alignment mark regions have at least one pair of alignment marks disposed thereon in an opposing manner. The alignment mark pairs are located in correspondence with respective columns of the unit pixel array. |
US08953136B2 |
Color filter substrate, liquid crystal display device including color filter substrate, and method of fabricating color filter substrate
In a color filter substrate and a liquid crystal display device including the same, the color filter substrate includes: a first black matrix not having an opening; a second black matrix having an opening; the first black matrix and the second black matrix being formed on a substrate; an auxiliary pattern disposed in the opening; a color filter covering the first and second black matrixes and formed in each of a plurality of pixels; an overcoat layer formed on the color filter; a first column spacer formed on the overcoat layer so as to correspond to the first black matrix; and a second column spacer formed above the auxiliary pattern so as to correspond to the second black matrix. |
US08953131B2 |
Touch sensor
The touch sensor according to a preferred embodiment of the present invention includes: a transparent substrate; and an electrode formed on the transparent substrate in a mesh pattern, wherein the electrode has a line width of one side smaller than that of the other side in a thickness direction. |
US08953130B2 |
Liquid crystal display device
According to one embodiment, a liquid crystal display device includes an insulation film disposed over a gate line, a storage capacitance line, a source line, and first main common electrodes disposed on the insulation film. The first main common electrodes include a discontinuous part in at least one of a first intersection part at an intersection between the storage capacitance line and the first source line and a second intersection part at an intersection between the storage capacitance line and the second source line. The liquid crystal display device also includes a main pixel electrode and a sub-pixel electrode which are disposed on the insulation film. |
US08953125B2 |
Liquid crystal display device
It is an object of the present invention to provide a liquid crystal display device which has a wide viewing angle and less color-shift depending on an angle at which a display screen is seen and can display an image favorably recognized both outdoors in sunlight and dark indoors (or outdoors at night). The liquid crystal display device includes a first portion where display is performed by transmission of light and a second portion where display is performed by reflection of light. Further, a liquid crystal layer includes a liquid crystal molecule which rotates parallel to an electrode plane when a potential difference is generated between two electrodes of a liquid crystal element provided below the liquid crystal layer. |
US08953124B2 |
Optical system
An optical system according to an embodiment of the present invention includes a reflective imaging element having a first principal face which is struck by light emitted from a display panel, a second principal face parallel to the first principal face, and two mutually-orthogonal specular elements being perpendicular to the first principal face, and causes an image displayed on a display surface of the display panel to form an image at a position of planar symmetry with respect to the reflective imaging element as a plane of symmetry. A transparent substrate which is disposed on at least either the first principal face side or the second principal face side of the reflective imaging element is further included, and first light striking the transparent substrate is linearly polarized light, with a large proportion of p-polarized light. |
US08953123B2 |
Liquid crystal display device
In a liquid crystal display device having a front window, light from a backlight is prevented from leaking through chamfered edges of the front window. An upper polarizing plate is formed on an opposing substrate and a light shielding material is formed abutting on an outer edge of the upper polarizing plate. Edges of the upper polarizing plate are located inward of edges of the front window. The upper polarizing plate and the front window are bonded with a boding material including an ultraviolet curable resin. The ultraviolet curable resin also lies over the light shielding material. Chamfers are formed in the front window and the ultraviolet curable resin does not adhere to the chamfers of the front window. By this structure, light from the backlight is prevented from entering the internal part of the front window through the chamfers of the front window and light leakage is prevented. |
US08953122B2 |
Liquid crystal display device and manufacturing method for same
A liquid crystal display device with a higher aperture ratio is provided. According to one embodiment of the present invention, second color filters are formed so as to overlap with first color filters when adjacent color filters having different colors are formed on the TFT substrate side, so that the angle of the first tapers where said first color filters overlap and the angle of the second tapers where said second color filters overlap are set to 45° or more and 90° or less. |
US08953121B2 |
Liquid crystal display device
In a liquid crystal display device which uses a white LED as the light source, in order to avoid/suppress the reduction in the speed of response of the liquid crystal while increasing the color reproducibility and red chromaticity without the use of a special purpose color filter, a band cut filter which absorbs the wavelength component neighboring orange in light that is transmitted is provided between the liquid crystal display and the backlight unit. |
US08953120B2 |
Display device
A display device having a light-emitting element and a see-through capability, with which a variety of display modes can be exhibited depending on a use application or situation. In such a display device having a see-through capability, between a first display portion having pixels including dual-emission type light-emitting elements and a second display portion having a light-scattering liquid crystal layer, a shutter-shaped light-blocking unit is provided so that a variety of display modes can be exhibited depending on use applications or situations by selecting modes of the first display portion, the second display portion, and the shutter-shaped light-blocking unit. |
US08953108B2 |
Stereoscopic display apparatus and liquid crystal lens
The present invention discloses a stereoscopic display apparatus. The stereoscopic display apparatus comprises a display panel and a liquid crystal lens. A first electrode layer of the liquid crystal lens comprises a plurality of electrode strips arranged along a first direction and extending in a ladder form along a second direction. The present invention further discloses a liquid crystal lens. According to the present invention method, a plurality of lenticular lens units extend in a ladder form along the second direction are formed in the liquid crystal layer in 3D mode. While the 3D display effect is achieved, the crosstalk between left-eye signals and right-eye signals in 3D mode is effectively suppressed. |
US08953107B2 |
Liquid crystal optical apparatus and stereoscopic image display device
According to one embodiment, a liquid crystal optical apparatus includes first and second substrate units, and a liquid crystal layer. The first substrate unit includes a first substrate and first electrodes. The first electrodes are provided on the first substrate to extend along a first direction, and arranged in a second direction perpendicular to the first direction. The second substrate unit includes a second substrate and a second electrode. The second substrate opposes the first substrate. The second electrode is provided on the second substrate to oppose the first electrodes. The liquid crystal layer is provided between the first and second substrate units. At least one of the first electrodes is provided with a recess formed on a surface of the at least one of the first electrodes. The surface opposes the second electrode. |
US08953106B2 |
Display unit, barrier device, and method of driving display unit
A display unit includes: a display section; a barrier section including a plurality of liquid crystal barriers switching an open state and a closed state; and a barrier driving section driving the barrier section with one or a plurality of barrier drive signals. Each of the barrier drive signals is a signal including a first waveform portion being configured of a series of waveforms allowing the liquid crystal barriers to be held in an open state over a plurality of frames, or a second waveform portion being configured of a series of waveforms to allowing the liquid crystal barriers to be switched between an open state and a closed state, and a third waveform portion being located just before the first or second waveform portion and having an average pulse height value smaller than a maximum value of a pulse height value of the first or second waveform portion. |
US08953103B2 |
Projector embedded into a portable communication device
The device comprises a projection display module is coupled to the control IC for the data projection. The projection display module includes three liquid crystal panels that perform image displays in red, green, and blue, respectively; light emitting sources are employed and positioned in correspondence with the liquid crystal panels, respectively. A prism is used for each display color combination, wherein the liquid crystal panels and the light emitting sources are positioned on the light-incidence side of the side surfaces of the prism. A projection lens is provided on the light emission side of the prism. |
US08953101B2 |
Projector and control method thereof
A projector includes an image taking part that takes an image of an area that includes a target onto which an image is projected; a distance measuring part that calculates, from taken image data obtained by the image taking part, distance data concerning a distance between the target and the image taking part; a plane estimation part that estimates, from the distance data, a plane corresponding to the target; and a focusing adjustment part that adjusts focusing of the image to be projected, based on information concerning the plane. |
US08953100B2 |
Information processing apparatus and audio output control method of an information processing apparatus
According to one embodiment, an information processing apparatus includes a display, a speaker, a connector, a multi-display module, an audio driver, and an audio-output controller. The connector is configured to output a video signal and an audio signal. The multi-display module is configured to control an outputting of the video signal in order to display a part of an image on the display and another part of the image at an external apparatus connected to the connector. The audio driver is configured to control an outputting of the audio signal at the speaker and the connector. The audio-output controller is configured to control the audio driver to output the audio signal to the speaker or the connector in accordance with the state of displaying the image at the display or the external apparatus, if the multi-display module displays the parts of the image on the display and the external apparatus. |
US08953098B2 |
Television signal processing device and television signal processing method
A television signal processing device and a television signal processing method are proposed according to embodiments of the present invention, wherein the television signal processing device includes a first signal processing unit, a television demodulator, and a second signal processing unit. The first signal processing unit performs a first signal processing operation upon a television signal according to a feedback signal to reduce distortion of the television signal and accordingly generate a processed television signal. The television demodulator is coupled to the first signal processing unit for receiving the processed television signal, and demodulating the processed television signal to generate a demodulated television signal. The second signal processing unit is coupled to the first signal processing unit and the television demodulator for receiving the demodulated television signal, and performing a second signal processing operation upon the received demodulated television signal to generate the feedback signal. |
US08953097B2 |
Motion vector estimation device, motion vector estimation method, and program for estimating motion vector
Provided is a motion vector estimation device capable of estimating the motion vector with less computation. A motion vector estimation device for estimating, by means of repetitive calculations, the motion vector of each of a plurality of pixel groups which is contained in an input image and which each contains one or more pixels, the motion vector estimation device being provided with a means for making repetitive calculations with regard to the pixel groups that do not have a high frequency component from among the plurality of pixel groups contained in the input image after making repetitive calculations with regard to the pixel groups that have a high frequency component from among the plurality of pixel groups contained in the input image. |
US08953094B2 |
Illumination system
A method for capturing an image with an image capture device, such as a camera or mobile electronic device. The method includes initiating a master-slave relationship between the image capture device and at least one secondary device. Once the master-slave relationship is initiated, remotely activating one of an at least one light source of the at least one secondary device. As the light source is activated, capturing a test image of a scene illuminated by the at least one light source by the image capture device. Then, analyzing the test image to determine if an illumination of the scene should be adjusted and if the illumination of the scene is to be adjusted, providing a control signal to the at least one secondary device including at least one of a position instruction, an intensity level, or timing data. |
US08953089B2 |
Imaging apparatus and controlling method therefor, and lens unit and controlling method therefor, and imaging system
In a camera unit that is mountable to a lens unit having a focus lens, an AF signal processing unit generates an AF evaluation value from an imaging signal obtained by an imaging element, and a camera control unit generates drive information for moving the focus lens to an in-focus point using the AF evaluation value and transmits the drive information to the mounted lens unit. The camera control unit transmits drive information including a focus lens position served as a reference for micro vibration and an amount of movement of the focus lens indicated by shift amount of an image plane with reference to the focus lens position to a lens unit. |
US08953086B2 |
Image pickup device
An image pickup device includes a placing section on which an image pickup element that receives light from an object is placed, a tilted surface section, which is provided on the placing section and is tilted with respect to the axis of light that enters the image pickup element, a direction specifying section, which specifies a moving direction so that the placing section moves parallel to the optical axis direction, a panel section having a surface perpendicular to the optical axis, and a rotating member, which is disposed between the tilted surface section and the panel section, and rotates and moves in the tilt direction of the tilted surface by being in contact with the tilted surface section. |
US08953076B2 |
Photoelectric conversion device and camera having a photodiode cathode formed by an n-type buried layer
A photoelectric conversion device comprises a p-type region, an n-type buried layer formed under the p-type region, an element isolation region, and a channel stop region which covers at least a lower portion of the element isolation region, wherein the p-type region and the buried layer form a photodiode, and a diffusion coefficient of a dominant impurity of the channel stop region is smaller than a diffusion coefficient of a dominant impurity of the buried layer. |
US08953073B2 |
Image sensor configured to regulate a quantity of light absorbed thereby, electronic device including the same, and image sensing method
An image sensor and an image sensing method are provided. The image sensor includes a semiconductor substrate; a photoelectric converter comprising a bias unit, which comprises a first electrode and a second electrode, and an organic photoelectric conversion layer, which selectively absorbs light and converts the light into electrons; a via contacting the second electrode to connect the photoelectric converter with the semiconductor substrate; a storage node configured to store electrons; a read-out unit to converts charge transferred from the storage node into an image signal; a pixel array comprising a plurality of pixels, each of which comprises an intermediate insulating layer; and an output circuit configured to read out the image signal from the pixel array. The quantity of light received by the organic photoelectric conversion layer is adjusted by a bias change of the bias unit. |
US08953067B2 |
Method, device, and machine readable medium for image capture and selection
The invention is related to a method, a device, and a machine readable medium for image capture and selection. One of the disclosed embodiments of the invention is specifically related to an image selecting method performed by an image capturing device for selecting at least one image from a sequence of captured images. The method includes storing a plurality of the captured images in a buffer, wherein each of the buffered images has an interested region supposed to encompass an interested target; detecting intactness information describing intactness of the interested target as encompassed in the interested regions of a plurality of the buffered images; and selecting at least one of the buffered images based on the detected intactness information, wherein intactness indicating whether or to what extent the interested target encompassed in the interested region. |
US08953062B2 |
Methods and apparatus for low resolution item identification
Methods and apparatus are provided for low resolution item identification. An image of an unknown item is captured and quantized to greatly lower the resolution of the image. The quantized image data of the unknown item is compared to a plurality of the quantized image data for known items. The comparison includes using a signal-to-noise ratio calculated using the quantized image data for both the unknown and known items. A match is found when the calculated signal-to-noise ratio is above a predetermined threshold value. |
US08953061B2 |
Image capture device with linked multi-core processor and orientation sensor
An image capture device that has an image sensor for capturing a scene, a multi-core processor with plurality of linked, identical processing units and an image sensor interface, all incorporated onto a single chip. The device also has an orientation sensor for sensing the device orientation. The processing units are configured for receiving data from the image sensor interface and an output from the orientation sensor, to simultaneously process the data. |
US08953058B2 |
Axial chromatic aberration correction
A 9 pixel-by-9 pixel working window slides over an input Bayer image. For each such window, a demosaicing operation is performed. For each such window, corrective processing is performed relative to that window to produce relative differences for that window. For each such window for which relative differences have been produced, those relative differences are regulated. For each window, a maximum is found for that window's regulated relative differences; in one embodiment of the invention, this maximum is used to select which channel is sharp. For each window, the colors in that window are corrected based on the relative difference-based maximum found for that window. For each window, edge oversharpening is softened in order to avoid artifacts in the output image. The result is an output image in which axial chromatic aberrations have been corrected. |
US08953056B2 |
Method, apparatus and system for dynamic range estimation of imaged scenes
A method, apparatus, and system for dynamic range estimation of imaged scenes for automatic exposure control. For a given exposure time setting, certain areas of a scene may be brighter than what a camera can capture. In cameras, including those experiencing substantial lens vignetting, a gain stage may be used to extend dynamic range and extract auto-exposure data from the extended dynamic range. Alternatively, dynamic range can be extended using pre-capture image information taken under reduced exposure conditions. |
US08953055B2 |
Image pickup apparatus
In response to an input of an instruction of still image capturing when a moving image is being captured, an image pickup apparatus compresses predetermined image data as an IDR frame of a moving image more than once, and uses a plurality of acquired IDR frames more than once to record the IDR frames onto a recording medium as moving image data in such an order that the IDRIDs of the adjacent IDR frames are not identical. |
US08953053B2 |
Image processing apparatus, image pickup apparatus, and image processing method
An image processing apparatus of the present invention includes a shake detector 109 which detects a shake of an image pickup apparatus, a shake analyzer 112 which obtains features of a plurality of shake components whose kinds are different from each other, a parameter calculator 113 which calculates a filtering process parameter depending on the features for each of the shake components, and a processor 114 which performs a filtering process using the filtering process parameter calculated for each of the shake components to calculate a shake reduction amount and performs a shake reduction process based on the shake reduction amount with respect to the image. |
US08953049B2 |
Television receiver—projector compensating optical properties of projection surface
Disclosure is directed to providing projected output from a receiver that includes ambiance or environmental images and sounds for display to and/or listening by a user. Other aspects are directed to processing or altering program service video to produce a compensated video that is output by a projector component of a receiver. The modified image compensates for characteristics associated with the ambient light conditions and/or characteristics of the projection surface upon which the projector outputs an image. |
US08953048B2 |
Information processing apparatus and control method thereof
The present invention ensures the visibility of a character or a drawing displayed on a screen. The illuminance of one or more partial areas forming a display unit is measured, and a video display position is set to an area except for the partial area where the illuminance is a reference value or more. |
US08953047B2 |
Imaging systems with signal chain verification circuitry
An imaging system may include an array of image pixels and verification circuitry. The verification circuitry may inject a test voltage into the pixel signal chain of a test pixel. The test voltage may be output on a column line associated with the column of pixels in which the test pixel is located. The test signal may be provided to a column ADC circuit for conversion from an analog test signal to a digital test signal. Verification circuitry may compare the digital output test signal with a predetermined reference signal to determine whether the imaging system is functioning properly (e.g., to determine whether column ADC circuits or other circuit elements in the pixel signal chain are functioning properly). If the output test signals do not match the expected output signals, the imaging system may be disabled and/or a warning signal may be presented to a user of the system. |
US08953046B2 |
Information processing apparatus for selecting a camera to be used to generate a virtual viewpoint video from images shot by a plurality of cameras
An information processing apparatus acquires virtual viewpoint information of a plurality of frames contained in a virtual viewpoint video, selects a camera for shooting an image to be used in generating an image at a virtual viewpoint in a frame from a plurality of cameras with respect to each of the plurality of the frames based on a positional relationship between the virtual viewpoint information of each frame and viewpoint information of the plurality of the cameras, and reselects the camera selected for each of the plurality of the frames. |
US08953041B1 |
Wireless video for model railroad engines providing an engineer's view
An Engineer's View (EV) wireless video system for powered and unpowered model railroad engines is disclosed. The invention uses commercially available wireless spy cameras, powered by a custom power supply circuit which is compatible with either DC or DCC track systems. The present invention is compatible with all commercial model railroad gauge diesel engines including HO and N Gauge or may be factory installed. The EV system demonstrates a remarkably stable and realistic image of a model railroad layout. Moreover, the present invention may also provide a stable source of power to the engine where stalling could occur at points of track defects. |
US08953038B2 |
Distributed video surveillance storage cost reduction using statistical multiplexing principle
A plurality of data streams are obtained; they may be compressed, uncompressed, or a mixture of compressed and uncompressed. Statistical parameters associated with each of the data streams are determined. A plurality of storage constraints are obtained. A plurality of output bit rates are determined for encoding or transcoding, as the case may be, each of the data streams, based on the statistical parameters and the storage constraints. The output bit rates are determined to jointly reduce (and preferably minimize) an overall cost. The overall cost includes the cost associated with storing compressed versions of the data streams. For each of the data streams, the encoding or transcoding into the compressed versions, is carried out in accordance with the output bit rates. |
US08953031B2 |
Medical device which acquires the picture for observation
In a medical device, a field-of-view switching mechanism which moves a field of view imaged by an observation section, and an illumination-light switching mechanism including an illumination section having an illumination range of illumination light whose entire field of view is covered by movement, are configured integrally with each other. The illumination light is illuminated to the current field of view by moving the illumination range of the illumination light, in synchronism with pivoting of an observation and in compliance with the field of view. |
US08953030B1 |
System for viewing samples that are undergoing ellipsometric investigation in real time
In the context of an ellipsometer or the like, positioning a camera other than directly above a sample being investigated by an electromagnetic beam, while said camera provides an optical view of a surface of said sample which is in focus over the entire viewed extent of the sample. |
US08953029B2 |
Portable device interaction via motion sensitive controller
Methods, systems, and computer programs for wireless interaction with a portable device supported by a stand are presented. In one method operation, a communications link is established between the portable device and the stand. The stand tracks the motion of an input device within an interactivity zone. In another method operation, the portable device interfaces with the input device to generate actions associated with game objects in the portable device, where the interface takes place when the input device is in or near the interactivity zone. Additionally, the stand moves when the tracking detects that the input device is outside predefined boundaries near an edge of the interactivity zone. The stand movement information is transferred via the communications link to update the location of the interactivity zone. |
US08953024B2 |
3D scene model from collection of images
A method for determining a three-dimensional model of a scene from a collection of digital images, wherein the collection includes a plurality of digital images captured from a variety of camera positions. A set of the digital images from the collection are selected, wherein each digital image contains overlapping scene content with at least one other digital image in the set of digital images, and wherein the set of digital images overlap to cover a contiguous portion of the scene. Pairs of digital images from the set of digital images to determine a camera position for each digital image. A set of target camera positions is determined to provide a set of target digital images having at least a target level of overlapping scene content. The target digital images are analyzed using a three-dimensional reconstruction process to determine a three-dimensional model of the scene. |
US08953021B2 |
Image processing systems for increasing resolution of three-dimensional depth data
An image processing system includes a calculation unit, a reconstruction unit, a confidence map estimation unit and an up-sampling unit. The up-sampling unit is configured to perform a joint bilateral up-sampling on depth information of a first input image based on a confidence map of the first input image and a second input image with respect to an object and increase a first resolution of the first input image to a second resolution to provide an output image with the second resolution. |
US08953020B2 |
Image processing device, image processing method and program
An image processing device includes an operation reception portion which receives an instruction operation for displaying a desired image from a plane image or a stereoscopic image that is stored in a recording medium; an information output portion that is connected to a display device which displays the plane image or the stereoscopic image to output image information for displaying the image stored in the recording medium on the display device; and a control portion. |
US08953011B2 |
Display device for visually-depicting fields of view of a commercial vehicle
A display device for visually depicting legally-prescribed fields of view of a commercial vehicle in a driver's cab of the commercial vehicle includes at least one display unit. The display device permanently and in real time displays at least two fields of view, which are legally-prescribed to be permanently displayed during operation of the vehicle, on the display unit in the driver's cab in a common image. |
US08953008B2 |
Method and device for producing color images on substrates containing color bodies and products produced thereby
A method for producing images (8) on a substrate (2) with colour bodies thereon, the colour bodies losing a colour effect due to a laser (23) and consisting of dyes or pigments contained in capsules (1). Different colour bodies having at least three different colour effects are on or in the substrate (2). The method includes: (a) producing a colour chart (14), with individual colour effect of individual colour bodies contained as a function of the spatial coordinates thereof on or in the substrate; and (b) spatially resolving radiation, which opens the colour effect of colour bodies of individual capsules and releases dyes by a laser (23) at a single frequency on the basis of the colour chart (14) in order to produce a resultant colour effect. Substrates, like security documents, can be produced this method. |
US08953003B2 |
Transferred medium
A recording apparatus is provided and in one exemplary embodiment includes a tray, a first roller, a second roller opposing the first roller, a recording part, and an urging member. The tray can have a tip part, which can include a first tip portion and a second tip portion. The second tip portion can be disposed at an upstream position relative to the first tip portion in a first direction. The recording part can be configured to record on the medium mounted on the tray, and the urging member can be configured to urge the second roller towards the first roller to transfer the tray in the first direction. In some embodiments, a width of the first tip portion can be narrower than a width of the second tip portion. The first and second tip portions can each include tapered portions that have thicknesses that decrease in the first direction. |
US08953001B2 |
Method of digital-driving an organic light emitting display device
A method of digital-driving an organic light emitting display device, which divides one frame into a plurality of sub-frames, is provided. In this method, a total number of scan operations, which are to be performed during the frame, is calculated based on a number of scan-lines and a number of the sub-frames, an emission time of each of the sub-frames is set based on a gray level maximum value and the total number of the scan operations, the emission times of the sub-frames are modified by permitting errors to the emission times of the sub-frames to control a sum of the emission times of the sub-frames to be equal to the total number of the scan operations, and each sub-frame scan timing of the scan-lines is sequentially shifted by N horizontal scan intervals, where N is the number of the sub-frames. |
US08952995B2 |
Driving method of display device and display device
It is an object to reduce power consumption of a display device which can perform multi-gray scale display and to suppress deterioration of an element included in the display device. The usage of a display device includes a first initialization period in which the gray scale level of an entire pixel portion is converted into a first gray scale level and a second initialization period in which the gray scale level of an entire pixel portion is converted into a second gray scale level. In the first initialization period, scanning of a plurality of signals and weighting of a holding period of each signal are performed. Therefore, the small number of scanning of signals can realize voltage application for an appropriate time with respect to each of a plurality of gray scale storage display elements included in the display device. |
US08952992B2 |
Zoom processing device, zoom processing method, and computer program
Provided is a new framework to perform zoom processing of a screen displayed on a display by unit of a simple operation. A zoom processing device of this invention, includes: calculates a movement amount of a pointer which is selecting an object on the screen; and performs enlarged display of the screen including the object at a first magnification when, as a result of the calculation, the movement amount of the pointer is equal to or less than a threshold value, and performs reduced display of the screen including the object at a second magnification when, as a result of the calculation, the movement amount of the pointer is greater than a threshold value. |
US08952987B2 |
User interface elements augmented with force detection
A computing device includes a touch screen display with at least one force sensor, each of which provides a signal in response to contact with the touch screen display. Using force signals from the at least one force sensor that result from contact with the touch screen, the operation of the computing device may be controlled, e.g. to select one of a plurality of overlaying interface elements, to prevent the unintended activation of suspect commands that require secondary confirmation, and to mimic the force requirements of real-world objects in augmented reality applications. |
US08952986B2 |
External fixator deformity correction systems and methods
Systems and methods for planning and optimizing bone deformity correction treatments using external fixators. A computer system generates a display of a tiltable ellipse superimposed on digital medical image(s) (radiograph), the ellipse representing a ring of an external fixator attachable to the patient's bone. Based on axial and azimuthal ring rotation user input, the system calculates a 3D position of the resulting graphical representation of the ring. User input controls translation of ring(s). Strut position user input identifies 3D positions for the external fixator struts. Based on graphical input defining 3D biological rate-limiting points for treatment, the system calculates a 3D bone correction speed and/or a number of treatment days, and generates a graphical simulation of this treatment. Further, the system generates a correction plan specifying for each strut a daily sequence of strut lengths and preferred strut sizes, to minimize strut replacements. |
US08952983B2 |
Method and apparatus for annotating point of interest information
An approach is provided for annotating point of interest information to structures. One or more representations of at least one structure are determined. One or more partitions of the at least one structure is determined based, at least in part, on one or more features of the one or more representations. One or more points of interest associated with the at least one structure are determined. One or more points of interest are determined to be rendered for presentation based, at least in part, on the one or more partitions. |
US08952982B2 |
Image display device, image display method and information recording medium for displaying and scrolling objects on a display
To provide an image display device for displaying, when displaying a plurality of display targets while scrolling, the respective display targets in a manner that takes into consideration the sizes and scroll directions of the respective display targets. An image display device places a plurality of display targets on a virtual plane, instructs the size of a display area defined on a part of the virtual plane, displays an image showing a picture inside the display area, and moves at least either one of the display targets and display area along a predetermined direction set on the virtual plane, relative to the virtual plane, in which the respective display targets are placed so as to be included in an area which is a band area extending in the predetermined direction on the virtual plane, having a width corresponding to the instructed size of the display area, and partially overlapping the display area. |
US08952980B2 |
Electronic color and luminance modification
Systems and methods for transforming and displaying a video signal on a display are provided with any number of features. In some embodiments, system is configured to receive a first set of input signals in a controller. The system can determine in the controller a first set of luminances and colors that would be produced on a first display with the first set of input signals. The system can then determine in the controller a second set of luminances that would produce the first set of colors on a second display. The system can then generate in the controller a second set of input signals that would produce the second set of luminances on the second display, and can output the second set of input signals to the second display. |
US08952976B2 |
SIMD parallel processor architecture
A SIMD parallel processor is described comprising an array comprising processing elements, associated data storage components and access means configured to enable access to at least one of the data storage components associated with at least one of the processing elements; a control processor; memory control means configured to enable addressing of at least one of the access means for the control processor; and connecting means configured to connect the memory control means to the access means. |
US08952974B2 |
Latency reduction in a display device
A display device may reduce the latency of the display of a digital signal by reducing the latency that the display device adds to the digital signal. After a digital signal is received by an input module, the signal is stored in a frame buffer as a plurality of pixels. A controller determines the input frame rate of the digital signal and a pixel delay. The controller monitors the frame buffer to determine when the frame buffer has stored a number of pixels greater than or equal to the pixel delay. After the frame buffer contains enough pixels, the controller initiates transmission of the pixels from the frame buffer to a display module. In certain embodiments, the controller initiates transmission of the pixels to the display module before the frame buffer has stored all pixels corresponding to the frame. |
US08952972B2 |
Information processing apparatus, information processing method and storage medium
An information processing apparatus which accepts one of a plurality of processes of different types in accordance with an operation instruction issued on a display screen, comprising: an input unit adapted to input the operation instruction issued on the display screen; an extraction unit adapted to extract an object of interest out of objects displayed on the display screen based on a position where the operation instruction has been input on the display screen; an obtaining unit adapted to obtain information indicating a display size of the object of interest extracted by the extraction unit; and a determination unit adapted to determine executable processing out of the processes of different types in accordance with the display size. |
US08952970B2 |
Rendering processing apparatus and method using multiprocessing
A rendering processing apparatus and method using multiprocessing are disclosed. The rendering processing method includes dividing an application execution window into frames and generating a rendering processing command for rendering processing of an image on a frame basis by a pre-rendering manager, generating a rendering image for a frame according to the generated rendering processing command by a rendering manager, and storing the generated rendering image in a memory. A task for generating a rendering processing command is divided into at least one task, a task for generating a rendering image is divided into at least one task, and the divided tasks can be processed simultaneously in a plurality of threads. |
US08952969B2 |
Transfer of motion between animated characters
Motion may be transferred between portions of two characters if those portions have a minimum topological similarity. The elements of the topology that are similar are referred to as basic elements. To transfer motion between the source and target characters, the motion associated with the basic elements of the source character is determined. This motion is retargetted to the basic elements of the target character. The retargetted motion is then attached to the basic elements of the target character. As a result, the animation of the basic elements in the topology of the target character effectively animates the target character with motion that is similar to that of the source character. |
US08952968B1 |
Wave modeling for computer-generated imagery using intersection prevention on water surfaces
A wave modeler usable with a rendering engine and for generating surface models usable for rendering images of scenes having surfaces therein reads user inputs including a desired displacement value, determines a vertical displacement wave representing displacements along a wave, determines a plurality of sample points each having an ordinal position on the vertical displacement wave, determines a horizontal displacement wave, maps the horizontal displacement wave to the plurality of sample points, adjusts horizontal displacement of one or more of the plurality of sample points to prevent, avoid or reduce intersection of the wave with itself, and generates a representation of the wave that is storable as a geometric model usable by a rendering image to generate an image with corresponding displacements of the wave. |
US08952967B2 |
Method for inserting moving picture into 3-dimension screen and record medium for the same
Disclosed is a method and a computer readable recording medium for inserting moving picture into 3D picture. The disclosed method comprises the steps of (a) Receiving a moving picture data from a server; (b) calling a player to play the moving picture data; (c) drawing a frame image of the moving picture played by the player on a predetermined moving picture drawing memory area at a predetermined time interval; (d) setting a texture for the frame image stored in the moving picture drawing memory area, the texture including insertion coordinate information of 3D picture where the texture is inserted; (e) rendering the texture corresponding to the frame image on the 3D picture according to texture setting information. |
US08952966B2 |
Multiple element selections in Gantt charts
Various arrangements for manipulating multiple elements of a Gantt chart are presented. The Gantt chart may be generated comprising a plurality of elements distributed across a plurality of groups. A selection of a subset of elements from the plurality of elements may be received, wherein the subset of elements of the Gantt chart comprises elements from at least a first group and a second group of the plurality of groups of the Gantt chart. An application programming interface may be executed to retrieve an element identifier for each element of the subset of elements of the Gantt chart, wherein each element identifier corresponds to only one element of the Gantt chart. |
US08952964B2 |
Generating animated voronoi treemaps to visualize dynamic hierarchical data with node insertion
Methods and apparatus are disclosed for generating animated treemaps, such as Voronoi treemaps, with node insertion to visualize dynamic hierarchical data. A treemap is processed by obtaining a multi-level tessellation having a plurality of existing regions; and inserting at least one new region into the multi-level tessellation by adjusting one or more of a size and location of at least one of the existing regions. In this manner, a stability of the treemap is preserved. The insertion selects a vertex of the multi-level tessellation as an insertion point. The selected vertex can be selected randomly from a set of vertices that define regions that are siblings to the newly inserted region; or can be a known location. A weight can be assigned to a new Voronoi generator, such as a nominal weight according to one or more constraints of the tessellation. |
US08952961B2 |
Systems and methods for photon map querying
In one aspect, photon queries are answered using systems and methods of traversal of collections of photon queries through an acceleration structure, to identify photons meeting a specification of a given query. Such systems and methods can be extended to satisfying similarity queries in an n-dimensional parameter space. Queries can be associated with code (or pointers to code) that are run to achieve closure of that query. Queries can cause further queries to be emitted. Arbitrary data can be passed from one query to another; for example, parameters defined internally to the code modules themselves (e.g., the parameters do not need to have a definition or meaning to the systems or within the methods). |
US08952956B2 |
Computer-readable storage medium having stored therein display control program, display control apparatus, display control system, and display control method
A game apparatus acquires a designated position Q, on an image, which corresponds to a touch position T detected by a touch panel, and a depth value of the designated position Q. A game apparatus calculates a designated three-dimensional position P in a three-dimensional virtual space, based on the designated position Q on the image and the depth value. The game apparatus next determines an orientation of a cursor object to arrange the cursor object at the calculated designated three-dimensional position P. The game apparatus next uses a virtual camera to take an image of the virtual space including the cursor object, and displays the image on an upper LCD. |
US08952949B2 |
Active matrix substrate, liquid crystal panel, liquid crystal display device, liquid crystal display unit, and television receiver
Pixel electrodes (17a and 17b) are provided in a pixel (101), and the pixel (101) is associated with a data signal line (15x), scanning signal lines (16a and 16b), and transistors (12a and 12b). One pixel electrode (17a) is connected to the data signal line (15x) via the transistor (12a). The other pixel electrode (17b) is connected to the pixel electrode (17a) via a capacitor (C101) and is connected to the data signal line (15x) via the transistor (12b). Storage capacitance (Cha and Chb) is formed between the pixel electrodes (17a and 17b) of the pixel (101) and a scanning signal line (16d) associated with a pixel (100). Thus, a configuration of a liquid crystal display device of a capacitively coupled pixel division mode is proposed in which a decline in display quality caused by image sticking of a sub-pixel is less likely to occur. |
US08952946B2 |
Display panel, module, and electronic device
A display panel, ensuring high photo-detection accuracy in a region near a frame area, is provided. The display panel includes: image display elements disposed in an effective display area of a display screen; a light-shielding layer disposed in a frame area around the effective display area; and photo-detection elements disposed in the effective display area or in both of the effective display area and the frame area. The photo-detection elements detect the invisible light. The light-shielding layer transmits invisible light, while shields visible light. |
US08952940B2 |
Capacity load drive device and liquid crystal display device using the same
A capacity load drive device 1 includes: a logic portion 11 generating a binary logic signal IN; and a driver portion 13 determining, based on a predetermined mode switching signal MODE, whether to generate a binary drive signal or ternary drive signal from the logic signal IN and applying binary or ternary drive signals X1 to Xm generated according to the determination, to an end of a capacity load (liquid crystal cell). |
US08952936B2 |
Method and device for position detection
The present invention provides a method and device for position detection. For detection of a touch position, a segment of surface acoustic wave (SAW) is provided multiple times to be propagated on a SAW touch panel, and the multiple SAW segments are received by the SAW touch panel. In addition, during or after reception, partial output electrical signals are provided based on different portions of each received SAW segment to construct a complete output electrical signal. |
US08952935B2 |
Touch display
A touch display, including: a light source; a light guide plate, having a first refractive index and having a side face close to the light source; a cover layer, having a second refractive index and being placed over the light guide plate, and the second refractive index is smaller than the first refractive index; a plurality of pillar structures, having a third refractive index and being placed under the light guide plate, and the third refractive index is larger than or equal to the first refractive index; a touch structure, placed over the cover layer; and an electronic paper device, placed under the pillar structures. |
US08952934B2 |
Optical touch systems and methods for determining positions of objects using the same
Methods for determining positions of objects for use in an optical touch system are provided. The optical touch system at least includes a depth image sensor and a touch plane, the depth image sensor having a sensing area covering the touch plane. First, when an object is detected by the depth image sensor, image information is obtained by using the depth image sensor, wherein the image information includes angle information and depth information related to the depth image sensor for the object. Thereafter, it is determined whether a position of the object is located at the inside or the outside of the touch plane according to the angle information and the depth information. |
US08952928B2 |
Device and method for detecting touch screen
The invention discloses a full screen driven detection. A driving signal is simultaneously provided to all first conductive strips arranged in parallel in a first direction in a touch screen, and mutual capacitive signals are detected from all second conductive strips arranged in parallel in a second direction. The mutual capacitive signals can be used for determining whether an external conductive object coupled to the ground is touching or approaching the touch screen or not even if water or other conductive object not coupled to ground is on the touch screen. Thus, the baseline of the mutual capacitive signals can be updated if the touch screen is not touched or approached by any external conductive object coupled to ground over a predetermined period of time. |
US08952923B2 |
Touch detection function-attached display apparatus, driving method and driving circuit therefor with switchable AC and DC driving, and electronic apparatus
Provided is a touch-detection-function-attached display apparatus including: common-driving electrodes disposed in parallel to extend in one direction; a display device performing display based on pixel and display-driving signals; a touch-detection device detecting an externally-approaching object based on a touch-detection-driving signal; and a scan-driving unit performing a first-scan driving for sequentially-applying the display-driving signal to the common-driving electrodes in a time-division manner and a second-scan driving for sequentially-applying the touch-detection-driving signal to the common-driving electrodes in a time-division manner at a scan speed different from the first-scan-driving and applying a DC potential to the common-driving electrode which is not selected as an object of the first and second scan driving, wherein the touch-detection-driving signal includes a DC portion sustained at the DC potential in a time interval where the pixel signal is applied to the display device and a pulse portion in a time interval other than the pixel-signal-application time interval. |
US08952913B2 |
Display device and driving method thereof
Disclosed is a display device. The display device includes a panel, a display driver IC, and a touch IC. The panel includes a plurality of driving electrodes and a plurality of sensing electrodes. The display driver IC outputs a common voltage to the driving electrode and the sensing electrode in a display driving interval, outputs a reference voltage to the driving electrode during a touch non-sensing period in a touch driving interval, and outputs a driving pulse to the driving electrode to receive a sensing signal from the sensing electrode during a touch sensing period in the touch driving interval. The touch IC transfers a control signal and a selection signal for selecting the touch sensing period and the touch non-sensing period to the display driver, and senses whether there is a touch with the sensing signal and the reference voltage. |
US08952911B2 |
Electronic device with a touch sensitive panel, method for operating the electronic device, and display system
An electronic display device being arrangeable during use into one of at least an opened and a closed state. The device includes a deformable display panel having an active area, a periphery area adjacent the active area, and a drive circuit for driving the active area. The active area includes an active area conductive structure substantially arranged along a front side of the active area. The periphery area includes a frame structure for visually bounding the active area. The frame structure is conformal to the display panel. The frame structure is electrically conductive and an insulator structure is provided between the active area conductive structure and the conductive frame structure. The insulator structure insulates the active area conductive structure from frame structure, the conductive frame structure being arranged to thereby shield the active area against ESD damage. |
US08952909B2 |
Capacitive touch panel and touch detection method of the same
A capacitive touch panel comprises a touch detection array having rows of first direction detection units and columns of second direction detection units, shared scan lines, independent scan lines and a driver control module. The first direction detection units are divided into a first group and a second group of rows arranged in an alternating manner. Each shared scan line is connected to one row of the first direction detection units in the first group and one column of the second direction detection units. Each independent scan line is connected to one row of the first direction detection units or one column of the second direction detection units that is not connected to the shared scan lines. The driver control module is connected to the shared scan lines and the independent scan lines to perform scanning processes to detect a touch input. A touch detection method is also disclosed. |
US08952908B2 |
Computer-readable storage medium, coordinate processing apparatus, coordinate processing system, and coordinate processing method
A value of a finger degree variable representing a degree of likelihood of a finger is updated at all times in accordance with whether the shape of an input trajectory represented by input coordinate data is a predetermined shape, whether a continuous contact time indicated by input coordinate data is less than a predetermined time, or whether or not a continuous non-contact time indicated by input coordinate data is less than a predetermined time. A degree of smoothening the shape of the input trajectory is changed in response to the value of the finger degree variable. |
US08952907B2 |
Touch screen and method for manufacturing a touch screen
A touch screen (13) on a display device (1), and a method for manufacturing a touch screen (13) on a display device (1). The display device (1) has an upper substrate (12) for protecting the display device (1) from the environment, the touch screen (13) comprising an electrically conductive transparent first layer (16). The first layer (16) comprises a network of electrically conductive high aspect ratio molecular structures (HARM-structures), the first layer (16) being embedded into the upper substrate (12) of the display device (1) to protect the conductive transparent first layer (16), for reducing the optical thickness of the structure between a viewer and the region of the display device (1) in which the image is formed. |
US08952901B2 |
Mobile device and method for providing user interface (UI) thereof
A mobile device and a method for providing a User Interface (UI) thereof are provided. The mobile device activates a manipulation unit upon detecting pressure through a pressure detecting unit. Accordingly, the user is able to manipulate various types of UIs, using a combination of pressure and various manipulation units. |
US08952899B2 |
Method and apparatus to reject accidental contact on a touchpad
In one exemplary embodiment, a portable computer having a display assembly coupled to a base assembly to alternate between a closed position and an open position. Palm rest areas are formed by a touchpad disposed on the surface of the base assembly. In an alternative embodiment, a touchpad disposed on the base assembly has a width that extends substantially into the palm rests areas of the base assembly. |
US08952897B2 |
Single page soft input panels for larger character sets
Embodiments of a soft input panel (SIP) for an electronic device are disclosed. The SIP can be configured for entering text in a non-English language that uses a more numerous character set than does English. The characters used in the language that are available to be entered using the SIP can be available to be entered using keys on a single page of keys without switching to a different page of keys or using function keys. At least one of the keys of the SIP is a base key that is configured to open a picker window when activated. The picker window comprises plural picker keys that allow a user to select from plural different characters associated with the base key. |
US08952894B2 |
Computer vision-based multi-touch sensing using infrared lasers
The claimed subject matter provides a system and/or a method that facilitates detecting a plurality of inputs simultaneously. A laser component can be coupled to a line generating (LG) optic that can create a laser line from an infrared (IR) laser spot, wherein the laser component and line generating (LG) optic emit a plane of IR light. A camera device can capture a portion of imagery within an area covered by the plane of light. The camera device can be coupled to an IR-pass filter that can block visible light and pass IR light in order to detect a break in the emitted plane of IR light. An image processing component can ascertain a location of the break within the area covered by the emitted plane of IR light. |
US08952890B2 |
Display device and controlling method
An image display device and controlling method capable of optimizing a state of the image display device for a user at a desired position. The display device includes: an imaging section that takes an image of a predetermined range of a dynamic image with respect to an image display direction; an image analyzing section that analyzes the dynamic image taken by the imaging section and calculates a position of a user; a system optimization processing section that calculates system control information for optimizing a system based on the position of the user calculated by the image analyzing section; and a system controlling section that optimizes the system based on the system control information calculated by the system optimization processing section. |
US08952889B2 |
Wireless video headset with spread spectrum overlay
Enhanced Bluetooth and/or cellular frequency hopping radios are integrated into a hands-free wireless mobile computing and video display headset. Forms of these enhanced headsets incorporating the enhanced frequency hopping spread spectrum radio technology are of interest to military, police, fire fighters, first responders and certain commercial companies such as utility companies seeking private cellular systems seeking enhanced communication privacy. |
US08952886B2 |
Method and apparatus for accelerated scrolling
Improved approaches for users to with graphical user interfaces of computing devices are disclosed. A rotational user action supplied by a user via a user input device can provide accelerated scrolling. The accelerated nature of the scrolling enables users to scroll or traverse a lengthy data set (e.g., list of items) faster and with greater ease. The amount of acceleration provided can be performed in successive stages, and/or performed based on the speed of the rotational user action. In one embodiment, the rotational user action is transformed into linear action with respect to a graphical user interface. The resulting acceleration effect causes the linear action to be enhanced such that a lengthy data set is able to be rapidly traversed. |
US08952881B2 |
Image display apparatus and information processing apparatus
According to one embodiment, an image display apparatus includes a liquid crystal panel, a backlight, a luminance distribution calculation unit, an error calculation unit, and an emission intensity update unit. The backlight includes a plurality of light sources which emit light. The luminance distribution calculation unit calculates a predicted value for an intensity distribution of light entering the liquid crystal panel if each of the light sources is lit with an emission intensity. The error calculation unit obtains a brightness of a display image which is realized if the each of the light sources is lit with the emission intensity, and the error calculation unit calculates an error between the obtained brightness and an ideal brightness of the display image corresponding to the input video signal. The emission intensity update unit updates the emission intensity of the each of the light sources to reduce the error. |
US08952875B2 |
Display device and electronic device
A display device in which an emission period may be adjusted into multiple types with reduction in cost being achieved. The display device includes: a plurality of pixels, each pixel including a plurality of individual-color sub-pixels, each sub-pixel including an individual-color light emitting element and an emission control transistor; and emission control lines connected to the pixels. The individual-color sub-pixel includes one of a first individual-color sub-pixel including an emission control transistor of a first conductive type, and a second individual-color sub-pixel including an emission control transistor of a second conductive type different from the first conductive type. One emission control line is connected in common with at least one of each of the first and second individual-color sub-pixels. |
US08952868B2 |
Method, apparatus and system on a chip for controlling a stereoscopic display device
This disclosure provides a technique for controlling the slew rate and number of transition segments used to move the LC drive voltage level from one voltage to another. In one embodiment, a method of controlling a polarization modulator in a polarization-based stereoscopic display device may comprise providing digital signals to each of a plurality of drive circuits to generate a drive voltage from each drive circuit, where the drive voltages drive the polarization modulator. Such an exemplary method may also include determining a time sequential list of transition specifications configured to provide discrete transitions in one or more of the drive voltages. Then, in such methods, the digital signals provided to each of the one or more drive circuits receiving a transition may be adjusted, in accordance with the time sequential list, thereby altering their drive voltages based on the transition specifications. |
US08952867B2 |
Information processing apparatus, information processing method and recording medium
When a user makes a touch input, a touch detector receives touch inputs from two touch panels and measures the coordinates of the touch inputs. The touch detector discriminates a detection mode. When the mode is an individual detection mode, the touch detector converts the coordinates of the touch input in the coordinate system of each display panel to coordinates in the coordinate system of the corresponding display panel, and stores touch history data in a storage unit. When the mode is a combined detection mode, the touch detector converts the coordinates of the touch input in the coordinate system of one display panel to coordinates in the coordinate system of the display panel, and to coordinates in the coordinate system of the other display panel to integrate the coordinate systems into the coordinate system of a single display panel, and stores touch history data in the storage unit. |
US08952865B2 |
Antenna and transformer included in the same
An antenna having a transformer exchangeable in accordance with tilting angle adjustment rate is disclosed. The antenna includes a phase shifter, a tilting adjustment apparatus and a transformer configured to move linearly in response to a force provided from the tilting adjustment apparatus, and deliver a force corresponding to the moving to the phase shifter. |
US08952863B2 |
Strain-tunable antenna and associated methods
An apparatus comprising an actuating substrate and an antenna in contact with the actuating substrate, the actuating substrate configured to undergo strain during actuation, wherein the strain in the actuating substrate varies the dimensions of the in-contact antenna and causes a change in the operational characteristics of the antenna. |
US08952862B2 |
Device for coupling and fastening a radiating element of an antenna and method of assembling an antenna
The panel type antenna includes a flat conductive mount including at least one orifice, at least one radiating element including a base mounted beneath a dipole and a device for coupling and fixing the radiating element to the support. The device for coupling and fixing the radiating element, comprising a base mounted beneath a dipole, on the support with a dielectric part including a base with a dimension greater than the orifice in the support, at least one rod joined with the base and extending in a direction perpendicular to the plane of the base through the orifice of the support adapted for the insertion of the rod, at least one protuberance built into the end of the rod able to cooperate with the radiating element to hold it in place. The device includes a dielectric layer between the radiating element and the conductive mount to avoid direct contact. |
US08952861B2 |
Multi-band MIMO antenna
A multi-band antenna system for MIMO applications is adapted to provide high isolation between antennas across a wide range of frequencies. Multiple Isolated Magnetic Dipole (IMD) antennas are co-located and connected with a feed network that can include switches that adjust phase length for transmission lines connecting the antennas. Filtering is integrated into the feed network to improve rejection of unwanted frequencies. Filtering can also be implemented on the antenna structure. Either one or multi-port antennas can be used. |
US08952852B2 |
Mobile wireless communications device including antenna assembly having shorted feed points and inductor-capacitor circuit and related methods
A mobile wireless communications device may include a portable housing, at least one wireless transceiver carried by the portable housing, and at least one satellite positioning signal receiver carried by the portable housing. The device may also include an antenna assembly carried by the portable housing. The antenna assembly may include a base conductor having a pair of shorted antenna feed points defined therein and coupled to the at least one wireless transceiver and the at least one satellite positioning receiver, and a first conductor aim extending outwardly from the base conductor. The antenna assembly may also include a second conductor arm also extending outwardly from the base conductor. The second conductor arm may include a proximal conductor portion adjacent the base conductor, a distal conductor portion, and an inductor-capacitor circuit coupling the proximal and distal conductor portions. |
US08952850B2 |
Mimo antenna apparatus
A MIMO antenna apparatus is provided. The MIMO antenna apparatus includes a plurality of antenna devices each having an operation line extending parallel by a predetermined extension length from one end portion and configured to operate in a resonant frequency band when power is supplied. The apparatus also includes a main board divided into a device area and aground area. The apparatus further includes a plurality of ground pads each extending from the ground plate to the device area in the main board and configured to connect the one end portion of each of the antenna devices to the ground plate. The apparatus also includes a plurality of feeding pads mounted adjacent to the ground pad in the device area and configured to connect each of the antenna devices to the main board and to provide power to each of the antenna devices. |
US08952847B2 |
System of geographical location of a radio signal transmitter located on the earth's surface, and associated method of distributed interferometry
A system of geographical location of at least one radio signal transmitter located on the Earth's surface including: a set of satellites equipped with receiving antennas adapted for receiving said signals, forming a main extended interferometry device; an intersatellite relative metrology device for determining the relative positions of said satellites to one another, including at least one dedicated sensor for each satellite, and intersatellite communication means; a device for dating said received signals from said determining of the relative positions of said satellites to one another, issued by said intersatellite relative metrology device; a secondary interferometry device including at least one set of at least three antennas of a satellite; a ground base station; a device for transmitting measurements acquired on the satellites to the ground base station; and means of determining an absolute position of at least one of the satellites. |
US08952844B1 |
System and method for adaptively matching the frequency response of multiple channels
A method for adaptively matching the frequency response of two channels of a received signal includes the steps of receiving a main RF signal on a main antenna, sampling the main RF signal at a sample rate, delaying the sampled main RF signal by a multiple of a sample period, wherein the sample period is the inverse of the sample rate, receiving at least one other RF signal on at least one other auxiliary antenna, sampling each of the at least one other RF signal at the sample rate, filtering each of the at least one other sampled RF signal utilizing an adaptive finite impulse response (FIR) filter having at least one sub-sample-period time delay, and combining the sampled main RF signal with each of the filtered at least one other sampled RF signals. |
US08952842B2 |
High-precision, compact altimetric measurement system
An altimetry system for a satellite, including an altimeter transmitting and receiving signals on at least one first frequency band; a radiometer receiving signals on at least one second frequency band, the altimeter and the radiometer being connected to one and the same antenna; reception means common to the altimeter and to the radiometer, and capable of amplifying and filtering the signals received from the antenna on a frequency band including the first frequency band and the second frequency band; means for separating the signals on the first frequency band from the signals on the second frequency band; the signals on the first frequency band being exploited to estimate an altimetric distance of the satellite, and radiometric measurements being exploited in order to correct the estimate. |
US08952841B1 |
System and method for TCAS based navigation
A traffic collision avoidance system (TCAS) based navigation system including a TCAS equipped with a directional antenna, the TCAS configured to generate a RF transmission pattern at a selected frequency, the transmission pattern including a plurality of directional beams, receive a plurality of RF signals reflected from the ground across a selected frequency band, the selected frequency band including the selected frequency, and measure frequency differences between one or more beams of the plurality of RF beams and one or more beams of the plurality of RF signals reflected from the ground, and a computing systems in communication with the TCAS, the computing system configured to calculate a ground speed of the aircraft utilizing the measured frequency differences, calculate a drift angle of the aircraft utilizing the measured plurality of frequency differences, receive a heading reference of the aircraft, and determine an aircraft navigation parameter of the aircraft. |
US08952839B2 |
Successive approximation register analog-to-digital converter with multiple capacitive sampling circuits and method
A circuit includes a comparator including a first input, a second input, and an output. The circuit further includes a plurality of capacitive sampling circuits configured to be selectively coupled to the first and second inputs. Each of the plurality of capacitive sampling circuits includes first and second capacitors, and includes first and second conversion switches configured to selectively couple the first and second capacitors to the first and second inputs, respectively. The first and second conversion switches of a selected one of the plurality of capacitive sampling circuits are closed to couple the selected one to the first and second inputs of the comparator during a conversion phase. |
US08952837B2 |
Multi-rate sigma delta digital-to-analog converter
A multi-rate sigma delta digital-to-analog converter may include a signal input and a signal output, and multiple modulators. A first of the modulator may convert a digital input signal on the signal input to an analog output signal on the signal output. Subsequent of the multiple modulators may shape and cancel quantization noise received from a proceeding modulator. One of the modulators may operate at a higher frequency than does another of the multiple modulation loops. |
US08952831B2 |
Enhancement of cockpit external visibility
A cockpit display system for a cockpit of an aircraft includes a primary flight display moveably located in the cockpit and viewable from a pilot position and/or a copilot position in the cockpit. The primary flight display is movable from a first position utilized for a first operating condition of the aircraft to a second position to increase external visibility during a second operating condition of the aircraft. A cockpit system includes a pilot operating position and a first flight display moveably located in the cockpit and viewable from the pilot operating position. The first flight display is movable from a first position utilized during a first operating condition of the aircraft to a second position to increase external visibility from the pilot operating position during a second operating condition of the aircraft. |
US08952830B2 |
Vehicle safety warning and information system
The present invention provides an improved vehicle safety warning system which enables a warning of a potential or an actual hazard to be transmitted via a signal between two or more vehicles, a device for use in such a system and an improved vehicle rally safety warning and information system. |
US08952825B2 |
Monitoring device for an ungrounded power network of a photovoltaic system
A monitoring device for an ungrounded electric network of a photovoltaic system. The monitoring device includes a short circuit measuring circuit having a first electric measuring circuit conductor connecting a first electric pole of the photovoltaic system with a reference point by means of at least one protective component, and second electric measuring circuit conductor for connecting a second electric pole of the photovoltaic system with ground be means of at least one protective component. A first component is connected between one of the measuring circuit conductors and ground, and a measuring device for measuring an electric parameter of the first component, wherein a non-zero value of the parameter and/or a change of the value of the parameter indicate an electric fault between the photovoltaic system and ground. |
US08952813B2 |
Optimization of luggage placement in storage compartments
Aspects of the present invention disclose a system, method and computer program product for automatically assigning a location to a luggage belonging to a passenger in a passenger carrier. In an example, a computer system evaluates characteristics of the luggage. The computer system evaluates characteristics of the passenger. The computer system assigns a location associated with an RFID tag to the luggage. The computer system confirms the luggage being correctly located in the assigned location. |
US08952809B2 |
Methods and apparatus to perform self-protection procedures on electronic devices
Example methods, apparatus, systems, and computer-readable storage media are provided to monitor a mobile device. An example method includes determining whether environmental condition data collected by a plurality of sensors of a mobile device complies with an environmental condition rule comprising thresholds associated with the environmental condition data. The environmental condition data is representative of external elements detected by the sensors. The example method includes informing a user of the mobile device of an environmental condition associated with the environmental condition data when the environmental condition data does not comply with the environmental condition rule. The example method includes performing a self-protecting procedure via the mobile device. The self-protecting procedure defined in the environmental condition rule is to protect the mobile device from the environmental condition when the environmental condition data does not comply with the environmental condition rule. |
US08952808B2 |
Arrow mounted tracking apparatus
An animal tracking device removably attachable to an arrow and including an antenna, a controller, a battery for powering the controller, a housing for housing the antenna, controller, and battery, and an animal attachment component fixed to the housing. The controller may transmit wireless signals to a receiver via the antenna. The housing may have a first and second portion pivotally attached at a first joint. The first and second portions may also meet, but not attach with each other, at a second joint in a closed position. The first and second portions may pivot between the closed position and an open position about the first joint, may be naturally biased in the open position, and may be detachably attached in the closed position to the arrow shaft. The animal attachment component may attach to an animal shot by the arrow, forcing the housing away from the arrow. |
US08952807B2 |
Active wireless tag and auxiliary device for use with monitoring center for tracking individuals or objects
A location tracking device is provided. Wireless communications circuitry is configured to transmit position data representative of the location of the tracking device to a remote location, and communicate locally within an auxiliary device. The tracking device has a first operational mode in response to the absence of communication with the auxiliary device, where the tracking device is maintained in a normal operational mode. The tracking device is configured to enter a second operational mode in response to communication being established between the tracking device and the auxiliary device, where in the second operational mode at least a portion of the tracking device is placed in a reduced operational mode. |
US08952806B2 |
Method and system for remotely monitoring a user
A subscription system and corresponding method of operation for monitoring user's well-being is disclosed. The method includes the steps of providing, at a user monitor module, a first indicator for the user well-being; providing, at a receiving module operably coupled to the user monitor module, a first threshold for the first indicator; receiving, at the receiving module, the first indication; comparing the first indication and the first threshold; generating a secondary indication when the comparison indicates that the first indication equals or exceeds the first threshold; receiving, at a supervisory module coupled to the receiver module, the secondary indication; and informing a supervisor that the first threshold has been reached. |
US08952800B2 |
Prevention of texting while operating a motor vehicle
A system and method includes sensors configured to measure conditions of a vehicle. A monitoring module is configured to evaluate the conditions input thereto from the sensors. The monitoring module is further configured to determine a state of a mobile device located within the vehicle. Based upon a combination of the conditions of the vehicle and the state of the mobile device, a determination of improper use of the mobile device is made. |
US08952799B2 |
Method and system for warning a driver of a vehicle about potential obstacles behind the vehicle
A method and system produce a warning signal to warn a driver of a vehicle about a potential obstacle crossing behind the vehicle, for example as the vehicle is backing out of a parking space. The system and method use a sensor to detect, monitor and track the position and velocity of a potential obstacle relative to the subject vehicle, in a detection space behind and to the sides of the vehicle, preferably to predict the probability that the trajectory of the potential obstacle will intersect with the trajectory of the subject vehicle at a critical time. |
US08952795B2 |
Selective gain control circuit
A circuit for providing signal amplification with reduced fixed pattern noise. In an embodiment, the circuit includes an amplifier and a plurality of legs coupled in parallel with one another between a first node for an input of the amplifier and a second node for an output of the amplifier. Control logic selects a first combination of the plurality of legs for a first configuration of the circuit to provide a first loop gain with the amplifier. In another embodiment, the control logic further selects a second combination of the plurality of legs for a second configuration of the circuit to provide a second loop gain with the amplifier, wherein the first loop gain is substantially equal to the second loop gain. |
US08952793B2 |
Bicycle electrical system
A bicycle electrical system is provided with a first electric component, a second electric component, and a third electric component. The first electric component includes a first electric power line communication section. The second electric component includes a second electric power line communication section. The third electric component includes a third electric power line communication section. The first and second electric power line communication sections are connected with a first electric power line such that the first and second electric power line communication sections conduct communications via the first electric power line. The second and third electric power line communication sections are connected with a second electric power line such that the second and third electric power line communication sections conduct communications via the second electric power line. |
US08952792B1 |
Self tuning RFID tags
A tuning circuit in an RFID tag may be used to match antenna and integrated circuit (IC) impedances to maximize the efficiency of IC power extraction from an incident RF wave. The tuning circuit, which requires less power to operate than the IC, adjusts a variable impedance to improve the impedance matching between the IC and the tag antenna and thereby increase the IC power extraction efficiency. The IC may begin operating according to a protocol when it extracts sufficient power from the RF wave or when an optimal impedance matching and power transfer is achieved. |
US08952791B2 |
Method and system for tracking RFID tags for use in advertising and marketing
The current invention is a method and system for tracking an RFID tag within a defined 3D space and can be used to identify objects within a live performance and create hotspots with respect to the objects, which allows viewers the ability to select objects that are associated with one of the hotspots, and transmits their interest in the selected object to one or more users. Preferably, the system operates such that hotspots can be created for previously created video, newly created video media, as well as live broadcasts. |
US08952789B2 |
Method and apparatus for communication in ultra-wide bandwidth RFID systems
A method for communication in ultra-wide bandwidth RFID systems comprising generating through a transceiver device an interrogated signal, composed of at least a sequence of equally time spaced pulses with period (T3), transmitting said signal to at least one RFID identification device which generates a response signal and transmits it back to said transceiver device, said method further comprising coding said interrogation signal according to a numerical coding sequence, generating said response signal by varying, in each period (T3) of said pulse sequence of the interrogation signal, the polarity of pulses using said numerical coding sequence. An apparatus for communication in ultra-wide bandwidth RFID systems comprising a transceiver device (1,101) and a RFID identification device (11), suitable for communicating each other, said RFID identification device (11) comprises a backscatter modulator (12) suitable for modulating a signal reflected by an antenna (18) of the identification device RFID. |
US08952787B2 |
Laboratory sample archiving apparatus and method
An archive apparatus is provided for storing and archiving laboratory samples including radio frequency identification means. The apparatus comprises a support structure or cabinet (4), a drawer (6) translatable in a translation direction (12) into and out of the support structure (4), and sample support means comprising ribs (8) associated with the drawer (6) for supporting an array (10) of samples or slides (20) spaced along the translation direction (12) for movement with the drawer (6). A radio frequency reader antenna (14) is connected to the support structure (4) adjacent to the drawer (6) and recording means (34, 38) are adapted to operatively communicate with the reader antenna (14) to store information obtained from the radio frequency identification means of laboratory samples or slides (20) supported by the drawer (6). The apparatus can automatically collect and store current information concerning the samples or slides (20) in the drawer (6) as a consequence of opening and closing of the drawer (6). |
US08952786B1 |
System for tracking bicycle commuter activity
A method for tracking non-motorized vehicle commuting activity includes providing a tracking system having a tag reader at a commute destination, wherein the tag reader is adapted to detect the presence of an RFID tag, and to generate and transmit a detection signal indicating a time of detection and one or more attributes of the detected RFID tag. The RFID tag is secured to a non-motorized vehicle used in commuting to the commute destination, and is secured in a manner to enable detection by the tag reader at the commute destination, and to prevent tampering therewith. Information obtained by the tracking system is accessible by one or more of a system administrator and a commuting participant. |
US08952785B2 |
Reduction of IMU/AP link requirements for SDI
A method, controller and system in accordance with various aspects of the present disclosure facilitate reduced energy consumption in a motion sensing device having an inertial measurement unit (IMU), with a strap down integration unit, and an application processing unit (AP). The system and method include sensing acceleration values and rotational values at the IMU and converting the sensed acceleration and rotational values into velocity and orientation increments by strap down integration. The velocity and orientation increments are stored in a first buffer at the IMU between updates to the AP. When an update request is received at the IMU from the AP over an interrupt link, the buffer contents are transmitted over a serial link from the IMU to the AP. |
US08952784B2 |
Verifying identification of sequentially supplied fluids
A method of verifying the identification of fluids to be supplied successively through a fluid-supply hose that selectively connects to successive movable, RFID-tagged fluid containers includes providing an RFID reading unit including an antenna. A sequence of reference container identification codes is received. A container-present indication indicating one of the containers is positioned so that its RFID tag is in the antenna range is received. In response, the RFID tag of that container is read using the RFID reading unit to determine an identification code of the container. A controller automatically verifies the determined container identification code against the first reference identification code in the sequence using a controller. The starting through verifying steps are repeated, using successive values from the sequence in the verifying step, until all values in the sequence have been verified against container identification codes read using the RFID reading unit. |
US08952779B2 |
Portable terminal, method, and program of changing user interface
A user can automatically change a user interface of a portable terminal into a user interface of an electronic appliance suitable for user's intention. A portable terminal recognizes a circumferentially existing electronic appliance based on a photographic image or a radio signal, and allows one or more applications having a user interface varying by electronic appliance to start and then be resident in a memory of the portable terminal. Then, when the portable terminal recognizes a predetermined electronic appliance, the portable terminal changes a user interface displayed on a display unit and an input unit of the portable terminal into a user interface of an application associated with the predetermined electronic appliance to enable a user to view the user interface. When a user puts the portable terminal to a predetermined direction, the portable terminal recognizes an electronic appliance existing in the direction and displays the corresponding user interface. |
US08952778B2 |
Laminated coil component
In the laminated coil component, the grain diameter of the coil conductors is 10 μm to 22 μm after baking is completed. When the grain diameter of the coil conductors is set to be 10 μm or larger after baking is completed, surface roughness of the coil conductors can be reduced to such an extent that a satisfactory Q value can be obtained at a high frequency. In addition, when the grain diameter of the coil conductors is set to be 22 μm or smaller after baking is completed, metal of the coil conductors can be refrained from being rapidly melted down during baking. Accordingly, a high Q value can be obtained while a high quality is ensured. |
US08952777B2 |
Transformer winding
A transformer winding, having at least two multi-layered winding modules, which are connected electrically in series, extend about a common winding axis, and are nested one inside the other hollow-cylindrically, at least one cooling channel, which is arranged along the common winding axis hollow-cylindrically between the winding modules, and a flat electrical shield is provided within the at least one cooling channel at least sectionally along the radial circumference thereof, wherein the electrical shield extends over approximately the entire axial length and through which electrical shield the electrical capacitance distribution in the transformer winding connected electrically in series is influenced. |
US08952776B2 |
Powder core material coupled inductors and associated methods
A multi-phase coupled inductor includes a powder core material magnetic core and first, second, third, and fourth terminals. The coupled inductor further includes a first winding at least partially embedded in the core and a second winding at least partially embedded in the core. The first winding is electrically coupled between the first and second terminals, and the second winding electrically is coupled between the third and fourth terminals. The second winding is at least partially physically separated from the first winding within the magnetic core. The multi-phase coupled inductor is, for example, used in a power supply. |
US08952770B2 |
Self keying and orientation system for a repeatable waveguide calibration and connection
The self-keying waveguide interconnection system for repeatable waveguide calibration and connection comprises a plug with a centrally disposed aperture, a jack provided with a counterbore to accept a plug diameter. The jack includes a plurality of self-keying channels. A shim having a shape complementary to the plurality of self keying thru slots has a plurality of self keying thru slots for aligning the centrally disposed aperture of the plug to the centrally disposed aperture of the jack. The system identifies the orientation and flange face polarity of the line or adapter without the use of alignment pins as two or more of these independent waveguide interfaces are coupled. In use, the device functions as a self-keying shim/spacer/adapter for a calibration kit or adapter in waveguide sections. |
US08952764B2 |
High-frequency, high-speed precision digital bi-phase modulator and method for bi-phase modulation
Embodiments of digital high-speed bi-phase modulator and method for bi-phase modulation are generally described herein. In some embodiments, the digital high-speed bi-phase modulator comprises a high-speed digital divider, a high-speed digital multiplexer, and matched signal paths provided between the divider and the multiplexer. The high-speed digital divider is configured to receive a carrier signal and generate complementary output signals. The high-speed digital multiplexer is configured to switch between the complementary output signals and generate a bi-phase modulated output at a carrier frequency (fc) modulated with a bi-phase code. The bi-phase code may be provided to control inputs of the multiplexer. |
US08952762B2 |
Clock-out amplitude calibration scheme to ensure sine-wave clock-out signal
A clock generator includes, in part, a buffer, a peak detector and a control logic. The buffer generates a clock output signal in response to receiving a clock signal and a feedback signal that controls the gain of the buffer. If the peak detector detects that the amplitude of the output signal is higher than the upper bound of the predefined range, the gain value applied to the variable buffer is decreased. If the peak detector detects that the amplitude of the output signal is lower than the lower bound of the predefined range, the gain value applied to the variable buffer to increased. If the peak detector detects that the amplitude of the output signal is within the predefined range, no change is made to the gain value applied to the variable buffer. The control logic generates the feedback signal in response to the peak detector's output signal. |
US08952759B2 |
Circuit and method for controlling mixed mode controlled oscillator and CDR circuit using the same
A circuit for controlling a mixed mode controlled oscillator. The circuit comprises a charge pump, and a digital loop filter. The charge pump is coupled to the mixed mode controlled oscillator. The charge pump receives an up/down signal and sends a current signal to the mixed mode controlled oscillator. The digital loop filter receives the up/down signal and generates a digital code signal to the mixed mode controlled oscillator. An output frequency of the mixed mode controlled oscillator is controlled by the current signal and the digital code signal. |
US08952755B2 |
Power amplifier
Disclosed herein is a circuit for preventing an element from being damaged although output impedance of a final transistor is changed in a power amplifier. The power amplifier includes: a power stage amplifying a signal; a transformer connected to an output terminal of the power stage and coupling a signal output from the power stage; and a controller controlling a bias voltage from the power stage according to the coupled signal. Although output impedance is changed, damage to the power amplifier can be prevented. Also, the power amplifier can be automatically controlled to maintain performance thereof by sensing an operational state in which output impedance is normal. |
US08952753B2 |
Dynamic power supply employing a linear driver and a switching regulator
A highly efficient, high control bandwidth and high-speed power supply with a linear driver and a switching regulator for regulating an output based on a control signal. The linear driver has a first input for receiving the control signal and a second input connected to the output for receiving negative feedback. The driver's output is controlled by its two inputs and has a capacitor connected in series with it to generate a capacitor voltage VC responsive to the DC and low frequency components in the driver's output. The switching regulator has a control input and a regulator output connected in a regulator feedback loop. The control input receives capacitor voltage VC and the regulator feedback loop minimizes capacitor voltage VC. Thus, switching regulator takes over the generation of DC and low frequency components, while the linear driver provides high frequency output current components. |
US08952748B2 |
Circuit and method for a multi-mode filter
An embodiment integrated circuit includes a first capacitive element including a first metal-oxide-semiconductor (MOS) capacitor and a second capacitive element coupled in parallel with the first capacitive element, where the second capacitive element includes a second MOS capacitor. Also, the integrated circuit includes a third capacitive element coupled in parallel with the first capacitive element and the second capacitive element, where the third capacitive element includes a first metal-insulator-metal (MIM) capacitor and a fourth capacitive element coupled in parallel with the first capacitive element, the second capacitive element, and the third capacitive element, where the fourth capacitive element includes a second MIM capacitor. |
US08952746B1 |
Semiconductor apparatus
A negative voltage pumping unit including a driver configured to receive an external high-voltage and an external voltage and drive and output an oscillator signal, and a capacitor configured to perform a pumping operation and generate a negative voltage; and an internal circuit configured to receive a ground voltage and the voltage of a node. |
US08952742B2 |
Highly accurate true RMS power detector for cellular applications
New devices and methods capable of detecting a true Root-Mean-Square (RMS) power level of an analog input signal are disclosed. For example, an electronic circuit can include a squaring circuit that receives the analog input signal and processes the analog input signal so as to produce a squared-output of the analog input signal using an analog transfer function of the squaring circuit, and a square-root circuit that receives the squared-output and processes the squared-output using an analog transfer function of the square-root circuit so as to produce an analog RMS output signal representing the true RMS power level of the analog input signal. |
US08952738B1 |
Slew rate control device using switching capacitor
Disclosed is a slew rate control device using a switching capacitor which includes a first capacitor that is connected to a target circuit operated in response to a clock signal, and controls a rising slope of a signal output from the target circuit when the clock signal is in a high state; a switch that is connected to the first capacitor in parallel, receives a reverse signal of the clock signal, as a control signal, and is turned on when the clock signal is in a low state; and a second capacitor that is connected to the switch in series, and controls a falling slope of the signal output from the target circuit when the clock signal is in the low state. |
US08952730B2 |
Driver circuit
A gate driver circuit that can supply a negative gate voltage to a high-side circuit without being additionally provided with an insulated power supply is realized. A driver circuit is configured such that a half-bridge circuit in which a first transistor and a second transistor are connected in series includes a capacitor that supplies a negative gate voltage to a high-side first transistor via a first control circuit, and a control circuit power supply that supplies a negative gate voltage to a low-side second transistor via a second control circuit, one end of the capacitor being connected to a negative voltage VEE on a negative terminal side of the control circuit power supply via a switching element, and the other end being connected to a voltage on an output terminal, wherein the switching element is controlled to be on upon a timing when the second transistor is turned on. |
US08952724B2 |
Semiconductor device capable of switching operation modes and operation mode setting method therefor
A semiconductor device includes a first pad and a second pad. A first conductivity type transistor is coupled between a first potential and the second pad, and a second conductivity type transistor is coupled between a second potential and the second pad. A comparator includes a first input node coupled to the first pad and a second input node coupled to the second pad. A circuit receives a signal from the first pad or outputs a signal to the first pad, wherein the first pad is coupled to gate electrodes of the first and second conductivity type transistors. |
US08952718B2 |
Termination circuit and DC balance method thereof
A termination circuit for a plurality of memories controlled by a controller is provided. The termination circuit includes a plurality of drivers, a plurality of resistors and a plurality of capacitors. Each of the drivers is coupled to the memories via a transmission line. Each of the resistors is coupled to the corresponding driver via the corresponding transmission line. Each of the capacitors is coupled between the corresponding resistor and a reference voltage. The controller is coupled to the memories via the drivers, and the controller provides a specific code to one of the drivers when a quantity of logic “0” and a quantity of logic “1” transmitted to the memories via the transmission line corresponding to the one of the drivers are unbalanced, so as to adjust a termination voltage of the capacitor corresponding to the one of the drivers. |
US08952717B2 |
LED chip testing device
The present invention provides an LED chip testing device that measures characteristics of an LED chip.The LED chip testing device includes: a rotation member that supports the LED chip and rotates the LED chip to a testing position where the characteristics of the LED chip are tested; and a tester installed next to the rotation member and serving to measure the characteristics of the LED chip at the testing position. |
US08952715B2 |
Wireless current-voltage tracer with uninterrupted bypass system and method
A measurement instrument capable of electrically isolating the connected photovoltaic (“PV”) module in an array of PV modules to perform a health diagnosis including of current versus voltage measurements on the attached device by using a resistive load to acquire the current-voltage (“IV”) curve in the positive power quadrant of the module. The instrument is capable of switching a charge storage element into the array during the period when the solar module is under test to provide uninterrupted electrical power to the PV array. The measurement instrument contains a battery and charger allowing the device to run from the connected PV module's energy. The instrument contains a microprocessor to allow a high degree of configuration through software, including altering the speed of an IV sweep, the interval between sweeps, and integrating temperature and tilt measurements. The instrument is equipped with low power radio devices to communicate wirelessly, further negating the need for a common ground. |
US08952705B2 |
System and method for examining asymetric operations
Systems and methods for transition delay measuring are presented. A transition delay measuring method can include oscillating a signal between states and tracking an indication associated with an isolated attribute of the transitions between the states. Oscillations can include asymmetric transitions between the states and the tracked isolated attribute can be a delay in completing transitions between the states in one direction or vice versa. The asymmetric transitions can include transitions between the first state and the second state that are faster than slower transitions between the second state and the first state or vice versa. The tracked indication can be utilized in analysis of the isolated transition delay characteristics. The results can be utilized in analysis of various further features and characteristics (e.g., examination of leakage current related power consumption, timing of asymmetric operation, etc.). The analysis can include examination of fabrication process and operating parameters. |
US08952700B2 |
Method for minimizing delays while drilling using a magnetic ranging apparatus
A method and system is provided for minimizing delays in a magnetic ranging method. Delays are minimized by establishing synchronicity between triggering of a three-axis magnetometer and energization of a solenoid assembly deployed in the borehole being drilled and the first borehole, respectively. Synchronicity enables measuring various components of the alternating magnetic field created by energization of the solenoid assembly by the magnetometer, the moment the solenoid assembly is energized. The recorded components are used for computation of steering data for drilling the second borehole relative to the first borehole. The steering data can be determined at the surface or downhole. |
US08952697B2 |
Local coil with optimized data transmission
A local coil for magnetic resonance applications receives analog magnetic resonance signals excited by an excitation signal in an examination object using a plurality of receive antennas. The local coil digitizes the received analog magnetic resonance signals and stores the digitized magnetic resonance signals in digital form in a write-in sequence in an internal local coil memory. The local coil reads the digitized magnetic resonance signals stored in the internal local coil memory out of the internal local coil memory in a read-out sequence that is different from the write-in sequence and transfers the digitized magnetic resonance signals to a control and evaluation device of a magnetic resonance unit. |
US08952695B2 |
System of receive coils and pads for use with magnetic resonance imaging
There is described embodiments of a coil and pad system for use with an MRI machine. The coil and pad system includes a plurality of coils sized to accommodate a plurality of patient ranges of various heights and body weights. There is also a plurality of pads designed to work in conjunction with the plurality of coils to accommodate patient ranges of various heights and body weights. |
US08952692B2 |
MRI apparatus and method using center frequency correction and a smoothness of an intensity distribution to exclude implant regions and identify body region positions
According to one embodiment, a magnetic resonance imaging apparatus includes an image generating unit, a judging unit and a correction unit. The image generating unit receives, from an object, a magnetic resonance signal caused by transmission of an RF pulse to cause a nuclear magnetic resonance, and generates image data of the object based on the magnetic resonance signal. The judging unit identifies an implant region where an implant part exists inside the object, based on the image data. The correction unit acquires magnetic resonance frequency information from a body region which is a region inside the object excluding the implant region, and corrects a center frequency of the RF pulse based on the magnetic resonance frequency information. |
US08952689B2 |
Magnetic sensor and magnetic balance type current sensor utilizing same
A magnetism sensor comprises a magnetoresistive element, the resistance of which changes due to the application of an induced magnetic field from the current being measured, and a fixed-resistance element. The fixed-resistance element has a self-pinned ferromagnetic fixed layer comprising a first ferromagnetic film and a second ferromagnetic film coupled antiferromagnetically with an antiparallel coupling film interposed therebetween. The antiparallel coupling film is a ruthenium film that exhibits an antiferromagnetic coupling effect with a first peak thickness. The difference between the degrees of magnetization of the first ferromagnetic film and the second ferromagnetic film is effectively zero. |
US08952688B2 |
Current Detector
A current detection busbar has a penetrating portion that penetrates a hole portion of a magnetic core and two flat plate-like terminal portions that are respectively continuous with opposite sides of the penetrating portion. The terminal portions have a larger width and a smaller thickness than the penetrating portion. An insulating casing has busbar holes that are penetrated by the respective terminal portions of the current detection busbar. An edge portion of each busbar hole is constituted by flat surfaces that face the terminal portion with a gap left between each flat surface and the terminal portion, a plurality of projecting portions that sandwich the terminal portion while coming into contact with the front and back surfaces of the terminal portion, and curved surfaces that face respective corner portions of the terminal portion with a gap left between each curved surface and the corresponding corner portion. |
US08952685B2 |
Magnetic device for determination of angular position in a multiphase rotary electrical machine
Disclosed is the selecting of the optimum characteristics of a magnetic device producing a sinusoidal signal for determination of angular position in a rotary machine. The device includes a multi-polar magnetic ring which is mobile in rotation around an axis, and creates a variable magnetic field according to an angle of rotation. In close proximity to the magnetic ring, a magnetic sensor is placed in this magnetic field, and generates the sinusoidal signal. The air gap between the sensor and ring is constituted by spacing the sensor by a distance E from the magnetic ring on a radial plane. Optimum performance is achieved when a first ratio e/E of a thickness e of the multi-polar magnetic ring in a direction which is radial relative to the air gap E is between 0.4 and 2.3. A second ratio h/e of a height h of the ring, in a direction which is axial relative to the thickness e, is between 1.5 and 8. |
US08952675B2 |
Device for generating an adjustable bandgap reference voltage with large power supply rejection rate
An adjustable bandgap reference voltage includes a first circuit for generating IPTAT, a second circuit for generating ICTAT, and an output module configured to generate the reference voltage. The first circuit includes a first amplifier connected to terminals of a core for equalizing voltages across the terminals, where the first amplifier has a first stage that is biased by the current inversely proportional to absolute temperature and is arranged according to a folded setup with first PMOS transistors arranged according to a common-gate setup. The first circuit also includes a feedback stage with an input connected to the first amplifier output. The feedback stage output is connected to the first stage input and to a terminal of the core. The second circuit includes a follower amplifier connected to a terminal of the core and separated from the first amplifier and the output module is connected to the feedback stage. |
US08952668B2 |
Switching power supply device
A switching power supply device of a nonlinear control manner is provided, which includes: a reference voltage generation portion, for generating a reference voltage; a ripple injection portion, for using a switch voltage at one end of a switch element to generate a ripple component, and injecting the ripple component into the reference voltage to generate a ripple reference voltage; a comparator, for comparing a feedback voltage corresponding to an output voltage with the ripple reference voltage; a switching control portion, for performing on/off control on the switch element based on an output signal of the comparator; and an offset adjustment portion for generating an offset voltage corresponding to the switch voltage, and setting any of the reference voltage, the feedback voltage, and the ripple reference voltage to the offset voltage. |
US08952667B2 |
Switching power supply circuit
A master transistor and a slave transistor are both insulated gate bipolar transistors. A slave diode is connected in anti-parallel to the slave transistor. The master transistor is brought into conduction if a current flowing in a master reactor becomes zero, and is brought into nonconduction after elapse of a first period. The slave transistor is brought into conduction subject to elapse of a certain period after the master transistor is brought into conduction that is one of conditions for conduction of the slave transistor, and is brought into nonconduction after elapse of a second period shorter than the first period. The certain period is shorter than a period from when the master transistor is brought into conduction until when the master transistor is brought into conduction again. |
US08952665B1 |
Power control for a low power display
A low power display device including a power control circuit for controlling power from an environmental energy source to a power storage device that is charged by the environmental energy source, is described. |
US08952658B2 |
Set of standardized battery cartridges and recharger
An approach is provided in which a battery cartridge aperture is included in a device. The edges of the battery cartridge aperture form a shape that match a selected battery cartridge and indicate a power configuration. The selected battery cartridge is selected from a variety of different battery cartridges with each of the battery cartridges having a unique external shape with each unique external shape corresponding to a different power configuration. The various battery cartridges each have a different configuration of battery cells within the battery cartridge that provide power to the device through electrical contacts. The contacts are affixed within the device with each of the contacts positioned to correspond with electrical contacts from the battery cartridge. In one embodiment, protective covers are provided that cover the contacts with the covers automatically retracting to expose the contacts when the battery cartridge is inserted in the device. |
US08952656B2 |
Battery charging station
A method of operating an electric vehicle charging system utilizing a plurality of charging units and charging points is disclosed. The method includes determining a rate of charge to be delivered to each vehicle and then allocating a respective portion of the total charging capacity of the charging station to each vehicle. |
US08952651B2 |
Electrically drivable motor vehicle with two anti-parallel power branches
An electrically drivable motor vehicle with at least two parallel connectable vehicle batteries is provided with an electronic circuit arrangement. The electronic circuit arrangement includes a number of electronic load interrupter switches corresponding to the number of vehicle batteries, via which the vehicle batteries can be connected through individually or together to an electrical consumer. The load interrupter switches respectively comprise two power branches arranged anti-parallel to each other. |
US08952650B2 |
Device and method for charging a master device using a detachable device
A charging control method of a master device receiving an operating power from an auxiliary battery device or an internal battery, the auxiliary battery device including a battery having a first power supply and a first power supply output port for outputting the first power supply, is provided. The method includes converting a second power supply to the first power supply upon detecting the second power supply at an input port of the master device in order to provide the converted first power supply as an operating power of the master device and/or a charging power of the internal battery, and detecting a connection with the auxiliary battery device upon detecting the first power supply at the input port in order to provide the first power supply as the operating power of the master device and/or the charging power of the internal battery without voltage drop. |
US08952648B2 |
Washing machine with improved braking method
A method of braking a washing machine from an operational speed to a zero speed is provided (as well as a washing machine incorporating the method) for a washing machine driven by one of a synchronous or asynchronous motor. Upon receipt of a stop signal, collapsing the motor rotating magnetic fields are collapsed for a predefined time period. After the predefined time period, DC braking voltage is applied to the motor stator windings at a controlled ramp-up rate to a fixed amplitude to generate a controlled ramped braking torque on the motor. The braking torque is applied until the motor is stopped. |
US08952645B2 |
Drive device comprising a plurality of drives and regulating system for this overall drive
In the case of speed-regulated high-power drives and with simultaneously high demands on accuracy or dynamics, the object of the invention is to reduce a very high level of complexity of the power electronics (high clock frequency), the motor (high precision) and mechanical transmission (low-play transmission elements). For this purpose, the invention proposes a drive device for rotational and/or t translational movements. The drive has a plurality of drives for the joint, mechanically coupled driving of a working machine or for moving a mass. It also has a control device. At least one drive is intended to provide the power (as a power drive). At least one further drive is provided and mechanically coupled as a servo-drive for controlling or regulating the accuracy and/or dynamics of the overall drive. The control device controls and regulates the at least two mechanically coupled drives. |
US08952641B2 |
Biasing circuit for hall sensor and hall amplifier in motor driving circuit
Disclosed herein are a biasing circuit for a hall sensor and a hall amplifier in a motor driving circuit, the biasing circuit including: a regulator installed inside a singled packaged chip, supplied with external power, and regulating the external power in voltage appropriate for a circuit to supply the regulated voltage; the hall amplifier supplied with the voltage regulated from the regulator, receiving an output signal from the hall sensor outside the chip, and amplifying the output signal to output the amplified signal; first and second resistors supplied with the voltage from the regulator to generate an input voltage common mode (VCM) of the hall amplifier; and third and fourth resistors supplied with the voltage from the regulator to generate an input VCM of the hall sensor. |
US08952640B2 |
Apparatus and method for controlling actuator
Provided is an actuator control apparatus including: an observer configured to estimate a state of a load based on a state equation including at least one modeled load parameter; a controller which outputs a signal for controlling the load; a compensation unit which compensates for the signal output from the controller; and an estimator configured to estimate a change of a load parameter, to decide a gain of the compensation unit based on the estimated change of the load parameter, and to update the modeled load parameter. |
US08952639B2 |
Apparatus and method for controlling motor
There are provided an apparatus and a method for controlling a motor. The apparatus for controlling a motor includes a signal generation unit generating a first signal indicating position information of a rotor, a counter unit sampling the first signal with a second signal different from the first signal for one period to count a sampling frequency, a memory unit storing a section counter value and an error value obtained by sampling a period immediately prior to the first signal with the second signal, and a comparison unit increasing and reducing an output signal when the sampling frequency counted by the counter unit coincides with the section counter value, wherein the comparison unit sums the sampling frequencies corresponding to error values with the sampling frequency of the first signal before the counter unit ends the sampling of one period of the first signal. |
US08952636B2 |
Data communication device that carries out serial communication in order to control motor
A data reception unit carries out reception of data, which consists of a combination of switching noise resistant states and switching noise nonresistant states, over a fixed serial communication time a plurality of times for each fixed serial communication period same as the one or a plurality of the switching periods. A serial communication time setting unit sets the serial communication time different from one or a plurality of the switching periods, based on the switching period, the serial communication period, and the communication speed of the data communication device, so that the starts of all of the switching periods within the serial communication time are consistent with the time of reception of the switching noise resistant state at the time of at least one of the reception of the data among a plurality of times of the reception of the data. |
US08952623B2 |
Multi-channel driver equalizer
The disclosed multi-channel driver equalizer circuit matches currents in multiple strings of illumination devices at low current levels by using an analog equalizer to sequentially couple the output of a reference amplifier in series with each current source amplifier in a current limit loop of the driver equalizer circuit to correct the offsets of the current source amplifiers, resulting in the matching of string currents on average. |
US08952621B2 |
High pressure discharge lamp lighting device, projector provided with the same, and high pressure discharge lamp lighting method
A calculation processing sub-unit controls a frequency control sub-unit and a DC-AC inverter circuit to repeat a first period and a second period. The first period continues for at least two cycles, each cycle including a first sub-period during which the current is maintained in one polarity and a second sub-period during which the current is maintained in an opposite polarity. The second sub-period is shorter than and subsequent to the first sub-period. The second period, during which the current is maintained in a constant polarity, is as long as or longer than the first sub-period. The calculation processing sub-unit controls a PWM control sub-unit and a voltage step-down circuit to maintain an absolute value of the current at a first current value during at least part of the first period, and at a second current value, greater than the first current value, during the second period. |
US08952618B2 |
Compensation method and apparatus for light emitting diode circuit
A compensation method for a light emitting diode (LED) circuit including a first transistor, a second transistor, a capacitor, and a LED is illustrated. A first end as a control end of the first transistor is connected to one end of the second transistor and the capacitor, and a second end of the first transistor is connected to the LED. A width to length (W/L) ratio of the second transistor is less than one. An initial control voltage is applied to a control end of the second transistor, and the current output voltage of the LED is correspondingly measured. If a difference between the current output voltage and an initial output voltage exceeds a predetermined value, a compensation voltage, which is a summation of the initial control voltage and the difference, is applied to the control end of the second transistor. |
US08952614B2 |
Power supply device for vehicle lamp and the vehicle lamp
A vehicle lamp includes: a light source; a lamp housing that accommodates the light source inside; and a power receiving section that is provided so as to be integral with the lamp housing and is configured to receive electric power wirelessly to supply the electric power to the light source. A power supply device that supplies electric power from a battery mounted on a vehicle to a lamp disposed in the vehicle includes a power transmission section that is provided in the vehicle and configured to transmit the electric power of the battery; and a power receiving section that is provided so as to be integral with the lamp and configured to receive the electric power from the power transmission section. The power transmission section and the power receiving section are disposed to be opposed to each other and electrically coupled by electromagnetic induction. |
US08952612B1 |
Microdischarge display with fluorescent conversion material
An AC or DC microdischarge device that comprises a fluorescent conversion material (FCM) and a multiplicity of gas filled microcavity cells, each cell being connected to two or more electrodes to cause a gas discharge in the cell, the gas discharge providing photons that excite the FCM such that the FCM emits IR. In one embodiment, the electronic circuitry for each cell comprises at least one integrated active component such as a transistor. Other active components may be included such as a high speed shift register, addressing logic, and/or control circuits. In another embodiment, the microcavity and active components are made from the same substrate such as the same silicon wafer. The microdischarge device may include one or more electrodes encapsulated in a dielectric. The electrodes are configured to ignite a microdischarge in a microcavity cell when an AC or a pulsed DC excitation potential is applied between the electrodes connected to the cell. The devices include linear and planar arrays of microdischarge devices. The microcavities in the planar arrays may be selectively excited for display applications. |
US08952611B2 |
Electrode used for discharge lamp, high pressure discharge lamp, lamp unit, and projection image display apparatus
The present invention aims to prevent breakage of a sealing part and an electrode of a high pressure discharge lamp, and provides an electrode 100 used for a discharge lamp and having a rod-shaped part 101, one end of the rod-shaped part 101 to be sealed by a sealing part of an arc tube of the discharge lamp, the other end of the rod-shaped part 101 to be in a discharge space in the arc tube, wherein the rod-shaped part 101 has a rough surface that is composed of a plurality of types of crystal grains each having a different surface condition due to differences in crystal orientation. |
US08952609B2 |
Display panel apparatus and method of fabricating display panel apparatus
A display panel apparatus has a structure which is less likely to seal a planarizing film even when an electrode plate is provided on the planarizing film, and the display panel apparatus includes: a planarizing film formed on a substrate; a pixel formed on the planarizing film and including: a lower electrode; an organic layer; and an upper electrode; an auxiliary electrode electrically insulated from the lower electrode and electrically connected to the upper electrode; a display section including a plurality of the pixels; an electrode plate electrically connected to the auxiliary electrode and arranged to cover the planarizing film outside the display section; and a power supply section electrically connected to the electrode plate, and the electrode plate has a hole exposing a part of a surface of the planarizing film. |
US08952600B2 |
Circularly polarizing plate and three-dimensional image display apparatus
A circularly polarizing plate has a polarizer and two λ/4 plates (T1, T2) bonded respectively onto both sides of the polarizer so as to face each other, the circularly polarizing plate is characterized in that the in-plane retardation values Ro of the λ/4 plates (T1) and the λ/4 plates (T2) satisfy (a) to (c) below in an environment with a temperature of 23° C. and RH of 55%. (a) The in-plane retardation value Ro of the λ/4 plates (T1), when measured within the range of 450 to 650 nm, is 3.0 to 20.0 nm smaller than the in-plane retardation value Ro of the λ/4 plates (T2). (b) The in-plane retardation value Ro of the λ/4 plates (T1) (450) falls within the range of 110 to 140 nm. (c) The in-plane retardation value Ro of the λ/4 plates (T2) (650) falls within the range of 145 to 165 nm. |
US08952599B2 |
Polarization structure, method of manufacturing the same and organic light emitting display having the structure
A polarization structure for a display device is disclosed. In one embodiment, the polarization structure includes a retardation layer, a polarizing layer and a polarizing pattern. The retardation layer may be configured to produce a phase difference between two polarization components of an incident light. The polarizing layer may have an adsorption axis along a first direction on the retardation layer. The polarizing layer may include a first region and a second region surrounding at least one side of the first region. The polarizing pattern may have an adsorption axis along a second direction perpendicular to the first direction in the second region. |
US08952598B2 |
Piezoelectric actuator, piezoelectric vibration apparatus and portable terminal having a region that is not flat for bonding to a flexible substrate
A piezoelectric actuator, a piezoelectric vibration apparatus and a portable terminal are disclosed. The actuator includes a piezoelectric element, a flexible substrate and a bonding layer. The piezoelectric element includes a laminate in which inner electrodes and piezoelectric layers are alternatively stacked; and surface electrodes on a first main surface of the laminate, each electrically connected to some of the inner electrodes, respectively. The flexible substrate includes a wiring conductor that is electrically connected to the surface electrodes. The bonding layer is located between a part of flexible substrate and the first main surface. At least a region, where the flexible substrate is bonded, of the first main surface has a flatness worse than a flatness of an second main surface which is opposed to the first main surface. |
US08952597B2 |
Method for operating an output stage for at least one piezoactuator
A method for operating an output stage for a piezoactuator includes checking, during an operating phase, in response to the undershooting of a current for the piezoactuator below a setpoint current, whether a point in time for the undershooting lies outside or within a time window. A subsequent current pulse is controlled via the setpoint current if the point in time is located outside the time window, and the subsequent current pulse is controlled via a turn-on time if the point in time is located within the time window. |
US08952596B2 |
Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
A SAW resonator which, using a quartz crystal substrate with Euler angles (−1.5°≦φ≦1.5°, 117°≦θ≦142°, and 42.79°≦|105|≦49.57°, includes an IDT which excites a stop band upper end mode SAW, and grooves hollowed out of the substrate positioned between electrode fingers configuring the IDT, wherein, when the wavelength of the SAW is λ and the depth of the inter-electrode finger grooves is G, λ and G satisfy the relationship of 0.01λ≦G and wherein, when the line occupation rate of the IDT is η, the groove depth G and line occupation rate η satisfy the relationships of −2.0000×G/λ+0.7200≦η≦−2.5000×G/λ+0.7775 provided that 0.0100λ≦G≦0.0500λ, −3.5898×G/λ+0.7995≦η≦−2.5000+G/λ+0.7775 provided that 0.0500λ |
US08952589B2 |
Rotating electrical machine
In a rotating electrical machine of axial-gap type in which a stator and a rotor are opposed to each other in arrangement and winding axis is parallel with a rotating shaft direction, the stator has an “m” protruding in the rotating shaft direction are distributed along a circumferential direction thereof, in which the winding pole is formed of a magnetic member having a plurality of teeth in a circular-arc shape in a diameter direction, and wherein the rotor is formed of a magnetic member having a plurality of teeth in a circular-arc shape in a diameter direction, and the number of the teeth of the stator and the rotor are arranged in a manner opposite to each other through air gap so as to be engaged with each other. The stator and the rotor are opposed on both sides of the rotor and the stator. |
US08952587B2 |
Windmill generator with mechanically tuneable permanent magnetic field
Apparatus and method for tuning the magnetic field of windmill generators to obtain efficient operation over a broad RPM range. The windmill generator includes fixed windings (or stator) inside a rotating rotor carrying permanent magnets. The permanent magnets are generally cylindrical and have North and South poles formed longitudinally in the magnets. Magnetically conducting circuits are formed by the magnets residing in magnetic conducting pole pieces (for example, low carbon or soft steel, and/or laminated insulated layers, of non-magnetizable material). Rotating the permanent magnets, or rotating non-magnetically conducting shunting pieces, inside the pole pieces, either strengthens or weakens the resulting magnetic field to adjust the windmill generators for low RPM torque or for efficient high RPM efficiency. Varying the rotor magnetic field adjusts the voltage output of the windmill generators allowing the windmill generator to maintain a fixed voltage output. |
US08952585B2 |
Rotating member for motor and base assembly for motor, and motor including the same
There is provided a rotating member for a motor, the rotating member including: a hub coupled to a shaft system of the motor and rotating together therewith; a main wall portion protruding from one surface of the hub and allowing oil to be sealed between the main wall portion and a sleeve supporting the shaft system; and a pumping portion formed in a lower surface of the main wall portion and generating fluid pressure for preventing a leakage of the oil. |
US08952582B2 |
Stator arrangement having a cooling device incorporating a heat pipe
A stator arrangement for an electrical machine includes a stator having a stator stack consisting of a plurality of axially adjacently disposed metal plates. The arrangement further includes a cooling device in the shape of at least one heat pipe. The at least one radial channel extends between respective axially adjacently disposed metal plates, wherein the at least one heat pipe is located within the at least one radial channel. |
US08952578B2 |
Magnetic device
A magnetic device includes at least one stator and at least one translator. The translator is moveable in relation to the stator in a translator moving direction. The translator moves in a direction oriented towards the stator. The at least one stator and the translator are arranged along an axis. The magnetic device includes a control device, the control device includes a device for controlling a distance r≧0 (r being equal to or greater than 0) between the translator and the stator in relation to the force generated between the stator and the translator when the magnetic device is in operation. The translator is movable in relation to the stator in the translator moving direction along a linear translator movement axis. The at least one stator and the translator are oriented along the translator moving axis. |
US08952577B2 |
Safety control system for an electromagnetic door lock of an electric household appliance
A safety control system for an electromagnetic door lock of an electric household appliance, wherein a blocking pawl is controlled by the movement of a core of an electromagnet, including a supplying circuit of a coil of the electromagnet, power supplying means to supply electric pulses in the circuit for energizing the coil and a PTC element arranged in series in the circuit; wherein power supplying means are of the type adapted to generate first pulses for taking the pawl to a blocking position and second pulses, having a polarity opposite to the first, for taking the pawl to a releasing position; and including means for determining, according to the parameters of an operating cycle of the electric household appliance, the emission of at least one train of first pulses by the power supplying means, so as to produce the heating of the PTC element. |
US08952576B2 |
Semiconductor device
A semiconductor device that makes isolation circuits unnecessary and that also resolves the problem of through-current flowing during power supply shutdown transitions and during power supply recovery and that even flows between the regions during power shutdown. A semiconductor device of the present invention including a first power supply line, and a second power supply line coupled to a first power supply line by way of a first switch, a macro cell containing a macro cell core coupled to the second power supply line, and a third power supply line coupled by way of a second switch to a first power supply line, and a circuit block coupled to the third power supply line and also coupled to at least either the macro cell core input or output; and the second power supply line is coupled to the third power supply line. |
US08952572B2 |
Electromagnetic interference mitigation
A primary unit for transmitting power and/or data wirelessly by electromagnetic induction to a secondary unit separable from the primary unit, the primary unit comprising: a coil (L1, L2); and driving means (30) operable to drive a fluctuating current through the coil, wherein both ends of the coil are decoupled from the driving means so that in use a voltage level at each end of the coil fluctuates with time. |
US08952571B2 |
Extendable wireless power delivery for small devices
In various embodiments, an electronic device such as a portable computer has a structure that extends from the device to wirelessly transfer electrical power between itself and an external device. The structure may be placed in a non-extended position when not being used for such power transfer. In some embodiments power transfer may take place in either direction, and may be used for various purposes, such as to provide operational power and/or to charge a battery. The external device may be placed on or near the extended structure for power transfer to take place. |
US08952570B2 |
Active damping with a switched capacitor
An active damping switching system includes an active damping switching apparatus, including a damping capacitor, a damping resistor coupled to the damping capacitor, an input switch coupled to the damping capacitor, an oscillator coupled to the input switch and configured to open and close the input switch at a frequency, a direct current power source coupled to the active damping switching apparatus, a constant power load and an input filter disposed between the constant power load and the active damping switching apparatus. |
US08952565B2 |
Deflection containing electrical conductor
An electrical conductor is provided that includes at least one strip of conductive material defining a length and having a first end with a first cutout and a second end having a second cutout. The cutouts engage electrical terminals. The at least two deflections are orthogonal to the length of the strip. The deflections are located between the first cutout and the second cutout and are in plane or out of plane of the cutouts. The electrical conductor is particularly well suited for interconnection of batteries associated with a vehicle power system. |
US08952563B2 |
Utility scale electric energy storage system
A potential energy storage system incorporating multiple track mounted shuttle units having motor/generator drive bogies and structure with an integral transfer mechanism for removably carrying energy storage masses from a first lower elevation storage yard to a second higher elevation storage yard employing excess energy from the electrical grid driving the motors, removing the masses in the second storage yard for energy storage, retrieving the masses and returning the masses from the second storage yard to the first storage yard recovering electrical energy through the generators. |
US08952559B2 |
Power plant with cassette-type power unit
A hydroelectric power station has an energy unit including a turbine and a generator. The impeller of the turbine includes an impeller ring and turbine blades. The radially outer ends of the turbine blades are fixed to the inner surface of the impeller ring, and the radially inner ends of the turbine blades are free and together form a central passage. The impeller ring is surrounded by the generator and acts as a bearing therefor. |
US08952558B2 |
Wind generating device
The present invention discloses a wind power generating device, comprising a tower column and a first wind generating set. The first wind generating set is installed at a position on the tower column near the top, and the first wind generating set generates a first torque on the tower column during rotation for power generating. At least one second wind generating set is installed at a position on the tower column below the top, the second wind generating set generates a second torque on the tower column during rotation for power generating, and the second torque at least partially counteracts with the first torque. With the wind power generating device of the present invention, a high power wind power generation is achieved and the wind power generating device operates stably. |
US08952557B2 |
Turbine apparatus and method for energy reclamation and generation of electrical power from forced-air systems
A forced-air electric generator apparatus includes a housing positioned to receive forced-air flow from a forced-air device. A bladed rotor carried by the housing is in fluid communication with the forced air flow. A clutch engages the bladed rotor to drive a generator to produce a generated voltage when the bladed rotor is rotating above a threshold rotational velocity. |
US08952556B2 |
Modular temperature maintaining or regulating storage systems
A modular heating or cooling system includes a heating and/or cooling unit and a plurality of storage modules that may be releasably connected to the heating and/or cooling unit by a releasable coupling. The storage modules may include a heat exchanger having a thermal transfer bladder filled with eutectic fluid. The storage modules may include a hydroelectric generator and/or turbine assembly placed in-line in a circulation line for transporting heated or cooled fluid to and/or from the heat exchanger, the hydroelectric generator and/or turbine assembly operative to drive an electric light or a fan. A base station in the form of a movable cabinet is also disclosed for storing a plurality of the storage modules. The base station includes circulation lines that attach to fluid supply lines from a heating or refrigeration unit and may include terminals with releasable couplings for connecting to the storage modules stored therein. |
US08952554B2 |
Semiconductor device including a buffer layer structure for reducing stress
A semiconductor device includes a semiconductor chip, wiring that is included in the semiconductor chip and has a coupling part between parts with different widths, a pad being formed above the wiring and in a position overlapping the coupling part, a bump being formed on the pad, a buffer layer being formed in a position between the coupling part and the pad so as to cover the entire coupling part, and inorganic insulating layers being formed between the wiring and the buffer layer and between the buffer layer and the pad, respectively. The buffer layer is made of a material other than resin and softer than the inorganic insulating layer. |
US08952553B2 |
Semiconductor device with stress relaxation during wire-bonding
The present teaching provides a semiconductor device capable of relaxing stress transferred to a contact region during wire bonding and improving reliability of wire bonding. A semiconductor device comprises contact regions, an interlayer insulating film, an emitter electrode, and a stress relaxation portion. The contact regions are provided at a certain interval in areas exposing at a surface of a semiconductor substrate. The interlayer insulating film is provided on the surface of the semiconductor substrate between adjacent contact regions. The emitter electrode is provided on an upper side of the semiconductor substrate and electrically connected to each of the contact regions. The stress relaxation portion is provided on an upper surface of the emitter electrode in an area only above the contact regions. The stress relaxation portion is formed of a conductive material. A Young's modulus of the material of the stress relaxation portion is lower than a Young's modulus of the material of the emitter electrode. |
US08952551B2 |
Semiconductor package and method for fabricating the same
A semiconductor package includes a wiring substrate, a semiconductor chip, and a conductor plate in order to reduce a voltage drop at the central portion of a chip caused by wiring resistance from a peripheral connection pad disposed on the periphery of the chip. Central electrode pads for use in ground/power-supply are disposed on the central portion of the chip. The conductor plate for use in ground/power-supply is disposed on the chip such that an insulating layer is disposed therebetween. The central electrode pads on the chip and the conductor plate are connected together by wire bonding through an opening formed in the insulating layer and the conductor plate. An extraction portion of the conductor plate is connected to a power-supply wiring pad on the wiring substrate. Preferably, the conductor plate is composed of a multilayer structure, and each conductor plate is used in power-supply wiring or ground wiring. |
US08952544B2 |
Semiconductor device and manufacturing method thereof
A fan-out package includes a molding compound, a conductive plug and a stress buffer. The conductive plug is in the molding compound. The stress buffer is between the conductive plug and the molding compound. The stress buffer has a coefficient of thermal expansion (CTE). The CTE of the stress buffer is between a CTE of the molding compound and a CTE of the conductive plug. A method of manufacturing a three dimensional includes plating a post on a substrate, and disposing a stress buffer on the sidewall of the post. The method further includes surrounding the stress buffer with a molding compound. |
US08952540B2 |
In situ-built pin-grid arrays for coreless substrates, and methods of making same
A coreless pin-grid array (PGA) substrate includes PGA pins that are integral to the PGA substrate without the use of solder. A process of making the coreless PGA substrate integrates the PGA pins by forming a build-up layer upon the PGA pins such that vias make direct contact to pin heads of the PGA pins. |
US08952539B2 |
Methods for fabrication of an air gap-containing interconnect structure
Methods for producing air gap-containing metal-insulator interconnect structures for VLSI and ULSI devices using a photo-patternable low k material as well as the air gap-containing interconnect structure that is formed are disclosed. More particularly, the methods described herein provide interconnect structures built in a photo-patternable low k material in which air gaps are defined by photolithography in the photo-patternable low k material. In the methods of the present invention, no etch step is required to form the air gaps. Since no etch step is required in forming the air gaps within the photo-patternable low k material, the methods disclosed in this invention provide highly reliable interconnect structures. |
US08952537B2 |
Conductive bump structure with a plurality of metal layers
A conductive bump structure used to be formed on a substrate having a plurality of bonding pads. The conductive bump structure includes a first metal layer formed on the bonding pads, a second metal layer formed on the first metal layer, and a third metal layer formed on the second metal layer. The second metal layer has a second melting point higher than a third melting point of the third metal layer. Therefore, a thermal compression bonding process is allowed to be performed to the third metal layer first so as to bond the substrate to another substrate, and then a reflow process can be performed to melt the second metal layer and the third metal layer into each other so as to form an alloy portion, thus avoiding cracking of the substrate. |
US08952533B2 |
Devices and methods for 2.5D interposers
Polyimide-based redistribution layers (RDLs) can be employed to reduce thermo-mechanical stress that is exerted on conductive interconnections bonded to interposers in 2.5 D semiconductor packaging configurations. The polyimide-based RDL is located on an upper or lower face of an interposer. Additionally, height differentials between laterally adjacent semiconductor dies in 2.5 D semiconductor packages can be reduced or eliminated by using different diameter micro-bumps, different height copper pillars, or a multi-tiered interposer to lower taller semiconductor dies in relation to shorter semiconductor dies. |
US08952528B2 |
Semiconductor package and fabrication method thereof
A semiconductor package is provided. The semiconductor package includes a semiconductor chip having opposite first and second surfaces; an RDL structure formed on the first surface of the semiconductor chip and having opposite third and fourth surfaces and a plurality of first conductive through holes penetrating the third and fourth surfaces thereof, wherein the RDL structure is formed on the semiconductor chip through the fourth surface thereof and electrically connected to the semiconductor chip through a plurality of first conductive elements, and the third surface of the RDL structure has a redistribution layer formed thereon; a plurality of conductive bumps formed on the redistribution layer; and an encapsulant formed on the first surface of the semiconductor chip for encapsulating the RDL structure, wherein the conductive bumps are embedded in and exposed from the encapsulant. The invention effectively prevents warpage of the semiconductor package and improves the electrical connection significantly. |
US08952526B2 |
Stackable semiconductor assembly with bump/flange heat spreader and dual build-up circuitry
A stackable semiconductor assembly includes a semiconductor device, a heat spreader, an adhesive, a plated through-hole, first build-up circuitry and second build-up circuitry. The heat spreader includes a bump and a flange. The bump defines a cavity. The semiconductor device is mounted on the bump at the cavity, electrically connected to the first build-up circuitry and thermally connected to the bump. The bump extends into an opening in the adhesive and the flange extends laterally from the bump at the cavity entrance. The first build-up circuitry and the second build-up circuitry extend beyond the semiconductor device in opposite vertical directions. The plated through-hole extends through the adhesive and provides signal routing between the first build-up circuitry and the second build-up circuitry. The heat spreader provides heat dissipation for the semiconductor device. |
US08952525B2 |
Semiconductor module and method for manufacturing semiconductor module
A semiconductor module includes a case including a receiving space that is formed by a frame portion and a pair of wall portions disposed to face each other with the frame portion therebetween. The wall portion includes a heat-dissipation portions and a support wall that supports the heat-dissipation portions at the frame portion, and the wall portion includes a heat-dissipation portion and a support wall that supports the heat-dissipation portion at the frame portion. The heat-dissipation portions provided at the wall portion are separately provided by being disposed to face a plurality of semiconductor device blocks respectively. A plurality of separate heat-dissipation portions is surrounded by the support wall, the support wall is deformed to recessed from the frame portion through the separate heat-dissipation portions inside the case such that a plurality of insulating sheets is closely joined to a plurality of lead frames and the plurality of heat-dissipation portions. |
US08952521B2 |
Semiconductor packages with integrated antenna and method of forming thereof
In one embodiment of the present invention, a semiconductor package includes a substrate having a first major surface and an opposite second major surface. A chip is disposed in the substrate. The chip includes a plurality of contact pads at the first major surface. A first antenna structure is disposed at the first major surface. A reflector is disposed at the second major surface. |
US08952518B2 |
Semiconductor device housing package, and semiconductor apparatus and electronic apparatus including the same
A semiconductor device housing package includes a base body having, on its upper surface, a mounting region of a semiconductor device; a frame body having a frame-like portion disposed on the upper surface of the base body, surrounding the mounting region, and an opening penetrating through from an inner side of the frame-like portion to an outer side thereof; a flat plate-like insulating member disposed in the opening, extending from an interior of the frame body to an exterior thereof; wiring conductors disposed on an upper surface of the insulating member, extending from the interior of the frame body to the exterior thereof; and a metallic film disposed on a part of the upper surface of the insulating member, the metallic film lying outside the frame body surrounding the wiring conductors. |
US08952516B2 |
Multiple die stacking for two or more die
A microelectronic package can include a substrate having first and second opposed surfaces, and first and second microelectronic elements having front surfaces facing the first surface. The substrate can have a plurality of substrate contacts at the first surface and a plurality of terminals at the second surface. Each microelectronic element can have a plurality of element contacts at the front surface thereof. The element contacts can be joined with corresponding ones of the substrate contacts. The front surface of the second microelectronic element can partially overlie a rear surface of the first microelectronic element and can be attached thereto. The element contacts of the first microelectronic element can be arranged in an area array and are flip-chip bonded with a first set of the substrate contacts. The element contacts of the second microelectronic element can be joined with a second set of the substrate contacts by conductive masses. |
US08952513B2 |
Stack type semiconductor package and method of fabricating the same
A stack type semiconductor package and a method of fabricating the stack type semiconductor package. The stack type semiconductor package includes: a lower semiconductor package including a circuit board, a semiconductor chip which is disposed on an upper surface of the circuit board, via-pads which are arrayed on the upper surface of the circuit board around the semiconductor chip, and an encapsulation layer which encapsulates the upper surface of the circuit board and has via-holes through which the via-pads are exposed; and an upper semiconductor package which is stacked on the encapsulation layer, is electrically connected to the lower semiconductor package, and comprises internal connection terminals which are formed on a lower surface of the upper semiconductor package. |
US08952511B2 |
Integrated circuit package having bottom-side stiffener
Embodiments of a bottom-side stiffening element are disclosed. The stiffening element may be disposed between an integrated circuit package and an underlying circuit board. In some embodiments, the stiffening element is attached to the underlying circuit board. Other embodiments are described and claimed. |
US08952506B2 |
Through silicon via structure
A system and method for manufacturing a through silicon via is disclosed. An embodiment comprises forming a through silicon via with a liner protruding from a substrate. A passivation layer is formed over the substrate and the through silicon via, and the passivation layer and liner are recessed from the sidewalls of the through silicon via. Conductive material may then be formed in contact with both the sidewalls and a top surface of the through silicon via. |
US08952501B2 |
Chip package and method for forming the same
An embodiment of the invention provides a chip package which includes: a semiconductor substrate having an upper surface and a lower surface; a device region or sensing region defined in the semiconductor substrate; a conducting pad located on the upper surface of the semiconductor substrate; at least two recesses extending from the upper surface towards the lower surface of the semiconductor substrate, wherein sidewalls and bottoms of the recesses together form a sidewall of the semiconductor substrate; a conducting layer electrically connected to the conducting pad and extending from the upper surface of the semiconductor substrate to the sidewall of the semiconductor substrate; and an insulating layer located between the conducting layer and the semiconductor substrate. |
US08952497B2 |
Scribe lines in wafers
A wafer includes a plurality of chips arranged as rows and columns. A first plurality of scribe lines is between the rows of the plurality of chips. Each of the first plurality of scribe lines includes a metal-feature containing scribe line comprising metal features therein, and a metal-feature free scribe line parallel to, and adjoining, the metal-feature containing scribe line. A second plurality of scribe lines is between the columns of the plurality of chips. |
US08952493B2 |
Memory cell device and method of manufacture
According to one embodiment of the present invention, a solid state electrolyte memory cell includes a cathode, an anode and a solid state electrolyte. The anode includes an intercalating material and first metal species dispersed in the intercalating material. |
US08952481B2 |
Super surge diodes
The present disclosure relates to a semiconductor device having a Schottky contact that provides both super surge capability and low reverse-bias leakage current. In one preferred embodiment, the semiconductor device is a Schottky diode and even more preferably a Silicon Carbide (SiC) Schottky diode. However, the semiconductor device may more generally be any type of semiconductor device having a Schottky contact such as, for example, a Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET). |
US08952478B2 |
Radiation conversion device and method of manufacturing a radiation conversion device
A radiation conversion device such as a photovoltaic cell, a photodiode or a semiconductor radiation detection device, includes a semiconductor portion with first compensation zones of a first conductivity type and a base portion that separates the first compensation zones from each other. The first compensations zones are arranged in pillar structures. Each pillar structure includes spatially separated first compensation zones and extends in a vertical direction with respect to a main surface of the semiconductor portion. Between neighboring ones of the pillar structures the base portion includes second compensation zones of a second conductivity type, which is complementary to the first conductivity type. The radiation conversion device combines high radiation hardness with cost effective manufacturing. |
US08952475B2 |
Pixel, pixel array, and image sensor
A pixel and pixel array for use in an image sensor are provided. The image sensor includes floating sensing nodes symmetrically arranged with respect to a photodiode in each pixel. |
US08952473B2 |
Integrated circuit combination of a target integrated circuit and a plurality of cells connected thereto using the top conductive layer
A target integrated circuit (TIC) having a top conductive layer (TCL) that may be connected to a plurality of cells that are further integrated over the TIC. Each of the plurality of cells comprises two conductive layers, a lower conductive layer (LCL) below the cell and an upper conductive layer (UCL) above the cell. Both conductive layers may connect to the TCL of the TIC to form a super IC structure combined of the TIC and the plurality of cells connected thereto. Accordingly, conductivity between the TIC as well as auxiliary circuitry to the TIC maybe achieved. |
US08952472B2 |
Semiconductor device using close proximity wireless communication
The present invention provides a semiconductor device capable of changing the setting of the internal operation mode without increasing the number of terminals of the semiconductor device. The semiconductor device includes a transmitting cell, a receiving cell, a semiconductor chip including a transmitting antenna and a receiving antenna, and a conductor. The transmitting antenna is connected to the transmitting cell, and the receiving antenna is connected to the receiving cell. The conductor is provided close to the transmitting antenna and the receiving antenna. Close proximity wireless communication is used between the transmitting cell and the receiving cell. |
US08952471B2 |
Arrangements for an integrated sensor
An integrated circuit can have a first substrate supporting a magnetic field sensing element and a second substrate supporting another magnetic field sensing element. The first and second substrates can be arranged in a variety of configurations. Another integrated circuit can have a first magnetic field sensing element and second different magnetic field sensing element disposed on surfaces thereof. |
US08952467B2 |
Electronic device and its manufacturing method
An electronic device includes a substrate, a sidewall that is disposed on the substrate and forms a cavity, a first layer that is disposed on the sidewall and covers the cavity, a second layer that is formed on the first layer and has a region disposed outside an outline of the first layer in a plan view, a dielectric layer disposed below the region of the second layer disposed outside the outline of the first layer in a plan view, and a functional element disposed inside the cavity. |
US08952465B2 |
MEMS devices, packaged MEMS devices, and methods of manufacture thereof
MEMS devices, packaged MEMS devices, and methods of manufacture thereof are disclosed. In one embodiment, a microelectromechanical system (MEMS) device includes a first MEMS functional structure and a second MEMS functional structure. An interior region of the second MEMS functional structure has a pressure that is different than a pressure of an interior region of the first MEMS functional structure. |
US08952462B2 |
Method and apparatus of forming a gate
The present disclosure provides an apparatus that includes a semiconductor device. The semiconductor device includes a substrate. The semiconductor device also includes a first gate dielectric layer that is disposed over the substrate. The first gate dielectric layer includes a first material. The first gate dielectric layer has a first thickness that is less than a threshold thickness at which a portion of the first material of the first gate dielectric layer begins to crystallize. The semiconductor device also includes a second gate dielectric layer that is disposed over the first gate dielectric layer. The second gate dielectric layer includes a second material that is different from the first material. The second gate dielectric layer has a second thickness that is less than a threshold thickness at which a portion of the second material of the second gate dielectric layer begins to crystallize. |
US08952461B2 |
Semiconductor device, designing method therefor, and manufacturing method therefor
In a semiconductor device including active regions which are adjacent to each other with an element isolation region interposed therebetween and which are different in height from the element isolation region, when a contact is formed in a gate wiring on the element isolation region, a contact failure is caused. Provided is a semiconductor device including an element isolation region, two active regions adjacent to each other with the element isolation region interposed therebetween and having surfaces which are higher than that of the element isolation region, a gate wiring commonly led from the respective active regions and extending through the element isolation region, and a contact for connecting the gate wiring to a conductor layer above the gate wiring. The contact is provided in a region other than the element isolation region, or is provided in an expanded element isolation region. |
US08952455B2 |
Source follower circuit or bootstrap circuit, driver circuit comprising such circuit, and display device comprising such driver circuit
In the case of using an analog buffer circuit, an input voltage is required to be added a voltage equal to a voltage between the gate and source of a polycrystalline silicon TFT; therefore, a power supply voltage is increased, thus a power consumption is increased with heat. In view of the foregoing problem, the invention provides a depletion mode polycrystalline silicon TFT as a polycrystalline silicon TFT used in an analog buffer circuit such as a source follower circuit. The depletion mode polycrystalline silicon TFT has a threshold voltage on its negative voltage side; therefore, an input voltage does not have to be increased as described above. As a result, a power supply voltage requires no increase, thus a low power consumption of a liquid crystal display device in particular can be realized. |
US08952454B2 |
SOI wafer and method of manufacturing the same
An SOI wafer according to the present invention includes a support substrate and an insulating layer formed on the support substrate, a predetermined cavity pattern being formed on one of main surfaces of the support substrate on which the insulating layer is provided, further includes an active semiconductor layer formed on the insulating layer with the cavity pattern being closed, the active semiconductor layer not being formed in an outer peripheral portion of the support substrate, and further includes a plurality of superposition mark patterns formed in the outer peripheral portion on the one of the main surfaces of the support substrate for specifying a position of the cavity pattern. |
US08952453B2 |
MOSFET formed on an SOI wafer with a back gate
The present application discloses a MOSFET and a method for manufacturing the same. The MOSFET is formed on an SOI wafer, comprising: a shallow trench isolation for defining an active region in the semiconductor layer; a gate stack on the semiconductor layer; a source region and a drain region in the semiconductor layer on both sides of the gate stack; a channel region in the semiconductor layer and sandwiched by the source region and the drain region; a back gate in the semiconductor substrate; a first dummy gate stack overlapping with a boundary between the semiconductor layer and the shallow trench isolation; and a second dummy gate stack on the shallow trench isolation, wherein the MOSFET further comprises a plurality of conductive vias which are disposed between the gate stack and the first dummy gate stack and electrically connected to the source region and the drain region respectively, and between the first dummy gate stack and the second dummy gate stack and electrically connected to the back gate. The MOSFET avoids short circuit between the back gate and the source/drain regions by the dummy gate stacks. |
US08952450B2 |
Semiconductor device and the method of manufacturing the same
A semiconductor device includes a p-type well region 3 and an n+ source region 4, both formed selectively in the surface portion of n− drift region 2. A trench 6 is in contact with n+ source region 4 and extends through p-type well region 3 into n− drift region 2. A field plate 8 is formed in trench 6, with a first insulator film 7 being interposed between the trench 6 surface and field plate 8. A gate electrode 10 is formed in trench 6 above field plate 10, with a second insulator film 9 being interposed between the trench 6 surface and gate electrode 10. An n−− lightly doped region 21 in n− drift region 2 crosses under the bottom of trench 6. |
US08952449B2 |
Semiconductor device having both IGBT area and diode area
There is known a semiconductor device in which an IGBT structure is provided in an IGBT area and a diode structure is provided in a diode area, the IGBT area and the diode area are both located within a same substrate, and the IGBT area is adjacent to the diode area. In this type of semiconductor device, a phenomenon that carriers accumulated within the IGBT area flow into the diode area when the IGBT structure is turned off. In order to prevent this phenomenon, a region of shortening lifetime of carriers is provided at least in a sub-area that is within said IGBT area and adjacent to said diode area. In the sub-area, emitter of IGBT structure is omitted. |
US08952447B2 |
Oxide-based semiconductor non-linear element having gate electrode electrically connected to source or drain electrode
A non-linear element (e.g., a diode) with small reverse saturation current is provided. A non-linear element includes a first electrode provided over a substrate, an oxide semiconductor film provided on and in contact with the first electrode, a second electrode provided on and in contact with the oxide semiconductor film, a gate insulating film covering the first electrode, the oxide semiconductor film, and the second electrode, and a third electrode provided in contact with the gate insulating film and adjacent to a side surface of the oxide semiconductor film with the gate insulating film interposed therebetween or a third electrode provided in contact with the gate insulating film and surrounding the second electrode. The third electrode is connected to the first electrode or the second electrode. |
US08952442B2 |
Multiple-time programming memory cells and methods for forming the same
A method includes forming Shallow Trench Isolation (STI) regions to separate a first active region and a second active region of a semiconductor substrate from each other, etching a portion of the STI regions that contacts a sidewall of the second active region to form a recess, and implanting a top surface layer and a side surface layer of the second active region to form an implantation region. The side surface layer of the second active region extends from the sidewall of the second active region into the second active region. An upper portion of the top surface layer and an upper portion of the side surface layer are oxidized to form a capacitor insulator. A floating gate is formed to extend over the first active region and the second active region. The floating gate includes a portion extending into the recess. |
US08952439B2 |
Nonvolatile semiconductor storage device and method of manufacture thereof
A nonvolatile semiconductor storage device includes a semiconductor substrate on which an element isolation groove is formed, memory cells each including a gate electrode having a charge storage layer, an interelectrode insulating film, and a control electrode, that is formed on the semiconductor substrate via a tunnel insulating film, and an insulating film disposed in the element isolation groove. The interelectrode insulating film is formed to have a first portion above the insulating film that is separated from one of the insulating film and the control electrode by an air gap and a second portion above the charge storage layer that is separated from the charge storage layer by a cavity. |
US08952435B2 |
Method for forming memory cell transistor
A method for forming a memory cell transistor is disclosed which includes providing a substrate, forming a trench structure in the substrate, depositing a conductive substance on the surface of the substrate to form a conductive member inside the trench structure, forming one or more dielectric layers on the surface of the substrate, forming one or more first conductive layers on top of the dielectric layers, and etching the first conductive layers and the dielectric layers to form a hole structure extending through the first conductive and the dielectric layers, reaching to the substrate surface. The formed memory cell transistor thus comprises a hole structure which is formed from the surface of the top first conductive layer, extending downwards through the first conductive layers and the dielectric layers, and reaching the substrate surface. One or more second conductive layers may be formed on top of the first conductive layers, with the second conductive layer material filling the hole structure. |
US08952433B2 |
Solid-state image sensor, method of manufacturing the same, and imaging system
A solid-state image sensor includes a pixel region and peripheral circuit region arranged on a semiconductor substrate. The pixel region includes pixels. Each pixel includes a photoelectric conversion element and an amplification MOS transistor that outputs a signal corresponding to charges of the photoelectric conversion element to a column signal line. The peripheral circuit region includes a circuit that drives the pixel or processes the signal output to the column signal line. A resistance of a source region of the amplification MOS transistor is lower than a resistance of a drain region of the amplification MOS transistor. |
US08952429B2 |
Transistor and method for forming the same
The present invention relates to a stress-enhanced transistor and a method for forming the same. The method for forming the transistor according to the present invention comprises the steps of forming a mask layer on a semiconductor substrate on which a gate has been formed, so that the mask layer covers the gate and the semiconductor substrate; patterning the mask layer so as to expose at least a portion of each of a source region and a drain region; amorphorizing the exposed portions of the source region and the drain region; removing the mask layer; and annealing the semiconductor substrate so that a dislocation is formed in the exposed portion of each of the source region and the drain region. |
US08952422B2 |
Transistor and method of fabricating the same
A field effect transistor includes an active layer and a capping layer sequentially stacked on a substrate, and a gate electrode penetrating the capping layer and being adjacent to the active layer. The gate electrode includes a foot portion adjacent to the active layer and a head portion having a width greater than a width of the foot portion. The foot portion of an end part of the gate electrode has a width less than a width of the head portion of another part of the gate electrode and greater than a width of the foot portion of the another part of the gate electrode. The foot portion of the end part of the gate electrode further penetrates the active layer so as to be adjacent to the substrate. |
US08952420B1 |
Method to induce strain in 3-D microfabricated structures
Methods and structures for forming strained-channel finFETs are described. Fin structures for finFETs may be formed in two epitaxial layers that are grown over a bulk substrate. A first thin epitaxial layer may be cut and used to impart strain to an adjacent channel region of the finFET via elastic relaxation. The structures exhibit a preferred design range for increasing induced strain and uniformity of the strain over the fin height. |
US08952416B2 |
Light emitting device
A light emitting device includes a light emitting structure including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer. A first electrode is coupled to the first conductive semiconductor layer, and a second electrode is coupled to the second conductive semiconductor layer. A channel layer is provided around a lower portion of the light emitting structure. A first conductive support member is coupled to the second electrode and disposed adjacent to the second electrode. A second conductive support member is electrically insulated from the first conductive support member and disposed adjacent to the second electrode. A first connection part is coupled to the first electrode and the second conductive support member. |
US08952412B2 |
Method for fabricating a solid-state imaging package
A method for manufacturing a solid-state imaging device. A solid-state image sensor is mounted on the semiconductor package support and electrically connected to first terminals and second terminals by bonding wires. The second terminals to which the bonding wires are connected are sealed with a sealing member. The optically-transparent member is thereafter disposed on the support member and the sealing member. The sealing member is cured to fix the optically transparent member. |
US08952410B2 |
LED lens and LED package using the same
A light emitting diode (LED) lens comprises a light incident surface on a bottom surface of the LED lens facing a light source. A light exit surface, having a size greater than the bottom surface, is defined by a top surface of the LED lens. A planar portion, emitting light incident through the light incident surface, is in a central region of the light exit surface. At least one protrusion portion, protruding to be stepped with respect to the planar portion, is in a region of the light exit surface except for the central region. A reflective surface, defined by lateral surfaces of the LED lens between the top surface of the LED lens and the bottom surface thereof, guides the light incident through the light incident surface, and contacts a lower portion of the light exit surface corresponding to a boundary between the protrusion and the planar portions. |
US08952405B2 |
Light emitting diode package and method of manufacture
A light emitting diode (LED) device and packaging for same is disclosed. In some aspects, the LED is manufactured using a vertical configuration including a plurality of layers. Certain layers act to promote mechanical, electrical, thermal, or optical characteristics of the device. The device avoids design problems, including manufacturing complexities, costs and heat dissipation problems found in conventional LED devices. Some embodiments include a plurality of optically permissive layers, including an optically permissive cover substrate or wafer stacked over a semiconductor LED and positioned using one or more alignment markers. |
US08952399B2 |
Light emitting device comprising a wavelength conversion layer having indirect bandgap energy and made of an N-type doped AlInGaP material
Various embodiments of light emitting devices with efficient wavelength conversion and associated methods of manufacturing are described herein. In one embodiment, a light emitting device includes a first semiconductor material, a second semiconductor material spaced apart from the first semiconductor material, and an active region between the first and second semiconductor materials. The active region is configured to produce a light via electroluminescence. The light emitting device also includes a conversion material on the second semiconductor material, the conversion material containing aluminum gallium indium phosphide (AlGaInP) doped with an N-type dopant. |
US08952398B2 |
LED lighting module
An LED lighting module includes a support board with a first LED and a second LED thereon. The wavelength of light emitted by the first LED is different from that of light emitted by the second LED. The height of the first LED is different from that of the second LED for preventing the emitting light of the first LED absorbed by the wavelength conversion layer of the second LED. |
US08952395B2 |
Wafer-level solid state transducer packaging transducers including separators and associated systems and methods
Wafer-level packaging of solid-state transducers (“SSTs”) is disclosed herein. A method in accordance with a particular embodiment includes forming a transducer structure having a first surface and a second surface opposite the first surface, and forming a plurality of separators that extend from at least the first surface of the transducer structure to beyond the second surface. The separators can demarcate lateral dimensions of individual SSTs. The method can further include forming a support substrate on the first surface of the transducer structure, and forming a plurality of discrete optical elements on the second surface of the transducer structure. The separators can form barriers between the discrete optical elements. The method can still further include dicing the SSTs along the separators. Associated SST devices and systems are also disclosed herein. |
US08952389B2 |
Light emitting diode and method for fabricating the same
A light emitting diode and a method for fabricating the same are provided. The light emitting diode includes: a transparent substrate; a semiconductor material layer formed on the top surface of a substrate with an active layer generating light; and a fluorescent layer formed on the back surface of the substrate with controlled varied thicknesses. The ratio of light whose wavelength is shifted while propagating through the fluorescent layer and the original light generated in the active layer can be controlled by adjusting the thickness of the fluorescent layer, to emit desirable homogeneous white light from the light emitting diode. |
US08952387B2 |
Thin film transistor array substrate and method for manufacturing the same
According to embodiments of the present invention, there are provided a TFT array substrate, a method for manufacturing the TFT array substrate and an electronic device. The method for manufacturing the TFT array substrate includes: a first patterning process, in which a pattern of a pixel electrode formed by a first transparent conductive layer and patterns of a drain electrode and a source electrode that are separated from each other and a data line, which are formed by a first metal layer, are formed on a transparent substrate; a second patterning process, in which a pattern of a gate insulating layer and a pattern of an active layer formed by a transparent oxide layer are formed on the transparent substrate subjected to the first patterning process; and a third patterning process, in which a pattern of a common electrode formed by a second transparent conductive layer and patterns of a gate electrode and a gate line which are formed by a second metal layer are formed on the transparent substrate subjected to the second patterning process. |
US08952385B1 |
Light emitting device
A light emitting device is provided which can prevent a change in gate voltage due to leakage or other causes and at the same time can prevent the aperture ratio from lowering. A capacitor storage is formed from a connection wiring line, an insulating film, and a capacitance wiring line. The connection wiring line is formed over a gate electrode and an active layer of a TFT of a pixel, and is connected to the active layer. The insulating film is formed on the connection wiring line. The capacitance wiring line is formed on the insulating film. This structure enables the capacitor storage to overlap the TFT, thereby increasing the capacity of the capacitor storage while keeping the aperture ratio from lowering. Accordingly, a change in gate voltage due to leakage or other causes can be avoided to prevent a change in luminance of an OLED and flickering of screen in analog driving. |
US08952381B2 |
Semiconductor device
High field-effect mobility is provided for a semiconductor device including an oxide semiconductor. Further, a highly reliable semiconductor device including the transistor is provided. In a transistor in which a stack of oxide semiconductor layers is provided over a gate electrode layer with a gate insulating layer provided therebetween, an oxide semiconductor layer functioning as a current path (channel) of the transistor and containing an n-type impurity is sandwiched between oxide semiconductor layers having lower conductivity than the oxide semiconductor layer. In the oxide semiconductor layer functioning as the channel, a region on the gate insulating layer side contains the n-type impurity at a higher concentration than a region on the back channel side. With such a structure, the channel can be separated from the interface between the oxide semiconductor stack and the insulating layer in contact with the oxide semiconductor stack, so that a buried channel can be formed. |
US08952380B2 |
Semiconductor device and electronic device
To suppress a decrease in on-state current in a semiconductor device including an oxide semiconductor. A semiconductor device includes an insulating film containing silicon, an oxide semiconductor film over the insulating film, a gate insulating film containing silicon over the oxide semiconductor film, a gate electrode which is over the gate insulating film and overlaps with at least the oxide semiconductor film, and a source electrode and a drain electrode which are electrically connected to the oxide semiconductor film. In the semiconductor device, the oxide semiconductor film which overlaps with at least the gate electrode includes a region in which a concentration of silicon distributed from an interface with the insulating film is lower than or equal to 1.1 at. %. In addition, a concentration of silicon contained in a remaining portion of the oxide semiconductor film except the region is lower than the concentration of silicon contained in the region. |
US08952378B2 |
Method of manufacturing semiconductor device
An object is to provide a method for manufacturing a highly reliable semiconductor device including a transistor with stable electric characteristics. A method for manufacturing a semiconductor device includes the steps of: forming a gate electrode over a substrate having an insulating surface; forming a gate insulating film over the gate electrode; forming an oxide semiconductor film over the gate insulating film; irradiating the oxide semiconductor film with an electromagnetic wave such as a microwave or a high frequency; forming a source electrode and a drain electrode over the oxide semiconductor film irradiated with the electromagnetic wave; and forming an oxide insulating film, which is in contact with part of the oxide semiconductor film, over the gate insulating film, the oxide semiconductor film, the source electrode, and the drain electrode. |
US08952377B2 |
Semiconductor device and manufacturing method thereof
Provided are a transistor which has electrical characteristics requisite for its purpose and uses an oxide semiconductor layer and a semiconductor device including the transistor. In the bottom-gate transistor in which at least a gate electrode layer, a gate insulating film, and the semiconductor layer are stacked in this order, an oxide semiconductor stacked layer including at least two oxide semiconductor layers whose energy gaps are different from each other is used as the semiconductor layer. Oxygen and/or a dopant may be added to the oxide semiconductor stacked layer. |
US08952374B2 |
Display and electronic apparatus
A display device includes pixels, each including a set of sub-pixels. A first subset of the pixels may each include white, green, and blue sub-pixels, but not a red sub-pixel. A second subset of the pixels may each include white, green, and red sub-pixels, but not a blue sub-pixel. The pixels may alternate between the first subset and the second subset in at least one direction. |
US08952373B2 |
Hardmask composition and method of forming patterns and semiconductor integrated circuit device including the patterns
A hardmask composition includes a monomer represented by the following Chemical Formula 1 and an aromatic ring-containing polymer, |
US08952368B2 |
Thin film transistor and display device having the same
A thin film transistor, a method of manufacturing the same, and a display device including the same, the thin film transistor including a substrate; a polysilicon semiconductor layer on the substrate; and a metal pattern between the semiconductor layer and the substrate, the metal pattern being insulated from the semiconductor layer, wherein the polysilicon of the semiconductor layer includes a grain boundary parallel to a crystallization growing direction, and a surface roughness of the polysilicon semiconductor layer defined by a distance between a lowest peak and a highest peak in a surface thereof is less than about 15 nm. |
US08952366B2 |
Organic electroluminescent display
An organic electroluminescent display includes a first substrate, a pixel, a gate line, a data line, a switching transistor, a power signal line, a driving transistor, and a storage capacitor. The storage capacitor includes first, second, and third electrodes. The first electrode is on the first substrate, and the second electrode includes the same material as the gate line. The second electrode is on the first electrode and insulated from the first electrode. The third electrode is insulated from and on the second electrode, and the third electrode is insulated from the first electrode. |
US08952364B2 |
Light-emitting devices comprising nanostructures
Light-emitting devices are described herein. |
US08952362B2 |
High efficiency and brightness fluorescent organic light emitting diode by triplet-triplet fusion
A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer may include an organic host compound and at least one organic emitting compound capable of fluorescent emission at room temperature. Various configurations are described for providing a range of current densities in which T-T fusion dominates over S-T annihilation, leading to very high efficiency fluorescent OLEDs. |
US08952360B2 |
Organic light-emitting display apparatus and method of manufacturing the same
An organic light-emitting display apparatus includes a substrate, a first electrode on the substrate; an intermediate layer on the first electrode, the intermediate layer including an organic light-emitting layer; a second electrode on the intermediate layer, a first inorganic encapsulating layer on the second electrode, the first inorganic encapsulating layer defining a first groove formed therein; a first organic encapsulating layer that is in the first groove defined by the first inorganic encapsulating layer, the first organic encapsulating layer not extending beyond the first groove, and a second inorganic encapsulating layer on the first organic encapsulating layer. |
US08952355B2 |
Electropositive metal containing layers for semiconductor applications
Embodiments of the present invention provide methods for forming layers that comprise electropositive metals through ALD (atomic layer deposition) and or CVD (chemical vapor deposition) processes, layers comprising one or more electropositive metals, and semiconductor devices comprising layers comprising one or more electropositive metals. In embodiments of the invention, the layers are thin or ultrathin (films that are less than 100 {acute over (Å)} thick) and or conformal films. Additionally provided are transistor devices, metal interconnects, and computing devices comprising metal layers comprising one or more electropositive metals. |
US08952353B2 |
Semiconductor light emitting device
According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer, a second semiconductor layer, a light emitting part, and a multilayered structural body. The light emitting part is provided between the first and second semiconductor layers and includes barrier layers and well layers alternately stacked. The multilayered structural body is provided between the first semiconductor layer and the light emitting part and includes high energy layers and low energy layers alternately stacked. An average In composition ratio on a side of the second semiconductor is higher than that on a side of the first semiconductor in the multilayered structural body. An average In composition ratio on a side of the second semiconductor is higher than that on a side of the first semiconductor in the light emitting part. |
US08952350B2 |
Non-volatile memory device and manufacturing method thereof
A non-volatile memory device of the present invention comprises a first electrode; a variable resistance layer formed on and above the first electrode; a second electrode formed on and above the variable resistance layer; a side wall protective layer having an insulativity and covering a side wall of the first electrode, a side wall of the variable resistance layer and a side wall of the second electrode; and an electrically-conductive layer connected to the second electrode; the non-volatile memory device including a connection layer which is provided between the second electrode and the electrically-conductive layer to connect the second electrode and the electrically-conductive layer to each other, and comprises an electrically-conductive material different from a material constituting the electrically-conductive layer;wherein the side wall protective layer extends across the second electrode to a position which is above an upper end of the second electrode and below an upper end of the connection layer such that an upper end of the side wall protective layer is located above the upper end of the second electrode and below the upper end of the connection layer, when viewed from a side. |
US08952347B2 |
Resistive memory cell array with top electrode bit line
A method for forming a resistive memory cell within a memory array includes forming a patterned stopping layer on a first metal layer formed on a substrate and forming a bottom electrode into features of the patterned stopping layer. The method further includes forming a resistive memory layer. The resistive memory layer includes a metal oxide layer and a top electrode layer. The method further includes patterning the resistive memory layer so that the top electrode layer acts as a bit line within the memory array and a top electrode of the resistive memory cell. |
US08952345B2 |
Radiation therapy apparatus with an aperture assembly and associated methods
A radiation therapy apparatus includes a housing, a radiation source carried by the housing, and an aperture assembly carried by the housing. The aperture assembly includes a radiation aperture body, an aperture holder and a cover. The radiation aperture body has a shaped opening therein to control a radiation dosing profile. The aperture holder has an aperture-receiving passageway therein receiving the radiation aperture body, and a recessed end. The cover is received within the recessed end of the aperture holder, and retains the radiation aperture body within the aperture holder. The cover has an opening aligned with the shaped opening in the radiation aperture body. A radiation filter is carried by the housing. |
US08952344B2 |
Techniques for processing photoresist features using ions
A method of treating a substrate includes directing first ions over a first range of angles to one or more photoresist features disposed on the substrate, the first ions effective to generate an altered layer in the one or more photoresist features, the altered surface layer encapsulating an inner portion of the one or more photoresist features, and directing second ions different from the first ions over a second range of angles to the one or more photoresist features, the second ions effective to generate gaseous species in the inner regions of the one or more photoresist features. |
US08952340B2 |
High-frequency acceleration type ion acceleration and transportation apparatus having high energy precision
A high-frequency acceleration type ion acceleration and transportation apparatus is a beamline after an ion beam is accelerated by a high-frequency acceleration system having an energy spread with respect to set beam energy and includes an energy analysis deflection electromagnet and a horizontal beam focusing element. In the ion acceleration and transportation apparatus, a double slit that is configured by an energy spread confining slit and an energy analysis slit is additionally disposed at a position at which energy dispersion and a beam size are to be appropriate. The position is determined based on a condition of the energy analysis deflection electromagnet and the horizontal beam focusing element, and the double slit performs energy separation and energy definition and decreases the energy spread of the ion beam by performing adjustment for a smaller energy spread while suppressing a decrease in the amount of a beam current. |
US08952339B2 |
Chromatic aberration corrector and method of controlling same
A chromatic aberration corrector and method of controlling this chromatic aberration corrector is offered. The corrector has first and second multipole lenses for producing quadrupole fields and first and second transfer lenses each having a focal length of f. The first and second multipole lenses are arranged on opposite sides of the first and second transfer lenses. The distance between the first multipole lens and the first transfer lens is f. The distance between the first transfer lens and the second transfer lens is 2f. The distance between the second transfer lens and the second multipole lens is f−Δ. The corrector is so designed that the relationship, f>Δ>0, holds. |
US08952338B2 |
Crystalline quality evaluation apparatus for thin-film semiconductors, using μ-PCD technique
The present invention provides a crystalline quality evaluation apparatus (1) and a crystalline quality evaluation method for thin-film semiconductors, which are designed to evaluate crystalline quality of a sample (2) of a thin-film semiconductor (2a) by emitting excitation light and an electromagnetic wave to irradiate a measurement site of the sample (2), and detecting an intensity of a reflected electromagnetic wave from the sample (2). In the present invention, the thin-film semiconductor (2a) of the sample (2) is formed on an electrically conductive film (2b), and a dielectric (3) transparent to the excitation light is additionally disposed between the sample (2) and a waveguide (13) for emitting the electromagnetic wave therefrom. Thus, the thin-film semiconductor crystalline quality evaluation apparatus (1) and method configured in this manner make it possible to evaluate the crystalline quality even in the above situation where the electrically conductive film (2b) is formed under the semiconductor thin-film (2a). |
US08952335B2 |
Radiological image radiographing device, radiation image radiographing system, and radiation image radiographing method
Bias lines are provided for respective columns of pixels, and of a plurality of bias lines, bias lines provided at an interval of 10 mm are connected to a bias power source through a current detector. The remaining bias lines are connected directly to the bias power source without passing through the current detector. In each pixel, if electric charge is generated by a radiation detection element in accordance with the dose of irradiated radiation, a current flows in the bias line in accordance with the generated electric charge. The current detector detects the current flowing in the bias line, and a control unit detects, as the timing of starting irradiation of a radiation, when the detected current (current value) is equal to or greater than a threshold value, and starts radiographing of a radiological image. |
US08952329B1 |
3D image profiling techniques for lithography
A method for characterizing a three-dimensional surface profile of a semiconductor workpiece is provided. In this method, the three-dimensional surface profile is imaged from a normal angle to measure widths of various surfaces in a first image. The three-dimensional surface is also imaged from a first oblique angle to re-measure the widths of the various surfaces in a second image. Based on differences in widths of corresponding surfaces for first and second images, a feature height and sidewall angle are determined for the three-dimensional profile. |
US08952327B2 |
Detection system assembly, dryer cartridge and regenerator and methods for making and using the same
A detection system assembly is provided. The detection system assembly includes a detector system including a housing having a sample port configured to receive a sample of an unknown substance, a detector assembly in flow communication with the sample port, and a pump in flow communication with the detector assembly. The detection system assembly further includes a dryer cartridge removably coupled to an outer surface of the housing of the detector system. The dryer cartridge is in flow communication with the pump and the detector assembly. |
US08952323B2 |
Mass spectrometer
A mass spectrometer is disclosed comprising a first ion trap or ion guide (2), a single ion mobility spectrometer or separator stage (3) and a second ion trap or ion guide (4) arranged downstream of the ion mobility spectrometer or separator (3). In a mode of operation ions from the second ion trap or ion guide (4) are passed from the second ion trap or ion guide back upstream to the ion mobility spectrometer or separator (3). |
US08952320B2 |
Mass spectrometer
A mass spectrometer is disclosed comprising a quadrupole rod set ion guide or mass filter device (6). A broadband frequency signal (10) having one or more notches (11a, 11b, 11c) is applied to the rods of the quadrupole rod set (6). The notched broadband frequency signal (10) causes undesired ions to be resonantly ejected from the ion guide (6). The notched broadband frequency signal (10) has frequency components missing which correspond with the resonance frequency of ions which are desired to be onwardly transmitted. The ion guide or mass filter device (6) enables a plurality of desired ions having different mass to charge ratios to be simultaneously transmitted by the ion guide or mass filter device (6) whilst other ions are resonantly ejected from the ion guide or mass filter device (6). |
US08952312B2 |
Image sensor for endoscopic use
An endoscopic device having embodiments of a hybrid imaging sensor that optimizes a pixel array area on a substrate using a stacking scheme for placement of related circuitry with minimal vertical interconnects between stacked substrates and associated features are disclosed. Embodiments of maximized pixel array size/die size (area optimization) are disclosed, and an optimized imaging sensor providing improved image quality, improved functionality, and improved form factors for specific applications common to the industry of digital imaging are also disclosed. Embodiments of the above may include systems, methods and processes for staggering ADC or column circuit bumps in a column or sub-column hybrid image sensor using vertical interconnects are also disclosed. |
US08952305B2 |
Autofocus system and autofocus method
An embodiment of an autofocus system is provided, including a height detection module, an image detection module, a movement unit and a processing unit. The height detection module is arranged to output a plurality of detection lights along a Z axis direction, wherein each of the detection lights has different focal lengths and different wavelengths such that the height detection module generates a dispersion region along the Z axis direction. The image detection module is arranged to capture an image of the focus position. The movement unit is arranged to move an object along the Z axis direction, wherein the object has an internal surface and an external surface. The processing unit determines whether the external surface and the internal surface are within the dispersion region according to the quantity of the energy peaks of a reflectance spectrum received by the height detection module. |
US08952302B2 |
Ceramic-coated heater which can be used in water or air
The present invention relates to a ceramic-coated heater in which the outer surface of a heater rod is coated with ceramic to improve the physical properties thereof including durability, corrosion resistance, and the like, thereby enabling the heater to be used in water or air. The outer surface of the heater rod is coated with a ceramic composition to which an acrylic corrosion resistant wax is added, thereby strengthening the bonding force of the coating layer film, and thus improving the physical properties thereof including durability, corrosion resistance, and the like to enable the heater to be used in water. Therefore, the ceramic-coated heater of the present invention enables high thermal conductivity using less current and reduces energy consumption so that it can be utilized in a wide variety of industrial fields. |
US08952299B2 |
Dual resistance heater for phase change devices and manufacturing method thereof
A dual resistance heater for a phase change material region is formed by depositing a resistive material. The heater material is then exposed to an implantation or plasma which increases the resistance of the surface of the heater material relative to the remainder of the heater material. As a result, the portion of the heater material approximate to the phase change material region is a highly effective heater because of its high resistance, but the bulk of the heater material is not as resistive and, thus, does not increase the voltage drop and the current usage of the device. |
US08952298B2 |
Electric broiler
A new electric broiler is disclosed. The broiler includes a housing having a cooking chamber, and a cooking surface in the housing. Upper and lower electrical heat sources are provided in the cooking chamber above and below the cooking surface. The lower heat source includes a removable heating module having an electric heating element and a quick connect/disconnect connector for quick electrical connection and disconnection of the electric heating element to and from a quick connect/disconnect connector on the housing. The broiler also includes a module holder on the housing for holding the removable heating module. The heating module is removable from the holder for quick replacement of the module. |
US08952297B2 |
Reaction apparatus for processing wafer, electrostatic chuck and wafer temperature control method
This invention discloses a reaction apparatus for wafer treatment, an electrostatic chuck and a wafer temperature control method, in the field of semiconductor processing. The electrostatic chuck comprises an insulating layer for supporting a wafer and a lamp array disposed in the insulating layer. Each lamp of the lamp array can be independently controlled to turn on and off and/or to adjust the output power. By controlling the on/off switch and/or output power of each lamp of the lamp array the temperature of the wafer held on the ESC is adjusted and temperature non-uniformity can be more favorably adjusted, greatly improving wafer temperature uniformity, particularly alleviating non-radial temperature non-uniformity. |
US08952288B2 |
Method of bonding a member to a support by addition of material, and device for arranging two elements, one on the other
A method having a step of heating a mass forming a braze. Before the heating step, the method includes steps of arranging the mass and the member on the support. In particular, it includes a step of positioning the mass on the support and a step of applying a first compressive force on the mass so as to compress said mass against the support, the intensity of the first force increasing up to a predetermined first value chosen so as to flatten the mass. Next, the method includes a step of positioning the member on the flattened mass and a step of applying a second compressive force to the member so as to compress said member against the flattened mass and the support, the intensity of the second force increasing up to a second predefined value, the second predefined value being lower than the first predefined value. |
US08952285B2 |
Medium and high-voltage electric switch with return on closure and an insertion device for inserting a resistance
An electric switch for application to high- and very high-voltage circuit breakers and switches comprising a flexible toroidal helical spring (8) placed in a groove of a control rod (1) carrying a movable resistance-insertion contact (2), and springs (4) placed about the movable resistance-insertion contact to cause the springs to be compressed until a certain value is reached, at which value the movable resistance-insertion contact causes the flexible toroidal helical spring (8) to deform under pressure enabling the movable resistance-insertion contact (2) to be withdrawn. Among other uses, the switch is suitable for use in a resistance-inserting device that does not need additional mechanical moving parts.For application to high- and very high-voltage circuit breakers and switches. |
US08952278B2 |
Interlocking mechanism for switching devices
An interlocking mechanism for interlocking a first and a second low voltage switching devices, wherein each of the switching devices includes a movable contact part, a stationary contact part and, an actuating unit for operating the movable contact part in a direction and making connection or disconnection with the stationary contact part. The interlocking mechanism includes a first and a second housing connected to each other, a first and a second sliding bar. The first sliding bar is arranged on the first housing and connects to the actuating unit of the first switching device. The second sliding bar is arranged on the second housing and connects to the actuating unit of the second switching device. A sliding plane is defined and has a X- and Y-axis, the Y-axis being defined in the direction of motion of the actuating unit of the switching devices. |
US08952277B2 |
Power-switching device with interlock mechanism
A power-switching device with interlock mechanism has a housing with a rotary knob, a slider slidably moved into a rotation range of the rotary knob, and an activation switch mounted on a sliding path of the slider. The activation switch has a control button located on an overlapped portion of the sliding path of the slider and the rotation range of the rotary knob. When the slider approaches the rotary knob, the activation switch is activated and the rotary knob is unable to rotate for being blocked. When the slider departs from the rotary knob, the activation switch is deactivated and the rotary switch is rotatable. Accordingly, when manually bypassing a UPS by turning the rotary knob, users will not forget to deactivate the activation switch, thereby avoiding damaging the UPS. |
US08952276B2 |
Suitcase scale contained within a buckle housing
A suitcase scale is bundled a suitcase for providing functions of scaling and anti-theft. The suitcase scale comprises a housing, a processing unit disposed in the housing, a weight sensor secured in the housing and electrically connected to the processing unit, a combination lock mounted into the housing, a buckle detachably engaged to the housing and a strap having two opposite ends respectively connected to the buckle and the housing. Consequently, the strap, the buckle and the housing form an endless ring for bundling the suitcase when the combination lock is in a locked condition. The suitcase scale immediately shows the total weight value of the suitcase to prevent the user from paying and excessive baggage charge and provides a function of anti-theft due to the combination lock such that a thief or a pickpocket can not steal the belongings in the locked suitcase. |
US08952271B2 |
Circuit board, semiconductor device, and method of manufacturing semiconductor device
There is provided a circuit board to which a solder ball composed of a lead (Pb)-free solder is to be connected, a semiconductor device including an electrode and a solder ball composed of a lead (Pb)-free solder disposed on the electrode, and a method of manufacturing the semiconductor device, in which mounting reliability can be improved by enhancing the bonding strength (adhesion strength) between the solder ball composed of a lead (Pb)-free solder and the electrode. |
US08952268B2 |
Interposed substrate and manufacturing method thereof
A manufacturing method of an interposed substrate is provided. A photoresist layer is formed on a metal carrier. The photoresist layer has plural of openings exposing a portion of the metal carrier. Plural of metal passivation pads and plural of conductive pillars are formed in the openings. The metal passivation pads cover a portion of the metal carrier exposed by openings. The conductive pillars are respectively stacked on the metal passivation pads. The photoresist layer is removed to expose another portion of the metal carrier. An insulating material layer is formed on the metal carrier. The insulating material layer covers the another portion of the metal carrier and encapsulates the conductive pillars and the metal passivation pads. An upper surface of the insulating material layer and a top surface of each conductive pillar are coplanar. The metal carrier is removed to expose a lower surface of the insulating material layer. |
US08952266B2 |
Structural body and interconnect substrate
A structural body includes: a first conductor and a second conductor of which at least portions are opposite to each other; a third conductor, interposed between the first conductor and the second conductor, of which at least a portion is opposite to the first conductor and the second conductor, and has a first opening; an interconnect provided in the inside of the first opening; and a conductor via which is electrically connected to the first conductor and the second conductor and is electrically insulated from the third conductor, wherein the interconnect is opposite to the first conductor and the second conductor, one end thereof being electrically connected to the third conductor at an edge of the first opening and an other end thereof being formed as an open end. |
US08952263B2 |
Micro-wire electrode pattern
A micro-wire electrode includes a substrate and an anisotropically conductive electrode extending in a length direction formed over the substrate. The electrode includes a plurality of electrically connected micro-wires formed in a micro-pattern over the substrate. The micro-pattern includes a plurality of substantially parallel and straight micro-wires extending substantially in the length direction and a plurality of angled micro-wires formed at a non-orthogonal angle to the straight micro-wires electrically connecting the straight micro-wires so that the anisotropically conductive electrode has a greater electrical conductivity in the length direction than in another conductive electrode direction. |
US08952260B1 |
Circuit boards defining regions for controlling a dielectric constant of a dielectric material
In some embodiments, a printed circuit board, configured to be coupled to electronic components, includes a first material portion and any number of second material portions. Each second material portion is sized and spaced apart from an adjacent second material portion such that electromagnetic waves associated with the operation of the electronic components are substantially not reflected. The first material portion defines a first dielectric constant and the second material portion defines a second dielectric constant that is different than the value of the first dielectric constant. |
US08952258B2 |
Implementing graphene interconnect for high conductivity applications
A method, and structures for implementing enhanced interconnects for high conductivity applications. An interconnect structure includes an electrically conductive interconnect member having a predefined shape with spaced apart end portions extending between a first plane and a second plane. A winded graphene ribbon is carried around the electrically conductive interconnect member, providing increased electrical current carrying capability and increased thermal conductivity. |
US08952257B2 |
Electrical conductor for a high-current bushing
An electrical conductor carries a rated current in a high-current bushing of a transformer. The electrical conductor includes a conductor piece which extends along an axis and has a cylindrical envelope surface, a first electrical connection, and a second electrical connection. The first electrical connection has two contact surfaces which are aligned parallel to one another. Electrical losses of the electrical conductor are kept low, with a compact design. This is achieved, in part, because the second electrical connection is connected without a joint to the conductor piece, and the first electrical connection is hollow and, at right angles to the axis, has an oval profile with two longitudinal faces which form the two contact surfaces. In addition, a hollow electrical conductor section is arranged between the first electrical connection and the conductor piece, connects the first electrical connection to the conductor piece, and forms a smooth transition from the two contact surfaces of the first electrical connection to the envelope surface of the conductor piece. |
US08952255B2 |
Subsea pipeline direct electric heating cable with a protection system
A piggyback cable (10) has a copper conductor (2) with a triple extruded insulation system including a conductor screen (13), an insulation layer (14), and an insulation screen (15), an inner sheath (16) surrounding this insulation system, and an outer sheath (18), the space between the inner (16) and outer (18) sheaths being filled with protective elements. The protective elements have thermoplastic (21) elements arranged together to form at least one layer helically wound around the said cable (10). |
US08952253B2 |
Enclosure of electronic device
An enclosure includes a sidewall defining an opening through which a connector is to extend and a through hole, a resilient piece, and a sliding member slidably received in the through hole. The resilient piece includes a connecting piece slantingly extending from the sidewall between the opening and the through hole and a contacting piece connected to a distal end of the connecting piece. When the connector extends through the opening, The sliding member is slid toward the resilient piece to force the contacting piece to contact the connector. |
US08952248B2 |
Dye-sensitized solar cell module and method of fabricating the same
A dye-sensitized solar cell module is disclosed. The dye-sensitized solar cell module includes a solution capable of being selectively printed on only a desired region and used in the formation of a metal oxide film. The solution for the metal oxide film formation can be selectively printed on only the surface of metal oxide nano-particle without affecting the electrical conductivity of the electrode and a sealant interposed between transparent electrodes. Therefore, the dye-sensitized solar cell module can greatly improve the output efficiency. Moreover, the dye-sensitized solar cell module can prevent the output efficiency deterioration at an enlarged size. |
US08952247B2 |
Photoelectric converter and solar cell using the same
The present invention provides a photoelectric conversion device having at least a fullerene derivative as an electron acceptor and a compound as an electron donor between a pair of electrodes, wherein the fullerene derivative has 2 to 4 organic groups which each independently have 1 to 50 carbon atoms, and wherein when the fullerene derivative has two organic groups, these organic groups do not bind to each other to form a ring. |
US08952246B2 |
Single-piece photovoltaic structure
A material is manufactured from a single piece of semiconductor material. The semiconductor material can be an n-type semiconductor. Such a manufactured material may have a top layer with a crystalline structure, transitioning into a transition layer, further transitioning into an intermediate layer, and further transitioning to the bulk substrate layer. The orientation of the crystalline pores of the crystalline structure align in layers of the material. The transition layer or intermediate layer includes a material that is substantially equivalent to intrinsic semiconductor. Also described is a method for manufacturing a material from a single piece of semiconductor material by exposing a top surface to an energy source until the transformation of the top surface occurs, while the bulk of the material remains unaltered. The material may exhibit photovoltaic properties. |
US08952241B2 |
Solar cell module
A solar cell module includes a protective body, a sheet facing the protective body, a filler layer provided between the protective body and the sheet, and a solar cell disposed inside the filler layer. The filler layer has a first filler layer and a second filler layer. The first filler layer is provided in contact with the sheet. The first filler layer is formed of a resin. The second filler layer is formed of a resin whose gel fraction is higher than 0% and is less than a gel fraction of the resin of the first filler layer. |
US08952240B2 |
Solar cell module
A drawing-out opening part and a first insertion slit formed in a back-surface-side sealing body in a direction almost orthogonal to the principal surface of the solar cell module are designed not to overlap each other on a projection plane in parallel to the principal surface of the solar cell module. |
US08952238B1 |
Concentrated photovoltaic and solar heating system
A solar power system concurrently generates electricity and a heated transparent fluid while maintaining the solar cells at an optimum temperature and optimizing the heat transfer by matching the refractive index of the secondary sunlight concentrator to the transparent fluid. A solar tracker aligns a primary sunlight concentrator to collect sunlight and directs the sunlight and a system for transferring solar heat to a transparent fluid and into a solar power electrical generating system. The concentrated sunlight transfers solar heat to a transparent fluid via first pass through the transparent fluid. The concentrated sunlight is further concentrated to raise its temperature by passing the concentrated sunlight through a secondary sunlight concentrator, and then passed again through the transparent fluid to transfer heat. The solar energy diminished concentrated sunlight strikes a solar cell array to generate electricity. |
US08952237B2 |
Solar battery module and solar power generation system
There is provided a solar battery module including a plurality of solar batter cells arranged on a same plane with a predetermined gap area, a light-receiving-surface side protecting member and a rear-surface side protecting member sandwiching the solar battery cells therebetween, and an irreversible temperature indicator that is provided on an outer surface of a non-light-receiving surface side of the rear-surface side protecting member. The irreversible temperature indicator changes its color when a temperature rises to a predetermined color-changing temperature and maintains a color-changed status even when the temperature is decreased from the color-changing temperature to indicate a temperature rise to the predetermined color-changing temperature. |
US08952232B2 |
Circular piano keyboard
According to embodiments herein, a circular, semi-circular, or generally rounded piano keyboard is shown and described. In particular, in an illustrative embodiment, the piano keyboard is a fully to nearly-fully circular stage piano keyboard that surrounds a keyboardist, allowing for up to 360 degrees of key-play. Other, e.g., wearable, embodiments of the circular piano keyboard are also described, such as a curved keytar or a curvaceous “keydress.” |
US08952230B2 |
Guitar neck and body attachment mechanism
An attachment mechanism for selective attachment of a stringed instrument neck to a stringed instrument body includes a recess formed in the body with a first part of a latch mechanism. The neck includes a capture block at a forward end thereof adapted to fit snugly within the recess of the body and having a second part of the latch mechanism. With the neck seated in the recess of the body, the neck may be pressed down until the first part of the lock mechanism engages the second part of the lock mechanism to lock the neck into the body. A threaded bolt traversing the body may be included to engage a threaded aperture formed in the neck to further secure the neck to the body. A removable bridge and carrying case may be further included. |
US08952229B1 |
Maize inbred PH1K0H1
A novel maize variety designated PH1K0H1 and seed, plants and plant parts thereof. Methods for producing a maize plant that comprise crossing maize variety PH1K0H1 with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into PH1K0H1 through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. Hybrid maize seed, plant or plant part produced by crossing the variety PH1K0H1 or a locus conversion of PH1K0H1 with another maize variety. |
US08952224B1 |
Soybean cultivar 21238
Disclosed is the seed of a novel soybean cultivar, designated 21238, a sample of which is deposited under ATCC Accession No. PTA-121198. Also disclosed are plants, or parts thereof, grown from the seed of the cultivar, plants having the morphological and physiological characteristics of the 21238 cultivar, and methods of using the plant or parts thereof in a soybean breeding program. |
US08952220B2 |
Hybrid carrot variety rebel
The present invention relates to plants of a carrot variety REBEL and seeds and progeny thereof. The invention further relates to methods for producing a carrot plant by traditional breeding methods. The invention further relates to a method for producing a carrot plant containing in its genetic material one or more transgenes. |
US08952214B2 |
Animal model for chronic obstructive pulmonary disease and cystic fibrosis
A nonhuman transgenic mammal is described whose genome comprises a promoter construct operably linked to a heterologous DNA encoding an epithelial sodium channel β subunit, wherein said promoter construct directs expression of the epithelial sodium channel β subunit in lung epithelial cells of said animal, and wherein said transgenic mammal has increased lung mucus retention as compared to the corresponding wild-type mammal. The animal is useful in screening compounds for activity in treating lung diseases such as cystic fibrosis and chronic obstructive pulmonary disease. |