Document Document Title
US08942485B2 Electronic device and method for recognizing features of objects
An electronic device stores haar-like features and geometrical features of an object. A reference image of the object is created according to the geometrical features of the object. An outline image is obtained from each image of the object. The electronic device calculates derivatives of each two adjacent points on the reference image and each outline image. A derivative matrix of the reference image and a derivative matrix of each outline image are generated. The electronic device generates a first derivative curve corresponding to the derivative matrix of the reference image and a second derivative curve corresponding to each derivative matrix of the outline image. When all the second derivative curves are the same as the first derivative curve, the electronic device determines whether each outline image is corresponding to the object by using the haar-like features of the object.
US08942483B2 Image-based georeferencing
An image-based georeferencing system comprises an image receiver, an image identification processor, a reference feature determiner, and a feature locator. The image receiver is configured for receiving a first image for use in georeferencing. The image comprises digital image information. The system includes a communicative coupling to a georeferenced images database of images. The image identification processor is configured for identifying a second image from the georeferenced images database that correlates to the first image. The system includes a communicative coupling to a geographic location information system. The reference feature determiner is configured for determining a reference feature common to both the second image and the first image. The feature locator is configured for accessing the geographic information system to identify and obtain geographic location information related to the common reference feature.
US08942482B2 Image quality assessment
Methods and systems for image quality assessment are disclosed. A method includes accessing an image, identifying features of the image, assessing the features and generating subjective scores for the features based upon a mapping of the features to the subjective scores and based on the subjective scores, generating an image quality score. Access is provided to the image quality score.
US08942481B2 Three dimensional CMOS image processor for feature detection
Disclose embodiments include an image processor for feature detection comprising a single non-planar chip containing a plurality of integrated sensing and processing resources across two or more layers adapted to capture image frames and extract image features. In a particular embodiment, the non-planar chip is a three dimensional CMOS integrated circuit (3D CMOS IC) with vertical distribution of sensing and processing resources across two or more vertical integrated circuit layers. The 3D CMOS IC implements two or more feature detectors in a single chip by reusing a plurality of circuits employed for gradient and keypoint detection. Feature detectors include a scale invariant feature transform detector (SIFT), a Harris-based feature detector, and a Hessian-based feature detector.
US08942480B2 Optical imager and method for correlating a medication package with a patient
A system is provided to correlate a medication package with a prescribed medication for a patient. The medication package accommodates an intended patient medication. The system includes an optical imager adapted to read an encoded symbol character comprising encoded patient information and further adapted to image an attribute of the medication package. The optical imager comprises a two-dimensional image sensor array and an imaging lens for focusing an image on the two-dimensional image sensor array. The two-dimensional image sensor array has a plurality of pixels formed in a plurality of rows and columns of pixels. The optical imager further includes a digital link to transmit a segment of data. The segment of data includes the patient information encoded in the encoded symbol character and the attribute of the medication package.
US08942479B2 Method and apparatus for pictorial identification of a communication event
The specification and drawings present a new method, apparatus and software product for pictorial identification of a communication event using speech or text recognition in an electronic device. The communication can be (but is not limited to) a telephone call, an electronic mail message, MMS, SMS, an instant message, etc. Words from the communication event are identified using the speech or text recognition by the electronic device and at least one picture out of a library of reference pictures is identified by comparing the identified words with the key picture words using a predetermined criterion. Color background of the identified standard picture can be also identified using the identified words and a further predetermined criterion. The identified picture can be displayed during the communications event or can be stored so the user can identify the topic of the communication event later on.
US08942478B2 Information processing apparatus, processing method therefor, and non-transitory computer-readable storage medium
An image processing apparatus acquires an image; sets a plurality of partial regions for the acquired image, and acquiring an image feature amount including a plurality of frequency components from each of the partial regions; compares the acquired image feature amount with an image feature amount of a background model which holds, for each of the partial regions, an image feature amount of an image as a background; updates, based on the comparison result, each of a plurality of frequency components included in the image feature amount held in the background model using the acquired image feature amount by a degree according to each of the frequency components; and detects, using the background model updated in the updating, for each of the partial regions, a region where a target object to be detected exists.
US08942477B2 Image processing apparatus, image processing method, and program
An image processing method includes inputting input image data captured by an imaging unit, generating an input histogram of the input image data based on the input image data, and correcting the input image data based on noise characteristics data and the input histogram, wherein the noise characteristics data includes data indicating probability of a first characteristic value becoming a second characteristic value due to noise.
US08942469B2 Method for classification of videos
A method for classifying a video regarding a subjective characteristic, the method comprising: measuring a plurality of basic features (11) per frame thus obtaining a plurality of basic features measurements; creating a plurality of second-level features by pooling (12) said basic features (11) measurements using a plurality of statistics of said basic features measurements in a determined period of time of footage; creating a plurality of video features by pooling (13) said plurality of second-level features using a plurality of statistics of said second level features along the duration of the video; choosing at least one video feature of said plurality of video features for classifying a video regarding a subjective characteristic.
US08942468B1 Object recognition
Techniques for a shape descriptor used for object recognition are described. Tokens of an object in digital image data are captured, where tokens can be edges, interest points or even parts. Geometric configurations of the tokens are captured by describing portions of the shape of the object. The shape of such configurations is finely quantized and each configuration from the image is assigned to a quantization bin. Objects are recognized by utilizing a number of quantization bins as features. This Abstract is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
US08942467B2 Method for reducing blocking artifacts in images
Blocking artifacts are reduced by projecting each patch obtained from an input image onto a set of bases vectors to determine multiple representations for each patch. The set of bases vectors are learned from a training image, and the bases vectors include a full basis vector, and one or two subspace bases vectors. An optimal basis vector is determined in the set of bases vectors for each patch according to the projection. A threshold is applied to coefficients of the optimal basis vector to determine a filtered representation for each patch, and a reconstructed patch is generated using the filtered representation. Then, the aggregating the reconstructed patches are aggregated to produce an output image.
US08942466B2 Sensory input processing apparatus and methods
Sensory input processing apparatus and methods useful for adaptive encoding and decoding of features. In one embodiment, the apparatus receives an input frame having a representation of the object feature, generates a sequence of sub-frames that are displaced from one another (and correspond to different areas within the frame), and encodes the sub-frame sequence into groups of pulses. The patterns of pulses are directed via transmission channels to detection apparatus configured to generate an output pulse upon detecting a predetermined pattern within received groups of pulses that is associated with the feature. Upon detecting a particular pattern, the detection apparatus provides feedback to the displacement module in order to optimize sub-frame displacement for detecting the feature of interest. In another embodiment, the detections apparatus elevates its sensitivity (and/or channel characteristics) to that particular pulse pattern when processing subsequent pulse group inputs, thereby increasing the likelihood of feature detection.
US08942462B2 Method for automatic quantification of dendrite arm spacing in dendritic microstructures
A method to automatically quantify dendrite arm spacing in dendritic microstructures. Once a location of interest in a cast material specimen has been identified, the information contained in it is automatically analyzed to quantify dendrite cell size information that is subsequently converted into a quantified dendrite arm spacing through an empirical relationship or a theoretical relationship. In one form, the relationship between DCS and DAS is such that the DAS in dendritic structure of cast aluminum alloys may be automatically determined from the measurement of one or more of dendrite cell size and the actual volume fraction of the eutectic phases in the local casting microstructure. Non-equilibrium conditions may be accounted for in situations where a theoretical volume fraction of a eutectic phase of the alloy in equilibrium condition is appropriately modified. Thus, in situations where equilibrium conditions—such as those where the casting is cooled very slowly during solidification—does not apply (such as during rapid cooling and consequent solidification), the eutectic measured in the non-equilibrium condition, which can be smaller than the theoretical value in equilibrium, can be accounted for.
US08942460B2 Medical image processing apparatus that normalizes a distance between an inner wall and outer wall of the myocardial region
According to one embodiment, storage unit stores three-dimensional function image data concerning a function index of the heart. The extraction unit extracts a myocardial region from the three-dimensional function image data. The normalization unit normalizes the distance between the inner wall and outer wall of the myocardial region with a predetermined numerical value range. The generation unit generates a bull's eye map expressing a spatial distribution of pixel values at positions on the myocardial region by two-dimensional polar coordinates. The positions correspond to predetermined values in the predetermined numerical value range. The display unit displays the bull's eye map.
US08942458B2 Method for distinguishing and sorting of cells and device therefor
A method for distinguishing and sorting cells characterized by comprising distinguishing and sorting a specific cell mass or a part of the cells in the cell mass with the use of transmitted light data reflecting the morphological characteristics of the cells such as size and shape optionally together with side-scattering light data reflecting the characteristics of the internal structure of the cells. The part of the cells in the specific cell mass as described above are at the G1 stage or at a part of the M stage in the cell cycle. A part of the cells at the G1 stage are referred to as the left bottom line in an analytical dispersion diagram of the cells wherein the abscissa indicates the transmitted light data, while a part of the cells at the M stage are referred to as the right bottom line in the analytical dispersion diagram of the cells wherein the abscissa indicates the transmitted light data.
US08942457B2 Navigating an interventional device
The present invention relates to navigating an interventional device. In particular, the invention relates to a system for navigating an interventional device within a tubular structure of an object, a method for navigating an interventional device within a tubular structure of an object as well as a computer program element and a computer-readable medium. In order to provide enhanced information to the user in an easily comprehensible manner while keeping the X-ray dose to a minimum, a system and a method for navigating an interventional device within a tubular structure of an object are provided, wherein the method comprised the following steps: a) Acquiring 2D X-ray fluoroscopy image data in one projection geometry of a region of interest of the tubular structure; b) detecting the interventional device in the 2D X-ray image; c) determining the 2D position of the interventional device in the 2D X-ray image; d) registering the at least one 2D X-ray image with a previously acquired 3D dataset of the region of interest of the tubular structure; e) mapping the determined 2D position of the interventional device to a position in the 3D dataset; f) extracting local 3D parameters of the tubular structure at the position of the interventional device; g) generating navigational information on behalf of the determined 3D position of the interventional device and the extracted local 3D parameters; and h) providing the navigational information to the user.
US08942455B2 2D/3D image registration method
A method (100) that registers a 3D heart volume (112, 114) obtained from either a pre-operative MR image or CT image (102) to an intra-operative fluoroscopic image using a mesh of the heart structure (106) as the basis for the registration.
US08942452B2 Apparatus and method for smoothing random event data obtained from a Positron Emission Tomography scanner
A method and apparatus for smoothing random event data obtained from a Positron Emission Tomography (PET) scanner. The method includes obtaining initial random event data u(s, φ, t=0)=u0(s, φ), corresponding to t=0, calculating second-order central differences uss, uφφ with respect to s, φ, calculating a gradient ut, using ut=2(uss+uφφ)−λ(u−u0), where λ is a constant parameter, and updating the random event data using u(s, φ, t2)=u(s, φ, t1)+Δt ut, where Δt=t2−t1, t1=0 in a first iteration, and Δt is greater than 0. The method repeats the steps of calculating the second-order central differences, calculating the gradient, and updating the random event data until a change in u(s, φ, t) from a previous iteration is less than a predetermined threshold value.
US08942450B2 Method to process images obtained by tomography or few view tomosynthesis
The invention concerns the reconstruction of a two-dimensional (2D) or three-dimensional (3D) image of an object, for example part of a region of interest in a patient, on the basis of a set of a one-dimensional or two-dimensional views respectively of the region of interest, taken from different positions by an imagining system around the region of interest. The invention finds particular application in medical imaging by tomography reconstruction of Few-View Tomography.
US08942449B2 Calibration of a probe in ptychography
A method of providing image data for constructing an image of a region of a target object, comprising providing a reference diffraction pattern of a reference target object; determining an initial guess for a probe function based upon the reference diffraction pattern; and determining, by an iterative process based on the initial guess for the probe function and an initial guess for an object function, image data for a target object responsive to an intensity of radiation detected by at least one detector.
US08942447B2 Method and apparatus for tissue region identification
Certain aspects of an apparatus and method for method and apparatus for tissue region identification may include segmenting the image into a plurality of regions, filtering out regions in the plurality of regions which are curvilinear, and isolating a target area where the tissue sample is identified as the plurality of regions not filtered.
US08942437B2 Ultrasonic area-array sensor with area-image merging
A method and device for using a small area-array sensor to produce a larger image of a biological object is disclosed. In a method according to the invention, the presence of a biological object is detected, and images of the biological object are collected using the area-array sensor. Pixels from at least some of the collected area-images are discarded to produce a set having modified area-images, and the area-images of the set are combined to form an extended image using an image merging algorithm.
US08942436B2 Image processing device, imaging device, image processing method
An image including a face is input (S201), a plurality of local features are detected from the input image, a region of a face in the image is specified using the plurality of detected local features (S202), and an expression of the face is determined on the basis of differences between the detection results of the local features in the region of the face and detection results which are calculated in advance as references for respective local features in the region of the face (S204).
US08942434B1 Conflict resolution for pupil detection
The pupil locations of a user with respect to a computing device can be determined by capturing one or more images of the user and analyzing those images using a set of pupil detection algorithms. Each algorithm can produce at least one estimated position with an associated confidence value, and this information from each algorithm can be used to determine a probable location of each pupil. In some embodiments, one or more environmental factors can be used to adjust the confidence values or select algorithms based on how the corresponding algorithms perform under those conditions. Similarly, an independence of the various algorithms can be utilized in some embodiments to adjust the confidence levels or weight results based on a level of dependence between those algorithms.
US08942432B2 System and method for comparing documents
The present invention relates to a system and a method for comparing information contained on at least two documents belonging to an entity. The present invention includes at least one device configured to receive information from at least one first document and at least one second document; then, compare at least one first document information and at least one second document information; and determine whether at least one second document contains at least one first document information. The present invention then outputs a result of whether the at least one second document contains at least one first document information.
US08942425B2 Airport target tracking system
A system for tracking objects using an Intelligent Video processing system in the context of airport surface monitoring. The system addresses airport surface monitoring operational issues such as all weather conditions, high robustness, and low false report rate. The output can be used to complement existing airport surface monitoring systems. By combining the use of multi-sensors and an adverse weather optimized system, the system is capable of producing an improved stream of information for the target object over traditional computer vision based airport surface monitoring systems.
US08942423B2 Methods for automatic segmentation and temporal tracking
In one embodiment, a method of detecting centerline of a vessel is provided. The method comprises steps of acquiring a 3D image volume, initializing a centerline, initializing a Kalman filter, predicting a next center point using the Kalman filter, checking validity of the prediction made using the Kalman filter, performing template matching, updating the Kalman filter based on the template matching and repeating the steps of predicting, checking, performing, and updating for a predetermined number of times. Methods of automatic vessel segmentation and temporal tracking of the segmented vessel is further described with reference to the method of detecting centerline.
US08942420B2 Detecting embossed characters on form factor
A portable computing device reads information embossed on a form factor utilizing a built-in digital camera and determines dissimilarity between each pair of embossed characters to confirm consistency. Techniques comprise capturing an image of a form factor having information embossed thereupon, and detecting embossed characters. The detecting utilizes a gradient image and one or more edge images with a mask corresponding to the regions for which specific information is expected to be found on the form factor. The embossed form factor may be a credit card, and the captured image may comprise an account number and an expiration date embossed upon the credit card. Detecting embossed characters may comprise detecting the account number and the expiration date of the credit card, and/or the detecting may utilize a gradient image and one or more edge images with a mask corresponding to the regions for the account number and expiration date.
US08942412B2 Method and apparatus for controlling multi-experience translation of media content
A method or apparatus for controlling a media device using gestures may include, for example, modifying media content to generate first updated media content according to a comparison of first information descriptive of a first environment of the source device to second information descriptive of a second environment of the recipient device, capturing images of a gesture, identifying a command from the gesture, and modifying the first updated media content to generate second updated media content according to the command. Other embodiments are disclosed.
US08942411B2 Image combining
One or more techniques and/or systems for combining images of objects are disclosed where an image of a first object is to be inserted into an image of a second object in such a manner as to make the insertion substantially undetectable by a human observer of the combined image. An object generator generates a substantially artifact free image of a first object. An object locator orients the first object image according to a desired insertion point in a second object image. A forward projector converts the first object image into projection space data of the first object, and a combiner combines the first object projection space data with the second object projection space data. The combined projection space data is converted to image space data by a reconstructor, and the resulting combined image space data can be displayed on a monitor for human observation.
US08942407B2 Loudspeaker and diaphragm therefor
A loudspeaker radiating diaphragm can be stiffened to help increase the breakup frequency to above the working frequency range of the driver concerned, by forming it of a molded part and an attached formed part. The molded part is a radiating surface with stiffening ribs. The formed part is a thin surface of high modulus material, attached to the rear of the ribs. The overall structure can have significantly higher stiffness than either of the two parts. This helps in designing a loudspeaker driver that does not breakup within its working frequency range.
US08942405B2 Earphone device
An earphone device comprises an inner casing enclosing one or more miniature drive units, and a movable cap or outer casing that moves relative to the inner casing. The inner casing has an extension member, such as a hollow post, terminating in an acoustic output port. A compressible foam bulb at least partially surrounds the extension member, and is decompressed and compressed by actuation of an adjustable member. The adjustable member may take the form, for example, of a pivoting lever, a helical cam, or a push-rod mechanism, among other things. A flange may be disposed around the periphery of the movable cap, in order to provide a seal surrounding the ear canal region. The compressible material may be gripped by the hollow extension member, and abut the movable cap or flange. Through actuation of the adjustable member, the compressible material may be decompressed and thus elongated for insertion into the wearer's ear, and may be compressed and thus widened or expanded to form an adequate seal with the wearer's ear canal region.
US08942403B2 Wiring harness for clothing, electronic devices including such a wiring harness, and garments incorporating such a wiring harness and electronic device
A wiring harness for clothing, and garments so equipped. The wiring harness is of asymmetrical configuration, and may extend through channels positioned substantially along reinforced portions of the garment. The wiring harness includes a T-junction from which extend a male media connector and two media cables, a first media cable extending along seams of one side of the garment, and a second media cable extending along a neck portion of the garment from the T-junction at one side to another side, both media cables terminating in male media connectors. The male media connector of the T-junction and the male media connector of the second media cable connect to female media connectors of earphone cables, while the male media connector of the first media cable connects to a female media connector of a portable media device, which may be disposed within a pocket of the garment.
US08942401B2 Electro-acoustic converters, electronic devices, waterproof covers, and air leakage test methods for electro-acoustic converters
It is an object to provide an electro-acoustic converter which can be subjected to air leakage test allowing a gas to pass through a waterproof film in such a condition that the waterproof film is attached to the electro-acoustic converter. An electro-acoustic converter is produced, which includes: a casing having a sound hole; and a diaphragm provided in the casing, wherein the sound hole is covered with the waterproof film to form a closed space, and the closed space is in communication with the outside of the casing through a vent for air leakage test.
US08942398B2 Methods and apparatus for early audio feedback cancellation for hearing assistance devices
Disclosed herein, among other things, are methods and apparatus for improved feedback cancellation for hearing assistance devices. In various embodiments the present acoustic feedback cancellation system is configured to identify the onset of acoustic feedback. This early detection is accomplished in a variety of ways, including detection of an exponential rise in a periodic signal which is associated with early acoustic feedback. The present system is very rapid and so it can operate when the conditions surrounding the hearing aid change quickly. It also is useful to not impose feedback cancellation to longer notes that will “fool” less sophisticated acoustic feedback cancellers into thinking the sound is feedback.
US08942397B2 Method and apparatus for adding audible noise with time varying volume to audio devices
A method and apparatus for adding audible noise with time varying volume to audio devices are disclosed which makes the time varying volume envelope of the added audible noise proportional to the time varying volume envelope of sound for frequencies where an individual has a restricted range of perception. The method and apparatus are used to improve the audibility, speech intelligibility, and word recognition characteristics in audio devices.
US08942396B2 Wireless binaural hearing system
A wireless binaural hearing system comprises a left-ear hearing device, a right-ear hearing device and auxiliary devices. The devices communicate via radio signals. Each device comprises a radio transmitter transmitting messages, each hearing device comprises a radio receiver receiving messages, the auxiliary device is adapted to transmit application messages, and the hearing devices are adapted to receive application messages. The quality of wireless communication varies when the user moves his head, which may lead to temporal gaps in communication. Such gaps may cause annoying pauses and/or delays in audio signals presented to the user, and the hearing devices may become temporarily unsynchronised. To avoid such gaps and improve reliability of the communication, without increasing the radio signal power, a first hearing device relays received application messages to a second hearing device in dependence on network messages received from the second hearing device indicating whether application messages were correctly received.
US08942394B2 Integrated acoustic transducer obtained using MEMS technology, and corresponding manufacturing process
A MEMS acoustic transducer provided with a substrate having cavity, and a membrane suspended above the cavity and fixed peripherally to the substrate, with the possibility of oscillation, through at least one membrane anchorage. The membrane comprises at least one spring arranged in the proximity of the anchorage and facing it, and is designed to act in tension or compression in a direction lying in the same plane as said membrane.
US08942393B2 Piezoelectric sound component
A piezoelectric sound component that includes a resin sheet, a piezoelectric diaphragm, and a casing. The piezoelectric diaphragm vibrates by bending, and is attached to at least part of a central portion of the resin sheet excluding a peripheral portion of the resin sheet. The casing holds the peripheral portion of the resin sheet. The casing supports at least one corner portion of the piezoelectric diaphragm.
US08942389B2 Trim method for CMOS-MEMS microphones
Systems and methods for adjusting a bias voltage and gain of the microphone to account for variations in a thickness of a gap between a movable membrane and a stationary backplate in a MEMS microphone due to the manufacturing process. The microphone is exposed to acoustic pressures of a first magnitude and a sensitivity of the microphone is evaluated according to a predetermined sensitivity protocol. The bias voltage of the microphone is adjusted when the microphone does not meet the sensitivity protocol. The microphone is then exposed to acoustic waves of a second magnitude that is greater than the first magnitude and a stability of the microphone is evaluated according to a predetermined stability protocol. The bias voltage and the gain of the microphone are adjusted when the microphone does not meet the stability protocol.
US08942387B2 Noise-reducing directional microphone array
In one embodiment, a directional microphone array having (at least) two microphones generates forward and backward cardioid signals from two (e.g., omnidirectional) microphone signals. An adaptation factor is applied to the backward cardioid signal, and the resulting adjusted backward cardioid signal is subtracted from the forward cardioid signal to generate a (first-order) output audio signal corresponding to a beampattern having no nulls for negative values of the adaptation factor. After low-pass filtering, spatial noise suppression can be applied to the output audio signal. Microphone arrays having one (or more) additional microphones can be designed to generate second- (or higher-) order output audio signals.
US08942385B1 Headphones with multiple equalization presets for different genres of music
A headphone comprises a plurality of actuatable equalization selectors. Each of the selectors corresponds to an equalization setting that includes a preset distribution of relative amplitudes of sounds in predetermined frequency ranges. In one embodiment, each of the plurality of actuatable equalization selectors is a button-type switch. A knob-type switch or a voice recognition mechanism could also actuate an equalization setting. In a preferred embodiment, an equalizer identification indicator produces a communication perceivable to a headphone wearer and which corresponds to an equalization setting. The communication can be audible, preferably a human voice, or tactile, preferably vibration patterns corresponding to equalization settings.
US08942384B2 Dual-mode headset
A headset comprises a body, an audio transducer, an arm, a detector and processor. The detector can indicate whether the arm is in a first or second position. The headset operates in a headset mode or speakerphone mode responsive to the arm's position.
US08942382B2 Dynamic beamformer processing for acoustic echo cancellation in systems with high acoustic coupling
Near-end equipment for a communication channel with far-end equipment. The near-end equipment includes at least one loudspeaker, at least two microphones, a beamformer, and an echo canceller. The communication channel may be in one of a number of communication states including Near-End Only state, Far-End Only state, and Double-Talk state. In one embodiment, when the echo canceller determines that the communication channel is in either the Far-End Only state or the Double-Talk state, the beamformer is configured to generate a nearfield beampattern signal that directs a null towards a loudspeaker. When the echo canceller detects the Near-End Only state, the beamformer is configured to generate a farfield beampattern signal that optimizes reception of acoustic signals from the near-end audio source. Using different beamformer processing for different communication states allows echo cancellation processing to be more successful at reducing echo in the signal transmitted to the far-end equipment.
US08942381B2 Control of a loudspeaker output
A method of controlling a loudspeaker output comprises deriving an admittance function over time from the voice coil voltage and current. In combination with a delta function, the force factor of the loudspeaker and the blocked electrical impedance, the input-voltage-to-excursion transfer function over time is obtained. This is used to control audio processing for the loudspeaker thereby to implement loudspeaker protection and/or acoustic signal processing; The invention provides a modelling and control approach which is not based on a parametric model. As a consequence, it does not require prior knowledge regarding the enclosure (e.g. closed or vented box) and can cope with complex designs of the enclosure.
US08942380B2 Method for generating a downward-compatible sound format
A method of generating an audio output signal according to a downward compatible sound format, the method including: generating a sum signal by combining a first input channel signal with a second input channel signal; and dynamically correcting the sum signal using samples of the first and second input channel signals from overlapping time windows.
US08942375B2 Method and system for providing multiple encryption in a multi-band multi-protocol hybrid wired/wireless network
Multiple encryption in a multi-band multi-protocol hybrid wired/wireless network may include receiving on a first PHY channel of an access point, a request for initiation of a communication session from an originating access device. The received request may be acknowledged on the first PHY channel and the originating access device may be authenticated on a second PHY channel. One or more encryption/decryption keys may be provided for use during the communication session. A third PHY channel or the first or second PHY channels may host the communication session. The authentication information may be requested and delivered to the originating access device via a second PHY channel. The encryption key may be delivered to the originating access device via the first PHY channel or the second PHY channel. Additionally, information may be tunneled over a virtual channel established between the originating and a terminating access device.
US08942369B2 Method for providing support services using multi-channel navigator and route sequences
A service center receives a command from a remote device over a network, where the service center provides support services to users on products on behalf clients. Based on the command, a context element of a route sequence map associated with a user of the remote device is identified, where the identified context element is one of context elements of the route sequence map in a hierarchical structure. Each context element having one or more property values specifying at least one of an action to be performed by the service center and a link to one or more child context elements. It is determined whether the identified context element is an action context element or a navigation context element based on one or more property values associated with the identified context element. If so, an action specified by the identified context is performed.
US08942367B1 Method and apparatus for routing a call in a communications network
A method and apparatus for routing a call based on electronic calendar entries in a communications network is described. In one embodiment, a call request to establish a connection with a subscriber of network services is received. An electronic calendar associated with the subscriber is subsequently accessed. Afterwards, the call request is routed to a phone number associated to a present agenda activity detailed in the electronic calendar.
US08942356B2 System and method for three-way call detection
A system for detecting three-way calls in a monitored telephone conversation includes as speech recognition processor that transcribes the monitored telephone conversation and associates Characteristics of the monitored telephone conversation with a transcript thereof, a database to store the transcript and the characteristics associated therewith, and a three-way Call detection processor to analyze the characteristics of the conversation and to detect therefrom the addition of one or more parties to the conversation. The system preferably includes at least one domain-specific language model that the speech recognition processor utilizes to transcribe the conversation. The system may operate in real-time or on previously recorded conversations. A query and retrieval system may be used to retrieve and review call records from the database.
US08942352B2 Field emission x-ray tube apparatus for facilitating cathode replacement
The present disclosure relates to a field emission X-ray tube apparatus for facilitating cathode replacement, and more particularly, to a field emission X-ray tube apparatus for facilitating cathode replacement in which gates and cathodes are easily arranged through a joining member and a rotation preventing guide when gates and insulating spacers are rotated and joined with the cathodes while the cathodes and respective gates maintain electrical insulation, thereby easily replacing the cathodes.
US08942349B2 Processing of radiological images to delete markers without image deterioration
The disclosure generally relates to dual-energy imaging, and in particular, techniques to produce and process dual-energy images using a dual-energy imaging system. One embodiment provides a method for generating at least one image of a region of interest in a patient, the method comprising: obtaining at least two radiological images of the region of interest identified with at least one marker arranged on and/or around the patient, wherein a first image is acquired with a first X-ray energy and a second image is acquired with a second X-ray energy; and determining a final radiological image of the region of interest by linearly combining the two radiological images to obtain an image without the markers.
US08942347B2 X-ray imaging apparatus and method for controlling the same
The X-ray imaging apparatus includes an X-ray generator to generate X-rays having at least two different energy levels and irradiate the X-rays onto a subject, a detector to detect the X-rays irradiated by the X-ray generator and transmitted through the subject, and a device to obtain images from the X-rays detected by the detector, to obtain bone image information and soft tissue image information of the subject, based on the obtained X-ray images, and to produce one image including the bone image information and the soft tissue image information.
US08942339B2 Shift register
A shift register is disclosed, which can prevent malfunctioning of device by decreasing the load on a discharging voltage source line, and can decrease a size of stage. The shift register comprises a plurality of stages to sequentially output scan pulses through respective output terminals, wherein each of the stages comprises a pull-up switching unit controlled based on a signal state of node, and connected between the output terminal and any one among a plurality of clock transmission lines to transmit the clock pulses provided with sequential phase differences; and a node controller to control the signal state of node, and to discharge the node by using the clock pulse from any one among the plurality of clock transmission line.
US08942337B2 Systems and methods for handling race conditions during data transfer in an implantable medical device
The accuracy of data processing operations in implantable medical devices is improved through reductions in errors associated with data acquisition, reading, and transmission. In one embodiment, two or more circuit modules of the device are operated at different clock speeds and a voting scheme is utilized to obtain a valid data value from one of the modules. The disclosure describes methods, devices and systems that utilize the voting schemes to eliminate errors induced by race conditions in obtaining the valid data values by obtaining a plurality of data samples during operation of the circuit modules at the different clock speeds and selecting from among the data samples the valid data value.
US08942333B2 Apparatus and methods for clock alignment for high speed interfaces
Apparatuses and methods for phase aligning at least two clocks used by respective first and second circuitry systems, such as a memory controller and a DDR PHY interface in a system on a chip system. A first circuit samples a phase of a first clock used by the first circuitry system, and then a delay circuit selectively delays a second clock used by the second circuitry system and sets a delayed timing of the second clock. To economize resources and reduce chip area, a logic circuit receives the sampled phase of the first clock, determines which delayed timing matches timing of the sampled phase, and sets the delay circuit to a fixed delayed timing corresponding to the delayed timing that matches the sampled phase. Thus, phase alignment of the two clocks is achieved with fewer resources.
US08942331B2 Apparatus and method for improving the performance of a linear equalizer with multiple receive antennas
Disclosed are methods and apparatus for initializing an equalizer in a diversity receiver. In one aspect, the initialization includes estimating a channel impulse response (CIR) for each receiver chain of the diversity receiver; determining noise power estimates for each receiver chain based on the CIRs; and adaptively adjusting equalizer taps of each receiver chain based on the noise power estimates. In one aspect, the adaptive adjusting of the equalizer taps is based on scaling the CIR and covariance metrics for the receiver chain with higher noise power by a scale factor determined from the noise power estimates. In another aspect, the adaptive adjusting of the equalizer taps is based adaptive conditioning on the diagonal of the covariance matrix.
US08942330B2 Interference reduction method for downhole telemetry systems
A method for reducing interference in a received downhole telemetry signal includes: segmenting a received signal; windowing each signal segment; transforming each windowed signal segment into a complex variable domain to generate a plurality of complex variable domain segments with an in-phase component vector I and a quadrature component vector Q; calculating a real amplitude vector A from the I and the Q vectors; filtering interferers in the amplitude vector A for each complex variable domain segment to generate a filtered amplitude vector Ã; recalculating an amplitude of the amplitude vector A using the filtered amplitude vector à to generate an output amplitude vector Â; scaling the I and the Q vectors by a factor Â/A to generate an output in-phase component vector I′ and an output quadrature component vector Q′; and transforming I′ and Q′ into the time domain to provide an interference-reduced output signal in the time domain.
US08942328B2 Timing recovery apparatus and method
A timing recovery apparatus for compensating a sampling frequency offset of an input signal is provided. The timing recovery apparatus includes a timing error corrector configured to generate an output signal according to the input signal and a calibration signal, a gain controller configured to adjust at least one of a signal edge low-frequency error component and a signal edge high-frequency error component of the output signal and accordingly generate an adjusted signal, a timing error detector configured to generate an error signal according to the adjusted signal, and a calibration signal generator coupled to the timing error detector and the timing error corrector, for generating the calibration signal according to the error signal and outputting the calibration signal to the timing error corrector to compensate the sampling frequency offset of the input signal.
US08942325B2 Wireless communication apparatus and communication method
A wireless communication apparatus receiving a signal transmitted from multiple transmission antennas by multiple reception antennas, includes a rotational component removal unit to remove rotational components from a channel matrix representing a characteristic of a transmission path between the multiple transmission antennas and reception antennas, the channel matrix being generated based on the reception signal; multiple signal separation units including at least a signal separation unit to use a first signal separation algorithm for a demodulation process of the reception signal, and a signal separation unit to use a second signal separation algorithm for the demodulation process of the reception signal; and a control unit to execute control for determining one of the multiple signal separation units to be used for the demodulation process of the reception signal, based on a predetermined component of the channel matrix having the rotational components removed.
US08942324B2 Circuit, use, and method for controlling a receiver circuit
A circuit, use, and method for controlling a receiver circuit is provided, wherein a complex baseband signal is generated from a received signal, a phase difference between a phase of the complex baseband signal and a phase precalculated from previous sampled values is determined, the phase difference is compared with a first threshold, a number is determined by counting the exceedances of the first threshold by the phase difference, a number of the counted exceedances is compared with a second threshold, and the receiver circuit is turned off if the number of counted exceedances exceeds the second threshold within a time period.
US08942322B2 Method of relay node using reference signal and relay node using the method
The present invention relates to a method of a Relay Node (RN) using a reference signal. The method includes receiving information about a Dedicated Reference Signal (DRS) which is used to demodulate a control channel via high-layer signaling from an evolved-NodeB (eNB), receiving control information through the control channel from the eNB, receiving data through a data channel from the eNB, and demodulating the control information and the data. The control information is demodulated using a DRS indicated by the information about the DRS, and the data are demodulated using a DRS indicated by the control information.
US08942319B2 Partial response equalizer and related method
A multi-phase partial response receiver supports various incoming data rates by sampling PrDFE output values at a selected one of at least two clock phases. The receiver includes a calibration circuit that performs a timing analysis of critical data paths in the circuit, and this analysis is then used to select the particular clock phase used to latch the output values. These techniques permit the multiplexer outputs from for each phase of the partial response receiver to directly drive selection of a multiplexer for the ensuing phase, i.e., by avoiding regions of instability or uncertainty in the respective multiplexer outputs.
US08942317B2 Carrier offset correction of a received signal
Apparatuses, methods and systems for mitigating carrier offset of a received signal are disclosed. One embodiment of a receiver includes a receiver chain operative to receive a communication signal from a desired transmitter, and a controller operative to determine a carrier offset correction based on prior reception of communication signals from the desired transmitter. The receiver chain is operative to generate a carrier offset corrected received signal by applying the carrier offset correction to the received communication signal, and a correlation processor operative to correlate the carrier offset corrected received communication signal with a known sequence.
US08942313B2 Group delay calibration method for power amplifier envelope tracking
An open loop envelope tracking system calibration technique and circuitry are proposed. A radio frequency power amplifier receives a modulated signal. An envelope tracker power converter generates a modulated power amplifier supply voltage for the radio frequency power amplifier based on a control signal derived from the modulated signal. A first output power and a second output power of the radio frequency power amplifier are measured when the control signal is respectively delayed by a first delay period and a second delay period. A sensitivity of the output power of the radio frequency power amplifier is near a maximum near the first delay period and the second delay period. The first delay period and/or the second delay period are adjusted until the first output power substantially equals the second output power. The first delay period and the second delay period are used to obtain a calibrated fine tuning delay offset.
US08942312B1 WCDMA modulation
This disclosure describes techniques for modulating data. In one embodiment, these techniques include receiving an I or Q value, generating a time-shifted sample of a shaped pulse based on the I or Q value, and providing the time-shifted sample to a digital-to-analog converter.
US08942311B2 Low bandwidth PHY transmission in a wider bandwidth
A method for generating signals to be transmitted within a basic service set (BSS) channel, where a set of component channels is collectively coextensive with the BSS channel, includes determining that a first duplicate, in frequency, of a low bandwidth mode data unit will be located at an edge of the BSS channel. Each duplicate includes orthogonal frequency division multiplexing (OFDM) tones and has a bandwidth less than the narrowest channel of the component channels. The OFDM tones in each duplicate include one or more data tones, one or more pilot tones, and one or more guard tones. The method also includes generating a transmission signal comprising the duplicates, at least in part by scaling down at least one data tone, and/or zeroing out at least one data tone, of the first duplicate in response to determining that the first duplicate will be located at an edge of the BSS channel.
US08942310B2 Information processing apparatus and information processing method, and non-transitory computer readable medium storing information processing program
Transmission channel estimation is performed for NT×NR reception signals and estimated transmission channel values are thereby output. The estimated transmission channel values are divided into N groups of NT×M estimated transmission channel values and a covariance matrix with M rows and N columns is obtained for each of the estimated transmission channel value groups. The N covariance matrixes are averaged over a predetermined range in terms of at least a time or a frequency (first averaging). Eigenvectors are generated based on respective N averaging outputs. Transmission channels between base station antennas and terminal antennas are generated from the eigenvectors and the estimated transmission channel values. Covariance matrixes are obtained for the generated transmission channels. The covariance matrixes are averaged over a different range from the range used in the first averaging (second averaging) and a beam forming weight is obtained by combining the generated eigenvectors.
US08942308B2 Multi-level coding and iterative decoding using sparse space codes
A multi-level coding and iterative decoding scheme using sparse space codes as the inner-code and codes amenable to belief propagation decoding methods (such as low-density parity-check (LDPC) codes, turbo codes, and trellis codes) as the outer-code is proposed for MIMO communication channels.
US08942306B2 Codebook selection for transmit beamforming
A method selects a codebook for transmit beamforming. The method constructs an estimated channel matrix based on a codebook, selects a channel submatrix from the estimated channel matrix, calculates a selection matrix from the channel submatrix; and assigns a steering matrix based on the selection matrix. The method may construct an estimated channel matrix, select a channel submatrix, and calculate a selection matrix for each of multiple codebooks, then select an optimal codebook. The steering matrix is assigned based on the optimal codebook. The steering matrix may be used in steering a transmitted packet. The method may also calculate a post-MIMO equalizer signal-to-noise ratio for a data stream, based on the estimated channel matrix and the selected codebook. A related system is also disclosed. Other embodiments are provided, and each of the embodiments described herein can be used alone or in combination with one another.
US08942300B1 Integrated digitizer system with streaming interface
A digitizer system (DS) may include one or more input channels to receive sample data, and an acquisition state machine (ASM) to organize the sample data into one or more acquisition records according to events of interest, and generate framing information corresponding to the one or more acquisition records. The events of interest may be identified by a trigger circuit in the DS, and relayed to the ASM for organizing the sample data. The DS may further include a data interface capable of receiving the one or more acquisition records and the framing information, encoding the one or more acquisition records and the framing information into encoded data, and transmitting the encoded data to an expansion module. The expansion module may receive the encoded data, decode the encoded data, and recover the sample data from the decoded data according to the framing information and the one or more acquisition records.
US08942296B2 Signal adaptive filtering method, signal adaptive filter and computer readable medium for storing program therefor
A signal adaptive filtering method for reducing blocking effect and ringing noise, a signal adaptive filter, and a computer readable medium. The signal adaptive filtering method capable of reducing blocking effect and ringing noise of image data when a frame is composed of blocks of a predetermined size includes the steps of: (a) generating blocking information for reducing the blocking effect and ringing information for reducing the ringing noise, from coefficients of predetermined pixels of the upper and left boundary regions of the data block when a frame obtained by deconstructing a bitstream image data for inverse quantization is an intraframe; and (b) adaptively filtering the image data passed through inverse quantization and inverse discrete cosine transform according to the generated blocking information and ringing information. Therefore, the blocking effect and ringing noise can be eliminated from the image restored from the block-based image, thereby enhancing the image restored from compression.
US08942294B2 Digital broadcasting transmission/reception system utilizing mull packet and TRS code to improve receiving performance and signal processing method thereof
A digital broadcasting transmission and/or reception system having an improved reception performance and a signal-processing method thereof. A digital broadcasting transmitter comprises a TRS encoder for to TRS-encode a MPEG-2 transmission stream having null data for inserting a Known data and a TRS parity at predetermined positions, randomizer to input and randomize data stream from the TRS encoder, a null packet exchanger to replace the null data for inserting the Known data to the known data, and an encoder for encoding a data streams to which the Known data is inserted. Accordingly, the present invention detects the known data from a signal received from a reception side and uses the detected known data for synchronization and equalization and further uses the TRS parity for correcting error of the received signal, so that the digital broadcasting reception performance can be improved at poor multipath channels.
US08942286B2 Video coding using two multiple values
Video coding in which at least two bandwidth values are obtained. A base layer is coded so that a rate of the coded base layer data is less than or equal to the lowest bandwidth. For at least one bandwidth greater than the lowest bandwidth, at least one enhancement layer is coded so that the sum of a rate of the data of the coded enhancement layer and a rate of a subset of data of a reference layer serving as a reference for interlayer prediction of the enhancement layer is less than the bandwidth greater than the lowest bandwidth.
US08942283B2 Feature-based hybrid video codec comparing compression efficiency of encodings
Systems and methods of processing video data are provided. Video data having a series of video frames is received and processed. One or more instances of a candidate feature are detected in the video frames. The previously decoded video frames are processed to identify potential matches of the candidate feature. When a substantial amount of portions of previously decoded video frames include instances of the candidate feature, the instances of the candidate feature are aggregated into a set. The candidate feature set is used to create a feature-based model. The feature-based model includes a model of deformation variation and a model of appearance variation of instances of the candidate feature. The feature-based model compression efficiency is compared with the conventional video compression efficiency.
US08942279B2 Apparatus and method for transmitting/receiving data in dual mode terminal
An apparatus and a method for transmitting/receiving data in a dual mode terminal having a host modem and a slave modem are provided. In the method, when an external apparatus generates data, the host modem receives the generated data. The host modem determines a destination of the received data. The host modem forwards the received data to the determined destination.
US08942272B2 Method and apparatus for enabling signal processing in a multiple antenna repeater
Systems and methodologies are described that enable serving cell selection in a wireless network with a multiple antenna repeater operable to support MIMO communications. In one example, a repeater using orthogonal frequency division multiplexing on the downlink can be equipped to receive, by one or more receive antennas, one or more signals using one or more radio frequency (RF) isolation schemes. The repeater can further be equipped to amplify and delay the one or more signals using one or more combination schemes. Moreover, the repeater can be equipped to transmit, by one or more transmit antennas, the amplified and delayed one or more signals, wherein at least one of the one or more receive antennas or the one or more transmit antennas includes two or more antennas.
US08942271B2 Blower apparatus and gas laser oscillation apparatus
A blower apparatus includes a blower casing; an elastic member for mounting a mounting portion that projects on an outer circumferential portion of the blower casing, to a blower support member disposed on the inlet side of the mounting portion; and a flange portion provided on the inlet side of the mounting portion. At least three elastic members are disposed in the same plane that is almost orthogonal to a rotation shaft, and adhesion surfaces are provided on both ends, in the rotation shaft direction, of each elastic member. The mounting portion is fixed to one of the adhesion surfaces, and the blower support member is fixed to the other of the adhesion surfaces. The flange portion is provided so as to oppose the blower support member through a gap having a thickness less than a thickness, in the rotation shaft direction, of the elastic member.
US08942270B2 Diffusion-cooled CO2 laser with flexible housing
A gas includes a housing having a symmetrical arrangement of upper and lower cooling members for removing heat generated in a gas-discharge excited by an electrode assembly. The electrode assembly is clamped between the cooling members and is itself essentially symmetrically arranged. The cooling members and the electrode assembly are mechanically isolated in the housing by a surrounding diaphragm-like arrangement that connects the cooling members to side-walls of the housing. An RF power-supply for supplying the electrode assembly is mounted on one of the sidewalls to avoid disturbing the symmetry of the cooling and electrode arrangements.
US08942265B2 Raman converting laser systems
In one embodiment, the instant invention provides a method that includes: outputting a first laser beam having: a beam quality factor (M2) between 1 and 5, and a spectral width of less than 0.15 nm, where the outputting is performed by a laser generating component that includes a alexandrite laser oscillator; converting the first laser beam through a first Raman cell to produce a second laser beam, where the first Raman cell is filled with a first gas; and converting the second laser beam through a second Raman cell to produce a final laser beam, where the second Raman cell is filled with a second gas and is operationally positioned after the first Raman cell, where the first gas and the second gas are different gasses, and where the final laser beam having: a second energy of at least 1 mJ, and at least one wavelength longer than 2.5 micron.
US08942263B2 Data transmission in an SDH network
A method for the transmission of data in a synchronous digital hierarchy (SDH) network comprising the steps of transmitting to a node of the network a form of data signal from outside the network, converting the signal into a virtually concatenated information structure and transporting the signal through the network in the virtually concatenated information structure; means for carrying out the method and tributary cards arranged and configured to process signals received in contiguously concatenated form to convert them into virtually concatenated form for transfer across the network; thus providing for data transmitted in high-bandwidth, contiguously concatenated signals (ie VC-4-4c) to be transported across a SDH network, not itself capable of carrying contiguously concatenated signals.
US08942261B2 Transmission apparatus and method
A burst signal generator generates a burst signal that is a variable length portion whose length changes in accordance with fluctuations in data input at a predetermined period. An OFDM modulator generates an OFDM signal (including a guard interval portion and an effective symbol portion) that is a fixed length portion containing data corresponding to n (n is a positive integer) times or 1/n of the predetermined period. A frame includes the variable length portion and the fixed length portion. This makes a transmission signal actually have a frame period almost equal to the period of a signal synchronized with the clock of a player, including the fluctuations.
US08942260B2 Services, systems and methods for precisely estimating a delay within a network
Methods and systems for determining time delays of networks are disclosed. For example, a method for determining a time delay of a network having i) a transmitting node and ii) a receiving node, wherein each of the transmitting node and the receiving node comprises a Data Link Layer (DLL), a management layer, and a Physical Layer (PHY) is disclosed. The method includes determining a time that the first packet was received by the transmitting node, forwarding the time that the first packet was received to the management layer of the transmitting node; forwarding information in the first packet to the transmitting node; and determining the time delay of the network by subtracting the time the time that the first packet was received by the DLL of the transmitting node from a transmit time provided via the management layer of the receiving node.
US08942259B2 Digital visual interface with audio and auxiliary data
One embodiment of the present invention uses an abbreviated blanking period, in comparison to the standard VESA and CEA-EIA blanking periods, in order to send data, including low bandwidth, non-timing information, over one or more channels of the digital video link. By shortening the blanking period, the amount of time available for sending data in each scan line is increased, enabling the system to send more data over each channel. The inactive video portion of a scan line sent during vertical sync may also be used to send additional digital data. Shortening the blanking periods and/or using the inactive video sections of the horizontal scan lines adds to the overall data capacity of the link and may be used to send other digital data, such as multichannel audio, video, control, timing, closed captioning or other digital data.
US08942258B2 Segmentation and reassembly of network packets for switched fabric networks
Reassembly of member cells into a packet comprises receiving an incoming member cell of a packet from a switching fabric wherein each member cell comprises a segment of the packet and a header, generating a reassembly key using selected information from the incoming member cell header wherein the selected information is the same for all member cells of the packet, checking a reassembly table in a content addressable memory to find an entry that includes a logic key matching the reassembly key, and using a content index in the found entry and a sequence number of the incoming member cell within the packet, to determine a location offset in a reassembly buffer area for storing the incoming member cell at said location offset in the reassembly buffer area for the packet for reassembly.
US08942254B2 Method for transmitting/receiving data while supporting scalability in communication system
A method for transmitting/receiving data between first and second terminals in which data can be transmitted flexibly in each particular situation, i.e. according to the network environment of terminals between which visible light communication occurs, including the type and characteristics of transmitted data. The method includes the steps of: (a) connecting a communication link between a first terminal supposed to transmit data and a second terminal supposed to receive data; (b) determining a data transmission rate to be used for data communication; (c) allocating a transmission channel of a specific band within a frequency band enabling wireless communication; (d) establishing a data transmission environment based on consideration of the transmission rate and the transmission channel; and (e) conducting data communication between the first and second terminals with reference to the data transmission environment.
US08942248B1 Shared control logic for multiple queues
Methods, integrated circuits, and computer programs for managing a communication path carrying multiple channels are presented. Each channel includes a first-in first-out (FIFO) queue. In one method, the time difference between the start of a cycle for receiving data in a particular channel and a start of a cycle for transmitting data in the same particular channel is identified. Further, the method includes an operation for buffering arriving data in the communication path. The arriving data is buffered for an amount of time equal to the identified time difference, and the result is delayed data. FIFO registers are loaded from memory, which includes loading FIFO control and status data for a single FIFO queue, where the single FIFO queue is associated with the current channel of the produced delayed data at any time. Additionally, method includes an operation for processing contemporaneously read and write requests for the single FIFO queue using the loaded FIFO registers.
US08942241B2 Method for equalizing the size of data packets by blocks of a multimedia stream
A method equalizing sizes of data packets by blocks of a multimedia stream including a succession of data packets of variable sizes. The method includes: storing a group of N (a predefined integer) data packets in a buffer memory; computing average size Tm of a packet from the different sizes of the N packets; generating a base stream including N data packets to be transmitted, wherein each has a size equal either to the rounded-down integer part └Tm┘, or to the rounded-up integer part └Tm┘ of the average size, and at least one additional stream including N redundant data packets computed from the base stream packets, having same size as the base stream packets, and intended to enable a receiver to restore any lost packets if the loss rate is greater than a predefined threshold; and transmitting the base stream and the additional stream(s) to the receivers.
US08942238B2 Apparatus and method for establishing tunnels between nodes in a communication network
Tunnels are established between nodes along a packet transfer route in a communication network so that a packet is transferred from a first relay node to a second relay node via one or more intermediate relay nodes using the established tunnels. An intermediate relay node receives, from an adjacent downstream relay node, a reply message storing relay-node addresses identifying the downstream relay node and at least one intermediate relay node between the downstream relay node and the first relay node. The intermediate relay node establishes a tunnel to the downstream relay node in association with the relay-node address of the downstream relay node, updates the reply message by removing the relay-node address of the down stream relay node from the reply message, and transfers the updated reply message to an adjacent upstream relay node along the packet transfer route.
US08942237B2 Hypervisor independent network virtualization
In one embodiment, a first physical overlay switch located at an edge of an IP network includes logic adapted for: receiving a packet having a virtual local area network (VLAN) identifier (ID) from a virtual switch, encapsulating the packet with an overlay header, tunneling the encapsulated packet via the IP network to a second physical overlay switch, receiving a second encapsulated packet having a second overlay header from the second physical overlay switch, de-encapsulating the second encapsulated packet to create a second packet having a second VLAN ID, and sending the second packet to the virtual switch.
US08942234B2 DAD-NS triggered address resolution for DOS attack protection
A first network element that receives an appropriation message from a second network element that indicates a target address which the second network element intends to appropriate for its use. In response to the appropriation message, the first network element broadcasts a discovery message to a plurality of network elements on the network to request a link-layer address in association with the first target address. The first network element receives a discovery response from the second network element with the first target address and the link-layer address of the second network element. Then the first network element updates a neighbor cache to include a pre-cached neighbor cache entry associating the link-layer address to the first target address. This prevents one or more future neighbor cache misses associated with the first target address.
US08942230B2 Logical packet switching device with switching fabric extended between multiple physical devices
In one embodiment, a logical packet switching device has its switching fabric extended between multiple physical devices, such as, but not limited to, over one or more networks (e.g., over tunnel(s), point-to-point link(s), and/or public and/or private L2 or L3 network(s)). In particular, one embodiment extends the switching fabric between multiple different physical devices by effectively merging, at least from the perspective of ingress and/or egress line cards, a switching fabric in each of these multiple different physical devices. In this regard, an ingress lookup operation in a first physical device of one embodiment produces information which is used by the switching fabric in a different physical device to forward a packet to the appropriate egress line card in the different physical device. Further, one embodiment includes line cards which can be used to both extend the switching fabric as well as communicate with packet switching and other devices that are independent of the logical packet switching device.
US08942229B2 Method and apparatus for conserving battery life and network resources under abnormal call release conditions
A method and apparatus for releasing radio resources from a mobile device for a call in a gateway to core network, the method monitoring an inactive period for call; and if the inactive period exceeds a predetermined threshold initiating a disconnection from the gateway to core network.
US08942223B2 Interference cancelation using edge signals for synchronization signal detection
In 3GPP Release (Rel) 8, a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) may be transmitted in six resource blocks, occupying, for example, the center 62 tones (i.e., subcarriers) of an LTE-A system, wherein the center tone may be skipped. In synchronous networks, cells may transmit their respective PSS and SSS on the same frequency at the same time, wherein strong cells may overshadow the weak ones. However, strong cells may not be the serving cell for a user equipment (UE), particularly in a heterogeneous network. Traditionally, interference cancelation, an enhanced receiver technique, has been used, wherein the UE may first find the strong cells and cancel them out to find the serving cell. However, due to propagation delay and synchronization uncertainty, a timing offset may exist among cells, even in synchronous networks. Therefore, systems and methods are disclosed, providing for improved handling of the timing offset among different cells by applying a time domain cancelation.
US08942219B2 Support for network management and device communications in a wireless network
A method of efficiently operating a wireless communication network in a process control environment, such that the wireless communication network includes a plurality of field devices, includes defining a communication protocol for supporting wireless communications between pairs of the plurality of field devices, including providing a set of protocol commands, transferring process control data from at least some of the plurality of field devices using a first subset of the set of protocol commands of the communication protocol, and transferring network management data to at least some of the plurality of field devices using a second subset of the set of protocol commands of the communication protocol.
US08942217B2 System and method for hierarchical link aggregation
Systems and methods for hierarchical link aggregation are disclosed. A system for hierarchical link aggregation may include a network interface having a plurality of physical ports. A first plurality of the physical ports may be configured as member ports of a first link aggregation group (LAG). A second plurality of the physical ports may be configured as member ports of a second LAG. The first LAG and second LAG may be configured as member logical ports of a third LAG.
US08942215B2 System and method for transmission of data from a wireless mobile device over a multipath wireless router
There is disclosed a system and method for transmission of multiple data streams from a mobile device to a network. In an embodiment, the system includes a multipath wireless router configured to provide a plurality of network connections including cellular, satellite, or wired Ethernet. An encoding module provided on the mobile device is configured to encode high volume data (e.g. high definition video) recorded by the mobile device into multiple data streams in dependence on the number of network connections available for transmission via the multipath wireless router. The encoding module provided on the mobile device transmits the multiple data streams to the wireless router using Wi-Fi to provide a local, short-hop, high capacity network connection. The plurality of network connections available via the multipath wireless router provides the necessary capacity and reliability to transmit a high volume of data, such as high definition video, virtually live.
US08942214B2 Method for channel sounding in wireless local area network and apparatus for the same
A method and wireless apparatus are described, whereby a transceiver receives a null data packet announcement (NDPA) frame from a transmitter to initiate channel sounding, and receives a null data packet (NDP) from the transmitter, the NDP following the NDPA frame. A first report field is configured to include beamforming information, and a second report field is configured to include signal to noise ratio (SNR) information. A determination is made as to whether feedback data including the first report field and the second report field is transmitted in a single feedback frame or a plurality of feedback frames. If the feedback data is determined to be transmitted in the plurality of feedback frames, the feedback data is split into a plurality of segments, which is transmitted in a single aggregated medium access control protocol data unit (A-MPDU) including a plurality of MPDUs.
US08942213B2 Method and system for accessing storage devices
An approach for enabling wireless communication devices to mount and/or unmount one or more storage devices to facilitate data sharing is described. A processor of a user device generates a request message according to a storage access protocol that is operating system agnostic. The processor then initiates transmission of the request message over a wireless link of an ad-hoc network to a system that includes one or more storage devices, wherein the request message requests storage device information relating to the one or more storage devices.
US08942212B2 Autoconfiguration system for wireless sensor network and its method, and gateway apparatus for wireless sensor network
The present invention enables connection between a wireless sensor node and a service server while reducing load on the wireless sensor node.The wireless sensor node transmits a router solicitation message to a gateway apparatus; the gateway apparatus analyzes the message to extract the discrete information of a device or service, searches for a service server based on such information and acquires the configuration information necessary for execution of a service application of the wireless sensor node; the gateway apparatus multicasts the received router solicitation message into a link; a router within the link receives the router solicitation message, and multicast a router advertisement message which contains the prefix information of an address, etc. into a link; the gateway apparatus sets the acquired configuration information in the router advertisement message and transfers the resultant message to the wireless sensor node; and the wireless sensor node analyzes the message.
US08942211B2 Communication system and communication apparatus using an NFC Wi-Fi protected setup to establish a wireless LAN connection
A communication system includes: a service terminal configured to have a wireless LAN access point capability and a proximity communication capability, the wireless LAN access point capability enabling the service terminal to act as a wireless LAN access point to be connected via a network to a service provider providing a network connection service on a chargeable basis, the service terminal thereby offering the chargeable network connection service; and a user terminal configured to have a wireless LAN terminal capability and a proximity communication capability, the wireless LAN terminal capability enabling the user terminal to connect with the wireless LAN access point, the user terminal further connecting to the network using the chargeable network connection service.
US08942200B2 Cognitive flow control based on channel quality conditions
A system and method which improve the performance of a wireless transmission system by intelligent use of the control of the flow of data between a radio network controller (RNC) and a Node B. The system monitors certain criteria and, if necessary, adaptively increases or decreases the data flow between the RNC and the Node B. This improves the performance of the transmission system by allowing retransmitted data, signaling procedures and other data to be successfully received at a faster rate, by minimizing the amount of data buffered in the Node B. Flow control is exerted to reduce buffering in the Node B upon degradation of channel qualities, and prior to a High Speed Downlink Shared Channel (HS-DSCH) handover.
US08942195B2 Method and arrangement in a wireless communication system
Method and arrangement in a base station for scheduling physical resources in a transmission bandwidth to a user equipment served by the base station. The physical resources may be physical channels or radio resource blocks. Some physical resources within the transmission bandwidth are subjected to a performance requirement power restriction value. The method comprises scheduling physical resources based on the performance requirement power restriction value of the physical resources to be scheduled. Also, a method and arrangement in a user equipment for assisting a base station in scheduling physical resources in a transmission bandwidth to the user equipment is described.
US08942190B2 HARQ process number management for downlink carrier aggregation
A method for use with a mobile user agent, the method for managing Hybrid Automatic Repeat reQuest (HARQ) processes in a multi carrier communication system that uses HARQ process indicators (HPIs) to manage HARQ processes, the method comprising the steps of designating a first subset of the HPIs as shared HPIs wherein each shared HPI designates a HARQ process irrespective of which of a plurality of system carrier frequencies are used to transmit a traffic packet, designating a second subset of the HPIs as non-carrier-shared HPIs wherein each non-carrier-shared HPI, in conjunction with the carrier frequency used to transmit a traffic packet, designates a carrier frequency unique HARQ process, receiving an HPI at the mobile user agent, receiving a first traffic packet via a carrier frequency at the user agent that is associated with the HPI, where the HPI is a first subset HPI using the HPI to identify a HARQ process associated with the first traffic packet irrespective of the carrier frequency used to transmit the traffic packet and providing the traffic packet to the identified HARQ process and where the HPI is a second subset HPI using the HPI and the carrier frequency on which the first traffic packet was received to identify a carrier frequency specific HARQ process associated with the first traffic packet and providing the first traffic packet to the carrier frequency specific HARQ process.
US08942189B2 Apparatus and method for enabling communications among unsynchronized wireless devices
A method enables a wireless device (310) to rendezvous with another wireless device (320) through a wireless network (330), where activation schedules of the wireless devices are not synchronized. The method includes determining a number of time units in each cycle of multiple communication cycles, identifying active time units in each cycle during which the first wireless device enters an active mode, and identifying inactive time units in each cycle during which the first wireless device enters an inactive mode. The sum of the active time units and the inactive time units equals the number of time units in each cycle. A first active time unit in each cycle occupies a same position in the cycle as an active time unit in a previous consecutive cycle. Also, a second active time unit in each cycle occupies a different position in the cycle than any active time unit in the previous consecutive cycle.
US08942166B2 Method for providing a contention based uplink channel
A method, a mobile system, and a user communication device are disclosed. A receiving unit 408 may receive a downlink packet 620 from a base station 108. A configuration data storage 412 may store contention based grant data upon receiving the downlink packet 620 and prior to an uplink packet 810 becoming available. A transmitting unit may send an uplink packet 810 based on the contention based grant data.
US08942165B2 System and method for distributed multiple-input multiple-output (MIMO) in a wireless communication system
Systems and methodologies are described herein that facilitate distributed multiple-input multiple-output (MIMO) or cooperative multipoint (CoMP) communication in a wireless communication system. As described herein, multiple cells, such as a serving cell and an auxiliary cell, can cooperate to conduct communication with one or more associated terminals. In one example described herein, an associated core network can exchange data and/or control signaling with a single cell communicating with a given terminal, which can then tunnel respective data and/or control signaling to other cell(s). By doing so, CoMP communication can be made transparent to the core network and can be achieved without requiring changes to the network. As further described herein, a terminal can exchange Physical Downlink Control Channel (PDCCH) assignments and/or other information exclusively with the serving cell in addition to or in place of other information exchanged with a serving cell and/or an auxiliary cell.
US08942162B2 Method and apparatus of continuous packet connectivity enhancement in a wireless communications system
In order to improve continuous packet connectivity (CPC), the present invention provides a method of improving CPC for a UE working in a HS-SCCH less operation in a wireless communications system. The method includes treating a received data as a specific data to be decoded when the received data is the data of the third transmission for a base station and the data in a soft buffer pointed by the third transmission is not the second transmission for the base station in the wireless communications system.
US08942158B2 Relaying system and method with partner relays and selective transmission
Partner relay systems and methods are provided in which relaying is performed by a pair of partner relays. Signals received from a base station are translated by a first of the pair of partner relays to a different transmission resource for communication between the pair of partner relays, and then upon reception by a second of the pair of partner relays, the signal is translated back to the original transmission resource and re-transmitted towards the receiver.
US08942146B2 Signal transmission method and apparatus in wireless communication system
A signal transmission method and apparatus in a wireless communication system using Transmission Control Protocol/Internet Protocol (TCP/IP). The signal transmission apparatus divides packet signals to be transmitted into a control signal and data, stores the control signal and the data in a protocol stack queue using a predetermined scheme such that the control signal is transmitted prior to the data, and transmits the control signal and the data in order of storage in the protocol stack queue.
US08942144B2 Adaptive pause time energy efficient ethernet PHY
An energy efficient Ethernet physical layer (PHY) device including an EEE control module configured to generate a control signal to transition the PHY device into a low power consumption mode based an operating condition, and a pause frame generator module responsive to the control signals to generate a pause frame. The pause frame generator module is configured to send the pause frame to a media access control (MAC) device to reduce an incoming flow of data packets from the MAC device to the PHY device for a pause time duration. In operation, the pause frame generator module generates the pause frame including a pause time indicating the length of time for the PHY device to be in the low power consumption mode. The value of the pause time for each pause frame is determined adaptively based on the amount of data traffic to be transmitted from the PHY device.
US08942142B2 Method and apparatus for improving ACK/NACK bundling
A method for improving ACK/NACK bundling in a user equipment (UE) of a wireless communication system is disclosed. The method includes steps of receiving an uplink grant allocated to an uplink sub-frame, the sub-frame being utilized for transmitting an HARQ feedback corresponding to a plurality of downlink sub-frame, a TDD UL/DL configuration of the UE being set to 0; and determining whether the UE misses any downlink assignment is missing according to a downlink assignment index (DAI) carried in a latest received Physical Downlink Control Channel (PDCCH) for downlink assignment.
US08942140B2 Method and device for parameterizing a bridge within a communication network
In order to parameterize, within a communication network, a bridge to be put in communication with at least one element to be connected to the bridge, the bridge comprising at least one created port, a parameter representing a predetermined waiting period and corresponding to a time for detection by the bridge, during a phase of listening to the data received by the at least one created port, of the presence of any communication loop within the network, is determined. A filtering of the at least one created port is activated, the filtering being adapted to prevent the sending and reception by the at least one created port of inter-bridge management messages. The bridge is configured with the parameter thus determined, a new port of the bridge is created with a view to setting up communication with the at least one element, and the filtering is deactivated.
US08942135B2 System and method for auditing route parameters in a network
A system and/or method includes a collector module configured to collect route parameters from a selected node of a plurality of nodes in the network, wherein the route parameters from the selected node are indicative of a first route to a destination address and a second route to the destination address; and a route processor configured to determine a first intermediate node along the first route communicatively coupled to the destination address and a second intermediate node along the first route communicatively coupled to the destination address, based at least in part on the collected route parameters.
US08942129B1 Method and system for optimizing inter-frequency handoff in wireless coverage areas
A radio access network (RAN) may be configured to identify a set of wireless coverage areas in which to transmit inter-frequency search directives. Identifying the set of coverage areas may involve determining which of the coverage areas defined by the RAN have threshold weaker coverage on one carrier frequency than on another carrier frequency of that coverage area. For each coverage area of the set, the RAN may identify one or more WCDs operating in the coverage area that are operating on the coverage area's carrier frequency that has the weaker coverage. Based on the identifying of the WCDs, the RAN may send to each identified WCD an inter-frequency search directive to cause the WCD to scan for and report to the RAN a measurement of coverage on one or more carrier frequencies other than the carrier frequency on which the WCD is currently operating.
US08942122B2 Automatic uplink-downlink ratio reconfiguration setting in wireless communication system
At least one neighbor cell is identified by a base station by detecting a synchronization signal of the at least one neighbor cell. A received signal power, such as a Reference Signal Received Power (RSRP) or a Reference Signal Received Quality (RSRQ), or a combination thereof, is also measured from the at least one neighbor cell. Identifying information and the received signal power of the at least one neighbor cell is then communicated to a network entity of the wireless network. Information is received from the network entity indicating whether the base station can enable a reconfiguration of the allocation of uplink and downlink subframes used in the cell of the base station. Based on the information received from the network entity, the base station enables a reconfiguration of the allocation of uplink and downlink subframes used in the cell.
US08942119B1 Determining a burstiness profile of a wireless communication system
Active wireless devices in communication with an access node of a wireless communication system are detected and prioritized, and a group of the active wireless devices is selected. Data is provided to each selected wireless device, a burstiness metric is received based on the provided data, and a burstiness profile of the wireless communication system is determined.
US08942118B2 Mobile communication in which monitoring beacon signal arrival is changed based on probability of terminal-to-access point connection
A mobile communication terminal 10 receives “HCS_PRIO” of a notice data (System Information Block Type 3) of a base station 1 or 3, and determines whether the terminal 10 is present “indoor” and is in “a stationary state or a state moving at a low speed” based on the receiving result. Since there is a high possibility that the terminal 10 is connectable with a wireless LAN when the terminal 10 is present “indoor” and is in “a stationary state or a state moving at a low speed”, the terminal 10 sets a period for monitoring arrival of a beacon signal.
US08942113B2 System and method for dynamically adjusting routing metrics based on power consumption
An approach is provided for optimizing power consumption and costs associated with routing information over a transport environment. A first collection interval corresponding to retrieval of a first data set specifying power consumption information and associated cost information for a plurality of routing nodes is determined. The first data set is compared with a second data set specifying power consumption information and associated cost information for a second collection interval. Routing metrics of the plurality of routing nodes are determined based on the comparison, wherein the routing metrics specify relative desirability of the plurality of routing nodes for establishing one or more communication paths formed by one or more of the plurality of routing nodes based on the routing metrics.
US08942109B2 Impairment simulation for network communication to enable voice quality degradation estimation
An automated method for testing audio signal quality of cell phone transmissions provides a Mean Opinion Score (MOS) output using inexpensive test components. The test system uses a server computer to eliminate the need for expensive faders used in a bench test system. The server computer manipulates data packets from the reference media file to simulate impairments, including losses, errors, noise and jitter, at a much lower cost than using actual faders. Transmission through two separate radio access networks RANs is provided to simulate two parties communicating using separate mobile devices (an end-to-end test solution) with a single cell phone.
US08942107B2 Piece of ethernet terminal equipment
A piece of Ethernet terminal equipment having an Ethernet connector including first and second pairs of contacts used to carry Ethernet communication signals. At least one path for the purpose of drawing DC current. The at least one path coupled across at least one of the contacts of the first pair of contacts and at least one of the contacts of the second pair of contacts. The piece of Ethernet terminal equipment to draw different magnitudes of DC current flow via the at least one path. The different magnitudes of DC current flow to result from at least one condition applied to at least one of the contacts of the first and second pairs of contacts, wherein at least one of the magnitudes of the DC current flow to convey information about the piece of Ethernet terminal equipment.
US08942105B2 Method for processing traffic in an intermediate access point
A method for processing traffic destined for a BS received from one or more terminals in an intermediate access point supporting two or more communication schemes is disclosed. The method includes receiving traffic from the one or more terminals according to a first communication scheme, measuring a congestion level of the received traffic, transmitting a first traffic being part of the received traffic to a second intermediate access point according to a second communication scheme, if the congestion level is a predetermined threshold or higher, and transmitting a second traffic being remaining traffic of the received traffic except the first traffic to the BS.
US08942102B2 Segmented data transfer with resume capability
A large volume of location related information, e.g., assistance data or location information, is transferred in separate messages between a server and a target by segmenting the location related information into a plurality of messages. If the connection between the server and target is released prior to completion of the transfer of the location related information, the transfer is resumed by sending the remaining messages after connection is reestablished. Each message is sent after receiving an acknowledgement of receipt. Thus, both the server and target can control the flow of the transfer by delaying the sending of one or more messages or delaying the sending of the acknowledgements of receipt.
US08942099B2 Method and apparatus of IP flow mobility in 4G wireless communication networks
A method to realize IP flow mobility (IFOM) between 3GPP access and non-3GPP access over GTP based interfaces is proposed. A user equipment is connected to a PDN-GW via a 3GPP access network and a non-3GPP access network. The UE transmits an IFOM triggering message to the PDN-GW, which selects IP flows to be moved based on EPS bearer ID and IP flow description. The PDN-GW sends an Update Bearer Request to a WAG or ePDG, and updates its mapping table if the Update Bearer Request is successful. The UE also updates its mapping table upon receiving an IFOM acknowledgement from the WAG or ePDG. The PDN-GW initiates a 3GPP bearer modification procedure to move the selected IP flows.
US08942096B2 Congestion-based traffic metering
In one aspect, the invention provides apparatuses and methods for communicating, from one network node to another network node, congestion information. Advantageously, the congestion information may be communicated at a per-packet level so that the node receiving the congestion information may meter the network usage of a user based, at least in part, upon the level of network congestion experienced by each packet sent or received by the user.
US08942091B2 Method and apparatus for notifying access control information
A method and an apparatus for notifying activations of extended access barring (EAB) and updates of EAB information in the field of Long Term Evolution (LTE) wireless communication systems have been proposed. In accordance with the present disclosure, the eNB notifies MTC devices of EAB changes from a paging message through the paging channel (PCH). The network could use either a single bit EAB status indicator to notify whether the EAB has been enabled or disabled or use multiple bits EAB indicator to represent different EAB parameter changes in addition to whether the EAB has been enabled or disabled. Based on the present disclosure, the network could reduce the paging overhead by require the MTC device to acquire the EAB-SIB only when it needs the EAB information.
US08942088B2 BNG to PCRF mediation entity for BBF and 3GPP access interworking
A Mediation Entity (ME) provides a single policy server common to the BroadBand Forum (BBF) fixed domain and the Third Generation Partnership Project (3GPP) mobile domain. A Policy and Charging Rules Function (PCRF) in the mobile domain provides policy control for both fixed and mobile domains. The ME in the 3GPP domain enables such PCRF approach. The ME may be introduced as a 3GPP mobile domain-based network function or element between a fixed domain-based Border Network Gateway (BNG) and the PCRF. With regard to the BBF fixed domain, the ME acts before the BNG as a Broadband Policy Control Function (BPCF), and with regard to the 3GPP mobile domain, the ME acts before the PCRF as a gateway implementing a Bearer Binding and Event Reporting Function (BBERF) or as a Policy and Charging Enforcement Function (PCEF).
US08942086B2 Methods and systems for automatically rerouting logical circuit data in a data network
A disclosed example method involves identifying a logical failover circuit comprising an alternate communication path in a failover network that is separate from a logical circuit comprising variable communication paths in at least one of a first logical telecommunications network or a second logical telecommunications network and a fixed communication path between the first and second logical telecommunications networks. The failed logical connection is between the first and second logical telecommunications networks. The failover network is reserved to provide failover circuits to communicate data rerouted from failed logical circuits, and the logical failover circuit identified by a second logical circuit identifier. The logical circuit identifier of the logical circuit is renamed to the second logical circuit identifier of the logical failover circuit when a logical connection in the logical circuit has failed. The data is rerouted from the logical circuit to the logical failover circuit without manual intervention.
US08942081B2 Method for transmitting control information and base station, and method for receiving control information and user equipment
According to one aspect of the present invention, antennas or antenna nodes spaced away from each other by a predetermined distance or more are configured to be able to transmit control information of mutually different user equipment groups, thereby increasing the efficiency in the operation of control channels. In addition, according to another aspect of the present invention, a resource region for transmitting control information for an improved user equipment, which is a target of a multi-node cooperative transmission, is set differently from a resource region for transmitting control information for a legacy user equipment, thereby increasing the efficiency in the transmission of the control information for the improved user equipment.
US08942078B2 Digital data transmitting device and digital data receiving device
To provide a digital data transmitting apparatus and a digital data receiving apparatus that can realize, even when a transmission channel characteristic changes because of aged deterioration or the like of a relay, improvement of a reception performance following the change.A transmitting apparatus 1 generates a multiplexing frame formed by N slots including control information, data, outer parities, stuff bits, and inner parities and added with synchronization, pilot, and a transmission control signal and a parity and transmits data of the respective slots in a transmission system designated by the transmission control signal. In this case, pilot signals are symbols allocated to all signal points in order determined in advance for each of modulation schemes. A receiving apparatus 2 rewrites a phase error table 214 to calculate a phase error and performs synchronous detection according to the pilot signals. The receiving apparatus 2 also rewrites a likelihood table 235 to perform inner code decoding. Consequently, since reception processing adapted to distortion of a transmission channel characteristic can be performed, improvement of a reception performance can be realized.
US08942077B2 Information storage medium, reproducing method, and recording method
A machine readable information storage medium, a reproducing method and apparatus which reproduces data from the storage medium, and a recording method and apparatus for recording data on the storage medium. The information storage medium includes a control area which stores within a data structure information usable by the recording or reproducing apparatus to record or reproduce the data on or from the storage medium. The information stored within the data structure includes a version corresponding to a specification, a revision number of recording speed, and an extended part version field.
US08942076B2 Information storage medium, reproducing method, and recording method
A machine readable information storage medium, a reproducing method and apparatus which reproduces data from the storage medium, and a recording method and apparatus for recording data on the storage medium. The information storage medium includes a control area which stores within a data structure information usable by the recording or reproducing apparatus to record or reproduce the data on or from the storage medium. The information stored within the data structure includes a version corresponding to a specification, a revision number of recording speed, and an extended part version field.
US08942067B2 Mechanism for displaying and correcting the state of two different time measurable quantities
A mechanism for displaying and correcting a state of two different time measurable quantities for a timepiece includes a movement driving a first display mechanism to display a first measurable time quantity and a second display mechanism to display a second measurable time quantity, and including an adjusting member. The first and second display mechanisms respectively include first and second drive mechanisms sharing a common drive mechanism driven by the movement, and controlling a driving of one of the display mechanisms by instantaneous jumps and of the other by dragging. The display mechanisms respectively include a first and a second correction mechanism, sharing a common correction mechanism driven by the adjusting member independent of the common drive mechanism, including a friction safety device.
US08942063B2 Data acquisition and processing system and method for investigating sub-surface features of a rock formation
A system and a method includes generating a first signal at a first frequency; and a second signal at a second frequency. Respective sources are positioned within the borehole and controllable such that the signals intersect in an intersection volume outside the borehole. A receiver detects a difference signal returning to the borehole generated by a non-linear mixing process within the intersection volume, and records the detected signal and stores the detected signal in a storage device and records measurement parameters including a position of the first acoustic source, a position of the second acoustic source, a position of the receiver, elevation angle and azimuth angle of the first acoustic signal and elevation angle and azimuth angle of the second acoustic signal.
US08942059B2 Container system for seismic cable and stations
Container systems used in storage, deployment or retrieval of a seismic cable array comprise a container, at least two coiling elements attached to a bottom side of the container, and storage means for allocating or accommodating, in an ordered arrangement, a number of seismic stations and/or a number of couplers/splices and/or other discontinuities which are being interconnected by sections of the seismic cable. Said storage means is arranged between said coiling elements and are attached to the bottom side of the container. The seismic cable is spooled or wound around said coiling elements. Corresponding methods of storing a seismic cable and deploying/retrieving the seismic cable are based on the use of at least two coiling elements and storage means for allocating or accommodating a number of seismic stations and/or a number of couplers/splices and/or a number of other discontinuities and arranged between said coiling elements.
US08942058B2 Display data obtaining apparatus and display data obtaining method
Provided is a display data obtaining apparatus capable of, in photoacoustic tomography, reducing a fluctuation in sensitivity which depends on location for image reconstruction even in a limited measurement condition in which a photoacoustic wave generated in the entire subject cannot be obtained in a sufficient range. The display data obtaining apparatus includes: an acoustic wave detecting unit for detecting an acoustic wave generated from a subject irradiated with pulsed light to obtain a signal; a first data deriving unit for deriving first data exhibiting an optical characteristic distribution of the subject based on the obtained signal obtained by the acoustic wave detecting unit; a memory for storing spatial sensitivity distribution data specific to the display data obtaining apparatus; and a second data deriving unit for deriving second data exhibiting the optical characteristic distribution of the subject using the first data and the spatial sensitivity distribution data.
US08942057B1 Serial advanced technology attachment dual in-line memory module device
When a measured current of a resistor is less than a preset current value after a device is inserted into a memory slot, a control chip and a storage chip does not receive voltages. When the measured current is not less than the preset current value and a count time reaches a preset time value, the control chip and the storage chip receive voltages, to read or write data. When measured current of the resistor is not less than the preset current value after the device is removed from the memory slot, the control chip and the storage chip receive voltages, to backup data. When the measured current is less than the preset current value and the count time reaches the preset time value, the control chip and the storage chip do not receive voltages.
US08942052B2 Complementary metal-oxide-semiconductor (CMOS) min/max voltage circuit for switching between multiple voltages
A voltage selection mechanism is provided for switching between multiple voltages without causing a direct current (DC) that may further stress storage elements due to excessive power consumption and electro-migration effects. The voltage selection mechanism comprises cross-coupled circuitry, which comprises a first positive-channel field effect transistor (PFET) and a second PFET. The voltage selection mechanism further comprises diode circuitry, which comprises a third PFET and a fourth PFET.
US08942048B2 Semiconductor device and method of operating the same
A semiconductor device includes a memory block coupled to word lines and configured to a memory cell including a floating gate, an inter-poly dielectric and a control gate and a peripheral circuit configured to perform an erase loop operation, a program loop operation an electron injection operation of the memory cell, the electron injection operation trapping electrons in the inter-poly dielectric.
US08942047B2 Bit line current trip point modulation for reading nonvolatile storage elements
Upon selecting non-volatile storage elements to be sensed, the system obtains information about the position of these non-volatile storage elements, determines sensing parameters based at least in part on this information, pre-charges a charge storage device and, while maintaining the voltage level of the bit lines of these memory cells at a constant value, applies a reference signal to these non-volatile storage elements for a certain duration of time, afterwards determining whether, for the certain duration of time, the current conducted by these non-volatile storage elements exceeds a predetermined value.
US08942044B2 Flash memory device
A flash memory device is provided. The flash memory device includes a memory cell array and a pre-charge unit. The pre-charge unit, coupled to a plurality of bit lines corresponding with the memory cell array, pre-charges the bit lines to a predetermined voltage during a pre-charge stage. The pre-charge unit includes a voltage stabilizing unit to provide a constant current to the bit lines. Due to the voltage stabilizing unit, in a programming process, the voltage applied to the bit lines which are not related with programming may not drop as a result of current leakage. Therefore, the memory cells except the memory cell to be programmed are kept in cut off state, without a current passing. As a result, interference with the memory cells which are not to be programmed may be effectively avoided and the accuracy of programming may be improved.
US08942035B2 Non-sequential encoding scheme for multi-level cell (MLC) memory cells
Apparatus and method for managing an array of multi-level cell (MLC) memory cells. In accordance with various embodiments, a non-sequential encoding scheme is selected that assigns a different multi-bit logical value to each of a plurality of available physical states of a selected MLC memory cell in relation to write effort associated with each of said plurality of physical states. Data are thereafter written to the selected MLC memory cell in relation to the selected non-sequential encoding scheme. In some embodiments, the MLC memory cell comprises a spin-torque transfer random access memory (STRAM) memory cell. In other embodiments, the MLC memory cell comprises an MLC flash memory cell.
US08942032B2 Method for magnetic screening of arrays of magnetic memories
A testing method is described that applies a sequence external magnetic fields of varying strength to MRAM cells (such as those with MTJ memory elements) in chips or wafers to selectively screen out cells with low or high thermal stability factor. The coercivity (Hc) is used as a proxy for thermal stability factor (delta). In the various embodiments the sequence, direction and strength of the external magnetic fields is used to determine the high coercivity cells that are not switched by a normal field and the low coercivity cells that are switched by a selected low field. In some embodiments the MRAM's standard internal electric current can be used to switch the cells. Standard circuit-based resistance read operations can be used to determine the response of each cell to these magnetic fields and identify the abnormal high and low coercivity cells.
US08942030B2 Structure and method for SRAM cell circuit
The present disclosure provides a static random access memory (SRAM) cell. The SRAM cell includes a first and a second pull-up devices; a first and a second pull-down devices configured with the first and second pull-up devices to form two cross-coupled inverters for data storage; and a first and second pass-gate devices configured with the two cross-coupled inverters to form a port for data access, wherein the first and second pull-down devices each includes a first channel doping feature of a first doping concentration, and the first and second pass-gate devices each includes a second channel doping feature of a second doping concentration greater than the first doping concentration.
US08942028B1 Data reprogramming for a data storage device
A data storage device includes a non-volatile memory and a controller. A method includes programming information to the non-volatile memory. The information includes multiple codewords. The method further includes accessing a sample codeword of the multiple codewords from the non-volatile memory and determining an error rate associated with the sample codeword. The error rate is determined by an error correcting code (ECC) engine. The method further includes programming the information at the non-volatile memory in response to the error rate satisfying an error threshold.
US08942027B1 Memory storage circuit and method of driving memory storage circuit
A memory storage circuit includes a volatile memory portion, a control portion, and a non-volatile memory portion. The volatile memory portion includes a first node and a second node to store a pair of complementary logic data. The control portion includes a first transistor and a second transistor. Gate electrodes of the first and second transistors are coupled to receive a store signal, and first electrodes of the first and second transistors are coupled to receive a control signal. The non-volatile memory portion includes a first resistive memory element and a second resistive memory element to store the pair of complementary logic data. The first resistive memory element is coupled between a second electrode of the first transistor and the first node, and the second resistive memory element is coupled between a second electrode of the second transistor and the second node.
US08942026B2 Circuit and method for reading a resistive switching device in an array
A read circuit for sensing a resistive state of a resistive switching device in a crosspoint array has an equipotential preamplifier connected to a selected column line of the resistive switching device in the array to deliver a read current while maintaining the selected column line at a reference voltage near a biasing voltage applied to unselected row lines of the array. The read circuit includes a reference voltage generation component for generating the reference voltage for the equipotential preamplifier. The reference voltage generation component samples the biasing voltage via the selected column line and adds a small increment to a sampled biasing voltage to form the reference voltage.
US08942025B2 Variable resistance nonvolatile memory element writing method
A variable resistance nonvolatile memory element writing method according to the present disclosure includes: (a) changing a variable resistance layer to a low resistance state by applying, to a second electrode, a first voltage which is negative with respect to a first electrode; and (b) changing the variable resistance layer to a high resistance state. Step (b) includes: (i) applying, to the second electrode, a second voltage which is positive with respect to the first electrode; and (ii) changing the variable resistance layer to the high resistance state by applying, to the second electrode, a third voltage, which is negative with respect to the first electrode and is smaller than the absolute value of a threshold voltage for changing the variable resistance layer from the high resistance state to the low resistance state, after the positive second voltage is applied in step (i).
US08942020B2 Three-level phase leg for a power converter
A phase leg for a three-level power converter includes a heat sink device that includes a first surface and a second surface opposite the first surface. The phase leg also includes a first portion including at least one semiconductor switching device coupled to the first surface. The phase leg further includes a second portion including at least one semiconductor switching device coupled to the second surface.
US08942017B2 Energy storage system and method thereof
An energy storage system (ESS) and a method thereof are disclosed. The system includes a maximum power tracking control unit changing a controlled variable for maximum power point extraction in proportion to an hourly current and power slope of the power generating unit, setting the change amount of the controlled variable to be relatively large if the hourly current and power slope is out of a predetermined hourly current and power slope range, and setting the change amount of the controlled variable to be relatively small if the hourly current and power slope is within a predetermined hourly current and power slope range, and a maximum power extracting unit extracting and converting a maximum power from the power generating unit in response to a control of the maximum power tracking control unit.
US08942015B2 Control device and control method during bypassing of power units
A control device and a control method during bypassing of power units are provided. The method includes: detecting a first three-phase output electrical signal; calculating a first positive sequence component and a first negative sequence component of the first three-phase output electrical signal; providing a given positive sequence component and a given negative sequence component so as to respectively perform the closed-loop compensation on the first positive sequence component and the first negative sequence component, thereby outputting a second positive sequence component and a second negative sequence component; superimposing the second positive sequence component and the second negative sequence component; and outputting a second three-phase output electrical signal in a preset way.
US08942011B2 Power supply apparatus and image forming apparatus
A power supply apparatus supplies regulated power to an external apparatus. A power switch is turned on to receive AC power and turned off not to receive the AC power. The AC power is rectified by a rectifying section and is switched by a switching section into switched DC power which is smoothed by a rectifying/smoothing section. Upon reception of an alarm signal, the power disconnecting section stops sending the switched DC power to the rectifying/smoothing section. If the AC switch is turned off and then back on again after stopping sending the switched DC power to the smoothing section, the power disconnecting section allows receiving of the AC power only a time after turn-off of the power switch. Upon reception of an auto-off signal indicative of an idle state of the external apparatus, an auto-off section does not send the switched DC power to the rectifying/smoothing section.
US08942008B2 Electronic device with riser card
An electronic device includes a chassis, a mounting assembly, and an assisting member. The mounting assembly is secured to the chassis and includes a circuit board and a connector secured to the circuit board. The signal module is secured to the chassis and includes a signal card, and the signal card is engaged with the connector. The assisting member is secured to a first end of the mounting assembly and includes an assisting corner. The assisting corner abuts the signal module. The connector is located between the assisting corner and a second end of the mounting assembly, which is opposite to the first end. The second end rotates about the assisting corner, and the connector disengages from the signal card when the second end is rotated about the assisting corner.
US08942005B2 Low cost, high strength electronics module for airborne object
An electronics module is provided for utilization onboard an airborne object. In one embodiment, the electronics module includes a housing having a cavity therein, a first printed circuit board (PCB) disposed in the cavity, a second PCB disposed in the cavity above the first PCB, and a supportive interconnect structure. The supportive interconnect structure includes a substantially annular insulative body and a plurality of vias. The substantially annular insulative body extends around an inner circumferential portion of the housing between the first PCB and the second PCB to support the second PCB and to axially space the second PCB from the first PCB. The plurality of vias is formed through the substantially annular insulative body and electrically couples the first PCB to the second PCB.
US08942000B2 Lead line structure and display panel having the same
A lead line structure and a display panel having the same are provided. The display panel includes a pixel array, at least one driving device, first and second lead lines, and first and second insulating layers. The first lead lines are electrically connected to the pixel array and the driving device. The first insulating layer covers the first lead lines and has trenches. The second lead lines are electrically connected to the pixel array and the driving device, and located in the trenches of the first insulating layer. The first and second lead lines are alternately arranged. The second insulating layer covers the first insulating layer and the second lead lines. The height of the second insulating layer above the second lead lines is smaller than the height of the second insulating layer above the first lead lines.
US08941997B2 Computer server retaining apparatus and server cabinet using the same
A server cabinet for retaining at least one computer server includes a plurality of holding poles and a plurality of retaining apparatuses. Each of the plurality of retaining apparatuses is secured to a computer server and clamps a holding pole, such that the computer server is secured on the plurality of holding poles both vertically and horizontally by the plurality of retaining apparatuses.
US08941995B2 Fixing bracket and electronic device using the same
A fixing bracket includes a bracket body, at least one connecting rod assembly, and at least one elastic buckling arm. One side of the bracket body has a first pivoting point and a second pivoting point. The at least one connecting rod assembly includes a first rod, a second rod, a third rod. The first rod has a third pivoting point and a fourth pivoting point. The second rod has a first limiting part, a fifth pivoting point, and a sixth pivoting point. The third rod has a second limiting part, a seventh pivoting point, and a eighth pivoting point. The at least one elastic buckling arm is located on the first rod. The connecting rod assembly drives the elastic buckling arm to move between a release position and a fastening position. When located at the fastening position, the first limiting part is against the second limiting part.
US08941990B2 Device foot
A moveable device foot for an electronic device is described. The device foot can include a rigid weight bearing member and a flexible sealing member that is integrally formed with the weight bearing member. The device foot can be formed using a double-shot injection molding process. The weight bearing member of the foot can be mounted to an interior portion of the electronic device such that it extends through an external casing of the electronic device. The flexible sealing member can be mounted to the external casing to seal the interior of the electronic device. During operation of the electronic device, the device foot can be configured to move relative to the external casing, such as in response to an external force applied to the electronic device.
US08941984B2 Storage bridge bay canister attachment system and method of forming same
A tool-less printed circuit board (PCB) bracket system for attaching an input/output (I/O) interface PCB to a bulkhead includes a main PCB and card assembly having a bracket mounted to the main PCB. One or more keyhole fasteners are attached to the main PCB for holding the bracket into a fixed position. The card bracket includes a release mechanism for releasably detaching the card bracket assembly from the keyhole fasteners without the use of tools for easily separation and servicing.
US08941979B2 Foldable keyboard
A foldable keyboard including an upper housing having a plurality of keys, a lower housing having a plurality of keys, a spine member configured for pivotally connecting the upper and lower housings along a horizontal axis defined by the upper and lower housings, and a hinge mechanism provided in the spine member and configured for enabling movement of the upper housing relative to the lower housing to move the keyboard between a closed configuration and an open configuration.
US08941978B2 Flat panel display remote-controlled viewing angle adjustment system
A flat panel display remote-controlled viewing angle adjustment system (1) comprising a support assembly (2) for supporting a flat panel display (9), an electrical driving assembly for driving the support assembly (2), and an angular control assembly attached to the support assembly (2). The adjustable system (1) is configured such that when the electrical driving assembly is started, the flat panel display (9) is rotated about a vertical axis that passes through one of the left side and the right side of the flat panel display (9) and only when the flat panel display (9) returns to zero angle position can it rotate about a vertical axis that passes through the other of the left side and the right side of the flat panel display (9).
US08941977B2 Power safety assembly
The present invention is directed to an enclosure for electrical equipment. The enclosure includes a power plate assembly and a vented cover installed over the power plate assembly. Electrical components operating at 50 volts or more are mounted to a rail in the power plate assembly. The vented cover separates the electrical components mounted to the rail from the electrical components mounted in the enclosure.
US08941973B2 Multilayer ceramic electronic component and method of manufacturing the same
There are provided a multilayer ceramic electronic component and a manufacturing method thereof, the multilayer ceramic electronic component including: a ceramic body including dielectric layers; a plurality of internal electrodes facing each other with the dielectric layer interposed therebetween; and external electrodes electrically connected to the internal electrodes, wherein a thickness to of the internal electrode satisfies 0.1 μm≦Te≦0.5 μm, and when, in a cross-section of the ceramic body taken in length and thickness directions, cut through a central portion of the ceramic body in a width direction, a distance, in the length direction, of a central portion of an internal electrode grain closest to a disconnected portion of the internal electrode is denoted by Tc, and a distance, in the length direction, of the internal electrode grain at a point equal to 25% of the thickness thereof above or below the central portion thereof is denoted by Tl, 0.7≦Tl/Tc≦1.3 is satisfied.
US08941972B2 Multilayer ceramic electronic component
There are provided a multilayer ceramic electronic component and a method of manufacturing the same. The multilayer ceramic electronic component includes: a ceramic body including a dielectric layer; first and second internal electrodes disposed within the ceramic body to face each other, while having the dielectric layer interposed therebetween; and first external electrodes electrically connected to first and second internal electrodes and second external electrodes formed on the first external electrodes, wherein the first and second external electrodes include a conductive metal and a glass, and when the second external electrodes are divided into three equal parts in a thickness direction, an area of the glass in central parts thereof with respect to an area of the central parts is 30 to 80%. Therefore, sealing properties of a chip is improved, whereby a multilayer ceramic electronic component having improved reliability may be implemented.
US08941970B2 Method and apparatus for demagnetizing generator components prior to electromagnetic core imperfection testing or EL-CID testing
A method and apparatus for determining and for reducing magnetism in a generator stator core (20). The method includes extending one or more conductors (38) proximate the core, applying a polarity-reversing excitation voltage to the one or more conductors, and reducing an amplitude of the voltage over time, wherein the voltage causes current to flow in the conductors, the current generating a magnetic field that demagnetizes the core. The method and apparatus are useful for determining hot spots in the core.
US08941967B2 Underwater laser-guided discharge
Methods for producing a laser-guided underwater electrical discharge are provided. One or more electrodes defining a desired electrical discharge path are situated in a body of water and are attached to an external electrical power supply. A high-powered, intense laser beam is fired into the water. The laser beam forms an optical filament in the water, which in turn forms an ionized channel having a much greater conductivity than the surrounding water. An external power supply drives an electrical discharge along the path of the ionized channel due to its greater conductivity.
US08941966B2 Magnetic system for particle attraction in a plurality of chambers
The invention relates to a magnetic sample-processing device, particularly a sensor device (100), that comprises two electromagnets (110, 120) for generating a magnetic field (B) in a first and a second sample chamber (SC1, SC2) located adjacent to each other in an x-direction. The poles of the electromagnets are disposed below the first and the second sample chamber (SC1, SC2), respectively, next to each other in a perpendicular y-direction. Moreover, the electromagnets are individually controlled by a control unit (130). In a preferred embodiment, the distance between the electromagnets (110, 120) in x-direction is so large that magnetic cross talk can be neglected. In another embodiment, said distance is close, and the electromagnets are operated in a synchronized way.
US08941953B2 Disk drive suspension and manufacturing method therefor
An actuator mounting section includes a plate member including a first plate and a second plate. The first plate is formed with an opening which accommodates an actuator element. The second plate includes a main body portion which overlaps the first plate and supporting portions which support opposite ends of the actuator element. A narrow portion narrower than the first plate is formed at a part of the main body portion of the second plate. A weld seal portion is formed by laser-welding the first plate and the second plate at the narrow portion. Adhesive is provided between the opposite ends of the actuator element and an inner surface of the opening of the first plate.
US08941944B1 System and method for evenly distributing thermal exposure to disk in heat-assisted magnetic recording (HAMR)
A method of radially positioning a heat assisted magnetic recording (HAMR) head writes data to a first band, wherein a radial position of the HAMR head within each data track is defined by a positional bias and a track location. A determination is made regarding whether a threshold has been reached with respect to the first band. If the write threshold has been reached with respect to the first band, then the positional bias associated with the first band is modified to evenly distribute thermal exposure of data tracks in the first band.
US08941943B1 Dynamic variable capacity hard disk drive
A disk drive includes an environmental monitor, a controller and a writing mechanism. The controller acts in response to an output from the environmental monitor to determine if the data capacity of a disk drive could be increased from a first value to a second value. The controller determines the second increased value. The writing mechanism, controlled by the controller, writes data to the disk to realize the increased data capacity of the disk drive. A method for increasing the data capacity of a disk drive from the factory settings for data capacity includes determining if the disk drive is in a favorable or stable environment, writing data to at least one portion of the disk drive at a higher capacity than the factory setting for the at least one portion of the disk drive, and resetting the capacity for at least one portion of the disk drive.
US08941942B2 Method for adjusting linear recording density and magnetic disk drive
According to one embodiment, there is provided a method, implemented in a magnetic disk drive, for adjusting a linear recording density. The method obtains a first flying-dependent error sensitivity for each of two or more heads. The first flying-dependent error sensitivity represents a change in read error rate corresponding to a change in flying height of the head during write. In addition, the method reduces the linear recording density of a first recording surface associated with a first head of the two or more heads if the first flying-dependent error sensitivity is a second flying-dependent error sensitivity higher than a threshold and corresponds to the first head.
US08941940B1 Utilizing stored write environment conditions for read error recovery
Described herein are embodiments for utilizing stored write environment conditions for read error recovery. A tape drive measures read environment conditions as a result of receiving a read command to read data from a portion of tape and compares the read environment conditions to the write environment conditions stored for that portion of tape. If the read environment conditions are not within the predetermined range of the write environment conditions, then the handling of the tape is altered to improve read element placement on the tape by accounting for expansion and contraction of the tape based on the stored write environment conditions. The handling of the tape is altered by at least one of increasing or decreasing the tension of the tape, offsetting the tape head up or down laterally with respect to the tape, and slowing down the movement of tape across the tape head.
US08941938B1 Apparatus and methods for circumferentially aligned features
Provided herein is an apparatus, including a first region corresponding to a data region in a patterned recording medium; a first set of features in the first region; a second region corresponding to a servo region in a patterned recording medium; and a second set of features in the second region including rhomboidal protrusions, wherein the first set of features and the second set of features are circumferentially aligned in accordance with concentrically circular lines etched into the apparatus across the first region and the second region.
US08941936B1 Hybrid surface format hard disk drive
Embodiments of the invention relate to a hard disk drive (HDD) formatted with at least two surfaces, each of the surfaces serviced a write head, each write head configured for the respective surface. At least one of the surfaces of the HDD is serviced by a random block overwrite (RBO) head for an associated surface. Similarly, at least one of the surfaces of the HDD is serviced by a shingled magnetic recording (SMR) head for an associated SMR surface. The properties of both the RBO and SMR surfaces are retained, and at the same time leveraged to maximize data density and write performance in a single HDD.
US08941935B1 System and method for initiating refresh operations
A magnetic storage system includes a magnetic storage medium, a random-access memory (RAM), and a controller. The controller interfaces with both the magnetic storage medium and the RAM, and implements a refresh algorithm that determines when a data track on the magnetic storage medium should be refreshed. The controller maintains in the magnetic storage medium a plurality of finer-granularity damage count tables, each table having finer-granularity damage counts each representing damage to one or more sectors within each of the plurality of tracks associated with the table. The controller maintains in RAM a plurality of track-level damage count values, each associated with one of the plurality of data tracks and representing estimated damage to one of the plurality of data tracks. Based on data written to the plurality of data tracks, the controller utilizes finer-granularity damage count tables stored in the magnetic media to update the track-level damage.
US08941934B2 Lens connection module and connection adapter for same
A lens connection module is disclosed, which can be magnetically installed on an image capture device having a light entry opening and a first magnetic unit, and comprises a lens connection body and a second magnetic unit installed on the lens connection body for magnetically connecting to the first magnetic unit. The lens connection body includes a light collecting pathway corresponding to the light entry opening and extending along a light axis, the first magnetic unit has at least one ferromagnetic component arranged on the front face in a radially asymmetric manner, and the second magnetic unit has a magnetic component corresponding to the ferromagnetic component and installed on a joint face. As such, the lens connection module allows quick installation onto and detachment from the image capture device, thereby increasing application flexibility and operation convenience of the image capture device.
US08941933B2 Image capturing system
An image capturing system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element and a fourth lens element. The first lens element with positive refractive power has a convex object-side surface at a paraxial region. The second lens element with negative refractive power has a concave image-side surface. The third lens element with positive refractive power has a convex object-side surface at a paraxial region and a convex image-side surface at a paraxial region. The fourth lens element with negative refractive power has a concave image-side surface at a paraxial region, wherein the image-side surface of the fourth lens element has a convex shape at a peripheral region, and both of the surfaces of the fourth lens element are aspheric. The image capturing system has a total of four lens elements with refractive power.
US08941930B2 Imaging lens and imaging device
An imaging lens includes a first lens; a second lens; and a third lens arranged from an object side to an image plane side. The first lens has an object-side surface with a positive curvature radius. The second lens has an object-side surface and an image plane-side surface with negative curvature radii. The third lens has an object-side surface and an image plane-side surface with positive curvature radii. The object-side surface and the image plane-side surface of the third lens are respectively formed as an aspheric shape having an inflexion point. When the whole lens system has a focal length f, the first lens has a focal length f1, the second lens has a focal length f2, and the third lens has a focal length f3, the imaging lens satisfies the following conditional expressions: f1
US08941926B2 Zoom lens, image pickup apparatus using the same, image transmission apparatus, and image transmission system
A zoom lens includes in order from an object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a negative refractive power, a fourth lens group having a positive refractive power, a fifth lens group having a positive refractive power, and a last lens group having a positive refractive power. At the time of zooming from a wide angle end to a telephoto end, the second lens group and the third lens group move, and one of the fourth lens group, the fifth lens group, and the last lens group moves.
US08941922B2 Lens apparatus and image pickup apparatus including the lens apparatus
A lens apparatus includes: a correction unit moving perpendicularly to an optical axis and including a correction optical system correcting an image blur; a driving unit driving the correction unit; an engaging unit movable between an engaging position where the engaging unit abuts abutting portions of the correction unit to engage the correction unit and a non-engaging position where the engaging unit makes the correction unit movable; a biasing unit biasing the engaging unit from non-engaging position to engaging position; and a non-engaging position maintaining unit maintaining the engaging unit at non-engaging position by being engaged with the engaging unit, wherein the correction unit moves to press the non-engaging position maintaining unit beyond a range driven by the driving unit during image-blur correction to disengage the non-engaging position maintaining unit and the engaging unit, and the biasing unit moves the engaging unit from non-engaging position to engaging position.
US08941920B2 Method of producing optical element and optical element
Provided are an optical element and a method of producing an optical element in which sufficient adhesion with an upper layer can be secured without damaging spectral characteristics. The production method includes the step of forming a first structural body in which a space part and a structural part are alternately and repeatedly arranged, the step of forming an etching stopper layer on an upper part of the structural part, and the step of forming a second structural body on the etching stopper layer by etching.
US08941919B2 Continuous adjustable 3Deeps filter spectacles for optimized 3Deeps stereoscopic viewing, control method and means therefor, and system and method of generating and displaying a modified video
A source video comprising a sequence of 2D image frames is acquired, a value for an inter-ocular distance of a viewer is determined, and an image frame is obtained from the source video that includes two or more motion vectors that describe motion in the image frame where each of the motion vectors is associated with a region of the image frame. Parameters for a lateral speed of the image frame and a direction of motion of the image frame are determined. A deformation value is generated based on the inter-ocular distance and both of the parameters, and the deformation value is applied to the image frame to identify a modified image frame. The modified image frame is blended with a first bridge frame and with a second bridge frame that are different from the modified image frame and different from each other to generate first and second blended frames. The first blended frame and the second blended frame are displayed to a viewer. The direction of motion and velocity of motion parameters are calculated only from the motion vectors input along with the image frame.
US08941917B2 Tensioned projection screen
A projection screen apparatus having a perimeter frame and a substantially blank screen is provided.
US08941916B2 Filter holder for correlative particle analysis
A filter holder for correlative particle analysis during imaging microscopy methods or methods of the elemental analysis including a receiving element with a filter support and a fastening unit. The plane filter support is designed as pressure piece and is movably arranged in the receiving element to be movable at a right angle to the surface of the filter for the purpose of tensioning the filter. The fastening unit includes a clamping element which encloses the filter at the circumference of the filter and is held by a tensioning element which is supported in the receiving element.
US08941915B2 Illuminating device for an operating microscope
The present invention relates to an illuminating device for an operating microscope including two observation beam paths for a first observer and two observation beam paths for a second observer. An illuminating system provides two parallel illuminating beam paths and a deflecting device, for deflecting the parallel illuminating beam paths onto an object that is to be observed. The deflecting device includes a first semitransparent deflector element which is associated with a first observation beam path of the first observer and a first observation beam path of the second observer, and a second semitransparent deflector element, which is associated with a second observation beam path of the first observer and a second observation beam path of the second observer. The first illuminating beam path acts exclusively on the first deflector element and the second illuminating beam path acts exclusively on the second deflector element.
US08941908B2 Porous electrode sheet, method for producing the same, and display device
A porous electrode sheet (1) includes a resin film (2) being transparent and having insulating properties, and a transparent electrode (3) placed on one face (2a) of the resin film (2). The resin film (2) is provided with a plurality of through holes (21) extending linearly from the one face (2a) to the other face (2b). The transparent electrode (3) has openings (31) at positions corresponding respectively to the through holes (21). The through holes (21) of the resin film (2) and the openings (31) of the transparent electrode (3) communicate with each other, and thereby form passages (10) penetrating the porous electrode sheet (1) in the thickness direction.
US08941907B2 Microelectromechanical optical shutter system
A microelectromechanical shutter system includes an actuator beam formed in a substrate, at least one actuator electrode spaced apart and electrically isolated from the actuator beam, the at least one actuator electrode angling away from a base of the actuator beam to actuate the actuator beam using a zipper action, and a fiber-optic channel in the substrate to receive a fiber-optic cable. A shutter mirror is included on a distal end of the actuator beam, with the shutter mirror in substantial alignment with a centerline of the fiber-optic channel. Upon application of a voltage between the actuator beam and the at least one actuator electrode, an electrostatic force is created between them to move the shutter mirror across the end of the fiber-optic channel.
US08941905B2 Optical deflector
An optical deflector is provided which can effectively suppress occurrence of a ringing phenomenon when a piezoelectric actuator is driven with a voltage signal of a sawtooth waveform. An optical deflector A1 includes a control circuit 20 that detects a mechanical natural frequency relevant to swinging about a second axis X2 of a movable part 9. The control circuit 20 applies a voltage signal of a sawtooth waveform from which the natural frequency and a harmonic component thereof are removed to outside piezoelectric actuators 10a and 10b. The control circuit 20 removes a frequency component, which is equal to or greater than a second threshold value G2 within a predetermined frequency range out of frequency components of a voltage signal output from a detecting piezoelectric body 62, from a drive voltage.
US08941899B2 Simulated paper texture using glossmark on texture-less stock
A method for simulating a textured appearance on a uniform substrate includes using variable halftone dot orientations. A texture description is provided for generating electronic data representing a three-dimensional texture. Texture regions of the texture description are identified using pixel cells in the electronic data. Halftone dot orientations are assigned for each pixel cell based on a value of the pixel cell. The halftone dot orientation represents a recessed or a raised surface portion.
US08941898B2 Sensor IC, contact image sensor and image reading apparatus
A sensor IC of the present invention is provided with plurality of light receiving portions arranged in a row along a primary scanning direction and including a first light receiving portion for receiving light of a first wavelength, a second light receiving portion for receiving light of a second wavelength different from the first wavelength, and a third light receiving portion for receiving light of a third wavelength different from the first wavelength and the second wavelength. The sensor IC further includes a control circuit that outputs a first electric signal corresponding to light of the first wavelength received by the first light receiving portion, a second electric signal corresponding to light of the second wavelength received by the second light receiving portion, and a third electric signal corresponding to light of the third wavelength received by the third light receiving portion.
US08941897B2 Image reading apparatus and medium conveyance apparatus
An image reading apparatus includes a housing having a conveyance path where a first medium and a second medium are conveyed; a pair of first conveyance rollers that has a first driving roller and a first pinch roller; a pair of second conveyance rollers that has a second driving roller and a second pinch roller having an outer diameter smaller than that of the first pinch roller, and wherein the first driving roller and the first pinch roller are positioned at an outside of a conveyance area in the axis direction, wherein the second driving roller and the second pinch roller are positioned at an inside of the conveyance area in the axis direction, wherein the second pinch roller, and wherein the first pinch roller and the second pinch roller are rotatably supported about a driven shaft center parallel with a driving shaft center.
US08941896B2 Image reading unit and overhead image reading device
An image reading unit includes an image reading section that reads an image of a document in a one-dimensional direction by one-dimensionally aligned imaging elements, a light source that irradiates an image reading region by the image reading section with light, and a rotation head that holds the image reading section and the light source in a manner that the image reading section and the light source are rotatable relative to the document about a rotation axis which is parallel to an alignment direction of the imaging elements.
US08941894B2 Scanner device and image forming apparatus having the same
A scanner device according to one aspect of this disclosure includes a document table, a light detecting portion, and a control portion. The light detecting portion detects light from an object placed on the document table. The control portion adjusts reading sensitivity for the object on the basis of a detection result of the light detecting portion.
US08941891B2 Organic light emitting display device and driving method thereof
An organic light emitting diode (OLED) display is disclosed. One aspect includes a pixel unit including a plurality of pixels formed at portions at which scanning lines and data lines intersect with each other; a scan driver for supplying scan signals to the scanning lines. The OLED display further comprises a data driver for supplying data signals to the data lines; and a data compensation unit changing the input data using a correction coefficient stored as a unit of a pixel block including a plurality of pixels and supplying the changed input data to the data driver. In such OLED display, the pixel block is divided so that the number of pixel arranged in the first direction is different from the number of pixel arranged in the second direction which intersects with the first direction.
US08941881B2 Method and apparatus for rasterizing transparent page
A method for rasterizing a transparent page comprises interpreting the transparent page to obtain graphic entities, transparency properties of the graphic entities, and profile information of the graphic entities; dividing the transparent page into a transparent area and a nontransparent area according to the transparency properties of the graphic entities; identifying, from the graphic entities, an overlapping graphic entity having an overlapping portion with the transparent area according to the profile information of the graphic entities; and dividing the transparent area into a de-transparentizing area and an ultimate transparent area by using the overlapping graphic entity.
US08941880B2 Image processing apparatus, image processing method, and program
Data of each plane capable of obtaining a high-quality output image is generated. An image processing apparatus for quantizing input image data having gradation of an m value (m is a natural number) into output image data having gradation of an n value (n is a natural number smaller than m) includes a quantization unit configured to quantize input image data having gradation of an m value in a target pixel into output image data having gradation of an n value, and a plane separation unit configured to determine that the quantization value quantized by the quantization unit is to be assigned to the target pixel of which plane out of planes of two types or more, wherein the plane separation unit determines that the quantization value is to be assigned to the target pixel of which plane, based on distance information of the target pixel indicating distances, to the target pixel, from pixels on which a recording material is recorded in the each plane.
US08941879B2 Input display apparatus, control method thereof and storage medium
An input display apparatus can communicate with a printing apparatus, and includes a display unit, a touch detection unit, and an orientation detection unit. The input display apparatus determines which screen components is touched by the operator touches, determines a type of an operation from the touch by the operator, and determines based on the orientation of the input display apparatus whether or not the input display apparatus has been rotated on a plane including a display screen. When the operation is a long press operation, and the input display apparatus has been rotated, the touched screen component determined to be touched is rotated and displayed in a direction opposite to a rotation direction of the input display apparatus.
US08941876B2 Ink use amount evaluation apparatus and method, and inkjet apparatus
When image is formed by a liquid ejection head, input image data is subjected to conversion processing including tone conversion using a first look-up table (LUT) and density correction or non-uniformity correction in nozzle units using second LUTs. Ink use amount in image formation is predicted from reduced image data which is generated from the input image data. In this, the calculation is made more efficient by applying a third LUT which is compiled according to requirements from the second LUTs, to the reduced image data, rather than using the second LUTs directly. Since the image conversion processing is carried out which combines the first LUT for tone conversion and the third LUT corresponding to the non-uniformity correction, and the ink amount distribution data is calculated from the reduced image data after the conversion, then it is possible to ascertain an accurate ink amount which reflects the image adjustment conditions.
US08941870B2 Automated file generation using a multifunction peripheral
There is disclosed multifunction peripheral and a method for automated file generation. The multifunction peripheral includes a network interface for accessing a data source including data to be inserted into a plurality of files generated using a template and the data source and for sending the plurality of files to the output destination. The multifunction peripheral also includes a user interface for receiving identification of template elements within an electronic document and for receiving selection of an output destination for the plurality of files generated using the template and the data source. The multifunction peripheral also includes a controller for generating the template from the electronic document using the identified template elements, for generating a preview of a file generated using the template and the data source, the preview visible on the display device and for generating the plurality of files using the template and the data source.
US08941862B2 Image formation apparatus, image formation system, and computer readable medium for controlling conveyance of a plane-shaped recording medium between two image formation apparatuses
An image formation apparatus includes an image formation processing managing unit and a control unit. The image formation processing managing unit manages first image formation processing to form an image on a face of plane-shaped recording medium based on received information. The control unit controls conveyance of the plane-shaped recording medium between the image formation apparatus and the other image formation apparatus which performs second image formation processing to form an image on the other face of the plane-shaped recording medium, a second term needed to stop the second image formation processing since receiving an instruction to stop the second image formation processing on an image forming operation being longer than a first term needed to stop the first image formation processing since receiving an instruction to stop the first image formation processing on the image forming operation.
US08941861B2 Image forming system having an image forming apparatus and a host and a method of managing the same
An image forming apparatus, a host client, an image forming system and a managing method thereof are provided. The managing method of an image forming system which includes an image forming apparatus, and a host client which is connected to the image forming apparatus, includes determining whether a predetermined event of the image forming apparatus happens or not, informing at least one host client whether to perform an uninstalling of a printer driver which corresponds to the image forming apparatus or not if the predetermined event happens, selecting the uninstalling of the printer driver depending on the informing, and deleting the printer driver of the host client depending on the selecting. Thus, the present general inventive concept provides an image forming apparatus, a host client, an image forming system and a managing method thereof efficiently managing a control program corresponding to the image forming apparatus.
US08941848B2 Print controlling apparatus, method, and storage medium to control primary and secondary print drivers
A novel print controlling apparatus that facilitates providing easy services that use printer drivers. The print controlling apparatus that executes a print job on a printing apparatus, and includes an additional feature driver 130 that acquires image to be printed and print settings set by a user by working as a printer driver and generates a print data in a format with open specifications by processing the acquired image, an individual driver 150 as a printer driver that generates a print job to be sent to a printer 2 designated in the print settings, and a reprint controlling unit 140 that has the individual driver 150 generate the print job based on the generated print data.
US08941847B2 Mobile scan setup and context capture prior to scanning
Example embodiments described herein are directed to utilizing image matching technology to allow people to use their mobile device to setup scan workflows (or “Scan Flows”) in advance of a future scanning operation. Using an application on a mobile device, the user takes a photo of the first page of a document that he/she will scan at some later time and associates the image of the document with a simple workflow (e.g., where to store the document once the document has been scanned). Additional workflow actions may include automatic document sharing and notification, automatic document segmentation, and automatic document cropping.
US08941845B2 Image forming apparatus
An image forming apparatus which allows a user to freely select a desired image quality is provided. The control unit 60 sets a of registration set value A1 for determining a color registration error suppression level and a dropout set value A2 for determining a dropout occurrence suppression level. Also, the control unit 60 sets a differential circumferential speed which is the difference between the circumferential speed of photoreceptor drums 1Y to 1K and the circumferential speed of an intermediate transfer belt 6 on the basis of the color registration set value A1 and the dropout set value A2. Then, the control unit 60 controls the belt drive motor 61 and the drum drive motor 62 on the basis of the differential circumferential speed which is set.
US08941840B2 Device for optical coherence tomography
In certain embodiments, a device for optical coherence tomography (OCT) includes a signal detection device and a computer arrangement. The signal detection device is designed to detect an interference signal (G(ω)) for an object to be imaged in an optical frequency range (ω). The computer arrangement is designed to determine intermediate signals (G1(k), G2(k)) in a spatial frequency range (k) from the interference signal (G(ω)), whereby each of the intermediate signals (G1(k), G2(k)) is dispersion-compensated for a different depth (z1, z2) of the object. A locally resolved image signal (FFT1, FFT2) is determined for each of the intermediate signals (G1(k), G2(k)) by applying a Fourier transformation to the particular intermediate signal (G1(k), G2(k)). A tomography signal (G(z)) is determined from the image signals (FFT1, FFT2).
US08941839B2 Rate sensitive blanking of a path length control circuit in a gyroscope
A method and system for rate sensitive blanking in a path length control circuit of a gyroscope is provided. The method comprises determining an angular rate of the gyroscope, detecting a zero rate of the gyroscope where one or more single beam signals occur, and determining one or more blanker positions based on the zero rate. A blanker pulse is generated at the blanker positions such that the path length control circuit suspends operation when the one or more single beam signals occur.
US08941836B2 Metrology system and method applied to an interferometer for remotely analysing a gaseous compound
In the field of Fourier transform interferometry and in particular a device and a method for improving the precision of such a device for remotely analyzing a gaseous compound, a Fourier transform interferometer includes: at least one movable retroreflector; a metrology subsystem using at least three laser beams; and a metrology unit generating, for each sounding point represented by a pixel on the capture matrix imaging a gaseous compound, a metrology signal incorporating the displacements in space of the movable element(s).
US08941835B2 Foreign substance detection device, moving body control system including foreign substance detection device, and moving body including moving body control system
A foreign substance detection system includes an optical device having an input surface through which is part of light emitted from a light source enters the optical device and a transparent face, provided in close contact with an inner surface of a glass, to transmit a light reflected from an area where a substance is not present on an outer surface of the glass toward a first light-receiving member; a light-guiding member to guide another part of the light that does not pass through the input surface, the guided light being to be reflected from an area where a substance is present on an inner surface of the glass toward a second light-receiving member; and an foreign substance detection processor to detect an outer substance based on the first light-receiving member and detect the inner substance based on the second light-receiving member.
US08941832B2 Lateral shift measurement using an optical technique
Alignment of layers during manufacture of a multi-layer sample is controlled by applying optical measurements to a measurement site in the sample. The measurement site includes two diffractive structures located one above the other in two different layers, respectively. The optical measurements include at least two measurements with different polarization states of incident light, each measurement including illuminating the measurement site so as to illuminate one of the diffractive structures through the other. The diffraction properties of the measurement site are indicative of a lateral shift between the diffractive structures. The diffraction properties detected are analyzed for the different polarization states of the incident light to determine an existing lateral shift between the layers.
US08941831B2 Intra-cavity ellipsometer system and method
A resonant optical cavity ellipsometer system is provided. The system can be used to conduct time-dependent arid sensitive measurement of ellipsometric parameters of matter. In a particular use, the system can provide time resolution of better than 1 microsecond. In a particular implementation, matter can be probed within the evanescent wave generated by intra-cavity total reflection.
US08941825B2 Container inspection
Method and apparatus for detecting commercial variations in at least a portion of an at least partially transparent container. A light pattern in an angular domain is established from signals generated by a plurality of light sensors, wherein a point in the light pattern is generated by a signal from a corresponding portion of the light sensors and represents a light intensity corresponding to a particular reflection angle of a light ray reflected off the container. Different types of commercial variations in the container can be differentiated by analyzing the light pattern in the angular domain.
US08941818B2 Optical rangefinder and imaging apparatus with chiral optical arrangement
An optical rangefinder having a photosensor adapted to transform the image projected thereon into an electronic image, an imaging system for projecting an image of an object on the photosensor, an optical arrangement to modulate the incoming light forming the image on the photosensor, means for providing the spatial spectrum of the image and means for deriving the distance from the object to the rangefinder on the degree of defocus of the image, wherein the optical arrangement is adapted to modulate the incoming light such that the degree of defocus of the image on the photosensor relative to the in-focus image plane results in displacement of the spatial spectrum of the image relative to a reference pattern and wherein the rangefinder has means for deriving the degree of defocus from the degree of displacement.
US08941817B2 Method for pointing a plurality of predetermined locations inside a structure and corresponding pointing system
Embodiments of the disclosure include methods in which locations within an aircraft fuselage are automatically pointed to and marked so that a part may be fastened at each marked location. A mobile assembly includes a video camera that may capture images of the aircraft fuselage. A plurality of predetermined locations may be visualized and verified by a successive implementation of a first image recognition process and a second image recognition process. The mobile assembly may then automatically point to the predetermined locations after each has been identified and mark each predetermined location.
US08941814B2 Multiple-blade holding devices
An exemplary device includes first and second portions that are movably connected together by first and second sets, respectively, of multiple blades interleaved with each other at an overlap region. When the overlap region is compressed, displacement of the first and second portions relative to each other is prevented so as to provide relatively high stiffness in first and second orthogonal directions (e.g., z- and y-directions) and relatively low stiffness in a third orthogonal direction (e.g., x-direction). The device can be used in coordination with an actuator, wherein operation of the actuator and compression of the overlap region are automated.
US08941810B2 Lithographic apparatus and device manufacturing method
A lithographic apparatus with a cover plate formed separately from a substrate table and means for stabilizing a temperature of the substrate table by controlling the temperature of the cover plate is disclosed. A lithographic apparatus with thermal insulation provided between a cover plate and a substrate table so that the cover plate acts as a thermal shield for the substrate table is disclosed. A lithographic apparatus comprising means to determine a substrate table distortion and improve position control of a substrate by reference to the substrate table distortion is disclosed.
US08941807B2 Liquid crystal display panel and method for manufacturing the same having a first conductive wire comprising at least two conductive portions having a resistivity that exceeds that of at least two isolated second connecting portions of the first conductive wire
An exemplary liquid crystal display panel includes a substrate and first conductive wires. The first conductive wires are arranged at a surface of the substrate. Each of the first conductive wires includes a plurality of first connecting portions, a plurality of second connecting portions and a conductive portion with a plurality of conductive particles. The conductive portion is sandwiched between the first connecting portions and the second connecting portions, thus electrically connecting the first connecting portions to the second connecting portions. A method for manufacturing the liquid crystal display panel is also provided.
US08941806B2 Liquid crystal display
A liquid crystal display includes a gate line, data lines transmitting a first voltage; a transmitting line transmitting a second voltage; and pixels including first and second pixel electrodes. One pixel electrode receives the first voltage through a data line, and the other receives the second voltage through the transmitting line. Branch electrodes of the pixel electrodes alternate, and a stem of the first pixel electrode of a first pixel, faces a stem of the first pixel electrode of a second pixel and a stem of the second pixel electrode of the second pixel, with respect to the data line. Areas of the stem of the first pixel electrode of the second pixel facing the stem of the first pixel electrode of the first pixel, and of the stem of the second pixel electrode of the second pixel facing the stem of the first pixel, are the same.
US08941804B2 Liquid crystal display device
Arbitrary one pixel P (contact hole pixel (13)) is selected in a predetermined demarcated area (20) of the liquid crystal display device of the present invention. The pixel P is (i) any of four pixels Q1 through Q4 (contact hole pixels (13)) closest to another pixel P or (ii) (a) contained in a quadrangle whose vertices correspond to respective four pixels Q1 through Q4 closest to the pixel P and (b) any of four pixels Q1 through Q4 closest to another pixel P. Further, two diagonal lines of a quadrangle formed by four pixels Q1 through Q4 are inclined at respective two angles with respect to a gate bus line (line segment A-B), and a difference between the two angles is smaller than 30 degrees. Moreover, the contact hole pixels (13) are provided for respective source bus lines in the predetermined demarcated area (20).
US08941803B2 Liquid crystal display device and electronic apparatus using the same
A liquid crystal display device of IPS mode includes an array of pixels arranged in a matrix pattern by crossing a plurality of video signal lines and a plurality of scanning signal lines each other. Each of the pixels is provided with at least a switching element. A transparent insulating film is provided on both signal lines, and a plurality of pixel electrodes, common electrodes and common lines are provided on the transparent insulating film. The common lines are formed in a grid-shaped pattern such that a first group of the common lines is made of a first conductor having lower reflectivity against optical light than that of metal while a second group of the common lines is made of a second conductor including a metal layer such that said first group and said second group are crossing each other along said video signal lines and said scanning signal lines.
US08941801B2 In-plane switched active retarder for stereoscopic display systems
Polarization modulation with in-plane switching of liquid crystals (LCs) may be used in active retarder stereoscopic display systems where viewers wear passive eyewear to see isolated left and right eye images. Embodiments of the present disclosure may include nematic LC or fast switching ferroelectric liquid crystal (FLC), depending on the desired performance.
US08941796B2 Light source unit, lighting device, display device, television receiver, and method of manufacturing board for light source unit
It is an object of the present invention to provide a light source unit enabling cost reduction. A light source unit of the present invention includes a plurality of LEDs 16, and an elongated LED board 17 having a plurality of arranging portions 18 on which each LED 16 is arranged, and a plurality of connecting portions 19 connecting the adjacent arranging portions 18. Each connecting portion 19 has a width smaller than a width of each arranging portion 18 in a short direction of the LED board 17.
US08941794B2 Backlight assembly and liquid crystal display device including the same comprising a shielding tape that comprises a portion having an attached adhesive and a portion without the adhesive
A backlight assembly and a liquid crystal display device including the backlight assembly are disclosed. In one embodiment, the backlight assembly includes a light guide plate configured to guide light, emitted from a light source, to a liquid crystal display panel and an optical sheet disposed on an upper surface of the light guide plate and configured to diffuse and collimate the light. The backlight assembly further includes a frame configured to support the liquid crystal display panel and the light guide plate and a shielding tape connected to an upper surface of the frame and extending from the frame to one side of the optical sheet.
US08941793B2 Liquid crystal display to increase side view visibility
Provided is a liquid crystal display to provide improved transmittance and visibility includes a first substrate; a first switching element and a second switching element formed on the first substrate configured to be switched by the same signal; a first subpixel electrode connected to the first switching element; a second subpixel electrode connected to the second switching element; a third switching element connected to the second switching element; a third subpixel electrode connected to the third switching element; a second substrate; a common electrode formed on the second substrate; and a liquid crystal layer formed between the first substrate and the second substrate.
US08941792B2 Liquid crystal display device and manufacturing method thereof
A liquid crystal display device includes a first insulation substrate and a second insulation substrate which hold a liquid crystal material therebetween, a pixel electrode, a common electrode, a thin film transistor which has a semiconductor layer, a first electrode connected with a video signal line, and a second electrode connected with the pixel electrode. The semiconductor layer overlaps and is in physical contact with the pixel electrode, and a part of the pixel electrode, a part of the semiconductor layer, and a part of the second electrode are stacked at an overlapping portion.
US08941791B2 Liquid crystal display device and method of fabricating the same
A liquid crystal display device includes a gate line and a gate electrode connected to the gate line, on a substrate; a gate insulating layer on the gate electrode and the gate line; an active layer on the gate insulating layer over the gate electrode; an ohmic contact layer on the active layer; first source and drain electrodes on the ohmic contact layer; second source and drain electrodes connected to the first source and drain electrodes, respectively; a data line extending from the source electrode and crossing the gate line to define a pixel region; and a pixel electrode in the pixel region and extending from the second drain electrode.
US08941790B2 Liquid crystal display device
A semiconductor device or the like with low off-state current is provided. A semiconductor device or the like for displaying images accurately is provided. A display device or the like with a wide viewing angle is provided. A display device or the like in which image burn-in is suppressed is provided. In order to achieve any of the above objects, a circuit is formed using a transistor including an oxide semiconductor (OS), particularly a thin film MOS transistor including an oxide semiconductor. The oxide semiconductor is a substantially intrinsic semiconductor. Thus, the off-state current of the transistor is extremely low.
US08941789B2 Liquid crystal display
A liquid crystal display apparatus includes a plurality of pixels having first and second subpixels, a plurality of gate lines connected to the first and second subpixels to transmit gate signals, a plurality of first data lines intersecting the gate lines and connected to the first subpixels to transmit first data voltages, and a plurality of second data lines intersecting the gate lines and connected to the second subpixels to transmit second data voltages. The first and second data voltages have different sizes and are obtained from single image information. Each pixel is divided into a pair of subpixels, and different data voltages are applied to the subpixels through two different data lines, so that it is possible to secure a wide viewing angle and improve side visibility.
US08941788B2 Switchable window having low emissivity (low-E) coating as conductive layer and/or method of making the same
A switchable window includes: first and second substrates (e.g., glass substrates); a liquid crystal inclusive layer (e.g., PDLC layer) disposed between at least the first and the second substrates; and a low-E coating provided between at least the liquid crystal inclusive layer and the first substrate. Voltage is applied to the liquid crystal inclusive layer via the low-E coating and a substantially transparent conductive coating which are on opposite sides of the liquid crystal inclusive layer. By adjusting voltage applied to at least part of the liquid crystal inclusive layer, the window is selectively switchable between at least first and second states with different visible light transmissions.
US08941779B2 Non-closed caption data transport in standard caption service
Methods, apparatuses, and non-transitory computer-readable storage mediums for providing and/or processing non-closed caption data. The reception apparatus includes a receiver, a parser, and a processor. The receiver receives closed caption service data. The closed caption service data includes closed caption data within a first service block having a service number in the range of 1-6, and non-closed caption data within a second service block having a different service number in the range of 1-6. The closed caption data includes closed caption text. The parser parses the non-closed caption data within the second service block having the different service number in the range of 1-6. The processor performs a function based on the parsed non-closed caption data.
US08941771B2 Image-capturing device
An image-capturing device includes: a plurality of micro-lenses disposed in a two-dimensional pattern near a focal plane of an image forming optical system; an image sensor that includes a two-dimensional array of element groups each corresponding to one of the micro-lenses and made up with a plurality of photoelectric conversion elements which receive, via the micro-lenses light fluxes from a subject having passed through the photographic optical system and output image signals; and a synthesizing unit that combines the image signals output from the plurality of photoelectric conversion elements based upon information so as to generate synthetic image data in correspondence to a plurality of image forming areas present on a given image forming plane of the image forming optical system, the information specifying positions of the photoelectric conversion elements output image signals that are to be used for generating synthetic image data for each image forming area.
US08941770B2 Method and apparatus for displaying successively captured images
A digital image processing apparatus includes an image capturing unit that captures an image of a subject and converts the image into image data, a storage unit that stores the image data, a successive capturing information generating unit that adds successive capturing photographing information to image data of images that are obtained by the image capturing unit when successively capturing a plurality of images, a display unit that displays an image representing the image data, a user input unit that generates an input signal when an input is received from a user, and a slide show control unit that displays successively captured images obtained by a single successive capturing photographing operation on the display unit at predetermined time intervals based on the successive capturing photographing information included in the image data, wherein a portion of the successively captured images is enlarged and sequentially displayed.
US08941768B2 Electronic device control system having image displaying function and image capturing function
According to an aspect, an electronic device includes an image display unit, an image taking unit, and a control unit. The image display unit displays a first image. The image taking unit takes a second image of a target object. The control unit detects a motion of the target object in the second image taken by the image taking unit, and changes the first image displayed by the image display unit in accordance with the detected motion of the target object.
US08941767B2 Mobile device and method for controlling the same
A mobile device includes a camera unit configured to sense an image, a display unit configured to display the image, a sensor unit configured to detect a user input and a processor configured to control the display unit, the camera unit and the sensor unit, where the processor is further configured to display an image capturing interface including the image sensed by the camera unit and an image capturing trigger for storing the image, wherein the image capturing interface is further includes a pattern code trigger which is linked to contents when the pattern code is recognized from the sensed image, store the sensed image when the user input for the image capturing trigger is detected, and display the contents to which the pattern code is linked or store the pattern code, when the user input for the pattern code trigger is detected.
US08941764B2 Image sensor
An image sensor for electronic cameras includes a plurality of light sensitive pixels arranged in rows and columns, wherein the pixels of a respective column can be read out via a respective column line and includes a plurality of data outputs, wherein a plurality of column lines are associated with the respective data output via at least one multiplexer device. The column lines are divided into a plurality of column line groups, wherein the respective column line group includes a plurality of column lines arranged next to one another; and wherein the number of column lines of the respective column line group corresponds to the number of the column lines associated with the respective data output.
US08941761B2 Information processing apparatus and information processing method for blur correction
A capturing parameter and a capturing image are obtained by an image capturing device which uses the capturing parameter. Correction data, which corresponds to an optical transfer function of the image capturing device derived from the capturing parameter, and a noise amount of the capturing image dependent on the capturing parameter, is acquired to correct a blur of the capturing image. A first degree of correction by the correction data for a high noise amount is less than a second degree of correction by the correction data for a low noise amount.
US08941758B2 Image processing apparatus and image processing method for generating a combined image
An image processing apparatus is configured to generate a combined image by combining a plurality of photographed images. The image processing apparatus includes an acquisition unit configured to acquire the plurality of photographed images from a photographing unit, and a setting unit configured to designate, if misshooting or reshooting of a first photographed image of the plurality of photographed images is designated, misshooting or reshooting of a second photographed image of the plurality of photographed images.
US08941754B2 Image capture apparatus and control method thereof
An image capture apparatus comprises an image capture unit which captures an object image, a compensation unit which performs exposure compensation corresponding to a shooting scene when a display unit sequentially displays images based on image data obtained by continuously capturing images by the image capture unit, an illumination control unit which controls an illumination device for illuminating an object, and a control unit which, in turning on the illumination device which is OFF when the compensation unit performs exposure compensation and the display unit sequentially displays images based on image data obtained by continuously capturing images by the image capture unit, controls to decrease a compensation amount of exposure compensation by the compensation unit and then turn on the illumination device.
US08941752B2 Determining a location using an image
Determining a location. An initial image is captured at an image capturing device. The initial image is compared with images in a database of images which have associated locations to determine the location of the image capturing device. A user receives a notification if a location cannot be determined.
US08941750B2 Image processing device for generating reconstruction image, image generating method, and storage medium
A sub-image extractor extracts a target sub-image from a light field image. A partial area definer defines a predetermined area in the target sub-image as a partial area. A pixel extractor extracts pixels from the partial area, the number of pixels meeting correspondence areas of a generation image. The pixel arranger arranges the extracted pixels to the correspondence areas of the generation image in an arrangement according to the optical path of the optical system which photographs the light field image. Pixels are extracted for all sub-images in the light field image, and are arranged to the generation image to generate a reconstruction image.
US08941748B2 Imaging system, imaging apparatus, control method thereof, and storage medium for improving collection efficiency of image data
An imaging system in which an image is shared by a first imaging apparatus and a second imaging apparatus which form a network group, the first imaging apparatus comprising a transmission unit adapted to transmit imaging request information to request imaging to the second imaging apparatus; and the second imaging apparatus comprising a reception unit adapted to receive the imaging request information, a switching unit adapted to switch an imaging mode to a request imaging mode when the imaging request information is received, an imaging unit adapted to capture an image in the request imaging mode, a generation unit adapted to generate, based on the imaging request information, imaging information assigned to the image captured by the imaging unit, and a storage unit adapted to store the image captured by the imaging unit and the imaging information generated by the generation unit in association with each other.
US08941747B2 Wireless handset interface for video recording camera control
Video recording where an input image signal is received with one or more optical sensor disposed in a hands-free video recorder. The input image signal is processed into an encoded video data stream with one or more processor disposed in the hands-free video recorder. First frames of the video data stream are relayed over a wireless communication link to a cellular-enabled wireless telephony handset and presented on a display screen of the handset along with a graphical user video control interface. Video control commands are wirelessly sent to the recorder in response to receiving a first input through the video control interface. Second frames of the video data stream are directed by the video control commands to at least one of a plurality of destinations.
US08941746B2 Installation for conveying signals between a video camera equipment and a remote equipment
Adapter (3, 5) for processing electrical signals in an installation comprising a video camera equipment (1) and a remote equipment (7). A first aim of the present invention is to provide an adapter system which allows automatically providing an output video signal that is co-timed to the master timing reference of the remote equipment. A second aim of the invention is to provide an adapter system which improves the security of the installation when power for the camera is transmitted by the remote equipment.
US08941743B2 Preventing motion artifacts by intelligently disabling video stabilization
Digital video stabilization is selectively turned off in circumstances where it could actually decrease the quality of a captured video. A video camera includes a device for directly detecting physical motion of the camera. Motion data from the motion detector are analyzed to see if video stabilization is appropriate. If the motion data indicate that the video camera is stable, for example, then video stabilization is not applied to the video, thus preventing the possibility of introducing “motion artifacts” into the captured video. In another example, motion as detected by the motion detector can be compared with motion as detected by the video-stabilization engine. If the two motions disagree significantly, then the video-stabilization engine is probably responding more to motion in the captured video rather than to motion of the camera itself, and video stabilization should probably not be applied to the video.
US08941742B2 Luminance measurement method, luminance measurement device, and image quality adjustment technique using the method and device
Provided is a luminance measurement method for accurately measuring luminance of each pixel even if pixel images of a display panel overlap each other on an imaging surface of a camera. A central exposure factor indicating luminance of the central part of the pixel image is calculated on the basis of an output of a picture element corresponding to the central part. A peripheral exposure factor indicating luminance of the peripheral part of the pixel image is calculated on the basis of an output of picture elements corresponding to the peripheral part of the pixel image is calculated, all pixels of the display panel are sorted into a plurality of groups, sequentially turned on one group after another, and imaged by the camera, and the luminance of all the pixels of the display panel is calculated based on this imaged image, the central exposure factor, and the peripheral exposure factor.
US08941738B2 Vehicle exterior monitoring device and vehicle exterior monitoring method
A vehicle exterior monitoring device obtains position information of a three-dimensional object present in a detected region, divides the detected region with respect to an horizontal direction into plural first divided regions, derives a first representative distance corresponding to a peak in distance distribution of each first divided region based on the position information, groups the first divided regions based on the first representative distance to generate one or more first divided region groups, divides the first divided region group with respect to a vertical direction into plural second divided regions, groups second divided regions having relative distances close to the first representative distance to generate a second divided region group, and limits a target range for which the first representative distance is derived within the first divided region group in which the second divided region group is generated to a vertical range corresponding to the second divided region group.
US08941733B2 Video retrieval system, method and computer program for surveillance of moving objects
Video surveillance systems are used to monitor public places, streets, buildings, cities and other premises or surroundings and comprise a multitude of cameras which are monitoring relevant points in the surroundings. One of the problems of surveillance systems is, that the multitude of cameras produce a large amount of video data to be monitored, which requires a lot of human observers resulting in high personnel costs. A video retrieval system (1) connectable to a plurality of surveillance cameras (2) for monitoring a surroundings is proposed, the video retrieval system (1) comprising: displaying means (12) realized to display a graphical overall description (100, 130, 140) of the surroundings under surveillance, whereby the graphical overall description (100, 130, 140) comprises a plurality of monitored areas (110), whereby the areas are allocated to different surveillance cameras (2) and whereby the graphical overall description (100, 130, 140) is displayed in a single perspective view, and querying means (10) realized to formulate a trajectory-specific search (150, 160) query adapted to retrieve data about a moving object in the surroundings with a matching trajectory.
US08941732B2 Three-dimensional measuring method
Provided is a three-dimensional measuring method that can select a large number of line sections for calculating formulas of three-dimensional lines to perform three-dimensional measurement of a measurement object.
US08941723B2 Portable wireless mobile device motion capture and analysis system and method
Portable wireless mobile device motion capture and analysis system and method configured to display motion capture/analysis data on a mobile device. System obtains data from motion capture elements and analyzes the data. Enables unique displays associated with the user, such as 3D overlays onto images of the user to visually depict the captured motion data. Ratings associated with the captured motion can also be displayed. Predicted ball flight path data can be calculated and displayed. Data shown on a time line can also be displayed to show the relative peaks of velocity for various parts of the user's body. Based on the display of data, the user can determine the equipment that fits the best and immediately purchase the equipment, via the mobile device. Custom equipment may be ordered through an interface on the mobile device from a vendor that can assemble-to-order customer built equipment and ship the equipment. Includes active and passive golf shot count capabilities.
US08941721B2 Mobile terminal and method for controlling operation of the mobile terminal
A mobile terminal and a method for controlling the operation of the same are provided. The mobile terminal includes a first camera including a first lens, a second camera including a second lens having a wider angle than the first lens, and a controller configured to generate a stereoscopic 3D image using disparity between images captured through the first and second cameras. It is possible to generate a stereoscopic 3D image having the same resolution as that of a 2D image that can be captured.
US08941715B1 Telepresence eye contact display
A telepresence communication system for group meeting rooms and personal home and office systems provides improved human factor experience through substantially life size images with eye level camera placement. The system provides switched presence interfaces so that conferees can select when to transmit their images during a conference and optionally provides individual microphones for each of conferee. Switched presence between presets of conferees are viewed on multipoint windows overlaying life-size images upon eye contact camera regions and eliminate seeing camera image movement during pan, tilt and zoom operations. An ambient light rejecting filter system enables an eye level camera to be hidden behind a projection screen and provides bright, high contrast images under normal meeting room and office environments. A telepresence organizational enablement system brings all the features of a corporate office complex and its social and organizational benefits, into a virtual community eliminating the need to centralize employees.
US08941708B2 Method, computer-readable storage medium, and apparatus for modifying the layout used by a video composing unit to generate a composite video signal
In one embodiment, a method that includes providing, on a display, an object configured to be moved by a user along an axis, associating a plurality of predefined layouts with respective intervals along the axis, detecting a user action on the object indicating a position on the axis, and composing, in response to the detecting of the user action, a composite video signal using a layout, of the plurality of predefined layouts, associated with an interval among the intervals within which the position is lying.
US08941703B2 Printing apparatus
To provide a printing apparatus for enabling printing speed to be increased, while enabling the unevenness of concentration to be reduced, a printing apparatus is provided with a thermal head having a plurality of heater elements lined up in the main scanning direction and a CPU for switching current passage timing of the plurality of heater elements, and the CPU switches the current passage timing for the plurality of heater elements so that a second strobe signal STB2 is switched to an ON state after switching a first strobe signal STB1 to an ON state, after switching the STB2 to the ON state the STB1 is switched to an OFF state, the STB2 is switched to an OFF state, then the STB1 is switched to the ON state after switching the STB2 to the ON state, after switching the STB1 to the ON state the STB2 is switched to the OFF state, and that the STB1 is switched to the OFF state.
US08941699B2 Front/back discrimination device for time card, time recorder provided with same, front/back discrimination method for the time card, and program
A time recorder includes a first sensor that detects the side edge of a time card having a cut-out formed at at least one corner of the bottom, a second sensor that detects the bottom of the time card, and a card feeding unit that feeds the time card. When the time card is fed by this card feeding unit, a pulse counter of the card feeding unit counts the number of pulses of predetermined pulse signals after the first sensor detects the time card and until the second sensor detects the time card. Next, the front and back faces of the time card are determined based on the number of pulses that is a counting result. Hence, the front and back faces can be determined by the first sensor and the second sensor only.
US08941698B2 LED electronic sign board capable of power-saving per pixel line
The invention relates to an LED electronic sign board capable of power-saving per pixel line, comprising: an LED display panel; a panel driver; a switching mode power supply that receives AC power, generates driving power required to operate the LED display panel and the panel driver and supplies power to the LED display panel and the panel driver; a black line extractor that analyzes an image signal which will be displayed on the LED display panel and extracts pixel lines which becomes black per LED module; and a main controller that controls the panel driver to display an image on the LED display panel according to the image signal, and that controls a switching signal for the operation of the switching mode power supply to shut off driving power that is supplied to the pixel lines extracted by the black line extractor from the switching mode power supply.
US08941697B2 Circuit and method for driving an array of light emitting pixels
A technique for driving a column of pixels that include light emitting elements. The technique incorporates feedback data provided from feedback data sources connected to the data line and to feedback line of the array, pixel driving circuit with feedback path. The technique can also include block of the reference elements for input signal corrections.
US08941695B2 Display device, driving method of display device, and electronic apparatus
A display device includes: first dummy pixels including a self-emission element emitting first color light corresponding to emission colors of pixels in a display area; second dummy pixels including a self-emission element emitting the first color light and a self-emission element emitting second color light and causing both self-emission elements to emit light at the same time; a deterioration degree calculating unit calculating a deterioration degree in brightness of the self-emission element emitting the first color light on the basis of a brightness detection result of the first dummy pixels and calculating a deterioration degree in current flowing in the self-emission element emitting the first color light on the basis of brightness detection results of the first and second dummy pixels; and a correction unit correcting the brightness of effective pixels contributing to an image display on the basis of the deterioration degree in brightness and the deterioration degree in current calculated by the deterioration degree calculating unit.
US08941694B2 Method of driving an electro-optic display utilizing internal capacitance to smooth a digitally modulated signal
A method of driving an electro-optic display comprising providing a current source, digitally modulating the current source and generating a modulated digital signal, and converting the modulated digital signal into an effective analog drive signal so that the display pixels receive an effective analog drive current, wherein the internal capacitance of the electro-optic display smooths the digitally modulated signal and generates the effective analog drive signal.
US08941680B2 Volumetric image motion-based visualization
Systems, apparatus, and methods for displaying volumetric data using motion-based visualization techniques are provided. An apparatus storing computer executable instructions to be executed by a processor, causing the processor to carryout out a method for displaying data with multiple graphical features visually representing portions of the data and to impart motion to a graphical feature relative to a remainder of the volumetric image to highlight the first graphical feature is provided. A method for displaying a volumetric image in which motion is used to highlight a graphical feature visually representing a portion of the volumetric image relative to the remainder of the image is provided. A system for displaying a volumetric image comprising a user interface, a display, a memory for storing graphical data, and a processor that displays a volumetric image with multiple graphical features of the data and imparts motion to a user-identified graphical feature relative to a remainder of the volumetric image to highlight the first graphical feature are provided.
US08941678B2 Display system providing observer metameric failure reduction
A color display system providing reduced observer metameric failure for a set of target observers, comprising an image forming system having narrow-band primaries. A data processing system is used to implement a method for color correcting an input color image having input color values adapted for display on a reference display device having a plurality of input color primaries. A metamerism correction transform is applied to the input color image to determine an output color image having output color values in an output color space appropriate for display on the image forming system. The metamerism correction transform modifies colorimetry associated with the input colors to provide output color values such that an average observer metameric failure is reduced for a distribution of target observers.
US08941676B2 On-chip anti-alias resolve in a cache tiling architecture
One embodiment of the present invention includes a graphics subsystem for processing multi-sample anti-aliasing work. The graphics subsystem includes a cache unit, a tiling unit, and a screen-space pipeline coupled to the cache unit and to the tiling unit. The tiling unit is configured to organize multi-sample anti-aliasing commands into cache tile batches. The screen-space pipeline includes a pixel shader and a raster operations unit, and receives cache tile batches from the tiling unit. The pixel shader is configured to generate sample data based on a set of primitives and to generate resolved data based on the sample data. The raster operations unit is configured to store the sample data in the cache unit and to invalidate the sample data after the pixel shader generates the resolved data.
US08941674B2 System and method for efficient resource management of a signal flow programmed digital signal processor code
A method according to an embodiment of a system for efficient resource management of a signal flow programmed digital signal processor code is provided and includes determining a connection sequence of a plurality of algorithm elements in a schematic of a signal flow for an electronic circuit, the connection sequence indicating connections between the algorithm elements and a sequence of processing the algorithm elements according to the connections, determining a buffer sequence indicating an order of using the plurality of memory buffers to process the plurality of algorithm elements according to the connection sequence, and reusing at least some of the plurality of memory buffers according to the buffer sequence.
US08941673B2 Rendering images in a remote web browser
A processing device receives graphical output data from an application. The processing device generates, based on the graphical output data, at least one of an image or a drawing command that is formatted for an application programming interface (API) of a web browser. The processing device then transmits at least one of the image or the drawing command to a web browser instance executing on a remote client device, wherein the web browser instance is natively capable of rendering at least one of the image or the drawing command to a display on the remote client device.
US08941672B1 Method for identifying a display when a GPU connected to the display is powered down
Embodiments of the present disclosure provide techniques for identifying a display when a graphics processing unit (GPU) connected to the display via a display control bus is in a low power state. By providing a separate microcontroller with a parallel connection to the display control bus, the microcontroller may detect the presence of a display device even when the GPU is in the low power state. In response to detecting the display device, the microcontroller may notify a motherboard chipset (e.g., via an interrupt) prompting the motherboard chipset to initiate a sequence to bring the GPU out of the low power state.
US08941671B2 Para-virtualized domain, hull, and geometry shaders
The present invention extends to methods, systems, and computer program products for providing domain, hull, and geometry shaders in a para-virtualized environment. As such, a guest application executing in a child partition is enabled use a programmable GPU pipeline of a physical GPU. A vGPU (executing in the child partition) is presented to the guest application. The vGPU exposes DDIs of a rendering framework. The DDIs enable the guest application to send graphics commands to the vGPU, including commands for utilizing a domain shader, a hull shader, and/or a geometric shader at a physical GPU. A render component (executing within the root partition) receives physical GPU-specific commands from the vGPU, including commands for using the domain shader, the hull shader, and/or the geometric shader. The render component schedules the physical GPU-specific command(s) for execution at the physical GPU.
US08941670B2 Para-virtualized high-performance computing and GDI acceleration
The present invention extends to methods, systems, and computer program products for para-virtualized GPGPU computation and GDI acceleration. Some embodiments provide a compute shader to a guest application within a para-virtualized environment. A vGPU in a child partition presents compute shader DDIs for performing GPGPU computations to a guest application. A render component in a root partition receives compute shader commands from the vGPU and schedules the commands for execution at the physical GPU. Other embodiments provide GPU-accelerated GDI rendering capabilities to a guest application within a para-virtualized environment. A vGPU in a child partition provides an API for receiving GDI commands, and sends GDI commands and data to a render component in a root partition. The render component schedules the GDI commands on a 3D rendering device. The 3D rendering device executes the GDI commands at the physical GPU using a sharable GDI surface.
US08941663B2 Method and device for rendering user interface font
The present invention discloses a method and an apparatus for rendering fonts of a user interface, both of which can establish a font cache table to cache fonts needed to be rendered, searches a font needed to be rendered in the font cache table and returns that font, and renders the founded font needed to be rendered. The method and the apparatus of the present invention pre-cache the fonts needed to be rendered by establishing the font cache table, so that the font rendering efficiency of the user interface can be improved significantly, especially the fluency of a dynamic user interface which contains plenty of font rendering is not reduced following the plenty of font rendering. In addition, the present invention further proposes a font supplementary scheme and a maintenance scheme of the font cache table, so as to make the present invention have more practical value.
US08941662B2 Method and device for rendering areas bounded by curves using a GPU
A method is provided for rendering pixels based on a certain type of Bézier curve, called a simple Bézier arch. The method uses an implicit function to determine whether each pixel in a domain triangle containing the arch is on the arch, on one side of the arch, or on the other side. The function's parameters can be linearly interpolated to allow efficient rendering of the triangle by a GPU. A method is also provided for applying the aforementioned method to render pixels, based on a non-linear Bézier curve having at most four control points, by subdividing the curve into simple Bézier arches as necessary. A computing device for performing these methods is also provided.
US08941661B2 Automatic corner generation
A system is disclosed. The system includes a processor configured to: receive a path in an artwork, the path having at least one corner; receive a selection of a patterned tile to apply to the path; and automatically generate a patterned corner tile corresponding to the selected patterned tile at least in part by mapping a side patterned tile to a corner patterned tile; and a memory coupled to the processor and configured to provide the processor with instructions.
US08941657B2 Calculating zoom level timeline data
The present invention extends to methods, systems, and computer program products for calculating zoom level timeline data. Event aggregators are configured to read execution data from sequentially received input buffers and pre-calculate data chunks for a specified zoom level to create a zoom tree. The density of execution data can be used to determine when pre-calculation is beneficial. In response to a user request, pre-calculated data can be combined with responsively calculated data for presentation to a user. User requests can specify zoom levels and time ranges over which data is to be presented.
US08941654B2 Virtual flashlight for real-time scene illumination and discovery
One object of the present invention is to provide a system that adopts a global illumination technique to seamlessly span light across a real world and a virtual world. The first aspect of the present invention is directed to a system for producing three dimensional images. The system includes a magnetic field sensor; a first 6DOF magnetic tracker; a flashlight which has a second 6DOF magnetic tracker; a monitor; an analyzer; and a rendering apparatus.
US08941650B2 Method for validating features in a direct modeling paradigm
A CAD system enables a designer to freely modify a model of a design without regenerating a history of the model, as in traditional parametric feature based modeling. The CAD system automatically determines whether the modifications to the model invalidate current features associated with the model and whether the modifications create new features that should be added to the model. Such a CAD system enables a designer to quickly edit designs and simultaneously preserve design intent without requiring the significant computational resources of historical based approaches that regenerate a geometry upon every edit made by a designer.
US08941647B2 Depth estimation data generating apparatus, depth estimation data generating method, and depth estimation data generating program, and pseudo three-dimensional image generating apparatus, pseudo three-dimensional image generating method, and pseudo three-dimensional image generating program
A high frequency component detector detects a high frequency component of an R signal. A high frequency component comparator outputs a flag indicating a threshold value division range having the highest threshold value including a value of a high frequency component in a specific period. A gain calculating unit calculates a ratio as a gain, the ratio set according to the threshold value division range indicated by the flag input. A multiplying unit multiplies the R signal and the gain to generate an object signal R′ wherein a concavity and convexity difference with adjacent pixels in a small region of an image is suppressed compared to the R signal.
US08941642B2 System for the creation and editing of three dimensional models
A three-dimensional model display device and a model display system in which even a beginner can easily edit a model, and edit and watch a moving image using a model while maintaining harmony of a model, a texture, and a motion. When a user clicks a selection button of “trying-on”, performed is a preview display about how an avatar possessed by the user is displayed when the avatar wears a cloth, a hairstyle, an item, and an accessory desired to be tried on. A head size, a body portion size, and a bust portion size of the avatar possessed by the user are managed in a user management table. Display data related to the preview display displayed on the display screen of the model display device is dynamically generated by a model display server based on the head size, the body portion size, and the bust portion size.
US08941640B2 Differential VCOM resistance or capacitance tuning for improved image quality
Devices and methods for reducing a variation in voltage perturbation between common voltage layers (VCOMs) of a display in response to voltage interference are provided. In one example, a resistive element may be coupled to one of several VCOMs to increase the resistance value of the VCOM. The resistive element may cause a variation in voltage perturbations between the several VCOMs to become generally more uniform, thereby reducing or eliminating certain image artifacts.
US08941639B2 Adaptive control of display characteristics of pixels of a LCD based on video content
Determining pixel behavior type of a pixel or a group of pixels of a LCD and triggering adjustment in drive power of the pixel or the group of pixels based on the pixel behavior type. The pixel behavior type indicates relative motion of areas on the LCD in a video. A pixel behavior determination module directs one or more selected pixels of the LCD to be driven relative slower or faster based upon content of video that the selected pixels display. Operations include identifying an active window from a plurality of windows corresponding to a plurality of applications running on the host device and setting the drive power of those pixels that correspond to the active window based on speed of a video displayed on the active window. Operation may also include adapting LCD drive power on a pixel by pixel basis based upon user input and/or remaining battery life.
US08941636B2 E-paper printing system
An e-paper printing system comprising a set of electrodes comprising a number of electrodes to erase a portion of e-paper as the e-paper moves relative to the set of electrodes in which the set of electrodes causes a first electric field to be applied to the e-paper with a magnitude of the first electric field increasing at a first rate sufficiently high to cause the erasure of the portion of the e-paper, and causes a second electric field to be applied to the e-paper with a magnitude of the second electric field decreasing at a second rate that is sufficiently low to preserve the erasure of the portion of the e-paper.
US08941632B2 Liquid crystal display device and driving method for changing driving mode thereof
The present invention provides a LCD device including: a timing control unit; an oscillator which is included in the timing control unit and generates a clock frequency; a frequency divider which is included in the timing control unit and reduces the clock frequency supplied from the oscillator by dividing the clock frequency by at least 2; and a mode selection part which is included in the timing control unit and changes at least one driving mode of internal logic circuits by using the divided clock frequency supplied from the frequency divider.
US08941627B2 Driving a light scanner
Driving a light scanner at a resonant frequency of the light scanner using a phase delay compensated driving signal.
US08941621B2 Area sensor, and liquid-crystal display device equipped with an area sensor
In order to simultaneously carry out, at a smaller sensor density, (i) detection of color information (recognition of a color) of visible light which enters a detection target surface and (ii) detection of an input position of the visible light, a liquid-crystal panel (20) included in a liquid-crystal display device of the present invention has an area sensor function of detecting color information and an input position of visible light by sensing an input image of the visible light on a panel surface. The liquid-crystal panel (20) (position detecting section) includes (i) a yellow sensor (31Y) including a light sensor element (30) which senses an intensity of green light and red light from among three primary color lights and (ii) a cyan sensor (31C) including a light sensor element (30) which senses an intensity of blue light and green light from among the three primary color lights. Sensing of the input image of the visible light on the panel surface by each of the yellow sensor (31Y) and the cyan sensor (31C) allows detection of the color information and the input position.
US08941620B2 System and method for a virtual multi-touch mouse and stylus apparatus
A virtual multi-touch input device uses an optical camera system and a processor to detect locations and motions of objects in a virtual working area and to transfer information about the locations and motions of the objects to a host device, such as a personal computer (PC) or a cellular phone. When the user's finger or objects touch a region of interest lit by a flat fan beam of light, the lit portions of the finger or objects are imaged by the optical camera system and the processor processes the images to obtain the locations of the finger or objects. Based on the motions or a movement pattern (gesture) of the finger or objects, the processor produces the multi-touch information for controlling a computing device and associated displays.
US08941619B2 Apparatus and method for controlling information display
A display for controlling information display. In one embodiment, the display has a display panel having a display area for displaying information and a peripheral portion surrounding the display area, a plurality of acoustic/ultrasonic transducers, {Xi}, arranged at a plurality of selected locations in the peripheral portion, each acoustic/ultrasonic transducer Xi being configured to transmit a first signal S1i with frequency band fi in a first duration, Δtdi, and to receive a second signal S2i in a second duration, ΔTdi, periodically at each period, where the second signal S2i is reflected from the first signal S1i by at least one object, and a processor in communication with the plurality of acoustic/ultrasonic transducers {Xi} for processing the received second signals {S2i} from the plurality of acoustic/ultrasonic transducers {Xi} to determine a location and a gesture of the at least one object relative to the display area.
US08941614B2 Portable electronic apparatus and key pad thereof
A portable electronic apparatus and a key pad thereof are disclosed. The portable electronic apparatus includes a processing module, a panel, and a key pad. The processing module provides a virtual keyboard interface on a capacitive touch surface of the panel. The key pad is placed on the capacitive touch surface in a detachable way and corresponds to the virtual keyboard interface. The key pad includes a plurality of conductive keycaps and a plurality of conductive contact part correspondingly connected to the conductive keycaps. A user can press the conductive keycaps by fingers to make the corresponding conductive contact part touch the virtual keyboard interface, so as to achieve a touch input. Therefore, the invention can provide the user the feeling of pressing keys by use of the key pad when the user is using the virtual keyboard interface, which satisfies the use habit of the user.
US08941613B2 Touch sensing apparatus and method thereof
There are provided a touch sensing apparatus and method. The touch sensing apparatus includes a sensing circuit unit detecting a plurality of signals from a plurality of changes in capacitance generated in a plurality of electrodes provided in a panel unit; and a signal processing unit comparing, with predetermined reference levels, levels of at least two signals generated from changes in capacitance in at least two electrodes spaced apart from one another by a predetermined distance or greater, from among the plurality of electrodes, wherein, when the levels of the at least two signals are greater than the predetermined reference levels, the plurality of changes in capacitance are determined to be generated due to noise.
US08941609B2 Multi-touch sensing system capable of optimizing touch bulbs according to variation of ambient lighting conditions and method thereof
The present invention discloses a multi-touch sensing system capable of optimizing touch bulbs according to the variation of ambient lighting conditions and a method thereof. The system comprises an image capturing module, a computing module and a processing module. The image capturing module captures a touch image. The computing module converts the touch image into a histogram and selects a grayscale threshold to segment the histogram by dichotomy for generating a segmented image of touch bulbs, and then calculates a between-class variance and a total pixel variance of the segmented image to estimate the separability factor thereof. The processing module determines whether or not the separability factor conforms to a predetermined value; if yes, then the processing module performs an image binarization of the touch image to generate a binary image, or else the processing module repeats the aforementioned process until the separability factor conforms to a predetermined value.
US08941601B2 Apparatus and associated methods
An apparatus comprising at least one processor and at least one memory including computer program code, the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus at least to: detect an angle of tilt of a device comprising a touch-sensitive display, the touch-sensitive display configured to provide visual content associated with an application and a virtual keyboard for inputting characters in connection with the application, wherein the virtual keyboard is provided on top of the visual content; and adjust the opacity of the virtual keyboard according to the angle of tilt such that the underlying visual content is visible to a greater or lesser extent.
US08941600B2 Apparatus for providing touch feedback for user input to a touch sensitive surface
An apparatus is provided that includes a graphic overlay or display for a touch-sensitive surface with which an object comes into contact. The touch-sensitive surface is divided into a plurality of regions each of a number of which is associated with a distinct set of one or more of the plurality of gestures, where the plurality of gestures are associated with a respective plurality of functions of a software application operable by a processor. According to this aspect, the graphic overlay or display visibly depicts the regions and a layout of the regions into which the touch-sensitive surface is divided. The apparatus may further include a touch-feedback interface configured to provide touch feedback indicative of the gesture associated with the respective region within which the touch-feedback interface is disposed.
US08941596B2 Touch screen, color filter substrate and manufacturing methods thereof
A touch screen and a manufacturing method thereof, and a color filter substrate and a manufacturing method thereof are provided in the invention. The touch screen comprises a substrate, a plurality of touch regions defined by a plurality of first signal lines and a plurality of second signal lines are provided on the substrate. In each touch region, the first signal line is connected with a first piezoelectric switch, the second signal line is connected with a second piezoelectric switch, when the touch region is touched by a force the first piezoelectric switch and the second piezoelectric switch are turned on and transfer voltage signals respectively via the first signal line and the second signal line to determine the coordinate of the touched touch region.
US08941595B2 Alternating, complementary conductive element pattern for multi-touch sensor
A touch sensor includes conductive elements of substantially concave shape to enable detection of multiple simultaneous touches in at least two directions, with reduced noise sensitivity and enhanced accuracy. The shapes of the conductive elements may be similar, or may be alternating, complementary shapes that cover substantially all of the sensor area. The conductive elements physically interact with adjacent elements in such a way that the area covered by a touch changes monotonically from overlapping substantially all of one element to overlapping substantially all of an adjacent element as the touch area is moved from one element to the other element along a line between the centers of those adjacent elements. Such monotonic change of touch overlap area may occur simultaneously in two orthogonal directions. Connections from internally positioned conductive elements to a touch controller may be made to pass through other conductive elements.
US08941594B2 Interface, circuit and method for interfacing with an electronic device
An interface, apparatus, circuit and method for interfacing with an electronic device, such as a cellular telephone, are disclosed. The interface includes a key pad with a number of keys, each operable for providing a unique input to the electronic device, and a actuator for selectively actuating one or more of the keys. A controller, coupled to the key pad, scans the keys according to a mode of operation of the electronic device. A mode selector, operable with the controller, selects a first or second operating mode. In the first, useful for instance in performing telephonic functions, each key provides its unique input discretely. In the second mode, useful for instance for providing a game related function, certain of the keys are selectively chorded to function for providing their respective inputs together, effectively simultaneously, according to a manipulation of the actuator by the user.
US08941591B2 User interface elements positioned for display
User interface elements positioned for display is described. In various embodiment(s), sensor input can be received from one or more sensors that are integrated with a portable device. A device hold position that corresponds to where the portable device is grasped by a user can be determined based at least in part on the sensor input. A display of user interface element(s) can then be initiated for display on an integrated display of the portable device based on the device hold position that corresponds to where the portable device is grasped.
US08941589B2 Adaptive tracking system for spatial input devices
An adaptive tracking system for spatial input devices provides real-time tracking of spatial input devices for human-computer interaction in a Spatial Operating Environment (SOE). The components of an SOE include gestural input/output; network-based data representation, transit, and interchange; and spatially conformed display mesh. The SOE comprises a workspace occupied by one or more users, a set of screens which provide the users with visual feedback, and a gestural control system which translates user motions into command inputs. Users perform gestures with body parts and/or physical pointing devices, and the system translates those gestures into actions such as pointing, dragging, selecting, or other direct manipulations. The tracking system provides the requisite data for creating an immersive environment by maintaining a model of the spatial relationships between users, screens, pointing devices, and other physical objects within the workspace.
US08941588B2 Fast fingertip detection for initializing a vision-based hand tracker
Systems and methods for initializing real-time, vision-based hand tracking systems are described. The systems and methods for initializing the vision-based hand tracking systems image a body and receive gesture data that is absolute three-space data of an instantaneous state of the body at a point in time and space, and at least one of determine an orientation of the body using an appendage of the body and track the body using at least one of the orientation and the gesture data.
US08941586B2 Input apparatus, control apparatus, control system, and control method
An input apparatus, a control apparatus, a control system, and a control method that are capable of making a movement of a pointer on a screen a natural movement that matches an intuition of a user are provided. An input apparatus includes a casing, an acceleration sensor, and an angular velocity sensor. The acceleration sensor detects an acceleration value of the casing in a first direction. The angular velocity sensor detects an angular velocity about an axis in a second direction different from the first direction. Instead of calculating a velocity value of the casing by simply integrating the detected acceleration value, the velocity value of the casing in the first direction is calculated based on the acceleration value and the angular velocity value that have been detected. As a result, a highly-accurate calculation of the velocity value of the casing becomes possible, and a movement of a pointer on a screen becomes a natural movement that matches a sense of a user based on a displacement corresponding to the velocity value.
US08941582B2 Electrophoretic display device, electronic apparatus, and method of manufacturing electrophoretic display device
An electrophoretic display device includes: first and second substrates; an electrophoretic layer which is interposed between the first and second substrates; and a third substrate which is disposed opposite the first substrate with the second substrate interposed therebetween, which is joined to the first substrate with a sealing member interposed therebetween, and which seals the electrophoretic layer with the second substrate interposed therebetween. The first and third substrates have extension sections extending with respect to the second substrate in a plan view. The sealing member fills a part of a gap between the extension section of the first substrate and the extension section of the third substrate, and the sealing member does not come into contact with an outer edge of the third substrate.
US08941580B2 Liquid crystal display with area adaptive backlight
A backlight display has improved display characteristics. An image is displayed on the display which includes a liquid crystal material with a light valve. The display receives an image signal and modifies the light for a backlight array and a liquid crystal layer.
US08941577B2 Liquid crystal display with dummy stages in shift register and its clock signal operation
A first gate driver that drives a gate bus line corresponding to a first sub-pixel section and a second gate driver that drives a gate bus line corresponding to a second sub-pixel section are monolithically formed inside a panel. A shift register inside the second gate driver has a configuration where stages corresponding to respective rows and dummy stages each disposed for each row, are connected in series with one another. In such a configuration, a frequency of a clock signal for controlling an operation of the second gate driver is made twice as large as a frequency of a clock signal for controlling an operation of the first gate driver.
US08941573B2 Liquid crystal display panel and liquid crystal display device
The present invention provides a liquid crystal display panel and liquid crystal display device, which includes data lines, scan lines disposed in a crisscross manner with data lines, pixel electrode disposed within area formed by two adjacent scan lines and two adjacent data lines, and thin film transistor disposed at intersection points of data line and scan line; wherein drain terminal of thin film transistor having extension part acting as repair line for scan line, extension part extending along direction parallel to scan line and an end of extension part away from thin film transistor partially overlapping scan line.
US08941572B2 Liquid crystal panel and liquid crystal display device having the same
A liquid crystal panel with an improved picture-quality and an LCD device having the same are disclosed. The liquid crystal panel and the LCD device allows a distance between a pixel electrode and a data line not connected to a thin film transistor and another distance between the pixel electrode and another data line to be asymmetrically formed within a single pixel region. Accordingly, the vertical cross-talk can be minimized, and furthermore picture-quality can be improved.
US08941569B2 Liquid crystal display device, television receiver and display method employed in liquid crystal display device
Provided is a liquid crystal display device including: pixels that are provided in a row direction and a column direction in which data signal lines extend, the pixels each including a plurality of pixel electrodes, in a pixel, in an nth frame, a pixel electrode being electrically connected to a data signal line, and in the frame, the plurality of pixel electrodes being electrically connected to each other and being electrically disconnected from the data signal line. This allows an improvement in viewing angle characteristic of a liquid crystal display device.
US08941567B2 Pixel and organic light emitting display device using the same
An organic light emitting display device is capable of securing sufficient compensation period such that a threshold voltage of a driving transistor may be compensated. A pixel includes: an organic light emitting diode; a second transistor for controlling an amount of current supplied from a first power source to the organic light emitting diode; a first capacitor having a first terminal coupled to a gate electrode of the second transistor; a first transistor coupled between a second terminal of the first capacitor and a data line, and being configured to turn on when a scan signal is supplied to a scan line; and a third transistor coupled between a gate electrode and a second electrode of the second transistor and having a turning-on period that is not overlapped with that of the first transistor. The third transistor is configured to turn on for a longer time than the first transistor.
US08941566B2 Array of luminescent elements
Light emitting systems and method of fabricating the same are disclosed. The light emitting system includes two or more monolithically integrated luminescent elements. Each luminescent element includes an electroluminescent device and a dedicated switching circuit for driving the electroluminescent device. At least one luminescent element includes a potential well for down converting light emitted by the electroluminescent device in the luminescent element.
US08941565B2 EL display device, driving method thereof, and electronic equipment provided with the EL display device
An EL display device capable of performing clear multi-gradation color display and electronic equipment provided with the EL display device are provided, wherein gradation display is performed according to a time-division driving method in which the luminescence and non-luminescence of an EL element (109) disposed in a pixel (104) are controlled by time, and the influence by the characteristic variability of a current controlling TFT (108) is prevented. When this method is used, a data signal side driving circuit (102) and a gate signal side driving circuit (103) are formed with TFTs that use a silicon film having a peculiar crystal structure and exhibit an extremely high operation speed.
US08941563B2 Display for digital images
The invention relates to a display device comprising a first light for emitting light rays and a first modulator operable to modulate those light rays for generating primary modulated light ray (10). A second light-source having a second modulator operable to generate secondary modulated light rays is also provided (14). The second light-source is transparent and is disposed relative to the first light-source such that primary modulated light rays generated by the first light-source are transmittable though the second light-source whereby a composite light-output comprising both primary and secondary modulated light rays is generated.
US08941561B1 Image capture
Methods and systems for capturing and storing an image are provided. In one example, eye-movement data associated with a head-mountable device (HMD) may be received. The HMD may include an image-capture device arranged to capture image data corresponding to a wearer-view associated with the HMD. In one case, the received eye-movement data may indicate sustained gaze. In this case, a location of the sustained gaze may be determined, and an image including a view of the location of the sustained gaze may be captured. At least one indication of a context of the captured image, such as time and/or geographic location of the HMD when the image was captured may be determined and stored in a data-item attribute database as part of a record of the captured image. In a further example, movements associated with the HMD may also be determined and based on to determine sustained gaze and the location of the sustained gaze.
US08941560B2 Wearable computer with superimposed controls and instructions for external device
A wearable computing device includes a head-mounted display (HMD) that provides a field of view in which at least a portion of the environment of the wearable computing device is viewable. The HMD is operable to display images superimposed over the field of view. When the wearable computing device determines that a target device is within its environment, the wearable computing device obtains target device information related to the target device. The target device information may include information that defines a virtual control interface for controlling the target device and an identification of a defined area of the target device on which the virtual control image is to be provided. The wearable computing device controls the HMD to display the virtual control image as an image superimposed over the defined area of the target device in the field of view.
US08941559B2 Opacity filter for display device
An optical see-through head-mounted display device includes a see-through lens which combines an augmented reality image with light from a real-world scene, while an opacity filter is used to selectively block portions of the real-world scene so that the augmented reality image appears more distinctly. The opacity filter can be a see-through LCD panel, for instance, where each pixel of the LCD panel can be selectively controlled to be transmissive or opaque, based on a size, shape and position of the augmented reality image. Eye tracking can be used to adjust the position of the augmented reality image and the opaque pixels. Peripheral regions of the opacity filter, which are not behind the augmented reality image, can be activated to provide a peripheral cue or a representation of the augmented reality image. In another aspect, opaque pixels are provided at a time when an augmented reality image is not present.
US08941557B2 Electronic display apparatus, installation pertaining to automation technology, and method for operating an electronic display apparatus
An electronic display apparatus comprising a control device and an electronic display panel that can be turned off by the control device. In order to support an energy-saving state in which information can continue to be displayed at least to a certain extent, an electrochromic display is additionally provided that is switchable into different display states by the control device. The invention furthermore relates to an installation appertaining to automation technology, and to a method for operating an electronic display apparatus.
US08941556B1 Device differentiation for electronic workspaces
An electronic workspace may be created from multiple viewer devices. The viewer devices are coordinated so that each exhibits a different visual identification characteristic such as a distinct or unique color. Content can be assigned by way of a user interface in which individual viewer devices are represented by visual icons that exhibit the same visual identification characteristics as the respective viewer devices, so that a user may easily distinguish between the available viewer devices.
US08941544B2 Vehicle roof mount antenna
The vehicle roof mount antenna to be detachably mounted on a vehicle roof is mainly constituted by an antenna cover 1, an antenna base 2, a boss 3, a pad 4, an annular rib 5, and an annular groove portion 6. The pad 4 has a boss hole 7 through which the boss 3 penetrates and is disposed between the antenna base 2 and the vehicle roof R. The annular rib 5, which is made of an elastic material, is provided on the vehicle roof R side surface of the pad 4. When the vehicle roof mount antenna is fixed to the vehicle roof R, the annular rib 5 is inclined from the boss hole 7 toward a periphery of the pad 4. The annular groove portion 6 is provided at a position where the pressing force of the annular rib 5 against the vehicle roof R can be reduced.
US08941542B2 Slot halo antenna device
An antenna of the present disclosure has a housing having a shallow cavity in a top of the housing and a shallow cavity in a bottom of the housing. The antenna further has a substantially circular radiating element disposed in the shallow cavity on the top of the housing, the radiating element having an arc shape slot. In addition, the antenna has a substantially circular parasitic element disposed in the shallow cavity on the bottom of the housing.
US08941539B1 Dual-stack dual-band MIMO antenna
A dual-band antenna including a ground plane, a first resonating plate that resonates in a first frequency band, a first shorting plate that shorts the first resonating plate to the ground plane, a second resonating plate that resonates in a second frequency band, with the second resonating plate raised above the first resonating plate with respect to the ground plane, and a second shorting plate that shorts the second resonating plate to the first resonating plate. Also, a dual-stack dual-band MIMO antenna comprising four dual-band antennas arranged in a square or rectangular pattern.
US08941536B2 Short-range homodyne radar system
A homodyne radar system includes an oscillator, an antenna, a low noise amplifier, a mixing subsystem and a directional coupler. The oscillator is configured to generate a transmit signal and a local oscillator signal. The antenna is configured to transmit the transmit signal and to receive a receive signal. The low noise amplifier is configured to amplify the receive signal. The mixing subsystem is configured to receive and mix the transmit signal and the receive signal to produce an output signal. The directional coupler is coupled to the antenna, the oscillator, the low noise amplifier and the mixing subsystem. The directional coupler is connected and configured to provide a low-loss transmission path from the antenna to the low noise amplifier and a high loss transmission path from the oscillator to the antenna.
US08941535B2 Method, device and program for displaying echo image
This disclosure provides an echo image display device, which includes an antenna for discharging electromagnetic waves and receiving echo signals reflected on one or more target objects, an echo signal input unit for inputting the echo signals from the antenna, an echo signal level detector for detecting a level of each of the echo signals with reference to a distance and an azimuth from the antenna, an image data generating module for generating image data based on the levels of the echo signals, a display unit for displaying the image data, and a data amount changing module for changing a data amount rate of a predetermined area that is set as a part of a display area of the display unit, into a different rate in another part of the display area.
US08941534B2 Integrated circuit, communication unit and method for phase adjustment
An integrated circuit for phase shifting a radio frequency signal, wherein the integrated circuit comprises at least one phase shifter comprising: at least one input for receiving a radio frequency signal, a voltage variable element; and a plurality of active devices operably coupled to the voltage variable element and arranged to receive a variable control voltage. The plurality of active devices comprise at least two active devices coupled in a common base arrangement and arranged to receive the radio frequency signal with the voltage variable element coupling the emitter contacts or source contacts of the at least two active devices, such that a variable control voltage applied to the voltage variable element adjusts a phase of the radio frequency signal.
US08941521B2 Analog to digital converter and digital to analog converter
To decrease the burden of digital processing, provided is an AD conversion apparatus comprising a pattern generating section that, for each target bit specified one bit at a time moving downward in the output data, generates a pattern signal having a pulse width or number of pulses corresponding to a weighting of the target bit; an integrating section that integrates the pattern signals according to a judgment value for judging a value of the target bit each time a pattern signal is generated, and outputs a reference signal obtained by accumulating the integrated value of each pattern signal; a comparing section that, each time generation of a pattern signal is finished, compares the input signal to the reference signal; and an output section that outputs the output data to have values corresponding to the comparison results obtained after each generation of a pattern signal corresponding to a bit is finished.
US08941516B2 Signal processing apparatus and signal processing method thereof
Provided are a signal processing apparatus and a signal processing method. The signal processing method include receiving a serial signal including an information frame including channel information and data information of a corresponding channel, extracting a clock signal from the serial signal, generating a load signal when a clock count reaches a maximum clock count by calculating the clock signal; converting the serial signal to a parallel signal according to the load signal, and changing the maximum clock count by comparing parallel-converted parallel channel information with a load count indicating the number of local signals.
US08941515B1 Encoder, decoder and data processing system
According to one embodiment, a data processing system has an encoder and a decoder. The encoder is configured to variable-length encode input data to generate an encoded stream. The decoder is configured to decode the encoded stream to generate output data. The encoder has a variable length encoder, a code converter, and a buffer. The variable length encoder is configured to variable-length-encode the input data to generate first variable length codes. The code converter is configured to convert n first variable length codes into a second variable length code. The buffer is configured to buffer the second variable length code to generate the encoded stream.
US08941514B2 Image coding and decoding system using variable length coding and variable length decoding
An image coding apparatus provides a run-length encoding unit RLE1 that subjects quantized coefficients obtained by quantizing frequency components of an image signal to a variable length coding process by using a run value Run that indicates the number of successive zero coefficients and a level value Lev that indicates a value of a non-zero coefficient following the zero coefficients. The run-length encoding unit RLE1 includes a reordering unit Lreodr for reordering level values Lev; a variable length coder LVLC for coding reordered level values ROLev by using a code table selected according to the value of a quantization parameter QP; a reordering unit Rreodr for reordering run values Run from high frequency component of the quantized coefficients to low frequency component; and a variable length coder RVLC for coding reordered run values RORun by using a code table selected according to the number of already-processed run values.
US08941513B1 Variable frequency data transmission
A system comprising an encoder for receiving a binary string of a data, the encoder adapted to partition the binary string into one or more binary substrings and assign a color to each one or more substring corresponding to a color model, a frequency controller for converting the color into electrical pulses corresponding to a predetermined frequency, and at least one antenna for emitting the electrical pulses as pulses as frequencies through a communication channel. The system may further comprise a parallel decoder. The system further comprises at least a processor, memory, and a data compression component for compressing data to output a compressed binary string of data to be transmitted by the encoder or decoder or both.
US08941511B2 Keyboard for hand-held devices
A hand-held electronic device has a keyboard with a plurality of keys, each key having a substantially flat contact surface extending to the sides of each key. One of the sides of the key is beveled.
US08941510B2 Hazard warning system for vehicles
A system adapted to provide a warning to a vehicle operator of nearby hazards, e.g., that a nearby vehicle has been in a collision or is otherwise inoperable. Embodiments include a detector operable to detect a hazard, a transmitter to transmit a warning signal, a receiver to receive a transmitted warning signal, and a display to warn the operator of an approaching vehicle of the hazard. Some embodiments incorporate feedback from a vehicle's airbag deployment circuitry to provide a trigger effective to broadcast the warning signal. The operator of an approaching vehicle may be provided with a visual and/or an audible warning signal, e.g., via a cellular telephone. Certain embodiments provide such warning to approaching vehicles via the transmitted warning signal and a display and/or speaker carried in the approaching vehicle. Audible and visual warnings may be transmitted directly from the crashed vehicle.
US08941509B2 Multiple and interchangeable meter reading probes
A characteristic of a first utility meter is detected with a first probe head, and a characteristic of a second utility meter is detected with a second probe head. The characteristic of the first utility meter is dependent on a usage of a first utility metered by the first utility meter, and the characteristic of the second utility meter is dependent on a usage of a second utility metered by the second utility meter. Information related to the characteristic of the first utility meter is communicated from the first probe head to a communication unit, and information related to the characteristic of the second utility meter is communicated from the second probe head to the communication unit. A message is also sent from the communication unit indicating the usage of the first utility or the usage of the second utility.
US08941508B2 Signaling device for emitting an acoustic and/or visual signal
A signaling device for emitting an acoustic and/or visual signal includes a base housing body, and an upper housing part. The upper housing part can be connected to the base housing to form a receiving space, in which at least one electrical component assembly for generating signals is disposed and from which at least a first electrical line can be guided into the signaling device. A line connection mechanism is provided and disposed in the base housing body to which the electrical line can be connected. The electrical component assembly for the signal generation is disposed on the upper housing part.
US08941499B2 Monitoring system for use with a vehicle and method of assembling same
A first sensor is coupled to a seat back surface and/or a seat belt, and a second sensor is positioned remotely from the first sensor. The first sensor is configured to generate a raw signal indicative of biological data and noise, and the second sensor is configured to generate a baseline signal indicative of noise associated with the first sensor. A computing device is programmed to determine a state of the occupant based on at least the raw signal and the baseline signal.
US08941495B2 Wireless shelf pusher activity detection system and associated methods
According to some example embodiments, systems, apparatus, methods, computer readable media, and computer program products are provided for implementing a wireless shelf pusher activity detection system. One example apparatus is a monitoring device for monitoring theft or sales activity associated with a product pusher device. The monitoring device may include a sensor configured to detect movement of a pusher member of the product pusher device, a wireless communications interface, and a processor. The processor may be configured to receive at least one sensor signal from the sensor indicating movement of the pusher member, determine a product movement activity type based on characteristics of the at least one sensor signal, and generate, for transmission via the wireless communications interface, a pusher activity message indicating the product movement activity type.
US08941494B2 Safety system for flaying machine
The invention describes a safety system (100) for a working machine (1), wherein an operator (7) is able to interact with the machine (1), wherein the system (100) comprises a transceiver unit (71) associated with the operator (7), a central processing unit (11), associated with the working machine (1), so as to receive signals from the transceiver unit (71), conductive gloves (81) comprising electrical conduction means (85, 84) configured to operate in ordinary functioning (I) or in an alarm condition (II), electrical connection means (82) configured to connect the transceiver unit (71) to the conductive gloves (81), and wherein the central processing unit (11) is configured to recognize whether the operator (7) is authorized for use of the machine (1), and to transmit an alarm signal (Sx1) so as to disable the machine (1) if the second operative condition (II) occurs.
US08941492B2 Receiving apparatus, information processing method and program
An information receiving apparatus that includes a receiver that receives an alert signal including a predetermined number of bits, and a controller that detects that the alert signal includes alert information by processing a subset of the predetermined number of bits of the alert signal, and outputs an indication corresponding to the detection.
US08941491B2 Methods, apparatus, and systems for monitoring transmission systems
A sensing platform for monitoring a transmission system, and method therefor, may include a sensor that senses one or more conditions relating to a condition of the transmission system and/or the condition of an environment around the transmission system. A control system operatively associated with the sensor produces output data based on an output signal produced by the sensor. A transmitter operatively associated with the control system transmits the output data from the control system.
US08941490B2 Automatic life alarm
The life alarm sensor device a very compact life alarm with a geodesic-like convex body frame structure mechanical sensor. The geodesic-like frame sensor is comprises a plurality of polygonal frames with beveled edges which are contiguously coupled at their respective edges with conducting probes, an unconstrained conducting ball dynamic wrist movement following inside the geodesic frame structure that closes a frame electric circuit upon a cessation of wrist movement. An alarm is triggered when a pre-set countdown has elapsed.
US08941488B2 System and method for a processor controlled ophthalmic lens
A method and system for the calibration and operation of a processor controlled ophthalmic lens is described. More specifically, the system comprising an interactive wireless device used to personalize the control and activation of one or more functions and/or components of the processor controlled ophthalmic lens. In some embodiments, the personalization may include calibrating the functions and/or components using feedback from the user using the interactive wireless device in response to measured conditions by one or more sensors included in the processor controlled ophthalmic lens.
US08941487B2 Transferring a mobile tag using a light based communication handshake protocol
Technology is described for transferring one or more mobile tags using a light based communication protocol. A mobile device, for example a smart phone, with an image sensor and an illuminator, like a camera flash, initiates transfer of data formatted in a mobile tag displayed by another device by automatically controlling the illuminator to generate sequences of light representing data transfer messages. The other device, for example a user wearable computer device with sensors capturing biometric and health related data, has a photodetector unit for capturing the sequences of light and converting them into digital data. A processor of the other device identifies the data transfer messages and causes a display of one or more mobile tags responsive to the messages. In this way, a number of mobile tags may be used to transfer several kilobytes of biometric data, for example 4-7 KBs, using low power for the wearable device.
US08941484B2 System and method of anomaly detection
A method and apparatus wherein the method includes detecting a plurality of events within a security system, evaluating the events using one of a first expression defined by ΣrεQconf(f(r)−mrg(r)), a second expression defined by ∫rεR|f(r)−mrg(r)|dr and a third expression defined by ∫rεRconf(f(r)−mrg(r))dr, where r is a size of a neighborhood around a data point, f(r) is a Local Correlation Integral (LOCI) of r, mrg(r) is a margin of r, R is a predetermined set of intervals of neighborhood sizes, Q is a predetermined discrete set of neighborhood sizes and conf(d) is a non-linear confidence function being 0 for near distance to the data point and quickly approaching 1 for larger distances, comparing a value of the evaluated expression with a threshold value and setting an alarm upon detecting that the value exceeds the threshold value.
US08941482B1 Automating turn indication systems
A turn indicator system determines when a moving vehicle has completed a turn and automatically turns off a turn indicator light. The system includes turn indicator lights, an accelerometer, and a processor. The accelerometer can sense acceleration in two-axis or three-axis. The processor is configured to receive the sensed accelerometer data and to determine when a vehicle has completed a turn based on the received accelerometer data. In response to determining that a turn is completed, the processor signals the appropriate turn indicator light to turn off. The turn indicator system can be implemented in a single-track vehicle, such as a bicycle or a motorcycle, or in a multi-track vehicle, such as an automobile.
US08941479B2 Obstacle recognition system and method for a vehicle
An object recognition system of a vehicle includes detecting means for detecting an object that is present around the vehicle, and enlarging means for enlarging the size of the object detected by the detecting means and recognizing the enlarged object, wherein a direction of enlargement of the object is determined according to a basis other than the object. When an object that is present around the vehicle is detected, the enlarging means enlarges the size of the object in a direction parallel to an indicator indicative of a lane boundary.
US08941477B2 Communication apparatus and method of controlling the same
A communication apparatus for transmitting data to a data accumulation apparatus via a relay apparatus detects, by communication with the relay apparatus, which is the relay function used by the relay apparatus to operate, a proxy relay function of temporarily holding and proxy-transmitting the data and a transparent relay function of transparently transmitting the data without holding. The communication apparatus transmits the data based on the detected relay function. When the data is being transmitted using the relay apparatus operating by the transparent relay function, and a disconnection notification representing disconnection of communication between the relay apparatus and the data accumulation apparatus is received from the relay apparatus, the data transmission is immediately stopped. When the data is being transmitted using the relay apparatus operating by the proxy relay function, the data transmission is continued.
US08941476B2 Tactile based performance enhancement system
A system is disclosed for communicating tactile messages to a user, such as a racecar driver, yacht crewmember, or other athlete. The system can include a tactile vest having tactile activators for conveying tactile messages to the user, including real time messages for helping the user assess and improve physical performance. The messages may be generated based on various types of sensor data, including, for example, data collected by vehicle sensors of a racecar or yacht.
US08941475B2 Method and apparatus for sensory stimulation
An apparatus for producing an electrosensory sensation to a body member (120). The apparatus comprises one or more conducting electrodes (106), each of which is provided with an insulator (108). When the body member (120) is proximate to the conducting electrode, the insulator prevents flow of direct current from the conducting electrode to the body member. A capacitive coupling over the insulator (108) is formed between the conducting electrode (106) and the body member (120). The conducting electrodes are driven by an electrical input which comprises a low-frequency component (114) in a frequency range between 10 Hz and 500 Hz. The capacitive coupling and electrical input are dimensioned to produce an electrosensory sensation. The apparatus is capable of producing the electrosensory sensation independently of any mechanical vibration of the one or more conducting electrodes (106) or insulators (108).
US08941472B2 Methods for recovering RFID data based upon probability using an RFID receiver
RFID data signals from RFID tags may be recovered by determining the probabilities of transitions between data states between a series of a pairs of signal samples using a set of predetermined probabilities related to data, timing, baud rate and/or phase variables affecting the received signal and processing those determined probabilities to determine the sequence of such transitions that has the highest probability of occurrence. A second set of predetermined probabilities related to transitions in the opposite direction may be used to sequence in a reverse direction. The determination of the sequence representing the RFID tag data may be iterated in both directions until further iterations do not change the determined probabilities.
US08941466B2 User authentication for devices with touch sensitive elements, such as touch sensitive display screens
For user authentication, finger touch information from a user is accepted via a touch sensitive element, the finger touch information including at least a time series of finger touch samples that define a trace of the user's signature, and each of the finger touch samples including centroid coordinates and non-centroid information, the non-centroid information including at least one of (A) a shape of the finger touch sample, (B) a size of the finger touch sample, (C) an orientation of the finger touch sample, and (D) characteristics of a multi-touch finger touch sample. A similarity of such finger touch samples with previously entered and stored finger touch samples is determined and compared with a threshold for purposes of user authentication.
US08941465B2 System and method for secure entry using door tokens
Secure door entry without a traditional card reader is made possible by tagging the door with an unpowered, unique token which can be read by a user's personal mobile electronic device. The user's device transmits both door and user identification to a remote server, where the decision is made whether to open the door. If so, the server sends an open door signal using the IP suite of protocols to an electronic bridge, which in turn passes the signal on to a door strike, opening the door. Another signal may be sent to an annunciator. Single-use digital tokens may also be used to open the doors. The permissions relating to doors or other physical assets may also be used to grant access to logical assets.
US08941459B2 Low profile inductors for high density circuit boards
An inductor includes a core formed of a magnetic material and a foil winding wound at least partially around or through at least a portion of the core. A first end of the winding extends away from the core to form an extended output tongue configured and arranged to supplement or serve as a substitute for a printed circuit board foil trace. A second end of the winding forms a solder tab. At least a portion of the extended output tongue and the solder tab are formed at a same height relative to a bottom surface of the core. Another inductor includes a core formed of a magnetic material, a winding wound at least partially around or through at least a portion of the core, and a ground return conductor attached to the core. The core does not form a magnetic path loop around the ground return conductor.
US08941457B2 Miniature power inductor and methods of manufacture
Magnetic components such as power inductors for circuit board applications include pressure laminate constructions involving flexible dielectric sheets that may integrally include magnetic powder materials. The dielectric sheets may be pressure laminated around a coil winding in an economical and reliable manner, with performance advantages over known magnetic component constructions.
US08941456B2 EMI suppression with shielded common mode choke
A power supply arrangement constituted of: an isolated power supply having a primary side and a secondary side, the secondary side electrically isolated from the primary side; a common mode choke having a first winding and a second winding wound on a common core, the common mode choke coupled between the primary side of the isolated power supply and an AC mains; and a shielding surrounding the common mode choke, the shielding coupled to a common potential of the secondary side of the isolated power supply.
US08941455B2 Object retention on interior vehicular components utilizing coded magnets
A method of and attachment system for securing and manipulating attractive objects upon an interior vehicular surface, utilizing at least one coded magnet to selectively attach/retain the objects, and provide various other functions, including aiding in alignment, orientation, and retrieval of the objects, and activating an associated sub-system.
US08941452B2 Electromechanical microsystems with air gaps
The present invention relates to an microelectromechanical system (1) comprising: a base (15) comprising a substrate (20) and a substrate electrode (40); a moveable beam (30); a voltage generator (10) able to generate a potential difference between the beam (30) and the substrate electrode (40); and at least one mechanical stop (70) connected to the beam and designed to make contact with the base (15) when a potential difference is applied between the beam (30) and the substrate electrode (40), thereby defining an air-filled cavity (80) between the beam (30) and the substrate electrode (40), characterized in that it furthermore comprises an electrical-charge blocking element (50) placed on the substrate (20), said element facing the at least one mechanical stop (70) and being electrically connected to the beam (30).
US08941450B2 Acoustic wave device having a frequency control film
An acoustic wave device includes a main resonator and a sub resonator each having a substrate, a lower electrode provided on the substrate, a piezoelectric film provided on the lower electrode, and an upper electrode provided on an upper side of the piezoelectric film. A frequency control film is provided on an upper side of a resonance area in which the upper electrode and the lower electrode face each other in at least one of the main resonator and the sub resonator. The frequency control film has multiple convex patterns, and the convex patterns are arranged with a common pitch for spurious adjustment and with different areas in the main resonator and the sub resonator.
US08941441B2 LNA with linearized gain over extended dynamic range
A low noise amplifier including a variable gain amplifier stage configured to accept an input signal and to provide a load driving signal; a tunable bandpass filter connected as a load to the variable gain amplifier stage, wherein the bandpass filter includes a cross-coupled transistor pair, and at least one cross-coupled compensation transistor pair biased in a subthreshold region configured to add a transconductance component when the load driving signal is of a magnitude large enough to decreases a transconductance of the cross-coupled transistor pair; and, a controller circuit configured to tune the bandpass filter. The filter can be tuned in respect to the frequency and the quality factor Q.
US08941440B2 Differential circuit compensating gain enhancement due to self heating of transistors
A differential circuit with a function to compensate the gain enhancement due to the self-heating of the transistor is disclosed. The differential circuit includes an equalizer unit coupled with one of paired transistors. The other of the paired transistor receives the input signal to be amplified. The base level, or the base-emitter bias, is oppositely modulated by the input signal through the common emitter, which causes the modification of the base current. The equalizer unit reduces the variation of the base level only in low frequencies where the self-heating effect of the transistor appears.
US08941438B2 Bandwidth limiting for amplifiers
An apparatus for limiting the bandwidth of an amplifier provides for the design of an input impedance, a feedback impedance, and a load impedance such that the load impedance is proportional to the sum of the input impedance and feedback impedance. A sampling circuit has a load impedance including a resistor and capacitor in series to reduce the effective amplifier transconductance, which decreases bandwidth without increasing noise density or making this circuit more difficult to drive than a conventional circuit.
US08941437B2 Bias circuit
A bias circuit includes: a reference current generation circuit that has a first reference-current element disposed in a first current path and has a second reference-current element disposed in a second current path; a first current mirror circuit that has a first transistor connected in series with the first reference-current element and has a second transistor connected in series with the second reference-current element; a third reference-current element disposed in a third current path disposed between the power supply terminal and the reference-current element; a third transistor connected in series with the third reference-current element; a bypass capacitor connected between the power supply terminal and a second node connected to a control terminal of the third transistor; an activation circuit connected to the first node; and a first switch connected between the first node and the second node.
US08941433B2 AC coupling circuit with hybrid switches
A coupling apparatus having a first branch and a second branch is disclosed. The first branch generally comprises (A) a first switch group configured to connect an input signal to an output node through a first capacitor, and (B) second switch group configured to connect either (i) a second signal, or (ii) a ground voltage, to the output node through a second capacitor. The second branch generally comprises (A) a third switch group configured to connect the input signal to the output node through a third capacitor, and (B) a fourth switch group configured to connect either (i) the second signal, or (ii) the ground voltage, to the output node through a fourth capacitor.
US08941429B2 Master-slave flip-flop with low power consumption
In a master-slave flip-flop, the master latch has first and second three-state stages, and a first feedback stage. The slave latch has third and fourth three-state stages, and a second feedback stage. First and second clock switches having opposite phases are provided. The first clock switch is configured in one of the first and fourth three-state stages, and the other stage shares the first clock switch. The second clock switch is configured in one of the second and third three-state stages, and the other stage shares the second clock switch. The second three-state stage has an additional pair of complementary devices having signal paths connected in series with each other with both being gated by a data output of the slave latch. The flip-flop reduces the number of clock switches and clock switch power consumption.
US08941427B2 Configurable flip-flop
A configurable flip-flop can be operated in a normal mode and a buffer mode. In the normal mode, the flip-flop latches data at the flip-flop input based on a clock signal. In the buffer mode, the flip-flop provides data at the flip-flop input to the flip-flop output, independent of the clock signal.
US08941424B2 Digital phase locked loop with reduced convergence time
A digital phase locked loop has a digital controlled oscillator, a phase comparator comparing the output signal of the digital controlled oscillator, or a signal derived therefrom, with a reference signal to produce a phase error signal. A loop filter produces a control signal for the digital controlled oscillator from an output of the phase comparator the loop filter. The loop filter has a proportional part producing a proportional component of the control signal, an integral part producing an integral component of the control signal, and an adder receiving the respective proportional and integral components at first and second inputs thereof to produce the control signal. The integral part includes a delayed feedback loop normally configured to accept the integral component at an input thereof. A first switch replaces the integral component at the input of the delayed feedback loop by the control signal in response to an activation signal. A control module produces the activation signal to activate the switch for brief periods when the phase error is non-zero and the rate of change of phase is less than a threshold value.
US08941423B2 Method for operating a circuit including a timing calibration function
Circuits and methods for implementing a continuously adaptive timing calibration training function in an integrated circuit interface are disclosed. A mission data path is established where a data bit is sampled by a strobe. A similar reference data path is established for calibration purposes only. At an initialization time both paths are calibrated and a delta value between them is established. During operation of the mission path, the calibration path continuously performs calibration operations to determine if its optimal delay has changed by more than a threshold value. If so, the new delay setting for the reference path is used to change the delay setting for the mission path after adjustment by the delta value. Circuits and methods are also disclosed for performing multiple parallel calibrations for the reference path to speed up the training process.
US08941418B2 Driving circuits with power MOS breakdown protection and driving methods thereof
A driving circuit is provided. The driving circuit is capable of driving a load coupled to an output node of the driving circuit. The driving circuit includes an output-stage element, a first N-type metal-oxide-semiconductor (NMOS) transistor, and a first P-type metal-oxide-semiconductor (PMOS) transistor. The output-stage element is coupled between an operation voltage source and the output node. The first NMOS transistor has a gate, a drain coupled to the output node, and a source coupled to a ground. The first PMOS transistor has a gate, a drain coupled to the ground, and a source coupled to the output node. When the first NMOS transistor begins to be turned off, the first PMOS transistor is turned on, and a voltage at the drain of the first NMOS transistor is clamped to be lower than a breakdown trigger voltage of the first NMOS transistor.
US08941416B2 Semiconductor device
Provided is a semiconductor device exemplified by an inverter circuit and a shift register circuit, which is characterized by a reduced number of transistors. The semiconductor device includes a first transistor, a second transistor, and a capacitor. One of a source and a drain of the first transistor is electrically connected to a first wiring, and the other thereof is electrically connected to a second wiring. One of a source and a drain of the second transistor is electrically connected to the first wiring, a gate of the second transistor is electrically connected to a gate of the first transistor, and the other of the source and the drain of the second transistor is electrically connected to one electrode of the capacitor, while the other electrode of the capacitor is electrically connected to a third wiring. The first and second transistors have the same conductivity type.
US08941415B2 Edge selection techniques for correcting clock duty cycle
Circuits and methods are provided for generating clock signals and correcting duty cycle distortion in clock signals. A circuit for generating a clock signal includes a multiplexer circuit and an edge-triggered flip-flop circuit. The multiplexer circuit selectively outputs one of a plurality of input clock signals. The edge-triggered flip-flop detects a transitioning edge of the input clock signal that is selectively output from the multiplexer circuit, and in response to the detection, samples a logic level of a received data signal, and generates a transition of an output clock signal at an output port of the edge-triggered flip-flop. The multiplexer circuit selectively outputs one of the plurality of input clock signals to a clock signal port of the edge-triggered flip-flop, based on a logic level of the output clock signal at the output port of the edge-triggered flip-flop, which is input to a select control port of the multiplexer circuit.
US08941412B2 Amplifiers using gated diodes
A circuit comprises a control line and a two terminal semiconductor device having a first terminal is coupled to a signal line, and a second terminal coupled to the control line. The semiconductor device has a capacitance when a voltage on the first terminal is above a threshold and has a smaller capacitance when a voltage on the first terminal is below the threshold. A signal is placed on the signal line and a voltage on the control line is modified. When the signal falls below the threshold, the semiconductor device acts as a very small capacitor and the output will be a small value. When the signal is above the threshold, the semiconductor device acts as a large capacitor and the output will be influenced by the signal and the modified voltage on the control line and the signal is amplified.
US08941411B2 Signal transmission circuit
A signal transmission circ it includes a main driving unit configured to drive a first signal transmission One in response to an input signal and output a first driven signal, an emphasis driving unit configured to perform an emphasis operation on the first driven signal and output an emphasized signal, and a crosstalk control unit configured to perform an equalizing operation on the emphasized signal.
US08941410B1 Programmable buffer circuit
Buffer circuit embodiments are described. A buffer circuit includes an input configured to receive an input signal and a buffer configured to generate an output signal based on the input signal. In one embodiment, the buffer circuit includes a programmable chopping module coupled with the buffer, wherein the programmable chopping module is programmable with a selected configuration from a plurality of configurations, and wherein the programmable chopping modulates the input signal based on the selected configuration. In another embodiment, the buffer circuit further includes a programmable output filter coupled with the buffer, wherein the programmable output filter is programmable with a selected configuration form a plurality of configurations, and wherein the programmable output filter filters a frequency band of the output signal based on the selected configuration.
US08941409B2 Configurable storage elements
An integrated circuit (“IC”) having configurable logic circuits for configurably performing multiple different logic operations based on configuration data is provided. The IC includes a configurable routing fabric for configurably routing signals among configurable logic circuits. The configurable routing fabric includes a particular wiring path that connects an output of a source circuit to inputs of a destination circuit. The particular wiring path includes a first path and a second path that is parallel to the first path. The first and second paths are for configurably storing output signals of the source circuit. The first path connects to a first input of the destination circuit and the second path connects to a second input of the destination path.
US08941408B2 Configuring data registers to program a programmable device with a configuration bit stream without phantom bits
Techniques and mechanisms dynamically configure shift registers among registers composing data registers in a circuit such as a Programmable Logic Device (PLD). A configuration bit stream used to configure the PLD may have a reduced size if “phantom bits” not corresponding to configuration elements are removed. Shift registers may be dynamically configured such that registers which do not correspond to physical configuration elements may be skipped. Thus, a PLD may be programmed with a configuration bit stream without phantom bits.
US08941406B2 Method for reducing output data noise of semiconductor apparatus and semiconductor apparatus implementing the same
Provided is a method for reducing output data noise of a semiconductor apparatus which includes a plurality of output buffers to output data. The method includes the steps of: driving low data to a specific output buffer among the plurality of output buffers, and driving data transiting from a high level to a low level to the other output buffers; and measuring the magnitude of data noise occurring in output data of the specific output buffer, and deciding slew rates of the plurality of output buffers based on the measurement result.
US08941398B2 Heat spreader flatness detection
A heat spreader includes a plurality of sensors that indicate that the heat spreader is flat against a chip stack. One or more nodes within a sensor are electrically connected. The electrical resistance values of the connection may be compared to determine if the nodes within the sensors are relatively flat. Sensor flatness may be correlated to heat spreader flatness for determining whether the heat spreader is flat against the chip stack when the heat spreader is installed upon the chip stack.
US08941395B2 Integrated passive circuit elements for sensing devices
Capacitive sensing devices are provided that include a sensing pattern of conductive traces disposed upon the surface of a substrate and a first passive circuit element that includes a metallic conductor disposed upon the same surface of the substrate. In some embodiments, the first passive circuit element is a component of an electronic circuit that can be, for example, a low pass filter. Provided capacitive sensing devices are useful, for example, when incorporated into projected touch screen display panels for use on electronic devices.
US08941394B2 Capacitive sensor system with noise reduction
A system for reducing noise when detecting the capacitance value of a capacitor in a touch display that operates in a potentially noisy environment. A capacitance sensor is provided for determining the size of the capacitor in the touch screen display and includes a charging circuit that charges the capacitor and a discharge circuit that resets the charge of the capacitor to substantially zero. A control circuit controls the capacitance sensor and the operation of the charge and discharge circuits in accordance with a predetermined charging/discharging algorithm to resolve the value of the capacitor and output such value in a sampling operation. The operation of the control circuit and the charging/discharging algorithm is subject to errors as a function of the noisy environment, which errors will be reflected in the output value. A noise reduction circuit is provided to modify the operation of the control circuit to reduce noise.
US08941393B2 Detection of a conductive object during an initialization process of a touch-sensing device
A method and system for detecting a presence of a conductive object proximate to a capacitive sense element during an initialization process of a touch-sensing device. A reference sense element is calibrated to produce a sensing parameter value. A capacitance of a plurality of capacitive sense elements is measured based on the sensing parameter value, and compared to a baseline capacitance value stored in a non-volatile memory of the touch-sensing device. The presence of a conductive object proximate to a capacitive sense element is detected when a difference between the measured capacitance and the stored baseline capacitance value is greater than a threshold value.
US08941392B1 Angular displacement sensor of compliant material
Disclosed is a sensing device that includes a flexible substrate having an elongated structure extending between a first end and a second end, the elongated structure being compliant material that is flexible and bendable from a linear, non-bent position to multiple bendable positions. The sensing device also includes a first compliant strain sensing element embedded within the compliant material and extending between the first end and the second end along a longitudinal length of the elongated structure. The first compliant strain sensing element includes a second compliant material that is flexible and bendable, where an electrical property of the first compliant strain sensing element changes in proportion to an applied strain on the elongated structure.
US08941391B2 Multi purpose capacitive sensor
A multi purpose capacitive sensor suitable for indicating close proximity of a person to a surface along a large-size truck as well as along a medium-size painting or a pocket-size mobile phone is disclosed. The sensor comprises a voltage measuring device provided with a signal ground connected to a first pole of an oscillating voltage source that has a second pole connected to a signal input of the voltage measuring device. This input has a first capacitance to earth and a second capacitance to the signal ground. A third capacitance is exhibited to earth by the second pole of said voltage source. According to the invention, a prebias component is connected between the second pole of the voltage source and the signal input of the voltage measuring device.
US08941389B2 Position sensor
A position sensor that includes two coils, the first coil (transmitting coil) being fed a certain frequency such that it emits a constant electromagnetic field, and said field being received and/or detected by way of the second coil (receiving coil), is characterized in that the axis of the second coil is angled with respect to the axis of the first coil, preferably located at an angle of 90° with respect to the axis of the first coil.
US08941388B2 Auto-calibrating proximity sensor for retail display security system
An auto-calibrated proximity sensor used with a protected item in a retail display security system includes a metalized surface that cooperatively interacts with a printed circuit board to form a capacitive cell. A microcontroller senses changes in the frequency of the capacitive circuit if the orientation of the metalized surface changes with respect to the printed circuit board.
US08941384B2 Reliable wired-pipe data transmission system
A high-frequency data and/or power transmission system suitable for downhole use including signal/power couplers, transmission line segments and signal repeaters. Signals and power are/is transmitted between couplers and/or between couplers and repeaters by means of electromagnetic resonance coupling. In at least a portion of the system, the transmission line segments form parallel data paths and the repeaters provide crossover capability between the data/power paths, thereby significantly improving reliability. The invention also includes methods of transmitting data and/or distributing high-frequency power through a downhole transmission system including multiple data/power paths and multiple crossovers wherein a fault location in one data/power path is bypassed by routing data and/or power to a parallel data/power path by means of electromagnetic resonance coupling.
US08941382B2 Methods and apparatus for sample temperature control in NMR spectrometers
Described are methods and apparatus, referred to as “temperature-lock,” which can control and stabilize the sample temperature in an NMR spectrometer, in some instances with a precision and an accuracy of below about 0.1 K. In conventional setups, sample heating caused by experiments with high-power radio frequency pulses is not readily detected and is corrected by a cumbersome manual procedure. In contrast, the temperature-lock disclosed herein automatically maintains the sample at the same reference temperature over the course of different NMR experiments. The temperature-lock can work by continuous or non-continuous measurement of the resonance frequency of a suitable temperature-lock nucleus and simultaneous adaptation of a temperature control signal to stabilize the sample at a reference temperature value. Inter-scan periods with variable length can be used to maintain the sample at thermal equilibrium over the full length of an experiment.
US08941381B2 Multiplicative increase in MRI data acquisition with multi-band RF excitation pulses in a simultaneous image refocusing pulse sequence
Disclosed are methods and systems for carrying out super-multiplexed magnetic resonance imaging that entwines techniques previously used individually and independently of each other in Simultaneous Echo (or Imaging) Refocusing (SER or SIR) and Multi-Band (MB) excitation, in a single pulse sequence that provides a multiplication rather than summation of desirable effects while suppressing undesirable effects of each of the techniques that previously were used independently.
US08941375B2 Contactless detection apparatus and method for detecting a rotation direction
A contactless detection apparatus has a first magnet ring, a second magnet ring, a first magnetic sensor, a second magnetic sensor and a controller. The two magnet rings are respectively mounted on two ends of a torsion shaft. When the torsion shaft rotates, the controller detects the magnetic fields of the two magnet rings through the two magnetic sensors. The controller calculates a twisting torque exerted on the torsion shaft and a rotational angle of the torsion shaft according to the detected magnetic fields at the same time. The detection apparatus of the invention has simple structure. The magnetic fields of both magnet rings do not interfere with each other, such that the detection result of the invention is accurate.
US08941374B2 Rotation detection device and manufacturing method for the same
A rotation detector component detects a rotational state of a rotor and sends a rotational detection signal. A signal transmission component is electrically connected with a lead frame of the rotation detector component to transmit the rotational detection signal to an external device. A body portion holds the rotation detector component and a part of the signal transmission component. The body portion is integrally molded of a first resin to cover a joint portion between the lead frame and the signal transmission component, the rotation detector component, and a part of the signal transmission component. A part of the rotation detector component forms an exposed portion exposed from the body portion.
US08941373B2 Current sensor arrangement
A current sensor comprising a primary conductor for conducting a current that is to be measured, at least two magnetic field probes for measuring magnetic fields, and a magnetic core, which has a closed ring structure having three or more corners that encloses the primary conductor, wherein each magnetic field probe is arranged on the magnetic core or in recesses in the magnetic core.
US08941371B2 RFID sensor devices having drive elements
An RFID-based sensor is provided with an RFID chip and an antenna electrically connected to the RFID chip. The sensor further includes a sensing material electrically connected to the antenna and a drive element. At least a portion of the sensor is movable between a closed condition in which the sensing material is isolated from the outside environment and an open condition in which the sensing material is exposed to the outside environment. The drive element moves the sensor between the open and closed configurations depending on whether or not it is receiving a signal.
US08941366B2 DC-DC converter having an output that is a measure of the efficiency of the converter
A DC-DC converter includes efficiency reporting circuitry having an output that is a measure of efficiency. In an example, the DC-DC converter has an input voltage, an output voltage, and a switching circuit converting the input voltage to an intermediate voltage, and the efficiency reporting circuitry determines the ratio between the output voltage and the intermediate voltage.
US08941365B2 Methods and apparatus to improve power factor at light-load
Methods and apparatus to improve power factor are disclosed. An example method includes detecting power provided to a power factor corrector; detecting power provided by the power factor corrector; and disabling the power factor corrector from correcting a power factor of a load for at least one period when the power provided by the power factor corrector is below a light-load threshold.
US08941364B2 On-demand electric power system
An on-demand electric power system for providing on-demand electric power in remote locations. The on-demand electric power system generally includes a protective housing, an engine-generator within the protective housing, a control switch electrically positioned between the engine-generator and an electric load, and a control unit in communication with the engine-generator and the control switch to control operation of the engine-generator along with electrical power to the electric load. The control unit detects when electrical power is required by an electric load and then first starts the engine-generator. After a period of time, the control unit then closes the control switch to provide electrical power to the electric load.
US08941363B2 Device battery management
Technologies and implementations for device battery management are generally disclosed.
US08941360B2 Battery state monitoring circuit and battery device
Provided are a battery state monitoring circuit and a battery device, in which, even when one secondary battery becomes an overcharged state or an overdischarged state and then a voltage detection circuit operates, power is not consumed in only the one secondary battery. The battery state monitoring circuit includes: a plurality of voltage detection circuits which are provided for a plurality of secondary batteries, respectively, for detecting voltages of the plurality of secondary batteries; and a current bypass circuit provided in each of the plurality of voltage detection circuits, for allowing an operation current of the each of the plurality of voltage detection circuits to flow into a ground terminal. Therefore, when only one secondary battery becomes an overcharged state or an overdischarged state, the battery device operates so that the power of all the secondary batteries is consumed to prevent voltages between the secondary batteries from being unbalanced.
US08941356B2 Battery heating circuits and methods with resonance components in series using energy transfer
Circuit and method for heating a battery. The circuit includes the battery including a first damping component and a first current storage component, a switch unit, a switching control component, a first charge storage component, and an energy transfer unit. The switching control component is configured to turn on the switch unit so as to allow a current to flow between the battery and the first charge storage component and to turn off the switch unit so as to stop the current. The energy transfer unit is configured to, after the switch unit is turned on and then turned off, start removing first energy from the first charge storage component and complete transferring the removed first energy to an energy storage component. The circuit for heating the battery is configured to heat the battery by at least discharging the battery.
US08941353B2 Apparatus for power wireless transfer between two devices and simultaneous data transfer
A system for the wireless transfer of power includes a first device connected to a power supply source and provided with a first resonant circuit at a first frequency, a second device comprising at least one battery, provided with a second resonant circuit at said first frequency, arranged at a distance smaller than the wavelength associated with said first frequency and not provided with wires for the electrical connection with said first device. The first device is adapted to transfer a first signal representing the power to be sent to the second device for charging said at least one battery and comprises means adapted to modulate the frequency of said first signal for transferring data from the first device to the second device simultaneously with the power transfer. The second device comprises means adapted to demodulate the received signal, corresponding to the first signal sent from the first device, to obtain the transmitted data.
US08941352B2 Apparatus for contactless charging of mobile terminal
A contactless charging apparatus of a portable terminal is provided. The contactless charging apparatus of a portable terminal includes a main circuit board, a rectifying unit, a charging unit, and a secondary coil unit mounted on the main circuit board for generating an electromotive force. The secondary coil unit may be formed on the main circuit board in a patterning process instead of an existing copper line coil. A coil layer formed in the patterning process generates an electromotive force induced by a magnetic induction field created by a contactless charger, and a direct current is applied to a battery to charge the battery using the rectifying unit and the charging unit.
US08941346B2 Switching frequency modulation utilizing rotor position
A control system (128) for controlling a switched reluctance (SR) machine (110) having a rotor (116) and a stator (118) is provided. The control system (128) may include a converter circuit (122) operatively coupled to the stator (118) and including a plurality of switches (132) in selective communication with each phase of the stator (118) and a controller (130) in communication with each of the stator (118) and the converter circuit (122). The controller (130) may be configured to determine a position of the rotor (116) relative to the stator (118), and generate a modulated switching frequency (152) based on the rotor position.
US08941345B2 Multi-shaft motor drive device and multi-axis motor drive system
A multi-shaft motor drive device comprises at least one amplifier module, a control substrate, and a power substrate. The at least one amplifier module is configured to supply power to at least one motor. The control substrate connected with the amplifier module. The power substrate is connected with the amplifier module. The amplifier module comprises a switching element. The control substrate is provided with a signal line disposed for controlling the switching element according to a motor control instruction from a master controller. The power substrate is provided with a power line disposed for supplying power to the amplifier module. The control substrate and the power substrate are arranged separately each other.
US08941339B2 Apparatus and method for measuring position deviation of rotor of permanent magnet synchronous motor
An apparatus for measuring a position deviation of a rotor of a permanent magnet synchronous motor includes a control unit, a power transformation unit, a rotor position estimator and a calculation unit. The control unit receives a d-axis DC voltage signal and a q-axis AC voltage signal and receives an initial value of the rotor position and a high-frequency signal to output a three-phase command signal. The power transformation unit receives the three-phase command signal and outputs a three-phase control signal for controlling the motor. The rotor position estimator receives a three-phase current feedback signal corresponding to an operation of the motor and generates an estimation value of the rotor position. The calculation unit performs calculation to the initial value and the estimation value to generate a deviation value of the rotor position. Moreover, a method for measuring the position deviation is also disclosed herein.
US08941336B1 Optical characterization systems employing compact synchrotron radiation sources
A compact synchrotron radiation source includes an electron beam generator, an electron storage ring, one or more wiggler insertion devices disposed along one or more straight sections of the electron storage ring, the one or more wiggler insertion devices including a set of magnetic poles configured to generate a periodic alternating magnetic field suitable for producing synchrotron radiation emitted along the direction of travel of the electrons of the storage ring, wherein the one or more wiggler insertion devices are arranged to provide light to a set of illumination optics of a wafer optical characterization system or a mask optical characterization system, wherein the etendue of a light beam emitted by the one or more wiggler insertion devices is matched to the illumination optics of the at least one of a wafer optical characterization system and the mask optical characterization system.
US08941331B2 Solid state lighting panels with variable voltage boost current sources
A lighting system includes a lighting panel having a string of solid state lighting devices and a current supply circuit having a voltage input terminal, a control input terminal, and first and second output terminals coupled to the string of solid state lighting devices. The current supply circuit is configured to supply an on-state drive current to the string of solid state lighting devices in response to a control signal. The current supply circuit includes a charging inductor coupled to the voltage input terminal and an output capacitor coupled to the first output terminal. The current supply circuit is configured to operate in continuous conduction mode in which current continuously flows through the charging inductor while the on-state drive current is supplied to the string of solid state light emitting devices.
US08941313B2 Light emitting unit driving circuit and light emitting device
A light emitting unit driving circuit may include: an operating voltage supplying unit configured to supply a voltage input for the driving circuit; a driving unit coupled to the operating voltage supplying unit and configured to drive the light emitting unit to make the light emitting unit turn on or turn off; and a feedback control unit coupled between the driving unit and the light emitting unit, and configured to form a feedback loop together with the driving circuit and the light emitting unit to stabilize an operating current of the light emitting unit.
US08941311B2 Control of the intensity of a LED lighting system
There is described a system and method for controlling the intensity of a lighting system for vehicles comprising light emitting diodes mounted on printed circuit boards (PCBs). The method comprises sending a first modulation signal to the lighting modules from a master controller upon detection of a presence of power from a power source by the master controller; and sending a second modulation signal to the lighting modules from the master controller upon detection of an absence of power from a power source by the master controller. The first modulation signal corresponds to a first LED intensity and the second modulation signal corresponds to a second LED intensity lower than the first light intensity.
US08941305B2 Field emission device
A field emission device is configured as a heat engine.
US08941302B2 Light-emitting arrangement with organic phosphor
The invention provides a light-emitting arrangement comprising: a light source adapted to emit light of a first wavelength; a wavelength converting member comprising an organic wavelength converting material adapted to receive light of said first wavelength and to convert at least part of the received light to light of a second wavelength, said wavelength converting member and said light source being mutually spaced apart; and a sealing structure at least partially surrounding said wavelength converting member to form a sealed cavity containing at least said wavelength converting member, the gas pressure within said sealed cavity being 1*10−5 bar (1 Pa) or less. At such pressure, the organic phosphor has been found to have particularly good stability, thus resulting in a longer life time of the phosphor.
US08941301B2 Light-emitting element, light-emitting device, electronic device, and method for fabricating light-emitting element
Objects of the present invention are to provide a light-emitting element that does not readily deteriorate, a light-emitting device and an electronic device that do not readily deteriorate, and a method of fabricating the light-emitting element that does not readily deteriorate. A light-emitting element having an EL layer between a pair of electrodes is covered with a layer containing an inorganic compound and halogen atoms or a layer containing an organic compound, an inorganic compound, and halogen atoms, whereby deterioration by moisture penetration can be inhibited. Thus, a light-emitting element with a long life can be obtained.
US08941300B2 Electric lamp
An electric lamp (1) comprising a socket (2), a lamp bulb (4) mounted on the socket, in which bulb at least one semiconductor light source (5) is arranged. Cooling means (6) comprise at least two facing cooling fins (7,8) which are separated by at least one spacing (9). Said spacing being open to the environment and extending from the heart of the lamp bulb to the outer surface of the bulb. The lamp comprises a light redistributing, light transmittable wall (13) for redistributing light; optionally said light redistributing wall comprises separate, discernable wall parts (14,15). For example, each discernable bulb part is shaped like a surface of a half prolate or half oblate ellipse. Thus, a desired double beam or homogeneous, omni-directional light distribution is obtainable.
US08941299B2 Light emitting device including semiconductor nanocrystals
A light emitting device includes an electroluminescent material and semiconductor nanocrystals. The semiconductor nanocrystals accept energy from the electroluminescent material and emit light.
US08941298B2 Display device
A display device includes a plurality of sub-pixels configured to display a plurality of colors including white. Each of the sub-pixels includes a self-luminous element configured to emit light by receiving supply of electric current, an input unit configured to input a luminance signal for determining luminance of the self-luminous element into the sub-pixel, and a control unit configured to control the supply of electric current to the self-luminous element. An area of light emission in each of the sub-pixels for the white is larger than an area of light emission in each of the sub-pixels for the other colors.
US08941296B2 Organic EL device having a high light output
An organic EL device includes a substrate, a first electrode layer formed on the substrate, an organic EL layer formed on the first electrode layer, and a second electrode layer formed on the organic EL layer. A distribution characteristic of light emitted from the first electrode layer into the substrate has a luminance in a direction of a first angle of 20 to 50 degrees measured with respect to an axis perpendicular to the substrate that is relatively high as compared to luminance in other angular directions.
US08941291B2 Plasma actuator
A plasma actuator (1) includes four electrodes (11) and three dielectrics (10) and is disposed on the side of an object surface (B). When a high voltage is applied to the electrodes (11), a plasma (15) is generated at an end (10a) of each dielectric (10) exposed so as to be accessible to a gas. In the plasma actuator (1), the electrodes (11) and dielectrics (10) are alternately stacked one on another. The plasma actuator (1) includes a stepped exposed portion (X). The plasma actuator (1) in which the electrodes (11) and dielectrics (10) are arranged such that the ends (10a) of the dielectrics (10) are exposed in the normal line direction of the object surface (B) in the stacked order in the stepped exposed portion (X) can suppress the flow of the generated plasma even when the plasma actuator is exposed to a high-speed airflow under high pressure. This stabilizes the plasma.
US08941290B2 Vibrating body and vibration wave actuator
Provided are a vibrating body and a vibration wave actuator, which can suppress vibration attenuation along with a reduction in size with an inexpensive structure, to thereby improve vibration efficiency, and can output stable vibration energy. A vibrating body includes: a piezoelectric element including a piezoelectric layer and an electrode layer; a ceramic substrate to which the piezoelectric element is fixed; and a ceramic layer including the same main component as a main component of the ceramic substrate, which is provided between the piezoelectric element and the ceramic substrate, and the piezoelectric element is fixed to the ceramic substrate through intermediation of the ceramic layer.
US08941286B2 Acoustic wave device
An acoustic wave device includes: a piezoelectric thin film resonator including: a substrate; a lower electrode formed on the substrate; at least two piezoelectric films formed on the lower electrode; an insulating film sandwiched by the at least two piezoelectric films; and an upper electrode formed on the at least two piezoelectric films, wherein an area of the insulating film within a resonance region, in which the lower electrode and the upper electrode face each other across the at least two piezoelectric films, is different from an area of the resonance region.
US08941284B2 Electromagnetic converter with a polymer element based on a mixture of polyisocyanate and isocyanate-functional prepolymer and a compound with at least two isocyanate reactive hydroxyl groups
The present invention relates to an electromechanical converter, in particular an electromechanical sensor, actuator and/or generator, which comprises a polymer element obtainable from a reaction mixture comprising a polyisocyanate, a polyisocyanate prepolymer and a compound having at least two isocyanate-reactive hydroxy groups. The present invention additionally relates to a process for the production of such an electromechanical converter and to the use of a polymer element according to the invention as an electromechanical element. The present invention relates further to an electronic and/or electrical device comprising an electromechanical converter according to the invention and to the use of an electromechanical converter according to the invention in an electronic and/or electrical device.
US08941269B1 System and method to reduce electrical transients
A power transfer device for connecting an electrical load to a power supply is disclosed. The power transfer device monitors the operating status of the power supply. Upon loss of power at the power supply, the power transfer device opens a switch between the power supply and the electrical load. When power is restored, the power transfer device executes a delay time module. After the delay time module has timed out, the power transfer device closes the switch to reconnect the power supply and the electrical load. Power transfer devices may be supplied to each of multiple loads connected to a power supply. By setting the time delay period of each power transfer device to a different duration, the electrical transients resulting from reconnecting all of the electrical loads to the power supply are reduced.
US08941268B2 Non-contact power transmission apparatus
A non-contact power transmission apparatus that includes a power supply circuit that generates electrical power; a switch connected to an output of the power supply circuit; a first power transmission antenna connected to a first output of the switch; a second power transmission antenna connected to a second output of the switch; a communication interface that communicates with a device; and a control unit that controls the switch based on a state of the device obtained via the communication interface.
US08941263B2 Energy storage system and method of controlling the same
An energy storage system and a method of controlling the energy storage system are disclosed. The energy storage system includes an integrated controller configured to determine a functional state of a power converting unit, a bidirectional converter, and a bidirectional inverter based on conditions of the power generation system, the battery, and the load.
US08941241B2 Semiconductor device and method of manufacturing the same
A semiconductor device includes at least 4 conductive line groups arranged in parallel over one memory cell block and each configured to include conductive lines. First contact pads may be coupled to the respective ends of the conductive lines of two of the 4 conductive line groups in a first direction, and second contact pads may be coupled to the respective ends of the conductive lines of the remaining 2 of the 4 conductive line groups in a second direction opposite to the first direction.
US08941240B2 Fabricating a contact rhodium structure by electroplating and electroplating composition
A contact rhodium structure is fabricated by a process that comprises obtaining a substrate having a dielectric layer thereon, wherein the dielectric layer has cavities therein into which the contact rhodium is to be deposited; depositing a seed layer in the cavities and on the dielectric layer; and depositing the rhodium by electroplating from a bath comprising a rhodium salt; an acid and a stress reducer; and then optionally annealing the structure.
US08941238B2 Semiconductor device
A semiconductor device includes a first substrate; a plurality of first electrodes formed on the first substrate; and a first insulating film formed on sidewalls of the plurality of first electrodes. The first insulating film is formed not to fill spaces between the plurality of first electrodes.
US08941234B2 Manufacturing process and heat dissipating device for forming interface for electronic component
A method includes preparing a bonding surface of a heat dissipating member, applying flux to the bonding surface of the heat dissipating member, and removing excess flux from the bonding surface so that minimal flux is provided. The method also includes preparing a die surface of an electronic device package, applying flux to the die surface, and removing excess flux from the die surface so that minimal flux is provided. The method further includes positioning a preform solder component on the die surface, positioning the heat dissipating member over the die surface and the preform solder component such that the flux layer of the bonding surface is in contact with the preform solder component, and reflowing the solder component using a reflow oven. A heat spreader is also described for use in the process.
US08941231B2 Electronic chip and method of fabricating the same
Provided are an electronic chip and a method of fabricating the same. The semiconductor chip may include a substrate, an active device integrated on the substrate, a lower interlayered insulating layer covering the resulting structure provided with the active device, a passive device provided on the lower interlayered insulating layer, an upper interlayered insulating layer covering the resulting structure provided with the passive device, and a ground electrode provided on the upper interlayered insulating layer. The upper interlayered insulating layer may be formed of a material, whose dielectric constant may be higher than that of the lower interlayered insulating layer.
US08941225B2 Integrated circuit package and method for manufacturing the same
A stacked integrated circuit package and a method for manufacturing the same are provided. The stacked integrated circuit package includes a first integrated circuit package comprising a first substrate, a first semiconductor chip, and a first molding portion, an interposer mounted on the first substrate to be electrically connected to the circuit pattern of the first substrate by a first solder bump, the interposer being provided with an opening to accommodate the first semiconductor chip, and a second integrated circuit package stacked on the first integrated circuit package and the interposer and electrically connected to the interposer by a second solder bump, the second integrated circuit package comprising a second substrate, a second semiconductor chip, and a second molding portion.
US08941224B2 Package structure of a chip and a substrate
A package structure includes a thin chip substrate, a stabilizing material layer, a chip and a filling material. A first circuit metal layer of the substrate is inlaid into a dielectric layer and a co-plane is defined by the first circuit metal layer and the dielectric layer and is exposed from the dielectric layer. The bonding pads of the substrate are on the co-plane, have a height higher than the co-plane and connected to the first circuit metal layer. The stabilizing material layer is provided on two sides of the co-plane to define a receiving space for accommodating the chip. The filling material is injected into the receiving space to fasten the pins of the chip securely with bonding pads. Since no plastic molding is required, a total thickness of the package structure and the cost is reduced. The stabilizing material layer prevents the substrate from warping and distortion.
US08941223B2 MEMS device package with conductive shell
A MEMS lead frame package body encloses a MEMS device enclosed in an internal cavity formed by the mold body and cover. A conductive internal shell with a connection window sits in the cavity. The MEMS device is mounted in the shell and electrically coupled to the lead frame through wire bonds directed through the connection window. To accommodate a MEMS microphone, an acoustic aperture extends through the mold body aligned with a hole in the internal shell.
US08941222B2 Wafer level semiconductor package and manufacturing methods thereof
A semiconductor package includes at least one semiconductor die having an active surface, an interposer element having an upper surface and a lower surface, a package body, and a lower redistribution layer. The interposer element has at least one conductive via extending between the upper surface and the lower surface. The package body encapsulates portions of the semiconductor die and portions of the interposer element. The lower redistribution layer electrically connects the interposer element to the active surface of the semiconductor die.
US08941217B2 Semiconductor device having a through contact
A semiconductor device includes a semiconductor substrate having a first side and a second side opposite the first side, an active area and a through contact area, the active area including a transistor structure having a control electrode, the through contact area including a semiconductor mesa having insulated sidewalls. The semiconductor device further includes a first metallization on the first side in the active area and a recess extending from the first side into the semiconductor substrate and between the active area and the through contact area and including in the through contact area a horizontally widening portion, the recess being at least partly filled with a conductive material forming a first conductive region in ohmic contact with the semiconductor mesa and the transistor structure. The semiconductor device also includes a control metallization on the second side and in ohmic contact with the semiconductor mesa.
US08941210B2 Semiconductor devices having a trench isolation layer and methods of fabricating the same
Semiconductor devices including a trench isolation layer are provided. The semiconductor device includes a substrate having a trench therein, a liner insulation layer that covers a bottom surface and sidewalls of the trench and includes micro trenches located at bottom inner corners of the liner insulation layer, a first isolating insulation layer filling the micro trenches and a lower region of the trench that are surrounded by the liner insulation layer, and a second isolating insulation layer filling the trench on the first isolating insulation layer. The liner insulation layer on sidewalls of an upper region of the trench having a thickness that gradually increases toward a bottom surface of the trench, and the liner insulation layer on sidewalls of the lower region of the trench having a thickness that is uniform. Related methods are also provided.
US08941209B2 Semiconductor device
Semiconductor device comprises a memory cell region, a peripheral region, and first wiring. The memory cell region includes a first isolation region, and a first active region provided so as to be divided off by the first isolation region. The peripheral region includes a second isolation region, and a second active region divided off by the first and second isolation regions and protruding from the upper surface of an insulating film located in the first and second isolation regions. The first wiring is buried in portions of a semiconductor substrate within the memory cell region and the peripheral region, so as to extend over the first and second active regions in a first direction. The first-direction width of the second active region is constant.
US08941206B2 Semiconductor device including a diode and method of manufacturing a semiconductor device
A semiconductor device includes a transistor cell array in the semiconductor body of a first conductivity type. The semiconductor device further includes a first trench in the transistor cell array between transistor cells. The first trench extends into the semiconductor body from a first side and includes a pn junction diode electrically coupled to the semiconductor body at a sidewall.
US08941205B2 Method of generating electrical energy in an integrated circuit during the operation of the latter, corresponding integrated circuit and method of fabrication
An integrated circuit may include a region containing a thermoelectric material and be configured to be subjected to a temperature gradient resulting from a flow of an electric current in a part of the integrated circuit during its operation, and an electrically conducting output coupled to the region for delivering the electrical energy produced by thermoelectric material.
US08941202B2 Image sensor devices and methods for manufacturing the same
A method for forming an image sensor device is provided. First, a lens is provided and a first sacrificial element is formed thereon. An electromagnetic interference layer is formed on the lens and the first sacrificial element, and the first sacrificial element and electromagnetic interference layer thereon are removed to form an electromagnetic interference pattern having an opening exposing a selected portion of the lens. A second sacrificial element is formed in the opening to cover a center region of the selected portion of the lens. A peripheral region of the selected portion of the lens remains exposed. A light-shielding layer is formed on the electromagnetic interference pattern, second sacrificial element, and peripheral region of the selected portion of the lens. The second sacrificial element and light-shielding pattern are removed to expose the center region of the selected portion of the lens as a light transmitting region.
US08941200B2 Solid-state imaging device
According to one embodiment, provided are a first photoelectric conversion layer provided for a first wavelength band, a second photoelectric conversion layer provided for a second wavelength band, and a color separation element adapted to separate an incident light into a transmission light including the first wavelength band and a reflection light including the second wavelength band, wherein an angle of incidence of the incident light with respect to a reflection surface of the color separation element is set so that a vertically polarized light and a horizontally polarized light are included in the reflection light.
US08941199B2 Image sensors
An image sensor includes a semiconductor substrate, a plurality of photo detecting elements and a backside protection pattern. The plurality of photo detecting elements may be formed in an upper portion of the semiconductor substrate. The plurality of photo detecting elements may be separate from each other. The backside protection pattern may be formed in a lower portion of the semiconductor substrate between the plurality of photo detecting elements.
US08941195B2 Semiconductor device having insulating layer formed through oxidization of electrode
In a method for fabricating a semiconductor device, a conductive layer is formed on a substrate, where the substrate has a bottom layer formed thereon. A magnetic tunnel junction layer is formed on the conductive layer. The magnetic tunnel junction layer is patterned using an etching gas containing oxygen. An insulating layer is formed by oxidizing the conductive layer exposed outside the patterned magnetic tunnel junction layer using the etching gas.
US08941190B2 Semiconductor structures and methods of manufacture
Semiconductor structures and methods of manufacture semiconductors are provided which relate to transistors. The method of forming a transistor includes thermally annealing a selectively patterned dopant material formed on a high-k dielectric material to form a high charge density dielectric layer from the high-k dielectric material. The high charge density dielectric layer is formed with thermal annealing-induced electric dipoles at locations corresponding to the selectively patterned dopant material.
US08941187B2 Strain engineering in three-dimensional transistors based on strained isolation material
In a three-dimensional transistor configuration, a strain-inducing isolation material is provided, at least in the drain and source areas, thereby inducing a strain, in particular at and in the vicinity of the PN junctions of the three-dimensional transistor. In this case, superior transistor performance may be achieved, while in some illustrative embodiments even the same type of internally stressed isolation material may result in superior transistor performance of P-channel transistors and N-channel transistors.
US08941185B2 Active matrix substrate, x-ray sensor device, display device
An active matrix substrate of the present invention includes: a first signal line and a second signal line which are aligned in a column direction in which the first signal line and the second signal line extend; a first transistor and a second transistor; and a first electrode and a second electrode, the first signal line being connected via the first transistor to the first electrode, and the second signal line being connected via the second transistor to the second electrode, and the first signal line having a first end which is one of both ends of the first signal line and faces the second signal line, the first end including a tapered part which is tapered toward the second signal line. This makes it possible to prevent a leakage defect from occurring between two signal lines which are aligned in a direction in which the two signal lines extend.
US08941182B2 Buried sublevel metallizations for improved transistor density
Generally, the subject matter disclosed herein relates to modern sophisticated semiconductor devices and methods for forming the same, wherein electrical interconnects between circuit elements based on a buried sublevel metallization may provide improved transistor density. One illustrative method disclosed herein includes forming a contact dielectric layer above first and second transistor elements of a semiconductor device, and after forming the contact dielectric layer, forming a buried conductive element below an upper surface of the contact dielectric layer, the conductive element providing an electrical connection between the first and second transistor elements.
US08941179B2 Finfets and fin isolation structures
FinFETs and fin isolation structures and methods of manufacturing the same are disclosed. The method includes patterning a bulk substrate to form a plurality of fin structures of a first dimension and of a second dimension. The method includes forming oxide material in spaces between the plurality of fin structures of the first dimension and the second dimension. The method includes forming a capping material over sidewalls of selected ones of the fin structures of the first dimension and the second dimension. The method includes recessing the oxide material to expose the bulk substrate on sidewalls below the capping material. The method includes performing an oxidation process to form silicon on insulation fin structures and bulk fin structures with gating. The method further includes forming a gate structure over the SOI fin structures and the bulk fin structures.
US08941178B2 MOS field-effect transistor formed on the SOI substrate
Occurrence of short-channel characteristics and parasitic capacitance of a MOSFET on a SOI substrate is prevented.A sidewall having a stacked structure obtained by sequentially stacking a silicon oxide film and a nitride film is formed on a side wall of a gate electrode on the SOI substrate. Subsequently, after an epitaxial layer is formed beside the gate electrode, and then, the nitride film is removed. Then, an impurity is implanted into an upper surface of the semiconductor substrate with using the gate electrode and the epitaxial layer as a mask, so that a halo region is formed in only a region of the upper surface of the semiconductor substrate which is right below a vicinity of both ends of the gate electrode.
US08941173B2 Capacitorless memory device
According to an example embodiment of inventive concepts, a capacitorless memory device includes a capacitorless memory cell that includes a bit line on a substrate; a read transistor, and a write transistor. The read transistor may include first to third impurity layers stacked in a vertical direction on the bit line. The first and third layers may be a first conductive type, and the second impurity layer may be a second conductive type that differs from the first conductive type. The write transistor may include a source layer, a body layer, and a drain layer stacked in the vertical direction on the substrate, and a gate line that is adjacent to a side surface of the body layer. The gate line may be spaced apart from the side surface of the body layer. The source layer may be adjacent to a side surface of the second impurity layer.
US08941171B2 Flatband voltage adjustment in a semiconductor device
Memory devices, methods for fabricating, and methods for adjusting flatband voltages are disclosed. In one such memory device, a pair of source/drain regions are formed in a semiconductor. A dielectric material is formed on the semiconductor between the pair of source/drain regions. A control gate is formed on the dielectric material. A charged species is introduced into the dielectric material. The charged species, e.g., mobile ions, has an energy barrier in a range of greater than about 0.5 eV to about 3.0 eV. A flatband voltage of the memory device can be adjusted by moving the charged species to different levels within the dielectric material, thus programming different states into the device.
US08941170B2 TFT floating gate memory cell structures
A device having thin-film transistor (TFT) floating gate memory cell structures is provided. The device includes a substrate, a dielectric layer on the substrate, and one or more source or drain regions being embedded in the dielectric layer. the dielectric layer being associated with a first surface. Each of the one or more source or drain regions includes an N+ polysilicon layer on a diffusion barrier layer which is on a first conductive layer. The N+ polysilicon layer has a second surface substantially co-planar with the first surface. Additionally, the device includes a P− polysilicon layer overlying the co-planar surface and a floating gate on the P− polysilicon layer. The floating gate is a low-pressure CVD-deposited silicon layer sandwiched by a bottom oxide tunnel layer and an upper oxide block layer. Moreover, the device includes at least one control gate made of a P+ polysilicon layer overlying the upper oxide block layer. A method of making the same memory cell structure is provided and can be repeated to integrate the structure three-dimensionally.
US08941167B2 Erasable programmable single-ploy nonvolatile memory
An erasable programmable single-poly nonvolatile memory includes a first PMOS transistor comprising a select gate, a first p-type doped region, and a second p-type doped region, wherein the select gate is connected to a select gate voltage, and the first p-type doped region is connected to a source line voltage; a second PMOS transistor comprising the second p-type doped region, a third p-type doped region, and a floating gate, wherein the third p-type doped region is connected to a bit line voltage; and an erase gate region adjacent to the floating gate, wherein the erase gate region is connected to an erase line voltage.
US08941164B2 Semiconductor devices including capacitor support pads
A semiconductor device may include a semiconductor substrate and a plurality of first capacitor electrodes arranged in a plurality of parallel lines on the semiconductor substrate with each of the first capacitor electrodes extending away from the semiconductor substrate. A plurality of capacitor support pads may be provided with each capacitor support pad being connected to first capacitor electrodes of at least two adjacent parallel lines of the first capacitor electrodes and with adjacent capacitor support pads being spaced apart. A dielectric layer may be provided on each of the first capacitor electrodes, and a second capacitor electrode may be provided on the dielectric layer so that the dielectric layer is between the second capacitor electrode and each of the first capacitor electrodes. Related methods are also discussed.
US08941162B2 Semiconductor device, method for forming the same, and data processing system
A semiconductor device includes a semiconductor substrate having a first groove, a word line in the first groove, and a buried insulating film in the first groove. The buried insulating film covers the word line. The buried insulating film comprises a silicon nitride film.
US08941161B2 Semiconductor device including finFET and diode having reduced defects in depletion region
A semiconductor device comprises a first substrate portion and a second substrate portion disposed a distance away from the first substrate portion. The first substrate portion includes a first active semiconductor layer defining at least one semiconductor fin and a first polycrystalline layer formed directly on the fin. The first polycrystalline layer is patterned to define at least one semiconductor gate. The second substrate portion includes a doped region interposed between a second active semiconductor region and an oxide layer. The oxide layer protects the second active semiconductor region and the doped region. The doped region includes a first doped area and a second doped area separated by the first doped region to define a depletion region.
US08941160B2 Photoelectric conversion module and method of manufacturing the same
A photoelectric conversion module according to an embodiment of the present invention includes a plurality of units formed on a substrate and disposed parallel to each other, each including a plurality of photoelectric conversion cells formed in one direction, the plurality of units disposed in an orthogonal direction to the one direction, and a first separation region disposed between adjacent units of the units. In the solar cell module, each of the photoelectric conversion cells includes a second separation region, and the second separation region in one of the units is extended beyond the first separation region formed between one of the units and the other unit which is adjacent to the one of units toward a part of the other unit.
US08941158B2 Solid-state imaging device
Certain embodiments provide a solid-state imaging device including: a semiconductor substrate of a first conductivity type having a first face and a second face that is the opposite side from the first face; a plurality of pixels provided on the first face of the semiconductor substrate, each of the pixels including a semiconductor region of a second conductivity type that converts incident light into signal charges, and stores the signal charges; a readout circuit provided on the second face of the semiconductor substrate to read the signal charges stored in the pixels; an ultrafine metal structure placed at intervals on a face on a side of the semiconductor region, the light being incident on the face; and an insulating layer provided between the ultrafine metal structure and the semiconductor region.
US08941157B2 Semiconductor device and method for fabricating the same
A semiconductor device includes a plurality of first conductive patterns separated by a damascene pattern, a second conductive pattern buried in the damascene pattern, and a spacer including an air gap between the second conductive pattern and the first conductive patterns.
US08941154B2 Non-volatile memory device and method for fabricating the same
A method for fabricating a non-volatile memory device includes: providing a substrate which includes a cell region where a plurality of memory cells are to be formed and a peripheral circuit region where a plurality of peripheral circuit devices are to be formed; forming the memory cells that are stacked perpendicularly to the substrate of the cell region; and forming a first conductive layer for forming a gate electrode of a selection transistor over the memory cells while forming the first conductive layer in the peripheral circuit region simultaneously, wherein the first conductive layer of the peripheral circuit region functions as a resistor body of at least one peripheral circuit device of the peripheral circuit devices.
US08941153B2 FinFETs with different fin heights
An integrated circuit structure includes a semiconductor substrate including a first portion in a first device region, and a second portion in a second device region. A first semiconductor fin is over the semiconductor substrate and has a first fin height. A second semiconductor fin is over the semiconductor substrate and has a second fin height. The first fin height is greater than the second fin height.
US08941152B1 Semiconductor device
A method of forming a semiconductor device comprises forming a base wafer comprising a first chip package portion, a second chip package portion, and a third chip package portion. The method also comprises forming a capping wafer comprising a plurality of isolation trenches, each of the plurality of isolation trenches being configured to substantially align with one of the first chip package portion, the second chip package portion or the third chip package portion. The method further comprises eutectic bonding the capping wafer and the base wafer to form a wafer package. The method additionally comprises dicing the wafer package into a first chip package, a second chip package, and a third chip package. The method also comprises placing the first chip package, the second chip package, and the third chip package onto a substrate.
US08941146B2 Compound semiconductor device and manufacturing method
A compound semiconductor device includes an electron transit layer; an electron supply layer formed over the electron transit layer; a first recessed portion and a second recessed portion formed in the electron supply layer; a chemical compound semiconductor layer including impurities that buries the first recessed portion and the second recessed portion and covers over the electron supply layer; a source electrode formed over the chemical compound semiconductor layer which buries the first recessed portion; a drain electrode formed over the chemical compound semiconductor layer which buries the second recessed portion; and a gate electrode formed over the electron supply layer between the source electrode and the drain electrode, wherein, in the chemical compound semiconductor layer, a concentration of impurities included below the source electrode and the drain electrode is higher than a concentration of impurities included near the gate electrode.
US08941145B2 Systems and methods for dry etching a photodetector array
Systems and methods for dry eteching a photodetector array based on InAsSb are provided. A method for fabricating an array of photodetectors includes receiving a pattern of an array of photodetectors formed from InAsSb, the pattern including at least one trench defined between adjacent photodetectors, and dry etching the at least one trench with a plasma including BrCl3 and Ar.
US08941144B2 Light-emitting device
This disclosure discloses a light-emitting device. The light-emitting device comprises: a substrate; and a first light-emitting unit comprising a plurality of light-emitting diodes electrically connected to each other on the substrate. A first light-emitting diode in the first light-emitting unit comprises a first semiconductor layer with a first conductivity-type, a second semiconductor layer with a second conductivity-type, and a light-emitting stack formed between the first and second semiconductor layers. The first light-emitting diode in the first light-emitting unit further comprises a first connecting layer on the first semiconductor layer for electrically connecting to a second light-emitting diode in the first light-emitting unit; a second connecting layer, separated from the first connecting layer, formed on the first semiconductor layer; and a third connecting layer on the second semiconductor layer for electrically connecting to a third light-emitting diode in the first light-emitting unit.
US08941143B2 Lighting elements
An OLED lighting element comprises a substrate bearing an OLED structure extending laterally over said substrate and sandwiched between first and second electrode layers. The first electrode layer defines a plurality of electrically conductive tracks and said second electrode layer comprises a substantially continuous electrically conducting layer. The OLED lighting element has an electrical bus-bar connected to said electrically conductive tracks extending substantially completely along the or each lateral edge of said lighting element. The electrically conductive tracks run in a radial direction from a laterally central location within said lighting element towards said bus-bar along said lateral edges of said lighting element. A said track subdivides into a plurality of tracks with increasing distance from said central location. This arrangement makes more efficient use of the conductive tracks.
US08941142B2 Organic light-emitting display device and method of manufacturing the same
An organic light emitting display device including a sub-pixel including a pixel electrode, a counter electrode, and a light emitting layer between the pixel electrode and the counter electrode, a planarization layer covering the counter electrode, and an auxiliary electrode in the planarization layer and coupled to the counter electrode.
US08941140B2 Light-emitting device including nitride-based semiconductor omnidirectional reflector
A light-emitting device includes a nitride-based semiconductor reflector. The light-emitting device includes a nitride-based reflector and a light-emitting unit that is disposed on the nitride-based reflector. The nitride-based reflector includes undoped nitride semiconductor layers and heavily-doped nitride semiconductor layers that are alternately stacked. The heavily doped nitride semiconductor layers are etched at their edges to form air layers between adjacent undoped nitride semiconductor layers.
US08941139B2 Light-emitting element mounting package, light-emitting element package, and method of manufacturing the same
A method of manufacturing a light-emitting element mounting package including laminating a metallic layer on an insulating layer; forming a light-emitting element mounting area which includes a pair of electroplating films formed by electroplating using the metallic layer as a power supply layer on the metallic layer; forming a light-emitting element mounting portion in which a plurality of wiring portions are separated by predetermined gaps, by removing predetermined portions of the metallic layer, wherein, in the forming the light-emitting element mounting portion, the metallic layer is removed so that one of the pair of electroplating films belongs to one wiring portion of the plurality of wiring portions and another of the pair of electroplating films belongs to another wiring portion adjacent to the one wiring portion.
US08941137B2 Light emitting diode package and method of manufacture
A light emitting diode (LED) device and packaging for same is disclosed. In some aspects, the LED is manufactured using a vertical configuration including a plurality of layers. Certain layers act to promote mechanical, electrical, thermal, or optical characteristics of the device. The device avoids design problems, including manufacturing complexities, costs and heat dissipation problems found in conventional LED devices. Some embodiments include a plurality of optically permissive layers, including an optically permissive cover substrate or wafer stacked over a semiconductor LED and positioned using one or more alignment markers.
US08941132B2 Application specific solar cell and method for manufacture using thin film photovoltaic materials
A method for manufacture of application specific solar cells includes providing and processing custom design information to determine at least a cell size and a cell shape. The method includes providing a transparent substrate having a back surface region, a front surface region, and one or more grid-line regions overlying the front side surface region. The one or more grid regions provide one or more unit cells having the cell size and the cell shape. The method further includes forming a layered structure including photovoltaic materials overlying the front surface region. Additionally, the method includes aligning a laser beam from the back surface region to illuminate a first region within the one or more grid-line regions, subjecting a first portion of the layered structure overlying the first region to the laser beam to separate the first portion of the layered structure from the first region, and scanning the laser beam along the one or more grid-line regions to cause formation of one or more unit cells having the cell size and cell shape. The method further includes transferring the one or more unit cells.
US08941128B2 Passivation layer for flexible display
Embodiments of the present disclosure are directed towards passivation techniques and configurations for a flexible display. In one embodiment, a flexible display includes a flexible substrate, an array of display elements configured to emit or modulate light disposed on the flexible substrate, and a passivation layer including molecules of silicon (Si) bonded with oxygen (O) or nitrogen (N), the passivation layer being disposed on the array of display elements to protect the array of display elements from environmental hazards.
US08941127B2 Field-sequential display device
A first transistor in which an image signal is input to one of a first source and a first drain through an image signal line and a first scan signal is input to the first gate through a first scan signal line; a capacitor whose one of two electrodes is electrically connected to the other of the first source and the first drain of the first transistor; a second transistor in which one of a second source and a second drain is electrically connected to the other of the first source and the first drain of the first transistor and a second scan signal is input to a second gate through a second scan signal line; and a liquid crystal element whose first electrode is electrically connected to the other of the second source and the second drain of the second transistor.
US08941121B2 Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
A first region of a silicon carbide layer constitutes a first surface, and is of a first conductivity type. A second region is provided on the first region, and is of a second conductivity type. A third region is provided on the second region, and is of the first conductivity type. A fourth region is provided in the first region, located away from each of the first surface and the second region, and is of the second conductivity type. A gate insulation film is provided on the second region so as to connect the first region with the third region. A gate electrode is provided on the gate insulation film. A first electrode is provided beneath the first region. A second electrode is provided on the third region.
US08941117B2 Monolithically integrated vertical JFET and Schottky diode
An integrated device including a vertical III-nitride FET and a Schottky diode includes a drain comprising a first III-nitride material, a drift region comprising a second III-nitride material coupled to the drain and disposed adjacent to the drain along a vertical direction, and a channel region comprising a third III-nitride material coupled to the drift region. The integrated device also includes a gate region at least partially surrounding the channel region, a source coupled to the channel region, and a Schottky contact coupled to the drift region. The channel region is disposed between the drain and the source along the vertical direction such that current flow during operation of the vertical III-nitride FET and the Schottky diode is along the vertical direction.
US08941114B2 Display device including protective circuit
A protective circuit includes a non-linear element, which includes a gate electrode, a gate insulating layer covering the gate electrode, a pair of first and second wiring layers whose end portions overlap with the gate electrode over the gate insulating layer and in which a second oxide semiconductor layer and a conductive layer are stacked, and a first oxide semiconductor layer which overlaps with at least the gate electrode and which is in contact with the gate insulating layer, side face portions and part of top face portions of the conductive layer and side face portions of the second oxide semiconductor layer in the first wiring layer and the second wiring layer. Over the gate insulating layer, oxide semiconductor layers with different properties are bonded to each other, whereby stable operation can be performed as compared with Schottky junction. Thus, the junction leakage can be decreased and the characteristics of the non-linear element can be improved.
US08941109B2 Test output buffer functional output input, test output, enable input
Timely testing of die on wafer reduces the cost to manufacture ICs. This disclosure describes a die test structure and process to reduce test time by adding test pads on the top surface of the die. The added test pads allow a tester to probe and test more circuits within the die simultaneously. Also, the added test pads contribute to a reduction in the amount of test wiring overhead traditionally required to access and test circuits within a die, thus reducing die size.
US08941107B2 Power diode, rectifier, and semiconductor device including the same
With a non-linear element (e.g., a diode) with small reverse saturation current, a power diode or rectifier is provided. A non-linear element includes a first electrode provided over a substrate, an oxide semiconductor film provided on and in contact with the first electrode and having a concentration of hydrogen of 5×1019 atoms/cm3 or less, a second electrode provided on and in contact with the oxide semiconductor film, a gate insulating film covering the first electrode, the oxide semiconductor film, and the second electrode, and third electrodes provided in contact with the gate insulating film and facing each other with the first electrode, the oxide semiconductor film, and the second electrode interposed therebetween or a third electrode provided in contact with the gate insulating film and surrounding the second electrode. The third electrodes are connected to the first electrode or the second electrode. With the non-linear element, a power diode or a rectifier is formed.
US08941100B2 Organic light emitting display apparatus and method of manufacturing the same
An organic light emitting display apparatus includes a first electrode, a hole injection layer disposed on the first electrode, a light emitting layer disposed on the hole injection layer, an electron injection layer disposed on the light emitting layer, a chlorine-doped layer disposed on the electrode injection layer and including chlorine and a same material as the electron injection layer, and a second electrode disposed on the chlorine-doped layer.
US08941098B2 Light detecting array structure and light detecting module
A light detecting array structure and a light detecting module are provided. The light detecting array structure includes a plurality of first electrodes, a plurality of second electrodes, a first carrier selective layer, a second carrier selective layer, and a light-absorbing active layer. The second electrodes are disposed on one side of the first electrodes. Between the first electrodes and the second electrodes, a first carrier selective layer, a light-absorbing active layer and a second carrier selective layer are disposed. The light detecting module includes the light detecting array structure and a control unit. The control unit is coupled to the first electrodes and second electrodes, selectively provides at least two cross voltages between each of the first electrodes and each of the second electrodes, and reads photocurrents flowing through the first electrodes and second electrodes.
US08941097B2 Organic luminance device, method for manufacturing same and lighting apparatus including same
An organic luminance device includes a base substrate, a organic luminance multi-layered structure and a cover substrate. Furthermore, a protective film is used to wrap the light emitting surface and at least one lateral surface of the base substrate to prevent the substrate from crack. The protective film may be doped with one or more dopants having a refractive index different from original material of the protective film.
US08941095B2 Methods for integrating and forming optically transparent devices on surfaces
An apparatus, system, and/or method are described to enable optically transparent reconfigurable integrated electrical components, such as antennas and RF circuits to be integrated into an optically transparent host platform, such as glass. In one embodiment, an Ag NW film may be configured as a transparent conductor for antennas and/or as interconnects for passive circuit components, such as capacitors or resistors. Ag NW may also be used as transmission lines and/or interconnect overlays for devices. A graphene film may also be configured as active channel material for making active RF devices, such as amplifiers and switches.
US08941092B2 Method for forming semiconductor device structure and semiconductor device
Disclosed are a method which improves the performance of a semiconductor element, and a semiconductor element with improved performance. The method for forming a semiconductor element structure includes a heterojunction forming step in which a heterojunction is formed between a strained semiconductor layer (21) in which a strained state is maintained, and relaxed semiconductor layers (23, 25). The heterojunction is formed by performing ion implantation from the surface of a substrate (50) which has a strained semiconductor layer (20) partially covered with a covering layer (30) on an insulating oxide film (40), and altering the strained semiconductor layer (20) where there is no shielding from the covering layer (30) to relaxed semiconductor layers (23, 25) by relaxing the strained state of the strained semiconductor layer (20), while maintaining the strained state of the strained semiconductor layer (21) where there is shielding from the covering layer (30).
US08941091B2 Gate electrode comprising aluminum and zirconium
A semiconductor device includes a gate electrode which is formed on a substrate, and contains Al and Zr, a gate insulating film which is formed to cover at least the upper surface of the gate electrode, and contains Al and Zr, and an insulator layer formed on the substrate to surround the gate electrode.
US08941090B2 Resistive memory device, method of fabricating the same, and memory apparatus and data processing system having the same
A resistive memory device capable of implementing a multi-level cell, a method of fabricating the same, and a memory apparatus and data processing system including the same are provided. The resistive memory device includes a lower electrode, a first phase-change material layer formed over the lower electrode, a second phase-change material layer formed to surround an outer sidewall of the first phase-change material layer, and an upper electrode formed over the first phase-change material layer and the second phase-change material layer.
US08941089B2 Resistive switching devices and methods of formation thereof
In accordance with an embodiment of the present invention, a resistive switching device includes an opening disposed within a first dielectric layer, a conductive barrier layer disposed on sidewalls of the opening, a fill material including an inert material filling the opening. A solid electrolyte layer is disposed over the opening. The solid electrolyte contacts the fill material but not the conductive barrier layer. A top electrode is disposed over the solid electrolyte.
US08941087B2 Plural third harmonic generation microscopic system and method
The present invention provides a plural third harmonic generation (THG) microscopic system and method. The system includes a laser device, a microscopic device, a beam splitter device and a photodetective device. By utilizing lasers with different central wavelengths or a broad band light source to simultaneously analyze THG response with respect to different wavelengths, a plurality of THG images and THG spectrum of the material or bio-tissue under stimulation of different wavelengths are obtained, thereby retrieving distributed microscopic images and resonant characteristics of the observational material or bio-molecules.
US08941085B2 Electron beam lithography systems and methods including time division multiplex loading
The present disclosure provides a systems and methods for e-beam lithography. One system includes an electron source operable to produce a beam and an array of pixels operable to pattern the beam. Control circuitry is spaced a distance from and coupled to the array of pixels. The control circuitry uses time domain multiplex loading (TMDL) to control the array of pixels.
US08941083B2 Applying a particle beam to a patient
An apparatus includes a yoke having a first end and a second end. The yoke is configured to hold a device that includes an aperture and a range compensation structure. A catch arm is pivotally secured to the first end of the yoke. The catch arm includes a locking feature. The locking feature and the second end of the yoke interface, respectively, to a first retention feature and a second retention feature defined by the aperture and the range compensation structure. The locking feature is configured to interface to the first retention feature and the second end of the yoke is configured to interface to the second retention feature.
US08941080B2 Method and device for particle analysis using thermophoresis
The present invention pertains to a device and method to measure thermo-optical, preferably thermophoretic, characteristics of particles in a solution. The method comprises the steps of: (a) providing a sample probe comprising marked particles in a solution; (b) providing a temperature control system for creating a temperature gradient within said sample probe by contact heating, electrical heating and/or cooling; (c) detecting the marked particles at a first time; (d) creating a temperature gradient within the sample probe by means of the temperature control system; (e) detecting the marked particles in the sample probe at a, preferably predetermined, second time and/or at a predetermined location within the temperature gradient, and (f) characterizing the particles based on said two detections.
US08941076B2 Enhanced photon detection for scanner
The techniques described herein provide for correcting for pulse pile-up and/or charge sharing in a radiation scanner (100). It finds particular application with the use of a pixilated radiation detector (116) (e.g., a photon counting detector). A circuit (200), comprising a plurality of comparators (204, 206, 208), is configured to determine the energy spectrum of a pulse produced from a photon strike. If the energy spectrum is greater than the energy range for a pulse produced by a single photon strike given an input spectrum and/or if pulses produced from adjacent pixels have temporal coincidence, pulse pile-up and/or charge sharing may be identified and a correction mechanism/correction factors may be applied to determine an actual number of photons that struck the detector (116).
US08941072B2 Silicon drift diode detector configured to switch between pulse height measurement mode and current measurement mode
A detector with a Silicon Diode and an amplifier, and a feedback element in the form of, for example, a resistor or a diode, switchably connected to the output of the amplifier. When the feedback element is selected via a switch, the detector operates in a Current Measurement Mode for determining electron current, and when the element is not selected the detector operates in its well-known Pulse Height Measurement Mode for determining the energy of X-ray quanta.
US08941068B2 Infrared imagery device with integrated shield against parasite infrared radiation and method of manufacturing the device
Infrared imagery device with integrated shield against parasite infrared radiation, and method of manufacturing the device. This device comprises a support provided with an infrared radiation detector, at least one optical device facing the detector, and a shield against parasite radiation. The shield comprises at least two continuous beads, spaced from each other, extending from the support as far as the optical device, provided with vents and made of a material that significantly attenuates parasite radiation, penetrating laterally between the support and the optical device. The two beads with their vents 15 form a baffle. The device is manufactured using the flip chip technique.
US08941060B2 Mass spectrometer and ion source used therefor
The quantitative accuracy of analysis is improved without reducing the dynamic range for measurement of concentrations by performing stable ionization through electrospray or the like which repeats sampling and ionization using a movable probe electrode.A voltage is applied from a high-voltage power source 4 to a sample transport electrode 7 having a plurality of probe electrodes 1 and a driving section 3 drives the sample transport electrode 7 to rotate. The plurality of probe electrodes 1, to which a sample solution 5 is adhered, are sequentially transported to an inlet 21 of a mass spectrometer 20, thus electrospray ionization is continuously performed.
US08941058B2 Utilizing gas flows in mass spectrometers
The invention relates to ions guided by gas flows in mass spectrometers, particularly in RF multipole systems, and to RF quadrupole mass filters and their operation with gas flows in tandem mass spectrometers. The invention provides a tandem mass spectrometer in which the RF quadrupole mass filter is operated at vacuum pressures in the medium vacuum pressure regime, utilizing a gas flow to drive the ions are through the mass filter. Vacuum pressures between 0.5 to 10 pascal are maintained in the mass filter. The mass filter may be enclosed by a narrow enclosure to guide the gas flow. The quadrupole mass filter may be followed by an RF multipole system, operated at the same vacuum pressure, serving as fragmentation cell to fragment the selected parent ions. The fragmentation cell may be enclosed by the same enclosure which already encloses the mass filter, so the ions may be driven by the same gas flow at the same vacuum pressure, greatly simplifying the required vacuum pumping system in tandem mass spectrometers. There are many other applications utilizing gas flows including supersonic gas jets in mass spectrometry.
US08941056B2 Mass spectrometer
A mass spectrometer is disclosed wherein an ion signal is split into a first and second signal. The first and second signals are multiplied by different gains and are digitized. Arrival time and intensity pairs are calculated for both digitized signals and the resulting time and intensity pairs are combined to form a high dynamic range spectrum. The spectrum is then combined with other corresponding spectra to form a summed spectrum.
US08941053B1 High data-rate atom interferometers through high recapture efficiency
An inertial sensing system includes a magneto-optical trap (MOT) that traps atoms within a specified trapping region. The system also includes a cooling laser that cools the trapped atoms so that the atoms remain within the specified region for a specified amount of time. The system further includes a light-pulse atom interferometer (LPAI) that performs an interferometric interrogation of the atoms to determine phase changes in the atoms. The system includes a controller that controls the timing of MOT and cooling laser operations, and controls the timing of interferometric operations to substantially recapture the atoms in the specified trapping region. The system includes a processor that determines the amount inertial movement of the inertial sensing system based on the determined phase changes in the atoms. Also, a method of inertial sensing using this inertial sensing system includes recapture of atoms within the MOT following interferometric interrogation by the LPAI.
US08941050B1 Processing solderbrace using light wavelength filter and a broadband light source
Systems, methods and/or techniques for processing solderbrace using one or more light wavelength filters are described. A method of processing solderbrace material may include applying solderbrace material to a wafer, placing a light wavelength filter between the solderbrace material and a broadband light source and exposing the light wavelength filter to broadband light from the broadband light source. The light wavelength filter may block some wavelengths of light and may allow other wavelengths of light to pass through and strike the solderbrace material. In some embodiments, the light wavelength filter may be an I-Line filter that is adapted to block substantially all wavelengths of light and allow passage of I-Line wavelengths of light. In some embodiments, the light wavelength filter may be an I-Line filter that is adapted to block substantially all G-Line and H-Line wavelengths of light and allow passage of substantially all I-Line wavelengths of light.
US08941045B2 Solid-state imaging apparatus
There is a need to provide a solid-state imaging apparatus capable of highly accurately analog-to-digital converting an analog voltage output from a pixel circuit. The solid-state imaging apparatus supplies a counter code to an integral A/D converter. The counter code CD includes 3-phase clock signals and gray signals. The clock signals each have a cycle equal to specified cycle multiplied by 8 and allow phases to shift from each other by specified cycle. The gray signals linearly increase count values at a cycle equal to specified cycle multiplied by 4. The counter code reverses only the logical level of a signal when a count value changes. A count value error can be limited to a minimum.
US08941044B2 Solid state image pickup apparatus
An apparatus includes a plurality of pixels each including a charge storage part, a photoelectric conversion part, a first transfer part and a second transfer part, when a signal charge generated during one period is transferred to an amplifier, a control unit supplies pulses such that a turning-on pulse is supplied to the second transfer part while supplying a turning-off pulse to the first transfer part thereby transferring the stored signal charge to the amplifier, a turning-on pulse is then supplied to a reset part to reset the signal charge transferred to the amplifier, and subsequently a turning-on pulse is supplied to the first transfer part and the second transfer part to transfer the signal charge held in the photoelectric conversion part to the amplifier.
US08941042B2 Multi-beam laser beam control and imaging system and method
A multi-beam laser beam control and imaging system includes a laser transmitter configured to emit light in a plurality of beamlets towards a target. At least one of the beamlets illuminates the whole target or a substantial portion of the target when imaging the target. A sensor is configured to receive light from the beamlets. A processor is communicably coupled to the sensor and configured to compute a relative phase of a wavefront of at least one beamlet based on output from the sensor. The processor also reconstructs a wavefront which is used to formulate two or three dimensional images of the target. A controller is communicably coupled to the processor and to the laser transmitter. The controller is configured to adjust a phase of at least one of the beamlets.
US08941040B2 Electromagnetic heating
An electromagnetic heater for heating an irregularly shaped object, including: a cavity within which an object is to be placed; at least one feed which feeds UHF or microwave energy into the cavity; and a controller that controls one or more characteristics of the cavity or energy to assure that the UHF or microwave energy is deposited uniformly in the object within ±30% over at least 80% of the volume of the object.
US08941038B2 Support assembly for supporting a household appliance in a free-standing vertical relation with another household appliance
A support assembly is provided for supporting a household appliance such as a non-convection microwave oven in a free-standing vertical relation with another household appliance such that the non-convection microwave oven is supported above the other household appliance. The support assembly includes a base tray having a floor portion on which the non-convection microwave oven can be disposed, brackets for fixedly securing the base tray to the other household appliance, and a pair of bracket arms for securing a trim element to the base tray.
US08941033B2 Device for processing and cooking of foodstuffs
The device (1) for the processing and cooking of foodstuffs includes a base (2), a container (3) with, on the outer side of its bottom (4), a fixed protecting shell (5) by means of which the container (3) stands in a positioning housing (6) provided on said base (2), a lid (7) to close said container (3), electrical heating means supported by said container (3), a shaft (12) carrying tools (13) rotatably supported inside said container (3), electric means for powering said shaft (12), and safety means at least capable of mechanically clamping the container (3) into its positioning housing (6) and of activating the electric feed of said powering means when said lid (7) moves from an open position to a closed position of said container (3) positioned in said positioning housing (6), the safety means comprising kinematic system for reversibly transforming the movement of the lid (7) between its open position and its closed position into a reversible translation stroke of a first clamping element (26) between a withdrawn position within said protecting shell (5) and an extended position outside said shell (5) wherein said first clamping element (26) engages a first clamp housing (27) provided in said positioning housing (6) and triggers a first micro-switch (28) generating a signal to activate said electric feed of said powering means.
US08941031B2 Systems and methods for dual-weave welding
A dual-weave welding system is disclosed. The system may have a first welding device configured to create a weld joint in a gap between two or more work pieces by moving a first welding component along a first weaving path. The system may also have a second welding device configured to create the weld joint in the gap by moving a second welding component along a second weaving path. The system may further have a controller that sends commands to control the movement of the first welding device and the second welding device.
US08941029B2 Methods and systems for keyhole-free laser fusion cutting
The invention relates to methods and systems for keyhole-free fusion cutting of a workpiece, wherein the workpiece is melted by a laser beam along a cutting joint and the molten mass produced is expelled from the produced cutting joint, e.g., by a gas jet at high pressure. According to the new methods at least one laser beam follows the laser beam in the cutting direction and influences the molten mass in such a manner that at least one of the two cutting flanks of the workpiece has a better cutting quality than when cutting without the trailing laser beam.
US08941027B2 Laser machining machine
A machine for machining workpieces by a laser beam. The optical fiber terminates at an optical output head (27) that defines the optical axis of the laser light beam, which vaporizes the material. The optical output head (27) is rigidly attached to the frame (49) or to the casing of the laser head so that said optical output head remains integrally fastened to said frame or casing during the rotation of the laser head about the horizontal pivot axis (B). The polluted gases generated in the machining area by the evaporation of material are collected by a suction nozzle (37) which is driven with the laser machining head during its rotation about the horizontal axis (B). A stream of clean dry gas is injected into the machining area by an injection nozzle (35) which is also driven with the laser machining head (8) during its rotation about the horizontal axis (B).
US08941025B2 Plume shroud for laminar plasma guns
Plume shield shroud (10) for a plasma gun (30) includes a substantially tubular member (14) comprising an axial length, a plume entry end (11), and a plume exit end (13). The shroud (10) is adapted to be mounted to a plasma gun (30). A method of protecting, confining or shielding of a gas plume of a plasma gun (30) includes mounting (20) a gas plume shroud (10) on the plasma gun (30) such that the shroud (10) is sized and configured to substantially surround at least a portion of the gas plume.
US08941018B2 Connecting element and method for manufacturing a connecting element
A connecting element for electrical contacting of an electrical component having at least one electrically conductive line part, embedded at least partially in an injection-molded housing, is provided, the connecting element having at least one stiffening element reinforcing the line part.
US08941017B2 Electronic apparatus, method of manufacturing substrate, and method of manufacturing electronic apparatus
An electronic apparatus includes: a substrate which has a step portion in an edge portion; an electronic component which is bonded to a surface of the substrate inward of the step portion of the substrate; and a cap member which is bonded to the step portion so as to seal the electronic component, wherein a wall surface of the step portion is formed to be inclined from the step portion toward an electronic component bonding region or to be perpendicular to the step portion.
US08941016B2 Laminated wiring board and manufacturing method for same
A laminated wiring board, includes: a first substrate in which a conductor circuit is formed on one surface of an insulating layer and an adhesive layer is formed on an other surface of the insulating layer, and conductors are formed in via holes that pass through the insulating layer and the adhesive layer so that the conductor circuit is partially exposed therefrom; an electronic component electrically connected to the conductor circuit by allowing electrodes of the electronic component to be connected to the conductors; an embedding member arranged around the electronic components so that the electronic component is embedded therein; and a second substrate having an adhesive layer laminated to face the adhesive layer of the first substrate and sandwich the electronic component and the embedding member, wherein each of the electrodes of the electronic component is continuous with the conductor circuit through two or more of the conductors.
US08941015B2 Embedded capacitor substrate module
An embedded capacitor substrate module includes a substrate, a metal substrate and a solid electrolytic capacitor material. The solid electrolytic capacitor material is formed on the metal substrate, so as to form a solid electrolytic capacitor with the substrate. The embedded capacitor substrate module further includes an electrode lead-out region formed by extending the substrate and the metal substrate. The metal substrate serves as a first electrode, and the substrate serves as a second electrode. An insulating material is formed between the substrate and the metal substrate. Therefore, the embedded capacitor substrate module is not only advantageous in having a large capacitance as the conventional solid capacitor, but also capable of being drilled or plated and electrically connected to other circuits after being embedded in a printed circuit board.
US08941008B2 Dye for photoelectric conversion device, and photoelectric conversion film, electrode, and solar cell using same
A photoelectric-conversion-device dye comprising a ruthenium metal complex, which includes a molecule including elemental phosphorous and the molecule forms a coordinate bond at least at the phosphorous atom, and which also includes a terpyridine derivative that forms a coordinate bond and has at least one adsorbing group that exhibits adsorptivity toward a metal oxide. The adsorbing group is selected from the group consisting of a carboxylic acid group, an ester thereof, or a salt thereof; a phosphonic acid group, an ester thereof, or a salt thereof; a hydroxyl group; an alkoxy group; and a sulfonic acid group or salt thereof. The dye exhibits absorption over a wide range from the visible light region to the near-infrared region, and as a result, a photoelectric conversion film, an electrode, and a solar cell having improved photoelectric conversion efficiency are provided.
US08941001B1 Transparent layer with anti-reflective texture
Methods and devices are provided for improved anti-reflective texture. In some embodiments, the absorber layer for use with this anti-reflective layer is a group IB-IIIA-VIA absorber layer.
US08941000B2 Solar concentrator cooling by vortex gas circulation
A convective method is employed to cool a solar concentrator device. The convective method employs formation of a vortex gas circulation inside an enclosure of the solar concentrator device, which is bounded by at least one light-path altering component, sidewalls, and a back panel. Optionally, a heat sink assembly can be provided within the enclosure. Internal convention through the vortex gas circulation transfers the heat generated at a photovoltaic cell to all surfaces of the solar concentrator device to facilitate radiative and/or convective cooling at the outside surfaces of the enclosure.
US08940993B1 Variable tone configuration control for string instruments
A variable tone configuration control (100, 100′) for string instruments includes a pair of pickup coils (110, 120) located on a string instrument for inducing voltages therein responsive to vibration of any of the strings thereof. The variable tone configuration control (100, 100′) further includes a pair of potentiometers (130, 140) mechanically coupled for concurrent mechanical travel of a respective displaceable contact (132, 142) thereof. The pair of potentiometers (130, 140) are operatively coupled to the pair of pickup coils (110, 120) and a pair of output terminals (102, 104) to vary the electrical configuration of the pair of pickup coils (110, 120) between the pair of pickup coils (110, 120) being connected in series and being connected in parallel as the displaceable contacts (132 and 142) are moved between opposing ends of their mechanical travel.
US08940991B2 Electronic percussion device and method
An electronic percussion device includes a drum shell, a drumhead as striking surface, vibration sensors, and a peripheral and a central vibration carrier. The vibration carriers abut against the drumhead to convey vibrations therefrom to the sensor(s). The central vibration carrier is a helicoidal spring. The peripheral vibration carrier is a rigid body of solid material supported by peripheral sensors disposed thereunder. Two electrical leads of each one of the peripheral sensors are correspondingly coupled in parallel to produce only two common output leads. An electronic sound module is configured to sample the sensors and employs software procedures to detect percussion strokes delivered on the drumhead, and to generate sounds accordingly. The software procedures use averaged and aggregated signals to provide accurate detection of position and intensity of a drum stroke. Alternative embodiments of the device use only a peripheral vibration carrier or only a central vibration carrier.