Document | Document Title |
---|---|
US08885729B2 |
Low-latency video decoding
Techniques and tools for reducing latency in video decoding for real-time communication applications that emphasize low delay. For example, a tool such as a video decoder selects a low-latency decoding mode. Based on the selected decoding mode, the tool adjusts output timing determination, picture boundary detection, number of pictures in flight and/or jitter buffer utilization. For low-latency decoding, the tool can use a frame count syntax element to set initial output delay for a decoded picture buffer, and the tool can use auxiliary delimiter syntax elements to detect picture boundaries. To further reduce delay in low-latency decoding, the tool can reduce number of pictures in flight for multi-threaded decoding and reduce or remove jitter buffers. The tool receives encoded data, performs decoding according to the selected decoding mode to reconstruct pictures, and outputs the pictures for display. |
US08885725B2 |
Method and apparatus for encoding video by motion prediction using arbitrary partition, and method and apparatus for decoding video by motion prediction using arbitrary partition
An apparatus for decoding a video includes a receiver which receives and obtains a bitstream of an encoded image, a processor which determines coding units having a hierarchical structure being data units in which the encoded image is decoded, and sub-units for predicting the coding units, by using information that indicates division shapes of the coding units and information about prediction units of the coding units, obtained from the received bitstream, wherein the sub-units comprise partitions obtained by splitting at least one of a height and a width of the coding units according to at least one of a symmetric ratio and an asymmetric ratio, and a decoder which reconstructs the image by performing decoding including motion compensation using the partitions for the coding units, using the encoding information parsed from received bitstream, wherein the coding units having the hierarchical structure comprise coding units of coded depths split hierarchically according to the coded depths and independently from neighboring coding units. |
US08885723B2 |
Method and apparatus for encoding video by motion prediction using arbitrary partition, and method and apparatus for decoding video by motion prediction using arbitrary partition
A method of decoding a video includes determining coding units having a hierarchical structure being data units in which the encoded image is decoded, and sub-units for predicting the coding units, by using information that indicates division shapes of the coding units and information about prediction units of the coding units, parsed from a received bitstream of a encoded image, wherein the sub-units comprise partitions obtained by splitting at least one of a height and a width of the coding units according to at least one of a symmetric ratio and an asymmetric ratio, and reconstructing the image by performing decoding including motion compensation using the partitions for the coding units, using the encoding information parsed from the received bitstream, wherein the coding units having the hierarchical structure comprise coding units of coded depths split hierarchically according to the coded depths and independently from neighboring coding units. |
US08885719B2 |
Motion vector coding method and motion vector decoding method
A motion vector coding unit executes processing including a neighboring block specification step of specifying a neighboring block which is located in the neighborhood of a current block; a judgment step of judging whether or not the neighboring block has been coded using a motion vector of another block; a prediction step of deriving a predictive motion vector of the current block using a motion vector calculated from the motion vector of the other block as a motion vector of the neighboring block; and a coding step of coding the motion vector of the current block using the predictive motion vector. |
US08885718B2 |
Motion vector coding method and motion vector decoding method
A motion vector coding unit executes processing including a neighboring block specification step of specifying a neighboring block which is located in the neighborhood of a current block; a judgment step of judging whether or not the neighboring block has been coded using a motion vector of another block; a prediction step of deriving a predictive motion vector of the current block using a motion vector calculated from the motion vector of the other block as a motion vector of the neighboring block; and a coding step of coding the motion vector of the current block using the predictive motion vector. |
US08885717B2 |
Motion vector coding method and motion vector decoding method
A motion vector coding unit executes processing including a neighboring block specification step of specifying a neighboring block which is located in the neighborhood of a current block; a judgment step of judging whether or not the neighboring block has been coded using a motion vector of another block; a prediction step of deriving a predictive motion vector of the current block using a motion vector calculated from the motion vector of the other block as a motion vector of the neighboring block; and a coding step of coding the motion vector of the current block using the predictive motion vector. |
US08885715B2 |
Image processing apparatus and image processing method
An image processing apparatus includes: a local motion vector detection section; a global motion calculation section; a global motion vector calculation section; and an evaluation section. |
US08885712B1 |
Image frame management
Systems, methods, and other embodiments associated with image frame management are described. According to one embodiment, an apparatus includes classifier logic to categorize frames that represent an image as either reference frames or non-reference frames, where the categorization is based, at least in part, on motion vectors between the frames. The apparatus further includes management logic to store the reference frames and to delete the non-reference frames. Image generation logic may then reproduce the image by using the stored reference frames. |
US08885708B2 |
Reusable and extensible framework for multimedia application development
Systems and methods of developing and/or implementing multimedia applications. The system provides an extensible framework including an application layer, a framework utility layer, and a core engine layer. The framework utility layer includes an application programming interface, a video codec sub-framework (XCF), a video packetization sub-framework (XPF), and a video/text overlay sub-framework (XOF). The core engine layer includes one or more core codec engines and one or more core rendering engines. The XCF, XPF, and XOF sub-frameworks are effectively decoupled from the multimedia applications executing on the application layer, and the core codec and rendering engines of the core engine layer, allowing the XCF, XPF, and XOF sub-frameworks and core codec/rendering engines to be independently extensible. The system also fosters enhanced reuse of existing multimedia applications across a plurality of multimedia systems. |
US08885701B2 |
Low complexity transform coding using adaptive DCT/DST for intra-prediction
A method and apparatus encode and decode video by determining whether to use discrete cosine transform (DCT) and DST for each of the horizontal and vertical transforms. During encoding, an intra-prediction is performed based on an intra-prediction mode determined for an M×N input image block to obtain an M×N intra-prediction residue matrix (E). Based on the intra-prediction mode, each of a horizontal transform and a vertical transform is performed using one of DCT and DST according to the intra-prediction mode. During decoding, the intra-prediction mode is determined from an incoming video bitstream. The M×N transformed coefficient matrix of the error residue is obtained from the video bitstream using an inverse quantizer. Based on the intra prediction mode, one of DCT and DST is performed for each of an inverse vertical transform and an inverse horizontal transform. |
US08885697B2 |
Reception device
A reception device includes two antennas 1-1, 1-2 that are in an inverse correlation, a switching unit 4 which switches the signal that is to be processed among signals received by the two antennas 1-1, 1-2, and an adaptive equalizer 6 which uses equalization coefficients to perform equalizing processing on the signal considered by the switching unit 4 to be the signal to be processed, and an equalization coefficient altering unit 7 which alters the equalization coefficients used by the adaptive equalizer 6 synchronously with the timing of switching performed by the switching unit 4. In the reception device can reduce the required time for reconvergence of equalization coefficients stemming from reception system switching in selection diversity using an inverse correlation antenna. |
US08885695B1 |
Receiver circuit
A receiver circuit receives an incoming signal and accordingly provides an internal signal, and includes an equalizer, a slicer module and a counter module. The equalizer provides a signal level according to the incoming signal, the slicer module compares if the internal signal exceeds a level range; according to comparison result, the counter module provides a signal quality indication capable of indicating whether a bit error rate of signal receiving is greater than a predetermined reference bit error rate. One of an upper bound and a lower bound of the level range can equal the signal level, a distance between the upper bound and the lower bound is set according to a reference signal-to-noise ratio which associates with the reference bit error rate. |
US08885694B2 |
Changing an operating performance point
A method of changing an operating performance point of an integrated circuit including detecting a need to change the operating performance point of the integrated circuit to a new operating performance point. The method also includes changing a voltage of the integrated circuit to correspond with the new operating performance point, changing a maximal receiver clock frequency value to correspond with the new operating performance point, exporting the maximal receiver clock frequency value to a distant integrated circuit, and receiving an acknowledgement of the changed maximal receiver clock frequency value from the distant integrated circuit. |
US08885693B2 |
Automated satellite interference mitigation
An automated process to periodically check and ensure that earth terminal settings provide compliant EIRPSD. For example, one embodiment of the present invention provides an apparatus which queries the modem for its transmit symbol rate and the Block Up-Converter (BUC) for its RF output power. Using these two values and preprogrammed values for connection loss between the BUC and antenna, the current input power spectral density being transferred to the antenna is computed by the apparatus and compared to the preprogrammed regulatory limit for the specific antenna. If the limit is being exceeded, the apparatus sets BUC attenuation to compensate for the excess. |
US08885692B2 |
Estimation of intentional phase shift in a calibration apparatus
Embodiments of the present invention provide an apparatus comprising a transceiver having a receiver and a transmitter connected through a segment of a calibration loop back path. The apparatus also comprises a control system configured to communicate with the transceiver. The calibration loop back path has an intentional phase shift that can be toggled between an off state and an on state by the control system. The control system is configured to calculate the intentional phase shift by examining the difference of a first and second phase angle. The first phase angle is obtained from the transmission of a first pair of signals with the intentional phase shift in the off state. The second phase angle is obtained from the transmission of a second pair of signals with the intentional phase shift in the on state. |
US08885690B2 |
Power control techniques for wireless transmitters
Various embodiments are disclosed relating to power control techniques for wireless transmitters. In an example embodiment, an apparatus is provided that may include a digital-to-analog converter (DAC) adapted to convert a digital amplitude signal to an analog amplitude signal during a first transmission mode and adapted to convert a digital power level signal to an analog power level signal during a second transmission mode. |
US08885688B2 |
Control message management in physical layer repeater
A repeater is configured to selectively generate and transmit control message packets between wireless stations on both a transmit side and a receive side of the repeater. The repeater manages and manipulates an end to end protocol of the control message packets in a manner that does not change media access control (MAC) addresses of the end to end protocol so as to achieve a network objective, such as preventing other transmitters from transmitting while the repeater repeats a signal from its receive side to its transmit side. The control message management is applicable to analog signal repeaters as well as digital repeaters, such as symbol to symbol or packet to packet repeaters, in which physical layer control message management is performed. |
US08885686B2 |
Division of bit streams to produce spatial paths for multicarrier transmission
A device for bit-demultiplexing in a multicarrier MIMO communication system (e.g. precoded spatial multiplexing MIMO communication systems using adaptive OFDM), including a multicarrier MIMO transmitter and a multicarrier MIMO receiver. The multicarrier MIMO transmitter includes a demultiplexer and symbol mapper unit receiving an input bit stream and generating a plurality of symbol streams, each symbol stream being associated with a different transmission channel and including a plurality of data symbols, each data symbol being attributed to a different carrier; one or more multicarrier modulators generating at least two multicarrier modulated signals based on the symbol streams; and at least two transmit ports respectively transmitting the at least two multicarrier modulated signals, wherein a data throughput rate of each transmission channel is separately variable. |
US08885685B2 |
Semiconductor light emitting device, semiconductor light emitting apparatus, and method for manufacturing semiconductor light emitting
According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer and a laser resonator. The first semiconductor layer includes a first portion and a second portion juxtaposed with the first portion. The laser resonator is provided on the first portion and has a ring-shaped resonator structure circled along a major surface of the first semiconductor layer. The second portion guides light emitted from the laser resonator. |
US08885684B2 |
Gas laser device
A CO2 gas laser device according to the present invention amplifies CO2 laser light that oscillates repeatedly in short pulses having a pulse width of 100 ns or less, and cools a CO2 laser gas which is excited by continuous discharge by circulating the CO2 laser gas by means of forced convection. Therein, an angle θ defined by the optical axis of the amplified CO2 laser beam and the flow direction of the CO2 laser gas caused by the forced convection is determined by both a discharge cross sectional area and a discharge length of a volume in which the CO2 laser gas is excited by discharge, whereby increasing the gain of pulsed laser to achieve pulsed laser light having an extremely high average output power. |
US08885680B2 |
Laser apparatus, extreme ultraviolet light generation system, and method for generating laser beam
A laser apparatus may include a seed laser device configured to output a pulse laser beam, a pulse energy adjusting unit configured to vary pulse energy of the pulse laser beam, at least one amplifier for amplifying the pulse laser beam, at least one power source for varying an excitation intensity in the at least one amplifier, and a controller configured to control the pulse energy adjusting unit on a pulse-to-pulse basis for the pulse laser beam passing therethrough and to control the at least one power source for a group of multiple pulses of the pulse laser beam. |
US08885678B1 |
Ultra-low frequency noise external cavity semiconductor laser with integrated waveguide grating and modulation section electronically stabilized by dual frequency feedback control circuitry
Embodiments of the present invention use an external cavity laser source with dual input terminals, such as bias current for a gain section, and a voltage signal for a modulator section. An aspect of the present invention provides an ultra-low frequency noise external cavity frequency modulated (FM) semiconductor laser source frequency stabilized by a dual electronic feedback circuitry applied to semiconductor gain section and a modulation section. A further aspect of the present invention provides an optical frequency discriminator based on homodyne phase demodulation using an unbalanced Michelson interferometer with fiber optics delay and a symmetrical 3×3 optical coupler. |
US08885675B2 |
Wavelength variable laser device, and method and program for controlling the same
Provided is a wavelength variable laser device wherein an SOA is simplified. The wavelength variable laser device includes: an optical filter formed on a PLC; an SOA that supplies light to the optical filter; a light reflecting section that returns the light transmitted through the optical filter to the SOA via the optical filter; optical waveguides which are formed on the PLC and connect the SOA, the optical filter, and the light reflecting section; a wavelength variable section that changes a wavelength of the light transmitting through the optical filter; and a phase variable section that changes a phase of the light propagated on the optical waveguides. |
US08885674B2 |
Method and receiving device for determining the assignment of subsignals transmitted by inverse multiplexing, particularly via an optical transport network (OTN), to the transmission links carrying said subsignals
Provided are methods and devices for determining the assignment of subsignals (S1, S2, S3, S4) transmitted by inverse multiplexing, particularly via an Optical Transport Network (OTN), to the transmission links (5a, 5b, 5c, 5d) carrying said subsignals. After a synchronization for the correct assembly of the subsignals (S1, S2, S3, S4) into the digital reception signal (E), the signal transmission via at least one transmission link (5a, 5b, 5c, 5d) is interrupted for a detection process in which the subsignal assigned to the interrupted link is determined. The process may be repeated to determine all subsignal assignments. |
US08885673B2 |
Interleaving data packets in a packet-based communication system
In one embodiment, the present invention includes a method for receiving a first portion of a first packet at a first agent and determining whether the first portion is an interleaved portion based on a value of an interleave indicator. The interleave indicator may be sent as part of the first portion. In such manner, interleaved packets may be sent within transmission of another packet, such as a lengthy data packet, providing improved processing capabilities. Other embodiments are described and claimed. |
US08885669B2 |
Method and apparatus for processing a preamble of a packet
A method for processing a preamble of a data packet, received via a communication channel, using a pair of complementary sequences, wherein a sum of out-of-phase aperiodic autocorrelation coefficients of the pair of complementary sequences is zero, and wherein the preamble includes a first field that provides synchronization information and a second field that provides channel estimation information, includes at least one of (i) correlating a received signal corresponding to the preamble with at least one sequence of the pair of complementary sequences to generate a plurality of respective correlation signals, or (ii) autocorrelating the received signal to generate an autocorrelation signal. The method also includes determining a cover code in the preamble using at least one of (i) the plurality of respective correlation signals, or (ii) the autocorrelation signal. The method also includes using the cover code to decode the preamble. |
US08885667B2 |
Destination based methodology for managing network resources
A replicator is configured to be coupled to a first packet-based network, and a packet analysis module and a router are coupled to the replicator. The router is configured to be coupled to a second packet-based network. The replicator receives packets from the first packet-based network, passes the packets to the router, and passes a copy of the packets to the packet analysis module. The packet analysis module identifies, in a set of customers of the second packet-based network, a top usage subset. The top usage subset includes those of the customers who are using more bandwidth of the second packet-based network than other ones of the customers. The top usage subset includes at least two of the customers. The packet analysis module identifies, at an entry point of the second packet-based network, routes of packets destined for the top usage subset. The router discards a predetermined percentage of the packets destined for the top usage subset. The predetermined percentage is determined in order to reduce bandwidth utilization of the second packet-based network by a desired amount. The predetermined percentage is identical for all of the customers in the top usage subset. |
US08885665B2 |
Systems and methods for foundation fieldbus alerts
An industrial process control system is provided. The industrial control system includes an alarm server with a processor configured to receive device information representative of field device information extracted from a device definition file. The processor is further configured to translate the device information into a first format interpretable by a global system for mobile communications (GSM) server and provide the device information in the first format to the GSM server. |
US08885663B2 |
Data block processor in a mobile DTV system with diversity
An apparatus for processing a first and a second stream of digital data includes a stagger multiplexer and a stagger demultiplexer. Each stream of digital data includes data blocks. The stagger multiplexer processes the first and the second streams of digital data concurrently to output a combined stream of digital data. The stagger demultiplexer processes the combined stream of digital data to output a first and a second stream of extrinsic digital data. |
US08885661B2 |
MAC packet data unit construction for wireless system
A method for wireless communication using MAC PDUs. The method includes determining one or more characteristics of a service flow and selecting on the basis of the one or more characteristics a MAC PDU header type among a plurality of MAC PDU header types. The service flow data is encapsulated in MAC PDUs with a header of the selected type. The MAC PDUs with the encapsulated service flow data are then wirelessly transmitted. Also, a method for communication between a Base Station (BS) and a Subscriber Station (SS). The method includes generating at the BS a plurality of MAC PDU packets with a payload component holding service flow data and a plurality of MAC PDU packets without payload component, carrying control information. The method also includes transmitting wirelessly the MAC PDU packets with the payload component and the MAC PDU packets with the control information to the SS. |
US08885657B2 |
Automatic switch port selection
Back pressure is mapped within a network, and primary bottlenecks are distinguished from dependent bottlenecks. Further, the presently disclosed technology is capable of performing network healing operations designed to reduce the data load on primary bottlenecks while ignoring dependent bottlenecks. Still further, the presently disclosed technology teaches identifying and/or suggesting a switch port for adding a node to the network. More specifically, various implementations analyze traffic load and back pressure in a network, identify primary and dependent bottlenecks, resolve the primary bottlenecks, collect new node parameters, and/or select a switch port for the new node. Further, a command can be sent to a selected switch to activate an indicator on the selected port. New node parameters may include new node type, maximum load, minimum load, time of maximum load, time of minimum load and type of data associated with the new node. |
US08885650B2 |
Method, apparatus and system for processing a tunnel packet
Embodiments of the present invention disclose a method, an apparatus and a system for processing a tunnel packet. When a tunnel ingress device performs tunnel encapsulation on a data packet, a dynamic identifier is included in an encapsulated packet header, so that each tunnel-encapsulated data packet has a different triplet. In this way, when the tunnel-encapsulated data packet is fragmented, a tunnel egress device may correctly reassemble the tunnel-encapsulated data packet according to the triplet of the fragmented packet. |
US08885645B2 |
Method for transmitting data
A method is described for transmitting data between participants of a serial, ring-shaped communications arrangement in which the participants are serially connected to one another, wherein a data packet is passed from a participant provided as a master to further participants provided as slaves, wherein the data packet is passed from slave to slave, and wherein address information of the data packet is altered by each slave. |
US08885643B2 |
Method for multicast flow routing selection
A network component comprising a memory coupled to a processor, wherein the memory comprises instructions that cause the processor to select a first multicast routing mode from a plurality of multicast routing modes supported by a network comprising the network component, assign the first multicast routing mode to a first multicast flow, and advertise a first information frame to a first plurality of nodes, wherein the first information frame provides the assignment of the first multicast routing mode to the first multicast flow. |
US08885642B2 |
Support for network routing selection
An address for controlling transmission of routing through a network is obtained by means of input from a combination of network terminals. Initially, address describing data is received from a user via a source terminal. A control circuit determines whether the address describing data is sufficient to define an address of a destination. If not, the control circuit uses the address describing data to extract information must be met by the destination, but for which it is not known for specific destinations whether it is met. The information may define a desired property of the destination for example, or a mutual relation between the user and the destination. The control circuit then transmits a confirmation request to one or more possible destinations, to ask whether information relates to the possible destination. If a positive confirmation is received back from a possible destination, the address of this possible destination is used. Information that the information relates to the possible destination may be stored to resolve future address describing information. |
US08885638B2 |
Method and apparatus for enabling peer-to-peer communication between endpoints on a per call basis
A method and apparatus for enabling a user to signal to the network that a call to be initiated or a call that is in progress needs to occur in a peer-to-peer relationship with the terminating endpoint. The network will then remove itself from the call signaling and media path and direct the signaling and media communication to occur directly between the two endpoints. |
US08885636B2 |
Method and system for platform-independent VoIP dial plan design, validation, and deployment
A system and method for designing a dial plan for Voice over Internet Protocol (VoIP) systems includes generating an abstract dial plan design which is platform independent, the dial plan including rules for routing communications in a VoIP network structure. The dial plan is validated through simulations prior to deployment to evaluate the dial plan performance under simulated conditions. The dial plan design is translated to provide compatibility with a deployed network using platform specific configuration adaptors. |
US08885633B2 |
Data communication method, data communication system, and communication terminal
A portable telephone unit 10 receives management information comprising size information for contents data wanting to be downloaded, and adjusts an environment for receiving the object data, based on size information for contents data contained in the management information. To adjust the environment for receiving the object data it is possible, for example, to determine a communication system for receipt, or to secure a storage region for storing object data that has been received. After that, the portable telephone unit 10 transmits a contents data download request, and receives contents data returned in response to the download request. As a result, it is possible for the communication terminal to download the contents data in a state where the receive environment has been optimized according to the size of the contents. |
US08885628B2 |
Code division multiplexing in a single-carrier frequency division multiple access system
In a single-carrier frequency division multiple access (SC-FDMA) system that utilizes interleaved FDMA (IFDMA) or localized FDMA (LFDMA), a transmitter generates modulation symbols for different types of data (e.g., traffic data, signaling, and pilot) and performs code division multiplexing (CDM) on at least one data type. For example, the transmitter may apply CDM on signaling and/or pilot sent on frequency subbands and symbol periods that are also used by at least one other transmitter. To apply CDM to a given data type (e.g., signaling), the transmitter performs spreading on the modulation symbols for that data type with an assigned spreading code. CDM may be applied across symbols, samples, samples and symbols, frequency subbands, and so on. The transmitter may perform scrambling after the spreading. The transmitter generates SC-FDMA symbols of the same or different symbol durations for traffic data, signaling, and pilot and transmits the SC-FDMA symbols. |
US08885627B2 |
Device, system and method of scanning a wireless communication frequency band
Device, system, and method of scanning a wireless communication frequency band. Some embodiments may include scanning a set of channels of a wireless communication frequency band to detect a wireless area network, the scanning including setting a scanning duration to a duration of a beacon interval, scanning a channel of the set of channels for the scanning duration, if a packet is detected over the channel, monitoring the channel for up to a predefined time period, which is longer than the scanning duration, to receive a beacon frame; if no beacon frame is received over the channel, scanning another channel of the set of channels for the scanning duration; and if, after scanning all channels of the set of channels, no beacon frame is received, increasing the scanning duration and repeating the scanning using the increased scanning duration. Other embodiments are described and claimed. |
US08885624B2 |
Radio resource allocation for cellular wireless networks
A cellular wireless network employs a method of allocating radio resources to femtocells so that the transmissions from femtocells do not occupy the same radio resource blocks as those used by a macrocell for signalling. |
US08885621B2 |
Method, apparatus and system for switching traffic streams among multiple bands
A multiband station, a system and a method of setting a traffic steam or a block acknowledgement with a second multiband station on a first frequency band and a first channel. The multiband station may send a request on a second channel and a second frequency by including a channel, a frequency band and medium access control (MAC) address information as part of the request and response exchange. |
US08885619B2 |
Method for transmitting frames in a wireless local area network, a circuit including an input and an output, and a WLAN system with a bridge access point and a repeater access point
On the case of receiving data frame from a station, the method of the present invention instructs the repeater to replace the content of the receiver address field by the address of the bridge when receiving the frame transmitted from the station, and then forwards the frames to the bridge. On the case of receiving a data frame transmitted from the bridge, the repeater can replace the content of transmitter address field by the address of the repeater itself, and then forwards the data frame to the station. |
US08885618B2 |
Wireless communications system, base station, and mobile station
A wireless communications system including a mobile station MS and base stations BS1 and BS2, wherein one or both of the mobile station MS and the base stations BS1 and BS2 is provided with a unit for notifying information of a frame position with the possibility of transmission of packets based on detection of deterioration of a reception quality and wherein the mobile station MS is provided with a unit for determining a frame position without the possibility of transmission of packets and shifting to a peripheral cell detection mode at this frame position based on information of a frame position with the possibility of transmission of packets, whereby it is possible to shift to a peripheral cell detection mode without lowering the transmission efficiency and without complicating the processing. |
US08885615B2 |
Method and apparatus for generating a radio link control protocol data unit for multi-carrier operation
Techniques and apparatus for efficiently determining the radio link control (RLC) protocol data unit (PDU) size and flexible RLC PDU creation for multi carrier operation are disclosed. An example wireless transmit/receive unit (WTRU) calculates a maximum amount of data allowed to be transmitted for a current transmission time interval (TTI) for each of a plurality of carriers, and selects an RLC PDU data field size such that each RLC PDU to be multiplexed to a medium access control (MAC) PDU matches a minimum of the maximum amount of data calculated for the carriers. The maximum amount of data may, for example, be calculated based on an applicable current grant for each carrier for the current TTI. The RLC PDU may be generated for the later TTI on a condition that an amount of data in outstanding pre-generated RLC PDUs for a particular logical channel is less than or equal to 4N times the minimum of the maximum amount of data allowed to be transmitted by the applicable current grant for the carriers for the current TTI, where N is a number of activated carriers. The maximum amount of data may be calculated based on a remaining power on each carrier. |
US08885613B2 |
Method of operating an access network
A method of operating a first access network and a second access network is provided, wherein said access networks serve mobile terminals in an access area and the method comprises: selecting one of said first access network and said second access network on the basis of a power consumption assessment; performing a steering operation for the mobile terminals in said access area, comprising sending steering information to the mobile terminals, the steering information indicating to the mobile terminals to preferably use the non-selected access network not being selected; and setting the selected access network to a power-save mode. |
US08885612B2 |
Control station, mobile station, mobile communication system and mobile communication method
When performing a handover from an access network B to an access network A, a UE 10 transmits an attach request to an MME 30. MME 30 establishes a bearer on a first access network based on the attach request. UE 10 requests MME 30 to establish a specific bearer that guarantees the necessary QoS for a flow. MME 30 receives the request for establishment of a specific bearer, establishes a specific bearer that guarantee the QoS for the flow and sets up a path for performing communication of the flow between UE 10 and a PGW 20. This enables the mobile station to select a specific flow among a plurality of flows and be directly handed over to the bearer communication path when the mobile station performs a handover, thus providing a mobile communication system and the like that can realize a handover while maintaining communication quality. |
US08885610B2 |
Communication control device, radio communication device, communication control method and radio communication method
A switching server 100 determines whether or not to switch a network for an uplink from a radio IP network 10A to a radio IP network 10B, on the basis of an acquired communication quality of the uplink. In addition, when determining to switch the network for the uplink to the radio IP network 10B, the switching server 100 transmits, to an MN 300, an uplink switching instruction to switch the network for the uplink to the radio IP network 10B. |
US08885606B2 |
Apparatus and method for updating control information of a target base station during handover operation in a broadband wireless communication system
An operation method of a terminal for updating control information of a target base station in a handover procedure. The method may include receiving a neighbor advertisement message comprising control information of at least one neighbor base station comprising the target base station from the serving base station; transmitting a handover request message comprising first change count information indicating a neighbor advertisement message version to the serving base station; receiving a handover command message comprising delta control information different from the control information included in the neighbor advertisement message from the serving base station; and updating the control information of the target base station using the received delta control information. |
US08885603B2 |
Handover of calls between access networks
A method is provided of performing a session transfer with Single Radio Voice Call Continuity, SRVCC, from a Packet Switched, PS, access to a Circuit Switched, CS, access of a telecommunications session that has been established over the PS access via an IP Multimedia Subsystem, IMS, network. A request for the transfer of the session is received. An indication of a voice codec that is currently being used for the session is obtained from the IMS network. Allocation of resources for the session in the CS access network is initiated, including specifying the voice codec to be used based on the obtained codec indication. Transfer of the session to the CS access is initiated so that the session continues with use of the specified voice codec. |
US08885601B2 |
Switching user devices in a packet-based network
A system comprising: a first user device and at least a second user device for a same user, at least one of the first and second user devices being a household media appliance, and each being installed with a respective instance of a communication client application for conducting voice or video calls over a packet-based network. Each instance is associated with a same user identifier identifying the same user, a first of the instances is associated with a first subidentifier, and a second of the instances is associated with a second subidentifier. The instances are configured so as, during an ongoing call conducted over a first network connection established based on the user identifier and the first sub-identifier, after the call has been answered, to establish a second network connection based on the user identifier and the second sub-identifier and to switch the call to the second network connection. |
US08885600B2 |
Enhanced delay management
A method to facilitate user equipment (UE) handoff within a packet data communication system includes determining, at a source relay node, that the UE is to undergo a handoff from the source relay node to a target entity and sending, by the source relay node, a first request to a network node serving the UE. The sending is performed responsive to the determination that the UE is to undergo the handoff, such that the first request is configured to cause the network gateway node to store packet data addressed to the UE. Further operations include sending, by the target entity, a second request to the network, such that the second request is configured to cause the network to forward the stored packet data to the target entity, and receiving, at the target entity from the network, the stored packet data for wirelessly transmitting to the UE. |
US08885593B2 |
Dynamic assigning of bandwidth to field devices in a process control system
A wireless network managing device for a wireless network that is part of a process control system. The wireless network managing device includes a node determination element configured to receive an operator selection of at least one node in the process control system via an operator terminal and determine a field device implementing the functionality of the node, and a bandwidth control element configured to adjust a bandwidth assigned to the at least one field device in an auxiliary data section of a communication structure used by the wireless network based on the received operator selection in order to increase system responsiveness. |
US08885590B2 |
Systems and methods for scheduling multiple-input and multiple-output (MIMO) high-speed downlink packet access (HSDPA) pilot channels
Transitioning from basic higher order MIMO estimation to enhanced higher order MIMO estimation (and vice-versa) can be accomplished through the signaling of high-speed downlink packet access (HSDPA) shared control channel (HS-SCCH) orders to next-generation user equipments (UEs). A base station can be configured to send an HS-SCCH order indicating activation of scheduled pilot channels, and then begin transmitting the scheduled pilot channels after receiving an ACK message from at least one next-generation UE. A base station can also be configured to send an HS-SCCH order indicating de-activation of scheduled pilot channels to next-generation UEs scheduled for downlink transmission, and then stop transmitting the scheduled pilot channels after receiving ACK messages from each next-generation UE. Alternatively, scheduled pilot channels may be activated/de-activated upon expiration of a timeout period, even without receiving an ACK message from some or all of the next-generation UEs scheduled for downlink transmission. |
US08885589B2 |
Method for transmitting an uplink signal in a wireless communication system, and apparatus for the same
The present invention relates to a method in which a terminal transmits an uplink data signal in a wireless communication system. More particularly, the method comprises the following steps: receiving, from a base station, control information for transmitting an uplink data signal in a specific subframe; allocating a resource for the uplink data signal in accordance with the control information; and transmitting the uplink data signal using the allocated resource, wherein the control information includes resource extension information on whether or not to allocate the last symbol of the specific subframe as a resource for transmitting the uplink data. |
US08885586B2 |
Method and apparatus for query-based congestion control
An electronic device may be operable to communicate over a physical medium and to regulate the transmission of a message onto the physical medium. The device may access the medium in accordance with a CSMA scheme, wherein one or more values of one or more CSMA parameters may be determined based on the result of a comparison of a received search token to data stored in the communication device. The message may be a response to a received request message, and the search token may have been received in the request message. A value of the CSMA parameter(s) may be determined based on the result of a comparison of the score and one or more thresholds. The threshold(s) may have been received in the request message. The value(s) of the CSMA parameter(s) may be determined based on one or more initial values contained in the received request message. |
US08885582B2 |
Mobile station apparatus, mobile communication system and communication method
In a mobile communication system in which an space of a physical downlink control channel for a mobile station apparatus to search is defined based on a mobile station identity assigned from a base station apparatus, the base station apparatus places a physical downlink control channel including a first mobile station identity or a physical downlink control channel including a second mobile station identity in a search space of a physical downlink control channel corresponding to the first mobile station identity when the base station apparatus assigns a plurality of mobile station identities to the mobile station apparatus, and when a plurality of mobile station identities is assigned from the base station apparatus, the mobile station apparatus performs decoding processing of the physical downlink control channel including the first mobile station identity and the physical downlink control channel including the second mobile station identity in the search space of the physical downlink control channel corresponding to the first mobile station identity. |
US08885578B2 |
Method of transmitting multicast broadcast service
A method of a base station transmitting Multicast Broadcast Service (hereinafter referred to as MBS) includes transmitting MBS configuration information, including information about an MBS region which is a resource region to which MBS-related information is allocated and information about an MBS MAP, to a terminal and transmitting MBS data to the terminal through the MBS region. The information about the MBS region includes location information and a transmission parameter of the MBS region. The MBS MAP includes an MBS configuration information change indication which indicates whether the MBS configuration information is expected to change from first MBS configuration information to second MBS configuration information. MBS is effectively and persistently managed in a mobile wireless communication system supporting MBS. |
US08885577B2 |
Method of assigning and managing gaps for reading system information of neighboring cells
A method in a mobile station for receiving system information of a neighbor cell, and a corresponding method in a base station transmits an assignment of a gap sequence and an assignment of an acknowledgement resource allocation sequence from a serving cell. The mobile station uses the gap sequence to attempt to receive a system information message (e.g., MIB) of a neighbor cell. If the system information message is successfully decoded, the mobile station transmits an acknowledgement to the serving cell and both the mobile station and the serving cell discontinue the gap sequence and the acknowledgement resource allocation sequence. The gap sequence (and discontinuing the gap sequence) allows fewer subframes to be used by the mobile station to search for system information messages. |
US08885570B2 |
Schemes for providing private wireless network
Technologies are generally described for providing private wireless local area networks. In some examples, a method performed under control of a mobile operating server may include determining a first location of an end device, determining a first access point configured to provide a wireless local area network around the first location of the end device and instructing the first access point to provide the end device with a first private wireless local area network. |
US08885569B2 |
Beamforming signaling in a wireless network
A first base station receives a message from a second base station. The second base station comprises a downlink carrier comprising downlink resource blocks. The message comprises downlink beamforming information element indicating a beamforming codeword employed for a downlink resource block. The first base station obtains channel state input information for a wireless device based on, at least in part, processing the downlink beamforming information. The first base station transmits the channel state input information to the wireless device. |
US08885564B2 |
Mobile station, base station, communication system and abnormal power down reporting method thereof
A mobile station, a base station, a communication system and an abnormal power down reporting method thereof are provided. The communication system includes the mobile station and the base station. The mobile station is located within a wireless communication range of the base station. The mobile station transmits a notification message to the base station after detecting abnormal power down of the mobile station. The base station determines that abnormal power down occurred in the mobile station according to the notification message, and notifies a backhaul network to deregister the mobile station. |
US08885563B2 |
Reference signal for a coordinated multi-point network implementation
A system and method for broadcasting a channel state information reference signal (CSI-RS) is disclosed. A CSI-RS that is orthogonal to CSI-RSs transmitted by each of a first network cell and each of a set of neighbor cells that interfere with the first network cell is identified. In one implementation, the first network cell has a coverage containing a coverage of a second network cell. The method includes transmitting, from the second network cell, the CSI-RS that is orthogonal to CSI-RSs transmitted by each of the first network cell and each of a set of interfering neighbor cells. |
US08885562B2 |
Inter-chassis redundancy with coordinated traffic direction
A method, in a first network element of an inter-chassis redundancy (ICR) system, of cooperating with a second network element of the ICR system to provide ICR. The network elements are coupled by a synchronization channel. IP addresses are announced with a favorable traffic direction attribute. It is determined that the second network element either has announced the IP addresses with an unfavorable traffic direction attribute less favorable than the favorable direction attribute, or has not announced the IP addresses. Sessions that are connected through the IP addresses are handled. Session state synchronization messages that include session state for the handled sessions are transmitted over the synchronization channel to the second network element. It is determined, after an occurrence of a failure event that inhibits the first element from handling the sessions, that the IP addresses have been announced by the second network element with a favorable traffic direction attribute. |
US08885561B2 |
Multi-radio coexistence
In a mobile device capable of wireless communications using multiple radio access technologies (RATs), transmit communications of one RAT may cause interference with receive communications of another RAT. In the case of wireless local area network (WLAN) communications, a CTS-to-Self message may control the timing of WLAN communications such that WLAN receptions do not overlap with transmissions of another RAT, such as a Long Term Evolution (LTE) radio. The CTS-to-Self message timing control may be executed by a mobile device operating as a WLAN access point. |
US08885554B2 |
Method and apparatus for cognitive radio coexistence
In a non-limiting and exemplary embodiment, a method is provided for sharing secondary cognitive radio resource user related information. A coexistence node receives information on network properties associated with secondary cognitive radio resource users. An upload message is generated and sent, the upload message including for a secondary user database at least information on the received network properties associated with secondary cognitive radio resource users. A location-dependent network map including at least information on network properties is generated. The network map is sent to assist one or more secondary cognitive radio resource users. |
US08885552B2 |
Remote control via local area network
A method and system for remote control of multimedia content using a multimedia content distribution network (MCDN) is configured to establish a connection between a customer premises equipment (CPE) gateway and a local area network (LAN) device that is a personal user device. A user of the LAN device may be authenticated. Responsive to user input, the LAN device may send remote control messages corresponding to remote control functions for an MCDN terminal device. The CPE gateway may determine a network address for the MCDN terminal device, and forward the remote control messages to the addressed MCDN terminal device. The LAN device may so remotely control the addressed MCDN terminal device. |
US08885547B2 |
Power-efficient media access techniques for wireless networks
Techniques for media access in wireless networks are disclosed. For instance, embodiments may provide a time interval for accessing a wireless communications channel. In addition, embodiments may prevent channel access during the time interval by stations incapable of employing a first channel access technique. This access technique employs an access probability P. |
US08885537B2 |
Signalling for digital broadcasting system
A method and apparatus for transmitting a plurality of data streams in a wireless broadcast system are provided. The method includes mapping the plurality of data streams onto a super-frame that includes a plurality of frames; inserting signalling information in a first signalling information field for assisting in the reception of a first number of said plurality of data streams for a given frame, the first number being less than or equal to a limit applicable to each of the plurality of frames; dependent on a number of data streams for the given frame being greater than the limit, inserting signalling information in a second signalling information field; inserting said first and second signalling information fields in a preamble section of said given frame; and transmitting the plurality of frames. |
US08885536B2 |
Method and apparatus for managing local internet protocol offload
Methods and apparatuses are provided that facilitate establishing packet data context for local internet protocol (IP) offload at a device. One or more indicators regarding local IP offload access or support can be evaluated to determine whether to establish a requested context for the device. Where the one or more indicators allow, a packet data context for local IP offload traffic can be established and associated with a radio bearer at an access point allowing the device to communicate local IP offload data over the radio bearer. |
US08885534B2 |
Method and device for operating in idle mode
A method and device for operating in an idle mode for Machine To Machine (M2M) communication are provided. A M2M device receives a paging message indicating a resource allocation for a ranging request. The M2M device monitors assignment information including the resource allocation for the ranging request. Cyclic redundancy check (CRC) bits of the assignment information are masked with a part of a M2M identifier and the assignment information includes a remaining part of the M2M identifier. |
US08885529B2 |
Method for signalling in a wireless communication system
The present invention relates to a method in a wireless communication system for signalling number of antenna ports which a transmit node comprises. According to the method a communication signal is transmitted carrying information on number of at least one antenna port of said transmit node, wherein the information on said number of at least one antenna port is partitioned and provided distributed over at least two predefined parts of said communication signal. The invention also relates to a transmit node and a receive node, and methods thereof. |
US08885528B2 |
Wireless apparatus, base station and uplink contention method thereof using mapping rule on uplink signal with preamble sequence and control message
A wireless apparatus, a base station and uplink contention methods thereof are provided. The wireless apparatus selects a preamble sequence and at least one resource block on an uplink shared channel (UL-SCH) according to a mapping rule. The wireless apparatus transmits an uplink signal with a preamble sequence on a random access channel (RACH) and a control message on the at least one resource on the UL-SCH to a base station. The base station detects the preamble sequence from the RACH, and retrieves the control message from the at least one resource block on the UL-SCH according to the mapping rule. |
US08885525B2 |
Method and apparatus for soft buffer partitioning in time-division duplexing system
A method for partitioning a soft buffer in a time-division duplex system and an apparatus using the same are disclosed. The method includes the following steps. A total number of soft channel bits, a maximum number of transport blocks transmittable to a user equipment (UE) in a transmission time interval (TTI), a maximum number of downlink (DL) hybrid automatic retransmit request (HARQ) processes, and a configured maximum number of HARQ processes are determined. A partition size of the soft buffer is selected according at least to the total number of soft channel bits, the maximum number of transport blocks transmittable to the UE in the TTI, the maximum number of DL HARQ processes, and the preconfigured maximum number of HARQ processes. |
US08885523B2 |
Speakerphone transmitting control information embedded in audio information through a conference bridge
Disclosed herein are methods, systems, and devices for improved audio, video, and data conferencing. The present invention provides a conferencing system comprising a plurality of endpoints communicating data including audio data and control data according to a communication protocol. A local conference endpoint may control or be controlled by a remote conference endpoint. Data comprising control signals may be exchanged between the local endpoint and remote endpoint via various communication protocols. In other embodiments, the present invention provides for improved bridge architecture for controlling functions of conference endpoints including controlling functions of the bridge. |
US08885520B2 |
Multi-hop network topology system and method
A wireless communication system and method for a network having a tree topology. An initial path from a base station to an end relay node is selected. The path selection includes an active communication path and a redundant communication path. The path selection is based on at least one policy factor. The at least one policy factor is monitored and the path is updated based on a change to the monitored at least one policy factor. |
US08885519B2 |
Wireless mesh network transit link topology optimization method and system
A method and configuration manager generates a routing topology for a wireless mesh network. The wireless mesh network has a plurality of internal nodes, at least one edge node, and at least one originating device. A plurality of potential routing solutions is determined which contain a plurality of paths through the wireless mesh network from the at least one originating device to the at least one edge node such that data communicated from the at least one originating device reaches the at least one edge node in no more than a predetermined number of hops. Each potential routing solution is based on at least one measured wireless communication parameter between internal nodes. Metric calculations for each potential routing solution are computed to determine a preferred routing solution. The wireless mesh network is configured to route traffic using the preferred routing solution. |
US08885518B2 |
Synchronizing routing tables in a distributed network switch
Techniques are provided for routing table synchronization for a distributed network switch. In one embodiment, a first frame having a source address and a destination address is received. If no routing entry for the source address is found in a routing table of a first switch module, routing information is determined for the source address and a routing entry is generated. An indication is sent to a second switch module, to request a routing entry for the source address to be generated in the second switch module, based on the routing information. |
US08885513B2 |
Systems and methods for dynamically changing network node behavior
The present disclosure pertains to systems and methods for dynamically changing network node behavior. In one exemplary embodiment, a system comprises a plurality of nodes defining a wireless sensor network, and the plurality of nodes includes at least a first node and a second node. The first node has an output interface, a virtual machine, a stack, and a communication device. The stack is configured to packetize payload data into data packets, and the communication device is configured to communicate the data packets via wireless signals through the wireless sensor network. The output interface is coupled to an apparatus, and the second node is configured to transmit a script image through the wireless sensor network to the first node via at least one data packet. The first node is configured to run the script image on the virtual machine such that the apparatus is controlled by the script image. |
US08885512B2 |
Method and devices for multiple station sounding in a wireless local area network
Embodiments of a method and apparatus for obtaining sounding measurements between an access point and a wireless station within a wireless local area network are described. Some embodiments relate to Wi-Fi networks and networks operating in accordance with one of the IEEE 802.11 standards. Some embodiments may allow an access point to request that multiple stations compute sounding measurements with minimal time delay between measurements. Other embodiments may be described and claimed. |
US08885510B2 |
Heterogeneous channel capacities in an interconnect
Systems and methods involving construction of a system interconnect in which different channels have different widths in numbers of bits. Example processes to construct such a heterogeneous channel NoC interconnect are disclosed herein, wherein the channel width may be determined based upon the provided specification of bandwidth and latency between various components of the system. |
US08885508B2 |
Method and apparatus for activating carriers in mobile communication system
A method for activating a carrier by a User Equipment (UE) in a mobile communication system supporting carrier aggregation is provided. The UE receives a Down-Link (DL) assignment from an Evolved Node B (ENB), and determines whether to activate a carrier based on the DL assignment. By doing so, the UE may perform carrier activation rapidly and efficiently. |
US08885507B2 |
Method, apparatus and computer program product for allocating resources in wireless communication network
The present application discloses a method, an apparatus and a computer program product for allocating resources for a Device-to-Device (D2D) direct communication user equipment in a wireless communication network, wherein the method comprise: transmitting a communication channel status report regarding Device-to-Device direct communication to a base station; receiving resource allocation instructions generated by the base station based on the communication channel status report; and performing Device-to-Device direct communication between user equipments on the allocated resources; the disclosed apparatus comprises transmitting means for transmitting a communication channel status report regarding Device-to-Device direct communication to a base station; receiving means for receiving resource allocation instructions generated by the base station based on the communication channel status report; and performing means for performing Device-to-Device direct communication between user equipments on the allocated resources. By using the method, apparatus and computer program product disclosed in the present application, resource sharing/allocation collision between the D2D user equipment and cellular user equipment can be effectively reduced and use rate of resources can be improved. |
US08885501B2 |
Reachability rate computation without link layer acknowledgments
In one embodiment, a device in a computer network receives a particular packet associated with a transmission attempts value, the associated transmission attempts value indicative of a first number of times a transmitter has attempted to transmit the particular packet. In response, the device increases by one a stored successful attempts value stored at the device, the stored successful attempts value indicative of a second number of times the device has received the same particular packet. As such, a reachability rate of a link from the transmitter to the device may be determined based on comparing the associated transmission attempts value to the stored successful attempts value. |
US08885500B2 |
Interface setup for communications network with femtocells
A method of operating a communications network comprises determining that an interface needs to be established between a femto radio base station gateway (40) and a macro radio base station (28), and when establishing the interface between the macro radio base station (28) and the femto radio base station gateway (40), including abbreviated femtocell information in a message of an interface setup procedure sent between the femto radio base station gateway (40) and the macro radio base station (28). |
US08885498B2 |
Network traffic aggregation method and device for in-vehicle telematics systems using tethering and peer-to-peer networking of mobile devices
A method for enhancing a data communication throughput associated with an in-vehicle telematics system includes receiving a communication request from the in-vehicle telematics system to perform at least one of a data upload to the Internet and a data download from the Internet, and verifying availability of one or more mobile devices within the vehicle. The maximum capability of a mobile network interface for each of the one or more available mobile devices within the vehicle is determined. When the communication request is for uploading data to the Internet, the data is fragmented into data fragments and distributed to the available mobile devices, whereas when the communication request is for downloading data from the Internet, it is determined for each mobile device which fragment of data is to be downloaded and from which server, and the respective determined fragments are received from each mobile device. |
US08885494B2 |
System and method for monitoring communications in a network
Methods and systems are described for monitoring communications in a packet-switched network. More specifically, the system initiates a communication between a network endpoint associated with a call mediator and at least a second network endpoint; records, at the call mediator, information associated with the communication; and upon termination of the communication, communicates, from the call mediator to an enterprise gatekeeper, the information associated with the communication. |
US08885491B1 |
Method and system for communicating conditional access packet signals through a network
A method and system for communicating a conditional access signal through a network includes a source segment generating a first conditional access packet signal comprising a first header having a first destination identifier with a first format. The system also includes a first routing server associated with the source segment generating a second header with a second destination identifier having a second format different than the first format and replacing the first header with the second header. The system also includes a second routing server in communication with the first routing server through the network. The second routing server replaces the second header with a third header having a third destination identifier having the first format to form a third conditional access packet signal. A plurality of receiving devices receive the third conditional access packet signal. |
US08885488B2 |
Reachability detection in trill networks
One embodiment of the present invention provides a system for testing reachability between two nodes within a network. During operation, the system transmits a network-testing request frame from a source node to a destination node, and in response to receiving a network-testing response frame corresponding to the request frame, the system determines reachability of the destination node. The network-testing request or response frame is not processed on an Internet Protocol (IP) layer. |
US08885487B2 |
Congestion and thru-put visibility and isolation
Offering vertical services to subscribers and service providers is an avenue to immediately improve the competitiveness of digital subscriber line access service, for example of the type offered by a local exchange carrier. To deliver high-quality vertical services, however, the underlying ADSL Data Network (ADN) or the like needs to establish Quality of Service (QoS) as a core characteristic and offer an efficient mechanism for insertion of the vertical services. The inventive network architecture introduces QoS into the ADN, in a manner that enables the delivery of sophisticated and demanding IP-based services to subscribers, does not affect existing Internet tiers of service, and is cost-effective in terms of initial costs, build-out, and ongoing operations. The architecture utilizes a switch capable of examining and selectively forwarding packets or frames based on higher layer information in the protocol stack, that is to say on information that is encapsulated in the layer-2 information utilized to define normal connectivity through the network. The switch enables segregation of upstream traffic by type and downstream aggregation of Internet traffic together with traffic from a local services domain for vertical services and other local services. Systems coupled to the local services domain alone or in combination with software in servers and/or a user's computer enable a testing of connectivity, throughput, QoS metrics and the like through selected points of the ADN network. |
US08885485B2 |
Generation of diagnostic data from interarrival times of VoIP packets
Disclosed is a method for analyzing errors of a data stream, particularly a real-time data stream, in a data network (100). According to said method, a time stamp and/or a sequence number is/are determined from or for each data packet transmitted between two communication terminals (10, 12) of the data network (100), a history (diagram) and/or a frequency distribution (histogram) of at least one data transmission parameter determined from the plurality of time stamps and/or sequence numbers of the data packets of the data stream is generated, and a pattern of the history and/or the frequency distribution of the at least one data transmission parameter is identified in order to determine the location and/or the cause of an error during the transmission of the data stream in the data network. |
US08885482B2 |
Dynamically enabling a channel for message reception in a mesh network
In embodiments of the present invention improved capabilities are described for operating a node in a wireless mesh network to scan each one of a plurality of channels received at a processing node in a wireless mesh network in a predetermined order for a predetermined duration to detect a preamble; detect the preamble on one of the plurality of channels; remain on a current one of the plurality of channels to receive a message after the predetermined duration when the preamble includes a predetermined series of symbols; and resume scanning each one of the plurality of channels after the message is received. |
US08885476B2 |
TCP flow control optimized for networks having radio segments
Transmission Control Protocol (TCP) may be optimized for a cellular network having a radio segment. A base station may include a radio interface to connect to one or more user equipment (UE) devices and a number of queues to buffer data, incoming to the base station, from one or more servers, over TCP sessions. One or more processors may: determine state information relating to a fullness level of the queues; and transmit the state information to the one or more servers for use by the one or more servers in performing flow control with respect to the TCP sessions. |
US08885472B2 |
Scaling output-buffered switches
The systems and methods described herein allow for the scaling of output-buffered switches by decoupling the data path from the control path. Some embodiment of the invention include a switch with a memory management unit (MMU), in which the MMU enqueues data packets to an egress queue at a rate that is less than the maximum ingress rate of the switch. Other embodiments include switches that employ pre-enqueue work queues, with an arbiter that selects a data packet for forwarding from one of the pre-enqueue work queues to an egress queue. |
US08885469B2 |
Drive assist apparatus and drive assist system
When prediction information is newly acquired, a degree of the difference between a predicted via-point at a current time point is determined based on already transmitted past prediction information and a current position contained in the newly acquired prediction information. Then, it is determined whether the determined degree of the difference is a predetermined value or more. When the degree of the difference is determined to be the predetermined value or more, the newly acquired prediction information is transmitted. |
US08885467B2 |
Congestion causation in a network interconnect
A method and system for detecting congestion in a network of nodes, abating the network congestion, and identifying the cause of the network congestion is provided. A congestion detection system may comprise a detection system, an abatement system, and a causation system. The detection system monitors the performance of network components such as the network interface controllers and tiles of routers to determine whether the network is congested such that a delay in delivering packets becomes unacceptable. Upon detecting that the network is congested, an abatement system abates the congestion by limiting the rate at which packets are injected into the network from the nodes. Upon detecting that the network is congested, a causation system may identify the job that is executing on a node that is the cause of the network congestion. |
US08885465B2 |
Method and system for utilizing tone grouping with givens rotations to reduce overhead associated with explicit feedback information
Aspects of a method and system for utilizing tone grouping with Givens rotations to reduce overhead associated with explicit feedback information are presented. In one aspect of the invention, Givens matrices may be utilized to reduce a quantity of information communicated in explicit feedback information via an uplink RF channel. The explicit feedback information may include specifications for a feedback beamforming matrix that may be utilized when transmitting signals via a corresponding downlink RF channel. The feedback beamforming matrix may represent a rotated version of an un-rotated matrix. The Givens matrices may be utilized to apply one or more Givens rotations to un-rotated matrix. The rotated matrix may reduce the quantity of information communicated in the explicit feedback information. The quantity of information communicated in the explicit feedback information may be further reduced by utilizing tone grouping. |
US08885457B2 |
Systems and methods of improving the quality of VOIP communications
Methods of addressing problems in a voice over Internet protocol (VOIP) telephony system include collecting data on network events, analyzing the data, and taking corrective action when possible. If an IP telephony device is registering with the VOIP telephony system more frequently than necessary, which can indicate the IP telephony device is unnecessarily jumping between proxy services, the IP telephony device is instructed to re-initialize itself. If an IP telephony device sends two successive stay alive registration messages to a proxy server from different ports of a router, which can indicate that a router pinhole is closing between stay alive messages, then the IP telephony device is instructed to send stay alive registration messages more frequently. If data packet statistics indicate that an IP telephony device is experiencing a jitter problem, the IP telephony device is instructed to increase the size of a data buffer for incoming data packets. If data packet statistics indicate that an IP telephony device is experiencing an enduring bandwidth problem or an enduring data packet loss problem, the IP telephony device is instructed to adopt a new encoding algorithm with greater data compression. |
US08885450B2 |
Method of manufacturing master disc, method of manufacturing recording medium, program, and recording medium
Information unique on a group basis is allowed to be efficiently added to a recording medium in which read-only contents data is recorded. Master data (cutting master) having a data structure in which data to be replaced is managed by a file system as data to be arranged in a specific folder or a specific file is produced by authoring. In manufacturing of a recording medium master disc through premastering and mastering using the master data, replacement data unique to each group is prepared, and the data to be replaced is replaced with the replacement data to perform the mastering (master disc exposure). Then, a stamper is produced from the produced master disc, and recording media is mass-produced by using the stamper. In other words, the replacement data are changed on the group basis to allow the recording media in which the replacement data (such as GP1 and GP2) unique to each group is recorded as read-only data to be manufactured, as recording media containing the same content. |
US08885447B2 |
Glass for magnetic recording medium substrate, glass substrate for magnetic recording medium, and their use
An aspect of the present invention relates to glass for a magnetic recording medium substrate, which comprises essential components in the form of SiO2, Li2O, Na2O, and one or more alkaline earth metal oxides selected from the group consisting of MgO, CaO, SrO, and BaO wherein a molar ratio of a content of CaO to a combined content of MgO, CaO, SrO, and BaO (CaO/(MgO+CaO+SrO+BaO)) is equal to or less than 0.20, and which has a glass transition temperature of equal to or higher than 650° C. |
US08885444B2 |
Analog electronic watch
The analog electronic watch includes: a crystal oscillator; an oscillator circuit; a frequency divider circuit; an output control circuit; a constant voltage circuit; and a cell. The constant voltage circuit and the output control circuit are powered from the cell. The oscillator circuit and the frequency divider circuit are powered from the constant voltage circuit. The constant voltage circuit is capable of outputting a first constant voltage and a second constant voltage in a switchable manner. The second constant voltage is a voltage which is equal to or lower than a cell voltage. The first constant voltage is a voltage which is smaller than the second constant voltage. The constant voltage is switched to the second constant voltage in a period of outputting the motor drive pulse. |
US08885443B2 |
Apparatus for making astronomical calculations
An apparatus for making astronomical calculations includes a calculator, mechanism and/or program for determining the time for sunrise and sunset on a specified date and time at a specific longitude and latitude. The apparatus also includes a mechanism and/or program for calculating the moonrise and moonset at the aforementioned date, time and location. |
US08885442B2 |
Method for determining an acoustic property of an environment
The present invention relates to a method for determining an acoustic property of an environment. According to the method a sound signal and at least two reflection signals of the sound signal (are received, and for each of the reflection signals a time difference between a time of reception of the sound signal and a time of reception of the respective reflection signal is determined. Furthermore, for each of the reflection signals, an angle between a reception direction in which the sound signal was received and a reception direction in which the respective reflection signal was received is determined. Based on the determined time differences, the angles and predetermined constraints defining arrangement constraints of the sound reflecting surfaces an arrangement of the sound-reflecting surfaces is determined. |
US08885440B2 |
Constructing velocity models near salt bodies
A method and apparatus for constructing a velocity model of a subsurface of the earth, is disclosed herein. Seismic data may be received. A first velocity model of the subsurface may be constructed using the seismic data. The subsurface may have one or more salt bodies. A second velocity model of the subsurface without the salt bodies may be constructed using the seismic data. A set of attributes induced by the salt bodies may be determined based on the first velocity model and the second velocity model. A stiffness tensor change between the first velocity model and the second velocity model may be calculated based on the set of attributes induced by the salt bodies. The first velocity model may be updated based on the stiffness tensor change. |
US08885438B1 |
Startup circuit detecting stable system clock
A startup circuit is disclosed operable to perform a startup operation for an electronic device comprising digital circuitry. The startup circuit comprises a first clock generator operable to generate a first clock comprising a first period, and a second clock generator operable to generate a second clock independent of the first clock. The second clock is operable to clock the digital circuitry and comprises a second period less than the first period. A first counter counts a first number of the second periods over the first period, and the second clock is enabled to clock the digital circuitry in response to the first counter. |
US08885437B2 |
Storage device and driving method thereof
An object is to provide a highly integrated storage device which can operate at high speed and a driving method thereof. The storage device includes two storage portions, two precharge switches, and one sense amplifier. In each of the storage portions, storage elements are arranged in a matrix. In each of the storage elements, a node electrically connected to a source or a drain of a transistor whose off-state current is small is a memory storing portion. A page buffer circuit is unnecessary; thus, high-speed operation is possible and high integration is achieved. |
US08885436B2 |
Semiconductor memory device and method of driving the same
Disclosed is a semiconductor memory device, including a plurality of internal voltage generation units configured to be enabled in response to each of a plurality of decoding signals and to generate an internal voltage, a controller configured to generate a plurality of control signals in response to a power up signal and a test mode signal, and a decoder configured to generate the plurality of decoding signals corresponding to at least one decoding source signal and to simultaneously activate some or all of the plurality of decoding signals in response to the control signals. |
US08885430B2 |
Semiconductor memory device and data processing system
To include a plurality of core chips to which different pieces of chip information from each other are given in advance. A first refresh command is divided into a plurality of second refresh commands having different timings from each other, and a refresh operation is performed on a core chip for which a count value of the second refresh commands and at least a portion of the chip information match each other. With this configuration, even when the second refresh command is commonly supplied to a plurality of core chips, it is possible to shift a timing for the refresh operation in each of the core chips. Therefore, it is possible to reduce a peak current at the time of the refresh operation. |
US08885427B2 |
Precharge circuit and non-volatile memory device
A precharge circuit includes a precharge unit configured to apply a voltage of a precharge voltage terminal to a data line during a precharge operation, and a sensing unit configured to disable the precharge unit by sensing the voltage of the precharge voltage terminal. The precharge circuit may control a precharge operation by sensing a change in the voltage level of the precharge voltage terminal. |
US08885426B1 |
Compression of content entries in storage for replacing faulty memory cells
A method of manufacturing a dynamic random access memory device is provided. The method includes testing a DRAM device using a testing process. The method includes identifying, under control by a computing device, a plurality of bad memory cells from the DRAM device and determining a list of addresses associated with the plurality of bad memory cells. The method includes sorting the list of addresses in either ascending or descending order and subjecting the information from the sorted list of address to a compression process, under control by the computing device, to provide a compressed format including a first content entry in the sorted list and a series of off-set values as provided by a recurrence relationship. The method also stores the compressed format into a non-volatile memory. |
US08885425B2 |
Semiconductor memory and method of controlling the same
According to one embodiment, a memory includes main and redundancy regions including cells, first units in the main region, second units in the redundancy region, a column control circuit configured to selects the first units using a first pointer corresponding to an address signal, and selects the second unit using a second pointer when defect address of the main region matches the address signal so that defect first unit is replaced with the second unit, a selection circuit configured to connects one of a first path for the main region and a second path for the redundancy region to a third path based on a comparison result between the address signal and the defect address. |
US08885422B2 |
Hierarchical on-chip memory
A hierarchical on-chip memory (400) includes an area distributed CMOS layer (310) comprising input/output functionality and volatile memory and via array (325, 330), the area distributed CMOS layer (310) configured to selectively address the via array (325, 330). A crossbar memory (305) overlies the area distributed CMOS layer (310) and includes programmable crosspoint devices (315) which are uniquely accessed through the via array (325, 330). A method for utilizing hierarchical on-chip memory (400) includes storing frequently rewritten data in a volatile memory and storing data which is not frequently rewritten in a non-volatile memory (305), where the volatile memory is contained within an area distributed CMOS layer (310) and the non-volatile memory (305) is formed over and accessed through the area distributed CMOS layer (310). |
US08885421B2 |
Semiconductor memory device
A semiconductor memory device includes a memory bank configured to store data, a buffering unit including a plurality of buffers, which are disposed to extend to a X-axis of the memory bank to store data transferred from the memory bank, a plurality of data transmission lines configured to transfer the data stored in the plurality of buffers, and a path multiplexing unit configured to select one of a plurality of data transmission paths in response to addresses and transfer the data through the selected data transmission path. |
US08885413B2 |
Adaptive programming for non-volatile memory devices
Systems and techniques for performing write operations on non-volatile memory are described. A described system includes a memory structure including non-volatile memory cells that are arranged on word lines and bit lines and a microcontroller that is communicatively coupled with the memory structure. The memory structure can include non-volatile memory cells that are arranged on word lines and bit lines. The microcontroller can be configured to receive data to write to the memory structure, write the data to the memory structure using a selected word line of the word lines, detect a failure to write the data, apply, based on the failure, a negative bias voltage to one or more unselected word lines of the word lines during a negative bias period, and write the data to the portion of the memory cells using the selected word line during the negative bias period. |
US08885411B2 |
Nonvolatile semiconductor memory device
A nonvolatile semiconductor memory device according to an embodiment includes a memory cell array that includes NAND cell units; and a write/erase circuit configured to execute a select gate write operation, the select gate write operation executing a programming operation for setting a threshold voltage of a drain side select gate and a verify operation for judging whether said threshold voltage has reached a certain value, and, when it is judged by the verify operation on the drain side select gate that the threshold voltage of the drain side select gate has not reached the certain value, repeatedly executing a programming operation for setting a threshold voltage of a drain side dummy cell connected to the drain side select gate and a verify operation for judging whether said threshold voltage has reached a certain value, until the threshold voltage of the drain side dummy cell has reached the certain value. |
US08885407B1 |
Vertical memory cells and methods, architectures and devices for the same
A memory device may include a plurality of cell pairs each including insulator regions interposed between opposing sides of at least one common word line gate and first and second vertical sides formed by a spacing within at least one semiconductor material; and at least one selector gate vertically aligned with the word line gate within the spacing configured to enable first and second source regions in the first and second vertical sides, respectively; wherein when the selector gate is enabled, the first and second source regions are connected to different source diffusion regions. |
US08885404B2 |
Non-volatile storage system with three layer floating gate
A non-volatile storage system includes memory cells with floating gates that comprises three layers separated by two dielectric layers (an upper dielectric layer and lower dielectric layer). The dielectric layers may be an oxide layers, nitride layers, combinations of oxide and nitride, or some other suitable dielectric material. The lower dielectric layer is close to the bottom of the floating gate (near interface between floating gate and tunnel dielectric), while the upper dielectric layer is close to top of the floating gate (near interface between floating gate and inter-gate dielectric). |
US08885400B2 |
Compensation scheme for non-volatile memory
Methods for performing parallel voltage and current compensation during reading and/or writing of memory cells in a memory array are described. In some embodiments, the compensation may include adjusting a bit line voltage and/or bit line reference current applied to a memory cell based on a memory array zone, a bit line layer, and a memory cell direction associated with the memory cell. The compensation may include adjusting the bit line voltage and/or bit line reference current on a per memory cell basis depending on memory cell specific characteristics. In some embodiments, a read/write circuit for reading and/or writing a memory cell may select a bit line voltage from a plurality of bit line voltage options to be applied to the memory cell based on whether the memory cell has been characterized as a strong, weak, or typical memory cell. |
US08885399B2 |
Phase change memory (PCM) architecture and a method for writing into PCM architecture
A phase change memory (PCM) architecture and a method for writing a PCM architecture are described. In one embodiment, a PCM architecture includes a PCM array, word line driver circuits, bit line driver circuits, a source driver circuit and a voltage supply circuit. The bit line driver circuits are connected to the PCM array and the electrical ground. Other embodiments are also described. |
US08885397B2 |
Self-referenced MRAM cell with optimized reliability
Magnetic random access memory (MRAM) element suitable for a thermally-assisted write operation and for a self-referenced read operation, including a magnetic tunnel junction portion having a first portion and a second portion, each portion including a storage layer, a sense layer, and a tunnel barrier layer; the magnetic tunnel junction further including an antiferromagnetic layer between the two storage layers and pinning a storage magnetization of each of the storage layers below a critical temperature, and freeing them at and above the critical temperature; such that, during a write operation, a free magnetization of each of the sense layer is magnetically saturable according to a direction of a write magnetic field when applied; and the storage magnetizations are switchable in a direction substantially parallel and corresponding to the direction of the saturated free magnetizations. |
US08885391B2 |
Semiconductor device and semiconductor memory device including transistor and capacitor
A memory circuit is included. The memory circuit includes n field-effect transistors (n is a natural number of 2 or more) and n capacitors each including a pair of electrodes. A digital data signal is input to one of a source and a drain of the first field-effect transistor. One of a source and a drain of the k-th field-effect transistor (k is a natural number of greater than or equal to 2 and less than or equal to n) is electrically connected to the other of a source and a drain of the (k−1)-th field-effect transistor. One of the pair of electrodes of the m-th capacitor (m is a natural number of n or less) is electrically connected to the other of a source and a drain of the m-th field-effect transistor of the n field-effect transistors. At least two of the n capacitors have different capacitance values. |
US08885388B2 |
Apparatus and method for reforming resistive memory cells
A memory includes an array of memory cells, a first module and a second module. The first module is configured to compare a first state of a memory cell with a reference. The memory cell is in the array of memory cells. The second module is configured to, subsequent to a read cycle or a write cycle of the memory cell and based on the comparison, reform the memory cell to adjust a difference between the first state and a second state of the memory cell. |
US08885385B2 |
Memory element and memory device
A memory element includes: a memory layer disposed between a first electrode and a second electrode. The memory layer includes: an ion source layer containing one or more metallic elements, and one or more chalcogen elements of tellurium (Te), sulfur (S), and selenium (Se); and a resistance change layer disposed between the ion source layer and the first electrode, the resistance change layer including a layer which includes tellurium and nitrogen (N) and is in contact with the ion source layer. |
US08885384B2 |
Mask-programmed read-only memory with reserved space
The present invention discloses a mask-ROM with reserved space (mask-ROMRS). For small content revision, the present invention salvages the original data-mask by writing the data-pattern of new content into a reserved mask-region which originally has no data-pattern. |
US08885382B2 |
Compact socket connection to cross-point array
An integrated circuit may include lines that traverse a cross-point array, the lines fabricated at a first pitch on a first layer, wherein the first pitch is sub-lithographic, and leads on a second layer, the leads having a second pitch that is twice as large as the first pitch. The lines may be routed outside of the array in alternating groups to opposite sides of the array where the lines couple to the leads. |
US08885379B2 |
High speed magnetic random access memory-based ternary CAM
The present disclosure concerns a self-referenced magnetic random access memory-based ternary content addressable memory (MRAM-based TCAM) cell comprising a first and second magnetic tunnel junction; a first and second conducting strap adapted to pass a heating current in the first and second magnetic tunnel junction, respectively; a conductive line electrically connecting the first and second magnetic tunnel junctions in series; a first current line for passing a first field current to selectively write a first write data to the first magnetic tunnel junction; and a second current line for passing a write current to selectively write a second write data to the second magnetic tunnel junction, such that three distinct cell logic states can be written in the MRAM-based TCAM cell. |
US08885378B2 |
Identifying a result using multiple content-addressable memory lookup operations
In one embodiment, a first search operation is performed based on a base lookup word on a first plurality of content-addressable memory entries of an overall plurality of priority-ordered content-addressable memory entries to identify a first matching entry and a corresponding first overall search position of the first matching entry within the overall plurality of priority-ordered content-addressable memory entries. A second search operation is performed based on the base lookup word on a second plurality of content-addressable memory entries of the overall plurality of priority-ordered content-addressable memory entries to identify a second matching entry and a corresponding second overall search position of the second matching entry within the overall plurality of priority-ordered content-addressable memory entries. The corresponding first overall search position is compared to the corresponding second overall search position to determine the overall search result. |
US08885374B2 |
Multilevel converter and topology method thereof
A multilevel converter includes at least one phase. Each phase of the multilevel converter includes a direct current (DC) link, a first circuit, a second circuit, and a phase capacitor. The DC link includes a first capacitor, a second capacitor, and a third capacitor situated between the first and second capacitors. The first circuit is electrically coupled to two terminals of the first capacitor. The second circuit is electrically coupled to two terminals of the second capacitor. The phase capacitor is electrically coupled between the first circuit and the second circuit. |
US08885371B2 |
Multi-level parallel power converters
Multi-level power converters are disclosed. In one embodiment, a multi-level power converter includes an input for receiving an input voltage and a converter output for providing a variable output voltage. The multi-level power converter includes a plurality of switching circuits. Each switching circuit is connected to the input in parallel with each other switching circuit. Each switching circuit includes an output. Each switching circuit is selectively operable to couple its output to the input voltage or a reference voltage. The multi-level power converter includes a parallel multi-winding autotransformer (PMA). The PMA includes a plurality of windings and a magnetic core having a plurality of magnetically connected columns. Each winding is positioned around a different one of the columns and has a beginning and an end. The output of each switching circuit is coupled to the beginning of a different winding. The end of each winding is connected to the converter output in parallel with each other winding. |
US08885368B2 |
Power converting apparatus suppressing switching noise by controlling switching operation
A power converter for effectively reducing switching noise is provided. The power converter comprises a capacitor 111; switching devices Q11a and Q11b connected to the capacitor 111 in parallel; and a controller 105 that controls each switching device individually to perform switching operations. Each of the switching devices Q11a and Q11b forms a closed circuit together with the capacitor 111. The controller 105 controls the switching devices Q11a and Q11b to perform switching operations of switching ON or OFF at different timings such that at least two closed circuits including the switching devices Q11a and Q11b mutually cancel ringing voltages occurring therein, each ringing voltage occurring due to the switching operations performed by a corresponding switching device and having a frequency defined by an inductance of a corresponding closed circuit and an output capacity of a switching device included in the corresponding closed circuit. |
US08885367B2 |
Input circuit for an electrical device, use of an input circuit and electrical device
A switched-mode power supply unit includes a mains input connecting the power supply to a primary supply voltage; an input circuit including a shared electrical path connected to the mains input and including a first mains filter, a first electrical path, connected in series with the shared electrical path, including a second mains filter, a second electrical path connected in series with the shared electrical path and connected in parallel with the first electrical path, and a first switching element that opens the first electrical path; a supply output that provides a filtered primary supply voltage; a switched-mode converter coupled to the supply output that converts the filtered primary supply voltage to a secondary supply voltage; and a control circuit that selectively switches the power supply unit to a first mode of operation with a high power output or a second mode of operation with a reduced power output. |
US08885366B2 |
DC-to-DC voltage regulator and its operating method thereof
A method for operating the DC-to-DC voltage regulator including plural active switches and plural inductors is disclosed. The method including the steps of: turning on the first active switch, and then turning off the first active switch when the current flowing in the first inductor is equal to zero; turning on the third active switch, and then turning off the third active switch when the current flowing in the second inductor is equal to zero; turning on the second active switch, and then turning off the second active switch when the current flowing in the first inductor is equal to zero; and turning on the fourth active switch, and then turning off the fourth active switch when the current flowing in the second inductor is equal to zero. |
US08885365B2 |
Switching power supply device and method for control thereof
A switching power supply device and method for control thereof, including an input voltage generating unit, a transformer, an output voltage generating unit, a MOS transistor, an output voltage detecting unit, a switching control unit, and a power supply unit. The output voltage detecting unit detects a transformer tertiary winding voltage, compares it with a first reference value, compares the differentiated tertiary winding voltage with a second reference value, and determines the start and end of a detection period based on the two comparisons. The output voltage detecting unit also samples and holds the voltage with two sampling pulses within the detection period, selects one of the two sampled and held voltages, and outputs the selected voltage when the detection period ends. |
US08885356B2 |
Enhanced stacked microelectronic assemblies with central contacts and improved ground or power distribution
A microelectronic assembly includes a dielectric element, first and second microelectronic elements, signal leads, and one or more jumper leads. The dielectric element has oppositely-facing first and second surfaces and first and second apertures extend between the surfaces. A plurality of electrically conductive elements are positioned thereon. Signal leads are connected to one or more of the microelectronic elements and extend through one or more of the first or second apertures to some of the conductive elements on the dielectric element. One or more jumper leads extend through the first aperture and are connected to a contact of the first microelectronic element. The one or more jumper leads span over the second aperture and are connected to a conductive element on the dielectric element. |
US08885354B2 |
Mount platform for multiple military radios
A platform for a military radio with a vehicle adapter amplifier has been developed. The apparatus includes a base for supporting dual AN/VRC-110 radio systems. The platform has a first power supply that includes a DC power converter for converting 110/220 alternating current into +28 Volt direct current and a second power supply that converts +28 Volt direct current into +6.75 Volts direct current, +13 Volts direct current and +200 Volt direct current. The platform includes a vehicle adapter power amplifier that provides range extension to said dual AN/VRC-110 radio systems. |
US08885353B2 |
Electrical assembly for a motor vehicle, suitable for contacting with a connector
An electrical assembly for a motor vehicle is configured to contact a connector. Contact surfaces are provided on a circuit board of the assembly. The connector has contact elements for contacting the contact surfaces. A housing of the assembly has an inner chamber and a contacting chamber directed toward the connector area, with the inner wall therebetween to separate the chambers. The circuit board including the electrical components is arranged in the inner chamber and only a contacting area with the contact surfaces protrudes through the inner wall into the contacting chamber. |
US08885352B2 |
Power supply module of linear actuator and conversion assembly thereof
In a power supply module of a linear actuator and a conversion assembly thereof, the power supply module includes a casing (10), a circuit control unit (11), and a conversion assembly (2). The casing (10) is provided with a dividing plate (102) for dividing the interior of the casing (10) into a first space (103) and a second space (104). The circuit control unit (11) is disposed in the first space (103), and the conversion assembly (2) is disposed in the second space (104). The conversion assembly (2) further includes a circuit board set (20) and a frame (21). The circuit board set (20) is electrically connected with an inductive element(A), a rectifying element(B) and a filtering element(C). The circuit board set (20) is mounted onto the frame (21) to form a modular structure. |
US08885351B2 |
Portable terminal
A portable terminal is formed with reinforced structures for withstanding external impacts. The portable terminal includes a front case and an input device arranged on the front case. A first rear cover coupled to a rear side of the front case is formed from a metallic material. A second rear cover coupled to the rear side of the front case and the first rear cover is formed from a synthetic resin. And a fastening device anchors the second rear cover to the rear side of the front case. The input device is positioned on an outer surface of the front case, and the fastening device is anchored to a rear side of the input device. |
US08885348B2 |
Circuit board sensor and method for producing the same
The invention relates to a circuit board sensor (1) for measuring physical variables, comprising a substrate board (2) and a second board (3) both made of glass, wherein at least the second board (3) is designed such that said board is elastically deformable, wherein the substrate board (2) and the second board (3) each comprise a first and a second side (2a, 2b, 3a, 3b), wherein the second side (2b) of the substrate board (2) and the first side (3a) of the second board (3) are disposed opposite each other, and wherein a spacer element (7) is disposed between the substrate board (2) and the second board (3) and holds the substrate board (2) and the second board (3) at a mutual distance, wherein the substrate board (2) and the second board (3) extend in particular parallel to each other, wherein the second side (2b) of the substrate board (2) comprises a first metal or polymer surface (5a) and the first side (3a) of the second board (3) comprises a second metal or polymer surface (5b), and wherein the first and second metal or polymer surfaces (5a, 5b) are disposed at least partially opposite each other, and wherein conductors (4) are attached on the first side of the substrate board (2), and wherein the substrate board (2) comprises at least one first and one second through-plating (9) disposed such that the first through-plating (9a) electrically conductively connects the conductors (4) to the first metal or polymer surface (5a), and such that the second through-plating (9b) electrically conductively connects the conductor (4) to the second metal or polymer surface (5b). |
US08885346B2 |
Electronic deviec having heat dissipation device
An exemplary electronic device includes a printed circuit board, electronic components mounted on a top surface of the printed circuit board, and a heat dissipation device. The heat dissipation device contacts the electronic components to absorb heat generated from the electronic components and dissipate the heat by natural convection and thermal radiation. The heat dissipation device includes a base plate contacting the electronic components to absorb heat generated therefrom and thermal hairs mounted on a top surface of the base plate. The thermal hairs wave with heated airflow at an inner of the electronic device to dissipate heat transferred from the base plate. |
US08885344B2 |
Semiconductor device
A terminal board is electrically connected to a module terminal of a semiconductor module. The semiconductor module and a cooling unit are laminated on the terminal board. A spring member is disposed on the semiconductor module and the cooling unit. A spring support tool is disposed on the spring member in order to apply, to the spring member, an urging force for pressing the semiconductor module and the cooling unit against the terminal board. |
US08885337B2 |
Retaining system for fastening an electronic auxiliary device
The invention relates to a retaining system for fastening an electronic auxiliary device (13) by means of a retaining element (1), wherein in order to allow flat auxiliary devices (13) also to be reliably attached without the visibility or the operation of the auxiliary device (13) being impaired, the perimeter of the retaining element (1) effective for accommodating the auxiliary device can be adjusted larger in an open position than in a closed position by means of a cam control having a cam disk (5) and controlled by an operating lever (6). The retaining element (1) further comprises a base plate (2), wherein on the base plate (2), the operating lever (6) and the cam disk (5) engaged with the operating lever (6) are pivotably arranged and attachment elements (3) for the auxiliary device (13) that are kept under stress by at least one elastic element (4) are movably arranged, and pivoting the operating lever (6) moves the attachment elements (3) into the open position or into the closed position by means of the cam disk (5). |
US08885331B2 |
Portable electronic apparatus
A portable electronic apparatus includes coupled first and second casings with respective image display surfaces, and including a full-closed state where both casings are overlaid on each other, a tilt state where the second casing has been moved from the full-closed state so that the image display surfaces in both casings are exposed and, also, the image display surface in the second casing is inclined with respect to the image display surface in the first casing at an angle of opening which is equal to or more than 90 degrees but less than 180 degrees, and a full-open state where the image display surfaces in both casings are flushed with each other in the same plane, and the portable electronic apparatus being capable of holding the second casing, in attitude, with respect to the first casing in the full-closed state, in the tilt state and in the full-open state. |
US08885329B2 |
Superconducting switch cooled by means of internal cavity filled with liquid or gaseous coolant
When testing or powering up a magnet in a magnetic resonance imaging device, a switch is provided that switches a winding between resistive and superconductive modes. The switch includes a housing that contains a winding wound about a bobbin, and an internal coolant cavity that contains coolant that cools the winding, A baffle separates the internal coolant cavity from an external coolant reservoir. The baffle has small apertures that permit influx of liquid coolant into the internal cavity to cool the winding, At high temperatures, the coolant in the internal cavity vaporizes causing the winding to further increase its temperature and resistance, Upon reduction of heat to the winding, the winding cools sufficiently to permit influx of liquid coolant, thereby restoring a superconductive mode of operation to the winding. |
US08885328B1 |
Transfer switch housing having rear wall mounted switches
A power transfer device adapted for interconnection with the electrical system of a building includes a cabinet, a set of switches mounted to the cabinet, and wires adapted to connect the switches to an electrical distribution panel associated with a building electrical system. The power transfer device includes a first compartment and a second compartment partitioned from one another by a removable intermediate wall that slidably engages a base that defines a back wall of the cabinet. The switches are secured to a base of the cabinet and a first panel closes the first compartment and cooperates with the set of switches such that the switches are operable through the first panel and discrete switches can be removed from the cabinet when the first panel is the removed from cabinet without interfering with an orientation of other switches relative to the cabinet. |
US08885324B2 |
Overvoltage protection component
An improved overvoltage protection component is provided. The overvoltage protection component has a first internal electrode contained within a dielectric material. The first internal electrode is electrically connected to a first termination and a second internal electrode contained within the ceramic dielectric material is electrically connected to a second termination. |
US08885315B2 |
Multi-actuator motion control system
A multi-actuator motion control system includes a control methodology that coordinates the motion of multiple actuators while limiting the force-fight between the actuators. Control logic is provided in a relative coordinate system that allows control of the mean actuator position. Force-fight between the actuators is decoupled from the actuator position by estimating load forces on the actuator using reduced-order observers. |
US08885312B2 |
ESD protection device and manufacturing method thereof
An ESD protection device includes a ceramic base material, a pair of opposed electrodes provided on a surface of or in the ceramic base material, and a discharge auxiliary electrode film arranged to connect the pair of opposed electrodes, wherein the discharge auxiliary electrode film is composed of a material containing, as its main constituents, metallic particles and glass covering the metallic particles. The discharge auxiliary electrode film is formed by providing an electrode paste containing glass-coated metallic particles that have an approximately 15% rate of increase in weight at about 400° C. for about 2 hours in air, a resin binder, and a solvent so as to connect the pair of opposed electrodes to each other, and then firing at a temperature of about 600° C. or more, higher than a softening point of glass of the glass-coated metallic particles, and not +200° C. higher than the softening point. |
US08885306B2 |
Power management and distribution system having a fault detection and isolation assembly and method
A power management and distribution system includes a source block having a power distribution line, wherein the power distribution line includes a distribution switch. At least one load block is in operable communication with the power distribution line and having a plurality of load block power output lines, wherein each of the plurality of load block power output lines includes a load switch. Further included is a plurality of loads each carried power by at least one of the plurality of load block power output lines. Yet further included is a protection logic unit comprising at least one algorithm for comparing a power characteristic to a power characteristic threshold at a plurality of locations, wherein the protection logic unit selectively determines which of the source block switches, distribution switches and the load switches of the plurality of load block power output lines are opened based on at least one comparison. |
US08885305B2 |
Method and apparatus for ESD circuits
A high performance ESD protection circuit is provided. Embodiments include a circuit having an RC clamp circuit including a first NMOS transistor having a first source, drain, and gate, a current mirror circuit including first and second PMOS transistors having a second and third source, drain, and gate, respectively, and an SCR circuit including a first P+ contact. The first source is coupled to a ground rail, the first drain is coupled to the second drain, second gate, and third gate, the second and third sources are coupled to a power rail, and the third drain is coupled to the first P+ contact, wherein during an ESD event the first NMOS and PMOS transistors turn on to discharge a first current to the ground rail, and the current mirror provides a second current to the first P+ contact for turning on the SCR. |
US08885302B1 |
Anisotropic magnetoresistive (AMR) sensors and techniques for fabricating same
Novel anisotropic magneto-resistive (AMR) sensor architectures and techniques for fabricating same are described. In some embodiments, AMR sensors having barber pole structures disposed below corresponding AMR sensing elements are provided. AMR sensors having segmented AMR sensing elements are also described. Fabrication techniques that can be used to fabricate such sensors are also described. Fabrication techniques are also described that can reduce the risk of contamination during AMR sensor fabrication. |
US08885301B1 |
Magnetic write head characterization with nano-meter resolution using nitrogen vacancy color centers
A crystal film with one or more nitrogen vacancy centers is placed in a magnetic field produced by a recording head and excitation illumination and a varying excitation field is applied. A confocal microscope or wide-field microscope optically detects a decrease in a spin dependent photoluminescence in response to the excitation illumination caused by electron spin resonance (ESR) of the at least one nitrogen vacancy center at varying excitation frequencies of the excitation field to measure Optically Detected Spin Resonance (ODMR). A characteristic of the recording head is determined using the ODMR. |
US08885300B2 |
Magnetic element with a bi-layer side shield
A magnetic element is generally provided that can be implemented as a data reader. Various embodiments may connect a magnetic stack to a top shield and separate the magnetic stack from a bi-layer side shield. The bi-layer side shield may have a fixed magnetization layer and a soft magnetic layer each magnetically isolated from the top shield. |
US08885297B1 |
Electrical contacts to motors in dual stage actuated suspensions
Various embodiments concern a dual stage actuation flexure having a motor contact paddle for connecting to a terminal of a piezoelectric motor. The flexure comprises a paddle having a top side and a bottom side, the paddle comprising at least one void, each void extending through the paddle from the bottom side to the top side. The paddle further comprises a stainless steel base, a conductor comprising a layer of metal, and a dielectric layer having a first section and a second section, the first section positioned between the conductor and the stainless steel base to overlap the stainless steel base and the second section extending beyond the stainless steel base to not overlap the stainless steel base. The bottom side of the paddle is configured to connect to the terminal with electrically conductive adhesive. |
US08885294B2 |
Head gimbal assembly and disk device with the same
According to one embodiment, a head gimbal assembly includes a load beam, a base plate fixed to a proximal-end portion of the load beam, a flexure attached to the load beam and the base plate, a gimbal portion formed of a distal-end portion of the flexure positioned on a distal-end portion of the load beam, a magnetic head attached to the gimbal portion, and electrically connected to the traces of the flexure, a concave portion formed in the gimbal portion, and concaved toward the thin metallic plate side, and a piezoelectric element arranged in the concave portion, fixed on a bottom of the concave portion, and configured to expand/contract in a longitudinal direction of the flexure by application of a voltage thereto. |
US08885290B1 |
Disk drive with removably externally fixed canister under a hermetic seal
A disk drive includes a disk drive enclosure having a canister opening, and a disk rotably mounted to and within the disk drive enclosure. A canister containing a desiccant or adsorptive material is removably externally fixed within the canister opening. An external surface of the canister is external to and facing away from the enclosure. A hermetic seal covers the external surface of the canister and is externally adhered to the disk drive enclosure. |
US08885280B1 |
Polarization rotator
Implementations disclosed herein allow a magneto-optical polarization rotator to couple light from a light source of a HAMR recording device to waveguide attached to a slider. According to one implementation, the magneto-optical polarization rotator has a magnetophotonic crystal structure with a number of thin film layers configured to rotate the light by 90 degrees. |
US08885278B2 |
Magnetic disk apparatus and control method of magnetic heads
A seek control section is configured so that when a magnetic head is within a prescribed range from a zone boundary when there is a head change request, the magnetic head is driven to seek in a stable region, and then the magnetic head is changed from a current head to a target head. After the change from the current head to the target head, the target head is driven to seek the target position. |
US08885277B1 |
Modulation coding for two-dimensional recording
Technologies are described herein for implementing modulation coding schemes for TDMR. A data sequence is received to be stored on a first data track of a recording media. The first data sequence is encoded into a first codeword sequence using a modulation coding scheme, and the first codeword sequence is written to the first data track of the recording media. Subsequently, a second data sequence is received to be stored on a second data track of the recording media, the second data track being adjacent to the first data track. A second codeword sequence is generated for the second data sequence based on the first codeword sequence on the first data track, and the second codeword sequence is written to the second data track of the recording media. |
US08885276B2 |
Systems and methods for shared layer data decoding
The present inventions are related to systems and methods for data processing, and more particularly to systems and methods for performing data decoding. |
US08885274B1 |
Implementing surface analysis test (SAT) function for microwave-assisted magnetic recording (MAMR) HDD with embedded contact sensor (ECS) and spin torque oscillator (STO) signals
A method, apparatus, and system are provided for implementing enhanced surface analysis test (SAT) function for microwave assisted magnetic recording (MAMR) hard disk drives (HDDs) using embedded contact sensor (ECS) and spin-torque oscillator (STO) signals. A preamplifier circuit receives the embedded contact sensor (ECS) and spin-torque oscillator (STO) signals and compares the received ECS and STO signals to identify magnetic disk media defects including bumps or thermal-asperity (TA) defects and pits or hole defects. |
US08885265B2 |
Zoom lens system, imaging device and camera
A zoom lens system comprising: a negative first lens unit; a positive second lens unit; and a positive third lens unit, wherein the first to third lens units are individually moved along an optical axis to vary magnification in zooming, the first lens unit is composed of two lens elements and includes a positive lens element having at least one aspheric surface, the third lens unit is composed of one lens element, and the condition: 1.74 |
US08885262B2 |
Electronic image pickup system
The invention relates to an electronic image pickup system whose depth dimension is extremely reduced, taking advantage of an optical system type that can overcome conditions imposed on the movement of a zooming movable lens group while high specifications and performance are kept. The electronic image pickup system comprises an optical path-bending zoom optical system comprising, in order from its object side, a 1-1st lens group G1-1 comprising a negative lens group and a reflecting optical element P for bending an optical path, a 1-2nd lens group G1-2 comprising one positive lens and a second lens group G2 having positive refracting power. For zooming from the wide-angle end to the telephoto end, the second lens group G2 moves only toward the object side. The electronic image pickup system also comprises an electronic image pickup device I located on the image side of the zoom optical system. |
US08885259B2 |
Image display apparatus
An image display apparatus includes an image forming device having pixels; a collimating optical system collimating light from the image forming device; and an optical device receiving, guiding, and outputting the collimated light as directional rays in different directions. The optical device includes a light-guiding plate; a first optical member reflecting or diffracting the light so as to totally reflect the light inside the light-guiding plate; and a second optical member causing the propagated light to emerge from the light-guiding plate. When a light ray emitted from a pixel located farthest from the center of the image forming device and a light ray emitted from a pixel located at the center of the image forming device pass through a front nodal point of the collimating optical system and are respectively incident on the collimating optical system and the light-guiding plate at angles θ1 and θ2, θ2>θ1 is satisfied. |
US08885255B2 |
Daylight harvesting shelf and method of improving interior natural light
A method and device for improving natural lighting within buildings is provided. The device comprises a controllable shelf having an upper, specular reflective surface for directing natural light into interior spaces and against interior ceilings. The shelves can be static or pivotable to redirect light based on the day and time of year. The pivotable shelf can be rotated downward or upwards to change the angle with which the light is reflected into the adjacent window, while its position is below the window and along the exterior of the building. This improves interior natural lighting and reduces electrical lighting costs using either a static shelf or movable shelf, wherein the assembly is deployable in a commercial or residential environment without blocking any naturally entering light through the window itself. |
US08885252B1 |
Decorative, ornamental, or jewelry articles having diffraction gratings
A first article has a surface bearing a diffraction grating that comprises a plurality of elevated regions and recessed regions and a reflective coating that provides reflective diffraction within the article but is sufficiently thick to prevent diffraction outside the article. Alternatively, the reflective coating can be arranged to also provide reflective diffraction outside the article.A second article has a surface bearing a diffraction grating that comprises a plurality of elevated regions and recessed regions. Either (i) at least a portion of each ridge, or (ii) at least portion of each trench, comprises a material differing with respect to its refractive index or with respect to its optical transmissivity. |
US08885251B2 |
Apparatus for conforming a planar film on an optical lens, method for functionalizing an optical lens by means of said apparatus, the optical lens so-obtained
The present invention relates to an apparatus for confirming a functionalized flexible planar film on an optical lens. The apparatus according to the invention may also be used in a process of functionalization of an optical lens. As a factor of the functionalization that one wishes to introduce into said optical lens and the nature of the functionalized flexible planar film used, the functionalization process is a process of gluing, transfer, or molding of a functionalized flexible planar film onto an optical lens. The implementation of each of these respective processes makes it possible to obtain a functionalized optical lens, said functionalization being adhered, transferred, or molded using a functionalized flexible planar film. |
US08885243B2 |
Electrowetting display device and method of manufacturing the same
An electrowetting display device including a first base substrate, a second base substrate facing the first base substrate, a first electrode disposed on the first base substrate, a second electrode disposed on the second base substrate to face the first electrode, a partition wall disposed between the first and second electrodes to define a receiving area, a hydrophobic layer disposed on the first electrode, a hydrophilic layer disposed on the second electrode, and first and second fluids accommodated in the receiving area and immiscible with each other. At least one of the first fluid and the second fluid has a polarity. The hydrophilic layer allows droplets separated from a hydrophobic fluid of the first and second fluids to be merged with the hydrophobic fluid. Accordingly, a change in amount of the fluids in each pixel is prevented. |
US08885241B2 |
Display device
a display device includes a lower substrate with lower electrodes and an upper substrate with upper electrodes, a plurality of pixels between the lower substrate and the upper substrate, electrochromic particles that are implanted into the plurality of pixels, each electrochromic particle comprising a core and a shell layer surrounding the core, and reflective layers on the lower electrodes and corresponding to the plurality of pixels. |
US08885236B2 |
Natural language color communication and system interface
A natural language color control system. The system includes a dictionary of ordinary language color terms, a working color space, wherein every portion of the working color space is mapped to at least one term in the color term dictionary, and an ordinary language command lexicon and syntax for use with the ordinary language color terms that correspond to transformations in the working color space. The dictionary of color terms may be created or chosen from pre-existing dictionaries. This system could be used to adjust colors in images as well as the meaning of verbally-defined color terms such as for searching a database. |
US08885233B2 |
Method, system, and apparatus for a document camera based book scanner and reading machine with an automatic page turner
Disclosed is a portable scanner for digitizing books. The scanner has a first leaf and a second leaf joined to each other at a hinge. A first support member is attached to the first leaf and a second support member is attached to the second leaf. The support members maintain the first leaf at an angle of less than ninety degrees relative to a surface supporting the first leaf. At least one scanning mechanism is connected to one of the first or second leafs. A page turning mechanism flips each page of a book to be scanned and maintain each page in a secure position. |
US08885232B2 |
Scanner lens, image reader and image forming device
A scanner lens includes a first lens group with a positive refractive power, having a first positive lens and a second negative lens which are cemented, second to fifth lens groups having a third negative lens, a fourth positive lens, a fifth negative lens, and a sixth negative lens, respectively, arranged in order from an object side to an image side, and an aperture stop disposed between the first and second lens groups. The scanner lens satisfies the following three conditions: 0.01 |
US08885228B2 |
Image scanning apparatus and method
An image scanning apparatus is provided. The image scanning apparatus includes an image sensor configured to scan a manuscript, a sensor driving unit configured to allow the image sensor to move on a scanning path, a driving control unit configured to generate a driving signal for the sensor driving unit, and a control unit configured to control the image sensor to scan the shading patch during moving to scan the manuscript. |
US08885227B2 |
System and method for multiple page-per-sheet printing
A method, computer-readable medium and data processing system for printing multiple data sources is provided. A plurality of data sources is collected. Each data source of the plurality of data sources are assigned to one of a plurality of sheet representations that each comprise a logical representation of one of a sequence of sheets on which the data sources are to be printed. A number of data sources assigned to a sheet representation is independent of a number of data sources assigned to other sheet representations. The plurality of data sources may then be printed on the sequence of sheets according to assignments of the data sources to the sheet representations. |
US08885225B2 |
Image forming apparatus, image forming method, and image forming material
According to one embodiment, there is provided an image forming apparatus for forming an image on a medium. The image forming apparatus includes a first image forming material including a color material that is decolored at or above a first temperature, and that develops color at or below a second temperature lower than the first temperature, a second image forming material including a color material that is not decolored under heat, a heater that heats the medium to the first temperature or higher after an image is formed on the medium, and a controller that performs control to print an image on the medium using the second image forming material, and to print tracking information on the medium using the first image forming material. |
US08885223B1 |
On-the-fly halftone image generation
Some of the embodiments of the present disclosure provide a method comprising forming an array comprising a plurality of microcells, each microcell of the plurality of microcells including a plurality of pixels; for each pixel in each of the plurality of microcells, assigning (i) a respective pixel offset factor that is associated with a relative position of the pixel in the respective microcell, and (ii) a respective microcell offset factor that is associated with an index of the respective microcell; and for each pixel in each of the plurality of microcells, determining a respective final offset factor that is based at least in part on the respective pixel offset factor and the respective microcell offset factor. Other embodiments are also described and claimed. |
US08885222B2 |
Image processing apparatus performing error diffusion process
An image processor includes a color conversion unit that generates color converted image data by converting color data and an error diffusion process performing unit that generates print data by performing an error diffusion process on the color converted image data. The error diffusion process performs a first error diffusion process on remaining data and performing a second error diffusion process on edge data such that an amount of ink used in the edge region by performing the second error diffusion process on the edge data is less than an amount of ink used in the edge region by performing first error diffusion process on the edge data. |
US08885214B2 |
Color image processing apparatus which reduces the amount of color materials consumed that are used to form a color image with reference to an index with high utility
The present invention provides a color image processing apparatus which reduces the amount of color materials consumed that are used to form a color image with reference to an index with high utility. To accomplish this, a color image forming apparatus of the present invention is a color image processing apparatus which applies image processing to image data of an input color image, and outputs the processed image data, and which changes tone values of respective colors of the color image, so that a conversion result obtained when image data of the color image are converted into amounts of color materials becomes an amount based on a reference conversion result, the reference conversion result being obtained when the image data are color-converted by a predetermined color conversion method and the converted data is further converted into an amount of a color material. |
US08885212B2 |
Converting between color and monochrome
Apparatuses, systems and methods are provided for converting a color portion of an image to monochrome, and/or for converting a monochrome portion of an image to color. |
US08885206B2 |
Direct-to-product transfer of personalized images and tracking labels using a single composite image
The printing tracking labels as a part of a composite image of personalized images for photo products includes receiving a plurality of personalized images and a plurality of label images, each label image including order tracking information associated with one of the plurality of personalized images. A composite image including the plurality of personalized images and the plurality of label images is generated. The position of each personalized image within the composite image corresponds to a position of a separate photo product on a printer tray and the position of each label image within the composite image corresponds to a position of a separate label on the printer tray. The composite image is printed onto the plurality of photo products and the plurality of labels. |
US08885205B2 |
Electronic device, printer, status management method for an electronic device, and recording medium
Electronic devices, such as printers, that provide application status management are disclosed, as well as related methods. A printer in which a plurality of applications are installed includes an a database that stores an application identifier for each of the applications; one or more log conversion units that generate a system log from application logs for the applications; a status management unit that monitors the system log for status changes and stores a new status in a status storage unit, and a print output unit that prints the status of all applications recorded in the database from the status storage unit. |
US08885203B2 |
Optical reading device and control method for an optical reading device
An optical reading device has an optical reading unit having optical elements disposed in a line that reads a medium; a storage unit having a ring buffer formed in the storage space; and a control unit that writes scanned data read by the optical reading unit to the ring buffer, reads the scanned data written to the ring buffer, and transfers the scanned data that was read. The control unit also manages positions in the ring buffer for writing and reading the scanned data using a write pointer denoting the position for writing the scanned data to the ring buffer, and a read pointer denoting the position of scanned data that has not been read. |
US08885202B2 |
Image forming apparatus having engine to aquire storage region where image data is to be written, and memory control method using the same
An image forming apparatus has a read unit to read a document image and generate image data of the document image, a memory management unit to manage a storage unit which is segmented into storage regions, and an engine to write the image data generated by the read unit to the storage unit. The engine acquires setting information related to writing of the image data from the memory management unit, and writes the image data to the storage unit based on the setting information that is acquired. |
US08885201B2 |
Image forming apparatus and scanned data process method
An information processing system including an information processing apparatus that selects between transferring data and obtaining data, and controls transferring data or obtaining data based on the selection. The system also includes a server that stores data transferred from the information processing apparatus, and controls transferring data to the information processing apparatus based on a request for transferring data received from the information processing apparatus. |
US08885199B2 |
Print system, relay server, processing device, print system control method, and storage medium for collectively setting print items
The information processing device of the present invention transmits printer information including a print setting to a print service device and registers the printer information in the print service device. Then, the information processing device receives a request for realizing a batch setting in the print service server in which a plurality of print settings is settable in a collective manner. When the request has been received, the information processing device registers batch setting printer information regarding the same printer as that corresponding to the printer information and corresponds to the setting content of the batch setting desired for implementation, in addition to the printer information in the print service device. |
US08885198B2 |
Image forming apparatus, control method for image forming apparatus, and storage medium for performing power-saving control
An image forming apparatus includes a communication unit configured to communicate with a server apparatus, a power supply control unit configured to repeat power supply to the communication unit, and an inquiry unit configured to make an inquiry to the server apparatus about whether to turn on a second power supply unit that energizes a controller that controls the image forming apparatus, each time the communication unit becomes communicable with the server apparatus by the power supply control unit, wherein the power supply control unit repeats power supply to the communication unit for each of a plurality of predetermined time periods, until receiving a response to turn on the power of the second power supply unit from the server apparatus in response to the inquiry by the inquiry unit. |
US08885197B2 |
Information processing system, image forming apparatus, management apparatus, information processing method, and storage medium for deleting or retreating image forming apparatus data
A system for managing operational setting information of an image forming apparatus, which is operable as an information processing system that enables a managing apparatus of the image forming apparatus to delete or retreat management data when the image forming apparatus performs data deletion processing or data retreat processing. |
US08885196B2 |
Portable terminal, printing system, control method for portable terminal, and computer program product for executing printing based on movement of the portable terminal
A portable terminal for transmitting printing data to a printing apparatus, the portable terminal including: a printing-data generating unit for generating the printing data; a detecting unit for detecting movement of a main body of the portable terminal; and a printing-data transmitting unit for transmitting the printing data to the printing apparatus when movement is detected by the detecting unit in a printing instruction waiting state after the printing data generation. |
US08885192B2 |
Data transformation using leaf and non-leaf nodes
A hierarchical tree is received that includes nodes. The nodes include a leaf node and a non-leaf node. The leaf node points to the non-leaf node, and specifies original data. The non-leaf node specifies a script to transform the original data to generate transformed data. The script is executed to transform the original data to generate the transformed data. The transformed data is output. |
US08885191B2 |
Print control apparatus performing a finishing process after printing, print control method thereof, and computer-readable medium
A print control apparatus includes a print job generation unit configured to generate a print job, wherein a final product of the print job comprises a plurality of print parts, wherein the print job generation unit is further configured to cause one or more printers to print the plurality of print parts, and to control said one or more printers to output at least a first one of the plurality of print parts to a first sheet discharge unit and to output at least a second one of the plurality of print parts to a second sheet discharge unit different from the first sheet discharge unit according to a print instruction, a job information sheet creation unit configured to create for each of the print parts, a job information sheet indicating that the print part concerned is related to at least one other print part of the print job and is also configured to cause the or one said printer to print the job information sheet, and a sheet discharge control unit configured to control said one or more printers so that each of the job information sheets is discharged to a sheet discharge unit to which a print part corresponding to the job information sheet is discharged. |
US08885189B2 |
Constraint print setting validation and resolution for cloud-aware print device
Systems and methods for printing in a cloud environment, wherein a second cloud service assists a printer and a cloud-print service with the user interaction required to update an invalid print ticket to a valid print ticket. |
US08885188B2 |
Communication system for transmitting multiple pulse signals, transmission circuit, reception circuit, and image forming apparatus
A communication system includes a transmitter and receiver. The transmitter includes a detector configured to detect an error amount of an edge position of a pulse signal caused by sampling; and a multiplexer configured to include a value indicating the detected error amount in a multiplexed signal. The receiver includes a demultiplexer configured to demultiplex the multiplexed signal and output a value indicating an amplitude of the pulse signal and the value indicating the error amount of the pulse signal; and a corrector configured to correct an edge position of the pulse signal using the error amount of the pulse signal, where the edge position is obtained from the value indicating the amplitude of the pulse signal output from the demultiplexer. |
US08885186B2 |
Printer using a conversion server to perform printing
A printer includes: a receiving unit for receiving a first print notification from a notification server; a transmitting unit for transmitting a first conversion instruction including a first target location information representing a location for specifying the target print data to a conversion server when the first print notification is received from the notification server, wherein the first conversion instruction is for controlling the conversion server to obtain the target print data using the first target location information and to convert the target print data; a print data obtaining unit for obtaining converted print data having a format that can be interpreted by the printer from the conversion server when the conversion server generates the converted print data in accordance with the first conversion instruction; and a print control unit for controlling a print performing unit to perform printing in accordance with the converted print data. |
US08885181B2 |
Virtual press run
A computer architecture that integrates desktop productivity applications with various visualization engines and various output engines allowing visualization, modification and formatting of the ultimate output from the application. Methods for accomplishing content visualization, editing and formatting in light of one or more printing option are also provided. |
US08885175B2 |
Method and apparatus for colour imaging a three-dimensional structure
A device for determining the surface topology and associated color of a structure, such as a teeth segment, includes a scanner for providing depth data for points along a two-dimensional array substantially orthogonal to the depth direction, and an image acquisition means for providing color data for each of the points of the array, while the spatial disposition of the device with respect to the structure is maintained substantially unchanged. A processor combines the color data and depth data for each point in the array, thereby providing a three-dimensional color virtual model of the surface of the structure. A corresponding method for determining the surface topology and associate color of a structure is also provided. |
US08885173B2 |
Film thickness measurement device and film thickness measurement method
A film thickness measurement apparatus includes a measurement light source which supplies measurement light containing wavelength components over a predetermined band to a semiconductor film, a spectroscopic optical system and a photodetector which detect intensities of output light formed by superimposing reflected light components from an upper surface and a lower surface of the semiconductor film at each time point by wavelength, and a film thickness analysis section which obtains a temporal change in film thickness of the semiconductor film. The film thickness analysis section obtains a value corresponding to a peak wavelength where the intensity of interfering light generated by the reflected light from the upper surface and the reflected light from the lower surface interfering with each other is maximized or minimized or an interval of the adjacent peak wavelengths based on spectral waveforms of the output light detected at mutually different time points. |
US08885172B2 |
Interferometric heterodyne optical encoder system
An encoder interferometry system includes an interferometer positioned to receive first and second beams having different frequencies, in which the interferometer has at least one polarizing beam splitting element for directing the first beam along a measurement path to define a measurement beam and the second beam along a reference path to define a reference beam. The encoder interferometry system further includes a encoder scale positioned to diffract the measurement beam at least once, a detector positioned to receive the measurement and reference beams after the measurement beam diffracts from the encoder scale, and an output component positioned to receive the measurement and reference beams before they reach the detector and deflect spurious portions of the first and second beam away from the detector. |
US08885171B2 |
Calibration jig for optical tomographic imaging apparatus and method for generating a calibration conversion table
A calibration jig allowing simple and repeatable calibration of a probe optical tomographic apparatus is disclosed. The jig includes a holding member removably attachable to an attachment section of the apparatus and a reflective surface held by the holding member. The reflective surface reflects measurement light emitted from an emitting section of the attachment section and directs reflected light back to the emitting section. If a probe of the apparatus is covered with a sheath, the jig may include a light transmitting member, which generates the same dispersion as dispersion at the sheath, between the emitting section and the reflective surface. The reflective surface may be a single reflective surface disposed within an area corresponding to twice a coherence length of the laser light with a zero path position of the reflective surface being the center of the area. |
US08885162B2 |
Detection optical system and scanning microscope
Provided is a detection optical system that is provided with a dispersed-light detection function and that can increase the amount of detected light by enhancing the diffraction efficiency. A detection optical system is employed which includes a transmissive VPH diffraction grating that disperses fluorescence from a specimen into a plurality of wavelength bands; a rotating mechanism that rotates the VPH diffraction grating about an axial line that is perpendicular to an incident optical axis of the fluorescence from the specimen and an emission optical axis from the VPH diffraction grating; a light detection portion that detects the fluorescence from the specimen that has been dispersed by the VPH diffraction grating; and a correcting portion that corrects an incident position on the light detection portion in accordance with a displacement of the optical axis caused by the rotation of the VPH diffraction grating in synchronization with the rotating mechanism. |
US08885160B2 |
Microspectrometer
The compact microspectrometer for fluid media has, in a fixed spatial coordination in a housing, a light source, a fluid channel, a reflective diffraction grating, and a detector. The optical measuring path starting from the light source passes through the fluid channel and impinges on the diffraction grating. The spectral light components reflected by the diffraction grating impinge on the detector. |
US08885157B2 |
Test apparatus, test method, and device interface for testing a device under test using optical signaling
Provided is a test apparatus that tests a device under test including an optical coupler transmitting optical signals in a direction perpendicular to a device surface. The test apparatus includes a substrate on which the device under test is to be loaded, an optical transmission path that transmits the optical signals, and a lens section facing the optical coupler on the substrate that focuses the optical signals from an end of either the optical coupler or the optical transmission path to an end of the other. |
US08885154B2 |
Method and apparatus for identifying reticulocytes within a blood sample
A method and apparatus for identifying reticulocytes within a blood sample is provided. The method includes the steps of: a) depositing the sample into an analysis chamber adapted to quiescently hold the sample for analysis, and the chamber has a known or determinable height extending between the interior surfaces of panels, which height is such that at least one red blood cell, or an aggregate of red blood cells, within the sample contacts both of the interior surfaces; b) admixing a supravital dye with the sample, which dye is operable to cause reticulin to fluoresce when excited by light of one or more predetermined wavelengths; c) imaging the sample using light that includes the one or more predetermined wavelengths that cause reticulin to fluoresce; d) imaging the sample using light that is absorbed by hemoglobin to produce values of optical density on a per image unit basis; and e) identifying reticulocytes within the sample using the image of the sample created with light that causes the dyed reticulin to fluoresce, and using the per image unit optical density values. |
US08885153B2 |
Differentiation of flow cytometry pulses and applications
A method of analyzing pulses from a flow cytometer in which particles in a fluid pass through an excitation volume of an electromagnetic radiation and interact with the electromagnetic radiation to generate signals in the form of pulses includes generating a time-dependent pulse indicative of the characteristics of one or more particles passing through the excitation volume of the electromagnetic radiation, determining a measurement window by selecting a portion of the pulse with a starting point and an ending point above a predetermined value, and calculating a first derivative of the pulse with respect to time over the measurement window. |
US08885151B1 |
Condensing sensor data for transmission and processing
Aspects of the disclosure relate generally to condensing sensor data for transmission and processing. For example, laser scan data including location, elevation, and intensity information may be collected along a roadway. This data may be sectioned into quanta representing some period of time during which the laser sweeps through a portion of its field of view. The data may also be filtered spatially to remove data outside of a threshold quality area. The data within the threshold quality area for a particular quantum may be projected onto a two-dimensional grid of cells. For each cell of the two-dimensional grid, a computer evaluates the cells to determine a set of characteristics for the cell. The sets of characteristics for all of the cells of the two-dimensional grid for the particular quantum are then sent to a central computing system for further processing. |
US08885149B2 |
Patterning device support
In a lithographic apparatus, slippage of a patterning device is substantially eliminated during movement of a patterning device stage by providing a magnetostrictive actuator to apply an accelerating force to the patterning device to compensate for forces that would otherwise tend to cause slippage when the patterning device stage moves. |
US08885146B2 |
Multi-photon exposure system
An exposure system includes a light source emitting a beam along an optical axis that is capable of inducing a multi-photon reaction in a resin. The exposure system further includes a resin undergoing multiphoton reaction, as well as an automated system including a monitor that measures at least one property of the beam selected from power, pulse length, shape, divergence, or position in a plane normal to the optical axis. The monitor generates at least one signal indicative of the property of the beam, and a sub-system adjusts the beam in response to the signal from the monitor. |
US08885142B2 |
Lithographic apparatus and device manufacturing method
A manifold is provided between an outlet of a fluid supply system for an immersion lithographic apparatus and a separator. The manifold is provided with a pressure sensor which passes the measured pressure in the manifold to a mass flow controller. The mass flow controller controls a leak flow into the manifold based on the measured pressure in the manifold so as to maintain a desired pressure in the manifold. |
US08885140B2 |
Substrate treatment apparatus, substrate treatment method and non-transitory storage medium
The present invention is a substrate treatment apparatus for performing solution treatment on a substrate, performing post-treatment in a treatment module subsequent to the solution treatment, including: a solution treatment section including a plurality of nozzles prepared for respective kinds of treatment solutions corresponding to lots of substrates; a transfer mechanism for transferring the substrate; a monitoring section monitoring whether there is a failure in discharge of the treatment solution in the nozzle; and a control unit outputting a control signal to prohibit the solution treatment in the solution treatment section for a substrate scheduled to be treated using a nozzle determined to have a failure by the monitoring section and to perform the solution treatment in the solution treatment section for a substrate scheduled to be treated using a nozzle other than the nozzle determined to have a failure. |
US08885138B2 |
Apparatus and methods for resizing electronic displays
Apparatus and methods are provided for resizing an electronic display that includes front and back plates, a perimeter seal spacing apart the plates and defining an enclosed cell area between the plates that includes an original display image area, image-generating medium sealed in the enclosed cell area, and electrical circuits on inner surfaces of the plates extending throughout the original display image area. For example, a cut line may be identified that intersects across the original display image area of the display. A laser may be directed adjacent the cut line to heat and/or separate leads of the electrical circuits adjacent the cut line. The display may be cut adjacent the cut line, e.g., before or after separating leads along the cut line, resulting in a target display portion with an exposed edge, and an excess display portion, and then the exposed edge may be sealed. |
US08885137B2 |
Liquid crystal display device
There is provided a liquid crystal display (LCD) device that prevents light leaks near spacers. The LCD device controls the optical transmissivity of a liquid crystal layer interposed between substrates disposed opposite each other, by means of an electric field generated in the layer-thickness direction of the liquid crystal layer. The LCD device includes spacers on a liquid-crystal-side surface of one substrate, signal lines formed on a liquid-crystal-side surface of the other substrate, an insulating film formed to cover the signal lines, and electrodes on the insulating film's upper surface. Each electrode contributes to controlling the optical transmissivity of the liquid crystal layer. Each spacer has a vertex surface disposed opposite to the signal lines. A portion of each electrode extends to the upper surface of a corresponding signal line. The extended portion is opposite to a part of a spacer's vertex surface disposed opposite to the corresponding signal line. |
US08885136B2 |
Display device comprising a recessed portion that is formed with at least one convex portion at a bottom of the recessed portion and wherein the recessed portion faces a columnar spacer
A display device includes a first substrate having organic and alignment films, a second substrate adhered to the first substrate by a sealant which surrounds a pixel region, a columnar spacer formed on the second substrate defining a distance between the first substrate and the second substrate, and a recessed portion formed in the organic film of the pixel region, the recessed portion facing to the columnar spacer. The recessed portion has a convex portion at a bottom of the recessed portion, and a height of a top of the convex portion from the first substrate is lower than a height of an upper surface of the organic film from the first substrate. A thickness of an alignment film on the convex portion is smaller than a thickness of the bottom of the recessed portion, and a top of the columnar spacer is in contact with the convex portion. |
US08885135B2 |
Nanostructure-film LCD devices
This invention relates to an LCD device comprising an electrically conductive and optically transparent nanostructure film deposited adjacent to or forming a part of at least one of a) a layer comprising triacetyl cellulose (TAC), b) a polarizing layer, c) an adhesive layer, d) a protective layer, e) an anti-glare layer f) an anti-reflective layer, or g) an antistatic layer. One embodiment is a device comprising an in plane switching (IPS) liquid crystal display (LCD) and a nanostructure film, wherein the film is electrically conductive, and wherein the film is optically transparent. |
US08885133B2 |
Display device
A display device includes a display panel, a liquid crystal panel superimposed on the display panel for enabling naked-eye stereoscopic view by separating a left-eye image and a right-eye image displayed on the display panel, and a flexible wiring substrate attached to the liquid crystal panel. The liquid crystal panel has a substrate and a substrate opposed to each other. The substrate has a projection part that projects from the substrate. The flexible wiring substrate is attached to a surface of the projection part of the substrate at the substrate side. The substrate is formed to be thinner than the substrate and provided at a side of the display panel. |
US08885130B2 |
Fringe field switching mode liquid crystal display apparatus and method of manufacturing the same
Embodiments may include a fringe field switching mode liquid crystal display (LCD) apparatus. The fringe field switching mode LCD apparatus includes a first substrate on which a first electrode and a second electrode are installed, the second electrode facing the first electrode and having a plurality of slits therein; a second substrate, which faces the first substrate; and a liquid crystal layer interposed between the first substrate and the second substrate, the first electrode having a protrusion at a slit end portion of the slits, the protrusion protruding toward the second electrode. |
US08885127B2 |
Liquid crystal display device and method for fabricating the same
A first substrate includes a wiring layer formed on a support substrate, and an insulating film covering the wiring layer on the support substrate and having a surface which is located opposite to the support substrate and partially and directly covered with an alignment film. As seen perpendicularly to (i.e. as seen in the direction of the normal to) a surface of the support substrate, a recess portion formed on the insulating film at least partially overlaps the wiring layer. A bank of the recess portion has such a shape that a tangent plane of the bank increases in inclination toward the support substrate as the tangent plane is shifted toward a bottom of the recess portion, and supports an edge end of the alignment film. |
US08885124B2 |
Liquid crystal display device
The present invention provides a liquid crystal display device capable of preventing a decrease in voltage holding ratio (VHR) of a liquid crystal layer and an increase in ion density (ID) and resolving the problem of display defects such as white spots, alignment unevenness, image sticking, and the like. The liquid crystal display device of the present invention is characterized by preventing a decrease in voltage holding ratio (VHR) of a liquid crystal layer and an increase in ion density (ID) and suppressing the occurrence of display defects such as image sticking and the like, and is thus particularly useful for a VA-mode or PSVA-mode liquid crystal display device for active matrix driving, and can be applied to liquid crystal display devices such as a liquid crystal TV, a monitor, a cellular phone, a smart phone, and the like. |
US08885123B2 |
Three-dimensional display apparatus and method for manufacturing the same
The present invention provides a 3D display apparatus which comprises a display and a liquid crystal cell module. The liquid crystal cell module retards a phase of the light emitted from the display and corresponding to a display frame for forming a left-handed circularly polarized light and a right-handed circularly polarized light. The present invention further provides a method for manufacturing the 3D display apparatus. The present invention can display 3D images without losing image information. The response time of a ferroelectric liquid crystal and an anti-ferroelectric liquid crystal of the present invention is faster, and thus the effect on the luminance of the display is less. |
US08885120B2 |
Liquid crystal display device using a color-sequential method wherein the number of different colored LEDs is less than the number of primary colors used in the display
A color Liquid Crystal display (LCD) device for displaying a color image using at least four different primary colors, the device including an array of Liquid Crystal (LC) elements, driving circuitry adapted to receive an input corresponding to the color image and to selectively activate the LC elements of the LC array to produce an attenuation pattern corresponding to a gray-level representation of the color image, and an array of color sub-pixel filter elements juxtaposed and in registry with the array of LC elements such that each color sub-pixel filter element is in registry with one of the LC elements, wherein the array of color sub-pixel filter elements comprises at least four types of color sub-pixel filter elements, which transmit light of the at least four primary colors, respectively. |
US08885117B2 |
Display apparatus having particular display regions
A display apparatus having a thin thickness and improved esthetic sense is disclosed. The display apparatus comprises a display panel including an upper substrate having a signal line to which gate and data signals are supplied, and at least one lower substrate bonded to the upper substrate; and a panel support member supporting the display panel to externally expose an entire upper surface of the display panel, wherein the display panel includes a display portion having a main display region, a sub display region having an area smaller than that of the main display region, and a boundary region dividing the main display region and the sub display region from each other; and a periphery portion surrounding the display portion. |
US08885116B2 |
Bezel packaging for sealed glass assemblies and a glass assembly therefor
Methods and assemblies related to frame or bezel packaging of a sealed glass assembly, such as a fit-sealed OLED device, such as an OLED display panel. The frame or bezel packaging may have one or more of (a) rounded or chamfered corners, (a) a cover, (b) a reinforced lead edge, (c) openings or cutouts in the back panel to conserve material and lighten the bezel, and (d) a shock absorbent intermediate layer of low modulus of elasticity material applied between the sealed glass assembly and the back and/or sides of the frame or bezel. The frame or bezel design may include a gap between the sealed glass assembly and the back panel of the bezel. The gap may be filled at least in part with low modulus of elasticity backing material. The glass package may have one or more of (a) rounded or chamfered corners, (b) rounded or chamfered edges, (c) a low modulus of elasticity material applied around its periphery or portions of its periphery, such as on the corners only, (d) a shortened lead end, and (e) a thickened lead end. |
US08885111B2 |
Optical node device
An optical node device includes a light receiving/emitting portion having an input port into which a signal beam is incident and an output port that emits a signal beam of a selected wavelength, a chromatic dispersion device that scatters spatially the signal beam depending on the wavelength of the signal beam, an optical coupler that focuses, onto a two-dimensional plane, beams dispersed by the chromatic dispersion device, a spatial light modulating element arranged so as to receive incident light deployed on an xy plane made up of an x-axis direction deployed according to wavelength and a y-axis direction orthogonal to the x-axis direction, and having numerous pixels arranged in a lattice on the xy plane, and a spatial light modulating element driving portion that drives electrodes of the individual pixels arranged in the xy axial directions in the spatial light modulating element. |
US08885108B2 |
Devices, systems and methods for controlling TV
A TV control device, for an external TV device includes a storage unit storing a user identification code and user setting data corresponding to the user identification code, and a wireless communication unit transmitting a control signal to the external TV device according to the user identification code and the user setting data, wherein the external TV device determines a TV setting of the external TV device according to the user identification code and the user setting data when the external TV device receives the control signal. |
US08885104B2 |
Apparatus and method for generating video signal reducing crosstalk between lightness signal and chrominance signal
In apparatus and method for generating a video signal using an LMS cone signal and an apparatus and method for restoring a video signal, a lightness signal and a chrominance signal may be generated using the LMS cone signal generated from an input image. Therefore, the generated chrominance signal may include only lightness information while the chrominance signal includes only chrominance information. |
US08885099B2 |
Methods and systems for improving low resolution and low frame rate video
Systems and methods are provided for improving the visual quality of low resolution and/or low frame rate video content displayed on large-screen displays. A video format converter may be used to process a low resolution and/or low frame rate video signal from a media providing device before the video is displayed. The video format converter may detect the true resolution of the video and deinterlace the video signal accordingly. The video format converter may also determine the frame rate of a video and may increase the frame rate if the received frame rate is below a certain threshold. For videos that are also low in quality, the video format converter may reduce compression artifacts and apply techniques to enhance the appearance of the video. |
US08885097B2 |
Cam frame structure, lens barrel structure, shake compensation device and imaging element unit
The lens barrel includes a lens frame and a cam frame. The lens frame has a body supporting a lens element in the optical system, at least three through-holes formed in the lens frame body, at least three cam members arranged on the lens frame body and at least one protruding member that protrude from the lens frame body. The cam frame has a body, at least three projection members extending from the cam frame body and inserted through the through-holes, at least three cam grooves formed in the cam frame body and the projection members to guide the cam members and to movably support the lens frame with respect to the cam frame body. The cam frame also has at least one auxiliary groove to guide the protruding member. One end of the auxiliary groove is disposed in the circumferential direction between two adjacent projection members. |
US08885096B2 |
Multi-media device containing a plurality of image capturing devices
A multi-media device and a method for manufacturing the multi-media device is described herein. The multi-media device includes a first and second substrate coupled to each other. Both the first and second substrates have a first side and a second side opposite to the first side. The multi-media device further includes a first camera coupled to the first side of the first substrate and a second camera coupled to the first side of the second substrate. The first camera includes a first lens housing, which houses one or more first lenses. The second camera includes a second lens housing, which houses one or more second lenses. The second substrate is coupled to the first substrate in a manner such that the one or more first lenses and the one or more second lenses receive light from opposite directions. |
US08885095B2 |
Zoom illuminating system and imaging apparatus employing the same
A zoom illuminating system and an imaging apparatus including the same are provided. The imaging apparatus includes: the zoom illuminating system; a zoom lens system including a plurality of lens groups and zooming an image of an object as a distance between the plurality of lens groups varies. |
US08885094B2 |
Accessory, camera, accessory shoe, and connector
An accessory which is controlled by a control signal supplied from a camera, includes: a terminal section having a plurality of terminals located adjacent to each other in an array that extends in an array direction, the plurality of terminals including at least a power terminal to which power is supplied from the camera and a signal input terminal to which the control signal is input from the camera; and a ground portion corresponding to the power terminal. The power terminal is disposed at a first end of the array the signal input terminal is disposed near a second end of the array opposite the first end, and the ground portion is disposed in a position further away from the power terminal than is the signal input terminal. |
US08885093B2 |
Image pickup apparatus, image pickup method, exposure control method, and program
An image pickup apparatus includes: an image pickup unit configured to generate a long-exposure image signal and a short-exposure image signal from incident light and output the generated signals as image pickup signals, the long-exposure image signal being generated by exposure for a relatively long period and the short-exposure image signal being generated by exposure for a relatively short period; a signal processing unit configured to generate a combined image signal by combining the long-exposure image signal and the short-exposure image signal, the combined image signal having a dynamic range that is relatively wider than that of at least any one of the long-exposure image signal and the short-exposure image signal; a detection unit configured to obtain a luminance integrated value and a luminance histogram of the combined image signal; and a control unit configured to perform exposure correction control using the luminance integrated value and the luminance histogram. |
US08885090B2 |
Imaging apparatus and autofocus control method thereof
In an imaging apparatus having a solid-state imaging device in which a focus detection pixel (phase difference detection pixel) is mounted on a light receiving surface, when dust is attached on the light receiving surface, a phase difference amount in a dust presence region is calculated from a detection signal of a phase difference detection signal and reliability of the phase difference amount is determined and when the reliability is high, phase difference AF control is performed with the phase difference amount calculated in the dust presence region. |
US08885088B2 |
Focus position searching method
A focus position searching method is used to determine an optimum position of a lens module, the lens module being driven by a voice coil motor (VCM), the VCM according to an input current to drive the lens module. The focus position searching method is used to search a left boundary and a right boundary, then two current values are obtained in a range between the left and the right boundaries, by using a golden section method to drive the lens module to capture an image and calculate sharpness of the image. According to the sharpness, the left and the right boundaries are continuously moved rightward and leftward, thereby two differences current values are obtained in the left and right boundaries within a certain range, and a searched current is used to carry out the focus. |
US08885080B2 |
Image pickup device and image pickup result outputting method
The present invention is applied to an image pickup device with a CMOS solid-state image pickup element, in which an analog-to-digital conversion circuit is disposed in a surface on an opposite side from an image pickup surface in a semiconductor chip 2. |
US08885073B2 |
Dedicated power meter to measure background light level in compressive imaging system
An imaging system and method that captures compressive sensing (CS) measurements of a received light stream, and also obtains samples of background light level (BGLL). The BGLL samples may be used to compensate the CS measurements for variations in the BGLL. The system includes: a light modulator to spatially modulate the received light stream with spatial patterns, and a lens to concentrate the modulated light stream onto a light detector. The samples of BGLL may be obtained in various ways: (a) injecting calibration patterns among the spatial patterns; (b) measuring complementary light reflected by digital micromirrors onto a secondary output path; (c) separating and measuring a portion of light from the optical input path; (d) low-pass filtering the CS measurements; and (e) employing a light power meter with its own separate input path. Also, the CS measurements may be high-pass filtered to attenuate background light variation. |
US08885069B2 |
View angle manipulation by optical and electronic zoom control
Provided is an imaging apparatus including a lens unit having an optical zoom function of collecting light from a subject and optically changing an angle of view, an imaging unit that continuously generates electronic image data using the light collected by the lens unit, an electronic zoom unit that performs electronic zoom by sequentially trimming and enlarging an image corresponding to the image data, a setting unit that sets an enlargement area to be enlarged in the image, a lens manipulation unit that receives a manipulation signal for changing an angle of view, and a control unit that continuously controls, while switching between enlargement of a center of the image by the optical zoom of the lens unit and enlargement of the enlargement area by the electronic zoom of the electronic zoom unit, according to the manipulation signal received by the lens manipulation unit. |
US08885065B2 |
Light leakage compensating unit image sensors, image sensor arrays including the unit image sensors, and methods for compensating for light leakage of the image sensor arrays
A light leakage compensating unit image sensor in a back side illumination method includes a photodiode and a storage diode, in which light input to a back side of the unit image sensor is received only by an area forming an electrode of the photodiode, and an area for forming another electrode of the photodiode and an area for forming two electrodes of the storage diode are separated from each other by a well, thereby compensating light leakage. |
US08885061B2 |
Image processing apparatus, image processing method and program
An image processing apparatus includes: an object state detector detecting a state of an object in input images inputted in time series; an image-capturing controller controlling image-capturing of the input images in accordance with the detected state of an object; and an image combiner combining pixel values at corresponding pixel positions of the input images, and outputting the pixel values as an output image, the input images being subjected to image-capturing control by the image-capturing controller. |
US08885058B2 |
Automatic low noise sampling of image and timing signals and signal delay compensation
A system is provided that measures the delay time of a first timing signal transmitted from a control unit to an imager and back to a phase detector. The phase detector also receives a second timing signal that is used as a reference to measure against the received/delayed first timing signal. Based on the phase detection, the system will retard or advance the first timing signal to compensate for the phase shift. |
US08885053B2 |
Integrated circuit and electric device for avoiding latency time caused by contention
An integrated circuit including a shared memory connected to a bus, an audio/multiplex/de-multiplex processor accessing the shared memory via the bus, a video processor performing heavy processes accessing the shared memory via the bus, and a local memory accessed by the video processor without passing through the bus. The integrated circuit avoids a latency time caused by access contention, such that a probability that the integrated circuit can complete processes to be done in real time is increased. Image data is displayed on the display device smoothly without deterioration of quality of display. |
US08885049B2 |
Method and device for determining calibration parameters of a camera
A method of determining calibration parameters of a camera comprises taking a first image of an object, taking a second image of the object, wherein the position of the camera with respect to the object is changed between the first and the second image, the calibration parameters of the camera being fixed between the first and the second image, determining a transformation that is adapted to transform a portion of the first into a corresponding portion of the second image, and determining the calibration parameters from the transformation. |
US08885047B2 |
System and method for capturing, storing, analyzing and displaying data relating to the movements of objects
A system and method for the capture and storage of data relating to the movements of objects, in a specified area and enables this data to be displayed in a graphically meaningful and useful manner. Video data is collected and video metadata is generated relating to objects (persons) appearing in the video data and their movements over time. The movements of the objects are then analyzed to detect the movements within a region of interest. This detection of movement allows a user, such as a manager of a store, to make informed decisions as to the infrastructure and operation of the store. One detection method relates to the number of people that are present in a region of interest for a specified time period. A second detection method relates to the number of people that remain or dwell in a particular area for a particular time period. A third detection method determines the flow of people and the direction they take within a region of interest. A fourth detection method relates to the number of people that enter a certain area by crossing a virtual line, a tripwire. |
US08885045B2 |
Device and method for monitoring vehicle surroundings
A vehicle surrounding monitoring device include at least one camera 2 installed in an own vehicle to image a video around the own vehicle, an obstacle sensor 3 for detecting an obstacle within an imaging range of the camera 2, a pixel synthesis unit 13 for receiving a camera image imaged by the camera 2 and converting the camera image into a view point converted image seen from a virtual view point above the own vehicle, and a display device 4 for displaying the view point conversion image converted by the pixel synthesis unit 13. Simultaneously when a warning is given by a warning sound upon entry of an obstacle within an obstacle detection range of the obstacle sensor 3, an image of the obstacle detection range is synthesized with an obstacle image imaged by the camera 2 and included in the view point converted image to be in contact therewith. |
US08885044B2 |
Methods and apparatus for detecting a target
An exemplary apparatus providing an improved detection system is disclosed as having: a sensor array adapted to detect radiation emanating from a potential target and a missile guidance system for controlling a missile's trajectory. Disclosed features and specifications may be variously controlled, adapted or otherwise optionally modified to improve and/or modify the performance characteristics of the detection system. Exemplary embodiments of the present invention generally provide a detection system for use as, for example, a target detection system for a missile guidance system. |
US08885041B2 |
Method and apparatus for checking the fluid in a pipet tip
Methods for detecting the presence and/or volume and/or identity of liquid in a transparent carrier include directing a light source towards the carrier; recording an image of light refracted by the carrier with a camera; and deriving information regarding the presence and/or volume of the liquid in the carrier from the recorded image of the light refracted by the carrier. Devices for detecting the presence and/or volume and/or identity of liquid in a transparent carrier include a camera directed towards the carrier; a light source directed towards the carrier; and means for recording an image of light from the light source as refracted by the carrier and captured by the camera. |
US08885038B2 |
Measuring apparatus and measuring method thereof, apparatus for correcting processing position of cutting machine and method thereof for correcting processing position, and imaging apparatus and cutting machine comprising the same
Provided is an apparatus and a method thereof which can detect a displacement amount of a cutting tool with respect to a workpiece with high accuracy and can correct a processing position with high accuracy. Accordingly, a turret gauge 46 is comprised of an invar body 47 and a gauge main body 48 with a different thermal expansion coefficient. A point A of the gauge main body 48 and a leading edge 47A of the invar body are imaged in a state of viewing the whole thereof at a time of an initialization and a calibration cycle (CS), and a temperature of the gauge main body 48 is detected by comparing each image data. Furthermore, the length between the point A and a point B of the gauge main body 48 at the time of the CS is obtained based on the image data. The actual length is compared with a theoretical length between the point A and the point B at a temperature of the gauge main body 48 at the time of the CS, and consideration is given to the comparison. Therefore, a heat displacement amount of a ball screw can be accurately detected, the displacement of a processing position of a cutting tool can be corrected with high accuracy, and processing accuracy of a workpiece can be improved. |
US08885037B2 |
Defect inspection method and apparatus therefor
To effectively utilize the polarization property of an inspection subject for obtaining higher inspection sensitivity, for the polarization of lighting, it is necessary to observe differences in the reflection, diffraction, and scattered light from the inspection subject because of polarization by applying light having the same elevation angle and wavelength in the same direction but different polarization. According to conventional techniques, a plurality of measurements by changing polarizations is required to cause a prolonged inspection time period that is an important specification of inspection apparatuses. In this invention, a plurality of polarization states are modulated in micro areas in the lighting beam cross section, images under a plurality of polarized lighting conditions are collectively acquired by separately and simultaneously forming the scattered light from the individual micro areas in the individual pixels of a sensor, whereby inspection sensitivity and sorting and sizing accuracy are improved without reducing throughput. |
US08885036B2 |
Process, lighting equipment and system for the optical detection of moving objects
A process for the optical detection of moving objects comprises: illuminating the object either with light pulses having different intensities and/or pulse durations, or with light pulses optionally having different intensities and/or pulse durations, and with secondary light (SL) which induces an optically detectable secondary effect; taking images of the object under different illuminations with a monochromatic optical area sensor organized line by line; reading out and temporarily storing at least so many lines of each image as there are different illuminations, with the read-out lines having a line pitch relative to each other, sequentially combining lines from the images taken to form combination lines, with the lines combined with each other having the line pitch or a multiple thereof, respectively; and assembling the combination lines into a combinatory overall picture. |
US08885032B2 |
Endoscope apparatus based on plural luminance and wavelength
An endoscope apparatus includes a light source apparatus, and a light-adjusting circuit. The light-adjusting circuit, based on a first image signal with a first wavelength band having a peak wavelength of a spectral characteristic and a second image signal with a second wavelength band having a peak wavelength of a spectral characteristic providing a value lower than that of the first image signal in the absorption characteristic and providing a suppressed scattering characteristic of the body tissue between a wavelength band providing a maximal value and a wavelength band for a minimal value in an absorption characteristic of a body tissue of a subject, provides a weight larger than that of the second image signal to the first image signal to calculate a light adjustment signal for adjusting a light amount in a light source apparatus and outputs the light adjustment signal. |
US08885030B2 |
Device for tracking predetermined objects in a video stream for improving a selection of the predetermined objects
A device for tracking objects in a video is described. The device has a processing unit. The processing unit has a selection module configured for selecting video portions, a tracking module for tracking positions of predetermined objects in the video portions, a stream generation module for creating a predetermined object's video streams, and a composition module configured for composing partial video streams of individual predetermined objects into an output video stream. The device also has a transmission system for tracking predetermined objects. |
US08885023B2 |
System and method for virtual camera control using motion control systems for augmented three dimensional reality
There is provided a system and method for integrating a virtual rendering system and a motion control system to provide an augmented three-dimensional reality. There is provided a method for integrating a virtual rendering system and a motion control system for outputting a composite three-dimensional render to a three-dimensional display, the method comprising obtaining, from the motion control system, a robotic three-dimensional camera configuration of a robotic three-dimensional camera in a real environment, programming the virtual rendering system using the robotic three-dimensional camera configuration to correspondingly control a virtual three-dimensional camera in a virtual environment, obtaining a virtually rendered three-dimensional feed using the virtual three-dimensional camera, capturing a video capture three-dimensional feed using the robotic three-dimensional camera, rendering the composite three-dimensional render by processing the feeds, and outputting the composite three-dimensional render to the three-dimensional display. |
US08885022B2 |
Virtual camera control using motion control systems for augmented reality
There is provided a system and method for integrating a virtual rendering system and a motion control system to provide an augmented reality. There is provided a method for integrating a virtual rendering system and a motion control system for outputting a composite render to a display, the method comprising obtaining, from the motion control system, a robotic camera configuration of a robotic camera in a real environment, programming the virtual rendering system using the robotic camera configuration to correspondingly control a virtual camera in a virtual environment, obtaining a virtually rendered feed using the virtual camera, capturing a video capture feed using the robotic camera, rendering the composite render by processing the feeds, and outputting the composite render to the display. |
US08885021B2 |
Optimized stereoscopic camera for real-time applications
A method is provided for an optimized stereoscopic camera with low processing overhead, especially suitable for real-time applications. By constructing a viewer-centric and scene-centric model, the mapping of scene depth to perceived depth may be defined as an optimization problem, for which a solution is analytically derived based on constraints to stereoscopic camera parameters including interaxial separation and convergence distance. The camera parameters may thus be constrained prior to rendering to maintain a desired perceived depth volume around a stereoscopic display, for example to ensure user comfort or provide artistic effects. To compensate for sudden scene depth changes due to unpredictable camera or object movements, as may occur with real-time applications such as video games, the constraints may also be temporally interpolated to maintain a linearly corrected and approximately constant perceived depth range over time. |
US08885020B2 |
Video reproduction apparatus and video reproduction method
According to one embodiment, a video reproduction apparatus includes an image generator, a motion recognizer, a marker generator and an image synthesizer. The image generator is configured to generate a first pair of images with a difference in visual field for an operational object. The motion recognizer is configured to recognize three-dimensional gesture of a user. The marker generator is configured to identify three-dimensional designated coordinates based on the gesture recognized by the motion recognizer, and generate a second pair of images with a difference in visual field for a marker corresponding to the designated coordinates. The image synthesizer is configured to synthesize the first pair of images with the second pair of images to generate a third pair of images. |
US08885019B2 |
Image signal processing device, transmitting device, image signal processing method, program and image signal processing system
An image signal processing device is provided which includes a receiving unit for receiving an image signal and setting information for each predetermined unit of the image signal including image type setting information to define whether the image signal represents a stereoscopic image and gamma correction setting information to define a gamma correction amount for the image signal, a gamma correcting unit for performing gamma correction for the image signal based on the gamma correction setting information included in the setting information received by the receiving unit, and a stereoscopic image processing unit for selectively performing a process to display the stereoscopic image for the image signal corrected by the gamma correcting unit based on the image type setting information included in the setting information received by the receiving unit. |
US08885016B2 |
Omnidirectional camera and lens hood
An omnidirectional camera comprises a camera assembly 2 having two or more horizontal camera units 6 provided radiantly and a cover 4 for accommodating the camera assembly, and in the omnidirectional camera, a lens hole 37, through which an objective lens of the horizontal camera units come out, is formed on the cover, a lens hood 38 is provided on the cover concentrically with the lens hole, the lens hood has a shape of surface which does not intercept a field angle of the horizontal camera units, and a maximum height of the lens hood is larger than a protruding amount of the objective lens from the cover. |
US08885013B2 |
Systems and methods for novel interactions with participants in videoconference meetings
A new approach is proposed that contemplates systems and methods to support the operation of a Virtual Media Room or Virtual Meeting Room (VMR), wherein each VMR can accept from a plurality of participants at different geographic locations a variety of video conferencing feeds of audio and video streams from video conference endpoints. The approach provides various ways for the participants to the video conference to access, control, and interact with each other during the conference for a customized personal experience. A globally distributed infrastructure supports the sharing of the event among the participants at geographically distributed locations through a plurality of MCUs (Multipoint Control Unit), each configured to process the plurality of audio and video streams from the plurality of video conference endpoints in real time. |
US08885001B2 |
Reducing power consumption for a mobile terminal
A method, system and computer program product for saving power for a mobile terminal. Configuration parameters of a first virtual screen are obtained in response to the occurrence of a first trigger event, where the first virtual screen is at least part of the screen of the mobile terminal. The scope of the first virtual screen is determined according to the configuration parameters of the first virtual screen. Data to be displayed on the screen of the mobile terminal is displayed within the determined scope of the first virtual screen. The display of the screen of the mobile terminal is closed outside the determined scope of the first screen. By realizing a virtual screen and using only part of the screen of the mobile terminal for displaying, there is a reduction in the power consumed by the screen display so that the battery life of the mobile terminal is improved. |
US08884999B2 |
Gamma voltage generating apparatus and organic light emitting device including the same
A gamma voltage generator, which can improve display quality, and an organic light emitting device including the gamma voltage generator are provided. The gamma voltage generator includes a voltage divider that generates first to nth voltages sequentially arranged in descending order of electric potential, and a gamma voltage output unit that receives the first to nth voltages and outputs first to nth gamma voltages sequentially arranged in descending order of electric potential, wherein in a first mode, the first to nth voltages are equal to the first to nth gamma voltages, respectively, and in a second mode, the ath to nth gamma voltages are higher than the ath to nth voltages, respectively, where 1 |
US08884998B2 |
Display
A display includes: a display section that includes first pixels to nth pixels and displays perspective images assigned to the first to nth pixels; and a display control section that partitions the display section into sub-regions and performs display control on pixels in each of the sub-regions, independently, to vary a correspondence relationship between the first to nth pixels and the perspective images for each of the sub-regions. The display control section assigns a first perspective image to two pixels of the first pixel to the nth pixel and assigns a second perspective image to other two pixels of the first pixel to the nth pixel, in each of the sub-regions. The display control section adjusts a luminance level of one or both of the two pixels and a luminance level of one or both of the other two pixels in each of the sub-regions. |
US08884995B2 |
System for compensating for gamma data, display device including the same and method of compensating for gamma data
A system for compensating for gamma data is provided comprising a display panel including at least one feedback line connected to at least one pixel, a gray voltage generator generating a reference gray voltage based on first gamma data, a data driver generating a data voltage based on the reference gray voltage and applying the generated data voltage to a data line, a multiplexer receiving at least one feedback voltage from the at least one feedback line and selecting a feedback voltage from the received at least one feedback voltage and outputting the selected feedback voltage, an A/D converter converting the selected feedback voltage into feedback data, and a signal controller storing the feedback data as feedback gamma data for the entire grays and compensating for the first gamma data based on the feedback gamma data. |
US08884993B2 |
Signal processing apparatus, display apparatus, electronic apparatus, signal processing method and program
Disclosed herein is a signal processing apparatus, including: a luminance degradation information production section adapted to produce luminance degradation information regarding degradation of a luminance in accordance with a temperature condition upon emission; a luminance degradation value calculation section adapted to calculate a luminance degradation value regarding degradation of the luminance for each pixel circuit; and a correction section adapted to correct the gradation value of an image signal to be inputted to the pixel circuit based on the luminance degradation value. |
US08884992B2 |
Liquid crystal display and method for compensating color temperature
Disclosed is a liquid crystal display device and a method for compensating the color temperature of the liquid crystal display device. The timing controller according to the present disclosure, modulates the digital video data input from the host computer, compensates the shifted color temperature caused during the data modulation, and then sends the modulated and compensated digital video data to the data driving circuit. |
US08884991B2 |
Control system, control apparatus, handheld apparatus, control method, and program
A control system including: an input apparatus including a sensor portion; and a control apparatus including a coordinate generation portion that generates, based on a detection signal detected by the sensor portion, positional coordinates of a pointer on a screen, a selection area change portion that changes, in accordance with a level of a shake amount calculated based on the detection signal, a size of an icon selection area as an area where an icon on the screen is selected by the pointer, and a display control portion that controls display on the screen so that the pointer is displayed at a position corresponding to the positional coordinates of the pointer. |
US08884989B2 |
System and method for fusing images
A system and method for generating a fused image is provided. The system comprises processing circuitry configured to access a plurality of images, group the images into a plurality of sets, fuse the images of each set to form a plurality of fused images and fuse the fused images to form a final fused image. |
US08884986B2 |
Method and terminal for providing different image information in accordance with the angle of a terminal, and computer-readable recording medium
The present invention includes a method for providing different images by referring to angles of a terminal. The method includes the steps of: (a) if the angle falls under an angular range which includes 0 degree with respect to the horizontal plane, setting a content provided through the terminal to be map information, if the angle falls under an angular range which includes 90 degrees with respect to the horizontal plane, setting a content provided through the terminal to be preview image, and if the angle falls under an angular range which includes 180 degrees with respect to the horizontal plane, setting a content provided through the terminal to be weather; (b) acquiring information on the angle by using a sensor; (c) creating information on an image based on the set content; and (d) providing a user with the created information. |
US08884983B2 |
Time-synchronized graphics composition in a 2.5-dimensional user interface environment
Software interfaces are configured to enable functionality that is commonly implemented in special-purpose hardware for mixing AV content into a set of 2.5-D graphics planes to be exposed to high level processes executing in a computing environment in a fully portable manner. Illustratively, the interfaces include a planar mixer (named “IPlanarMixer”) that abstracts the mixing hardware, and a graphics plane interface (named “IPlane”) that abstracts individual instances of planes that are retrieved from, and handed off to the planar mixer as the 2.5-D graphics planes are built up and rendered in a computing environment to support interactive graphic experiences for a user. |
US08884968B2 |
Modeling an object from image data
A method for modeling an object from image data comprises identifying in an image from the video a set of reference points on the object, and, for each reference point identified, observing a displacement of that reference point in response to a motion of the object. The method further comprises grouping together those reference points for which a common translational or rotational motion of the object results in the observed displacement, and fitting the grouped-together reference points to a shape. |
US08884967B2 |
Mobile communication device, display control method, and display control program
A mobile phone including upper and lower portions, a flash memory to store images, a selecting portion to select a target image from the stored images, a closed state detection portion to detect a closed state, and a display control portion to control display of an image to display an image of an idle screen including in a background image the target image selected by the selecting portion when standing by, and the display control portion displays, in response to the change from a state in which the closed state is detected by the closed state detection portion to a state in which the closed state is not detected while the image of the idle screen is being displayed, a new idle screen that includes in the background image a new target image selected by the selecting portion subsequent to the background image included in the idle screen. |
US08884966B2 |
Visualizing a scatter plot using real-time backward rewrite
A scatter plot that represents plural periodic time intervals is animated as new data points are received, where the animating includes performing real-time backward rewriting. The real-time backward rewriting includes overlaying a subset of previously written data points with the new data points, and painting a remainder of previously written data points outside the subset in the scatter plot, where painting the remainder of previously written data points is performed without shifting pixels corresponding to the remainder. A divider structure is drawn in the scatter plot to indicate a position in the scatter plot between a current time point and a previous time point. |
US08884961B2 |
Systems and methods for displaying a unified representation of performance related data
A system and method for displaying a unified representation of performance related data for a building are disclosed. The system includes a sensor network for collecting data in the building and a computing device for generating and displaying a unified representation of performance related data on a display. The performance related data may include the raw data collected by the sensor network or data generated by simulation programs based on the raw data collected by the sensor network. The computing device displays the performance related data in the context of a graphical representation of a three-dimensional model of the building as defined in a building information model (BIM). The computing device generates the graphical representation using an ambient occlusion rendering technique and then incorporates the performance related data either using a direct rendering technique or a transient geometry technique. |
US08884960B2 |
Controlling displayed 3-D depth based on the brightness of the surrounding area and/or based on the brightness of the display
In a mobile phone 1, when three-dimensionally showing display information in a display section 17, a central controlling section 11 determines the 3D depth based on the brightness of the surrounding area detected by a surrounding brightness detecting section 24, determines the 3D depth based on the brightness of the display section 17, or determines the 3D depth based on the brightness of the surrounding area and the brightness of the display section 17, and shows the display information in the display section 17 with the determined 3D depth. |
US08884959B2 |
Gradient free shading for volume rendering using shadow information
Disclosed is a method and apparatus for computing the shading of a volume. A slice of the volume is rendered along a half-angle direction that is between a light direction and a view direction. A slice of the volume is then rendered along a light direction to assimilate shadow information of the slice in a shadow buffer. The shadow buffer is bled orthogonal to the light direction to shade the slice. |
US08884957B2 |
Tessellation engine and applications thereof
Disclosed herein methods, apparatuses, and systems for performing graphics processing. In this regard, a processing unit includes a tessellation module and a connectivity module. The tessellation module is configured to sequentially tessellate portions of a geometric shape to provide a series of tessellation points for the geometric shape. The connectivity module is configured to connect one or more groups of the tessellation points into one or more primitives in an order in which the series of tessellation points is provided. |
US08884956B2 |
System and method for trimmed surface tessellation
A system, method, and computer program for tessellation. A method includes tessellating a curve having a plurality of polygons, connecting said plurality of polygons in a preferred direction, and decomposing polygons into a plurality of triangles. A mesh representation is created from the plurality of triangles. |
US08884952B2 |
3D display apparatus and method for processing image using the same
A three-dimensional (3D) display apparatus is provided, including an image input device which receives an image and depth information, a multi-view image generator which generates a multi-view foreground image having depth information which is less than a preset depth value, and a multi-view rear ground image having depth information which is equal to or greater than the preset depth value, using the received image and depth information, a multi-view image renderer which performs rendering by arranging the multi-view foreground image according to a first arrangement pattern and the multi-view rear ground image according to a second arrangement pattern, and a display which outputs the rendered multi-view image. |
US08884951B2 |
Depth estimation data generating apparatus, depth estimation data generating method, and depth estimation data generating program, and pseudo three-dimensional image generating apparatus, pseudo three-dimensional image generating method, and pseudo three-dimensional image generating program
An average value, minimum value, and maximum value data detecting unit detects an average value, a minimum value, and a maximum value in one frame of a red (R) signal. A difference value calculating unit calculates a difference value by subtracting the average value from the R signal. A processing unit estimates the average value to be a level of a background image occupying a large area of a screen, and generates a signal indicating a minimum value (concavity) at the average value and a maximum value (convexity) at the maximum or minimum value as a compensated object signal. An adding unit adds the compensated object signal to a composed image of basic depth models to generate depth estimation data for generating an image in a different viewpoint from a non-3D image, the image in the different viewpoint and the non-3D image constituting the pseudo 3D image. |
US08884950B1 |
Pose data via user interaction
Embodiments improve pose data for images via user interaction. A user may model a building in a web browser plug in by mapping positions on two-dimensional images to a three-dimensional model of a building shown in the image. Each of the images may have associated original pose data, which includes information related to a position and orientation of a camera which took the image. Upon modeling the building, pose data may be adjusted to more accurately depict the building as a three-dimensional model. If the adjusted pose data is superior to the original pose data, the adjusted pose data may be associated with the image. |
US08884949B1 |
Method and system for real time rendering of objects from a low resolution depth camera
A method is disclosed for real time realistic rendering of objects and more specifically humans in a gaming environment from a single low resolution depth camera. The method is based on utilizing a personal computer or video game console such as Xbox 360 and a dept camera such as the Microsoft Kinect. The depth camera captures a depth signal that may be processed and used to generate a three dimensional mesh that is time coherent. The result may be used in any game engine due to the very low computation time achievement. |
US08884946B2 |
Image display device, display panel, and terminal device
A subpixel 4S has a parallelogram aperture, which is equivalent upon rotation by 180 degrees in a XY plane and asymmetric about a line R-R′ or L-L′ parallel to the Y-axis and passing through the center Or or Ol of the subpixel. The subpixels 4S adjacent to each other in the X-axis direction in a unit of display 4U are point-symmetric about the center Ou of the unit of display 4U. The apertures of a right-eye pixel 4R and left eye pixel 4L have the centers Or and Ol around the intersections of the diagonals of their respective parallelograms, respectively. The centers Or and Ol are shifted from a line E-E′ to be away from each other in the Y-axis direction. |
US08884943B2 |
Driving apparatus of display with pre-charge mechanism
A driving apparatus of a display is disclosed. The driving apparatus includes a digital-to-analog converter (DAC) circuit, an output buffer circuit and a pre-charge circuit. The DAC circuit receives a display data with a digital format for generating a gray level voltage. The output buffer circuit is coupled to the DAC circuit, and receives the gray level voltage. The output buffer circuit has an output terminal to output a driving output signal. The pre-charge circuit is coupled to the output buffer circuit, and generates a pre-charge output signal according to the gray level voltage and a pre-charge enable signal, and outputs the pre-charge output signal to the output terminal of the output buffer circuit. |
US08884942B2 |
Hysteretic mode LED driver with precise average current
A hysteretic mode LED driver for providing a driving current for an LED includes a hysteretic comparing circuit and a feedback loop. The hysteretic comparing circuit compares a driving current related sensing signal with a reference signal to control the average value of the driving current. The feedback loop senses the error between the average value of the driving current and a target value to adjust the reference signal or the offset of the hysteretic comparing circuit to adjust the average value of the driving current. |
US08884939B2 |
Display brightness control based on ambient light levels
Methods and devices are provided for controlling the brightness of a display for an electronic device based on ambient light conditions. In one embodiment, an electronic device may employ one or more brightness adjustment profiles for changing the brightness of a display based on the ambient light level. The brightness adjustment profiles may include two or more sections, each corresponding to different ambient light levels, which may be adjusted independently of one another. The different sections may allow a user to customize brightness adjustments for different ambient light conditions. In certain embodiments, the slope and/or offset of a section may be adjusted in response to receiving a user input that changes the brightness setting for a certain ambient light level. |
US08884937B2 |
Projection apparatus and projection method
A projection apparatus including an image panel, a projection lens, and a control unit is provided. The image panel is configured to provide an image beam and has a displaying area. The projection lens is configured to project the image beam to form an image. When the optical axis of the projection lens is tilted with respect to a normal of the image, the control unit commands a first portion of the displaying area to show a compressed frame corresponding to the image and commands a second portion of the displaying area to show a black border. A projection method is also provided. |
US08884934B2 |
Display driving system using single level data transmission with embedded clock signal
A display driving system using single level data transmission with embedded clock signals. The display driving system is configured to embed a clock signal of the same level between data signals and transmit these signals as a single level signal, wherein a cycle at which clock signals are embedded is controlled and a data format is constructed such that a control data transmission step can be extended over 2 words. |
US08884932B2 |
Pen type coordinate indicator
A pen type coordinate indicator for a position input device is provided, which is capable of widening a detection range of a pressing pressure (pen pressure) while preventing erroneous (false) detection. A coil spring (i.e., a first elastic body) and a silicon rubber (i.e., a second elastic body) are interposed between an end surface of a first ferrite core, around which a coil connected to a resonance circuit is wound, and an end surface of a second ferrite core, within the pen. The first and second elastic bodies operate to controllably change (narrow) the distance between the two end faces in accordance with the pressure applied to the pen tip. As a result, an inductance value of the coil wound around the first ferrite core is controllably changed and thus a phase (frequency) of an electric wave transmitted from the resonance circuit to a position detector is controllably changed. |
US08884928B1 |
Correcting for parallax in electronic displays
The ability of a user to provide input when using a touch screen or other such element of a computing device can be improved by correcting for parallax errors. A camera of the computing device can determine the relative position of the user's head or eyes with respect to the device, and determine a viewing perspective of the user with respect to content displayed on the touch screen. Using the perspective direction and information about the dimensions of the touch screen, the device can determine an amount and direction of parallax error, and can make adjustments to remove or minimize that error. The device can cause the position of the displayed graphical elements to shift and/or can adjust the mappings of the touch sensitive regions that correspond to the graphical elements. Such an approach enables the graphical elements and touch mappings to align from the current perspective of the user. |
US08884926B1 |
Light-based finger gesture user interface
A finger gesture user interface for an electronic device, including a housing for an electronic device including a front opening in a front outer surface of the housing, a rear opening in a rear outer surface of the housing, and inner sidewalls extending from the front opening to the rear opening to form a cavity, a display, mounted in the housing along a plane transverse to the front and rear openings, for rendering a 3D realm, a detector mounted in the inner sidewalls, operable to detect translation of a finger inserted in the cavity along a dimension of the cavity transverse to the display plane, and a processor connected to the detector and to the display for interpreting the detected finger translation as a user interface input command to move within the 3D realm along the dimension transverse to the display. |
US08884925B2 |
Display system and method utilizing optical sensors
A unified input and display system and method for enabling sensing interferences made by a user (such as touch or hovering) using multiple interference techniques and instruments. One system comprises: a touch screen that enables emitting and guiding light to enable a user to input drawings by physically interfering the light emitted therefrom and displaying of the interference therethrough; a sensing system comprising a multiplicity of optical sensors arranged according to a predefined layout positioned in relation to the touch screen in a manner that allows the sensors to sense light arriving from the touch screen and translate the sensing into frames each including a pixilated image data of the sensed light; and a screen unification module enabling to unify frames sensed by the sensors at a given moment into a single screen reading comprising a unified whole-screen pixilated image data. |
US08884923B2 |
Optical touch apparatus having a light guide with scattering particles
An optical touch apparatus includes a light source, light guide unit, and optical detector. The light source next to the display area emits a beam. The light guide unit next to the display area and in the transmission path of the beam includes a light guide body and a Lambertian scattering structure. The light guide body has first, second, third, fourth, and light incident surfaces. The beam enters the light guide body through the light incident surface and is transmitted from the first surface to a sensing space in front of the display area. The Lambertian scattering structure is disposed on at least one of the second, third, and fourth surfaces for scattering the beam to the first surface. The optical detector next to the display area senses a change in light intensity of the beam in the sensing space. An optical touch display apparatus is also provided. |
US08884921B2 |
Display device including touch sensor
A display device includes a first substrate including a first surface, on which a touch by an external object occurs, and a second surface opposite to the first surface, a plurality of driving signal lines positioned on the second surface of the first substrate, where the plurality of driving signal lines transmits a driving signal for displaying an image, a plurality of pixels including a plurality of switching elements connected to the plurality of driving signal lines, a sensing signal line positioned on one of the first surface and the second surface of the first substrate, where the sensing signal line transmits a sensing signal generated based on the touch by the external object, and a touch sensor unit including a sensing capacitor defined by at least one driving signal line of the plurality of driving signal lines and the sensing signal line. |
US08884919B2 |
Semiconductor device, display device, and electronic device
Disclosed herein is a semiconductor device including: one or a plurality of pieces of first wiring having a main wiring section and a bifurcation wiring section; one or a plurality of pieces of second wiring having a trunk wiring section and a plurality of branch wiring sections within a gap region between the main wiring section and the bifurcation wiring section; one or a plurality of transistors each divided and formed into a plurality of pieces, the plurality of branch wiring sections individually functioning as a gate electrode and the one or plurality of transistors having a source region formed within the main wiring section and within the bifurcation wiring section and having a drain region formed between the plurality of branch wiring sections; and one or a plurality of pieces of third wiring electrically connected to the drain region of the one or plurality of transistors. |
US08884916B2 |
System and method for determining user input using polygons
Devices and method are provided that facilitate improved input device performance. Specifically, the systems and methods are configured to identify a portion of an image of sensor values as corresponding to at least one sensed object in the sensing region, determine a polygon corresponding to the identified portion of the image, and determine a contact characterization of the at least one sensed object based on the polygon. The determination of a polygon corresponding to a sensed object facilitates improved contact characterization of the sensed object. For example, the determined polygon may be used to determine if the sensed object is actually more than one object. As a second example, the determined polygon may be used to determine the orientation of the sensed object. In addition, determined polygons may be used to more accurately track changes in the position of the sensed object. |
US08884913B2 |
Systems and methods for determining the location and pressure of a touchload applied to a touchpad
A computing device with a multi-touch touch interface having a plurality of rows of contact points and a plurality of columns of contact points. For each other row of contact points, every contact point in the row is connected to form a row sensor. For each other column of contact points, every contact point in the column that is not part of a row sensor is connected to form a column sensor. The contact points that are not part of a row sensor and not part of a column sensor are connected together to form at least one shape sensor. A computing device with a multi-touch touch interface having a plurality of contact points has at least one layer of piezoresistive material, an insulating structure disposed between the plurality of contact points and the piezoresistive material, and a gap between the plurality of contact points and piezoresistive material. A method of providing multi-layered password recognition for a computing device having a touch interface first provides a passcode associated with an alphanumeric symbol to the computing device. The alphanumeric symbol is associated with a passcode pressure level. A touch load is applied to the touch interface and a measured pressure level associated with the applied touch load is determined. Then it is determined whether the measured pressure level corresponds to the passcode pressure level associated with the alphanumeric symbol of the passcode. |
US08884912B2 |
Electrostatic capacitance type input device and calculation method for calculating approach position of conductor
An electrostatic capacitance type input device includes: first electrodes arranged in a first direction and extending in a second direction intersecting the first direction; second electrodes arranged in the second direction and extending in the first direction; a storage unit storing first direction detection values obtained through the first electrodes resulting from the change in capacitance between a first conductor and the electrodes, and storing second direction detection values obtained through the second electrodes resulting from the change in capacitance between the first conductor and the electrodes; and a calculation unit, which generates first map values from a first value and a second value obtained, respectively, by processing at least one of the first direction detection values and at least one of the second direction detection values. The calculation unit determines whether the first conductor has approached the first electrodes and second electrodes using the first map values. |
US08884910B2 |
Resistive matrix with optimized input scanning
A resistive matrix with optimized input scanning is provided by a method of discerning input location(s) on a resistive column-row matrix which includes receiving physically-applied input(s) at the resistive column-row matrix and, during application of the one or more physically-applied inputs, performing a hierarchical scan of the resistive column-row matrix to determine whether the physically-applied input(s) are causing activation of a column-row cell within a multi-cell group of the resistive column-row matrix. The method further includes performing a supplemental scan within a multi-cell group if it is determined that a physically-applied input is causing activation of a column-row cell within the multi-cell group, and generating, based on the hierarchical and supplemental scans, an output indicative of the input location(s) on the resistive column-row matrix of the one or more physically-applied inputs. |
US08884908B2 |
Electronic apparatus
An electronic apparatus 10 includes a touch pad 11 for accepting a touch operation of a user, a support section 12 for supporting the touch pad 11, and a vibrating section 13 attached to the touch pad 11 for flexurally deforming the touch pad 11. As flexural vibration of the touch pad 11 is transmitted to the support section 12, the support section 12 deforms to vibrate in displacement vibration. An amplitude of the displacement vibration of the support section 12 is greater than an amplitude of the flexural vibration of the touch pad 11. |
US08884900B2 |
Touch-sensing display apparatus and electronic device therewith
A touch-sensing display apparatus comprises a display unit with integrated elements, and a planar light guide located in front of the display unit so as to define a touch surface. At least one light emitter is arranged to emit light into the light guide for propagation by total internal reflection inside the light guide, and at least one light detector is arranged to receive at least part of the light propagating inside the light guide. The integrated elements are designed as image-forming elements and touch-sensor elements, wherein the touch-sensor elements comprise the emitter(s) and/or the detector(s) and are arranged along a periphery region of the display unit. The image-forming elements and the touch-sensor elements may be integrated in one and the same composite substrate within the display unit. |
US08884898B2 |
Touch sensing device and touch sensing method thereof
A touch sensing device is provided. The provided touch sensing device may include a touch sensing circuit having a conducting unit for generating an alternating current (AC) touch signal, a phase delaying circuit electrically coupled to the touch sensing circuit for receiving the AC touch signal and delaying the AC touch signal for a predetermined phase so as to derive a delayed signal, and a determination circuit electrically coupled to the touch sensing circuit and the phase delaying circuit for comparing intensities of the delayed signal and the AC touch signal with a predetermined threshold in order to derive a waveform-overlapping time period. When the waveform-overlapping time period is longer than a predetermined period, the determination circuit concludes the conducting unit is approached or contacted by the conductor. |
US08884895B2 |
Input apparatus
Provided is an input apparatus capable of handling operation mistakes (erroneous operations) unintentionally performed by a user. An input apparatus 10 has a display unit 32 configured to display objects of folders arranged in a hierarchical structure, an input unit 34 configured to receive a pressing input to the display unit 32, a load detection unit 40 configured to detect a pressure load on the input unit 34, and a control unit 20, if the load detection unit 40 continuously detects a pressure load satisfying a first load standard for a predetermined period while the display unit 32 is displaying an object of an open folder and the input unit 34 is receiving the pressing input at a position corresponding to an object of another folder different from the open folder, configured to control to open the another folder. |
US08884894B2 |
Input detection device, input detection method, input detection program, and computer readable media
An input detection device including: a reading part reading touch inputs from an input interface of a touch sensor by scanning every above two electrode lines which are adjacent on the scanning sequence from an end of the input interface to the opposite end, and acquiring a difference between detection data obtained from a half of the above two electrode lines which are successive and from the other half of the above two electrode lines which are successive; and a calculation part integrating the differences for the entire input interface to obtain touch information, wherein if an integration result obtained in the case where the above two lines stretches over the scanning finish end and the scanning start end is not satisfied with a predetermined value, the calculation part resets the detection data obtained from the electrode line located at the scanning finish end to be the predetermined value. |
US08884892B2 |
Portable electronic device and method of controlling same
A method for a User Equipment (UE), includes responsive, at least in part, to an ATtention (AT) command for touch-sensitive display action, emulating or reporting a meta-navigation gesture for a touch-sensitive input including a display area and a non-display area. |
US08884885B2 |
Touch pad, method of operating the same, and notebook computer with the same
The present invention relates to the field of touch pad. In particular, there is provided a touch pad comprising a storage unit, a sensing electrode array unit and a processing unit. A trace graph composed of coordinate values of positions on the sensing electrode array unit, touched by a user in the course of operating the touch pad is recorded; comparison is made between the trace graph and a graphical password to generate a comparison value. Since the touch pad is provided with the function of recognizing the graphical password, a computer can use it to input graphical password, text password, and various characters in various states such as BIOS state and a variety of OS states, which can enhance the security of devices such as computers and make the product more interesting and easy to use. |
US08884883B2 |
Projection of graphical objects on interactive irregular displays
A method for displaying images on a curved display surface is described herein. The method includes receiving a graphical object and distorting the graphical object at run-time such that an appearance of the graphical object on the curved display surface will be substantially similar regardless of a position of the graphical object on the curved display surface when viewed at a viewing axis that is approximately orthogonal to a plane that is tangential to the curved display surface at a center of the graphical object. The method may further include displaying the graphical object on the curved display surface. |
US08884881B2 |
Portable electronic device and method of controlling same
A method of character entry includes detecting a spacebar adjacent input from a keyboard, the spacebar adjacent input corresponding to a key adjacent to a spacebar; and determining whether to accept the spacebar adjacent input based on whether a preceding inputted string, the preceding inputted string comprising a string of inputted characters preceding the spacebar adjacent input, corresponds to a first stored object. |
US08884876B2 |
Spatially-aware projection pen interface
One embodiment of the present invention sets forth a technique for providing an end user with a digital pen embedded with a spatially-aware miniature projector for use in a design environment. Paper documents are augmented to allow a user to access additional information and computational tools through projected interfaces. Virtual ink may be managed in single and multi-user environments to enhance collaboration and data management. The spatially-aware projector pen provides end-users with dynamic visual feedback and improved interaction capabilities. |
US08884875B2 |
Information processing apparatus and computer-readable recording medium recording information processing program
Motion information is obtained which is information about a motion applied to an input device housing itself including a pointing device of a plurality of input mean. Next, based on the motion information, a movement amount of the input device housing is calculated. Thereafter, it is determined whether or not the movement amount satisfies predetermined conditions. When the predetermined conditions are satisfied, a position is designated based on an output from the pointing device. |
US08884873B2 |
Handheld electronic apparatus and information rendering method
A handheld apparatus device includes an input interface device, a display device, a memory and a processor. The processor, coupled to the input interface device, the display device and the memory, drives the input interface device to provide a configuration command in response to a user configuration event, and determines and stores a data structure into the memory in response to the configuration command. The data structure records to-do list information and display mode information corresponding to the to-do list information. The processor further determines whether an idle event occurs. When the idle event occurs, the processor drives the electronic handheld apparatus to enter a standby mode, in which the processor further selectively drives the display device to perform a standby mode display operation with reference to the display mode information, and the display device accordingly displays the to-do list information with dimmed backlight. |
US08884872B2 |
Gesture-based repetition of key activations on a virtual keyboard
Systems and methods for gesture repetition that is easy to repeat quickly. A user is able to quickly repeat any activation of a key, including any of the alternate, overloaded functions that are associated with the key. In addition, by appropriately defining the gesture, a large number of these repetitions can be quickly generated. These repeated activations can be generated much faster than a key can be repeatedly tapped with sufficient accuracy, and far faster than an alternative function can be repeatedly generated when each repetition would require again waiting past an initial time threshold. Furthermore, the number of repetitions can be easily and precisely controlled by the user. As the desired number of repetitions is approached, the user simply begins to repeat the gesture at a slower pace until precisely the desired number of repetitions is achieved. |
US08884870B2 |
Interactive painting game and associated controller
A gaming concept in which each user in a single-player or a multi-player game is enabled to create artwork or graffiti work virtually or on actual surfaces using haptic-enhanced controllers. The controllers can emulate the experience of using a marker, a paint brush, a paint spray-can or the like. The components of various controllers may be modularized for easily interchanging components to extend the art or graffiti creation experience. The real life experience of using ink or paint on a surface is simulated by haptic feedback. When a paint spray-can controller is used, the experience of paint consumption is recreated by various peripheral enhancements including audio and haptic sensations communicated to the user. |
US08884864B2 |
Imaging device
An imaging device includes a pixel section and an amplification unit which amplifies the signal of the pixel section. The amplification unit includes an input capacitor having first and second nodes, an amplification circuit, a first feedback capacitor connected between the input capacitor and an output portion of the amplification circuit, a first MOS transistor switch connected in series with the first feedback capacitor, a second MOS transistor switch which is connected in series with the first feedback capacitor, and has a drain and a source connected to each other, a second feedback capacitor connected between the input capacitor and the output portion, a third MOS transistor switch connected in series with the second feedback capacitor, and a fourth MOS transistor switch which is connected in series with the second feedback capacitor, and has a drain and a source connected to each other. |
US08884863B2 |
Buffer circuit, scanning circuit, display device, and electronic equipment
A buffer circuit includes a first transistor circuit having a first conductivity type transistor, a second transistor circuit having a second conductivity type transistors, in which the first and second transistor circuits are serially connected between a first fixed power supply and a second fixed power supply, and input terminals and output terminals of each of the first and second transistor circuits are connected in common respectively, in which at least one transistor circuit of the first transistor circuit and the second transistor circuit is a double gate transistor, and in which wherein a switch element, when any one transistor circuit of the first and the second transistor circuits is in an operating state, is included to supply a voltage of a third fixed power supply to a common connection node of the double gate transistor of the other transistor circuit. |
US08884861B2 |
Liquid crystal display and driving method thereof
Embodiments of the present invention relate to a liquid crystal display and a driving method thereof. According to an embodiment, the liquid crystal display comprises a pixel electrode having a first subpixel electrode, a second subpixel electrode, and a third subpixel electrode electrically separated from each other. The liquid crystal display comprises a first thin film transistor connected to the first subpixel electrode, a second thin film transistor connected to the second subpixel electrode, a third thin film transistor connected to the third subpixel electrode, and a fourth thin film transistor connected to the second subpixel electrode and the third subpixel electrode. The liquid crystal display comprises a first gate line connected to the first to third thin film transistors, a second gate line connected to the fourth thin film transistor, a data line connected to the first and second thin film transistors, and a storage electrode line connected to the third thin film transistor. |
US08884858B2 |
Liquid crystal display device
A liquid crystal display device includes a liquid crystal panel, a first polarizer and a second polarizer respectively disposed at the upper side and at the lower side of the liquid crystal panel, and a light path control film disposed at an outer side of the first polarizer to redirect light transmitted through the liquid crystal panel at low angles of the viewing angle to minimize gray inversion at the low angles of the viewing angle. |
US08884857B2 |
Grayscale-based field-sequential display for low power operation
A field-sequential display is operated in one of a color mode or a grayscale mode. In the color mode, a video source provides image content in the form of multiple-color image data having a frame rate of X Hz and a display controller uses the multiple-color image data to drive the field-sequential display so as provide multiple-color image content at the field-sequential display. In the grayscale mode, the display controller generates grayscale image data from the multiple-color image data and the display controller then drives the field-sequential display with the grayscale image data at a lower frame rate of Y Hz. While in the grayscale mode, the display controller can take advantage of the enhanced contrast provided by the grayscale image content to reduce or disable backlighting at the field-sequential display. The reduced timing requirements afforded by the lower frame rate, as well as the reduction or elimination of backlighting, can reduce power consumption compared to the color mode. |
US08884856B2 |
Sequential colour matrix liquid crystal display
A video system including a sequential color liquid crystal display with a panel of pixels arranged in rows and columns, including a mechanism that controls unit brightness levels on each pixel in the panel called grey levels, each grey level corresponding to a video information received at the input. The grey level controlled on a pixel is achieved with an analog voltage that varies monotonously depending on the row associated with the pixel and/or a color to be displayed. |
US08884854B2 |
Display, method for driving display, and electronic apparatus
Disclosed herein is a display including: a pixel array part configured to include pixels arranged in a matrix, each of the pixels including an electro-optical element, a write transistor for sampling and writing an input signal voltage supplied through a signal line, a holding capacitor for holding the input signal voltage written by the write transistor, and a drive transistor for driving the electro-optical element based on the input signal voltage held in the holding capacitor. |
US08884852B2 |
Display device having a pixel that synthesizes signal values to increase a number of possible display gradations and display method
Disclosed herein is a display device including: a pixel circuit for generating a signal value for display by synthesizing signal values input within one horizontal period, and making display at a gradation corresponding to the signal value for display; a signal line disposed in a form of a column on a pixel array where the pixel circuit is arranged in a form of a matrix; a scanning line disposed in a form of a row on the pixel array; a signal line driving section configured to output signal values as a signal value to be supplied to each pixel circuit to the signal line within one horizontal period; and a scanning line driving section configured to sequentially introduce the signal values within one horizontal period, the signal values being generated in the signal line, into the pixel circuit in each row by driving the scanning line. |
US08884849B2 |
Display panel and production method thereof
A display panel includes: a first substrate; light-emitting elements on a region of the first substrate; a second substrate facing the first substrate with the light-emitting elements therebetween; a glass frit between the first substrate and the second substrate so as to surround the region of the first substrate in which the light-emitting elements are disposed, the glass frit providing a hermetic seal between the first substrate and the second substrate; and a light-shielding part formed on one of the first substrate and the second substrate so as to extend along the glass frit, the light-shielding part shielding light. The light-shielding part has a lower light-shielding property in a region corresponding to the outer region of the glass frit than in a region corresponding to the inner region of the glass frit. The glass frit has been irradiated with light through the light-shielding part. |
US08884845B2 |
Display device and telecommunication system
The invention provides a display device with which a user's view is not completely interrupted by an image that is displayed artificially and of which optical system is easy in design. In addition, the invention provides a telecommunication system capable of providing additional visual information by the use of the display device. According to the invention, an image can be displayed while securing a user's view by using a light emitting device that can display an image and transmit light as a display device. Specifically, a pair of electrodes included in a light emitting element is formed to transmit light so as to transmit the outside light. By crossing a visual axis of a user and a pixel portion of the light emitting device, both of the outside light and the light emitted from the pixel portion can enter into the eyeballs of a user. |
US08884844B2 |
Stacked display device with OLED and electronic paper displays, and driving circuitry therein
An exemplary electronic device includes a first display and a second display. The first display includes a number of first pixels. Each first pixel defines a first display region. Each first display region displays first visual content when voltages are applied to the first pixel and displays no first visual content when no voltage is applied to the first pixel. Each first display region is transparent or translucent when displaying no first visual content. The second display includes a number of second pixels. Each second pixel defines a second display region for displaying second visual content. The first visual content is viewable whether or not the second display displays the second visual content, and the second visual content is viewable when one or more first display regions corresponding to the second display region are transparent or translucent. |
US08884842B2 |
Presentation system and display terminal used in the presentation system
A presentation system comprising a presenter terminal and at least one audience terminal which is connected to the presenter terminal to communicate with each other; wherein the audience terminal comprises; an identification information transmitting section which transmits identification information of the audience terminal to the presenter terminal; wherein the presenter terminal comprises; a display section which displays an image used for a presentation; an identification information storing section which stores the identification information transmitted by the identification information transmitting section of the audience terminal in association with a displayed image displayed by the display section; an identification information display controlling section which controls the display section to display the identification information in association with information on the displayed image. |
US08884839B2 |
Amplified television antenna
An amplified television antenna system is disclosed that receives its power from a non-dedicated source such as a Universal Serial Bus (USB) connection. The USB connection that powers the amplified television antenna can be made with any USB device such as a television, a television receiver, a desktop computer, a laptop computer, a game console, or a USB AC wall adaptor. |
US08884835B2 |
Antenna system, method and mobile communication device
An antenna system includes a ground plane including at least one slot, a first antenna element coupled to a first portion of the ground plane, a second antenna element coupled to a second portion of the ground plane which is spaced apart from the first portion and a tuner configured to change the influence of the slot to a current flow through the ground plane from the first portion to the second portion. |
US08884834B1 |
Antenna system with an antenna and a high-impedance backing
The present invention is directed to an antenna system that includes a broadband free-space antenna (i.e., an antenna that does not utilize a ground plane to create a resonant structure) and a high-impedance backing that allows the antenna to be positioned adjacent to a conductive surface that but for the high impedance backing would adversely affect the broadband operation of the antenna. The high-impedance backing substantially preserves the bandwidth of the antenna while also allowing the antenna to be positioned within λ/4 of the conductive surface and accommodate a predetermined amount of power. |
US08884833B2 |
Broadband monopole antenna with dual radiating structures
A broadband monopole antenna with dual-radiating elements is provided. In one embodiment, an antenna comprises a ground plane; a first radiating structure having a symmetric configuration along a central axis, comprising a first feed point electrically connected to the base of said first radiating structure along said central axis and a first slot with a corresponding first open-ended strip along said central axis; and a second radiating structure conjoined with said first radiating structure having a symmetric configuration along said central axis, comprising a second feed point electrically connected to the base of said second radiating structure along said central axis and a second slot with a corresponding second open-ended strip along said central axis; and wherein the antenna resonates and operates at a plurality of resonant frequencies. |
US08884831B2 |
Antenna apparatus including multiple antenna portions on one antenna element associated with multiple feed points
An antenna apparatus includes: an extension conductor connected to a first section of an outer perimeter of an antenna element and along an entire length of the first section; connecting conductors connecting the antenna element to a ground conductor between the extension conductor and feed points on the antenna element; and a slit extending from the extension conductor to the antenna element so as to intersect a portion between connecting points of the connecting conductors and to intersect a portion between the feed points on the antenna element. The slit has a short-circuited end on the extension conductor. |
US08884819B2 |
Directional antennas and antenna selection for wireless terminal
This invention discloses directional antenna systems, antenna combining and transmission antenna selection mechanism for wireless communication terminals such mobile handsets, mobile embedded laptops, mobile CPEs (Customer premises equipment), nomadic wireless CPEs, fixed wireless terminals and etc. The disclosed systems and methods only require analog circuitry and compass readings therefore are easy to implement and well fit into the current wireless terminals architectures. The inventive systems and methods resolve the problem that a directional antenna may not receive properly when user turn around and the antenna direction is deviated from transmitter; the inventive systems and methods further reduce the interference caused by omni antenna systems by selecting a directional antenna for transmit. |
US08884818B1 |
Calibration and blanking in system simultaneously receiving GPS and GLONASS signals
A receiver for receiving both GPS signals and GLONASS signals is provided. This receiver includes an analog front end (AFE), a GPS digital front end (DFE) and a GLONASS DFE for receiving an output of the AFE, and a dual mode interface (DMI) for receiving outputs of the GPS and GLONASS DFEs. Search engines are provided for receiving outputs of the DMI. Notably, certain front-end components of the AFE are configured to process both the GPS signals and the GLONASS signals. |
US08884817B2 |
GPS with aiding from ad-hoc peer-to-peer bluetooth networks
The present invention is related to location positioning systems, and more particularly, to a method and apparatus for providing an update of ephemeris information. According to one aspect, GPS enabled devices in the signal unavailable area monitors the state of its ephemeris data and time information. When the ephemeris data and time information become out of date, the GPS enable device uses an ad hoc Bluetooth network to retrieve ephemeris data and time information from another GPS enabled device with more current data. According to further aspects, a map of a deep hole region in which GPS and other cellular signals are not available, is generated to enable power reduction and cost saving measures. |
US08884815B2 |
Antenna-coupled imager having pixels with integrated lenslets
According one embodiment, a millimeter-wave radiation imaging array includes a plurality of antenna elements configured to receive millimeter-wave radiative input. Each lenslet of a plurality of lenslets are coupled to one of the plurality of antenna elements such that no air exists between each lenslet and the one of the plurality of antenna elements. Each lenslet has a spherical portion being operable to direct the radiative input towards the one of the plurality of antenna elements. An energy detector is coupled to the plurality of antenna elements opposite the plurality of lenslets and operable to measure the radiative input received by the plurality of antenna elements. |
US08884814B2 |
Processing method for FMCW radar signal with dual pulse repetition frequency
A processing method for radar signal with dual pulse repetition frequency, comprising: generating a first transmission signal and a second transmission signal, and perform a transmission process; reflecting a first echo signal and a second echo signal from an object, and converting the first transmission signal and the second transmission signal to a frequency domain information by using 2D (Two Dimension) fast Fourier transform (FFT); and filtering noise in the frequency domain information, and performing a calculation program by using a algorithm to obtain Doppler shift of the object. Thereby, the processing method of the present invention can overcome the bad operation ability of the lower hardware and advance the radar target detection speed restrictions. |
US08884811B2 |
Method for separating transmitted signals in a radar system
The present invention relates to a method for separating transmitted signals in radar systems and an associated radar system. In the method, the signals for transmission are shared among multiple subcarriers by means of OFDM, which subcarriers are assigned to the transmitting antennas according to a distribution scheme. In this distribution scheme, each subcarrier is assigned to one transmitting antennas only. The subcarriers assigned to a given transmitting antenna are spread over the entire signal bandwidth. In this way, very high dynamics may be achieved while retaining complete orthogonality of the signal paths. |
US08884809B2 |
Personal electronic device providing enhanced user environmental awareness
A personal electronic device is configured to provide enhanced user awareness of the environment responsive to data from a micro-impulse radar (MIR). |
US08884805B2 |
Systems and methods for mapping the crust of the earth
A system comprises a radar transmitter configured to generate a radar signal at a predetermined frequency and a radar receiver configured to receive a reflected signal produced by a reflection of the radar signal. The system further includes a radar antenna system configured to transmit the radar signal into a subterranean region and to receive the reflected signal from the subterranean region. A control system is used for controlling a dwell time of the radar antenna system, and a processor is adapted to generate an image of at least a portion of the subterranean region based at least in part on the reflected signal. |
US08884804B1 |
Time-to-digital conversion
An apparatus relating generally to time-to-digital conversion is disclosed. In this apparatus, a time-to-digital converter is coupled to a period sensor. The period sensor includes a pulse generator to generate a pulse. An integrator of the period sensor is coupled to receive the pulse to generate an analog voltage signal responsive to the pulse. The time-to-digital converter includes an analog-to-digital converter coupled to provide a digital signal associated with the analog voltage signal. |
US08884803B2 |
AD converter apparatus, AD converter circuit, and AD conversion method
An analog-digital converter apparatus includes a plurality of AD converters connected in series, each AD converter to convert an analog signal received by a first AD converter, at least one of the AD converters including: a residual signal generator that generates a first residual signal, the first residual signal being a difference between the analog signal or one of two residual signals amplified and output by a preceding AD converter and a first reference signal, and a second residual signal, the second residual signal being a difference between the analog signal or one of the two residual signals and a second reference signal; and an amplifier that amplifies and outputs the first residual signal to a subsequent AD converter at a first timing and amplifies and outputs the second residual signal to the subsequent AD converter at a second timing. |
US08884786B2 |
Illuminated sign for displaying a command and/or notice for taxiing aircraft traffic at an airport
The invention relates to a light sign (10) for displaying an instruction and/or guidance for ground airplane traffic at an airport, comprising a casing (20) with a transparent display panel (21) for representing an instruction and/or guidance symbol (Z), and a light source arranged inside the casing (20) with at least one luminescent diode (32) for illuminating the display panel (21). A diffusion panel (22) is made for scattering and/or back-scattering incident light, wherein the light source is arranged between the display panel and the diffusion panel. The at least one luminescent diode (32) is aligned on the diffusion panel (22) so that the display panel (21) is not illuminated directly, but indirectly by back-scattering of the light emitted from the at least one luminescent diode by the diffusion panel (22). |
US08884784B2 |
Solar charged automotive vehicle having means to determine a parking location
An automotive vehicle having at least one solar panel, a battery rechargeable by the at least one solar panel, and a computer system including one or more processors and memory storing one or more programs. The program(s) generate a list of parking locations, determine which of the one or more parking location provide sun exposure, and recommending at least one parking location to a vehicle operator. |
US08884778B2 |
Apparatus and methods for controlling and communicating with downhole devices
Apparatus and methods for controlling and communicating with one or more tools in a downhole tool string including a tractor, an auxiliary tractor tool, a logging tool, a safety sub, a release mechanism, a unit containing sensors for monitoring downhole conditions, a setting tool, and a perforating gun. Also provided are apparatus and methods for controlling and communicating with one or more perforating guns, release devices, and explosive devices in a string to be lowered into a wellbore. Control and communication are accomplished by sending signals from the surface to control switches in the control units on the tool, with redundant switches for safety, to state machines in the respective control units, “each state machine returning a signal verifying switch status to the surface. Control and power functions are accomplished with voltage of different polarities for safety. |
US08884773B2 |
Shore power cord set
A shore power cord includes a power supply connector electrically connected to a vehicle connector. In some cases, the vehicle connector includes features to selectively secure the vehicle connector to a vehicle power receptacle inlet. In some cases, the shore power cord includes a test module that evaluates the condition of the cord set and a power supply when the cord set is connected to the power supply. |
US08884771B2 |
Smoke detection using change in permittivity of capacitor air dielectric
A capacitor having air dielectric between its plates may be used to detect the presence of smoke and other contaminants in the dielectric air passing over the plates of the capacitor. Smoke from typical fires is mainly composed of unburned carbon that has diffused in the surrounding air and rises with the heat of the fire. The permittivity of the carbon particles is about 10 to 15 times the permittivity of clean air. The addition of the carbon particles into the air creates a change in the permittivity thereof that is large enough to measure by measuring a change in capacitance of the capacitor having the air dielectric through which the air laden carbon particles pass through. |
US08884767B2 |
Method and apparatus for alerting a person carrying an EEG assembly
A method of alerting a person using an EEG assembly (201) comprises the steps of automatically alerting said person of an incidence, manipulating an external device for establishing a wireless connection between the EEG assembly (201) and the external device (202), wirelessly transmitting from the EEG assembly (201) and to the external device (202) a data message holding information identifying the incidence that triggered the alert of the person carrying the EEG assembly, and providing information related to the incidence that triggered the alert of said person using presentation means in the external device (202). The invention also relates to an apparatus operating according to the method. |
US08884764B2 |
Method, system, and apparatus for RFID removal detection
According to one exemplary embodiment, an apparatus, system and method for forming RFID labels is disclosed. The RFID labels can include an RFID chip, at least one antenna element and at least one conductive material. The RFID chip may then transmit desired signals based upon a coupling of the conductive material to the RFID chip. |
US08884759B2 |
Dynamic prediction of risk levels for manufacturing operations through leading risk indicators
Provided are methodologies to properly assess and manage operational risks at operations sites, e.g., a manufacturing, production or processing facility, such as a refinery, chemical plant, fluid-catalytic-cracking units, or nuclear energy plant, or a biological or waste management facility, airport or even financial institutions, or at any facility in which operations are often accompanied by risk associated with many high-probability, low-consequence events, often resulting in near-misses. In some operations, processes are monitored by alarms, but the invention operates on either process data or alarm data. The methods are based upon measurement of one or more variables, and/or utilization and management of the concept of “hidden process near-miss(es)” to identify a change or escalation, if any, in probability of occurrence of an adverse incident. The methodologies combine a plurality of subsets (also useful independently) of dynamically calculated leading risk indicators for dynamic risk management. |
US08884758B2 |
Inter-communication system and event occurrence notification method for inter-communication system
The present invention provides an inter-communication system with security functionality capable of reporting incidents such as abnormalities occurring in a security system. In an inter-communication system (100), if a communication sound control device (11) receives an alarm from a security system via a main shop processing device (17), the communication sound control device (11) notifies a predetermined order reception communication device, such as a manager communication device (14), of the reception of the alarm, and the main shop processing device (17) reports to a preset destination over a communication network (35). |
US08884754B2 |
Monitoring vital parameters of a patient using a body sensor network
The invention relates to a method of monitoring a plurality of vital parameters of a patient 10 using a body sensor network with a set of on-body sensors 1 and at least one off-body monitoring device 2, the method comprising the following steps: with each on-body sensor 1, sensing a vital parameter and transmitting data related to the sensed vital parameter to the off-body monitoring device 2, and for at least one of the on-body sensors 1, determining the inclination of this on-body sensor 1 relative to the off-body monitoring device 2. In this way, a reliable and easy to use possibility for monitoring vital parameters of a patient 10 using a body sensor network is provided that minimizes the performance problem produced by RF attenuation caused by the body of the patient 10. |
US08884752B2 |
Medication usage monitoring and reminding device and method
The medication usage monitoring and reminding device and method enables a user to easily monitor usage of medications by weighing the medications using a weighing component, a processing component and an I/O component. Additionally, the device is able to remind a user regarding the medications if the medication has not been timely taken. The device is also able to obtain information regarding medications such as possible conflicts, updates and other information. The device is able to be used for food/drink information or dietary information. |
US08884750B2 |
Inhibiting distracting operations of personal handheld devices by the operator of a vehicle
A warning system is configured to alert a driver if a mobile electronic device present in the vehicle is located outside a designated area of the vehicle, such that it might distract the driver. The designated area can be any surface or retaining area with an associated sensor that can detect the presence of the mobile device. If the driver removes the mobile device from the designated area while driving, the driver will have a predetermined period of time to return the mobile device to the designated area before an alert is generated. If the mobile device is not returned within the predetermined period of time, the alert is generated. |
US08884749B1 |
Driver information and alerting system
A system of reporting vehicle telemetry to a vehicle operator or other user includes a device that removably attaches to the vehicle data port to monitor vehicle operating conditions and communicate with vehicle control modules. A user may configure the device without making permanent changes to the vehicle. The device understands and interprets vehicle communications protocols and can send diagnostic commands to the control modules to allow user-customized text or data to be shown or indicated using built-in or factory installed vehicle displays, lights, or sounds. The system permits showing of multiple user-configured pages of vehicle data or other information and provides real-time updates and configurable switchable profile and display settings. The device monitors factory installed vehicle buttons, switches, knobs, and sensors, and allows use of those items to perform customization and configuration tasks without the need for peripheral input accessories connected to the device. The device permits the user to configure vehicle operating parameter limits, make custom calculations, generate new information, and provide user-desired information to the vehicle operator or other user. |
US08884748B2 |
Method for avoiding children to be left in car alone and device thereof
A method for preventing children from being left in a car and a device thereof. The method comprises testing a |
US08884747B2 |
Haptic feedback device and electronic device
There is provided a lightweight, slim and compact haptic feedback device due to an actuator module constituted of a piezoelectric element and a vibration plate, and an electronic device having the same. The haptic feedback device includes a haptic device receiving contact pressure applied thereto, and an actuator module being in contact with a lower surface of the haptic device and excited according to variations in contact pressure with the haptic device to thereby generate vibrations. |
US08884743B2 |
RFID memory devices
An RFID memory device includes two arrays of resonant members. A first array extends in a first member direction and a second array extends in a second member direction. The device includes one or more elements for transforming energy associated with vibration of the resonant members into a change in impedance of an electrical equivalent circuit of the memory device. The magnitude of impedance change caused by resonance of the first resonant members is maximized at a different magnetic field direction to that at which the magnitude of the impedance change caused by resonance of the second resonant members is maximized. Thus, different data may be encoded on each array and separately read. The resonant members may form part of a common electrical conductor that forms a coupling element for coupling with an applied excitation signal and causing vibration of the resonant members. |
US08884741B2 |
Tracking system
A system simultaneously tracks multiple objects. All or a subset of the objects includes a wireless receiver and a transmitter for providing an output. The system includes one or more wireless transmitters that send commands to the wireless receivers of the multiple objects instructing different subsets of the multiple objects to output (via their respective transmitter) at different times. The system also includes object sensors that receive output from the transmitters of the multiple objects and a computer system in communication with the object sensors. The computer system calculates locations of the multiple objects based on the sensed output from the multiple objects. In some embodiments, the system can also track an item based on proximity of that item to one or more of the objects. In such embodiments, the multiple objects each includes one or more local sensors. The local sensors detect presence of the item and the items' transmitters communicate presence of the item based on respective one or more local sensors. The computer system identifies a location of the item based on communications from one or more of the objects indicating presence of the item and the calculated locations of the multiple objects detecting the item. |
US08884737B2 |
Control device and communication control method
This invention eliminates unnecessary beacon transmission by a DBD and suppresses the power consumption of each device included in a wireless communication network. This invention provides a communication control method in a host which wirelessly communicates with a DBD via a wireless USB. The method includes the steps of transmitting a capture packet command to a DBD when it is activated, analyzing a received captured signal and determining the presence/absence of another Wimedia device unrecognized by the host, and upon determining that the other Wimedia device unrecognized by the host exists, instructing the activated DBD to transmit a beacon to implement wireless communication synchronized with the host. |
US08884731B2 |
Fastening for a solenoid
A loosing- and twisting-proof fastening for solenoids, in particular with a tube pipe receiving a magnet armature, and a coil element. The coil element can be fixed on the tube pipe via a fastening element.On the tube pipe a safety element which can be brought into engagement with the tube pipe, on the one hand, and the coil element, on the other hand, is provided for a twisting-resistant arrangement of tube pipe and coil element. |
US08884729B2 |
Electromagnetic switching device
Disclosed is an electromagnetic device. The electromagnetic switching device includes a housing having an opening, a top plate; side plates extending downward from the top plate; a bottom plate spaced apart from the top plate under the top plate; an opposite part which is one of the side plates facing the opening and coupled to the top and bottom plates, and a tolerance absorbing bar extending toward the opening. |
US08884728B2 |
Stationary contact arm assembly for molded case circuit breaker
A stationary contact arm assembly for a molded case circuit breaker includes a stationary contact arm having a terminal portion and a contact portion provided at both end portions thereof in the length direction, and an inclined extension portion provided between the contact portion and the terminal portion, a flat extension portion forming a space between the flat extension portion and a bottom surface of the contact portion, a bent portion formed from the flat extension portion to the terminal portion; a magnet assembly having a plurality of steel plates at least part of which is installed to be pushed into a space between the flat extension portion and contact portion in the stationary contact arm; and an elastic support plate having an elastic support portion installed on the flat extension portion of the stationary contact arm to support the magnet assembly. |
US08884724B2 |
Cavity filter with tuning structure
A cavity filter includes a housing having a positioning portion, a cover on top of the housing which have a pair of first positioning holes, a sliding plate with movably support on the positioning portion and mounted between the positioning portion and the cover to be configured to adjust a resonating frequency of the cavity filter, and a tuning structure fixed on the cover and having a pair of first positioning poles. The sliding plate includes a plurality of elastic arms, each of which is made of insulated material and supported by the positioning portion. Each of the pair of first positioning poles extends through the corresponding first positioning holes to touch the corresponding one of the plurality of elastic arms of the sliding plate. |
US08884723B2 |
TE011 cavity filter assembly
A TE011 cavity filter assembly is disclosed. The system includes at least one resonator operating in TE011 mode having a resonant frequency. The at least one resonator may include a cavity comprising an inner diameter and a cavity length. The at least one resonator may also include a first metal disc inside the cavity. The first metal disc may include a disc diameter and a void in the metal disc, which includes a void diameter and a void depth. The inner diameter of the cavity may be greater than the disc diameter creating a gap with a gap width and a gap depth. The TE011 cavity filter assembly may further include positive coupling. |
US08884721B2 |
Laminated LC filter
A substantially loop-shaped inductor including a via electrode is arranged such that its loop surface is parallel to a mounting board. Thus, a direction of magnetic flux of the inductor is perpendicular to the mounting board, and influence of the magnetic flux on an adjacent electronic component is significantly reduced and minimized. In addition, the via electrode defines a principal portion of the inductor. Thus, an inductor with a great Q value is obtained, and the insertion loss of a laminated LC filter is significantly reduced and minimized. |
US08884720B2 |
Capacitance element and resonance circuit
A capacitance element includes a first electrode, a second electrode, a third electrode, a fourth electrode, a first dielectric portion, a second dielectric portion, and a third dielectric portion. To the first electrode, a signal having a first polarity is applied. To the second electrode, a signal having a second polarity is applied. The second polarity is opposite to the first polarity. To the third electrode, the signal having the second polarity is applied. The third electrode is disposed on a position opposed to the second electrode. To the fourth electrode, the signal having the first polarity is applied. The first dielectric portion is provided between the first electrode and the second electrode. The second dielectric portion is provided between the second electrode and the third electrode. The third dielectric portion is provided between the third electrode and the fourth electrode. |
US08884717B2 |
Diplexer
The invention discloses a diplexer formed from the combination of a first filter and a second filter, wherein both the first filter and the second filter have at least one through-hole via inductor. The diplexer has an input terminal to receive an input signal. The first filter has a first terminal electrically connected to the input terminal and a second terminal to generate a first output signal; the second filter has a third terminal electrically connected to the input terminal and a fourth terminal to generate a second output signal. The diplexer has a first output terminal electrically connected to the second terminal of the first filter to output the first output signal and a second output terminal electrically connected to the fourth terminal of the second filter to output the second output signal. |
US08884712B2 |
Oscillator
There are disposed a sealing member, a pair of electrode pads to electrically couple a piezoelectric resonator, a plurality of connection pads to electrically couple an integrated circuit element and the piezoelectric resonator, and wiring patterns to establish electrical continuity between the pair of electrode pads and the plurality of connection pads, and the piezoelectric resonator and the integrated circuit element are disposed side by side in plan view. An output wiring pattern establishes electrical continuity between one of the connection pads and an alternating current output terminal of an oscillation circuit, and a power source wiring pattern establishs electrical continuity between one of the connection pads and a direct current power source terminal of the oscillation circuit. The electrode pads are disposed closer to the power source wiring pattern than the output wiring pattern. |
US08884707B2 |
Two-delay voltage-controlled-oscillator with wide tuning range
An oscillator is disclosed that can generate an oscillation signal using a latch and two delay elements. For some embodiments, the oscillator includes an SR latch, a first delay element, and a second delay element. The SR latch has a first input, a second input, a first output, and a second output. The first delay element is coupled between the first output and the first input of the SR latch. The second delay element is coupled between the second output and the second input of the SR latch. For some embodiments, the first and second delay elements include a programmable pull-up circuit that allows the charging current to be adjusted in discrete amounts, and include a programmable capacitor circuit that allows the capacitance value to be adjusted in discrete amounts. |
US08884702B2 |
Power amplifier with supply switching
To improve upon efficiency of a transmitter's power amplifier during low power operation, a switching system is used to selectively switch between different (e.g., normal and reduced) power supplies. Suitable hardware/software in the form of circuitry, logic gates, and/or code functions to process, amplify, and transmit an input RF signal and selectively switch IN/OUT a plurality of supply voltages using control logic. |
US08884699B2 |
Input common mode control using a dedicated comparator for sensor interfaces
Various embodiments of the invention allow for low-noise, high performance input common mode voltage control in capacitive sensor front end amplifiers. In certain embodiments overcome the shortcomings of the prior art by implementing a full voltage swing common mode voltage comparator in a parallel feed-forward path to compensate large common mode input signal variations. |
US08884695B2 |
Efficient supply voltage
There is disclosed an arrangement comprising: a driver stage connected to receive an input signal and generate a drive signal; a transformer comprising: a first winding of a first side of the transformer, across which winding a voltage signal is developed in dependence on the drive signal; and a second winding of the first side of the transformer, coupled to the first winding, which exhibits across it a voltage signal related to the voltage across the first winding, by swingback; and a first controller for comparing the voltage exhibited in the second winding to a first threshold voltage, and for selecting a first or a second supply voltage for the arrangement in dependence on the comparison. |
US08884691B2 |
Demodulators
Disclosed herein is a demodulator, including: a splitting/matching section for carrying out a matching process of making the amplitude and phase of a first modulated signal match respectively the amplitude and phase of a second modulated signal; and a demodulation section for generating a demodulated signal on the basis of the first modulated signal and the second modulated signal, which have been subjected to the matching process carried out by the splitting/matching section, wherein the splitting/matching section has a splitting section, a first matching section, and a second matching section, the first circuit-element constants determining the first input impedance of the first matching section and the second circuit-element constants determining the second input impedance of the second matching section are set at values determined in advance in order to make the first input impedance equal to the second input impedance. |
US08884686B2 |
Direct current voltage output circuit and set top box
When the conduction state of at least one MOS transistor of a PMOS transistor (P1) and NMOS transistor (N2) is switched to an off state, current which would be applied to the MOS transistor with a conduction state in the off state due to the conduction state becoming the off state is bypassed to a resistor (R3, R4). Due to this, an MOS transistor with a conduction state in the off state being supplied with direct current power as it is can be avoided and the withstand voltage of that MOS transistor does not have to be raised. For this reason, the manufacturing costs of the direct current voltage output circuit (54a) can be kept down. At the same time, the circuit size of the direct current voltage output circuit (54a) can be made smaller. |
US08884685B1 |
Adaptive dynamic voltage scaling system and method
Integrated circuit designs and methods using adaptive dynamic voltage scaling circuits for IC designs that compensate for some of the effects of PVT dependent characteristics on the fabrication of advanced IC's but allow lower margins and provide high die yields, smaller die size, and lower power usage. An inner control loop varies the voltage output of an internal variable voltage regulator powered by an IC circuit voltage, and monitors the operation of a test circuit until it reaches a cross-over point (i.e., either fails to operate or begins to operate) with respect to an essentially identical nearby reference circuit, at which point the IC circuit voltage is adjusted by an outer control circuit to that voltage output level plus a margin. |
US08884684B2 |
Charge pump circuits having frequency synchronization with switching frequency of power converters
A control circuit of a power converter is provided. The control circuit includes a switching circuit and a charge pump circuit. The switching circuit generates a switching signal for controlling the power converter. The charge pump circuit includes an oscillator for generating an oscillation signal synchronized with the switching signal. The oscillation signal is coupled to control a switch of the charge pump circuit for generating a voltage source. |
US08884683B1 |
Semiconductor integrated circuit and operating method of semiconductor integrated circuit
Provided are an operating method of a semiconductor integrated circuit and a semiconductor integrated circuit which includes a core circuit. The operating method includes: monitoring respective residencies of operating states of the core circuit; and controlling the operating states of the core circuit according to the monitored residencies of the operating states. |
US08884680B2 |
Signal electric potential conversion circuit
In a signal electric potential conversion circuit, a capacitor has one end receiving an input signal CIN, and the other end connected to a termination node N1. A conversion circuit receives a potential IN of the termination node N1. A connection element is provided between a power supply VDDH and the termination node N1, and an impedance of the connection element is reduced when the potential IN is lower than a first potential. Another connection element is provided between the termination node N1 and a ground power supply, and an impedance of the connection element is reduced when the potential IN is higher than a second potential. |
US08884675B2 |
Apparatus and method for slew rate control
The slew rate of a transistor is controlled. Upon a transition of a MOSFET control signal, an operating voltage of the MOSFET is measured and a determination of whether the voltage is between a predetermined set of values is made. Based upon the determination, a counter is incremented, and the count of the counter corresponding slew rate. The turn-on current of the MOSFET is controlled based upon the count. |
US08884674B2 |
Edge rate control gate drive circuit and system for high and low side devices with large driver FET
An apparatus, comprising: a NFET current mirror having a first NFET and a second NFET; a PFET gate-coupled to the drain of the second NFET, wherein the PFET has a larger gain than the second NFET; a driver NFET having a gate that is coupled to the drain the PFET; wherein the second NFET is coupled through its source to the drain of the driver NFET. |
US08884669B2 |
Electronic device with power mode control buffers
An electronic device has a power control module for causing selected functional blocks to run in a low power mode of operation, while leaving other functional blocks supplied continuously with power. A power mode control distribution network includes serially connected chains of buffers in a distribution tree for distributing power mode control signals received at a common input end to respective output ends which are connected to respective functional blocks. In the low power mode of operation the power control module causes power to be supplied continuously to output buffers at the output ends of the chains while causing power supplied to other buffers to be reduced or cut-off. The output buffers include feedback paths for causing the states of the output buffers prior to the low power mode of operation to latch during the low power mode of operation. |
US08884665B2 |
Multiple-phase clock generator
A multiple-phase clock generator includes at least one stage of dividers. A clock signal is supplied as a first stage clock input to dividers in a first stage of dividers. An N-th stage includes 2N dividers, where N is a positive integer number. Each divider in the first stage is configured to divide a first clock frequency of the first stage clock input by 2 to provide a first stage output. Each divider in the N-th stage is configured to divide an N-th clock frequency of an N-th stage clock input by 2 to provide an N-th stage output. The N-th stage outputs from the dividers in the N-th stage provide 2N-phase clock signals that are equally distributed with a same phase difference between adjacent phase clock signals. |
US08884664B1 |
Systems and methods for generating low band frequency sine waves
An embodiment of a system for generating a low phase noise sine wave includes a variable signal source for generating a signal a series of octave dividing stages connected with the variable signal source, an input divider connected with the variable signal source, and a second series of octave dividing stages connected with an output of the pre-input frequency divider. Each octave dividing stage generating a successive octave of the generated signal using a frequency divider, a sine look up table, and a low pass filter. |
US08884657B2 |
Switch-driving circuit
A switch-driving circuit suitable for driving a full-controlled power switch combination is disclosed. The switch-driving circuit includes a first pulse-width modulator, a high-voltage isolation pulse transformer module and a plurality of output modules. The high-voltage isolation pulse transformer module includes a magnetic core connected to multiple output modules in a one-to-many way, or includes multiple magnetic cores connected to multiple output modules in a one-to-one way. Each output module includes a second pulse-width modulator and a driving-power amplifier. The full-controlled power switch combination includes a plurality of full-controlled power switches. The driving-power amplifier is coupled between the second pulse-width modulator and one of the full-controlled power switches. |
US08884656B2 |
High-performance zero-crossing detector
A zero-crossing detection circuit includes a comparator and circuitry. The comparator produces an output signal that is indicative of zero-crossing events in an input Alternating Current (AC) waveform. The circuitry may be configured to feed the comparator with first and second rails voltages, and to progressively increase the rails voltages during time intervals derived from the input AC waveform, so as to feed the comparator with target values of the rails voltages in time-proximity to the zero-crossing events. The circuitry may be configured to compensate for an error in detecting the zero crossing events caused by differences in amplitude of the input AC waveform, by correcting the input AC waveform provided to the comparator. The circuitry may be configured to activate the comparator during time intervals preceding respective anticipated times of the zero-crossing events, and to deactivate the comparator at least once during time periods other than the time intervals. |
US08884651B2 |
Logic circuit and semiconductor device
To reduce a leakage current of a transistor so that malfunction of a logic circuit can be suppressed. The logic circuit includes a transistor which includes an oxide semiconductor layer having a function of a channel formation layer and in which an off current is 1×10−13 A or less per micrometer in channel width. A first signal, a second signal, and a third signal that is a clock signal are input as input signals. A fourth signal and a fifth signal whose voltage states are set in accordance with the first to third signals which have been input are output as output signals. |
US08884647B2 |
Integrated circuit and method of using the same
An integrated circuit wherein all elements such as a chip area, a cost, a function to change a logic, an operating frequency, flexibility, a throughput and electric power consumption can be improved; and a reconfigurable processor wherein a function of an instruction can be changed, are provided. A high-density logic reconfigurable leaf cell is defined. The integrated circuit is characterized in that: a logic reconfigurable leaf cell module, which is integrated with high density by arranging a plurality of leaf cells regularly to minimize the connection channel area for a signal between the leaf cells, and the reconfigurable processor, which can change the function of an instruction set by inserting the logic reconfigurable leaf cell module into a data path of an instruction execution process circuit, are integrated. |
US08884645B1 |
Semiconductor apparatus
An internal voltage generation circuit of a semiconductor apparatus includes: an active driver configured to output an internal voltage to an output node; a standby driver configured to output the internal voltage to the output node; and a voltage stabilizer connected to the output node. The voltage stabilizer starts a voltage stabilization operation of supplying or receiving electric charges to or from the output node when an active enable signal is disabled, and stops the voltage stabilization operation in a predetermined time after to the active enable signal is enabled. |
US08884643B2 |
Electronic circuit arrangement for processing binary input values
Electronic circuit arrangement for processing binary input values xεX of a word width n (n>1), with a first, second and third combinatory circuit components configured to process the binary input values x to form first, second and third binary output values. The arrangement further includes a majority voter element configured to receive the binary output values and provide a majority signal based on the received binary output values. The second and third combinatory circuit components are designed, as regards faults during processing of the binary input values x in the first combinatory circuit component, to process binary input values of a true non-empty partial quantity X1 of the quantity of binary input values X in a fault-tolerant manner and process binary input values of a further non-empty partial quantity X2 of the quantity of binary input values X different from the true non-empty partial quantity X1 in a fault-intolerant manner. |
US08884642B2 |
Circuit having an external test voltage
A circuit having an external test voltage includes an amplifier, a first P-type metal-oxide-semiconductor transistor, a second P-type metal-oxide-semiconductor transistor, at least one reference resistor, at least one test resistor, a first upper resistor, a second upper resistor and a lower resistor. The second P-type metal-oxide-semiconductor transistor is the same as the first P-type metal-oxide-semiconductor transistor. A difference between a voltage of a test output terminal of each test resistor and a voltage of a reference output terminal of a corresponding reference resistor is kept at a predetermined value by duplicating a current flowing through the first P-type metal-oxide-semiconductor transistor to the second P-type metal-oxide-semiconductor transistor, and feeding an external test voltage to a second terminal of the second upper resistor. |
US08884639B2 |
Methods, apparatus and articles of manufacture for testing a plurality of singulated die
In one embodiment, a method for testing a plurality of singulated semiconductor die involves 1) placing each of the singulated semiconductor die on a surface of a die carrier, 2) mating an array of electrical contactors with the plurality of singulated semiconductor die, and then 3) performing electrical tests on the plurality of singulated semiconductor die, via the array of electrical contactors. |
US08884636B2 |
Sensor
Disclosed is a sensor that can accurately detect displacement and prevents the phenomenon of a contact section between a shaft member and a sliding element receiver being shifted. The sensor comprising: a case having a through hole; a resistance substrate fixed at an inside of said case; a shaft member having a first end portion which is one end of the shaft member placed within said case and a second end portion which is other end of the shaft member exposed to an outside of said case from said through hole, said shaft member being placed at said through hole in a movable manner in an axial direction; and a sliding element receiver having a bearing end contacting with said second end portion of said shaft member, and attached with a brush sliding together with said resistance substrate, said sliding element receiver being capable of moving relatively against said resistance substrate with said shaft member. A hemispherical end face is formed at said first end portion. A hemispherical hole internally contacting with said hemispherical end face is formed at said bearing end. |
US08884635B2 |
Transcapacitive charge measurement
A circuit for measuring a change in capacitive coupling between a transmitter electrode and receiver electrode includes a transmitter module that couples with the transmitter electrode and drives it with a plurality of positive and negative measurement cycles. A latched comparator has an input and an output, where the input couples with the receiver electrode. Upon enablement, the latched comparator determines if receiver electrode voltages satisfy an input threshold of the latched comparator and provides an output signal from an output based on this determination. A first counter is adjusted based on a first output signal of the latched comparator output during a positive measurement cycle. A second counter is adjusted based on a second output signal of the latched comparator during a negative measurement cycle. Measurement of change in capacitive coupling between the transmitter electrode and receiver electrode is based on counter values of the first and second counters. |
US08884634B2 |
Semiconductor module
According to one embodiment, a semiconductor module comprises a substrate, a first wiring, an electrode pad, a junction, an oscillator, and a detector. The first wiring is disposed on the substrate, and has a characteristic impedance Z0. The electrode pad is connected to the first wiring. The junction is disposed on the electrode pad, and has an impedance Z1. The oscillator is disposed in contact with the first wiring, and oscillates a pulse wave of a voltage toward the junction via the first wiring. The detector is disposed in contact with the first wiring, and detects an output wave of the pulse wave from the junction. The characteristic impedance Z0 and the impedance Z1 satisfy a following relationship (1), Z 0 - Z 1 Z 0 ≤ 0.05 . ( 1 ) |
US08884632B2 |
Fill level measuring device working with microwaves
A fill level measuring device. On a plurality of different signal paths, microwave signals can be transmitted into a container, and their associated echo signals recorded. The device includes: measuring device electronics having a microwave generator for the successive production of microwave signals; and, connected thereto, a frequency-selective, passive antenna arrangement, which has a number of frequency-selective elements—especially bandpass filters—in each case transmissive for one of the different wanted frequencies. Via the antennas and the frequency-selective elements, for each of the different microwave signals and its echo signal, a uniquely associated signal path is specified, via which a microwave signal is transmitted into the container and its echo signal, reflected back to the antenna arrangement, is received and fed to the measuring device electronics. The device also includes an apparatus, which is provided in the measuring device electronics and which associates successively arriving echo signals with the associated signal path. |
US08884628B2 |
Systems, methods, and apparatus for monitoring a machine
Systems, methods and apparatus for monitoring rub detection in a machine are provided. An electrical signal may be provided for transmission to and into a component of the machine. A capacitance associated with the electrical signal in the component may be monitored. Based at least in part upon a determined change in the monitored capacitance, a potential rub condition for the component of the machine. |
US08884627B2 |
Apparatus for detecting short-circuit of output diode in converter
An apparatus comprises: a voltage monitoring unit for monitoring input direct-current voltages of first and second converters whose output ends are connected in parallel to each other; and a judgment control unit for judging that an output diode of the first converter is short-circuited, when an input direct-current voltage monitored by the voltage monitoring unit with respect to the first converter rises up to a post-step-up voltage stepped up by the second converter during a step-up operation of the second converter. |
US08884625B2 |
Method of calculating a used time of a light source, method of displaying lifetime of a light source using the method and display apparatus for performing the method
A display apparatus includes a display panel, a light source part, a light source driving part and a used time calculation part. The light source part includes a light source providing the display panel with lights. The light source driving part includes a boost part outputting a light source driving voltage and a light source driving chip controlling the boost part. The used time calculation part detects an initial drive time during which an initial driving voltage is supplied to the light source driving chip and a normal drive time during which a normal driving voltage is supplied to the light source driving chip, and calculates a used time of the light source by using the initial drive time and the normal drive time. Thus, a real used time of a light source may be provided to correctly estimate lifetime of a light source. |
US08884616B2 |
XMR angle sensors
Embodiments relate to xMR sensors, in particular AMR and/or TMR angle sensors with an angle range of 360 degrees. In embodiments, AMR angle sensors with a range of 360 degrees combine conventional, highly accurate AMR angle structures with structures in which an AMR layer is continuously magnetically biased by an exchange bias coupling effect. The equivalent bias field is lower than the external rotating magnetic field and is applied continuously to separate sensor structures. Thus, in contrast with conventional solutions, no temporary, auxiliary magnetic field need be generated, and embodiments are suitable for magnetic fields up to about 100 mT or more. Additional embodiments relate to combined TMR and AMR structures. In such embodiments, a TMR stack with a free layer functioning as an AMR structure is used. With a single such stack, contacted in different modes, a high-precision angle sensor with 360 degrees of uniqueness can be realized. |
US08884612B2 |
Configurable non-contact position sensor
Embodiments herein relate to the general art of motor vehicles, and to the particular field motor vehicle components, especially sensors for electronic throttle controls. Particular embodiments include configurable Hall-effect sensors for use in vehicle controls. In various embodiments, the configurable sensors may include a flexible over molding that may allow the sensor assemblies to achieve an environmental rating conforming International Protection Rating IP 67 and/or IP 66. Additionally, because the sensor assemblies are modular, a single assembly may be configured in any number of different ways, including direct drive and indirect drive applications and multiple different proprietary interface connections, while maintaining compliance with Society of Automotive Engineers (SAE) standards. |
US08884610B2 |
Magnetic field sensor
A magnetic field sensor assembly for measuring an angular direction of a sensed magnetic field relative to the assembly is disclosed. The sensor assembly includes a sensor of a first type configured to sense an orientation of the sensed magnetic field, a sensor of a second type configured to measure an orientation and a direction of the sensed magnetic field and processing circuitry connected to each of the magnetic field sensors. The processing circuitry being configured to process output signals from the sensor of the first type to determine an uncorrected sensed magnetic field angle and to apply an offset angle to the uncorrected magnetic field angle dependent on a logical combination of signs of output signals from the sensors of the first and second types. |
US08884609B2 |
Circuit arrangement for determining the closing instant of a valve with a coil which actuates an armature
A circuit arrangement determines the closing instant of a valve with a coil that actuates an armature. The circuit has a voltage divider with at least three resistors connected to a measuring node of the coil and to ground. The first resistor is highly resistant in comparison with the other resistors of the voltage divider. A differential amplifier has its output connected to its inverting input via a fourth resistor and its non-inverting input receives a voltage from the voltage divider that represents the current in the coil. A parallel circuit of a capacitor and a resistor is connected between the inverting input and ground. A controllable switching element has a controlled path between the first resistor and the parallel circuit, and a control connection connected to the positive supply potential of the differential amplifier. |
US08884604B2 |
Adaptive feedback cascode
A current mirror for generating a substantially identical current flow in two parallel current paths, each current path comprising a switching device and each switching device comprising first and second active terminals and a control terminal for controlling current flow between the first and second active terminals, the current mirror comprising a first switching device arranged such that its first active terminal is arranged to receive a first voltage, its second active terminal is arranged to receive a variable voltage that varies independently of the first voltage and its control terminal is arranged to receive a control voltage, a second switching device connected such that its first active terminal is arranged to receive the first voltage and its control terminal is arranged to receive the control voltage and a voltage control device connected to the second switching device such that an input of the voltage control device is connected to the second active terminal of the second switching device, the voltage control device being arranged to receive a control signal indicative of the variable voltage and to alter the voltage at its input terminal in dependence on the control signal such that the difference between the voltage across the active terminals of the second switching device and the voltage across the active terminals of the first switching device remains substantially constant. |
US08884603B2 |
Reference power supply circuit
A reference power supply circuit includes an adjustable resistance network and a bandgap reference power supply circuit, in which the adjustable resistance network includes a first resistor end and a second resistor end, the resistance between the first resistor end and the second resistor end varies with a process deviation; the bandgap reference power supply circuit connects the first resistor end with the second resistor end, for generating a positive proportional to absolute temperature current flowing through the first resistor end and the second resistor end and for outputting a reference voltage related to the positive proportional to absolute temperature current. The reference power supply circuit has the advantageous of high precision and good temperature drift characteristic. |
US08884602B2 |
Reference voltage circuit
A constant current flowing through a first depletion transistor whose gate and source are connected to each other is caused to flow through a second depletion transistor having the same threshold as the first depletion transistor, to thereby generate a first voltage between a gate and a source of the second depletion transistor. The constant current of the first depletion transistor and a constant current flowing through a third depletion transistor whose gate and source are connected to each other are caused to flow through a fourth depletion transistor. A threshold of the fourth depletion transistor is the same as that of the third depletion transistor but different from that of the first depletion transistor, and hence a second voltage is generated between a gate and a source of the fourth depletion transistor. A reference voltage is generated based on a voltage difference between the first and second voltages. |
US08884599B2 |
Switching converter control circuit
A DC-DC converter has a control circuit for controlling a high-side power transistor and a low-side power transistor connected in series between supply terminals to which an input supply voltage is applied. The converter has a switching node at the interconnection of the power transistors for connection of an inductor to which a load is connected. The control circuit has a feedback loop that provides a pulse width modulated control signal, logic circuitry to which the pulse width modulated control signal is applied and gate drivers with inputs connected to outputs of the logic circuitry and outputs applying gate drive signals to the gates of the power transistors. A digital signal is obtained which is indicative of whether the converter switching node is at a potential above or below a zero reference at the time of the turn-off edge of the low-side gate drive signal. The turn-off edge of the low-side gate drive signal is advanced or delayed by a predetermined amount in response to the value of the digital signal. |
US08884598B2 |
Method and apparatus for operating a DC/DC converter
A method of operating a DC/DC converter in a continuous-conduction mode (CCM) or in a discontinuous-conduction mode (DCM) to produce an output voltage, the DC/DC converter setting a pulse width modulation in CCM based on a COMP signal that varies as a function of the output voltage, the method including capturing the COMP signal utilizing a digital-to-analog converter at a transition between CCM and DCM, and varying a frequency of operation of the DC/DC converter in DCM based on the captured COMP signal. |
US08884596B2 |
Dynamic control of frequency compensation for improved over-voltage protection in a switching regulator
An error amplifier includes a difference amplifier providing an error signal representing a difference in voltage between a feedback signal and a reference signal. The error amplifier further includes a compensation circuit limiting the rate of change of the error signal. The compensation circuit includes a switch that when activated effectively removes a circuit portion from the compensation circuit. A switch signal indicates for the switch to be activated when the feedback signal exceeds the reference signal by a predefined amount.The compensation circuit may further include a second switch that when activated effectively removes a second circuit portion from the compensation circuit. A second switch signal indicates for the second switch to be activated when the feedback signal exceeds the reference signal by a second predefined amount. |
US08884593B2 |
Voltage converter for providing a positive and a negative voltage
The present invention relates to a voltage converter, which uses an inductor coupled between a power supply and a reference voltage for providing a supply voltage. A plurality of output capacitors are coupled to both sides of the inductor, respectively, and receive the supply voltage for producing a positive voltage and a negative voltage. A plurality of output switches are coupled to both sides of the inductor, respectively, and control the inductor to charge the plurality of output capacitors. A feedback control circuit produces a control signal according to the positive and negative voltages for controlling the plurality of output switches. Thereby, the present invention can produce positive and negative voltage by means of the inductor. Accordingly, the voltage converter according to the present invention avoids usage of multiple inductors and capacitors in producing voltages with different levels, and thus reducing the circuit area as well as the manufacturing cost. |
US08884591B2 |
Control circuit for discontinuous conduction mode power factor correction converter using harmonic modulation
A control circuit for a discontinuous conduction mode power factor correction converter using harmonic modulation includes: a first difference circuit configured to calculate and output a difference between an output voltage of a discontinuous conduction mode power factor correction converter and a reference voltage; a PI converter configured to perform a proportional integral control on an output signal of the first difference circuit, and output a signal having an arbitrary duty ratio; a second difference circuit configured to output a difference between a rectified input voltage, which is input to the discontinuous conduction mode power factor correction converter, and a harmonic modulation factor DC voltage; and a multiplication circuit configured to multiply an output of the PI controller and an output of the second difference circuit, and output a PFC control signal to a switch of the discontinuous conduction mode power factor correction converter. |
US08884589B2 |
Method and system for power switch temperature regulation
The invention is related to a method and system for temperature regulation of a power switch during charging of a portable device. The method includes the steps of establishing a connection between the portable device and a charging circuit, monitoring a charging current supplied from the charging circuit to the portable device, monitoring a temperature of the power switch, while the portable device is being charged, comparing the monitored temperature with a predefined threshold temperature, and restricting the charging current, based on the comparison. |
US08884586B2 |
Balancing power supply and demand
A method and apparatus to balance adapter power supply and computing device power demand. In one embodiment, power to/from battery pack(s) maybe controlled by adjusting the output voltage of the power adapter via the current input to the power adapter through a feedback pin to meet power demand of electrical loads. Another embodiment provides a way to adjust the activities of the electrical loads such that neither adapter power rating nor the electrical load power limit is exceeded while avoiding system shutdown. |
US08884584B2 |
Multi-series battery control system
A multi-series battery control system comprises a plurality of unit battery cell of which unit consists of multiple battery cells connected in series; a plurality of control IC comprising a control circuit for controlling the unit battery cell; a main controller that sends and receives signal to/from the control ICs via an insulation; means for sending an abnormality signal, which represents the existence or the absence of abnormality of the control ICs or the battery cells, to the main controller from the control ICs, responding to the first signal outputted from the main controller via the insulation; and means for searching contents of the abnormality in the control ICs or the battery cells and sending the abnormality contents signal based on the search, to the main controller from the control ICs, responding to the second signal outputted from the main controller via the insulation. |
US08884582B2 |
Battery management system utilizing stackable batteries
An energy storage system includes a battery management system that has a plurality of loads connected in electrical series with one another, and a controller operatively connected to the plurality of loads. A first battery pack has battery cells connected in electrical series with respect to one another to establish a system voltage. The first battery pack is connected in electrical parallel to the plurality of loads. The controller is operable to balance charges of the battery cells by activating selected ones of the loads. The battery management system and the first battery pack are configured such that an additional battery pack with additional battery cells connected in electrical series with respect to one another or an additional load pack with additional loads connected in electrical series with respect to one another is connectable to the battery management system. A method of managing battery capacity is also provided. |
US08884581B2 |
Adaptive wireless energy transfer system
Exemplary embodiments are directed to wireless power transfer using magnetic resonance in a coupling mode region between a charging base (CB) and a remote system such as a battery electric vehicle (BEV). The wireless power transfer can occur from the CB to the remote system and from the remote system to the CB. Load adaptation and power control methods can be employed to adjust the amount of power transferred over the wireless power link, while maintaining transfer efficiency. |
US08884580B2 |
Charge equalization between series-connected battery cells
In one embodiment, a method includes receiving a first input current from a battery through a first connection and a second connection and generating a first output current through a third connection to a first node and a fourth connection to a second node. The first and second nodes are configured to output the first output current to an energy store configured to store a charge. The method includes receiving a second input current through the third connection from the first node and the fourth connection from the second nodes and generating a second output current through the first and second connections to charge the battery. |
US08884576B2 |
Variable-flux motor drive system
A variable-flux motor drive system including a permanent-magnet motor including a permanent magnet, an inverter to drive the permanent-magnet motor, and a magnetize device to pass a magnetizing current for controlling flux of the permanent magnet. The permanent magnet is a variable magnet whose flux density is variable depending on a magnetizing current from the inverter. The magnetize device passes a magnetizing current that is over a magnetization saturation zone of magnetic material of the variable magnet. This system improves a flux repeatability of the variable magnet and a torque accuracy. |
US08884575B2 |
Drive system for synchronous electrical motor
A drive system of a synchronous electrical motor includes a synchronous electrical motor; a power converter that is connected to the motor with a plurality of switching elements; a controller that outputs a voltage instruction to the power converter; a voltage detection unit for open phases upon application of respective positive and negative pulse voltages between respective two phases out of three-phase windings of the motor; an induced voltage difference for calculating an induced voltage difference that is a difference between an induced voltage detected by the voltage detection unit at each of the open phases upon application of the positive voltage pulse between the corresponding two phases and an induced voltage detected by the voltage detection unit at the open phase upon application of the negative voltage pulse between the two phases. |
US08884574B2 |
Positioning method and positioning device
The present disclosure provides a positioning method and a positioning device. The positioning device includes: an emitter for emitting light beams to a to-be-positioned point and auxiliary positioning points; a receiver for receiving reflected light beams reflected by the to-be-positioned point and the auxiliary positioning points; a judging module for judging whether the reflected light beam reflected by the to-be-positioned point is received or not; and a calculating module for receiving a judging result from the judging module and determining height information of the to-be-positioned point according to the reflected light beams reflected by the to-be-positioned point and the auxiliary positioning points. Thus, the height information of the to-be-positioned point can be determined according to the reflected light beams reflected by the auxiliary positioning points even if the reflected light beam reflected by the to-be-positioned point cannot be received, which improves the success rate of the positioning. |
US08884572B2 |
Signal processor, encoder, and motor system
A signal processor includes an AD converter that converts a periodic analog signal output from a detector in accordance with a position Q of a motor to a digital signal at a predetermined conversion period, a tracking circuit that calculates a position P of the motor at an arithmetic period on the basis of the digital signal that is converted and output at the conversion period by the AD converter, an operation state identifier that identifies an operation state of the motor on the basis of the position P of the motor calculated by the tracking circuit, and an arithmetic period determiner that changes the arithmetic period of the tracking circuit in accordance with the operation state of the motor identified by the operation state identifier such that the position P of the motor calculated by the tracking circuit follows the actual position Q of the motor. |
US08884570B2 |
Position control system
The invention provides a position control system comprising a moving portion that is movable, a position-detection portion that detects a position of the moving portion, a drive portion that applies driving force to the moving portion thereby moving the moving portion, a control portion that controls the driving force of the drive portion, and an input portion for inputting a drive target position for the moving portion, characterized in that the control portion is operable to determine the driving force to be applied to the drive portion based on a correction coefficient acquired based on a first deviation that is a difference between the drive target position inputted into the input portion and the reference position, and a second deviation that is a difference between a position detected by the position-detection portion and the drive target position inputted into said input portion. |
US08884568B2 |
Driving circuit and method for fan
A driving circuit for driving a fan with a plurality of operational modes includes an initiation module for generating a switch signal according to a feedback signal, a control module coupled to the initiation module for utilizing a pulse frequency modulation technique to generate a control signal according to the switch signal and a predetermined comparison signal, so as to drive the fan for a rotational operation, and a feedback module coupled to the fan for generating the feedback signal according to a conduction result of the fan. The rotational operation includes the plurality of operational modes, and the fan is switched between the plurality of operational modes according to different conduction results of the fan. |
US08884566B2 |
Method of position sensorless control of an electrical machine
A position sensorless control methodology for electrical machines using high frequency flux vector signal injection in the estimated rotor flux rotational reference frame is provided. In one aspect, the estimated position error function is derived directly from the stator flux equation without any simplification. The method is applicable for electrical generator motoring mode operation from standstill and power generation mode operation. |
US08884564B2 |
Voltage converter and voltage converter system including voltage converter
A voltage converter includes a first circuit and a second circuit. The first circuit includes two or more reactors and at least one switching element. One terminal of each of the reactors is connected in parallel with respect to a power source. The at least one switching element is connected to the other terminal of each of the reactors. The second circuit includes at least one rectifier of which one terminal is connected to the electrical load. The second circuit shares with the first circuit the at least one switching element connected to the at least one rectifier. The first circuit is connected such that the power source charges the respective reactors when the at least one switching element is turned ON. The second circuit is connected such that the reactors discharge power to the electrical load when the at least one switching element is turned OFF. |
US08884559B2 |
Motor drive device
A motor drive device has an inverter circuit, in which at least three sets of a pair of upper and lower arms including a semiconductor switching element on an upper arm and a lower arm is arranged, for supplying voltage to a motor based on ON/OFF operation of each semiconductor switching element by a PWM (Pulse Width Modulation) signal, an inverter drive unit for outputting the PWM signal to each semiconductor switching element of the inverter circuit, a fail safe circuit, arranged between the inverter circuit and the motor, including a semiconductor switching element for shielding the voltage supply from the inverter circuit to the motor for each phase, and a fail safe drive unit for outputting a signal for turning ON/OFF the semiconductor switching element of the fail safe circuit. |
US08884557B2 |
Disconnection from mains using switches for power tools
A method for operating a mains-operated electric motor for a power tool includes connecting a first side of an electric motor to a first mains and connecting a second side of the electric motor to a second mains using first and second switches, respectively, in particular semiconductor switches, and monitoring the operational reliability of the switches using an electronic controller for operating safety. |
US08884556B2 |
System for controlling a motor of vehicle
A system for controlling a motor of a vehicle that improves fuel economy by minimizing a sum of heat generated by the motor and heat generated by a converter, is disclosed. More specifically, a power source supplies DC electricity; a converter selectively receives and converts the DC electricity of the power source into inverter input voltage. A relay module selectively connects the power source to the converter and an inverter module receives the inverter input voltage from the converter, converts the inverter input voltage into 3-phase AC current, and supplies the 3-phase AC current to the motor. Further, a controller controls operations of the converter, the relay module, and the inverter module, to perform to minimize the inverter input voltage that is a sum of heat generated due to the flux-weakening control and heat generated due to suppression of the flux-weakening control. |
US08884555B2 |
Light-emitting element array, driving device, and image forming apparatus
A light-emitting element array has a plurality of three-terminal light-emitting elements such as light-emitting thyristors with anode, cathode, and gate terminals. The anode terminal of each light-emitting element is connected to a driving circuit. The cathode terminal is grounded. The gate terminals of at least some of the three-terminal light-emitting elements are driven from a common buffer, and within this group of three-terminal light-emitting elements, the anode terminals are driven individually. This enables the array of three-terminal light-emitting elements to be driven in essentially the same way as an array of two-terminal light-emitting elements, but without the need for large power transistors between the cathode terminals and ground. |
US08884548B2 |
Power factor correction converter with current regulated output
A power factor correction converter in a buck-boost configuration may include a set-up circuit configured to supply an input voltage, a buck transistor connected to the set-up circuit, and configured to receive a current from the diode bridge, a first diode connected to the buck transistor, a boost transistor, a resistor connected to the boost transistor, a coil that connects the buck transistor and the boost transistor, a buck-boost PFC regulator connected to the set-up circuit, and configured to regulate a time pattern of the on/off status of the first transistor and the second transistor synchronously, a second diode connected to the coil and the boost transistor, and configured to output a first level voltage, a capacitor connected to the second diode and a load connected to the second diode. |
US08884546B2 |
Driving apparatus for light-emitting diode curtain lamp
A driving apparatus for light-emitting diode curtain lamp is applied to a direct current power source and at least a light-emitting diode light string. The driving apparatus for light-emitting diode curtain lamp includes a master control unit, at least a slave control unit, and a transmission line. The master control unit is electrically connected to the direct current power source. The slave control unit is electrically connected to the master control unit and the light-emitting diode light string. The transmission line is electrically connected to the master control unit and the slave control unit. The slave control unit is controlled by the master control unit to drive the light-emitting diode light string. The transmission line is used to transit control signals and synchronous signals. |
US08884545B2 |
LED driving system and driving method thereof
A light emitting diode (LED) driving system drives a plurality of LED strings. A plurality of current sources are respectively connected to the plurality of LED strings. A multi-phase control signal generator generates a plurality of multi-phase control signals that respectively maintain turn on or turn off states of the current sources so as to selectively conduct the corresponding LED strings. |
US08884542B2 |
Self-oscillating dimmable electronic ballast
An electronic ballast for driving a light-emitting device, includes a square wave generator having a plurality of switch elements for converting a DC input voltage into a square-wave AC voltage. A transformer has a driving winding and a plurality of inductive windings mutually connected with each other, in which at least a portion of the inductive windings are respectively connected to a control terminal of the switch element. A resonant circuit connects the driving winding and a light-emitting device and converts the square-wave voltage into an AC output voltage to drive the light-emitting device. An auxiliary control unit connected to the transformer regulates a voltage waveform of the driving winding or a voltage waveform of the inductive winding according to a control signal, thereby changing the voltage waveform of the inductive winding connected to the switch element to adjust the switching frequencies of the switch elements. |
US08884539B2 |
Rectifying circuit and power supply circuit
According to one embodiment, a rectifying circuit includes a diode, a switching element, a capacitor and an auxiliary winding. The diode is connected between a first terminal and a second terminal while a direction directed from the second terminal to the first terminal is a forward direction. The switching element includes a first main electrode connected to the first terminal, a second main electrode connected to a cathode of the diode, and a gate electrode connected to an anode of the diode. The auxiliary winding is magnetically coupled to an inductor. The auxiliary winding is connected to the gate electrode through the capacitor, and is connected to the second main electrode of the switching element and the cathode of the diode. |
US08884538B2 |
Light-emitting diode driving circuit
A light-emitting diode (LED) driving circuit includes a power factor correction (PFC) circuit and a driving controller. The PFC circuit controls a power factor of the LED driving circuit. The LED driving circuit includes an inductor, a switch, a current detection circuit, and a time detection circuit. The inductor senses an inductor current and provide energy to at least one LED. The switch connected to the inductor is conducted according to a driving signal. The current detection circuit connected to the switch detects inductor current information. The time detection circuit connected to the switch detects an energy discharging time during which the inductor current decrease from a peak value to zero. The driving controller connected to the switch, the current detection circuit, and the time detection circuit outputs the driving signal to the switch according to the voltage level and the energy discharging time. |
US08884537B2 |
Active bleeder circuit triggering TRIAC in all phase and light emitting device power supply circuit and TRIAC control method using the active bleeder circuit
The present invention discloses an active bleeder circuit capable of triggering a tri-electrode AC switch (TRIAC) circuit in all phase. The active bleeder circuit receives a rectified signal having an OFF phase and an ON phase. The active bleeder includes: a detection circuit for generating a detection signal according to the rectified signal and accumulating the detection signal in the OFF phase of the rectified signal; and a current sinker circuit coupled to the detection circuit, for generates a latching current to trigger the TRIAC circuit by operating a switch when the detection signal exceeds a predetermined level. The present invention also discloses a light emitting device power supply circuit and a TRIAC control method using the active bleeder circuit. |
US08884534B2 |
Wiring boards for array-based electronic devices
In accordance with certain embodiments, lighting systems include one or more lightsheets each including a plurality of strings of light-emitting elements, control elements, and power conductors for supplying power to the light-emitting elements and control elements. |
US08884529B2 |
Light color and intensity adjustable LED
An integrated photonic device includes a number of LEDs and a feedback mechanism that measures individual LED light outputs using a photo sensor via a light transmitter disposed in the vicinity of individual LEDs. A controller or driver adjusts a current driven to each LED using the detected values according to various logic based on the device application. |
US08884514B2 |
Phosphor composition, light-emitting device having the same, cured product having the same, lighting system having the same, and display having the same
To enhance luminance and color rendering of a light emitting device comprising phosphors as wavelength converting material and at least one semiconductor light emitting device that emits visible light, as said phosphors, are used phosphors which are one or more kinds of phosphors selected from a group consisting of oxides, oxynitrides and nitrides, and are a mixture consisting of two or more kinds of phosphors whose luminous efficiency is 35% or higher when excited by the visible light from said semiconductor light emitting device at room temperature. In addition, said mixture contains a first phosphor, and a second phosphor that is different from said first phosphor and capable of absorbing emitted light from said first phosphor, and said first phosphor is contained 85 weight % or more of said mixture of phosphors. |
US08884510B2 |
Semiconductor light emitting devices with densely packed phosphor layer at light emitting surface
An LED includes a chip having a light emitting surface, and a coating of phosphor-containing material on the light emitting surface. The phosphor-containing material comprises at least two quantities of different phosphor particles and are arranged in a densely packed layer within the coating at the light emitting surface. The densely packed layer of phosphor particles does not extend all the way through the coating. |
US08884507B2 |
Reflective nanofiber lighting devices
A fiber-based reflective lighting device and a lighting device. The fiber-based reflective lighting device includes a source configured to generate a primary light, a mat of reflective fibers which diffusely reflects light upon illumination with at least the primary light, and a light exit configured to emanate the reflected light. The lighting device includes a housing, a source configured to generate primary light and direct the primary light into the housing, a reflective mat of fibers disposed inside the housing at a position to reflect the primary light, and a light exit in the housing configured to emanate the reflected light from the housing. |
US08884504B2 |
Spark plug for internal combustion engines and mounting structure for the spark plug
A spark plug for an internal combustion engine is provided, which includes a housing, an insulation porcelain, a center electrode and a ground electrode. At least one of a tip portion of the center electrode and an opposing portion of the ground electrode is provided with a projection portion. At least one of the projection portions has a cross section perpendicular to the axial direction of the plug, the cross section having a minimum curvature radius portion and being in a specific shape that satisfies a predetermined requirement. The requirement is that, when a first straight line, a first line segment and a second straight line are provided, and when the cross section is divided into a first region and a second region by the second straight line, the second region has an area larger than the area of the first region. |
US08884502B2 |
OLED assembly and luminaire with removable diffuser
An OLED assembly comprises a base and a planar OLED device mounted on the base. A planar light diffuser sheet is removably attached relative to the base and OLED device. A releasable attachment mechanism is operably configured between the light diffuser sheet and the base. The light diffuser sheet is oriented relative to the OLED device so as to provide a selected diffusive property to light emitted from the OLED device. The light diffuser sheet is removable from the base upon release of the attachment mechanism and can be substituted with a different light diffuser sheet. A luminaire may incorporate the OLED assembly, wherein the luminaire has fixture in which the OLED assembly is received. |
US08884500B2 |
Piezoelectric vibrating reed having arms with multiple grooves
A piezoelectric vibrating reed includes: a pair of vibrating arm portions arranged in a line; an outer groove portion and an inner groove portion formed on both principal surfaces of the vibrating arm portions so as to extend along the Y direction (longitudinal direction) of the vibrating arm portions; and a base portion to which the pair of vibrating arm portions are connected, in which a plurality of groove portions is formed so as to be arranged in a line in the X direction (width direction) of the vibrating arm portions. |
US08884499B2 |
Piezoelectric element
A piezoelectric element includes a substrate, a lower electrode layer, a piezoelectric layer, and an upper electrode layer. The lower electrode layer is fixed to the substrate and the piezoelectric layer is formed on the lower electrode layer. The upper electrode layer is formed on piezoelectric layer. The lower electrode layer contains pores therein and has a larger thermal expansion coefficient than the piezoelectric layer. |
US08884498B2 |
Piezoelectric material, piezoelectric element, liquid discharge head, ultrasonic motor, and dust cleaning device
A piezoelectric material containing a barium bismuth calcium niobate-based tungsten bronze structure metal oxide having a high degree of orientation is provided. A piezoelectric element, a liquid discharge head, an ultrasonic motor, and a dust cleaning device including the piezoelectric material are also provided. The piezoelectric material includes a tungsten bronze structure metal oxide that includes metal elements which are barium, bismuth, calcium, and niobium; and tungsten. The metal elements satisfy following conditions on a molar basis: when Ba/Nb=a, 0.37≦a≦0.40, when Bi/Nb=b, 0.020≦b≦0.065, and when Ca/Nb=c, 0.007≦c≦0.10. The tungsten content on a metal basis is 0.4 to 2.0 parts by weight relative to 100 parts by weight of the tungsten bronze structure metal oxide. The tungsten bronze structure metal oxide has a c-axis orientation. |
US08884496B2 |
Fluid current energy capture apparatus and method
One aspect of the present invention involves investigation of the principles and feasibility of the harvesting energy from the wind in constrained spaces, such as around buildings, as an alternative to conventional rotary wind turbines. Some embodiments involve the idea of harvesting energy from wind induced vibration instead of wind driven rotation. Some embodiments are a tree-like generator for wind energy harvesting including multiple vibrating elements. Some embodiments include a “piezo stalk and leaf” as an element of a plant-like generator. In some embodiments, a leaf, made at least in part from piezoelectric type materials is capable of generating electrical power through wind induced vibrations. Some embodiments include a cantilever piezo-electric material containing stalk member that exhibits at least one mode of cantilever motion. Some embodiments include an elongated piezoelectric material containing stalk member (which may or may not qualify as a cantilever), where a pendular member (or leaf member) is mechanically connected to the stalk and extends in a direction substantially non-parallel (for example, perpendicular to) the direction of elongation of the stalk. |
US08884491B2 |
Multi-gap electric rotating machine with one-piece stator core
In a multi-gap electric rotating machine, a stator core has a radially outer portion, a radially inner portion and a connecting portion. The radially outer portion is located radially outside of a rotor core with a radially outer magnetic gap formed therebetween. The radially inner portion is located radially inside of the rotor core with a radially inner magnetic gap formed therebetween. The connecting portion radially extends to connect the radially outer and inner portions and is located on one axial side of the rotor core with an axial magnetic gap formed therebetween. A stator coil is formed of electric wires mounted on the stator core. Each of the electric wires has radially-outer in-slot portions, radially-inner in-slot portions and radially-intermediate in-slot portions, which are respectively received in slots of the radially outer portion, slots of the radially inner portion and slots of the connecting portion of the stator core. |
US08884481B2 |
Stator for bicycle generator hub
A stator is provided for a bicycle generator hub. The stator comprises a coil bobbin and a plurality of first and second yokes. The first and second yokes are radially arranged on opposite axial ends of the bobbin. Each of the first and second yokes includes a magnetic pole section extending along an axial direction of the coil bobbin and facing the external circumferential surface of the coil bobbin, an insertion section t extending along the axial direction of the coil bobbin and facing the internal circumferential surface of the coil bobbin, and a connecting section extending radial direction of the coil bobbin and connecting the first magnetic pole section and the first insertion section together. The insertion sections of the first yokes have first end portions that abut two corresponding ones of second end portion of the insertion sections of the second yokes. |
US08884478B2 |
Cooling structure of generator motor and generator motor
A cooling structure of a generator motor includes: a first passage provided to an end side member placed at one end of a housing of a generator motor, the first passage extending toward a rotation center axis of an input/output shaft housed in the housing, the first passage opening to a side of the input/output shaft, and the first passage including a restriction section halfway through; and a second passage provided to the end side member, branching off from the first passage at a position on an outer side in a radial direction of the input/output shaft than the restriction section and subsequently extending toward a rotor attached to an outside of the input/output shaft, and the second passage opening to a side of the rotor. |
US08884477B2 |
Electric motor drive, in particular fan drive
An electro-motor drive, in particular for a fan drive of a motor vehicle, includes a commutator motor, a motor shaft of which is rotatably mounted on axially opposite sides in shaft bearings facing away from the bearing shield in order to substantially dampen the sound of at least bearing play-related contact noise and vibration or humming noise. |
US08884476B2 |
Hybrid dielectric film for high temperature application
A high-temperature insulation assembly for use in high-temperature electrical machines and a method for forming a high-temperature insulation assembly for insulating conducting material in a high-temperature electrical machine. The assembly includes a polymeric film and at least one ceramic coating disposed on the polymeric film. The polymeric film is disposed over conductive wiring or used as a conductor winding insulator for phase separation and slot liner. |
US08884472B2 |
Household appliance and control module for such a household appliance
A household appliance includes an electronic control facility controlling at least one appliance component of the household appliance, and a connection adapted for connecting the household appliance to a network connection line to supply the household appliance with electrical energy. The connection has at least one interface contact, wherein electricity tariff information is routed from an energy supplier to the control facility, when the interface contact is contacted. |
US08884471B2 |
Wireless power transfer system, control method of wireless power transfer system, wireless power transmitting apparatus, control method of wireless power transmitting apparatus, and storage medium
A wireless power transfer system comprising a wireless power transmitting apparatus and a plurality of wireless power receiving apparatuses, the wireless power transmitting apparatus comprising: a power transmitting unit adapted to transmit power to the wireless power receiving apparatus; a recognition unit adapted to recognize the wireless power receiving apparatus; and a transmitting unit adapted to transmit predetermined charging delay information according to a recognition result of the recognition unit to the wireless power receiving apparatus recognized by the recognition unit, and the wireless power receiving apparatus comprising: a power receiving unit adapted to receive power transmitted from the power transmitting unit; a receiving unit adapted to receive the predetermined charging delay information transmitted from the transmitting unit; and a display unit adapted to make a display based on the predetermined charging delay information received by the receiving unit. |
US08884470B2 |
Semiconductor device
An object is to provide a semiconductor device capable of preventing an alternating leakage current from flowing into a voltage detection circuit. The semiconductor device includes an antenna circuit, a resonance frequency regulating circuit, a voltage detection circuit, and a first capacitor. The resonance frequency regulating circuit includes a second capacitor including one terminal electrically connected to a first terminal of the antenna circuit; and a transistor including a first terminal electrically connected to the other terminal of the second capacitor, a second terminal electrically connected to a second terminal of the antenna circuit, and a gate electrically connected to the first capacitor and the voltage detection circuit. |
US08884464B2 |
Twin boost converter with integrated charger for UPS system
A power converter circuit is coupled to an AC power input, a backup power input, a first capacitive element and a second capacitive element. The power converter circuit is configured to, in a line mode of operation and during a positive portion of an AC input voltage, convert the AC input voltage into a positive DC output voltage through a first inductive element and provide a charging voltage to a backup power source through a second inductive element using a negative DC output voltage stored in the second capacitive element, and, in the line mode of operation and during a negative portion of the AC input, convert the AC input voltage into the negative DC output voltage through the second inductive element and provide the charging voltage to the backup power source through the first inductive element using the positive DC output voltage stored in the first capacitive element. |
US08884460B2 |
Emergency energy supply device for a hybrid vehicle
An emergency energy supply device for providing an emergency energy supply for a hybrid vehicle includes a high-voltage battery for driving an electric drive and a low-voltage battery. The emergency energy supply device includes an energy store, which is electrically connectible to the high-voltage battery and/or to the low-voltage battery and is arranged to provide the emergency energy supply. |
US08884454B2 |
Method and apparatus for improved hydropower generation at existing impoundments
A floatable or moveable and/or fixed frame for insertion of power generating modules to generate power from impounded water through the frame in lock and dam and other settings presenting head potential and moving water. The frame is prefabricated and moved onto site as a module or modules, or as a ballastable marine hulled device with positions in the frame for insertion of modular elements including a generator, a turbine and a spacer for configuring a generating cell in different positions within the frame. A gantry positioned on the frame permits easy movement of individual modules into position. |
US08884449B2 |
Device for energy recovery for a large diesel engine
A device for energy recovery for a large diesel engine includes a current generator for converting mechanical rotational energy into electric energy. The current generator includes input shaft for applying rotational energy; a steam turbine a first shaft for transmitting the rotational energy of the steam turbine to the input shaft of the current generator a power turbine and a second shaft for transmitting the rotational energy of the power turbine to the input shaft of the current generator, wherein the first shaft and the second shaft are coupled with the input shaft of the current generator. A first coupling device between the current generator and the steam turbine couples the input shaft of the current generator and the first shaft and/or a second coupling device between the current generator and the power turbine couples the input shaft of the current generator and the second shaft are provided. |
US08884444B2 |
Nonvolatile memory device and manufacturing method thereof
According to the nonvolatile memory device in one embodiment, contact plugs connect between second wires and third wires in a memory layer and a first wire connected to a control element. Drawn wire portions connect the second wires and the third wires with the contact plug. The drawn wire portion connected to the second wires and the third wires of the memory layer is formed of a wire with a critical dimension same as the second wires and the third wires and is in contact with the contact plug on an upper surface and both side surfaces of the drawn wire portion. |
US08884438B2 |
Magnetic microinductors for integrated circuit packaging
Magnetic microinductors formed on semiconductor packages are provided. The magnetic microinductors are formed as one or more layers of coplanar magnetic material on a package substrate. Conducting vias extend perpendicularly through the plane of the magnetic film. The magnetic film is a layer of isotropic magnetic material or a plurality of layers of anisotropic magnetic material having differing hard axes of magnetization. |
US08884437B2 |
Electrical device with protruding contact elements and overhang regions over a cavity
A device with contact elements. One embodiment provides an electrical device including a structure defining a main face. The structure includes an array of cavities and an array of overhang regions, each overhang region defining an opening to one of the cavities. The electrical device further includes an array of contact elements, each contact element only partially filling one of the cavities and protruding from the structure over the main face. |
US08884433B2 |
Circuitry component and method for forming the same
A circuit structure includes a semiconductor substrate, first and second metallic posts over the semiconductor substrate, an insulating layer over the semiconductor substrate and covering the first and second metallic posts, first and second bumps over the first and second metallic posts or over the insulating layer. The first and second metallic posts have a height of between 20 and 300 microns, with the ratio of the maximum horizontal dimension thereof to the height thereof being less than 4. The distance between the center of the first bump and the center of the second bump is between 10 and 250 microns. |
US08884425B1 |
Thermal management in 2.5 D semiconductor packaging
Lower semiconductor dies in 2.5 D semiconductor packaging configurations can be cooled by thermally coupling the lower semiconductor dies to a heat sink positioned above the interposer, to an upper semiconductor die, to a heat sink affixed beneath a substrate, or to free-flowing air circulating above the interposer or beneath the substrate. The thermal coupling can be achieved using heat pipes, thermal vias, or other conductive passage ways. |
US08884421B2 |
Multi-chip package and method of manufacturing the same
A multi-chip package may include a package substrate, an interposer chip, a first semiconductor chip, a thermal dissipation structure and a second semiconductor chip. The interposer chip may be mounted on the package substrate. The first semiconductor chip may be mounted on the interposer chip. The first semiconductor chip may have a size smaller than that of the interposer chip. The thermal dissipation structure may be arranged on the interposer chip to surround the first semiconductor chip. The thermal dissipation structure may transfer heat in the first semiconductor chip to the interposer chip. The second semiconductor chip may be mounted on the first semiconductor chip. Thus, the heat in the first semiconductor chip may be effectively transferred to the interposer chip through the thermal dissipation line. |
US08884420B1 |
Multichip device
A multichip device includes a first semiconductor chip arranged over a first carrier and a second semiconductor chip arranged over a second carrier. The multichip device further includes an electrically conductive element electrically coupling the first semiconductor chip and the second semiconductor chip. The electrically conductive element includes a first exposed contact area. |
US08884411B2 |
Semiconductor device and manufacturing method thereof
A semiconductor device includes a first semiconductor element; a first thick plate portion that is electrically connected to an electrode on a lower surface side of the first semiconductor element, and is formed by a conductor; a second semiconductor element that is arranged such that a main surface of the second semiconductor element faces a main surface of the first semiconductor element; a second thick plate portion that is electrically connected to an electrode on a lower surface side of the second semiconductor element, and is formed by a conductor; a third thick plate portion that is electrically connected to an electrode on an upper surface side of the first semiconductor element, and is formed by a conductor; a fourth thick plate portion that is electrically connected to an electrode on an upper surface side of the second semiconductor element, and is formed by a conductor; a first thin plate portion that is provided on the second thick plate portion, is formed by a conductor, and is thinner than the second thick plate portion; and a second thin plate portion that is provided on the third thick plate portion, is formed by a conductor, and is thinner than the third thick plate portion. The first thin plate portion and the second thin plate portion are fixed together and electrically connected. |
US08884410B2 |
Method for manufacturing a microelectronic package comprising at least one microelectronic device
A method for manufacturing a microelectronic package (1) comprises the steps of providing at least two members (10, 11, 16) comprising electrically conductive material; providing a microelectronic device (15); placing the electrically conductive members (10, 11, 16) and the microelectronic device (15) in predetermined positions with respect to each other, and establishing electrical connections between each of the electrically conductive members (10, 11, 16) and the microelectronic device (15); and providing a non-conductive material for encapsulating the microelectronic device (15) and a portion of the electrically conductive members (10, 11, 16) connected thereto. The electrically conductive members (10, 11, 16) are intended to be used for realizing contact of the microelectronic device (15) arranged inside the package (1) to the external world. An important advantage of the method having steps as mentioned is that the electrically conductive members (10, 11, 16) as such are provided, wherein it is not necessary to provide a conventional lead frame which has the disadvantage of causing considerable waste of material during its manufacturing process. |
US08884406B2 |
Etch depth determination structure
A semiconductor device wafer includes a test structure. The test structure includes a layer of material having an angle-shaped test portion disposed on at least a portion of a surface of the semiconductor wafer. A ruler marking on the surface of the semiconductor wafer proximate the test portion is adapted to facilitate measurement of a change in length of the test portion. |
US08884400B2 |
Capacitor in Post-Passivation structures and methods of forming the same
A device includes a metal pad and a passivation layer having a portion overlapping the metal pad. A capacitor includes a bottom capacitor electrode underlying the passivation layer, wherein the bottom capacitor includes the metal pad. The capacitor further includes a top capacitor electrode over the portion of the passivation layer; and a capacitor insulator including the portion of the passivation layer. |
US08884396B2 |
Semiconductor device and manufacturing method thereof
According to one embodiment, a first back surface of a first substrate and a second front surface of a second substrate are jointed together so as to connect a first conductor with a second conductor. The first conductor includes a portion having a diameter equal to that of a first gap formed above a first metal layer in a range between the first metal layer and a first front surface, and a portion having a diameter greater than that of the first gap and smaller than an outer diameter of the first metal layer in a range between the first metal layer and the first back surface. A first insulating layer has a gap formed above the first metal layer, the gap being greater than the first gap and smaller than the outer diameter of the first metal layer. |
US08884395B2 |
Schottky diode and method for fabricating the same
A Schottky diode includes a deep well formed in a substrate, an isolation layer formed in the substrate, a first conductive type guard ring formed in the deep well along an outer sidewall of the isolation layer and located at a left side of the isolation layer, a second conductive type well formed in the deep well along the outer sidewall of the isolation layer and located at a right side of the isolation layer, an anode electrode formed over the substrate and coupled to the deep well and the guard ring, and a cathode electrode formed over the substrate and coupled to the well. A part of the guard ring overlaps the isolation layer. |
US08884394B2 |
Range sensor and range image sensor
A signal charge collecting region is disposed inside a charge generating region so as to be surrounded by the charge generating region, and collects signal charges from the charge generating region. An unnecessary charge collecting region is disposed outside the charge generating region so as to surround the charge generating region, and collects unnecessary charges from the charge generating region. A transfer electrode is disposed between the signal charge collecting region and the charge generating region, and causes the signal charges from the charge generating region to flow into the signal charge collecting region in response to an input signal. An unnecessary charge collecting gate electrode is disposed between the unnecessary charge collecting region and the charge generating region, and causes the unnecessary charges from the charge generating region to flow into the unnecessary charge collecting region in response to an input signal. |
US08884387B2 |
Pillar-based interconnects for magnetoresistive random access memory
A semiconductor device includes a substrate including an M2 patterned area. A VA pillar structure is formed over the M2 patterned area. The VA pillar structure includes a substractively patterned metal layer. The VA pillar structure is a sub-lithographic contact. An MTJ stack is formed over the oxide layer and the metal layer of the VA pillar. A size of the MTJ stack and a shape anisotropy of the MTJ stack are independent of a size and a shape anisotropy of the sub-lithographic contact. |
US08884383B2 |
Semiconductor device and method of testing the same
A semiconductor device includes a semiconductor chip with a gate electrode, and a stress detecting element placed on a surface of the semiconductor chip, and which detects stress applied to the surface. The semiconductor device controls a control signal to be applied to the gate electrode in response to stress detected by the stress detecting element. The stress detecting element is preferably provided as a first stress detecting element which detects stress applied to a central portion of the semiconductor chip in plan view. The stress detecting element is preferably provided as a second stress detecting element which detects stress applied to a circumferential portion of the semiconductor chip in plan view. |
US08884382B2 |
Multi-Dimensional sensors and sensing systems
A universal microelectromechanical (MEMS) nano-sensor platform having a substrate and conductive layer deposited in a pattern on the surface to make several devices at the same time, a patterned insulation layer, wherein the insulation layer is configured to expose one or more portions of the conductive layer, and one or more functionalization layers deposited on the exposed portions of the conductive layer to make multiple sensing capability on a single MEMS fabricated device. The functionalization layers are adapted to provide one or more transducer sensor classes selected from the group consisting of: radiant, electrochemical, electronic, mechanical, magnetic, and thermal sensors for chemical and physical variables and producing more than one type of sensor for one or more significant parameters that need to be monitored. |
US08884379B2 |
Strain engineering in semiconductor devices by using a piezoelectric material
An efficient strain-inducing mechanism may be provided on the basis of a piezoelectric material so that performance of different transistor types may be enhanced by applying a single concept. For example, a piezoelectric material may be provided below the active region of different transistor types and may be appropriately connected to a voltage source so as to obtain a desired type of strain. |
US08884378B2 |
Semiconductor device and a method for manufacturing a semiconductor device
A semiconductor device and a method for forming a semiconductor device are provided. The semiconductor device includes a semiconductor body with a first semiconductor region and a second semiconductor region spaced apart from each other. A first metallization is in contact with the first semiconductor region. A second metallization is in contact with the second semiconductor region. An insulating region extends between the first semiconductor region and the second semiconductor region. A semi-insulating region having a resistivity of about 103 Ohm cm to about 1014 Ohm cm is arranged on the insulating region and forms a resistor between the first metallization and the second metallization. |
US08884369B2 |
Vertical power MOSFET and methods of forming the same
A device includes a semiconductor layer of a first conductivity type, and a first and a second body region over the semiconductor layer, wherein the first and the second body regions are of a second conductivity type opposite the first conductivity type. A doped semiconductor region of the first conductivity type is disposed between and contacting the first and the second body regions. A gate dielectric layer is disposed over the first and the second body regions and the doped semiconductor region. A first and a second gate electrode are disposed over the gate dielectric layer, and overlapping the first and the second body regions, respectively. The first and the second gate electrodes are physically separated from each other by a space, and are electrically interconnected. The space between the first and the second gate electrodes overlaps the doped semiconductor region. |
US08884367B2 |
MOSgated power semiconductor device with source field electrode
A power semiconductor device which includes a source field electrode, and at least one insulated gate electrode adjacent a respective side of the source field electrode, the source field electrode and the gate electrode being disposed in a common trench. |
US08884364B2 |
Semiconductor device with field-plate electrode
A semiconductor device includes: a drain layer; a drift layer provided on the drain layer; a base region provided on the drift layer; a source region selectively provided on a surface of the base region; a first gate; a field-plate; a second gate; a drain electrode; and a source electrode. The first gate electrode is provided in each of a plurality of first trenches via a first insulating film. The first trenches penetrate from a surface of the source region through the base region and contact the drift layer. The field-plate electrode is provided in the first trench under the first gate electrode via a second insulating film. The second gate electrode is provided in a second trench via a third insulating film. The second trench penetrates from the surface of the source region through the base region and contacts the drift layer between the first trenches. |
US08884362B2 |
Semiconductor device and manufacturing method of the same
According to one embodiment, a semiconductor device includes a semiconductor layer; a plurality of semiconductor regions; second semiconductor region; a first electrode being positioned between the plurality of first semiconductor regions, the first electrode contacting with the semiconductor layer, each of the plurality of first semiconductor regions, and the second semiconductor region via a first insulating film; a second electrode provided below the first electrode, and contacting with the semiconductor layer via a second insulating film; an insulating layer interposed between the first electrode and the second electrode; a third electrode electrically connected to the semiconductor layer; and a fourth electrode connected to the second semiconductor region. The first electrode has a first portion and a pair of second portions. And each of the pair of second portions is provided along the first insulating film. |
US08884361B2 |
Semiconductor device
A semiconductor device which includes a gate electrode electrically connected to a gate portion made of a polysilicon film provided inside of a plurality of grooves formed in a striped form along a direction of a chip region. The gate electrode is formed as a film at the same layer level as a source electrode electrically connected to a source region formed between adjacent stripe-shaped grooves. The gate electrode is constituted of a gate electrode portion formed along a periphery of the chip region and a gate finger portion arranged to divide the chip region into halves. The source electrode is constituted of an upper portion and a lower portion relative to the gate finger portion, and the gate electrode and the source electrode are connected to a lead frame via a bump electrode. |
US08884359B2 |
Field-effect transistor with self-limited current
A field-effect transistor is integrated in a chip of semiconductor material of a first type of conductivity, which has a first main surface and a second main surface, opposite to each other. The transistor includes a plurality of body regions of a second type of conductivity, each one extending from the second main surface in the chip. A plurality of drain columns of the second type of conductivity are provided, each one extending from a body region towards the first main surface, at a pre-defined distance from the first main surface. A plurality of drain columns are defined in the chip, each one extending longitudinally between a pair of adjacent drain columns. The transistor includes a plurality of source regions of the first type of conductivity, each one of them extending from the second main surface in a body region; a plurality of channel areas are defined, each one in a body region between a source region of the body region and each drain channel adjacent to the body region. There are then provided a gate terminal extending over the cannel areas (with the gate terminal that is insulated from the second main surface), a source terminal contacting the source regions on the second main surface, and a drain terminal contacting the chip on the first main surface. In the transistor according to an embodiment of the invention, each drain channel includes a first residual portion having a first transversal width and a second prevalent portion having a second transversal width higher than the first transversal width. |
US08884357B2 |
Vertical NAND and method of making thereof using sequential stack etching and landing pad
A vertical NAND string device includes a semiconductor channel, where at least one end portion of the semiconductor channel extends substantially perpendicular to a major surface of a substrate, at least one semiconductor or electrically conductive landing pad embedded in the semiconductor channel, a tunnel dielectric located adjacent to the semiconductor channel, a charge storage region located adjacent to the tunnel dielectric, a blocking dielectric located adjacent to the charge storage region and a plurality of control gate electrodes extending substantially parallel to the major surface of the substrate. |
US08884356B2 |
Nonvolatile semiconductor memory device and method for manufacturing same
According to one embodiment, a nonvolatile semiconductor memory device includes: a stacked body provided on a foundation layer and including a plurality of electrode layers and a plurality of insulating layers alternately stacked; a plurality of first channel body layers; a memory film; a first interlayer insulating film; a plurality of select gate electrodes; a second channel body layer being connected to each of the plurality of first channel body layers; and a gate insulating film. The stacked body is bent. The first interlayer insulating film includes a slit extending in a direction generally parallel to the upper surface of the stacked body, the slit extends in a direction non-parallel to a first direction in which each end surface of the plurality of electrode layers extends. Part of at least one end surface of the plurality of electrode layers is part of bottom of the slit. |
US08884355B2 |
Nonvolatile semiconductor memory device and method for manufacturing same
A nonvolatile semiconductor memory device includes: a stacked structural unit including a plurality of electrode films and a plurality of inter-electrode insulating films alternately stacked in a first direction; a first selection gate electrode stacked on the stacked structural unit in the first direction; a first semiconductor pillar piercing the stacked structural unit and the first selection gate electrode in the first direction; a first memory unit provided at an intersection of each of the electrode films and the first semiconductor pillar; and a first selection gate insulating film provided between the first semiconductor pillar and the first selection gate electrode, the first selection gate electrode including a first silicide layer provided on a face of the first selection gate electrode perpendicular to the first direction. |
US08884346B2 |
Semiconductor structure
A semiconductor structure includes a gate structure, an epitaxial layer and a carbon-containing silicon germanium cap layer. The gate structure is located on a substrate. The epitaxial layer is located in the substrate beside the gate structure. The carbon-containing silicon germanium cap layer is located on the epitaxial layer. Otherwise, semiconductor processes for forming said semiconductor structure are also provided. |
US08884345B2 |
Graphene electronic device and method of fabricating the same
The graphene electronic device may include a gate oxide on a conductive substrate, the conductive substrate configured to function as a gate electrode, a pair of first metals on the gate oxide, the pair of the first metals separate from each other, a graphene channel layer extending between the first metals and on the first metals, and a source electrode and a drain electrode on both edges of the graphene channel layer. |
US08884344B2 |
Self-aligned contacts for replacement metal gate transistors
Embodiments of the invention include methods of forming gate caps. Embodiments may include providing a semiconductor device including a gate on a semiconductor substrate and a source/drain region on the semiconductor substrate adjacent to the gate, forming a blocking region, a top surface of which extends above a top surface of the gate, depositing an insulating layer above the semiconductor device, and planarizing the insulating layer using the blocking region as a planarization stop. Embodiments further include semiconductor devices having a semiconductor substrate, a gate above the semiconductor substrate, a source/drain region adjacent to the gate, a gate cap above the gate that cover the full width of the gate, and a contact adjacent to the source/drain region having a portion of its sidewall defined by the gate cap. |
US08884341B2 |
Integrated circuits
An integrated circuit includes a gate electrode disposed over a substrate. A source/drain (S/D) region is disposed adjacent to the gate electrode. The S/D region includes a diffusion barrier structure disposed in a recess of the substrate. The diffusion barrier structure includes a first portion and a second portion. The first portion is adjacent to the gate electrode. The second portion is distant from the gate electrode. An N-type doped silicon-containing structure is disposed over the diffusion barrier structure. The first portion of the diffusion barrier structure is configured to partially prevent N-type dopants of the N-type doped silicon-containing structure from diffusing into the substrate. The second portion of the diffusion barrier structure is configured to substantially completely prevent N-type dopants of the N-type doped silicon-containing structure from diffusing into the substrate. |
US08884338B2 |
Semiconductor integrated-circuit device with standard cells
A semiconductor integrated-circuit device is disclosed. The semiconductor integrated-circuit device uses a filter, which includes a standard capacitor, as a standard cell connecting a memory cell with a logic cell. As such, the semiconductor integrated-circuit device can minimize a glitch phenomenon of power/ground voltages and provide stability of power/ground voltages. |
US08884336B2 |
Light emitting device
A light emitting device according to the embodiment includes a first electrode; a light emitting structure including a first semiconductor layer over the first electrode, an active layer over the first semiconductor layer, and a second semiconductor layer over the second semiconductor layer; a second electrode over the second semiconductor layer; and a connection member having one end making contact with the first semiconductor layer and the other end making contact with the second semiconductor layer to form a schottky contact with respect to one of the first and second semiconductor layers. |
US08884335B2 |
Semiconductor including lateral HEMT
A semiconductor including a lateral HEMT and to a method for production of a lateral HEMT is disclosed. In one embodiment, the lateral HEMT has a substrate and a first layer, wherein the first layer has a semiconductor material of a first conduction type and is arranged at least partially on the substrate. Furthermore, the lateral HEMT has a second layer, wherein the second layer has a semiconductor material and is arranged at least partially on the first layer. In addition, the lateral HEMT has a third layer, wherein the third layer has a semiconductor material of a second conduction type, which is complementary to the first conduction type, and is arranged at least partially in the first layer. |
US08884334B2 |
Composite layer stacking for enhancement mode transistor
A transistor includes a first layer of a first type disposed over a buffer layer and having a first concentration of a first material. A first layer of a second type is disposed over the first layer of the first type, and a second layer of the first type is disposed over the first layer of the second type. The second layer of the first type having a second concentration of a first material that is greater than the first concentration of the first material. A source and a drain are spaced laterally from one another and are disposed over the buffer layer. A gate disposed over at least a portion of the second layer of the first type and disposed within a recessed area defined by the first and second layers of the first type and the first layer of the second type. |
US08884332B2 |
Nitride semiconductor device
A nitride semiconductor device includes a semiconductor substrate and a nitride semiconductor layer disposed on the semiconductor substrate. The semiconductor substrate includes a normal region, a carrier supplying region, and an interface current blocking region. The interface current blocking region surrounds the normal region and the carrier supplying region. The interface current blocking region and the carrier supplying region include impurities. The carrier supplying region has a conductivity type allowing the carrier supplying region to serve as a source of carriers supplied to or a destination of carriers supplied from a carrier layer generated at an interface between the nitride semiconductor layer and the semiconductor substrate. The interface current blocking region has a conductivity type allowing the interface current blocking region to serve as a potential barrier to the carriers. |
US08884330B2 |
LED wavelength-converting structure including a thin film structure
A wavelength-converting structure for a wavelength-converted light emitting diode (LED) assembly. The wavelength-converting structure includes a thin film structure having a non-uniform top surface. The non-uniform top surface is configured increase extraction of light from the top surface of a wavelength-converting structure. |
US08884329B2 |
Semiconductor light-emitting element, electrode structure and light-emitting device
It is an object to improve joining properties of electrodes and reliability of the electrodes for supplying electrical power to a semiconductor. The semiconductor light-emitting element includes an n-type semiconductor layer, a light-emitting layer, a p-type semiconductor layer, a transparent conductive layer, a p-electrode formed on the transparent conductive layer and an n-electrode formed on the n-type semiconductor layer. The p-electrode includes a p-side second metal layer composed of a metallic material containing Au and provided to be exposed to the outside and a p-side first metal layer composed of a metallic material containing Au with hardness higher than that of the metallic material composing the p-side second metal layer, the p-side first metal layer being provided closer to the transparent conductive layer than the p-side second metal layer along the p-side second metal layer. |
US08884328B2 |
Light emitting device, light emitting device package, and lighting system
Provided is a light emitting device. The light emitting device includes a light emitting structure layer comprising a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer, a first electrode connected to the first conductive type semiconductor layer, a current spreading layer on the second conductive type semiconductor layer, an insulation layer on the first electrode, and a second electrode comprising at least one bridge portion on the insulation layer and a first contact portion contacting at least one of the second conductive type semiconductor layer and the current spreading layer. |
US08884324B2 |
Semiconductor light-emitting device
A semiconductor light-emitting device includes a substrate, an LED chip mounted on the substrate, and a resin package covering the LED chip. The substrate includes a base and a wiring pattern formed on the base. The resin package includes a lens. The base includes an upper surface, a lower surface and a side surface extending between the upper surface and the lower surface. The LED chip is mounted on the upper surface of the base. The side surface of the base is oriented in a lateral direction. The wiring pattern includes a pair of first mount portions and a pair of second mount portions. The paired first mount portions are formed on the lower surface of the base. The paired second mount portions are oriented in the lateral direction and offset from the side surface of the base in the lateral direction. |
US08884321B2 |
Luminous element
A light emitting device according to the embodiment includes a first conductive semiconductor layer; an active layer over the first conductive semiconductor layer; a second conductive semiconductor layer over the active layer; a bonding layer over the second conductive semiconductor layer; a schottky diode layer over the bonding layer; an insulating layer for partially exposing the bonding layer, the schottky diode layer, and the first conductive semiconductor layer; a first electrode layer electrically connected to both of the first conductive semiconductor layer and the schottky diode layer; and a second electrode layer electrically connected to the bonding layer. |
US08884317B2 |
Semiconductor light-emitting device
A semiconductor light-emitting device includes: a semiconductor chip having a nonpolar plane as a growth surface and configured to emit polarized light; and a reflector having a reflective surface. When a plane forming an angle of 45° relative to a direction of polarization of the polarized light is a plane L45, the reflective surface of the reflector reflects at least a part of light in the plane L45 in a normal line direction of the growth surface of the semiconductor light-emitting chip. The reflector includes a plurality of reflective surfaces, the plurality of reflective surfaces are arranged in a shape of a square in plan view, and when an angle between the direction of polarization of the polarized light and one side of the shape formed by the plurality of reflective surfaces is θ2, the angle θ2 is not less than 17° and not more than 73°. |
US08884316B2 |
Non-common capping layer on an organic device
A first method comprises providing a plurality of organic light emitting devices (OLEDs) on a first substrate. Each of the OLEDs includes a transmissive top electrode. The plurality of OLEDs includes a first portion of OLEDs and a second portion of OLEDs that is different from the first portion. The first method further includes depositing a first capping layer over at least the first portion of the plurality of OLEDs such that the first capping layer is optically coupled to at least the first portion of the plurality of OLEDs. A second capping layer is deposited over at least the second portion of the plurality of OLEDs such that the second capping layer is optically coupled to the second portion of the plurality of OLEDs but not the first portion of the plurality of OLEDs. |
US08884314B1 |
Circuitry configurable based on device orientation
The present disclosure is directed to circuitry configurable based on device orientation. Example circuitry may comprise at least one device location and configurable conductors. The at least one device location may include at least two conductive pads onto which a device may be populated by a manufacturing process. The configurable conductors may be coupled to each of the at least two conductive pads. The configurable conductors may be configured by adding conductive material to at least one configurable conductor or subtracting at least part of at least one configurable conductor. For example, conductive material may be added to close a space between two segments of a configurable conductor to form a conduction path. Alternatively, at least part of at least one of a plurality of configurable conductors coupled to a conductive pad may be subtracted (e.g., cut) to stop conduction in the at least one configurable conductor. |
US08884312B2 |
Light emitting device and lighting apparatus including the same
A light emitting device is disclosed. The disclosed light emitting device includes a light emitting structure including a first-conductivity-type semiconductor layer, an active layer, and a second-conductivity-type semiconductor layer, a second electrode layer disposed beneath the light emitting structure and electrically connected to the second-conductivity-type semiconductor layer, a first electrode layer including a main electrode disposed beneath the second electrode layer, and at least one contact electrode branching from the main electrode and extending through the second electrode layer, the second-conductivity-type semiconductor layer and the active layer, to contact the first-conductivity-type semiconductor layer, and an insulating layer interposed between the first electrode layer and the second electrode layer and between the first electrode layer and the light emitting structure. The first-conductivity-type semiconductor layer includes a first region and a second region having a smaller height than the first region, and the first region overlaps with the contact electrode. |
US08884311B2 |
Optoelectronic semiconductor chip and method for producing same
An optoelectronic semiconductor chip includes a semiconductor layer stack and a radiation exit face or radiation entrance face, wherein the semiconductor layer stack includes an active layer that generates or receives electromagnetic radiation, and a plurality of nanostructures arranged in the semiconductor layer stack and/or on the radiation exit or entrance face, at least some of the nanostructures including at least one substructure. |
US08884310B2 |
Direct formation of graphene on semiconductor substrates
The invention generally related to a method for preparing a layer of graphene directly on the surface of a semiconductor substrate. The method includes forming a carbon-containing layer on a front surface of a semiconductor substrate and depositing a metal film on the carbon layer. A thermal cycle degrades the carbon-containing layer, which forms graphene directly upon the semiconductor substrate upon cooling. In some embodiments, the carbon source is a carbon-containing gas, and the thermal cycle causes diffusion of carbon atoms into the metal film, which, upon cooling, segregate and precipitate into a layer of graphene directly on the semiconductor substrate. |