Document Document Title
US08829776B2 Light-source circuit unit, illumination device, and display device
There are provided a light-source circuit unit, an illumination device, and a display device which are capable of extracting light emitted from the back surface of a light-emitting element chip to the front surface, suppressing a reduction in reflectance, and reducing cost, with a simple configuration. The light-source circuit unit includes a circuit substrate that has a light-reflective wiring pattern on a surface thereof and includes a chip mounting layer as a part of the wiring pattern, and one or more light-emitting element chips that are directly placed on the chip mounting layer, and are driven by a current flowing through the wiring pattern.
US08829775B2 Planar mirco-tube discharger structure and method for fabricating the same
The present invention discloses a semiconductor-based planar micro-tube discharger structure and a method for fabricating the same. The method comprises steps: forming on a substrate two patterned electrodes separated by a gap and at least one separating block arranged in the gap; forming an insulating layer over the patterned electrodes and the separating block and filling the insulating layer into the gap. Thereby are formed at least two discharge paths. The method can fabricate a plurality discharge paths in a semiconductor structure. Therefore, the structure of the present invention has very high reliability and reusability.
US08829771B2 Lighting device
A lighting device includes a heat sink for dissipating heat from a light source. The heat sink is located between an inner case and an outer case, and a power controller is located in the inner case. The light source may include one or more light emitting diodes.
US08829770B2 Electrode cooling system in a multi-electrode microwave plasma excitation source
The excitation source consists of at least three identical electrodes arranged symmetrically in relation to the axis of the central tube, which supplies an analytical sample, and electrode cooling agent supply and removal systems. The electrodes are mounted in an electrically isolated metal housing so that the electrode tops are placed at the central tube outlet, and their ends are shorted in the power supply point with the microwave connections embedded in the housing on the extension of the electrode longitudinal axis and the connections are coupled with the microwave power source, the length of each electrode is ¼ L, where L is the length of the microwave. Each electrode has a hollowed longitudinal flow chamber for the cooling agent connected with metal side tubes, which supply and remove the cooling agent, while outside tube ends are electrically shorted with the housing.
US08829762B2 Surface acoustic wave device
A surface acoustic wave device according to the present invention includes a piezoelectric monocrystal substrate 10, and an interdigital electrode 20 configured of a base electrode layer 21 formed on the piezoelectric monocrystal substrate, the base electrode layer 21 being made of a conductive material, and an aluminum-containing main electrode layer 22 formed on the base electrode layer by epitaxial growth. The electrode 20 has an upper layer 23 formed on the main electrode layer 22, and the upper layer 23 is made of a conductive material that is different from materials for the main electrode layer and the base electrode layer and has a larger specific gravity than aluminum.
US08829760B2 Dynamoelectric machine support system
A support system for a dynamoelectric machine is disclosed. In one embodiment, the support system includes: a mounting pad having a first face and a second face, the second face including a pair of slots; a pair of spring bars welded or brazed to the mounting pad at the pair of slots; a collar welded or brazed to the first face of the mounting pad; and a key bar between and affixed to the pair of spring bars.
US08829755B2 Composite permanent magnet synchronous machine
A composite permanent magnet synchronous machine includes a permanent magnet synchronous machine module having a rotor unit and a stator unit; a bottom base having an accommodation space; a top cover having a front surface; and a shaft penetrating through the front surface. The rotor unit has P rotor magnets and the stator unit has S slots, wherein a tooth part is defined between every two adjacent slots, and a coil is wound on the tooth part, where P is 38N, S is 36N, and N is a positive integer; or P is 34M, S is 36M, and M is a positive integer. The machine is suitable for wind power generators or any other machine structure.
US08829752B2 Synchronous permanent magnet machine
A synchronous permanent magnet machine includes a permanent magnet arrangement for producing a magnetic field having a flux density distribution that is approximately sinusoidal. The permanent magnet arrangement includes a permanent magnet pole with both low and high energy-product magnets. The permanent magnet pole includes a low energy-product magnet and a high energy-product magnet which have different directions of magnetization, or a disposition of low/high energy-product magnets within the permanent magnet pole is asymmetric with respect to the central region of the permanent magnet pole.
US08829749B2 Electric machine and method for manufacturing it
A method for making a rotary electric machine comprises the steps of: preparing a core (18) having a plurality of pole expansions and a plurality of windings (100, 200, 300) made of electrically conductive material on the pole expansions, where at least a part of the windings (100, 200, 300) is made from a conductor wire having a free end (14) that can be connected electrically to a mains power supply; stably coupling to each other at least two free ends (14) of different windings (100, 200, 300) so as to connect them to a single power supply terminal; twisting the coupled ends (14) together to form a single electrical termination (5, 6, 7) twisted along a principal line of extension of the electrical termination (5, 6, 7).
US08829743B2 Cooling structure of generator motor and generator motor
A cooling structure of a generator motor includes: a rotor holder; a rotor core; a first blade; and a second blade, wherein the second blade includes a recessed coolant holding portion, provided on an outer circumference of the second blade on an opposite side to the rotor core and opening inward in the radial direction, for collecting a coolant, and a drain hole radially penetrating an outer circumference of the coolant holding portion for draining the coolant collected in the coolant holding portion.
US08829742B2 High efficiency permanent magnet machine
The present invention is a high efficiency permanent magnet machine capable of maintaining high power density. The machine is operable over a wide range of power output. The improved efficiency is due in part to copper wires with a current density lower than traditional designs and larger permanent magnets coupled with a large air gap. In a certain embodiment wide stator teeth are used to provide additional improved efficiency through significantly reducing magnetic saturation resulting in lower current. The machine also has a much smaller torque angle than that in traditional design at rated load and thus has a higher overload handling capability and improved efficiency. In addition, when the machine is used as a motor, an adaptive phase lag compensation scheme helps the sensorless field oriented control (FOC) scheme to perform more accurately.
US08829736B2 Low-power start-up and direction control circuitry for an irrigation system
An electric circuit for remotely starting and controlling the direction of a center pivot irrigation system comprises a first transformer, a second transformer, a first relay, a second relay, a third relay, and a fourth relay. The first transformer is coupled to a voltage source with a first voltage and may step the first voltage down to a second voltage. The second transformer is coupled to the first transformer, receiving a third voltage and stepping the third voltage up to a fourth voltage. The first relay may include contacts that are open when the irrigation system is started remotely. The second relay may include contacts that are closed when the irrigation system is started remotely. The third relay may include contacts that are closed momentarily to drive the system in a first direction. The fourth relay may include contacts that are closed momentarily to drive the system in a second direction.
US08829735B2 Low frequency restoration
Low frequency components are removed from an input signal, and transitions in the input signal are detected at a receiver input. A feedback loop restores the low frequency components at the input of the receiver.
US08829731B2 Magnetic positioning for inductive coupling
A magnetic positioning system for use in inductive couplings. The magnetic positioning system having a magnet that provides sufficient magnetic force, but does not have enough electrical conductivity to overheat in the presence of the anticipated electromagnetic field. The magnet may be a bonded magnet or a shielded magnet. In another aspect a plurality of magnets are used to provide magnetic attraction forces and said magnetic repulsion forces that cooperate to align the inductive power supply and the remote device. In another aspect, a sensor allows differentiation between different positions of the remote device or inductive power supply. In another aspect, multiple magnets in the inductive power supply interact with multiple magnets in the remote device to position the remote device in different positions.
US08829730B2 Wireless power feeder and wireless power transmission system
A resonance circuit is a circuit in which capacitors, a load, and coils are connected. AC power is fed by wireless from feeding electrodes of the capacitors to receiving electrodes thereof. The oscillator alternately turns on/off switching transistors to thereby supply AC power to the resonance circuit. An AC magnetic field generated by AC current flowing in the resonance circuit causes inductive current to flow in a detection coil. A phase detection circuit compares the phase of AC voltage generated by the oscillator and phase of the inductive current to thereby detect the phase difference between the voltage phase and current phase.
US08829726B2 Wireless power feeder and wireless power transmission system
Power is transmitted from a feeding coil L2 to a receiving coil L3 by magnetic resonance. A VCO 202 alternately turns ON/OFF switching transistors Q1 and Q2 to feed AC current to the feeding coil L2, whereby the AC power is fed from the feeding coil L2 to the receiving coil L3. An AC magnetic field generated by AC current IS flowing in the feeding coil L2 causes inductive current ISS to flow in a detection coil LSS. A phase detection circuit 150 compares the phase of AC voltage generated by the VCO 202 and phase of the inductive current ISS to detect the phase difference between voltage and current phases and generates phase difference indicating voltage indicating the magnitude of the phase difference. The reset circuit 102 forcibly reduces the phase difference indicating voltage when the phase difference indicating voltage exceeds a predetermined threshold.
US08829725B2 Wireless power feeder, wireless power receiver, and wireless power transmission system
Power is fed from a power feeding coil L2 to a power receiving coil L3 by magnetic resonance. A VCO 202 alternately turns ON/OFF switching transistors Q1 and Q2 at a drive frequency fo, whereby AC power is supplied to the power feeding coil L2, and then the AC power is supplied from the power feeding coil L2 to the power receiving coil L3. A phase detection circuit 114 detects a phase difference between current and voltage phases, and the VCO 202 adjusts the drive frequency fo such that the phase difference becomes zero. When load voltage is changed, the detected voltage phase value is adjusted with the result that the drive frequency fo is adjusted.
US08829724B2 Wireless power transceiver and wireless power system
A wireless power transceiver that is disposed between a source resonator and a target resonator and that may increase wireless power transmission efficiency is provided. The wireless power transceiver may include a power receiver that includes a receiving resonator that receives an inbound power from a source resonator, a power transmitter that includes a transmitting resonator that transmits an outbound power to a target resonator, and a coupling controller to control a coupling frequency between the target resonator and the transmitting resonator.
US08829717B2 Battery control device and battery system
A battery control device for a battery module includes a plurality of integrated circuits. Each integrated circuit includes: a constant voltage circuit that lowers a total voltage of a battery cell group corresponding to the integrated circuit to an integrated circuit internal voltage; a signal generation circuit that generates, based upon a first signal provided by a higher-order control circuit, a second signal assuming a wave height value different from a wave height value of the first signal and outputs the second signal; and a startup circuit that includes a first comparator assuming a first decision-making threshold value corresponding to the first signal and a second comparator assuming a second decision-making threshold value corresponding to the second signal, and starts up the constant voltage circuit in response to a change in an output from at least either the first comparator or the second comparator.
US08829704B2 Wind turbine generator and motor
A PAVA (parallel and vertical axis) turbine includes a plurality of wing assemblies having vertical pivot shafts extending between two vertically spaced end assemblies that are joined to a central driveshaft assembly. The wing assemblies are rotatable about their respective pivot axes from a drive position in which they extend radially outwardly from the central axis and transverse to incident fluid flow to maximally capture fluid flow and rotate the turbine, to a glide position in which the wings extend tangentially to the direction of rotation and parallel to incident fluid flow to minimize drag. The wings may have articulating flaps rotating outwardly from the wing assembly in the drive quadrant to capture more of the passing fluid flow.
US08829702B1 Gas turbine engine with internal electromechanical device
A gas turbine engine including high and low pressure shafts, an electromechanical device having a rotor and a stator coupled such that the rotor is rotatable with respect to the stator, the rotor having a device gear secured thereto, the device being secured to a support structure in a bearing housing forming part of a bearing assembly supporting a portion of the low pressure shaft extending in proximity of the high pressure shaft and of the shaft gear, and a coupling idle gear secured for rotation about a stationary gear support mounted in the bearing housing, the idle gear being in toothed engagement with the shaft gear and with the device gear. An electromechanical device assembly for a gas turbine engine and a method of operating an electromechanical device are also provided.
US08829699B2 Rotational speed control of a wind turbine based on rotor acceleration
It is described a method for controlling the rotational speed of a rotor of a wind turbine in particular at high wind speeds. The described method comprises (a) determining a rotor acceleration value, wherein the rotor acceleration value is caused by a temporal change of the rotational speed of the rotor, and (b) controlling the rotational speed of the rotor as a function of the rotor acceleration value. It is further described a control system for controlling the rotational speed of a rotor of a wind turbine, a wind turbine being equipped with such a control system and to a computer program, which is adapted for controlling and/or for carrying out the mentioned rotational speed control method.
US08829694B1 Thermosetting resin compositions with low coefficient of thermal expansion
Thermosetting resin compositions with low coefficient of thermal expansion are provided herein.
US08829692B2 Multilayer packaged semiconductor device and method of packaging
One embodiment is a packaged device having multiple layers. Another embodiment is a method of forming a packaged device having multiple layers. Conductive layers and insulating layers can be formed with openings exposing semiconductor devices. The semiconductor devices can be wire-bonded to the conductive layers. In some embodiments, parasitic effects and a relative footprint of the packaged device can be reduced.
US08829690B2 System of chip package build-up
A system and method for chip package fabrication is disclosed. The chip package includes a base re-distribution layer having an opening formed therein, an adhesive layer having a window formed therein free of adhesive material, and a die affixed to the base re-distribution layer by way of the adhesive layer, the die being aligned with the window such that only a perimeter of the die contacts the adhesive layer. A shield element is positioned between the base re-distribution layer and adhesive layer that is generally aligned with the opening formed in the base re-distribution layer and the window of the adhesive layer such that only a perimeter of the shield element is attached to the adhesive layer. The shield element is separated from the die by an air gap and is configured to be selectively removable from the adhesive layer so as to expose the front surface of the die.
US08829688B2 Semiconductor device with means for preventing solder bridges, and method for manufacturing semiconductor device
A semiconductor device includes a semiconductor element on which electrode pads are laid out. A wiring substrate includes connecting pads respectively arranged in correspondence with the electrode pads. Pillar-shaped electrode terminals are respectively formed on the electrode pads of the semiconductor element. A solder joint electrically connects a distal portion of each electrode terminal and the corresponding connecting pad on the wiring substrate. Each electrode terminal includes a basal portion, which is connected to the corresponding electrode pad, and a guide, which is formed in the distal portion. The guide has a smaller cross-sectional area than the basal portion as viewed from above. The guide has a circumference and the basal portion has a circumference that is partially flush with the circumference of the guide. The guide is formed to guide solder toward the circumference of the guide.
US08829687B2 Semiconductor package and fabrication method thereof
A semiconductor package is provided, which includes: a semiconductor substrate having opposite first and second surfaces; an adhesive layer formed on the first surface of the semiconductor substrate; at least a semiconductor chip disposed on the adhesive layer; an encapsulant formed on the adhesive layer for encapsulating the semiconductor chip; and a plurality of conductive posts penetrating the first and second surfaces of the semiconductor substrate and the adhesive layer and electrically connected to the semiconductor chip, thereby effectively reducing the fabrication cost, shortening the fabrication time and improving the product reliability.
US08829684B2 Integrated circuit package
An integrated circuit package has a host integrated circuit with an active front side that is surface-mounted on a support and an inactive backside. Conductive pathways extend between the front and back sides of the integrated circuit. A redistribution layer on the back side of the host integrated circuit provides conductive traces and contact pads. The traces of the redistribution layer establish connection between the conductive pathways and the contact pads. At least one additional component is surface-mounted on the back side of the host integrated circuit by electrical connection to the contact pads of the redistribution layer to provide a compact three-dimensional structure. In an alternative embodiment, the additional components can be mounted on the active side.
US08829683B2 Structures with through vias passing through a substrate comprising a planar insulating layer between semiconductor layers
A through via contains a conductor (244, 262) passing through a substrate (140). The substrate can be SOI or some other substrate containing two semiconductor layers (140.1, 140.2) on opposite sides of an insulating layer (140B). The through via includes two constituent vias (144.1, 144.2) formed from respective different sides of the substrate by processes stopping on the insulating layer (140B). Due to the insulating layer acting as a stop layer, high control over the constituent vias' depths is achieved. Each constituent via is shorter than the through via, so via formation is facilitated. The conductor is formed by separate depositions of conductive material into the constituent vias from each side of the substrate. From each side, the conductor is deposited to a shallower depth than the through-via depth, so the deposition is facilitated. Other embodiments are also provided.
US08829682B2 Integrated circuit devices including interconnections insulated by air gaps and methods of fabricating the same
Semiconductor devices and methods of fabricating the same are provided. The semiconductor device may include interconnections extending in a first direction on a substrate and spaced apart from each other in a second direction perpendicular to the first direction, barrier dielectric patterns disposed on top surfaces of the interconnections, respectively, and an upper interlayer dielectric layer disposed on the interconnection. Respective air gaps are disposed between adjacent ones of the interconnections.
US08829681B2 Semiconductor device having groove-shaped via-hole
The semiconductor device has insulating films 40, 42 formed over a substrate 10; an interconnection 58 buried in at least a surface side of the insulating films 40, 42; insulating films 60, 62 formed on the insulating film 42 and including a hole-shaped via-hole 60 and a groove-shaped via-hole 66a having a pattern bent at a right angle; and buried conductors 70, 72a buried in the hole-shaped via-hole 60 and the groove-shaped via-hole 66a. A groove-shaped via-hole 66a is formed to have a width which is smaller than a width of the hole-shaped via-hole 66. Defective filling of the buried conductor and the cracking of the inter-layer insulating film can be prevented. Steps on the conductor plug can be reduced. Accordingly, defective contact with the upper interconnection layer and the problems taking place in forming films can be prevented.
US08829677B2 Semiconductor die having fine pitch electrical interconnects
A die has interconnect pads on an interconnect side near an interconnect edge and has at least a portion of the interconnect side covered by a conformal dielectric coating, in which an interconnect trace over the dielectric coating forms a high interface angle with the surface of the dielectric coating. Because the traces have a high interface angle, a tendency for the interconnect materials to “bleed” laterally is mitigated and contact or overlap of adjacent traces is avoided. The interconnect trace includes a curable electrically conductive interconnect material; that is, it includes a material that can be applied in a flowable form, and thereafter cured or allowed to cure to form the conductive traces. Also, a method includes, prior to forming the traces, subjecting the surface of the conformal dielectric coating with a CF4 plasma treatment.
US08829676B2 Interconnect structure for wafer level package
A package includes a device die having a substrate. A molding compound contacts a sidewall of the substrate. A metal pad is over the substrate. A passivation layer has a portion covering an edge portion of the metal pad. A metal pillar is over and contacting the metal pad. A dielectric layer is over the passivation layer. A package material formed of a molding compound or a polymer is over the dielectric layer. The dielectric layer includes a bottom portion between the passivation layer and the package material, and a sidewall portion between a sidewall of the metal pillar and a sidewall of the package material. A polymer layer is over the package material, the molding compound, and the metal pillar. A post-passivation interconnect (PPI) extends into the polymer layer. A solder ball is over the PPI, and is electrically coupled to the metal pad through the PPI.
US08829673B2 Bonded structures for package and substrate
The embodiments described provide elongated bonded structures near edges of packaged structures free of solder wetting on sides of copper posts substantially facing the center of the packaged structures. Solder wetting occurs on other sides of copper posts of these bonded structures. The elongated bonded structures are arranged in different arrangements and reduce the chance of shorting between neighboring bonded structures. In addition, the elongated bonded structures improve the reliability performance.
US08829672B2 Semiconductor package, package structure and fabrication method thereof
A semiconductor package includes: a dielectric layer having opposite first and second surfaces; a semiconductor chip embedded in the dielectric layer and having a plurality of electrode pads; a plurality of first metal posts disposed on the electrode pads of the semiconductor chip, respectively, such that top ends of the first metal posts are exposed from the first surface; at least a second metal post penetrating the dielectric layer such that two opposite ends of the second metal post are exposed from the first and second surfaces, respectively; a first circuit layer formed on the first surface for electrically connecting the first and second metal posts; and a second circuit layer formed on the second surface for electrically connecting the second metal post. The semiconductor package dispenses with conventional laser ablation and electroplating processes for forming conductive posts in a molding compound, thereby saving fabrication time and cost.
US08829671B2 Compliant core peripheral lead semiconductor socket
An electrical interconnect between terminals on an IC device and contact pads on a printed circuit board (PCB). The electrical interconnect includes a substrate with a first surface having a plurality of openings arranged to correspond to the terminals on the IC device. A compliant material is located in the openings. A plurality of first conductive traces extend along the first surface of the substrate and onto the compliant material. The compliant material provides a biasing force that resists flexure of the first conductive traces into the openings. Vias extending through the substrate are electrically coupled the first conductive traces. A plurality of second conductive traces extend along the second surface of the substrate and are electrically coupled to a vias. The second conductive traces are configured to electrical couple with the contact pads on the PCB.
US08829670B1 Through silicon via structure for internal chip cooling
The present disclosure is directed to a device that includes a first substrate having a first plurality of hollow pillars on the first substrate and a first plurality of channels in the first substrate coupled to the first plurality of hollow pillars. The device includes a second substrate attached to the first substrate, the second substrate having a second plurality of hollow pillars on the second substrate and a second plurality of channels in the second substrate coupled to the second plurality of hollow pillars, the first plurality of hollow pillars being coupled to the second plurality of hollow pillars to allow a fluid medium to move through the substrate to cool the first substrate and the second substrate.
US08829669B2 Semiconductor device
A semiconductor device configured to enable efficient cooling of an element and downsizing of the device. The semiconductor device including an element unit connected to a surface of a cooler. A support member that has a condenser housing chamber that houses the condenser. The condenser has two parallel planar surfaces that are parallel with each other. The condenser housing chamber has a parallel opposing surface that is arranged in parallel with the element unit arrangement surface and faces the element unit arrangement surface, and houses the condenser in a state where the two parallel planar surfaces are arranged in parallel with the parallel opposing surface. The support member is fixed to the cooler in a state where the parallel opposing surface presses the element unit toward the cooler.
US08829666B2 Semiconductor packages and methods of packaging semiconductor devices
Semiconductor packages and methods of forming a semiconductor package are disclosed. The method includes providing at least one die having first and second surfaces. The second surface of the die includes a plurality of conductive pads. A support carrier is provided and the at least one die is attached to the support carrier. The first surface of the at least one die is facing the support carrier. A cap having first and second surfaces is formed to encapsulate the at least one die. The second surface of the cap is disposed at a different plane than the second surface of the die.
US08829665B2 Semiconductor chip and stack package having the same
A semiconductor chip includes a semiconductor substrate with a top surface and a bottom surface. An active layer may be formed on the top surface of the semiconductor substrate and may comprise one or more signal pads and one or more chip selection pads on an upper surface of the active layer. First and second through electrodes may be formed to pass through the semiconductor substrate and the active layer, with the first through electrodes being electrically connected with the signal pads and the second through electrodes being electrically connected with the chip selection pads. A side electrode may be formed on a side surface of the semiconductor chip in such a way as to be connected with a second through electrode.
US08829664B2 Three dimensional integrated circuits
A three-dimensional semiconductor device, comprising: a first module layer having a plurality of circuit blocks; and a second module layer positioned substantially above the first module layer, including a plurality of configuration circuits; and a third module layer positioned substantially above the second module layer, including a plurality of circuit blocks; wherein, the configuration circuits in the second module control a portion of the circuit blocks in the first and third module layers.
US08829660B2 Resin-encapsulated semiconductor device
A resin-sealed semiconductor device includes a semiconductor chip including a silicon substrate; a die pad on which the semiconductor chip is secured via a solder layer; a sealing resin layer sealing the semiconductor chip; and lead terminals connected electrically with the semiconductor chip. One end portion of the lead terminals is covered by the sealing resin layer. The die pad and the lead terminals are formed of copper and a copper alloy, and the die pad is formed with a thickness larger than a thickness of the lead terminals, which is a thickness of 0.25 mm or more.
US08829659B2 Integrated circuit
An integrated circuit connection comprises a substrate, first and second transmission lines, a die, and a conductive ribbon. The first transmission line has a first end and is arranged on the substrate. The die is spaced from the first end. The die has a first surface, which is arranged on the substrate, and a second surface, which is opposite to the first surface and which has the second transmission line arranged thereon. The second transmission line has a second end. The conductive ribbon electrically couples the first and the second ends.
US08829654B2 Semiconductor package with interposer
The present application discloses various implementations of a semiconductor package including an organic substrate and one or more interposers having through-semiconductor vias (TSVs). Such a semiconductor package may include a contiguous organic substrate having a lower substrate segment including first and second pluralities of lower interconnect pads, the second plurality of lower interconnect pads being disposed in an opening of the lower substrate segment. The contiguous organic substrate may also include an upper substrate segment having an upper width and including first and second pluralities of upper interconnect pads. In addition, the semiconductor package may include at least one interposer having TSVs for electrically connecting the first and second pluralities of lower interconnect pads to the first and second pluralities of upper interconnect pads. The interposer has an interposer width less than the upper width of the upper substrate segment.
US08829653B2 Exclusion zone for stress-sensitive circuit design
A semiconductor structure less affected by stress and a method for forming the same are provided. The semiconductor structure includes a semiconductor chip. Stress-sensitive circuits are substantially excluded out of an exclusion zone to reduce the effects of the stress to the stress-sensitive circuits. The stress-sensitive circuits include analog circuits. The exclusion zone preferably includes corner regions of the semiconductor chip, wherein the corner regions preferably have a diagonal length of less than about one percent of the diagonal length of the semiconductor chip. The stress-sensitive analog circuits preferably include devices having channel lengths less than about five times the minimum channel length.
US08829649B2 Semiconductor device having a resistive element including a TaSiN layer
A semiconductor device includes a first insulating layer (interlayer insulating layer), a resistive element that is disposed over the first insulating layer (interlayer insulating layer) and at least a surface layer of which is a TaSiN layer, and an interlayer insulating layer disposed over the first insulating layer (interlayer insulating layer) and the resistive element. Multiple via plugs having ends coupled to the TaSiN layer are disposed in the interlayer insulating layer.
US08829644B2 Nonvolatile memory device and method of manufacturing the same
In a non-volatile memory device and method of manufacturing the same, a device isolation pattern and an active region extend in a first direction on a substrate. A first dielectric pattern is formed on the active region of the substrate. Conductive stack structures are arranged on the first dielectric pattern and a recess is formed between a pair of the adjacent conductive stack structures. A protection layer is formed on a sidewall of the stack structure to protect the sidewall of the stack structure from over-etching along the first direction. The protection layer includes an etch-proof layer having oxide and arranged on a sidewall of the floating gate electrode and a sidewall of the control gate line and a spacer layer covering the sidewall of the conductive stack structures.
US08829638B2 Ultrafast photonic crystal cavity single-mode light-emitting diode
Electrical pumping of photonic crystal (PC) nanocavities using a lateral p-i-n junction is described. Ion implantation doping can be used to form the junction, which under forward bias pumps a gallium arsenide photonic crystal nanocavity with indium arsenide quantum dots. Efficient cavity-coupled electroluminescence is demonstrated in a first experimental device. Electrically pumped lasing is demonstrated in a second experimental device. High speed modulation of a single mode LED is demonstrated in a third experimental device. This approach provides several significant advantages. Ease of fabrication is improved because difficult timed etch steps are not required. Any kind of PC design can be employed. Current flow can be lithographically controlled to focus current flow to the active region of the device, thereby improving efficiency, reducing resistance, improving speed, and reducing threshold. Insulating substrates can be employed, which facilitates inclusion of these devices in photonic integrated circuits.
US08829636B2 Solid-state image pickup deviceand fabrication process thereof
A solid-state image pickup device has photodiodes, each of which includes an N-type region formed in a semiconductor substrate, a first silicon carbide layer formed above the N-type region, and a P-type region including a first silicon layer formed above the first silicon carbide layer and doped with boron. A fabrication process of such a solid-state image pickup device is also disclosed.
US08829620B2 Transistor with adjustable supply and/or threshold voltage
The first electrode of the transistor may include a first electrically conductive region provided within the semiconductor substrate. The second electrode may include a second electrically conductive region provided within the semiconductor substrate. The first and second regions may be separated by the substrate region, and the control electrode may include a third electrically conductive region provided within the substrate. The third electrically conductive region may be both separated from the substrate region by an insulating region and electrically coupled to the substrate region by a junction diode intended to be reverse-biased.
US08829618B2 ESD protection using diode-isolated gate-grounded NMOS with diode string
An ESD protection circuit with a diode string coupled to a diode-isolated, gate-grounded NMOS ESD device. A method of forming an ESD protection circuit with a diode string coupled to a diode-isolated, gate-grounded NMOS ESD device.
US08829611B2 High voltage metal-oxide-semiconductor transistor device
A high voltage metal-oxide-semiconductor transistor device includes a substrate having an insulating region formed therein, a gate covering a portion of the insulating region and formed on the substrate, a source region and a drain region formed at respective sides of the gate in the substrate, a body region formed in the substrate and partially overlapped by the gate, and a first implant region formed in the substrate underneath the gate and adjacent to the body region. The substrate and body region include a first conductivity type. The source region, the drain region, and the first implant region include a second conductivity type. The first conductivity type and the second conductivity type are complementary to each other.
US08829608B2 Semiconductor device
According to one embodiment, a semiconductor device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of the first conductivity type, a third semiconductor layer of a second conductivity type, a fourth semiconductor layer of the second conductivity type, a fifth semiconductor layer of the first conductivity type, a control electrode, a first main electrode, a second main electrode, and a sixth semiconductor layer of the first conductivity type. The second semiconductor layer and the third semiconductor layer are alternately provided on the first semiconductor layer in a direction substantially parallel to a major surface of the first semiconductor layer. The fourth semiconductor layer is provided on the second semiconductor layer and the third semiconductor layer. The fifth semiconductor layer is selectively provided on a surface of the fourth semiconductor layer. The control electrode is provided in a trench via an insulating film. The trench penetrates through the fourth semiconductor layer from a surface of the fifth semiconductor layer and is in contact with the second semiconductor layer. The first main electrode is connected to the first semiconductor layer. The second main electrode is connected to the fourth semiconductor layer and the fifth semiconductor layer. The sixth semiconductor layer is provided between the fourth semiconductor layer and the second semiconductor layer. An impurity concentration of the sixth semiconductor layer is higher than an impurity concentration of the second semiconductor layer.
US08829602B2 Integrated circuits and transistor design therefor
The invention includes a semiconductor structure having a gateline lattice surrounding vertical source/drain regions. In some aspects, the source/drain regions can be provided in pairs, with one of the source/drain regions of each pair extending to a digit line and the other extending to a memory storage device, such as a capacitor. The source/drain regions extending to the digit line can have the same composition as the source/drain regions extending to the memory storage devices, or can have different compositions from the source/drain regions extending to the memory storage devices. The invention also includes methods of forming semiconductor structures. In exemplary methods, a lattice comprising a first material is provided to surround repeating regions of a second material. At least some of the first material is then replaced with a gateline structure, and at least some of the second material is replaced with vertical source/drain regions.
US08829598B2 Non-volatile memory device having three dimensional, vertical channel, alternately stacked gate electrode structure
A method for fabricating a non-volatile memory device, the method includes alternately stacking inter-layer dielectric layers and sacrificial layers over a substrate, etching the inter-layer dielectric layers and the sacrificial layers to form trenches to expose a surface of the substrate, etching the inter-layer dielectric layers exposed by the trenches to a predetermined thickness, forming junction layers over etched portions of the inter-layer dielectric layers, and burying a layer for a channel within the trenches in which the junction layers have been formed to form a channel.
US08829593B2 Semiconductor memory device having three-dimensionally arranged memory cells, and manufacturing method thereof
A first select transistor is formed on a semiconductor substrate. Memory cell transistors are stacked on the first select transistor and connected in series. A second select transistor is formed on the memory cell transistors. The memory cell transistors include a tapered semiconductor pillar which increases in diameter from the first select transistor toward the second select transistor, a tunnel dielectric film formed on the side surface of the semiconductor pillar, a charge storage layer which is formed on the side surface of the tunnel dielectric film and which increases in charge trap density from the first select transistor side toward the second select transistor side, a block dielectric film formed on the side surface of the charge storage layer, and conductor films which are formed on the side surface of the block dielectric film and which serve as gate electrodes.
US08829589B2 Three-dimensional semiconductor memory device
A three-dimensional semiconductor memory device may include gap-fill insulating layers extending upward from a substrate, an electrode structure delimited by sidewalls of the gap-fill insulating layers, vertical structures provided between adjacent ones of the gap-fill insulating layers to penetrate the electrode structure, and at least one separation pattern extending along the gap-fill insulating layers and penetrating at least a portion of the electrode structure. The separation pattern may include at least one separation semiconductor layer.
US08829582B2 Semiconductor device including memory cell having charge accumulation layer
A semiconductor device includes MOS transistors, capacitor elements, a voltage generating circuit, a contact plug, and a memory cell. The MOS transistor and the capacitor element are formed on a first one of the element regions and a second one of the element regions, respectively. In the voltage generating circuit, current paths of the MOS transistors are series-connected and the capacitor elements are connected to the source or drain of the MOS transistors. The contact plug is formed on the source or the drain to connect the MOS transistors or one of the MOS transistors and one of the capacitor elements. A distance between the gate and the contact plug both for a first one of the MOS transistors located in the final stage in the series connection is larger than that for a second one of the MOS transistors located in the initial stage in the series connection.
US08829579B2 Solid-state imaging device, electronic apparatus, and method for manufacturing the same
A solid-state imaging device includes photoelectric conversion elements on an imaging surface of a substrate, receiving light incident on a light receiving surface and performing photoelectric conversion to produce a signal charge. Electrodes are interposed between the photoelectric conversion elements and light blocking portions are provided above the electrodes and interposed between the photoelectric conversion elements. The light blocking portions include an electrode light blocking portion formed to cover the corresponding electrode, and a pixel isolation and light blocking portion protruding convexly from the upper surface of the electrode light blocking portion. The photoelectric conversion elements are arranged at first pitches on the imaging surface. The electrode light blocking portions and the pixel isolation and light blocking portions are arranged at second and third pitches on the imaging surface. At least the third pitch increases with distance from the center toward the periphery of the imaging surface.
US08829574B2 Method and system for a GaN vertical JFET with self-aligned source and gate
A semiconductor device includes a III-nitride substrate, a first III-nitride epitaxial layer coupled to the III-nitride substrate and having a mesa, and a second III-nitride epitaxial layer coupled to a top surface of the mesa. The semiconductor device further includes a III-nitride gate structure coupled to a side surface of the mesa, and a spacer configured to provide electrical insulation between the second III-nitride epitaxial layer and the III-nitride gate structure.
US08829572B2 Structure and layout of a FET prime cell
Method of making a semiconductor device that includes forming a source and a drain in a substrate, forming a gate on the substrate between the source and drain, forming a substrate contact in electrical contact with the source, and forming an electrical contact to the source, drain and gate, and the substrate.
US08829568B2 Gallium nitride semiconductor device and method for producing the same
An insulating layer, an undoped first GaN layer and an AlGaN layer are laminated in this order on a surface of a semiconductor substrate. A surface barrier layer formed by a two-dimensional electron gas is provided in an interface between the first GaN layer and the AlGaN layer. A recess (first recess) which reaches the first GaN layer but does not pierce the first GaN layer is formed in a surface layer of the AlGaN layer. A first high withstand voltage transistor and a control circuit are formed integrally on the aforementioned semiconductor substrate. The first high withstand voltage transistor is formed in the first recess and on a surface of the AlGaN layer. The control circuit includes an n-channel MOSFET formed in part of the first recess, and a depression type n-channel MOSFET formed on a surface of the AlGaN layer. In this manner, there are provided a gallium nitride semiconductor device which can be used under a high temperature environment while reduction in total circuit size can be attained, and a method for producing the gallium nitride semiconductor device.
US08829567B2 Metal alloy with an abrupt interface to III-V semiconductor
Semiconductor structures having a first layer including an n-type III-V semiconductor material and a second layer including an M(InP)(InGaAs) alloy, wherein M is selected from Ni, Pt, Pd, Co, Ti, Zr, Y, Mo, Ru, Ir, Sb, In, Dy, Tb, Er, Yb, and Te, and combinations thereof, are disclosed. The semiconductor structures have a substantially planar interface between the first and second layers. Methods of fabricating semiconductor structures, and methods of reducing interface roughness and/or sheet resistance of a contact are also disclosed.
US08829566B2 Germanium/silicon avalanche photodetector with separate absorption and multiplication regions
A semiconductor waveguide based optical receiver is disclosed. An apparatus according to aspects of the present invention includes an absorption region including a first type of semiconductor region proximate to a second type of semiconductor region. The first type of semiconductor is to absorb light in a first range of wavelengths and the second type of semiconductor to absorb light in a second range of wavelengths. A multiplication region is defined proximate to and separate from the absorption region. The multiplication region includes an intrinsic semiconductor region in which there is an electric field to multiply the electrons created in the absorption region.
US08829558B2 Semiconductor light-emitting device
The present disclosure relates to a semiconductor light-emitting device, which includes: a plurality of semiconductor layers composed of a first semiconductor layer, a second semiconductor layer, and an active layer; a first electrode disposed on the second semiconductor layer; a high-resistance body interposed between the second semiconductor layer and the first electrode; and a light-transmitting conductive film having an opening through which the high-resistance body is exposed, the first electrode being brought into contact with the light-transmitting conductive film, which is disposed on the high-resistance body, and the high-resistance body, which is exposed through the opening.
US08829555B2 Semiconductor light emission element
A semiconductor light emission element (1) includes: a substrate (110); multi-layered semiconductor layers (100) including a light emission layer (150) and layered on the substrate (110); a transparent electrode (170) including an indium oxide and layered on the multi-layered semiconductor layers (100); a first junction layer (190) including tantalum as a valve action metal and layered on the transparent electrode (170) in such a manner that a side of the first junction layer (190) being in contact with the transparent electrode (170) is a tantalum nitride layer or a tantalum oxide layer; and a first bonding pad electrode (200) layered on the first junction layer (190) and used for electrical connection with outside. This improves a bonding property of the transparent electrode or the semiconductor layer with the connection electrode and reliability of the electrodes.
US08829552B2 Light emitting device
Provided is a light emitting device. The light emitting device includes: a plurality of lead frame units spaced apart from each other, each of the lead frame units being provided with at least one fixing space perforating a body thereof in a vertical direction; a light emitting diode chip mounted on one of the lead frame units; and a molding unit that is integrally formed on top surfaces of the lead frame units and in the fixing spaces to protect the light emitting diode chip.
US08829548B2 Light emitting device package and fabrication method thereof
A light emitting device package includes: an undoped semiconductor substrate having first and second surfaces opposed to each other; first and second conductive vias penetrating the undoped semiconductor substrate; a light emitting device mounted on one region of the first surface; a bi-directional Zener diode formed by doping an impurity on the second surface of the undoped semiconductor substrate and having a Zener breakdown voltage in both directions; and first and second external electrodes formed on the second surface of the undoped semiconductor substrate such that they connect the first and second conductive vias to both ends of the bi-directional Zener diode region, respectively.
US08829547B2 Light emitting device and display apparatus with light-focusing lens
A light emitting device includes: a light emitting chip arranged on a substrate; a resin lens which covers the light emitting chip and focuses irradiation light from the light emitting chip; a mask which covers a region of an upper layer surface of the substrate, other than the resin lens; and a low surface tension film formed on a region of the upper layer surface of the substrate, other than in the proximity of the light emitting chip.
US08829545B2 Group III nitride semiconductor light-emitting device
A group III nitride semiconductor light-emitting device comprises an n-type gallium nitride-based semiconductor layer, a first p-type AlXGa1-XN (0≦X<1) layer, an active layer including an InGaN layer, a second p-type AlYGa1-YN (0≦Y≦X<1) layer, a third p-type AlZGa1-XN layer (0≦Z≦Y≦X<1), and a p-electrode in contact with the third p-type AlZGa1-ZN layer. The active layer is provided between the n-type gallium nitride-based semiconductor layer and the first p-type AlXGa1-XN layer. The second p-type AlYGa1-YN (0≦Y≦X<1) layer is provided on the first p-type AlXGa1-XN layer. The p-type dopant concentration of the second p-type AlYGa1-YN layer is greater than the p-type dopant concentration of the first p-type AlXGa1-XN layer. The third p-type AlZGa1-ZN layer (0≦Z≦Y≦X<1) is provided on the second p-type AlYGa1-YN layer. The p-type dopant concentration of the second p-type AlYGa1-YN layer is greater than a p-type dopant concentration of the third p-type AlZGa1-ZN layer.
US08829544B2 Semiconductor light emitting device, nitride semiconductor layer, and method for forming nitride semiconductor layer
According to an embodiment, a semiconductor light emitting device includes a foundation layer, a first semiconductor layer, a light emitting layer, and a second semiconductor layer. The foundation layer has an unevenness having recesses, side portions, and protrusions. A first major surface of the foundation layer has an overlay-region. The foundation layer has a plurality of dislocations including first dislocations whose one ends reaching the recess and second dislocations whose one ends reaching the protrusion. A proportion of a number of the second dislocations reaching the first major surface to a number of all of the second dislocations is smaller than a proportion of a number of the first dislocations reaching the first major surface to a number of all of the first dislocations. A number of the dislocations reaching the overlay-region of the first major surface is smaller than a number of all of the first dislocations.
US08829542B2 Organic light emitting diode device
An organic light emitting diode device including an anode, a cathode facing the anode, and a light emitting member between the anode and cathode, wherein the light emitting member includes at least two light emitting units displaying the same or different color as one another, and a charge-generation layer between the at least two light emitting units, the charge-generation layer including a first charge-generation layer and a second charge-generation layer that each include an undoped material, and wherein the first charge-generation layer has an ionization energy that is about the same as or less than an electron affinity of the second charge-generation layer.
US08829531B2 Photonic systems and methods of forming photonic systems
Some embodiments include photonic systems. The systems may include a silicon-containing waveguide configured to direct light along a path, and a detector proximate the silicon-containing waveguide. The detector may comprise a detector material which has a lower region and an upper region, with the lower region having a higher concentration of defects than the upper region. The detector material may comprise germanium in some embodiments. Some embodiments include methods of forming photonic systems.
US08829528B2 Semiconductor device including groove portion extending beyond pixel electrode
A step for forming an island-shaped semiconductor layer of a semiconductor device used in a display device is omitted in order to manufacture the semiconductor device with high productivity and low cost. The semiconductor device is manufactured through four photolithography processes: four steps for forming a gate electrode, for forming a source electrode and a drain electrode, for forming a contact hole, and for forming a pixel electrode. In the step for forming the contact hole, a groove portion in which a semiconductor layer is removed is formed, whereby formation of a parasitic transistor is prevented. An oxide semiconductor is used as a material of the semiconductor layer in which a channel is formed, and an oxide semiconductor having a higher insulating property than the semiconductor layer is provided over the semiconductor layer.
US08829526B2 Semiconductor device, method for manufacturing same, and display device
Disclosed is a semiconductor device in which a thin film transistor and a thin film diode are provided on one same substrate, and the characteristics respectively required for the thin film transistor and the thin film diode are achieved. Specifically disclosed is a semiconductor device that includes an insulating layer (104) formed on the surface of a substrate (101), and a thin film transistor and a thin film diode that are formed on the insulating layer (104). A portion of the surface of the insulating layer (104), which is positioned below a semiconductor layer (109) for the thin film diode, is provided with a first recessed and projected pattern (105). Meanwhile, a portion of the surface of the insulating layer (104), which is positioned below a semiconductor layer (108) for the thin film transistor, is not provided with the first recessed and projected pattern (105). The surface of the semiconductor layer (109) for the thin film diode has a second recessed and projected pattern that reflects the shape of the first recessed and projected pattern (105).
US08829524B2 Thin film transistor array substrate having sandwich structure gate electrode and manufacturing method thereof
An exemplary thin film transistor array substrate (200) includes a substrate (210) and a gate electrode (220) formed on the substrate. The gate electrode includes an adhesive layer (226) formed on the substrate, a conductive layer (224) formed on the adhesive layer and a barrier layer (222) formed on the conductive layer, the adhesive layer and the barrier layer both have sandwich structures. A central core of the adhesive layer, the conductive layer, and a central core of the barrier layer are made of a same material.
US08829522B2 Thin film transistor
A thin film transistor having favorable electric characteristics with high productively is provided. The thin film transistor includes a gate insulating layer covering a gate electrode, a semiconductor layer in contact with the gate insulating layer, an impurity semiconductor layer which is in contact with part of the semiconductor layer and functions as a source region and a drain region, and a wiring in contact with the impurity semiconductor layer. The semiconductor layer includes a microcrystalline semiconductor region having a concave-convex shape, which is formed on the gate insulating layer side, and an amorphous semiconductor region in contact with the microcrystalline semiconductor region. A barrier region is provided between the semiconductor layer and the wiring.
US08829518B2 Test structure and calibration method
A test structure for measuring a Micro-Electro-Mechanical System (MEMS) cavity height structure and calibration method. The method includes forming a sacrificial cavity material over a plurality of electrodes and forming an opening into the sacrificial cavity material. The method further includes forming a transparent or substantially transparent material in the opening to form a transparent or substantially transparent window. The method further includes tuning a thickness of the sacrificial cavity material based on measurements obtained through the transparent or substantially transparent window.
US08829510B2 Organic electroluminescence display panel and organic electroluminescence display device
The present invention provides an organic EL display panel and an organic EL display apparatus that can be driven at a low voltage and that exhibit excellent light-emitting efficiency. Sequentially fixated on a substrate are: a first electrode; auxiliary wiring; a hole injection layer; a functional layer; and a second electrode. The hole injection layer and the second electrode are both formed to be continuous above the first electrode and above the auxiliary wiring. The second electrode and the auxiliary wiring are electrically connected by the hole injection layer. The hole injection layer contains tungsten oxide and at least 2 nm thick so as to have, in an electronic state thereof, an occupied energy level in a range between 1.8 eV and 3.6 eV lower than a lowest energy level of a valence band in terms of a binding energy.
US08829507B2 Sealed organic opto-electronic devices and related methods of manufacturing
The disclosure relates generally to sealed electronic devices. More particularly, the invention relates to electronic devices employing organic devices having a seal. Packages having organic electronic devices are presented, and a number of sealing mechanisms are provided for hermetically sealing the package to protect the organic electronic device from environmental elements.
US08829504B2 White organic light emitting device
The white organic light emitting device for improved efficiencies includes an anode and a cathode opposing each other on a substrate, a charge generation layer between the anode and the cathode, a first stack and a second stack interposed between the anode and the charge generation layer, and between the charge generation layer and the cathode, respectively, wherein at least one of a first hole transport layer and a second hole transport layer has a triplet energy level higher than a triplet energy level of the light emitting layer adjacent thereto, and a difference between a triplet energy level and a singlet energy level of 0.01 eV to 0.6 eV.
US08829501B2 Large area light emitting device comprising organic light emitting diodes
The invention relates to an organic light emitting device having an electrode, a counter electrode, at least one light emitting region that includes a stack of organic layers between the electrode and the counter electrode, which stack of organic layers is provided between a metal substrate and a transparent encapsulation, a current supply layer, electrically connected to the electrode or the counter-electrode, the current supply layer being partially provided overlapping an electric insulating layer provided in direct contact with the metal substrate, and at least one electrical feedthrough through the metal substrate and through the electric insulating layer, which electrical feedthrough provides an electrical connection to the current supply layer and is electrically isolated from the metal substrate.
US08829497B2 Display element, display device, and electronic apparatus
Disclosed herein is a display element, including plural light emitting units laminated through a connection layer between a first electrode and a second electrode. The connection layer contains therein at least one or more kinds of materials having a photoelectric conversion function. A display device includes plural display elements. Each of the display elements includes plural light emitting units laminated through a connection layer between a first electrode and a second electrode, and the connection layer contains therein at least one or more kinds of materials having a photoelectric conversion function. An electronic apparatus includes a display device including plural display elements and serving as a display portion. Each of the display elements includes plural light emitting units laminated through a connection layer between a first electrode and a second electrode, and the connection layer contains therein at least one or more kinds of materials having a photoelectric conversion function.
US08829496B2 Organic component and method for the production thereof
A device comprising: a first substrate (1); a second substrate; at least one optoelectronic component (4) containing at least one organic material is arranged on the first substrate; the first substrate (1) and the second substrate (2) being arranged relative to one another in such a way that the optoelectronic component (4) is arranged between the first substrate (1) and the second substrate; a bonding material (3) is arranged between the first substrate (1) and the second substrate (2), said bonding material enclosing the optoelectronic component (4) in a frame type fashion and mechanically connecting the first and second substrates (1, 2) to one another; and wherein the bonding material (3) was softened by an exothermic chemical process of a reactive material (7) for mechanically connecting the substrates (1, 2).
US08829494B2 Organic thin film transistor
An organic thin film transistor comprising source and drain electrodes, an organic semiconductor disposed in a channel region between the source and drain electrodes, a gate electrode, and a dielectric disposed between the source and drain electrodes and the gate electrode, wherein the source electrode and the drain electrode comprise at least one different physical and/or material property from each other.
US08829491B2 Semiconductor device
According to example embodiments, a semiconductor device includes a first layer and second layer. The first layer includes a nitride semiconductor doped with a first type dopant. The second layer is below the first layer and includes a high concentration layer. The high concentration layer includes the nitride semiconductor doped with the first type dopant and has a doping concentration higher than a doping concentration of the first layer.
US08829490B2 Semiconductor light emitting device and method for manufacturing the same
Disclosed is a semiconductor light emitting device including a first to third conductive semiconductor layers which have an n-type dopant, an active layer, and a fourth and fifth conductive semiconductor layers which have a p-type dopant. The first and third conductive semiconductor layers are a GaN semiconductor, and the second conductive semiconductor layer is an InGaN-based semiconductor layer. The fourth conductive semiconductor layer is formed of an AlGaN semiconductor and the fifth conductive semiconductor layer is formed of a GaN-based semiconductor layer. The active layer includes plurality of quantum barrier layers and plurality of quantum well layers and includes a cycle of 2 to 10. The plurality of quantum well layers include an InGaN semiconductor and at least one of the plurality of quantum barrier layers includes a GaN-based semiconductor, and at least two of the plurality barrier layers has a thickness of about 50 Å to about 300 Å.
US08829487B2 Light emitting diode and method for manufacturing the same
A light emitting diode (LED) is provided. The LED includes a carrying substrate, a semiconductor composite layer and an electrode. The semiconductor composite layer is disposed on the carrying substrate, and an upper surface of the semiconductor composite layer includes a patterned surface and a flat surface. The electrode is disposed on the flat surface. A method for manufacturing the light emitting diode is provided as well.
US08829484B2 Memory arrays
Some embodiments include methods of forming memory structures. An electrically insulative line is formed over a base. Electrode material is deposited over the line and patterned to form a pair of bottom electrodes along the sidewalls of the line. Programmable material is formed over the bottom electrodes, and a top electrode is formed over the programmable material. The bottom electrodes may each contain at least one segment which extends at angle of from greater than 0° to less than or equal to about 90° relative to a planar topography of the base. Some embodiments include memory structures having a bottom electrode extending upwardly from a conductive contact to a programmable material, with the bottom electrode having a thickness of less than or equal to about 10 nanometers. Some embodiments include memory arrays and methods of forming memory arrays.
US08829481B2 Top of form sensor
A sensing apparatus operable for sensing top of form indicators on media within a print station is provided. The sensing apparatus generally including a base and a cover hingedly attached to each other and being operable for manipulation between an open and closed position, a flexible circuit affixed to the interior surfaces of the base and cover, the flexible circuit comprising an array of optical sensing devices, and an interface connector integral the base for connection to a control unit of a print station. The optical sensing devices generally include any one of light emitting diodes and photo sensors and are operable for the detection of holes, notches, black marks and gaps located on a media passing through the sensing apparatus.
US08829480B2 Vision measuring device
A vision measuring device includes: an imaging device which images a workpiece; an illumination device which irradiates the workpiece with light; a position control system which controls an in-focus position of the imaging device and outputs the in-focus position as information representing a position in an in-focus axis direction; and a control device which, when the position control system controls the in-focus position, controls the frame rate of the imaging device, and controls at least one of the imaging device and the illumination device such that an amount of light to be received by the imaging device becomes substantially constant.
US08829478B2 Drive laser delivery systems for EUV light source
An EUV light source is disclosed herein which may comprise a droplet generator producing a stream of target material droplets, a first optical gain medium amplifying light on a first beam path without a seed laser providing a seed laser output to the first beam path, a second optical gain medium amplifying light on a second beam path without a seed laser providing a seed laser output to the second beam path, and a beam combiner combining light from the first beam path and the second beam path for interaction with a target material droplet to produce EUV light emitting plasma.
US08829462B2 Multipole magnet
A multipole magnet for deflecting a beam of charged particles, comprising: a plurality of ferromagnetic poles arranged in a pole plane; a plurality of permanent magnets each having a magnetisation direction, and each being arranged to supply magnetomotive force to the plurality of ferromagnetic poles to produce a magnetic field along the pole plane in a beamline space between the poles; and a plurality of ferromagnetic flux conducting members arranged to channel magnetic flux from at least one of the plurality of permanent magnets; wherein the multipole magnet comprises an even number of ferromagnetic poles, each pole being arranged to diametrically oppose another of the poles in the pole plane along a pole axis, wherein each of the plurality of permanent magnets is associated with at least one of the plurality of poles and the magnetisation direction of each permanent magnet isorientated in the pole plane at an angle of at least 45° relative to the pole axis of the associated pole.
US08829461B2 Scanning apparatus, drawing apparatus, and method of manufacturing article
A scanning apparatus which performs scan on an object with a charged particle beam includes: a blanking deflector configured to individually blank a plurality of charged particle beams based on control data; a scanning deflector configured to collectively deflect the plurality of charged particle beams to perform the scan; and a controller. The controller is configured to hold first data used to obtain error in a scanning amount and a scanning direction of the scanning deflector relative to a reference scanning amount and a reference scanning direction with respect to each of the plurality of charged particle beams, and to generate the control data based on the first data so that the scan is performed for a target region on the object.
US08829460B2 Three-dimensional boron particle loaded thermal neutron detector
Three-dimensional boron particle loaded thermal neutron detectors utilize neutron sensitive conversion materials in the form of nano-powders and micro-sized particles, as opposed to thin films, suspensions, paraffin, etc. More specifically, methods to infiltrate, intersperse and embed the neutron nano-powders to form two-dimensional and/or three-dimensional charge sensitive platforms are specified. The use of nano-powders enables conformal contact with the entire charge-collecting structure regardless of its shape or configuration.
US08829456B2 Radiation imaging apparatus, radiation imaging system, and method for manufacturing radiation imaging apparatus
A radiation imaging apparatus includes a substrate, at least one imaging element, a scintillator, a first heat peelable adhesive member which fixes the substrate to the imaging element, and a second heat peelable adhesive member which fixes the imaging element to the scintillator. An adhesive strength of the first heat peelable member is decreased by heat. A temperature of the first heat peelable adhesive member at which the adhesive strength is decreased is substantially equal to a temperature at which second heat peelable adhesive member fixes the imaging element to the scintillator. A heat transfer quantity per unit time of the substrate is different from that of the scintillator.
US08829454B2 Compact sensor module
A compact sensor module and methods for forming the same are disclosed herein. In some embodiments, a sensor die is mounted on a sensor substrate. A processor die can be mounted on a flexible processor substrate. In some arrangements, a thermally insulating stiffener can be disposed between the sensor substrate and the flexible processor substrate. At least one end portion of the flexible processor substrate can be bent around an edge of the stiffener to electrically couple to the sensor substrate.
US08829445B1 Hot wall scintillator fabrication of strontium halide, calcium halide, cerium halide, and cesium barium halide scintillators
Strontium halide scintillators, calcium halide scintillators, cerium halide scintillators, cesium barium halide scintillators, and related devices and methods are provided.
US08829443B2 Neutron and gamma-ray detection system
The present invention is a radially symmetric imaging detector that measures an incident neutron's or gamma-ray's energy and identifies its source on an event-by-event basis.
US08829442B2 Non-contact measurement of the dopant content of semiconductor layers
A system and method of non-contact measurement of the dopant content of semiconductor material by reflecting infrared (IR) radiation off of the material and splitting the radiation into two beams, passing each beam through pass band filters of differing wavelength ranges, comparing the level of energy passed through each filter and calculating the dopant content by referencing a correlation curve made up of known wafer dopant content for that system.
US08829431B2 Nanomanipulation coupled nanospray mass spectrometry (NMS)
A coupled nanomanipulation and nanospray mass spectrometry (NMS) system for single cell, single organelle, and ultra-trace molecular analysis is disclosed herein. The system primarily comprises a bio-workstation coupled to a NMS. The bio-workstation primarily comprises of a nanomanipulator stage with a plurality of nano-positioners attached to a cabinet with a piezo voltage source and a pressure injector. The present invention further describes a fingerprint lift method that when coupled with the system disclosed herein can be used for retrieval and analysis of trace amounts of drug and explosive residues. The system described herein has been used in the areas of trace and document analysis within the forensic field, trace fiber analysis, and electrostatic lifts for illicit drugs, as well as document and painting analysis.
US08829427B2 Charged particle spectrum analysis apparatus
A charged particle spectrum analysis apparatus comprising an electric field generator arranged to subject charged particles to a time-varying electric field, a detector to record charged particle time spectrum data of charged particles which have passed through the electric field, the detector comprising a position-sensitive detection portion, and the time-varying electric field arranged to be activated in synchrony with activation of detector, and the time-varying electric field arranged to subject a predetermined region of said detection portion to consecutive charged particle deflection cycles.
US08829415B2 Correlation confocal microscope
A correlation confocal microscope uses correlated photon pairs to improve resolution. It employs a source of a light beam converging to a point location on a sample, and an objective that gathers light from the point location and generates an image beam. A modulator applies a spatial pattern of modulation to the source light beam to define spatially correlated photons whose spatial correlations are preserved in modulated light gathered from the sample. A filter applies a modulation-selective filter function to the image light beam to generate a filtered light beam of like-modulated photons. A coincidence detector detects temporally coincident photon pairs in the filtered light beam, generating a pulse output that indicates the magnitude of a light-detectable property (such as transmissivity or reflectivity) of the sample at the point location. The modulator may apply phase modulation and the filter may be a phase-sensitive component such as an interferometer.
US08829413B2 Switchable reflective layer for windows and other optical elements
Reflective systems include a reflective element secured to an optical element. The reflective element is a switchable reflective layer that is switched by an alignment mechanism electrically coupled to a controller that sends data instructing the alignment mechanism that various light conditions exist.
US08829412B1 Remote monitoring of glow tube light output including a logic unit maintaining an indication of a monitored glow tube discharge while no discharge is detected
A glow tube output detection device that monitors for light emissions from a legacy glow tube so that the status of the glow tube may be fed to other systems such as supervisory control and data acquisition (SCADA) systems for electric power distribution networks. The monitored legacy glow tubes are connected to the various phases of electrical buses to indicate the presence of high voltage including back feeds.
US08829411B2 Solid-state imaging device
To reduce the number of capacitative elements on a chip to decrease a surface ratio of a peripheral circuit section including capacitative elements to a pixel array section, while maintaining noise resistance of signals high. There is provided a solid-state imaging device including: a plurality of unit pixels; a plurality of transfer lines; and a plurality of switches, wherein each of the unit pixels includes a photoelectric conversion element and a charge voltage conversion element, and outputs respectively a noise voltage generated when the charge voltage conversion element is reset and a signal-noise sum voltage obtained by adding to the noise voltage a signal voltage generated by photoelectric conversion to the other transfer lines that are connected via the switches to the transfer line to which the pixel group including the unit pixel belongs.
US08829402B2 Autofocusing device for microscopes and suitable autofocus aperture stops
The present invention relates to an autofocus aperture stop (5, 6) in a triangulating autofocusing device (21) for a microscope (40), wherein the autofocus aperture stop (5, 6) comprises at least one diaphragm opening (3, 4) with which a measuring beam pencil (34) used for the autofocusing and running in the direction of the optical axis (18) of the autofocusing device (21) can be limited in its cross section, wherein the diaphragm opening (3, 4) of the autofocus aperture stop (5, 6) is arranged in a decentred position at a spacing from the optical axis (18) of the autofocusing device (21), wherein a decentred autofocus measuring beam (36) can be generated by the diaphragm opening (3, 4) in one half of the cross section (17) of the measuring beam pencil (34).
US08829394B2 Medical needle removal and storage device
An apparatus for removing a needle from a needle holder, including a grasping unit for selectively grasping the needle; a receiving unit for receiving the needle holder, displaceably disposed relative to the grasping unit; a biasing member biasing the receiving unit in a first direction; and separating means for separating the entire needle from the needle holder. Preferably, the needle is heated to melt, soften, or otherwise weaken a material and/or adhesive connecting the needle with the needle holder. Preferably the heating is electrical heating, including completing an electrical circuit through the needle and passing current through the needle, and/or passing current through a heating element.
US08829392B2 Apparatus and method of improving beam shaping and beam homogenization
The present invention generally relates to an optical system that is able to reliably deliver a uniform amount of energy across an anneal region contained on a surface of a substrate. The optical system is adapted to deliver, or project, a uniform amount of energy having a desired two-dimensional shape on a desired region on the surface of the substrate. Typically, the anneal regions may be square or rectangular in shape. Generally, the optical system and methods of the present invention are used to preferentially anneal one or more regions found within the anneal regions by delivering enough energy to cause the one or more regions to re-melt and solidify.
US08829391B2 Laser processing method
A laser processing method of processing an object to be processed. The object to be processed has a modified portion and a non-modified portion. A modified layer forming step forms a modified layer of the object to be processed by scanning an inner portion of the object with a condensing point of first laser light. The modified layer (i) has a processing speed with second laser light that is lower than a processing speed of a non-modified portion and (ii) is formed below the non-modified portion. A removing step removes a portion of the non-modified portion. The portion of the non-modified portion ranges from a surface of the object to the modified layer. The removing step includes irradiating the portion of the non-modified portion with the second laser light.
US08829388B2 Method for contactless laser welding and apparatus
A method for contactless laser welding of a plurality of sheets of material stacked upon one another includes simultaneously delivering a laser beam and a stream of fluid through a laser head and further through an end cap which is removably mounted to the laser head. The end cap is configured with a stationary cylinder, which is coupled to the laser head, and a piston movable relative the cylinder. The piston moves in response to a pressure differential generated by the fluid in chambers above and below the piston. Once the pressure equilibrium is reached between the chambers, the pressure in the chamber below the piston is sufficient to reliably press the sheets of material against one another during a laser welding operation.
US08829387B2 Plasma processing apparatus having hollow electrode on periphery and plasma control method
There is provided a plasma processing apparatus capable of performing a uniform plasma process on a substrate by controlling a plasma distribution within a chamber to a desired state and uniformizing a plasma density within the chamber. The plasma processing apparatus includes an evacuable chamber 11 for performing a plasma process on a wafer W; a susceptor 12 for mounting the wafer W within the chamber 11; an upper electrode plate 30a facing the susceptor 12 with a processing space S; a high frequency power supply 20 for applying a high frequency power to one of the susceptor 12 and the upper electrode plate 30a to generate plasma within the processing space S; and an inner wall member facing the processing space S. Hollow cathodes 31a to 31c are formed at the upper electrode plate 30a connected with a DC power supply 37 for adjusting a sheath voltage.
US08829383B2 Wire electric discharge machine and wire electric discharge machining method
Based on a discharging gap value and machining allowance value stored in a corner-control-information storing means 20, a speed-ratio calculating means 23 being a machining-volume calculating means calculates machining volumes of a straight line portion and a corner portion to calculate a volume ratio therebetween.A corner-portion-speed calculating means 24 calculates a machining feed speed at the corner portion based on a volume ratio calculated by the speed-ratio calculating means 23, and then outputs to a servo amplifier 8 on the basis of the length of a pre-corner section outputted by a pre-corner-section calculating means 21 and the length of a post-corner section outputted by a post-corner-section calculating means 22, instructions about machining feed speeds from entering the pre-corner section till getting out of the post-corner section.
US08829382B2 Machine tool
A machine tool includes a bed, an electric-discharge machining unit that is mounted on the bed and constitutes a machine main body, a frame that has a mounting surface and is fixed to a side surface of the bed, machining fluid tanks that are used when the electric-discharge machining unit is operated to performs a machining work, and are set to the first state where these tanks are above the frame and separated from the mounting surface so as to be self-supported, or to the second state where these tanks are mounted on the mounting surface, and a transport fixing tool that is removed when the machining fluid tanks are set to the first state, and is attached when the machine main body and the machining fluid tanks are set to the second state.
US08829378B2 Control device comprising a moveable upper panel and arms for actuating a switch
A device for controlling an electronic apparatus, comprising: a generally flat upper panel; a lower armature of a support with respect to which armature the upper panel can move in a generally vertically downward movement; a switch; and at least two arms for actuating the switch, each arm comprising a first end which bears on the upper panel, a second end which bears on the switch, and an intermediate portion which bears on the armature, in which the arms cooperate with the upper panel and the armature in order to keep the upper panel parallel to a horizontal plane during its vertical movement with respect to the armature.
US08829376B2 Control panel for fitness equipment
A control panel for fitness equipment has a board, a screen, a rotary knob switch and a wire. The board has an inner surface and an outer surface. The screen is securely mounted on the outer surface of the board. The rotary knob switch is rotatably mounted through the board beside the screen and has a held end and a wire end opposite to the held end. The wire has an end that is securely mounted at the wire end of the rotary knob switch. Accordingly, the rotary knob switch can be directly and conveniently turned at the board.
US08829375B2 Lighted push button
A lighted pushbutton assembly includes a carrier including an outer wall that defines an inner space and is continuous along a top surface of the carrier. A rib guide is formed as part of the outer wall and defines an opening extending through a bottom surface of the outer wall and including a first portion extending in a first direction and a second portion extending in a second direction that is non-parallel to the first direction. A pushbutton is shaped to fit substantially within the inner space and a rib is formed as part of the pushbutton and includes a first guide that extends in the first direction and the second guide that extends in the second direction. The first guide is engaged with the first portion and the second guide is engaged with the second portion to guide reciprocating movement of the pushbutton with respect to the carrier.
US08829372B1 Air break electrical switch having a blade open/closed indicator
An air break electrical switch includes a first electrical terminal and a second electrical terminal supported apart from the first electrical terminal. The switch further includes a blade support configured to be electrically insulatively supported apart from the second electrical terminal. A blade is pivotally supported by the blade support, and the blade is pivotable from an open contact position to a closed contact position and vice versa. The switch further includes an indicator connected to the blade. At least a portion of the indicator is fixed to the blade so as to rotate with the blade and display a first color when the blade is in the open contact position and obscure the first color when the blade is in the closed contact position.
US08829370B2 Operating device of switch
An operating device includes click feeling generation members provided on a base plate, a pusher that elastically deforms the click feeling generation members, a pressure receiving surface provided on the pusher, a shaft that is operable to tilt to directions with respect to a standing state, and an operating part provided on the shaft and engaged with the deepest part of the pressure receiving surface. The operating part is disengaged from the deepest part of the pressure receiving surface when the shaft is operated to tilt to any of the directions. When the operating part is disengaged from the deepest part of the pressure receiving surface, the operating part of the shaft pushes the pressure receiving surface to move the pusher toward the base plate, so that all of the click feeling generation members are elastically deformed from the first states to the second states.
US08829355B2 Multilayer printed wiring board
A multilayer printed wiring board includes a core base material having a penetrating portion, a low-thermal-expansion substrate accommodated inside the penetrating portion of the core base material and having a first surface for mounting a semiconductor element and a second surface on the opposite side of the first surface, a first through-hole conductor provided inside the low-thermal-expansion substrate and provided for electrical connection between the first surface and the second surface of the low-thermal-expansion substrate, a filler filled in a gap between the low-thermal-expansion substrate and an inner wall of the core base material, and a wiring layer formed on at least one of the first surface and the second surface of the low-thermal-expansion substrate and having a resin insulation layer and a conductive layer. The wiring layer has a via conductor connecting the first through-hole conductor and the conductive layer.
US08829353B2 Cable-support arrangement
Cable-support arrangement with cable-supporting units 3, 5, which can be arranged above one another. The cable-supporting units can be aligned to different rotation positions with reference to axis A. The cable-support arrangement 1, comprises at least one cable-supporting unit consisting of a base part 3B, 5B and at least one cable support 3K1, 3K2, 5K1, permanently attached to this base part, a stand part 2, optional spacers 4, and a securing pin 6, common to the base part, the stand part and the spacer. These superimposed units (stand part, base part and spacer) are connected by a detachable and lockable plug-in connector 7. In their unlocked position, the superimposed units can be rotated in relation to one another around the axis A and positioned in a selectable axis-related rotation locking position.
US08829346B2 Bus bar retention snaps for a base pan assembly
A retention snap arrangement for attaching a bus bar to a base pan. The arrangement includes first and second walls for forming a channel for receiving the bus bar. The arrangement further includes a first moveable arm having a first snap element that includes a first bottom surface and a second moveable arm having a second snap element that includes a second bottom surface. The first and second arms extend from the first and second walls, respectively, each forming a cantilever. In a first position, the first and second bottom surfaces are located above an edge of the bus bar for inhibiting movement of the bus bar. In a second position, the first and second bottom surfaces are not located above the edge of the bus bar to enable insertion of the bus bar in the channel.
US08829342B2 Back contact buffer layer for thin-film solar cells
A photovoltaic cell structure is disclosed that includes a buffer/passivation layer at a CdTe/Back contact interface. The buffer/passivation layer is formed from the same material that forms the n-type semiconductor active layer. In one embodiment, the buffer layer and the n-type semiconductor active layer are formed from cadmium sulfide (CdS). A method of forming a photovoltaic cell includes the step of forming the semiconductor active layers and the buffer/passivation layer within the same deposition chamber and using the same material source.
US08829341B2 Solar cell and method for manufacturing same
There is provided a solar cell comprising: a substrate; a rear electrode layer disposed on the substrate; a light absorption layer disposed on the rear electrode layer; and a window layer disposed on the light absorption layer, wherein the window layer includes a plurality of conductive particles. The conductive particles improve the optical and electrical properties of the window layer.
US08829338B2 Bridging solar cell and solar energy system
A bridging solar cell includes a substrate, first, second, and third sets of bus bar electrodes, a first welding member, a first insulation film, and a second welding member. The first set of bus bar electrodes is disposed on the front surface of the substrate along a first direction. The second set of bus bar electrodes is disposed on the back surface of the substrate along a second direction and electrically connected to the first set of bus bar electrodes. The first welding member is electrically connected to the second set of bus bar electrodes. The first insulation film is disposed on the back surface. The third set of bus bar electrodes is disposed on the first insulation film along the second direction. The second welding member is disposed on the first insulation film and electrically connected to the third set of bus bar electrodes.
US08829337B1 Photovoltaic cells based on nano or micro-scale structures
Novel structures of photovoltaic cells (also treated as solar cells) are provided. The cells are based on nanometer-scaled wires, tubes, and/or rods, which are made of electronic materials covering semiconductors, insulators or metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells will have enormous applications in space, commercial, residential, and industrial applications.
US08829335B2 Thermally resistant spacers for a submicron gap thermo-photo-voltaic device and method
A micron gap thermo-photo-voltaic device including a photovoltaic substrate, a heat source substrate, and a plurality of spacers separating the photovoltaic substrate from the heat source substrate by a submicron gap. Each spacer includes an elongated thin-walled structure disposed in a well formed in the heat source substrate and having a top surface less than a micron above the heat source substrate. Also disclosed are methods of making the spacers.
US08829334B2 Thermo-photovoltaic power generator for efficiently converting thermal energy into electric energy
A thermo-photovoltaic power generator for efficiently converting thermal energy into electric energy including a selective thermal emitter for receiving thermal energy and emitting thermal radiation with black body emissivity over a range of wavelengths, low-bandgap photovoltaic cells responsive to thermal radiation at wavelengths within a particular band of said range of wavelengths and operative to convert such thermal radiation to electric energy, and a band pass filter disposed between the thermal emitter and the photovoltaic cells for transmitting thermal radiation from the emitter at wavelengths within the particular band to the photovoltaic cells, and for reflecting thermal radiation from the emitter at wavelengths outside the particular band back to the emitter.
US08829331B2 Apparatus pertaining to the co-generation conversion of light into electricity
An apparatus comprising a high-temperature photovoltaic transducer that is disposed between a source of light and another modality of solar energy conversion such that both the high-temperature photovoltaic transducer and the another modality of solar energy conversion generate electricity using a same source of light.
US08829329B2 Solar cell and battery 3D integration
An integrated photovoltaic cell and battery device, a method of manufacturing the same and a photovoltaic power system incorporating the integrated photovoltaic cell and battery device. The integrated photovoltaic cell and battery device includes a photovoltaic cell, a battery, and interconnects providing three-dimensional integration of the photovoltaic cell and the battery into an integrated device for capturing and storing solar energy. Also provided is a design structure readable by a machine to simulate, design, or manufacture the above integrated photovoltaic cell and battery device.
US08829326B2 Thermoelectric power generation device
The invention relates to a thermoelectric-based power generation system designed to be clamped onto the outer wall of a steam pipe or other heating pipe. The system can include a number of assemblies mounted on the sides of a pipe. Each assembly can include a hot block, an array of thermoelectric modules, and a cold block system. The hot block can create a thermal channel to the hot plates of the modules. The cold block can include a heat pipe onto which fins are attached.
US08829325B2 System and method for using pre-equilibrium ballistic charge carrier refraction
A method and system for using a method of pre-equilibrium ballistic charge carrier refraction comprises fabricating one or more solid-state electric generators. The solid-state electric generators include one or more of a chemically energized solid-state electric generator and a thermionic solid-state electric generator. A first material having a first charge carrier effective mass is used in a solid-state junction. A second material having a second charge carrier effective mass greater than the first charge carrier effective mass is used in the solid-state junction. A charge carrier effective mass ratio between the second effective mass and the first effective mass is greater than or equal to two.
US08829324B2 Anisotropic ambipolar transverse thermoelectrics and methods for manufacturing the same
A transverse thermoelectric device includes a superlattice body, electrically conductive first and second contacts, and first and second thermal contacts. The superlattice body extends between opposite first and second ends along a first direction and between opposite first and second sides along a different, second direction. The superlattice body includes alternating first and second layers of crystalline materials oriented at an oblique angle relative to the first direction. The electrically conductive first contact is coupled with the first end of the superlattice and the electrically conductive second contact is coupled with the second end of the superlattice. The first thermal contact is thermally coupled to the first side of the superlattice and the second thermal contact is thermally coupled to the second side of the superlattice. A Seebeck tensor of the superlattice body is ambipolar.
US08829322B2 Metrical grid inference for free rhythm musical input
Computer-based methods infer a metrical grid from music that has been input without a predetermined time signature or tempo, enabling such free rhythm input to be annotated with the inferred grid, and stored and transcribed as a musical score. The methods use Bayesian modeling techniques, in which an optimal metrical grid is inferred by identifying the metrical grid that best explains the given sequence of notes by maximizing the posterior probability that it represents the note sequence. Prior musical input from a given user as well as explicit information about the musical style of the input may be used to improve the accuracy of the transcription.
US08829310B2 Plants and seeds of hybrid corn variety CH139811
According to the invention, there is provided seed and plants of the hybrid corn variety designated CH139811. The invention thus relates to the plants, seeds and tissue cultures of the variety CH139811, and to methods for producing a corn plant produced by crossing a corn plant of variety CH139811 with itself or with another corn plant, such as a plant of another variety. The invention further relates to genetic complements of plants of variety CH139811.
US08829308B2 Plants and seeds of hybrid corn variety CH250155
According to the invention, there is provided seed and plants of the hybrid corn variety designated CH250155. The invention thus relates to the plants, seeds and tissue cultures of the variety CH250155, and to methods for producing a corn plant produced by crossing a corn plant of variety CH250155 with itself or with another corn plant, such as a plant of another variety. The invention further relates to genetic complements of plants of variety CH250155.
US08829307B1 Maize hybrid X18C101
A novel maize variety designated X18C101 and seed, plants and plant parts thereof, produced by crossing Pioneer Hi-Bred International, Inc. proprietary inbred maize varieties. Methods for producing a maize plant that comprises crossing hybrid maize variety X18C101 with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into X18C101 through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. This invention relates to the maize variety X18C101, the seed, the plant produced from the seed, and variants, mutants, and minor modifications of maize variety X18C101. This invention further relates to methods for producing maize varieties derived from maize variety X18C101.
US08829305B1 Maize inbred PH1KGA
A novel maize variety designated PH1KGA and seed, plants and plant parts thereof. Methods for producing a maize plant that comprise crossing maize variety PH1KGA with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into PH1KGA through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. Hybrid maize seed, plant or plant part produced by crossing the variety PH1KGA or a locus conversion of PH1KGA with another maize variety.
US08829298B2 Plants and seeds of hybrid corn variety CH315525
According to the invention, there is provided seed and plants of the hybrid corn variety designated CH315525. The invention thus relates to the plants, seeds and tissue cultures of the variety CH315525, and to methods for producing a corn plant produced by crossing a corn plant of variety CH315525 with itself or with another corn plant, such as a plant of another variety. The invention further relates to genetic complements of plants of variety CH315525.
US08829297B2 Plants and seeds of hybrid corn variety CH154632
According to the invention, there is provided seed and plants of the hybrid corn variety designated CH154632. The invention thus relates to the plants, seeds and tissue cultures of the variety CH154632, and to methods for producing a corn plant produced by crossing a corn plant of variety CH154632 with itself or with another corn plant, such as a plant of another variety. The invention further relates to genetic complements of plants of variety CH154632.
US08829293B1 Soybean cultivar 22170671
A soybean cultivar designated 22170671 is disclosed. The invention relates to the seeds of soybean cultivar 22170671, to the plants of soybean cultivar 22170671, to the plant parts of soybean cultivar 22170671, and to methods for producing progeny of soybean cultivar 22170671. The invention also relates to methods for producing a soybean plant containing in its genetic material one or more transgenes and to the transgenic soybean plants and plant parts produced by those methods. The invention also relates to soybean cultivars or breeding cultivars, and plant parts derived from soybean cultivar 22170671. The invention also relates to methods for producing other soybean cultivars, lines, or plant parts derived from soybean cultivar 22170671, and to the soybean plants, varieties, and their parts derived from use of those methods. The invention further relates to hybrid soybean seeds, plants, and plant parts produced by crossing cultivar 22170671 with another soybean cultivar.
US08829292B1 Soybean cultivar 27471761
A soybean cultivar designated 27471761 is disclosed. The invention relates to the seeds of soybean cultivar 27471761, to the plants of soybean cultivar 27471761, to the plant parts of soybean cultivar 27471761, and to methods for producing progeny of soybean cultivar 27471761. The invention also relates to methods for producing a soybean plant containing in its genetic material one or more transgenes and to the transgenic soybean plants and plant parts produced by those methods. The invention also relates to soybean cultivars or breeding cultivars, and plant parts derived from soybean cultivar 27471761. The invention also relates to methods for producing other soybean cultivars, lines, or plant parts derived from soybean cultivar 27471761, and to the soybean plants, varieties, and their parts derived from use of those methods. The invention further relates to hybrid soybean seeds, plants, and plant parts produced by crossing cultivar 27471761 with another soybean cultivar.
US08829291B1 Soybean cultivar 21150231
A soybean cultivar designated 21150231 is disclosed. The invention relates to the seeds of soybean cultivar 21150231, to the plants of soybean cultivar 21150231, to the plant parts of soybean cultivar 21150231, and to methods for producing progeny of soybean cultivar 21150231. The invention also relates to methods for producing a soybean plant containing in its genetic material one or more transgenes and to the transgenic soybean plants and plant parts produced by those methods. The invention also relates to soybean cultivars or breeding cultivars, and plant parts derived from soybean cultivar 21150231. The invention also relates to methods for producing other soybean cultivars, lines, or plant parts derived from soybean cultivar 21150231, and to the soybean plants, varieties, and their parts derived from use of those methods. The invention further relates to hybrid soybean seeds, plants, and plant parts produced by crossing cultivar 21150231 with another soybean cultivar.
US08829284B2 Broccoli hybrid RX 05900097 and parents thereof
The invention provides seed and plants of broccoli hybrid RX 05900097 and the parent lines thereof. The invention thus relates to the plants, seeds and tissue cultures of broccoli hybrid RX 05900097 and the parent lines thereof, and to methods for producing a broccoli plant produced by crossing such plants with themselves or with another broccoli plant, such as a plant of another genotype. The invention further relates to seeds and plants produced by such crossing. The invention further relates to parts of such plants.
US08829283B1 Canola line NS5870MC
A novel canola variety designated NS5870MC and seed, plants and plant parts thereof. Methods for producing a canola plant that comprise crossing canola variety NS5870MC with another canola plant. Methods for producing a canola plant containing in its genetic material one or more traits introgressed into NS5870MC through backcross conversion and/or transformation, and to the canola seed, plant and plant part produced thereby. Hybrid canola seed, plant or plant part produced by crossing the canola variety NS5870MC or a locus conversion of NS5870MC with another canola variety.
US08829282B2 Plants and seeds of spring canola variety SCV425044
A canola line designated SCV425044 is disclosed. The invention relates to the seeds of canola line SCV425044, to the plants of canola SCV425044, to plant parts of canola line SCV425044 and to methods for producing a canola plant produced by crossing canola line SCV425044 with itself or with another canola line. The invention also relates to methods for producing a canola plant containing in its genetic material one or more transgenes and to the transgenic canola plants and plant parts produced by those methods. This invention also relates to canola lines or breeding lines and plant parts derived from canola line SCV425044, to methods for producing other canola lines, lines or plant parts derived from canola line SCV425044 and to the canola plants, varieties, and their parts derived from use of those methods. The invention further relates to hybrid canola seeds, plants and plant parts produced by crossing the line SCV425044 with another canola line.
US08829280B2 Lettuce that is resistant to the lettuce aphid Nasonovia ribisnigri biotype 1
The present invention relates to lettuce plants and heads that are resistant to Nasonovia ribisnigri biotype 1 (also called herein Nr:1) as well as to progeny of the plants and propagation material for producing the plants. The invention further relates to a source of the resistance for use in breeding.
US08829279B2 Family of pesticidal proteins and methods for their use
Compositions and methods for conferring pesticidal activity to bacteria, plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for pesticidal polypeptides are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants and bacteria. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated pesticidal nucleic acid molecules are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in SEQ ID NO:2, 4, 6, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37 or 61, the nucleotide sequence set forth in SEQ ID NO:1, 3, 5, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, or 60, or the nucleotide sequence deposited in a bacterial host as Accession No. NRRL B-30961, B-30955, B-30956, B-30957, B-30958, B-30942, B-30939, B-30941, B-50047, B-30959, B-30960, B-30943, or B-50048, as well as variants and fragments thereof.
US08829278B1 Snap pea variety SL3134
The present invention provides novel snap pea cultivar SL3134 and plant parts, seed, and tissue culture therefrom. The invention also provides methods for producing a pea plant by crossing the pea plants of the invention with themselves or another pea plant. The invention also provides pea plants produced from such a crossing as well as plant parts, seed, and tissue culture therefrom.
US08829277B2 Manipulation of plant senescence using modified promoters
The present invention relates to methods of manipulating senescence in plants. The invention also relates to vectors useful in such methods, transformed plants with modified senescence characteristics and plant cells, seeds and other parts of such plants.
US08829272B2 Specific expression using transcriptional control sequences in plants
The present invention relates generally to methods and transcriptional control sequences suitable for effecting expression of a nucleotide sequence of interest in a plant. More particularly, the present invention relates to methods and transcriptional control sequences suitable for directing specific or preferential expression of a nucleotide sequence of interest in a plant seed. Of particular interest as a transcriptional control sequence in this invention is the promoter PR602 (SEQ ID NO: 1) found in the 5′-untranslated region of the rice END1-like gene and isolated from a rice panicle library.
US08829269B1 Maize variety hybrid X90A809
A novel maize variety designated X90A809 and seed, plants and plant parts thereof, produced by crossing Pioneer Hi-Bred International, Inc. proprietary inbred maize varieties. Methods for producing a maize plant that comprises crossing hybrid maize variety X90A809 with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into X90A809 through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. This invention relates to the maize variety X90A809, the seed, the plant produced from the seed, and variants, mutants, and minor modifications of maize variety X90A809. This invention further relates to methods for producing maize varieties derived from maize variety X90A809.
US08829266B2 Genetic loci associated with Fusarium solani tolerance in soybean
The invention relates to methods and compositions for identifying soybean plants that are tolerant, have improved tolerance or are susceptible to Fusarium solani infection (the causative agent of sudden death syndrome or SDS). The methods use molecular genetic markers to identify, select and/or construct disease-tolerant plants or identify and counterselect disease-susceptible plants. Soybean plants that display tolerance or improved tolerance to Fusarium solani infection that are generated by the methods of the invention are also a feature of the invention.
US08829260B2 Process and catalyst for cracking of ethers and alcohols
A process for the production of olefins from at least one of an alcohol and ether, the process including: contacting at least one alcohol or ether with a hydrofluoric acid-treated amorphous synthetic alumina-silica catalyst under decomposition conditions to produce an olefin. Also disclosed is a process for the production of isobutylene from methyl tertiary butyl ether, the process including: feeding methyl tertiary butyl ether (MTBE) to a reactor having at least one reaction zone containing a hydrofluoric acid-treated amorphous synthetic alumina-silica catalyst; contacting the MTBE with the hydrofluoric acid-treated amorphous synthetic alumina-silica catalyst under decomposition conditions to produce a reactor effluent comprising isobutylene, unreacted MTBE, heavies, and methanol; feeding the reactor effluent to a first distillation column; separating the isobutylene from the unreacted MTBE, heavies, and the methanol in the first distillation column to recover a first bottoms fraction comprising heavies, unreacted MTBE, and methanol and an isobutylene-rich overheads fraction.
US08829259B2 Integration of a methanol-to-olefin reaction system with a hydrocarbon pyrolysis system
An integrated MTO synthesis and hydrocarbon pyrolysis system is described in which the MTO system and its complementary olefin cracking reactor are combined with a hydrocarbon pyrolysis reactor in a way that facilitates the flexible production of olefins and other petrochemical products, such as butene-1 and MTBE.
US08829255B1 (Z,Z,E)-1-chloro-6,10,12-pentadecatriene and method for preparing (Z,Z,E)-7,11,13-hexadecatrienal by using same
Provided are (Z,Z,E)-1-chloro-6,10,12-pentadecatriene that can be synthesized without an oxidation reaction and a method for preparing (Z,Z,E)-7,11,13-hexadecatrienal by using (Z,Z,E)-1-chloro-6,10,12-pentadecatriene while not using an oxidation reaction. More specifically, provided is a method for preparing (Z,Z,E)-7,11,13-hexadecatrienal including a step of reacting a Grignard reagent into which (Z,Z,E)-1-chloro-6,10,12-pentadecatriene is converted with ethyl orthoformate to obtain (Z,Z,E)-1,1-diethoxy-7,11,13-hexadecatriene, and a step of treating the (Z,Z,E)-1,1-diethoxy-7,11,13-hexadecatriene with an acid to obtain (Z,Z,E)-7,11,13-hexadecatrienal.
US08829254B2 Process for making 1,3,3,3-tetrafluoropropene
The present invention describes a process for making CF3CH═CHF (HFO-1234ze). The process involves the addition of carbon tetrachloride (CCl4) to 1,2-dichloroethylene to form CCl3CHClCHCl2. The compound CCl3CHClCHCl2 thus can then either be treated with HF to produce CF3CHClCHClF as the main product, or it can be converted to CCl2═CHCHCl2 (1230za) by dechlorination. CCl2═CHCHCl2 can be treated with HF such that the main product obtained is CF3CHClCHClF. CF3CH═CHCl may be produced as a by-product, but upon treatment with HF, it affords the compound CF3CHClCHClF. The desired compound, CF3CH═CHF (HFO-1234ze), is obtained as a trans/cis mixture by dehydrochlorination of CF3CH2CHClF or by dechlorination of CF3CHClCHClF.
US08829253B2 Integrated process for producing ethanol from methanol
Processes and systems for forming ethanol from methanol. The process involves carbonylating the methanol to form acetic acid and hydrogenating the acetic acid to form ethanol. In a first aspect, at least some hydrogen for the hydrogenating step is derived from a tail gas stream formed in the carbonylation step. In a second aspect, at least some carbon monoxide for the carbonylation step is derived from a vapor stream in the hydrogenation system. In a third aspect, a syngas stream is separated to form a hydrogen stream and a carbon monoxide stream, and the hydrogen stream is methanated to remove residual carbon monoxide prior to being introduced into the hydrogenation system.
US08829252B2 System for alcohol production
The invention concerns a system and process for alcohol production.
US08829246B2 Process for manufacturing acrolein from glycerol
The subject of the present invention is a process for preparing acrolein by dehydration of glycerol in the presence of a catalyst system based on iron phosphorous oxide containing, in addition, one or more elements chosen from alkali metals, alkaline-earth metals, AI, Si, B, Co, Cr, Ni, V, Zn, Zr, Sn, Sb, Ag, Cu, Nb, Mo, Y, Mn, Pt, Rh and the rare earths La, Ce, Sm. The process is preferably carried out in the gas phase in the presence of oxygen starting from aqueous solutions of glycerol. The process according to the invention makes it possible of obtain high acrolein selectivities.
US08829237B2 Production of carboxylic acid and salt co-products
This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C2-C12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.
US08829236B2 Process for the preparation of a halogenoacetyl fluoride and its derivatives
The present invention relates to a method for preparing a halogenoacetyl fluoride and the derivatives thereof. The inventive method for preparing a halogenoacetyl fluoride acid is characterized in that said method includes: a step of preparing a halogenoacetyl halide by photo-oxidation of a halogenoethylene compound in conditions such that the transformation rate of the halogenoethylene compound into halogenoacetyl halide is no higher than 80%, producing a reaction mixture essentially including halogenoacetyl halide and the excess halogenoethylene compound; a step of partial fluorination of the mixture obtained by reacting the latter with hydrofluoric acid suitable for obtaining a mixture of halogenoacetyl fluoride and the excess halogenoethylene compound; a step of separating the halogenoacetyl fluoride and the excess halogenoethylene compound. The invention can be used, specifically, for preparing the trichloroacetyl fluoride used as an intermediate species in the production of trifluoroacetic acid.
US08829231B2 Preparation of 4-acetoxy-2-methylbutanal by catalytic carbon carbon double bond hydrogenation
The present invention relates to a new way for the production of 4-acetoxy-2-methyl-butanal, wherein a non-acidic catalytic system is used.
US08829227B2 Plasticiser esters
Esters produced by the catalyzed reaction of alcohols and acids or anhydrides are neutralized by treatment with an aqueous alkaline alkali metal salt solution in an amount that provides less than a stoichiometric amount of alkali metal salt in relation to the acidity of the crude ester and the amount of water present during the treatment is from 0.8 to 1.4 wt % of water based on the weight of crude ester. When using titanium as the esterification catalyst, the ester resulting from this process contains less than 0.01 ppm by weight of titanium residue, so that it is storage stable when stored in the presence of an antioxidant.
US08829226B2 Lacosamide intermediate compound, preparation method thereof and use thereof
A new compound is provided, which is used for preparing lacosamide. A novel method for preparing lacosamide is also provided. During the reaction, iodomethane and silver oxide that are cost expensive are not used, nor a Pd-c catalyst is used, so the production cost is low, the raw materials and accessory materials are cheap and easily available, and the process is simple, so that industrial production is easy to realize; and moreover, the yield is high, and good economic efficiency can be achieved.
US08829217B2 Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors formed by such methods
Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula ½{L2N(μ-X)2M′X2}2, and reacting MER with the intermediate products to form SSPs of the formula L2N(μ-ER)2M′(ER)2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M′ is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE1R1E1H and MER with one or more substances having the empirical formula L2N(μ-ER)2M′(ER)2 or L2N(μ-X)2M′(X)2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.
US08829216B2 Hydroxy estolides, poly-capped estolides, and methods of making the same
Provided herein are poly-capped estolides, including those of the Formula IV in which n is an integer equal to or greater than 0; m is an integer equal to or greater than 2; R1 is selected from optionally substituted alkyl that is saturated or unsaturated, and branched or unbranched; R2 is selected from hydrogen and optionally substituted alkyl that is saturated or unsaturated, and branched or unbranched; and R3 and R4, independently for each occurrence, are selected from optionally substituted alkyl that is saturated or unsaturated, and branched or unbranched. Hydroxy estolides are also described herein, which may be suitable end products, or serve as intermediates to provide poly-capped estolides. Also provided are compositions containing poly-capped estolides and methods of making both said poly-capped estolides and compositions thereof.
US08829215B2 Krill oil process
The present invention relates to a process for preparing compositions of high concentrations of omega-3 fatty acids from krill. Furthermore, the invention relates to a composition comprising high concentrations of omega-3 fatty acids, and a lipid fraction from krill comprising high amounts of fatty acids with chain length C14 and C16.
US08829213B2 Liver X receptor agonists
Compounds of formula (I): in which R1, R2, R3, R3′, R4, R5, R6, R6′, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, A, D, X, Y, and Z are defined in the specification. Also disclosed is a method of using one of the compounds to lower the blood cholesterol level and treat cancer, atherosclerosis, diabetes, Alzheimer's disease, and corneal arcus.
US08829211B2 Direct conversion of olefin to olefin oxide by molecular oxygen
The present invention relates to a direct conversion of olefin to olefin oxide, which are important and versatile intermediates used in the production of a large variety of valuable consumer products such as polyurethane foams, polymers, alkylene glycol, cosmetics, food emulsifiers and as fumigants and insecticides. More specifically, the present invention provides a process for producing an olefin oxide which comprises reacting an olefin with oxygen in the presence of a halogen compound additive and a catalyst comprising copper, ruthenium or both thereof.
US08829208B2 Process for the preparation of darunavir and darunavir intermediates
The present invention relates to a process for the preparation of darunavir, a nonpeptide protease inhibitor (PI), useful for the treatment of HIV/AIDS patients harboring multidrug-resistant HIV-1 variants that do not respond to previously existing HAART regimens. The present invention further relates to processes for the stereo-directed preparation of darunavir intermediates, in particular (3R,3aS,6aR)-hexahydrofuro[2,3-b]furan-3-ol and to certain novel intermediates obtained by such processes.
US08829194B2 Crystalline forms of the sodium salt of (4-{4-[5-(6-trifluoromethyl-pyridin-3-ylamino)-pyridin-2-yl]-phenyl}-cyclohexyl)-acetic acid
The present invention relates to novel crystalline forms of (4-{4-[5-(6-Trifluoromethyl-pyridin-3-ylamino)-pyridin-2-yl]-phenyl}-cyclohexyl)-acetic acid, sodium and their use in the treatment or prevention of a condition or a disorder associated with DGAT1 activity in animals, particularly humans. It also relates to processes for making such novel crystalline forms.
US08829193B2 PIM kinase inhibitors and methods of their use
The present invention relates to new compounds of Formulas I and II, their tautomers, stereoisomers and polymorphs, and pharmaceutically acceptable salts, esters, metabolites or prodrugs thereof, compositions of the new compounds together with pharmaceutically acceptable carriers, and uses of the new compounds, either alone or in combination with at least one additional therapeutic agent, in the inhibition of Pim kinase activity and/or the prophylaxis or treatment of cancer.
US08829192B2 Stabilization of body-care and household products against degradation by uv radiation using merocyanine derivatives
Described is the use of specific merocyanine derivatives for protecting body-care and household products from photolytic and oxidative degradation. These compounds perform outstanding UV absorber properties.
US08829191B2 Processes for preparing heterocyclic compounds including trans-7-oxo-6-(sulphooxy)-1,6-diazabicyclo[3,2,1]octane-2-carboxamide and salts thereof
The present invention relates to compounds and processes for preparing compounds of Formula (I), including compounds such as trans-7-oxo-6-(sulphooxy)-1,6-diazabicyclo[3,2,1]octane-2-carboxamide and salts thereof (e.g., NXL-104).
US08829187B1 Chiral pyrrolidine core compounds en route to inhibitors of nitric oxide synthase
Diastereomeric pyrrolidine compounds and methods of preparation, as can be used en route to the preparation of a range of nitric oxide synthase inhibitors.
US08829185B2 Substituted 4-amino-pyrrolotriazine derivatives useful for treating hyper-proliferative disorders and diseases associated with angiogenesis
This invention relates to novel pyrrozolotriazine compounds, pharmaceutical compositions containing such compounds and the use of those compounds and compositions for the prevention and/or treatment of hyper-proliferative disorders and diseases associated with angiogenesis.
US08829180B2 Method of purifying a low molecular weight hyaluronic acid or cationized hyaluronic acid via precipitation from aqueous solution by addition of alcohol or acetone followed by ph adjustment
Provided a method of producing a purified hyaluronic acid type which comprises adding a water-soluble organic medium to a solution which comprises a hyaluronic acid type having an average molecular weight of 400 to 100,000 and has a pH of 3 or less to obtain a suspension, and adjusting a pH of the suspension in a range of 3.5 to 8 to precipitate a purified hyaluronic acid type.
US08829177B2 Enhanced engineered native promoters and uses thereof
We describe methods and DNA constructs/engineered mammalian promoters to enhance native promoter activity while retaining inherent regulation by inserting multi-copy response elements (REs) into non-adjacent locations. Multiple copies of REs are clustered in a group forming a transcription factor response element segment. The segment is at least duplicated in tandem upstream of the ATG start codon. Spacers of 0.2-0.7 kilo base pairs are introduced between the two segments and smaller spacers of about between 9-15 bp are introduced between the copies of REs within a segment.
US08829176B2 Beta-actin and RPS21 promoters and uses thereof
The invention relates to isolation of novel β-actin and ribosomal protein S21 (rpS21) promoters and uses thereof. In particular, this invention features nucleotide sequences for rodent β-actin promoters including, hamster, rat, and mouse, and hamster rpS21 promoter.
US08829172B2 Multiplex barcoded paired-end diTag (mbPED) sequencing approach and ITS application in fusion gene identification
A method of generating a barcoded Paired-End Ditag (bPED) nucleic acid fragment is disclosed. The method comprises: a) performing a first ligation by ligating a half-adaptor with one or two 3′-overhanging ends to a target nucleic acid to obtain a nucleic acid fragment with two ends each attached to one of the half-adaptor, the half adaptor comprising a half-barcode and a restriction enzyme (RE) recognition site; b) performing a second ligation by ligating two of the half-adaptor at the two ends of the nucleic acid fragment to form a circularized nucleic acid construct, wherein the circularized nucleic acid construct comprises a full-size barcoded adaptor; and c) digesting the circularized nucleic acid construct with a RE that cleaves at a defined distance from the RE recognition site, and thereby generating the bPED nucleic acid fragment.
US08829171B2 Linking sequence reads using paired code tags
Artificial transposon sequences having code tags and target nucleic acids containing such sequences. Methods for making artificial transposons and for using their properties to analyze target nucleic acids.
US08829170B2 Construct capable of release in closed circular form from a larger nucleotide sequence permitting site specific expression and/or developmentally regulated expression of selected genetic sequences
The present invention relates generally to constructs and in particular genetic constructs comprising polynucleotide sequences capable of release in covalently closed, circular form from a larger nucleotide sequence such as, but not limited to, a genome of a eukaryotic cell. Preferably, once released, a polynucleotide sequence is reconstituted in a form which permits expression of the polynucleotide sequence. In one embodiment, the reconstituted polynucleotide sequence comprises a coding sequence with all or part of an extraneous nucleotide such as, but not limited to, an intronic sequence or other splice signal inserted therein. Expression and in particular transcription of the coding sequence involves splicing out the extraneous sequence. The release and circularization is generally in response to a stimulus such as a protein-mediated stimulus. More particularly, the protein is a viral or prokaryotic or eukaryotic derived protein or developmentally and/or tissue specific regulated protein.
US08829159B2 Plectin-1 targeted agents for detection and treatment of pancreatic ductal adenocarcinoma
Described herein are compositions and methods for cancer cell biomarkers, such as pancreatic ductal adenocarcinoma (PDAC) cell biomarkers, and binding molecules for diagnosis and treatment of cancer, e.g., PDAC. Methods of identifying “accessible” proteomes are disclosed for identifying cancer biomarkers, such as plectin-1, a PDAC biomarker. Additionally, imaging compositions are provided comprising magnetofluorescent nanoparticles conjugated to peptide ligands for identifying PDACs.
US08829156B2 Process for producing polycarbonates and a coordination complex used therefor
The complex of the present invention containing an onium salt and a central Lewis acidic metal has a high catalytic activity at a high temperature for the copolymerization of an epoxide and carbon dioxide to produce a high molecular weight polycarbonate.
US08829153B2 Polyimide precursor composition containing polyamic acid alkyl ester
To provide a polyamic acid ester-containing polyimide precursor composition having a good storage stability, from which a polyimide film having a high imidization degree and excellent adhesion to an inorganic substrate can be obtained.A polyimide precursor composition comprising a polyamic acid ester, a thermal imidization accelerator and a solvent, wherein the thermal imidization accelerator is a compound which has a carboxy group and an amino group or an imino group which is deprotected by heat to show basicity, and which will not accelerate the imidization of the polyamic acid ester before the protecting group leaves, and a polyimide precursor composition containing a silane coupling agent.
US08829149B2 Methods for recycling byproduct of polyester resin production
Processes for preparing polyester resins as toner production components. The processes include reacting an organic diol and a cyclic alkylene carbonate to produce carbon dioxide (CO2) and a polyalkoxy diol. The carbon dioxide is reacted with an alkylene glycol or alkylene oxide to produce additional cyclic alkylene carbonate having the same chemical structure as the cyclic alkylene carbonate used to produce the polyalkoxy diol. The additional cyclic alkylene carbonate is added with the cyclic alkylene carbonate used to produce the polyalkoxy diol. The polyalkoxy diol can be reacted with an organic diacid or diester in preparing a polyester resin. To prepare a toner, the polyester resin can be contacted with at least one toner production component.
US08829146B2 High-reactivity, uretdione-containing polyurethane compositions which comprise metal-free acetylacetonates
The invention relates to high-reactivity polyurethane compositions which contain uretdione groups and cure at low baking temperatures, to a process for the preparation and to their use for producing coating materials, especially surface coatings and adhesives, and also plastics.
US08829143B2 Reactive inorganic clusters
Storage-stable reactive inorganic clusters and a process for preparing such storage-stable reactive inorganic clusters (e.g., silica structures) having, for example, reactive amino groups. The storage-stable reactive inorganic clusters may be used as a curing agent for thermosetting resin compositions such as epoxy resins.
US08829142B2 Curable composition and process for production of organosilicon compound
The present curable composition comprises an organosilicon compound produced by hydrolysis copolycondensation of (A) a silicon compound R0Si(R1)nX13-n [wherein R0 represents a (meth)acryloyl group; and X1 represents a hydrolyzable group] and (B) a silicon compound SiY14 [wherein Y1 represents a siloxane-bond forming group] under an alkaline condition at a ratio of compound (A) to compound (B) of 1:(0.3 to 1.8) by mol. The present process for producing an organosilicon compound comprises a reaction process of conducting alcohol exchange reaction of a silicon compound. SiY24 [wherein Y2 represents a siloxane-bond forming group] in 1-propanol to produce a composition; and a condensation process of adding a silicon compound R0Si(R1)nX23-n [wherein R0 represents a (meth)acryloyl group; and X2 represents a hydrolyzable group] to the composition to perform the hydrolysis copolycondensation of the silicon compounds under alkaline conditions.
US08829139B2 Process for production of polysilane compound
A method for easily producing high-purity polydimethylsilane or polydiphenylsilane, where by-products such as alkali metal salt and alkaline earth metal salt can be efficiently removed, is provided. Dimethyldichlorosilane or diphenyldichlorosilane is reacted with an alkali metal such as metal sodium and metal magnesium and/or an alkaline earth metal in an organic solvent such as toluene to obtain crude polydimethylsilane or crude polydiphenylsilane, methanol having dissolved therein an ether ester-type nonionic surfactant or a surfactant such as alkylbenzenesulfonate is added to the crude polydimethylsilane or the crude polydiphenylsilane to deactivate the remaining alkali metal and alkaline earth metal, and the crude polydimethylsilane or the crude polydiphenylsilane is washed with water in the presence of a surfactant to efficiently remove an alkali metal salt, an alkaline earth metal salt and the like, whereby high-purity polydimethylsilane or polydiphenylsilane is obtained.
US08829138B2 Polyethylene and process for production thereof
This invention relates to a process for polymerizing olefins in which the amount of trimethylaluminum in a methylalumoxane solution is adjusted to be from 1 to 25 mol %, prior to use as an activator, where the mol % trimethylaluminum is determined by 1H NMR of the solution prior to combination with any support. This invention also relates to a process for polymerizing olefins in which the amount of an unknown species present in a methylalumoxane solution is adjusted to be from 0.10 to 0.65 integration units prior to use as an activator, where the amount of the unknown species is determined by the 1H NMR spectra of the solution performed prior to combination with any support. Preferably, the methylalumoxane solution is present in a catalyst system also comprising a metallocene transition metal compound.
US08829133B2 ABA triblock copolymer, thickener, and aqueous composition
To provide an ABA triblock copolymer containing: an A-block having, in a constitutional unit thereof, a monomer represented by the following general formula (1) or a monomer represented by the following general formula (2); and a B-block having, in a constitutional unit thereof, a hydrophilic monomer having a radical polymerizable unsaturated bond, where R1 is a hydrogen atom or a methyl group; R2 is a C5-C18 alkylene group; M is a hydrogen atom or a monovalent metal atom; and X1 is —NH— or an oxygen atom in the general formula (1), and where R11 is a hydrogen atom or a methyl group; R12 is a C5-C18 alkylene group; R13 and R14 are each independently a hydrogen atom, a methyl group, or an ethyl group; and X11 is —NH— or an oxygen atom in the general formula (2).
US08829132B2 Ethylene/tetrafluoroethylene copolymer
To provide an ethylene/tetrafluoroethylene copolymer which is excellent in heat resistance and flexibility. An ethylene/tetrafluoroethylene copolymer comprising repeating units (A) based on tetrafluoroethylene and repeating units (B) based on ethylene in a ratio of repeating units (A)/repeating units (B)=66/34 to 75/25 (molar ratio) and as an optional component, repeating units (C) based on a monomer represented by CH2═CX(CF2)nY (wherein each of X and Y which are independent of each other is a hydrogen atom or a fluorine atom, and n is from 2 to 8) in an amount of from 0 to 1 mol % based on the total number of moles of the repeating units (A) based on tetrafluoroethylene and the repeating units (B) based on ethylene, and having a volume flow rate measured at 297° C. of from 4 to 1,000 mm3/sec and an elastic modulus of at most 500 MPa.
US08829124B2 Reactor and process for preparing polyolefin
The invention relates to a process for preparing polyolefin in a loop reactor. The polymer is prepared by polymerizing olefin monomers in the presence of a catalyst to produce a polyolefin slurry while pumping said slurry through said loop reactor by means of a pump. The present process is characterized in that the catalyst is fed in the loop reactor at a distance to the pump. The invention allows production of the polymer with advantageous properties while leading to fewer blockages of the reactor.
US08829122B2 Polyurethane polymer based on an amphiphilic block copolymer and its use as impact modifier
Novel impact strength modifiers which are obtained by reaction of amphiphilic block copolymers. These impact strength modifiers are suitable in particular for use in heat-curing epoxy resin adhesives. In particular, combinations of different impact strength modifiers are also suitable for use in heat-curing epoxy resin adhesives. Also disclosed are methods of bonding heat-stable substrates.
US08829119B2 Polyarylene compositions for downhole applications, methods of manufacture, and uses thereof
A crosslinked product of a polyarylene is disclosed, having high-temperature elastomeric properties and excellent chemical resistance. The crosslinked materials are useful in oil and gas downhole applications in the form of either solids or foams. Methods for the manufacture of the crosslinked product and articles comprising the product are also disclosed.
US08829118B2 Method for using hydrophobically modified polymers in consumer and industrial applications
This invention pertains to method of using a composition comprising one or more hydrophobically modified polyacrylamides, wherein the polyacrylamides contain acrylamide, one or more anionic monomers, and excludes a cationic monomer, and the method of combination with other compositions for use in combination for consumer and/or industrial applications.
US08829114B2 Preparation of metallic comonomers for polystyrene
A method for making a polystyrene ionomer comprises: preparing a metallic comonomer within styrene monomer to form a reaction mixture; and placing the reaction mixture under conditions suitable for the formation of a polymer composition. The metallic comonomer can be a metal acrylate, formed by contacting a metal complex and an acrylate precursor.
US08829113B2 Automotive interior element
Automotive interior element comprising a polypropylene composition comprising (percent by weight): A) from 60% to 90% of a propylene homopolymer having: i) a polydispersity Index (P.I.) value of from 3.5 to 10.0; ii) a fraction insoluble in xylene at 25° C., higher than 90%; and iii) a MFR L (Melt Flow Rate according to ISO 1133, condition L, i.e. 230° C. and 2.16 kg load) from 50 to 200 g/10 min; B) from 10% to 40%; of a copolymer of propylene with from 30% to 60% of ethylene derived units; the composition having an intrinsic viscosity of the fraction soluble in xylene at 25° C. comprised between 2.5 and 4.0 dl/g; a MFR L (Melt Flow Rate according to ISO 1133, condition L, i.e. 230° C. and 2.16 kg load) from 15 to 100 g/10 min and all the three values of carbon emission measured according to VDA 227 (C-emission) are lower than 30.0 μgC/g; wherein the values of carbon emission are measured in the ex reactor propylene composition.
US08829111B2 Polymer material
A process is described for providing a polymer material by blending as a first component one or more hydrophilic polymers, and as a second component one or more neutralising chemicals, in the complete or substantial absence of water. In the absence of water, the components will not be aqueous solutions. Thus the components can be used in blending processes, and the present invention is able to form many other shapes and forms of material other than laminates on substrates.
US08829110B2 Nanocomposite biomaterials of nanocrystalline cellulose (NCC) and polylactic acid (PLA)
A new approach is conceived for the development of sustainable biomaterials comprising nanocrystalline cellulose (NCC) and polylactic acid (PLA) nanocomposites. The invention deals with advancing a method based on in situ ring opening polymerization of L-lactide in the presence of NCC particles to form NCC-PLA supramolecular nanocomposite materials. This material is hydrophobic and compatible with a wide range of synthetic and natural polymers. NCC-PLA nanocomposites have enhanced functionality (e.g. gas barrier), rheological and mechanical performance, as well as dimensional stability (i.e. less hygroexpansivity) relative to PLA. They are made from entirely renewable resources, and are potentially biocompatible as well as recyclable. NCC-PLA supramolecular nanocomposites can be suspended in most organic solvents or dried to form a solid substance. They can be processed using conventional polymer processing techniques to develop 3-dimensional structures, or spun into fibers, yarns or filaments.
US08829104B2 Styrene-based resin composition, and resin molded article comprising same
Disclosed is a styrene-based resin composition that comprises 5-20 parts by mass of (D) a fire retardant per 100 parts by mass of a resin composition (1) that comprises 30-51 mass % of (A) a graft copolymer obtained by graft polymerization of a diene rubber polymer with an aromatic vinyl monomer and an unsaturated nitrile monomer, 10-55 mass % of (B) a copolymer comprising two or more monomers selected from among aromatic vinyl monomers, unsaturated nitrile monomers and unsaturated carboxylic acid alkyl ester monomers, and 15 to 39% by mass of a copolymer (C) comprising one kind of unsaturated carboxylic acid alkyl ester monomers, or two or more unsaturated carboxylic acid alkyl ester monomers, ((A)+(B)+(C)=100 mass %), wherein the diene rubber polymer constitutes 15-25 mass % of the resin composition (1).
US08829103B2 Carbon fiber composite material
A composite material includes: carbon fibers having an average fiber length of more than about 10 mm and about 100 mm or less; and a thermoplastic resin. The carbon fibers are substantially two-dimensionally-randomly oriented. The composite material includes a carbon fiber bundle (A) in a ratio of more than 0 volume % and less than about 30 volume % to a total volume of the carbon fibers, the carbon fiber bundle (A) including the carbon fibers of a critical single fiber number defined by formula (1) or more. An average number (N) of the carbon fibers in the carbon fiber bundle (A) satisfies formula (2). Critical single fiber number=600/D  (1) 1.0×104/D2
US08829101B2 Windmill propeller blade and method of making same
A windmill blade which comprises reinforcing fibers in a toughened resin matrix. The resin matrix is made from a composition which comprises (a) one or more epoxy resins and/or one or more epoxy vinyl ester resins, (b) one or more reactive diluents, and (c) at least one amphiphilic block copolymer. The amphiphilic block copolymer comprises at least two different polyether blocks and is present in the composition in an amount of from about 0.5% to about 10% by volume, based on the total volume of the matrix composition.
US08829099B2 Resin composition and molded article composed of the same
A resin composition comprising a polylactic acid-based resin (A) and methacrylic resins (B), wherein the methacrylic resins having at least (a) a difference of 10° C. or more in glass transition temperature or (b) a difference of 3% or more in syndiotacticity; it is preferred that at least one of the methacrylic resins (B) is a methacrylic resin having a weight average molecular weight of 50,000 to 450,000, a glass transition temperature of 110° C. or higher and a syndiotacticity of 40% or more, and that the resin composition further contains a multilayer structure polymer formed as particles each consisting of a core layer and one or more shell layers covering it (C). A molded article made of said resin composition.
US08829098B2 Polylactic acid resin composition
The present invention provides a polylactic acid resin composition, containing a polylactic acid resin and a metal hydrate surface-treated with at least one silane coupling agent selected from an amino-silane coupling agent, a mercapto-silane coupling agent and an isocyanate-silane coupling agent, wherein the content of an alkali metal component in the metal hydrate is not more than 0.2% by mass and a polylactic acid resin molded article produced by molding the polylactic acid resin composition.
US08829097B2 PLA-containing material
PLA-containing materials, and building components containing such materials, include: polylactic acid (PLA); one or more inorganic pigments; and one or more stabilizers that includes one or more carbodiimide groups.
US08829092B2 Protective coating composition
A protective coating composition comprises an acrylic resin, a reactive polyorganosiloxane or precursor therefor, hexamethyldisiloxane, and a solvent system. The coating composition may be applied to surfaces such as painted metal surfaces as may be found in motor vehicles.
US08829091B2 Polycarbonate resin composition and molded article using the same
A polycarbonate resin composition includes about 100 parts by weight of a base resin including a polycarbonate resin (A) and a polycarbonate-polysiloxane copolymer (B); and about 0.1 to about 10 parts by weight of polyalkylaryl siloxane (C) having a refractive index of about 1.42 to about 1.59. The composition can exhibit high gloss and blackness and can have excellent impact resistance, heat resistance, light resistance, and mar resistance (resistance to fine scratches).
US08829087B2 Transparent layer forming polymer
Embodiments in accordance with the present invention provide polymers for forming layers/films useful in the manufacture of a variety of types of optoelectronic displays. Such embodiments also provide compositions of such polymers for forming such layers/films where the formed layers/films have high transparency over the visible light spectrum.
US08829080B2 Coating agent and method for production thereof
Disclosed is a coating agent characterized by comprising: a core-shell-type resin particles (A) each having a shell layer and a core layer; a compound (B) having at least one selected from the group consisting of a hydrolysable silyl group and a silanol group and also having an epoxy group; and an aqueous medium, wherein the shell layer comprises (a1) a urethane resin with 2000 to 5500 mmol/kg of an aliphatic cyclic structure and at least one selected from the group consisting of a carboxyl group and a carboxylate group and the core layer comprises (a2) a vinyl polymer having a basic nitrogen-atom-containing group. Further disclosed are a coating agent for a plastic base material and a coating agent for a metallic base material.
US08829079B2 Surface-modified zirconia nanoparticles
Surface-modified zirconia nanoparticles and methods for making and using the same are provided. The surface-modifiers include non-metallic organic derivatives, comprising at least one hydroxamate functionality, wherein at least some of the non-metallic organic derivatives are attached to at least some of the zirconia nanoparticles.
US08829077B2 Easily thermally decomposable binder resin, binder resin composition and use of said composition
A thermally decomposable binder resin containing, as an active ingredient, a rosin derivative (A) that is obtained by subjecting a rosin (a) to distillation and a disproportionation treatment and/or hydrogenation treatment, wherein the rosin derivative (A) has a 99 wt % weight loss temperature of 500° C. or lower in thermogravimetric measurement, under an air atmosphere at a heating rate of 5° C./min, a binder resin composition containing the resin, and a use of the binder resin composition.
US08829075B2 Adhesive materials, manufacturing thereof, and applications thereof
A novel composition-of-matter, method of manufacturing thereof, and applications thereof as an adhesive, in a wide variety of different fields, and in particular, in the health care fields of medicine, dentistry, and veterinary science, for use by health care providers, such as medical, dental, and veterinary, surgeons, in procedures for reattaching or repairing body parts or components thereof, such as tissue, of (human or animal) subjects, especially under wet conditions, for example, involving adhesion of wet surfaces. The composition is comprised of a cross-linked form of a water miscible polymer, and at least one phloroglucinol type compound selected from the group consisting of: phloroglucinol, a derivative of phloroglucinol, and a polymer synthetically prepared from phloroglucinol or a derivative of phloroglucinol. An exemplary water miscible polymer is a naturally existing, or synthetically prepared, salt form of the carbohydrate alginic acid, such as sodium alginate, or alginic acid itself.
US08829074B2 Bone cement system for bone augmentation
A bone cement is provided that includes a solid component and a liquid component. The solid component and liquid component are mixed together to form the bone cement. After completion of the solid and liquid component mixing, the bone cement has an initial viscosity effective for manual application or manual injection onto or into a targeted anatomical location, e.g., bone, and the cement has stable viscosity range that over both time and temperature is effective for uniformly filling the targeted anatomical location, for example an osteoporotic bone or a fractured vertebral body, with minimal to no leakage of the cement from the targeted anatomical location. Additionally, both the initial viscosity and the stable viscosity of the bone cement are within a range that renders the bone cement effective for injection with a manually operated syringe or multiple syringes.
US08829073B2 Implant material based on a polymer system and the use thereof
An implant material on the basis of a polymer system has a first component and a second component that react with one another when mixed to form a polymer-based solid. The first component is a paste that contains at least one biocompatible polymer powder and a starter component for initiating a polymerization reaction upon mixing, wherein the paste has a carrier liquid, wherein under normal conditions in the carrier liquid the at least one biocompatible polymer powder does not dissolve or significantly swell and the starter component remains stable until mixing with the second component of the polymer system. The second component of the polymer system contains at least one reactive organic liquid or a solution or a suspension of a reactive organic liquid and of a polymer.
US08829072B2 Biomaterial containing degradation stabilized polymer
The invention provides a polymer based material comprising a water binding agent present in an amount sufficient to chemically and/or physically absorb and/or adsorb water to prevent degradation of the polymer. The invention also provides a polymer based material comprising a plasticizer or organic solvent as well as a multi-component material or composite including materials encompassing a second polymer and/or an active agent. The invention further provides a pharmaceutical composition comprising the aforesaid polymer based material, which can be used for treatment of bone, cartilage and/or periodontal defects.
US08829070B2 Ultraviolet-curable resin material for pattern transfer and magnetic recording medium manufacturing method using the same
According to one embodiment, an ultraviolet curing curable resin material for pattern transfer is provided. The resin contains isobornyl acrylate, an acrylate having a fluorene skeleton, a polyfunctional acrylate, and a polymerization initiator.
US08829066B2 Polymerization reactor for producing super absorbent polymers and method of producing super absorbent polymers using the polymerization reactor
The present invention provides a polymerization reactor for producing a super absorbent polymer comprising: a reaction unit; a monomer composition supply unit being connected to the reaction unit and supplying a monomer composition solution containing a monomer, a photoinitiator, and a solvent; an agitating shaft extended in the reaction unit from one end of the reaction unit connected to the monomer composition supply unit to the other end of the reaction unit; a plurality of agitating blades installed around the agitating shaft; and a light irradiation unit providing light to the monomer composition solution furnished from the monomer composition supply unit, and a method of producing super absorbent polymers by using the same.
US08829065B2 Synthesis of a highly crystalline, covalently linked porous network
Porous networks are described linked by boronates. Also described are processes for producing the porous networks. The porous networks are formed by reacting a polyboronic acid with itself or with a polydiol, a polydiamine, or a polyamino alcohol. The resulting boronate linkage is covalently bonded. The characteristics and properties of the resulting porous material can be varied and altered by changing the reactants and by incorporating functional groups into the reactants. Of particular advantage, the porous materials can be formed at or near atmospheric pressure and at low temperature in the presence of one or more solvents.
US08829064B2 Diffused light transmitter
A compound of substantially transparent resin and amorphous silica particulate is disclosed. The silica particulate are nanometric size and dispersed throughout in the resin. The compound can be used to make an article to diffuse and transmit light from a point source of light.
US08829063B2 High heat radiation composite and a method of fabricating the same
The present disclosure provides a high heat radiation composite material including a hybrid filler comprising expanded graphite filled with expandable polymeric beads, and a fabrication method thereof. In the method, a dispersion solution is prepared by dispersing expandable polymeric beads in ethanol. Expanded graphite is immersed in the dispersion solution, and heat-treated to remove ethanol, thereby producing the hybrid filler. The hybrid filler is dispersed into the matrix polymer via an extrusion/injection process, thereby producing the composite material.
US08829062B1 Stimuli-responsive polymer membrane and method of making the same
The object of the present invention is concerned with a stimuli-responsive polymer membrane and method of making the same. The method and making the membrane is a new one The entire body of the responsive membrane is a gel. Gels are used as membranes because they are permeable-swollen network. This disclosure discusses a new combination of cylindrical pores in a swollen network. When the network swells or shrinks the cylindrical pores open or close. Thus, inside the network, one can introduce ligands, function groups which due to specific interaction with some signaling molecules in the surrounding environment can cause swelling or shrinking the membrane and this way they open or close pores. With cylindrical pores in a gel there is the ability to regulate pore size in a broad range and an ability to arrange response by adding some functional groups inside the gel body.
US08829061B2 Process for treating thiocyanate containing aqueous solutions
The present invention generally relates to the field of water treatment, and in particular to industrial processes which generate aqueous solutions containing thiocyanate (SCN). The invention particularly relates to processes for treating aqueous solutions containing SCN and more specifically treatment processes to extract and remove SCN from said aqueous solutions.
US08829059B2 Processes for the production of methanol using sweep-based membrane separation steps
Disclosed herein are methanol production processes that include a sweep-based membrane separation step using a membrane that is selective to carbon dioxide over hydrogen. Using the processes of the invention, the efficiency of methanol production from syngas is increased by reducing the compression requirements of the process and/or improving the methanol product yield. In certain embodiments, a hydrogen-rich stream is generated; this hydrogen-rich stream can be sent for other uses. An additional benefit is that the processes of the invention may debottleneck existing methanol plants if more syngas or carbon dioxide is available, allowing for feed of imported carbon dioxide into the synthesis loop. This is a way of sequestering carbon dioxide.
US08829056B2 Cis 3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl) cyclopent-2-en-1-one derivatives, substantially enantiomerically pure compositions and methods
The present application provides cis 3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one derivatives and substantially enantiomerically pure compositions thereof. These derivatives include (+)-(4S,5R)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one, (−)-(4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one, and salts and crystals thereof. The application further provides methods of using the disclosed compounds and compositions to activate PPARγ, activate GPR120, inhibit inflammation, and treat conditions responsive to PPARγ modulation, conditions responsive to GPR120 modulation, and metabolic disturbances such as diabetes.
US08829055B2 Biofilm formation inhibitor composition
A drug and a composition for inhibiting biofilm formation are provided. A biofilm formation inhibitor composition containing the following component (A): (A) at least one or more selected from compounds represented by Formula (1) to Formula (4): wherein R1 to R5 each represent an alkyl group or the like; EO represents an ethyleneoxy group; p represents an integer from 0 to 5; and m+n represents a number from 0 to 30, or a salt thereof; and (B) a surfactant.
US08829053B2 Biocidal compositions and methods of using the same
An antimicrobial composition with synergistic biocidal activity is described which comprises at least one antimicrobial polymeric biguanide and at least one antimicrobial vicinal diol, said vicinal diol comprises at least one monoalkyl glycol, monoalkyl glycerol, or monoacyl glycerol, to diminish or eliminate biofilm communities. Such synergistic interaction is effective in wound treatment, particularly for chronic wounds, burns and battlefield-induced wounds, as well as for disinfecting non-biological surfaces. The antimicrobial composition can also be prepared as viscous solutions or as gels. The antimicrobial composition may be added to a substrate and dried, such as to a catheter, or to a foam, or to a fiber wound dressing, or coated as a viscous solution or gel upon such devices, to provide controlled release antimicrobial activity.
US08829047B2 Methods of controlling venous irritation associated with the treatment of a cardiac disorder
A pharmaceutical composition comprising (S)-methyl-3-[4-(2-hydroxy-3-isopropylamino)propoxy]phenylpropionate in a concentration between about 75 mM and about 150 mM, which is substantially free of the R-isomer or pharmaceutically acceptable salt thereof, is provided. A method of treating a cardiac disorder is also provided and includes administering to a subject in need thereof a therapeutically effective amount of a pharmaceutical composition comprising (S)-methyl-3-[4-(2-hydroxy-3-isopropylamino)propoxy]phenylpropionate hydrochloride, wherein the (S)-methyl-3-[4-(2-hydroxy-3-isopropylamino)propoxy]phenylpropionate hydrochloride is present at a concentration between about 75 mM and about 150 mM and wherein the pharmaceutical composition is substantially free of (R)-methyl-3-[4-(2-hydroxy-3-isopropylamino)propoxy]phenylpropionate or pharmaceutically acceptable salt thereof.
US08829045B2 Agrochemical composition for pest control and pest control method
An agrochemical composition comprising a propylene glycol fatty acid monoester and fenbutatin oxide in a proportion of 1:150 to 150:1 in terms of a mass ratio (propylene glycol fatty acid monoester:fenbutatin oxide) shows an excellent control effect on pests, hyposensitive mites having reduced sensitivity to chemicals, eggs of mites, and pests other than mites in all stages of growth, even when the composition is applied in a small amount. A pest control method comprising applying the propylene glycol fatty acid monoester and fenbutatin oxide in a proportion of 1:150 to 150:1 in terms of a mass ratio (propylene glycol fatty acid monoester:fenbutatin oxide) to pests or a habitat of the pests also shows an excellent control effect.
US08829040B2 (aza)indole derivative and use thereof for medical purposes
The present invention provides compounds useful as agents for the prevention or treatment of a disease associated with abnormal serum uric acid level which has a uricosuric activity or the like. The present invention relates to (aza)indole derivatives represented by the following general formula (I) having xanthine oxidase inhibitory activities and useful as agents for the prevention or treatment of a disease associated with abnormality of serum uric acid level, prodrugs thereof, or salts thereof. In the formula (I), T represents nitro or cyano and the like; ring J represents aryl or heteroaryl and the like; Q represents carboxy or 5-tetazolyl and the like; Y represents H, OH, NH2, halogen, nitro, alkyl, alkoxy and the like; X1, X2 and X3 independently represent CR2 or N; R1 and R2 independently represent halogen, cyano, haloalkyl, A-D-E-G, —N(-D-E-G)2 and the like, in the formula, A represents a single bond, O, S and the like; D and G independently represent optionally substituted alkylene, cycloalkylene, heterocycloalkylene, arylene, heteroarylene and the like; E represents a single bond, O, S, COO, SO2 and the like.
US08829039B2 Dihydroindolinone derivatives
Disclosed are dihydroindolone compounds which can modulate the activity of protein tyrosine kinases, a method for preparing the same, and pharmaceutical compositions comprising the same. Also disclosed are use of such compounds and pharmaceutical compositions thereof in the treatment and/or prophylaxis of protein tyrosine kinase associated diseases in an organism, particularly in the treatment and/or prophylaxis of tumors and fibroblast proliferation associated diseases.
US08829038B2 Parasiticidal formulation
The present invention provides a parasiticidal formulation comprising: Fipronil, or a veterinarily acceptable derivative thereof; at least one C1-C6 alcohol co-solvent, wherein the total amount of C1-C6 alcohol is up to 8% by weight of the formulation; at least one organic solvent which is not the C1-C6 alcohol co-solvent; and at least one crystallization inhibitor, wherein the total amount of crystallization inhibitor is from 2 to 20% by weight of the formulation. The formulations of the invention have higher flash points than known parasiticidal formulations comprising Fipronil and therefore provide safer formulations for use in the home, storage, manufacture and distribution.
US08829036B2 Heterocyclic aspartyl protease inhibitors
Disclosed are compounds of the formula I or a stereoisomer, tautomer, or pharmaceutically acceptable salt or solvate thereof, wherein each variable in Formula 1 are as defined in the specification; and pharmaceutical compositions comprising the compounds of formula I. Also disclosed are methods of inhibiting aspartyl protease, and in particular, the methods of treating cardiovascular diseases, cognitive and neurodegenerative diseases, and the methods of inhibiting of Human Immunodeficiency Virus, plasmepins, cathepsin D and protozoal enzymes. Also disclosed are methods of treating cognitive or neurodegenerative diseases using the compounds of formula I in combination with a cholinesterase inhibitor or a muscarinic m1 agonist or m2 antagonist.
US08829035B2 Agent for treatment or prevention of diseases associated with activity of neurotrophic factors
A compound depicted by the formula below, or a pharmaceutically acceptable salt or solvate thereof. wherein, R1 represents (1) a C3-6 alkyl group, (2) a C1-6 alkyl group substituted with one or more substituent group(s) selected from those consisting a halogen atom, etc., (3) a C3-10 non-aromatic cyclic hydrocarbon group or a 5- to 6-membered non-aromatic heterocyclic group which respectively is optionally substituted with one or more substituent group(s) selected from those consisting an oxo group, etc., (4) an aromatic cyclic hydrocarbon group substituted with one or more substituent selected from the group consisting halogen atom and C1-4 alkoxy group; X represents NH, O, or S; Y represents CH or N; Z represents N or a C—R2; R2 represents (1) hydrogen atom, (2) a C1-6 alkyl group, a C2-6 alkenyl group or a C2-6 alkynyl group that respectively is optionally substituted with one or more substituent group(s) selected from among those consisting (a) a halogen atom, etc., or (3) a C5-6 non-aromatic cyclic hydrocarbon group or a 5- to 6-membered non-aromatic heterocyclic group optionally substituted; ring A represents a benzene ring optionally substituted; ring B represents a benzene ring optionally substituted.
US08829034B2 Compounds which modulate the CB2 receptor
Compounds of formula (I) are disclosed. Compounds according to the invention bind to and are agonists, antagonists or inverse agonists of the CB2 receptor, and are useful for treating inflammation. Those compounds which are agonists are additionally useful for treating pain.
US08829031B2 Indole derivative modulators of the alpha 7 nAChR
This invention relates to modulation of the α7 nicotinic acetylcholine receptor (nAChR) by a compound of formula (I) or a salt thereof: wherein R1 is imidazolyl, pyridinyl or pyrimidinyl, any of which is optionally substituted by one group independently selected from C1-3alkyl and C1-3alkoxy.
US08829026B2 Sulfamoyl benzoic acid heterobicyclic derivatives as TRPM8 antagonists
The present invention relates to sulfamoyl benzoic acid heterobicyclic derivatives of the formula (I) or a pharmaceutically acceptable salt thereof or a prodrug thereof, processes for their preparation, pharmaceutical compositions containing them and their use in the treatment of various disorders which are mediated via the TRPMb8 receptor.
US08829024B2 Combination steroid and glucocorticoid receptor antagonist therapy
The present invention provides compositions of an anti-inflammatory glucocorticosteroid and a glucocorticoid receptor (GR) modulator useful for inhibiting glucocorticoid receptor induced transactivation without substantially inhibiting glucocorticoid receptor induced transrepression. Also provided are methods of treating a disorder or condition and reducing the side effects of glucocorticosteroid treatment, using the compositions of the present invention.
US08829022B2 N-substituted indenoisoquinolines and syntheses thereof
N-Substituted indenoisoquinoline compounds, and pharmaceutical formulations of N-substituted indenoisoquinoline compounds are described. Also described are processes for preparing N-substituted indenoisoquinoline compounds. Also described are methods for treating cancer in mammals using the described N-substituted indenoisoquinoline compounds or pharmaceutical formulations thereof.
US08829019B2 Stable tablet containing 4,5-epoxymorphinan derivative
The present invention relates to a stable tablet comprising a 4,5-epoxymorphinan derivative or a pharmacologically acceptable acid addition salt thereof as an effective ingredient. That is, the tablet according to the present invention comprises: (1) as the effective ingredient, a specific 4,5-epoxymorphinan derivative or a pharmacologically acceptable acid addition salt; (2) sodium thiosulfate; (3) at least one selected from the group consisting of saccharides and sugar alcohols; and (4) crospovidone, sodium carboxymethyl starch or a mixture thereof, in which tablet the content of the aforementioned (4) is 1 to 20% by weight per unit weight containing the aforementioned effective ingredient.
US08829014B2 Thiazole and thiophene analogues, and their use in treating autoimmune diseases and cancers
Thiazole and thiophene compounds are disclosed having utility in treating inflammatory conditions, immunoinflammatory conditions, autoimmune diseases, and cancers. Methods for the synthesis of these compounds are also disclosed.
US08829010B2 Pyrazolo[3,4-d]pyrimidine compounds and their use as PDE2 inhibitors and/or CYP3A4 inhibitors
The present invention provides, inter alia, compounds of Formula (I) and pharmaceutically acceptable salts thereof, to processes for the preparation of, intermediates used in the preparation of, and compositions containing such compounds and the uses of such compounds as a method for the treatment of a disease or condition selected from the group consisting of central nervous system disorders, cognitive disorders, schizophrenia, dementia and other disorders in a mammal. The present invention further provides compounds of Formula (Id) and pharmaceutically acceptable salts thereof as CYP3A4 selective inhibitors.
US08829009B2 Substituted 2-amino-3-(sulfonyl)pyrazolo[1,5-a]pyrimidines - serotonin 5-HT6 receptor antagonists, method for use thereof
The present invention relates to novel substituted 2-amino-3-(arylsulfonyl)pyrazolo[1,5-a]pyrimidines of general formula 1, to serotonin 5-HT6 receptor antagonists, to novel drug substances and pharmaceutical compositions, to medicaments, methods for preparation thereof, and to methods for prophylaxis and treatment of various CNS diseases, pathogenesis of which is associated with disturbance of monoaminergic signaling pathways, more specifically over- or hypo-activation of serotonin 5-HT6 receptors.In general formula 1 R1 and R3 independently of each other represent C1-C3 alkyl or phenyl; R2 represents hydrogen or C1-C3 alkyl; R41, R42 independently of each other represent hydrogen, optionally substituted C1-C3 alkyl or optionally substituted phenyl, or R41 and R42 together with the nitrogen atom they are attached to form optionally substituted heterocyclyl; Ar is aryl selected from phenyl, optionally substituted with Ri5 that is one or two optionally identical substituents selected from hydrogen, lower alkyl, trifluoromethyl or halogen; or optionally substituted 5-6-membered heteroaryl, containing as the heteroatom nitrogen or sulfur atom.
US08829007B2 Inhibitors of influenza viruses replication
Methods of inhibiting the replication of influenza viruses in a biological sample or patient, of reducing the amount of influenza viruses in a biological sample or patient, and of treating influenza in a patient, comprises administering to said biological sample or patient an effective amount of a compound represented by Structural Formula (I): or a pharmaceutically acceptable salt thereof, wherein the values of Structural Formula (IA) are as described herein. A compound is represented by Structural Formula (IA) or a pharmaceutically acceptable salt thereof, wherein the values of Structural Formula (IA) are as described herein. A pharmaceutical composition comprises an effective amount of such a compound or pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier, adjuvant or vehicle.
US08829003B2 Compounds for treating proliferative disorders
A compound of formula (I) or a pharmaceutically acceptable salt or solvate or physiologically hydrolysable, solubilizing or immobilizable derivative thereof; wherein: any one or two of X., X2 and X3 is a N atom and the remaining two or one of X1, X2 and X3 are independently CR13; Y is selected from SO2 and SO; R1, R2, R3, and R7 and the one or two R13 groups are each independently selected from H and R10, R10 is selected from R8, alkyl, aryl, heteroaryl and combinations of two or more thereof and combinations with one or more R9, or R10 is one or more moieties R11 Sinking one or more alkyl, alkoxy, aryl, heteroaryl or R8 or R9 groups or combinations thereof, directly or via a moiety selected from alkylene, arylene, heteroarylene or combinations thereof, wherein alkyl, aryl, heteroaryl groups or moieties thereof may be substituted with one or more groups R12, or R10 is selected from a group R12; R11 is selected from 0-, N—, NH—, N═C, CO—, C00-, CON—, CONH—, S02-, S02N—, S02NH—; R12 is selected from halogen, NH2, N02, CN, OH, COOH, CONH2, C(═NH)NH2, S03H, S02NH2, S02CH3, OCH3, OCH2CH3, CF3; R8 and R9 comprise one or more solubilizing moieties independently chosen from i) neutral hydrophilic groups, ii) ionisable organic acids, iii) ionisable organic bases, iv} chemical functions or moieties providing covalent or non-covalent attachment or binding to a solid phase or an immobile receptor and combinations thereof; R4, R5 and R6 are each independently selected from H and R10, or two of R4 to R6 are linked to form a cyclic ether or amine containing one or more additional oxygen or nitrogen atoms. The compound may be used for treating a condition mediated by one or more enzymes selected from AKT, Aurora kinase, BCR-ABL, CDK, FLT, GSK3, IKK, JAK, MAPK, PDGF, PI3K, PKA, PKB, PKC, PLK, Src and VEGF family enzymes, or for treating cancer or other proliferative disorder, or for inhibiting growth of cancer cells, or for inducing apoptosis of cancer cells, in a human or animal subject.
US08829002B2 Substituted methyl amines, serotonin 5-HT6 receptor antagonists, methods for production and use thereof
The present invention relates to novel substituted methyl-amines, serotonin 5-HT6 receptor antagonists, to active components, pharmaceutical compositions, method for prophylaxis and treatment of CNS diseases and “molecular tools”, in which novel substituted methyl-amines represent compounds of the general formula 1 and their crystalline forms and pharmaceutically acceptable salts, wherein: W represents benzene, naphthalene, indolizine, quinoline or oxazole cycle; R1=H, F, Cl; R2 represents hydrogen, fluoro, methyl, phenyl, thienyl, furan-2-yl, pyridyl, piperazin-1-yl or 4-methylpiperazin-1-yl; R3 represents cyclopropyl or optionally substituted methyl; with the exception of the compounds in which W simultaneously represents oxazole cycle and R2=phenyl or pyridyl.
US08829000B2 Substituted imidazo[1,5-A]quinoxalines as phosphodiesterase 9 inhibitors
The invention discloses quinoxaline derivatives or salts thereof having PDE9-inhibiting activity and being useful as treating agent of dysuria and the like, which are represented by the formula (I) in the formula, R1 and R2 each independently stands for hydrogen, halogen, alkyl, alkoxy, acyl, amino and the like, R3 stands for alkyl, aryl, saturated carbocyclic group, saturated heterocyclic group, acyl and the like, R4 stands for hydrogen, hydroxy, alkyl or amino, R5 and R8 each independently stands for hydrogen, halogen, alkyl, alkenyl, alkoxy, cyano or nitro, R6 and R7 each independently stands for hydrogen, halogen, alkyl, alkenyl, alkynyl, alkoxy, cyano, amino, carbocyclic group, heterocyclic group, COR9 or SO2R9, R9 stands for hydrogen, hydroxy, alkyl, amino, pyrrolidin-1-yl, piperidin-1-yl, pyperazin-1-yl or the like, X stands for S or O, and A1, A2 and A3 each independently stands for N or C.
US08828999B2 Pyrimidine compounds and their uses
Pyrimidine compounds of the general formula (I), their derivatives, analogs, tautomeric forms, stereoisomers, polymorphs, hydrates, solvates, pharmaceutically acceptable salts, pharmaceutical compositions, metabolites and prodrugs thereof, are useful are useful as PDE4 inhibitors and are useful for treating PDE4 mediated diseases and in the treatment of immunological diseases, inflammation, pain disorder, rheumatoid arthritis; osteoporosis; multiple myeloma; uveititis; acute and chronic myelogenous leukemia; atherosclerosis; cancer; cachexia; ischemic-induced cell damage; pancreatic beta cell destruction; osteoarthritis; rheumatoid spondylitis; gouty arthritis; inflammatory bowel disease; ARDS; psoriasis; Crohn's disease; allergic rhinitis; ulcerative colitis; anaphylaxis; contact dermatitis; muscle degeneration; asthma; COPD; bone resorption diseases; multiple sclerosis; sepsis; septic shock; toxic shock syndrome and fever.
US08828997B2 2,3-dihydro-1H-imidazo(1,2-a)pyrimidin-5-one derivatives, preparation thereof, and pharmaceutical use thereof
The invention relates to a product of formula (I) where R1, R2, R3, and R4 are as defined herein, the therapeutic use of the product, a process to make the product, and a pharmaceutical composition comprising the product.
US08828995B2 Branched oxathiazine derivatives, method for the production thereof, use thereof as medicine and drug containing said derivatives and use thereof
The invention relates to compounds of formula (I) and to the physiologically compatible salts thereof. Said compounds are suitable, for example, for treating hyperglycemia.
US08828993B2 Psychotropic agents having glutamate NMDA activity
The invention provides novel compounds and pharmaceutical compositions for the treatment of psychological and/or psychiatric diseases or disorders.
US08828988B2 8-AZA tetracycline compounds
The present invention is directed to a compound represented by Structural Formula (I): or a pharmaceutically acceptable salt thereof. The variables for Structural Formula I are defined herein. Also described is a pharmaceutical composition comprising the compound of Structural Formula I and its therapeutic use.
US08828985B2 Carbamate and urea inhibitors of 11-beta-hydroxysteroid dehydrogenase 1
This invention relates to novel compounds of the Formula (I) pharmaceutically acceptable salts thereof, and pharmaceutical compositions thereof, which are useful for the therapeutic treatment of diseases associated with the modulation or inhibition of 11β-HSD1 in mammals. The invention further relates to pharmaceutical compositions of the novel compounds of the Formula (I) and methods for their use in the reduction or control of the production of cortisol in a cell or the inhibition of the conversion of cortisone to cortisol in a cell.
US08828980B2 Controlled release corticosteroid compositions and methods for the treatment of otic disorders
Disclosed herein are compositions and methods for the treatment of otic disorders with steroid, NSAID, and/or adenosine triphosphatase (“ATPase”) modulator agents. In these methods, the steroidal, NSAID, and/or ATPase compositions and formulations are administered locally to an individual afflicted with an otic disorder, through direct application of these compositions and formulations onto or via perfusion into the targeted auris structure(s).
US08828979B2 Salicylic acid gel
A concentrated salicylic acid gel comprising salicylic acid and a stabilizer compound, wherein the salicylic acid comprises at least 30 wt % of the total weight of the gel.
US08828977B2 Method of treating a subject suffering from degenerative disc disease using a matrix metalloprotease inhibitor
The present invention provides a method for treating a vertebrate subject suffering from a degenerative disc disease by administering an inhibitor of a matrix metalloprotease (MMP) to the subject in an amount effective to treat the subject.
US08828972B2 Formulations containing alkylphosphocholines using novel negative charge carriers
The invention relates to novel medicament formulations containing, as active ingredients, alkylphosphocholines and the like, alkyl-alkanediol-phosphocholines and the like, and (ether)lysolecithins and the like, in different forms of embodiment. The active ingredients are integral constituents of liposomes, also containing cholesterol and the like and a negative charge carrier. The medicament formulations are especially suitable for the treatment and/or prophylaxis of cancer, protozoan diseases such as leishmaniasis and amoebic diseases, acariasis and diseases caused by arthropods, and bacterial diseases, such as ehrlichiosis. Ocular diseases accompanied by uncontrolled cellular processes can also be advantageously influenced.
US08828969B2 Pharmaceutical composition for relieving pain
The present invention relates to a pharmaceutical composition for relieving pain in a joint disease, including a hyaluronic acid and a pharmaceutically acceptable carrier, in which the hyaluronic acid is cross-linked by cyclizing a double bond in the moiety of a cinnamic acid in a partially amidated hyaluronic acid represented by Formula (1): [Ar—CH═CH—COO—(CH2)n—NH-]m-HA, to form a cycloubutane ring, in which Ar represents an optionally substituted phenyl group, n represents an integer of 2 or 3, HA represents a carboxy residue of the hyaluronic acid, and m represents an amidation ratio of the hyaluronic acid to the total carboxyl group and is in the range of 3 to 50% relative to the total carboxyl group. The pharmaceutical composition of the present invention is an intra-articular formulation that exerts rapid analgesic effects after administration, and shows extremely long durable effects for a human joint disease with only a single administration rather than multiple administrations of a conventional way.
US08828968B2 Nanoparticle of glucidamin for treating tumor and preparation method thereof
A nanoparticle of glucidamin derived from organism for treating tumor and preparation method thereof, wherein the viscosity-average molecular weight of glucidamin is in the range of 1×103-9×105, and the amount of free amino groups in the glucidamin is in the range of 50%-100% based on the total amino groups. The preparation method of the nanoparticle comprises steps listed below: (1) adding the glucidamin possessing one or more molecular weight into thin acid solution at 20-60° C. to form saccharan solution, wherein the content of saccharan in solution is in the range of 0.1%-5% by weight; (2) adjusting the pH of the solution to 6-9 in order to form emulsion of microparticle; (3) separating the microparticle from the emulsion, dried at low temperature to obtain the nanoparticle of glucidamin for treating tumor. The nano-class glucidamin can enhance their activity against tumor. The particle diameter of glucidamin nanoparticle prepared by the method disclosed in the present invention exhibits homogeneous distribution, meanwhile, the nanoparticle is easy to be separated and purified.
US08828967B2 Low molecular weight complexes between iron and maltobionic acid, use thereof for intramuscular or subcutaneous administration in the treatment of anemic states, and new pharmaceutical compositions adapted for these uses
New low molecular weight complexes between iron and maltobionic acid that can be administered parenterally, preferably intramuscularly or subcutaneously, in the treatment of anemic states, caused by iron deficiencies, and new pharmaceutical compositions adapted for this use. In particular, the invention provides a new complex between preferably trivalent iron and maltobionic acid that is characterized by a molecular weight Mw between 10,000 and 30,000 Da, by a polydispersity of 1.0-1.8 and by an iron content between 25% and 40% by weight.
US08828965B2 MiR-150 for the treatment of blood disorders
The invention provides methods of treating certain blood related disorders, in particular, thrombocytopenia and anemia comprising increasing miR-150 expression or inhibiting miR-150 in progenitor cells respectively.
US08828959B2 Antisense oligonucleotides capable of inhibiting the formation of capillary tubes by endothelial cells
A pharmaceutical composition that blocks angiogenesis comprising as active agent at least one substance selected from the group consisting of (i) a nucleic acid molecule of a gene coding for protein IRS-1, a complementary sequence or a fragment thereof and (ii) a molecule which inhibits expression of a nucleic acid molecule according to (i).
US08828957B2 Methods for generating immunity to antigen
Provided are methods of generating an immune response to an antigen. The method comprises priming an individual by administering an expression vector encoding the antigen. The vectors comprises a transcription unit encoding a secretable fusion protein, the fusion protein containing an antigen and CD40 ligand. Administration of a fusion protein containing the antigen and CD40 ligand is used to enhance the immune response above that obtained by vector administration alone. The invention methods may be used to generate an immune response against cancer expressing a tumor antigen such as a mucin or human papilloma viral tumor antigen and to generate an immune response against an infectious agent. Also provided is a method for simultaneously producing the expression vector and the fusion protein.
US08828954B2 Use for scopolin and derivatives thereof
The present invention relates to a novel use for the compound of Chemical formula 1 in order to produce drugs or foods for the prevention or treatment of obesity, fatty liver, diabetes, metabolic syndrome or the like, and to a composition for the prevention or treatment of obesity, fatty liver, diabetes, metabolic syndrome or the like which contains the compound of Chemical formula 1 as an active ingredient, and also to a method for the prevention or treatment of obesity, fatty liver, diabetes, metabolic syndrome or the like comprising the administration of the compound of Chemical formula 1 to a mammal in a therapeutically effective dose. According to the present invention, the compound of Chemical formula 1 has been confirmed to suppress the differentiation of adipocytes, to reduce body weight and the amount of visceral fat, to reduce concentrations of cholesterol, triglycerides, free fatty acids and glucose which are associated with fatty liver and diabetes and the like and to reduce the fatty component in liver tissue, to suppress gene expression associated with obesity in visceral fatty tissue, and to increase the amount of expression of UCP1 and UCP3 which are UCP (uncoupling protein) genes involved in thermogenesis. The compound of Chemical formula 1 can be used to advantage in order to prevent or treat obesity, fatty liver, diabetes, metabolic syndrome and the like since, unlike the obesity treating agents based on synthetic drugs currently in use, it is based on a natural substance and hence entails a very low risk of adverse effects and, additionally, it exhibits its pharmacological effects by regulating the expression of genes associated with obesity rather than exhibiting pharmacological effects by acting on enzymes or the nervous system.
US08828953B2 Chemosensory receptor ligand-based therapies
Provided herein are methods for treating diabetes, obesity, and other metabolic diseases, disorders or conditions comprising chemosensory receptor ligands. Also provided herein are chemosensory receptor ligand compositions and the preparation thereof for the methods of the present invention.
US08828952B2 Sulfated oligosaccharide derivatives
The invention relates to novel compounds that have utility as inhibitors of heparan sulfate-binding proteins; compositions comprising the compounds, and use of the compounds and compositions thereof for the antiangiogenic, antimetastatic, anti-inflammatory, antimicrobial, anticoagulant and/or antithrombotic treatment of a mammalian subject.
US08828951B2 Glycoside derivatives and uses thereof
This invention relates to compounds represented by formula (I): wherein the variables are defined as herein above, which are useful for treating diseases and conditions mediated by the sodium D-glucose co-transporter (SGLT), e.g. diabetes. The invention also provides methods of treating such diseases and conditions, and compositions etc. for their treatment.
US08828950B2 Caspase inhibitors in the treatment of infection-associated preterm delivery
Apoptotic processes induced by infection of, or injury to, fetal and placental tissues have been implicated in preterm delivery. Thus, modulation of apoptotis constitutes a strategy for improving pregnancy outcome in women with intrauterine infections. Caspase inhibitors, including the pancaspase inhibitor Z-VAD-FMK, can be used to prevent apoptosis and, thus, prevent preterm delivery. Accordingly, compositions and methods comprising caspase inhibitors for prevention of preterm delivery are provided.
US08828942B2 Means for treating synucleinopathies
The present invention relates to peptides or polypeptides for producing medicaments for preventing and/or treating synucleinopathies.
US08828940B2 Method of treating an ischemia-reperfusion injury-related disorder by administering GPCR ligands
Disclosed are peptide ligands for G-protein coupled receptors that are useful for treating disorders associated with G-protein coupled receptor activation.
US08828936B2 Therapeutic use of SCGB3A2
The present disclosure is generally related to methods of using the secretory protein SCGB3A2 for promoting lung development and treating lung disease. Some embodiments are, for example, methods for treating and inhibiting the development of neonatal respiratory distress. Other embodiments are methods of promoting lung development in damaged or diseased lungs. Also disclosed are methods for inhibiting lung damage due to anti-cancer agents.
US08828934B2 Mnk kinase homologous proteins involved in the regulation of energy homeostasis and organelle metabolism
This invention relates to the use of nucleic acid sequences of the MAP kinase-interacting kinase (Mnk) gene family and amino acid sequences encoded thereby, and to using these sequences or effectors of Mnk nucleic acids or polypeptides, particularly Mnk kinase inhibitors and activators, in the diagnosis and treatment of diseases and disorders related to body-weight regulation and thermogenesis. One aspect of the disclosure encompasses methods of identifying an animal or human having an elevated probability of having or developing a pancreatic malfunction, the method comprising: (a) obtaining a biological sample from an animal or human subject; and (b) determining from the biological sample whether the subject has a genetic variant of an Mnk2 and/or Mnk1 gene or a homolog thereof, or an expression product of said Mnk2 and/or Mnk1 gene or homolog thereof, wherein said genetic variant is associated with an elevated probability of having or developing a pancreatic malfunction.
US08828932B2 Bifunctional molecules for inactivating HIV and blocking HIV entry
Disclosed herein are bifunctional molecules which inactivate human immunodeficiency virus (HIV) even before the virus attacks the target cell and inhibits HIV entry into the target cell. Also disclosed are novel anti-HIV therapeutics for treatment of patients infected by HIV. Further disclosed are methods for prophylaxis against HIV and treatment of HIV infection.
US08828929B2 Cytotoxic T cell epitope peptide for SARS coronavirus, and use thereof
The present invention aims to provide a novel CTL epitope peptide of the SARS coronavirus. The present invention provides a peptide having an amino acid sequence selected from the group consisting of SEQ ID NOs: 10, 11, 12, 13, 15, 17, 18, 23 and 24.
US08828928B2 Amphiphilic peptides and peptide particles
The inventions provided herein relate to amphiphilic peptides and particles comprising the amphiphilic peptides. Such amphiphilic peptides and particles described herein can be used as a delivery system, e.g., for therapeutic or diagnostic purposes, or as cell penetration vehicles or cell transfection agents.
US08828917B2 Carboxy ester ketal removal compositions, methods of manufacture, and uses thereof
A removal composition is described, having a plurality of abrasive particles, an organic amine, antioxidant, biocide, colorant, corrosion inhibitor, cosolvent, defoamer, dye, enzyme, light stabilizer, odor masking agent, plasticizer, preservative, rust inhibitor, surfactant, thickener, or a combination comprising at least one of the foregoing; from 0 to 1% water, based on the total weight of the removal composition; and a ketal adduct of formula (1) wherein R1 is C1-6 alkyl, R2 is hydrogen or C1-3 alkyl, each R3, R4, and R5 is independently hydrogen or C1-6 alkyl, R6 and R7 are each independently hydrogen or C1-6 alkyl, a=0-3, and b=0-1.
US08828916B2 Method to prepare nonylated diphenylamine using recycle sequential temperatures
The present invention relates to a process for preparing nonylated diphenylamines which improves nonene usage by recycling and reusing stripped nonene from an earlier process. The process comprising consecutive recycle of recovered nonene is conducted at a sequential two step temperature reaction, namely a more severe temperature followed by a lower temperature. The product prepared by this process is a useful antioxidant for lubricating oil compositions.
US08828915B2 Thixotropic corrosion protection additives for preservative liquids and lubricating greases
The invention relates to novel thixotropic corrosion protection additives, to carrier substances comprising these corrosion protection additives, to processes for their preparation and to their use for preservative liquids and lubricating greases.
US08828911B2 Gel prevention agents
Gel prevention agents and methods for use with agricultural products include certain alkylamido amines and their quaternary ammonium counterparts that, when blended with products containing alkoxylated surfactants, the alkylamido amines and their quaternary counterparts reduce the gel formation tendency of such products.
US08828910B2 Process for the preparation of peroxy acids
The present invention relates to a process for the preparation of a solution comprising a first peroxy acid comprising performic acid and a second peroxy acid, said process comprising forming a carboxylic acid solution comprising a first carboxylic acid comprising formic acid, a second carboxylic acid and hydrogen peroxide, wherein the amount of formic acid is from 0.5 to 20% by weight of the amount of the second carboxylic acid, and allowing the components to react to form a solution comprising performic acid and said second peroxy acid, the amount of peroxy acids being at least 5% by weight. The invention also relates to a storable solution comprising performic acid and said second peroxy acid. The solution can be used as a disinfecting agent for controlling micro-organisms.
US08828908B2 Herbicidally active bicyclic 1,3-dione compounds
Bicyclic dione compounds of formula (I), and derivatives thereof, which are suitable for use as herbicides.
US08828907B2 Active ingredient combinations having insecticidal and acaricidal properties
The present invention relates to novel active compound combinations comprising, firstly, at least one known compound of the formula (I) in which R1 and A have the meanings given in the description and, secondly, at least one further known active compound from the class of the chitin synthesis inhibitors, the molting hormone agonists or other classes, which combinations are highly suitable for controlling animal pests such as insects and unwanted acarids.
US08828903B2 Copper catalyst for dehydrogenation application
Disclosed are catalytic compositions having from about 35% to about 75% of Cu by weight, from about 15% to about 35% of Al by weight, and about 5% to about 20% of Mn by weight. The catalytic compositions are bulk homogeneous compositions formed from extruding and calcinating a powder formed from a precipitation reaction of Cu(NO3)2, Mn(NO3)2, Na2Al2O3. The catalytic compositions have one or more crystalline phases of one or more of CuO and CuxMn(3-x)O4, where x is from about 1 to about 1.5, or both. The catalytic compositions are useful for the conversion of 1,4-butane-di-ol to γ-butyrolactone by a dehydrogenation reaction.
US08828901B2 Preparation of a solid catalyst system
Process for the preparation of a solid catalyst system comprising the steps of generating an emulsion by dispersing a liquid clathrate in a solution wherein (i) the solution constitutes the continuous phase of the emulsion and (ii) the liquid clathrate constitutes in form of droplets the dispersed phase of the emulsion, solidifying said dispersed phase to convert said droplets to solid particles and optionally recovering said particles to obtain said catalyst system, wherein the liquid clathrate comprises a lattice being the reaction product of aluminoxane, an organometallic compound of a transition metal of Group 3 to 10 of the Periodic Table (IUPAC 2007) or of an actinide or lanthanide, and a further compound being effective to form with the aluminoxane and the organometallic compound the lattice, and a guest being an hydrocarbon compound, and the solution comprises a silicon fluid and a hydrocarbon solvent.
US08828892B2 Drywall tape and drywall joint
The invention pertains to a drywall tape having a nonwoven fabric and a reinforcing scrim, wherein the nonwoven fabric has chopped glass fibers laid flat in the nonwoven fabric, the fibers being substantially straight, random laid and bonded to one another to resist forces exerted in random directions, and the reinforcement scrim has elongated reinforcing strands of low profile thickness joined against a side of the nonwoven fabric, such that the scrim and the nonwoven fabric reinforce each other, and reinforce a joint compound in which the drywall tape is imbedded.
US08828886B2 Low dielectric constant insulating film and method for forming the same
Disclosed is a low dielectric constant insulating film formed of a polymer containing Si atoms, O atoms, C atoms, and H atoms, which includes straight chain molecules in which a plurality of basic molecules with an SiO structure are linked in a straight chain, binder molecules with an SiO structure linking a plurality of the straight chain molecules. The area ratio of a signal indicating a linear type SiO structure is 49% or more, and the signal amount of the signal indicating Si(CH3) is 66% or more.
US08828882B2 Method for forming a deep trench in a microelectronic component substrate
A trench is formed in a semiconductor substrate by depositing an etch mask on the substrate having an opening, etching of the trench through the opening, and doping the walls of the trench. The etching step includes a first phase having an etch power set to etch the substrate under the etch mask, and a second phase having an etch power set smaller than the power of the first phase. Further, the doping of the walls of the trench is applied through the opening of the etch mask.
US08828881B2 Etch-back method for planarization at the position-near-interface of an interlayer dielectric
The invention discloses an etch-back method for planarization at the position-near-interface of an interlayer dielectric (ILD), comprising: depositing or growing a thick layer of SiO2 by the chemical vapor deposition or oxidation method on a surface of a wafer; spin-coating a layer of SOG and then performing a heat treatment to obtain a relatively uniform stack structure; perform an etch-back on the SOG using a plasma etching, and stopping when approaching the position-near-interface of SiO2; performing a plasma etch-back on the remaining SOG/SiO2 structure at the position-near-interface until achieving a desired thickness. Since a two-step etching at the position-near-interface is employed, an extremely good smooth surface of the ILD is obtained. That is, a planar and tidy surface of the ILD is obtained not only in the center region, but also even at the edge of the wafer.
US08828877B2 Etching solution and trench isolation structure-formation process employing the same
The present invention provides an etching solution less affected by trench structures and also provides an isolation structure-formation process employing the solution. The etching solution contains hydrofluoric acid and an organic solvent. The organic solvent has a δH value defined by Hansen solubility parameters in the range of 4 to 12 inclusive and the saturation solubility thereof in water is 5 wt % or more at 20° C. This solution can be adopted instead of known etching solutions used in conventional production processes of semiconductor elements.
US08828874B2 Chemical mechanical polishing of group III-nitride surfaces
A method of chemically-mechanically polishing a substrate having a Group III-nitride surface includes providing a chemical-mechanical polishing slurry composition. The slurry composition includes a slurry solution including a liquid carrier and an oxidizer including a transition metal or a per-based compound. The slurry solution includes at least one component that reacts with the Group III-nitride surface to form a softened Group III-nitride surface. The Group III-nitride comprising surface is contacted with the slurry composition by a pad to form the softened Group III-nitride surface. The pad is moved relative to the softened Group III-nitride surface, wherein at least a portion of the softened Group III-nitride surface is removed.
US08828871B2 Method for forming pattern and mask pattern, and method for manufacturing semiconductor device
A pattern formation method, mask pattern formation method and a method for manufacturing semiconductor devices are provided in this disclosure, which are directed to the field of semiconductor processes. The pattern formation method comprises: providing a substrate; forming a polymer thin film containing a block copolymer on the substrate; forming a first pattern through imprinting the polymer thin film with a stamp; forming domains composed of different copolymer components through directed self assembly of the copolymer in the first pattern; selectively removing the domains composed of copolymer components to form a second pattern. In the embodiments of the present invention, finer pitch patterns can be obtained through combining the imprinting and DSA process without exposure, which as compared to the prior art methods has the advantage of simplicity. Furthermore, stamps used in imprinting may have relative larger pitches, facilitating and simplifying the manufacture and alignment of the stamps.
US08828866B1 Methods for depositing a tantalum silicon nitride film
Provided are methods of forming a ternary metal nitride film and more specifically, a TaSiN film. A metal nitride film, or TaN film, is deposited on a substrate with plasma treatment. A SiN layer is deposited on the metal nitride, or TaN, film to form a metal-SiN, or TaSiN, film. The film is then annealed to provide a metal nitride film with stable resistivity.
US08828861B2 Method for fabricating conductive lines of a semiconductor device
Methods for fabricating conductive metal lines of a semiconductor device are described herein. In one embodiment, such a method may comprise depositing a conductive material over a substrate, and depositing a first barrier layer on the conductive layer. Such a method may also comprise patterning a mask on the first barrier layer, the pattern comprising a layout of the conductive lines. Such an exemplary method may also comprise etching the conductive material and the first barrier layer using the patterned mask to form the conductive lines. In addition, a low temperature post-flow may be performed on the structure. The method may also include depositing a dielectric material over and between the patterned conductive lines.
US08828859B2 Method for forming semiconductor film and method for manufacturing semiconductor device
A microcrystalline semiconductor film is formed over a substrate using a plasma CVD apparatus which includes a reaction chamber in such a manner that a deposition gas and hydrogen are supplied to the reaction chamber in which the substrate is set between a first electrode and a second electrode; and plasma is generated in the reaction chamber by supplying high-frequency power to the first electrode. Note that the plasma density in a region overlapping with an end portion of the substrate in a region where the plasma is generated is set to be higher than that in a region which is positioned more on the inside than the region overlapping with the end portion of the substrate, so that the microcrystalline semiconductor film is formed over a region which is positioned more on the inside than the end portion of the substrate.
US08828858B2 Spacer profile engineering using films with continuously increased etch rate from inner to outer surface
Interlayer dielectric gap fill processes are enhanced by forming gate spacers with a tapered profile. Embodiments include forming a gate electrode on a substrate, depositing a spacer material over the gate electrode and substrate, the spacer layer having a first surface nearest the gate electrode and substrate, a second surface furthest from the gate electrode and substrate, and a continuously increasing etch rate from the first surface to the second surface, and etching the spacer layer to form a spacer on each side of the gate electrode. Embodiments further include forming the spacer layer by depositing a spacer material and continuously decreasing the density of the spacer material during deposition or depositing a carbon-containing spacer material and causing a gradient of carbon content in the spacer layer.
US08828855B2 Transistor performance using a two-step damage anneal
A two-step thermal treatment method consists of performing ion implantation in a silicon substrate of the semiconductor device. A first thermal treatment procedure is performed on the semiconductor device. A second thermal treatment procedure is consecutively performed on the semiconductor device to reduce damage produced by the ion implantation.
US08828854B2 Method of impurity introduction and controlled surface removal
A method of introducing dopants into a semiconductor wafer includes implanting the dopants into a region below a surface of the semiconductor wafer using an ion beam to form a first implanted layer. The dopants when activated causing a conductivity of the implanted layer to be either of N-type or P-type. The first implanted layer is characterized by a peak dopant concentration at a first depth below the surface of the semiconductor wafer. The method also includes removing a layer from the semiconductor wafer surface, wherein said layer includes a portion of said dopants.
US08828852B2 Delta-doping at wafer level for high throughput, high yield fabrication of silicon imaging arrays
Systems and methods for producing high quantum efficiency silicon devices. A silicon MBE has a preparation chamber that provides for cleaning silicon surfaces using an oxygen plasma to remove impurities and a gaseous (dry) NH3+NF3 room temperature oxide removal process that leaves the silicon surface hydrogen terminated. Silicon wafers up to 8 inches in diameter have devices that can be fabricated using the cleaning procedures and MBE processing, including delta doping.
US08828845B2 Method of fabricating oxide thin film device using laser lift-off and oxide thin film device fabricated by the same
Provided is a method of fabricating an oxide thin film device using laser lift-off and an oxide thin film device fabricated by the same. The method includes: forming an oxide thin film on a growth substrate; bonding a temporary substrate on the oxide thin film; irradiating laser onto the growth substrate to separate the oxide thin film on which the temporary substrate has been bonded from the growth substrate; bonding a device substrate on the oxide thin film on which the temporary substrate has been bonded; and forming an upper electrode film on the oxide thin film. Therefore, it is possible to overcome problems caused by a defective layer by transferring an oxide thin film transferred on a polymer-based temporary substrate onto a device substrate, without using an interface on which a defective layer formed due to oxygen diffusion upon laser lift-off is formed.
US08828844B2 Manufacturing method of SOI substrate
A damaged region is formed by generation of plasma by excitation of a source gas, and by addition of ion species contained in the plasma from one of surfaces of a single crystal semiconductor substrate; an insulating layer is formed over the other surface of the single crystal semiconductor substrate; a supporting substrate is firmly attached to the single crystal semiconductor substrate so as to face the single crystal semiconductor substrate with the insulating layer interposed therebetween; separation is performed at the damaged region into the supporting substrate to which a single crystal semiconductor layer is attached and part of the single crystal semiconductor substrate by heating of the single crystal semiconductor substrate; dry etching is performed on a surface of the single crystal semiconductor layer attached to the supporting substrate; the single crystal semiconductor layer is recrystallized by irradiation of the single crystal semiconductor layer with a laser beam to melt at least part of the single crystal semiconductor layer.
US08828842B2 Crack stop structure and method for forming the same
The present invention in a first aspect proposes a semiconductor structure with a crack stop structure. The semiconductor structure includes a matrix, an integrated circuit and a scribe line. The matrix includes a scribe line region and a circuit region. The integrated circuit is disposed within the circuit region. The scribe line is disposed within the scribe line region and includes a crack stop trench which is disposed in the matrix and adjacent to the circuit region. The crack stop trench is parallel with one side of the circuit region and filled with a composite material in the form of a grid to form a crack stop structure.
US08828841B2 Semiconductor device and method of manufacture
A system and method for forming an isolation trench is provided. An embodiment comprises forming a trench and then lining the trench with a dielectric liner. Prior to etching the dielectric liner, an outgassing process is utilized to remove any residual precursor material that may be left over from the deposition of the dielectric liner. After the outgassing process, the dielectric liner may be etched, and the trench may be filled with a dielectric material.
US08828838B2 Large dimension device and method of manufacturing same in gate last process
An integrated circuit device and methods of manufacturing the same are disclosed. In an example, integrated circuit device includes a capacitor having a doped region disposed in a semiconductor substrate, a dielectric layer disposed over the doped region, and an electrode disposed over the dielectric layer. At least one post feature embedded in the electrode.
US08828834B2 Methods of tailoring work function of semiconductor devices with high-k/metal layer gate structures by performing a fluorine implant process
One illustrative method disclosed herein includes forming a plurality of layers of material above a semiconducting substrate, wherein the plurality of layers of material will comprise a gate structure for a transistor, performing a fluorine ion implantation process to implant fluorine ions into at least one of the plurality of layers of material, performing at least one ion implantation process to implant one of a P-type dopant material or an N-type dopant material into the substrate to form source/drain regions for the transistor, and performing an anneal process after the fluorine ion implantation process and the at least one ion implantation process have been performed.
US08828826B2 Method for manufacturing a transistor device comprising a germanium based channel layer
A method for manufacturing a transistor device is provided, the transistor device comprising a germanium based channel layer, the method comprising providing a gate structure on the germanium comprising channel layer provided on a substrate, the gate structure being provided between a germanium based source area and a germanium based drain area at opposite sides of the germanium comprising channel layer; providing a capping layer on the germanium based source and the germanium based drain area, the capping layer comprising Si and Ge; depositing a metal layer on the capping layer; performing a temperature step, thereby transforming at least part of the capping layer into a metal germano-silicide which is not soluble in a predetermined etchant adapted for dissolving the metal; selectively removing non-consumed metal from the substrate by means of the predetermined etchant; and providing a premetal dielectric layer.
US08828825B2 Method of substantially reducing the formation of SiGe abnormal growths on polycrystalline electrodes for strained channel PMOS transistors
The likelihood of forming silicon germanium abnormal growths, which can be undesirably formed on the gate electrode of a strained-channel PMOS transistor at the same time that silicon germanium source and drain regions are formed, is substantially reduced by using protection materials that reduce the likelihood that the gate electrode is exposed during the formation of the silicon germanium source and drain regions.
US08828823B2 FinFET device and method of manufacturing same
A semiconductor device and method for fabricating a semiconductor device is disclosed. An exemplary semiconductor device includes a substrate including a fin structure including one or more fins disposed on the substrate. The semiconductor device further includes a dielectric layer disposed on a central portion of the fin structure and traversing each of the one or more fins. The semiconductor device further includes a work function metal disposed on the dielectric layer and traversing each of the one or more fins. The semiconductor device further includes a strained material disposed on the work function metal and interposed between each of the one or more fins. The semiconductor device further includes a signal metal disposed on the work function metal and on the strained material and traversing each of the one or more fins.
US08828819B2 Strain enhancement in transistors comprising an embedded strain-inducing semiconductor alloy by creating a patterning non-uniformity at the bottom of the gate electrode
Performance of P-channel transistors may be enhanced on the basis of an embedded strain-inducing semiconductor alloy by forming a gate electrode structure on the basis of a high-k dielectric material in combination with a metal-containing cap layer in order to obtain an undercut configuration of the gate electrode structure. Consequently, the strain-inducing semiconductor alloy may be formed on the basis of a sidewall spacer of minimum thickness in order to position the strain-inducing semiconductor material closer to a central area of the channel region.
US08828818B1 Methods of fabricating integrated circuit device with fin transistors having different threshold voltages
Methods of fabricating integrated circuit device with fin transistors having different threshold voltages are provided. The methods may include forming first and second semiconductor fins including first and second semiconductor materials, respectively, and covering at least one among the first and second semiconductor fins with a mask. The methods may further include depositing a compound semiconductor layer including the first and second semiconductor materials directly onto sidewalls of the first and second semiconductor fins not covered by the mask and oxidizing the compound semiconductor layer. The oxidization process oxidizes the first semiconductor material within the compound semiconductor layer while driving the second semiconductor material within the compound semiconductor layer into the sidewalls of the first and second semiconductor fins not covered by the mask.
US08828814B2 Integrated semiconductor device and fabrication method
A method is provided for fabricating an integrated semiconductor device. The method includes providing a semiconductor substrate having a first active region, a second active region and a plurality of isolation regions; forming a first gate dielectric layer on one surface of the semiconductor substrate; and forming a plurality of substituted gate electrodes, a layer of interlayer dielectric and sources/drains. The method also includes forming a first trench and a second trench; and covering the first gate dielectric layer on the bottom of the first trench. Further, the method includes removing the first dielectric layer on the bottom of the second trench; subsequently forming a second gate dielectric layer on the bottom of the second trench; and forming metal gates by filling the first trench and second trench using a high-K dielectric layer, followed by completely filling the first trench and the second trench using a gate metal layer.
US08828810B2 Method of producing a semiconductor including two differently doped semiconductor zones
A method for producing a semiconductor component structure in a semiconductor body. In one embodiment, the method includes producing two differently doped semiconductor zones of the same conduction type, and carrying out a first implantation, implanting dopant atoms of a first conduction type into the semiconductor body via one of the sides over the whole area. A mask is produced on the one side, partly leaving free the one side. A second implantation is carried out, implanting dopant atoms of the first conduction type into the region left free by the mask proceeding from the one of the sides.
US08828805B2 Manufacturing method of semiconductor device
The formation of a void is suppressed in the assembly of a semiconductor device. An MCU chip and an AFE chip are mounted over a die pad formed of a quadrangle having a pair of first sides and a pair of second sides. After wire bonding is carried out on the MCU chip and the AFE chip, resin is supplied from the side of one second side of the two second sides to the side of the other second side. The resin is thereby passed through the opening between a first pad group and a second pad group over the MCU chip to fill the area between the chips and thus the formation of a void is suppressed in the area between the chips.
US08828803B2 Resin sealing method for semiconductor chips
A resin sealing method for a plurality of semiconductor chips. The resin sealing method includes a chip holding sheet attaching step of attaching a chip holding sheet through an adhesive ring to a support substrate, a semiconductor chip attaching step of attaching the front side of each semiconductor chip to an adhesive layer constituting the chip holding sheet in an area corresponding to the inside of the adhesive ring, a resin sealing step of sealing all of the semiconductor chips with a mold resin, a support substrate removing step of removing the support substrate from the chip holding sheet on which the semiconductor chips are attached and sealed with the mold resin, and a chip holding sheet peeling step of peeling the chip holding sheet from the front side of each semiconductor chip sealed with the mold resin.
US08828802B1 Wafer level chip scale package and method of fabricating wafer level chip scale package
A wafer level chip scale package includes a first dielectric layer having a first surface, a second surface, and a main through hole passing through the first dielectric layer between the first and second surfaces. A semiconductor die is disposed in the main through hole of the first dielectric layer and including a bond pad disposed away from the first surface of the first dielectric layer. A redistribution layer is electrically connected to the bond pad of the semiconductor die and extends along the second surface of the first dielectric layer. A second dielectric layer covers the first dielectric layer and the redistribution layer and has an opening exposing the redistribution layer. An under bump metal fills the opening of the second dielectric layer and is electrically connected to the redistribution layer. A solder ball is electrically connected to the under bump metal.
US08828799B2 Method of forming an integrated circuit package including a direct connect pad, a blind via, and a bond pad electrically coupled to the direct connect pad
A method for forming an integrated circuit package is disclosed. A flex circuit is form by forming a direct connect pad on a first side of a dielectric layer. After forming the direct connect pad, an opening from a second side of the dielectric layer is formed to expose the direct connect pad. A blind via is formed within the opening in the dielectric layer. A first conductor is formed within the opening. A bond pad of a semiconductor die is electrically coupled with the direct connect pad using a second conductor, wherein the bond pad and the second conductor directly overlie the direct connect pad.
US08828798B2 Semiconductor die assemblies, semiconductor devices including same, and methods of fabrication
Methods of fabricating multi-die assemblies including a wafer segment having no integrated circuitry thereon and having a plurality of vertically stacked dice thereon electrically interconnected by conductive through vias, resulting multi-die assemblies, and semiconductor devices comprising such multi-die assemblies. The wafer segment may function as a heat sink to enhance heat transfer from the stacked dice in the resulting multi-die assembly. The die stacks are fabricated at the wafer level on a base wafer, from which the wafer segment and die stacks are singulated after at least peripheral encapsulation.
US08828794B2 Method of manufacturing semiconductor device
In a manufacturing process of a transistor including an oxide semiconductor film, oxygen doping treatment is performed on the oxide semiconductor film, and then heat treatment is performed on the oxide semiconductor film and an aluminum oxide film provided over the oxide semiconductor film. Consequently, an oxide semiconductor film which includes a region containing more oxygen than a stoichiometric composition is formed. The transistor formed using the oxide semiconductor film can have high reliability because the amount of change in the threshold voltage of the transistor by a bias-temperature stress test (BT test) is reduced.
US08828792B2 Nanostructure assemblies, methods and devices thereof
Disclosed herein are methods for assembling nanostructures. The assembling methods include contacting the plurality of nanostructures to a substrate having one or more discontinuities. At least a portion of the plurality of nanostructures assemble adjacent to the discontinuity, the assembled nanostructures including at least one nanostructure having a bridging, molecule. Devices, such as field-effect transistors, are also disclosed.
US08828790B2 Method for local contacting and local doping of a semiconductor layer
A method for local contacting and local doping of a semiconductor layer including the following process steps: A) Generation of a layer structure on the semiconductor layer through i) application of at least one intermediate layer on one side of the semiconductor layer, and ii) application of at least one metal layer onto the intermediate layer last applied in step i), wherein the metal layer at least partly covers the last applied intermediate layer, B) Local heating of the layer structure in such a manner that in a local region a short-time melt-mixture of at least partial regions of at least the layers: metal layer, intermediate layer and semiconductor layer, forms. After solidification of the melt-mixture, a contacting is created between metal layer and semiconductor layer. It is essential that in step A) i) at least one intermediate layer designed as dopant layer is applied, which contains a dopant wherein the dopant has a greater solubility in the semiconductor layer than the metal of the metal layer.
US08828789B2 Photovoltaic device and method for manufacturing the same
It is the gist of the present invention to provide a photovoltaic device in which a single crystal semiconductor layer provided over a substrate having an insulating surface or an insulating substrate is used as a photoelectric conversion layer, and the single crystal semiconductor layer is provided with a so-called SOI structure where the single crystal semiconductor layer is bonded to the substrate with an insulating layer interposed therebetween. As the single crystal semiconductor layer having a function as a photoelectric conversion layer, a single crystal semiconductor layer obtained by separation and transfer of an outer layer portion of a single crystal semiconductor substrate is used.
US08828787B2 Inks with alkali metals for thin film solar cell processes
Processes for making a thin film solar cell on a substrate by providing a substrate coated with an electrical contact layer, depositing an ink onto the contact layer of the substrate, wherein the ink contains an alkali ion source compound suspended or dissolved in a carrier along with photovoltaic absorber precursor compounds, and heating the substrate. The alkali ion source compound can be MalkMB(ER)4 or Malk(ER). The processes can be used for CIS or CIGS.
US08828784B2 Resistance component extraction for back contact back junction solar cells
Methods and structures for extracting at least one electric parametric value from a back contact solar cell having dual level metallization are provided.
US08828783B2 Polycrystalline CDTE thin film semiconductor photovoltaic cell structures for use in solar electricity generation
A reverse p-n junction solar cell device and methods for forming the reverse p-n junction solar cell device are described. A variety of n-p junction and reverse p-n junction solar cell devices and related methods of manufacturing are provided. N-intrinsic-p junction and reverse p-intrinsic-n junction solar cell devices are also described.
US08828782B2 Annealing processes for photovoltaics
Processes for making a solar cell by depositing various layers of components on a substrate and converting the components into a thin film photovoltaic absorber material. Processes of this disclosure can be used to control the stoichiometry of metal atoms in making a solar cell for targeting a particular concentration and providing a gradient of metal atom concentration. A selenium layer can be used in annealing a thin film photovoltaic absorber material.
US08828780B2 Substrate for photoelectric conversion device and method of manufacturing the substrate, thin-film photoelectric conversion device and method of manufacturing the thin-film photoelectric conversion device, and solar cell module
This invention relates to a method of manufacturing a substrate for photoelectric conversion device including, on a substrate, a first electrode layer formed of a transparent conductive material. The method includes a first transparent conductive film forming step of forming a first transparent conductive film on the substrate, a second transparent conductive film forming step of forming a second transparent conductive film under a film forming condition that an etching rate is low compared with the first transparent conductive film at a later etching step, and an etching step of wet-etching the second and first transparent conductive films to form recesses that pierce through at least the second transparent conductive film, with the bottoms of the recesses being present in the first transparent conductive film.
US08828779B2 Backside illumination (BSI) CMOS image sensor process
A backside illumination (BSI) CMOS image sensing process includes the following steps. A substrate having an active side is provided. A curving process is performed to curve the active side. A reflective layer is formed on the active side, so that at least a curved mirror is formed on the active side.
US08828778B2 Thin-film photovoltaic module
A method of forming a longitudinally continuous photovoltaic (PV) module includes arranging strips of thin-film PV material to be spaced apart from and substantially parallel to each other. The method also includes laminating a bottom layer to a first surface of the strips of thin-film PV material, the bottom layer including multiple bottom layer conductive strips. The method also includes laminating a top layer to a second surface of the strips of thin-film PV material opposite the first surface, the top layer including multiple top layer conductive strips. Laminating the bottom layer to the first surface and laminating the top layer to the second surface includes serially and redundantly interconnecting the strips of thin-film PV material together by connecting each one of the strips of thin-film PV material to a different one of the bottom layer conductive strips and a different one of the top layer conductive strips.
US08828770B2 Apparatus and method for correcting position of laser beam for use in manufacturing biosensor with fine pattern
An embodiment includes a loading unit with an alignment mark configured to support a substrate, a laser beam generating unit configured to generate a laser beam toward the upper surface of the loading unit, a vision unit that causes the laser beam generating unit to irradiate the laser beam onto the substrate on the loading unit to form an alignment mark on the substrate and that generates corrected coordinate values based on the formed alignment mark on the substrate, a position detector located at the center of the loading unit to detect information about the laser beam generated by the laser beam generating unit, and a controller that controls an X-Y scanning mirror according to the corrected coordinate values, and controls power of the laser beam generated by the laser beam generating unit or the position of the loading unit according to the information detected by the position detector.
US08828768B2 Method for producing a light-emitting diode
A method is provided for producing a light-emitting diode. A carrier substrate has a silicon surface. A series of layers is deposited on the silicon surface in a direction of growth and a light-emitting diode structure is deposited on the series of layers. The series of layers includes a GaN layer, which is formed with gallium nitride. The series of layers includes a masking layer, which is formed with silicon nitride. The masking layer follows at least part of the GaN layer in the direction of growth.
US08828766B2 Light-emitting device and method of fabricating the same
A light-emitting device and a method of fabricating the same, in which the light emission characteristics of the light-emitting device in the UV range are maximized such that a high-efficiency light-emitting device can be produced at low cost. For this, the method includes the step of forming a zinc oxide light-emitting layer on a base substrate, the zinc oxide light-emitting layer including zinc oxide doped with a dopant; and activating the dopant by rapidly heat-treating the zinc oxide light-emitting layer, so that light emission in an ultraviolet range is increased.
US08828764B2 Coupled asymmetric quantum confinement structures
Implementations and techniques for coupled asymmetric quantum confinement structures are generally disclosed.
US08828761B2 Manufacturing a semiconductor light emitting device using a trench and support substrate
A method for manufacturing a semiconductor light emitting device, includes: forming a light emitting structure having a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer on a growth substrate. A trench is formed in a portion to divide the light emitting structure into individual light emitting structures. The trench has a depth such that the growth substrate is not exposed. A support substrate is provided on the light emitting structure. The growth substrate is separated from the light emitting structure. The light emitting structure is cut into individual semiconductor light emitting devices.
US08828759B2 Formation of uniform phosphor regions for broad-area lighting systems
In accordance with certain embodiments, phosphor arrangements are formed via adhering phosphors to activated regions on a substrate and transferring them to a different substrate.
US08828758B2 Method of fabricating lightweight and thin liquid crystal display device
A method of fabricating a liquid crystal display device includes forming a first adhesive pattern on a first auxiliary substrate; forming a first process panel by attaching a first substrate to the first auxiliary substrate using the first adhesive pattern; forming an array element on the first substrate; forming a second adhesive pattern on a second auxiliary substrate; forming a second process panel by attaching a second substrate to the second auxiliary substrate using the second adhesive pattern; forming a color filter element on the second substrate; attaching the first and second process panels with a liquid crystal panel between the first and second process panels; weakening an adhesive strength of the first and second adhesive patterns; and detaching the first and second auxiliary substrates from the first and second substrates, respectively.
US08828753B2 Producing method of light emitting diode device
A method for producing a light emitting diode device includes the steps of preparing a board mounted with a light emitting diode; preparing a hemispherical lens molding die; preparing a light emitting diode encapsulating material which includes a light emitting diode encapsulating layer and a phosphor layer laminated thereon, and in which both layers are prepared from a resin before final curing; and disposing the light emitting diode encapsulating material between the board and the lens molding die so that the phosphor layer is opposed to the lens molding die to be compressively molded, so that the light emitting diode is directly encapsulated by the hemispherical light emitting diode encapsulating layer and the phosphor layer is disposed on the hemispherical surface thereof.
US08828752B2 P-type doping layers for use with light emitting devices
A light emitting diode (LED) comprises an n-type Group III-V semiconductor layer, an active layer adjacent to the n-type Group III-V semiconductor layer, and a p-type Group III-V semiconductor layer adjacent to the active layer. The active layer includes one or more V-pits. A portion of the p-type Group III-V semiconductor layer is in the V-pits. A p-type dopant injection layer provided during the formation of the p-type Group III-V layer aids in providing a predetermined concentration, distribution and/or uniformity of the p-type dopant in the V-pits.
US08828749B2 Methodology for evaluation of electrical characteristics of carbon nanotubes
The present disclosure relates to a structure comprising 1. an electrically conductive substrate having carbon nanotubes grown thereon; 2. a cured polymeric fill matrix comprising at least one latent photoacid generator embedded around the carbon nanotubes but allowing tips of the carbon nanotubes to be exposed; 3. a layer of patterned and cured photosensitive dielectric material on the cured polymeric fill matrix, wherein tips of the carbon nanotubes are exposed within the patterns; and 4. an electrically conductive material filled into the interconnect pattern and in contact with the exposed tips of the carbon nanotubes; and to methods of making the structure and using the structure to measure the electrical characteristics of carbon nanotubes.
US08828746B2 Compensation for a charge in a silicon substrate
A silicon device includes an active silicon layer, a buried oxide (BOX) layer beneath the active silicon layer and a high-resistivity silicon layer beneath the BOX layer. The device also includes a harmonic suppression layer at a boundary of the BOX layer and the high-resistivity silicon layer.
US08828744B2 Method for etching with controlled wiggling
A method for etching trenches in an etch layer disposed below a patterned organic mask is provided. The patterned organic mask is treated, comprising flowing a treatment gas comprising H2 and N2, forming a plasma from the treatment gas, making patterned organic mask more resistant to wiggling, and stopping the flow of the treatment gas. Trenches are etched in the etch layer through the patterned organic mask.
US08828743B1 Structure and fabrication of memory array with epitaxially grown memory elements and line-space patterns
A system and method for fabricating a memory array device. An example memory array device includes a plurality of memory cells, each including a FET over a substrate and a memory element over the FET. Each memory element includes a plurality of epitaxially grown memory element layers. The memory elements formed utilizing two etches through all epitaxially grown layers. Each of these etches can be split to two separate processes specific to CMOS transistor etch and to memory element etch. The memory array device includes a plurality of gate conductors configured along a first axis, in parallel. Each FET of the memory cells adjacent to two gate conductors. The memory array device includes a plurality of bit lines configured along a second axis, in parallel, and electrically coupled to a plurality of memory elements along the second axis.
US08828742B2 Method of manufacturing magnetoresistive effect element that includes forming insulative sidewall metal oxide layer by sputtering particles of metal material from patterned metal layer
A method of manufacturing a magnetoresistive effect element includes forming a first electrode above a substrate, forming a metal layer of a metal material above the first electrode, forming a first magnetic layer above the metal layer, forming a tunnel insulating film above the first magnetic layer, forming a second magnetic layer above the tunnel insulating film, forming a second electrode layer above the second magnetic layer, patterning the second electrode layer, patterning the second magnetic layer, the tunnel insulating film, the first magnetic layer and the metal layer, while depositing sputtered particles of the metal film on side walls of the second magnetic layer, the tunnel insulating film, the first magnetic layer and the metal layer to form a sidewall metal layer, and oxidizing the sidewall metal layer to form an insulative sidewall metal oxide layer.
US08828739B2 Lateral flow immunoassay controls
Rapid lateral flow immunoassays have an extensive history of use in both the clinical and home settings. These devices are used to test for a variety of analytes, such as drugs of abuse, hormones, proteins, urine or plasma components and the like. The present invention provides an improved procedural control that indicates to the test user that at least a portion of the applied sample has passed through the test result zone of the test strip, and optionally that the test is complete and the test results may be read.
US08828738B2 Amelioration of heterophile antibody immunosensor interference
The invention is directed to methods and devices for reducing interference from heterophile antibodies in an analyte immunoassay. In one embodiment, the invention is to a method comprising the steps of (a) amending a biological sample such as a whole blood sample with non-human IgM or fragments thereof by dissolving into said sample a dry reagent to yield a non-human IgM concentration of at least about 20 μg/mL or equivalent fragment concentration; and (b) performing an electrochemical immunoassay on the amended sample to determine the concentration of said analyte in said sample. Preferably, the sample is amended with IgG or fragments thereof in addition to the IgM of fragments thereof.
US08828737B2 Use of focused light scattering techniques in biological applicationa
Methods for using focused light scattering techniques for the optical sensing of biological particles suspended in a liquid medium are disclosed. The optical sensing enables one to characterize particles size and/or distribution in a given sample. This, in turn, allows one to identify the biological particles, determine their relative particle density, detect particle shedding, and identify particle aggregation. The methods are also useful in screening and optimizing drug candidates, evaluating the efficacy and dosage levels of such drugs, and in personalized medicine applications.
US08828733B2 Microsensor material and methods for analyte detection
The compositions and methods relate to an organic polymer-inorganic particle sensor material for detecting analytes. Interactions between the polymer and the particles are affected by the presence of analyte, which displaces the polymer and increases its free volume. This change in free volume can be detected, e.g., using an embedded piezoresistive microcantilever (EPM) sensor. Analytes that can be detected include noxious substances, such as hydrogen cyanide gas and carbon monoxide.
US08828732B2 Method of labeling sugar chain
The method of labeling a sugar chain from a biological sample employs a single reaction vessel for the sequential performance of the following steps of (a) isolating a sugar chain from a sample using a sugar-trapping substance; (b) washing the sugar-trapping substance having the sugar chains trapped thereon; (c) releasing the sugar chain from the sugar-trapping substance; and (d) labeling the released sugar chain with UV/visible or fluorescent compound having an amino group forming a stable labeled sugar in fewer steps than a conventional ion exchange based technique.
US08828729B1 Methods and apparatus for the detection of taggants by surface enhanced raman scattering
One embodiment is a SERS enhancing substrate which includes a porous substrate and a Raman enhancing material associated with a surface of the porous substrate. The Raman enhancing material may be a Raman enhancing metal or other Raman enhancing material. The Raman enhancing material may also be configured to improve binding of a taggant to the substrate. The substrate described above may be included in a sample vessel useful for the flow-through analysis of large sample volumes, or for the rapid analysis of very dilute samples. Other embodiments include methods and systems for detecting taggants with SERS and similar techniques.
US08828727B2 Lentiviral vectors and uses thereof
The invention relates to compositions containing polynucleotide vectors capable of expressing a nucleic acid encoding a fusion polypeptide on the surface of a viral particle and/or a eukaryotic cell.
US08828726B2 Circular nucleic acid vectors, and methods for making and using the same
Circular nucleic acid vectors that provide for persistently high levels of protein expression are provided. The circular vectors of the subject invention are characterized by being devoid of expression-silencing bacterial sequences, where in many embodiments the subject vectors include a unidirectional site-specific recombination product hybrid sequence in addition to an expression cassette. Also provided are methods of using the subject vectors for introduction of a nucleic acid, e.g., an expression cassette, into a target cell, as well as preparations for use in practicing such methods. The subject methods and compositions find use in a variety of different applications, including both research and therapeutic applications. Also provided is a highly efficient and readily scalable method for producing the vectors employed in the subject methods, as well as reagents and kits/systems for practicing the same.
US08828719B2 Method for producing protein
The present invention relates to a recombinant host cell, wherein the cell is modified to increase the expression levels of Ero1 and XBP1 relative to the expression levels of Ero1 and XBP1 in an unmodified cell. The present invention also relates to a method of producing a recombinant protein of interest comprising expressing the recombinant protein of interest in the recombinant host cell.
US08828718B2 Gene transfer vectors comprising genetic insulator elements and methods to identify genetic insulator elements
The present invention relates to a gene transfer vector (GTV) and in particular to an integrating gene transfer vector (IGTV), which comprises at least one genetic insulator element (GIE), wherein the each comprises at least two copies of an element selected from the group consisting of: a CTF binding site; a first CTCF binding site and a second CTCF binding site, wherein the first and the second CTCF binding sites are derived from the regulatory sequences of different genes.
US08828715B2 Particle adhesion assay for microfluidic bifurcations
A method for characterizing particle adhesion in microfluidic bifurcations and junctions comprises at least one idealized bifurcation or junction. Multiple bifurcations and/or junctions can be combined on a single microfluidic chip to create microfluidic networks configured for assays specifically to characterize particle interactions at junctions or to screen particles for desired interactions with microfluidic bifurcations and/or junctions.
US08828714B2 Method of evaluating elimination of microoganisms and apparatus for evaluating elimination of microorganisms
The sterilizing effect of particle irradiation on microorganisms for the sterilizing treatment thereof can be evaluated. The evaluation can be done by supplying microorganisms in the space inside a container (8), allowing particles (7) for the sterilizing treatment of microorganisms to irradiate the microorganisms, sampling the microorganisms by a sampling means (6) after the irradiation of the particles (7) and measuring the sampled microorganisms. The microorganisms as the subject for the sterilizing treatment can be a combination of one or more members selected from the group consisting of bacteria, mycete, viruses and allergens. As the particles, for example, positive ions, negative ions, and gases of positive ions and negative ions in mixture, charged particles such as α rays and β rays, various plasma gas particles, particles such as ozone and radical particles, and particles of chemical agent can be used.
US08828711B2 Flow chamber and analyte detection method
A flow chamber and method for detecting the presence of one more cell produced analytes under flow conditions. The flow chamber includes two compartments separated by a permeable membrane on which a plurality of cells may be positioned. The permeable membrane shields one or more analyte sensors positioned one compartment from the convective transport forces of a fluid flow within the other compartment to allow reliable and accurate detection of cell-produced analytes and determination of the concentration of cell-produced analytes.
US08828708B2 Method of feeding an animal using dissociated cells
Disclosed is a method for the dissociation of cells. Cells are processed under conditions of pH, temperature, and shear to thereby yield a mixture of cell wall ghosts and cytoplasm. Preferably, the cells are jet cooked at an alkaline pH to form an intermediate mixture, and the intermediate mixture is subsequently jet cooked. Generally, the cells become dissociated, whereby at least one separate cell wall component is substantially separate from the dissociated cell walls.
US08828706B2 Use of carbonates for biological and chemical synthesis
A system of using carbonates, especially water-insoluble or sparing soluble mineral carbonates, for maintaining or increasing dissolved inorganic carbon concentrations in aqueous media. In particular, the system generates concentrated dissolve inorganic carbon substrates for photosynthetic, chemosynthetic, or abiotic chemical production of carbonaceous or other compounds in solution. In some embodiments, the invention can also enhance the dissolution and retention of carbon dioxide in aqueous media, and can produce pH buffering capacity, metal ions, and heat, which can be beneficial to the preceding syntheses.
US08828703B2 Protease inhibition
Proteins including engineered sequences which inhibit proteases are disclosed, including proteins having two or more engineered Kunitz domains, and uses of such proteins.
US08828694B2 Production of isobutanol in yeast mitochondria
Yeast cells with modified expression of certain enzyme activities in the mitochondria are described for isobutanol production. Modifications described provide an isobutanol biosynthesis pathway in the yeast mitochondria.
US08828687B2 Method for the production of recombinant virus, DNA constructs, recombinant virus and vaccine compositions
The purpose of the present invention is the production of recombinant virus through the cloning and expression of sequences of coding nucleotides of the whole or part of heterolog proteins, through the following method: (a) modification of the heterolog nucleotides sequences in such way they when cloned and expressed in the vector virus, they present in the 5′ region, nucleotides present in the 5′ edge of the gene NS1 of this vector virus or of other virus or equivalent functional sequences, and in its 3′ region, the correspondent genome region in the whole or part of the spheres of the steam and anchor of the protein E of this vector virus or equivalent functional sequences, and not compromising the structure and the replication of the mention vector virus; (b) insertion of the modified heterolog sequences in (a) in the intergene region at the structural protein E level and of on structural NS1 vector virus; (c) obtention of the non pathogenic recombinant virus and owner of the immunologic properties, having the heterolog sequences integrated in the viral genome according to the insertion described in (b) and, like that, expressing the heterolog antigene in such way that it can induce an appropriate immune response. The present invention is also addressed to vaccine compositions to immune against the Flavivirus and/or other pathogens.
US08828684B2 Genetically modified host cells and use of same for producing isoprenoid compounds
The present invention provides genetically modified eukaryotic host cells that produce isoprenoid precursors or isoprenoid compounds. A subject genetically modified host cell comprises increased activity levels of one or more of mevalonate pathway enzymes, increased levels of prenyltransferase activity, and decreased levels of squalene synthase activity. Methods are provided for the production of an isoprenoid compound or an isoprenoid precursor in a subject genetically modified eukaryotic host cell. The methods generally involve culturing a subject genetically modified host cell under conditions that promote production of high levels of an isoprenoid or isoprenoid precursor compound.
US08828677B2 Protease crystals in broth
A method of solubilizing protease crystals and/or protease precipitate in a fermentation broth comprising a) diluting the fermentation broth 100-2000% (w/w); b) adding a divalent salt; and c) adjusting the pH value of the fermentation broth to a pH value below pH 5.5.
US08828676B2 Methods for differentiating plasma-derived protein from recombinant protein in a sample
The present invention relates, in general, to methods for detecting and quantitating plasma-derived protein and recombinant protein in a sample based on the difference in protein glycosylation, when the plasma protein and the recombinant protein are essentially the same protein.
US08828670B2 Method for the production of proteins and peptides
The invention relates to a method for producing monomeric or dimeric proteins or peptides containing internal or external disulfide bonds, comprising the following steps: a) a cell-free lysate, obtainable from eukaryotic cells, is provided, which contains functional microsomal vesicles, b) a nucleic acid coding the protein or peptide and additionally containing a signal sequence is added to the lysate, c) the lysate with the nucleic acid is held for a given time at a temperature in the range from 20 to 35° C., proteins or peptides formed with the nucleic acid being translocated into the microsomal vesicles, d) the microsomal vesicles are then dissolved, and the proteins or peptides obtained thereby are optionally separated from the lysate.
US08828669B2 Methods of screening for a compound that inhibits the interaction between BAFF and BCMA
A novel receptor in the TNF family is provided: BAFF-R. Chimeric molecules and antibodies to BAFF-R and methods of use thereof are also provided.
US08828666B2 Method for measuring bonding activity of antibody which mimics antibody-dependent cell medicated cytotoxic activity
The present invention provides a simple method which is capable of evaluating the binding activities of an antibody to both an antigen and an Fe receptor. Disclosed is a method of measuring the binding activities of an antibody to both an antigen or antigen epitope and an Fc receptor or a fragment thereof, comprising a step of mixing the antibody with the antigen or antigen epitope labeled with one member of a set of donor and acceptor capable of fluorescent resonance energy transfer and the Fc receptor or fragment thereof labeled with the other member of the set of donor and acceptor; a step of 10 irradiating the resultant mixture with light having a wavelength capable of exciting the donor; and a step of measuring the fluorescence level of the mixture. Also provided are a method of estimating the ADCC activity of an antibody, a method of controlling the quality of an antibody, a method of manufacturing an antibody, a method of screening for antibodies, and kits for use in these methods.
US08828660B2 Compositions, reaction mixtures and methods for detecting nucleic acids from multiple types of human papillomavirus
Nucleic acid oligonucleotide sequences are disclosed which include amplification oligomers and probe oligomers which are useful for detecting multiple types of human papillomaviruses (HPV) associated with cervical cancer. Methods for detecting multiple HPV types in biological specimens by amplifying HPV nucleic acid sequences in vitro and detecting the amplified products are disclosed.
US08828658B2 Spatio-temporal control of protein interactions using phytochromes
The invention provides methods, materials and systems of regulating association between proteins of interest using light. In an aspect, the invention takes advantage of the ability of phytochromes to change conformation upon exposure to appropriate light conditions, and to bind in a conformation-dependent manner to cognate proteins called phytochrome-interacting factors. The invention comprises a method of regulating interaction between a first protein of interest and second protein within a cell by light. Such a method optionally comprises providing in the cell (1) a first protein construct which comprises the first protein, a phytochrome domain (PHD), and (2) providing in the cell a second protein construct which comprises the second protein and a phytochrome domain-interacting peptide (PIP) that can bind selectively to the Pfr state, but not to the Pr state, of the phytochrome domain.
US08828651B2 Positive-type photosensitive resin composition and cured film manufactured therefrom
A positive-type photosensitive resin composition comprising component (A): an alkali-soluble resin having a functional group which undergoes heat crosslinking reaction with a compound of component (B), a functional group for film curing which undergoes thermoset reaction with a compound of component (C), and a number average molecular weight of 2,000 to 30,000; component (B): a compound having two or more vinyl ether groups per molecule; component (C): a compound having two or more blocked isocyanate groups per molecule; component (D): a photoacid generator; and component (E): a solvent. A production process of the positive-type photosensitive resin composition comprising mixing the above-mentioned components and maintaining the mixture at a temperature higher than room temperature. A cured film manufactured by using the positive-type photosensitive resin composition. The composition has a high sensitivity and little film reduction of unexposed part, maintains a high transmittance even after baking at a high temperature or resist stripping treatment, and cause no reduction of film thickness. Therefore, the composition provides a cured film suited as a film material for several displays.
US08828650B2 Method for making a retarder
A method for making a retarder includes: (a) forming a photocurable layer on a substrate, the photocurable layer including at least one photocurable prepolymer that has a plurality of reactive functional groups and a functional group equivalent weight ranging from 70 to 700 g/mol; (b) covering partially the photocurable layer using a patterned mask; (c) exposing the photocurable layer through the patterned mask; (d) removing the patterned mask; (e) exposing the photocurable layer to cure second regions of the photocurable layer so as to form a microstructure; (f) forming an alignment layer on the microstructure; (g) forming a liquid crystal layer on the alignment layer; and (h) curing the liquid crystal layer.
US08828649B2 Method of patterning a thin film
A method of patterning a thin film, comprising: depositing an intermediate, radiation sensitive, layer on a substrate; depositing the thin film on the intermediate layer, before or after deposition of the thin film: exposing the intermediate layer to patterned radiation in order to initiate a chemical reaction therein; and removing patterned radiation-defined parts of the intermediate layer and corresponding thin film, to leave patterned thin film and patterned intermediate layer on the substrate.
US08828647B2 Patterning process and resist composition
A negative pattern is formed by applying a resist composition onto a substrate, prebaking, exposing to high-energy radiation, baking (PEB), and developing the exposed resist film in an organic solvent developer to dissolve the unexposed region of resist film. The resist composition comprising a polymer comprising recurring units having an acid labile group-substituted carboxyl group and/or hydroxy group and recurring units having an oxirane or oxetane ring, an acid generator, and an organic solvent displays a high dissolution contrast in organic solvent development and controlled acid diffusion. A fine hole pattern featuring good size control can be formed.
US08828646B2 Lithographic printing plate precursor and method of producing thereof
To provide a lithographic printing plate precursor which is excellent in the gum development property, running processing property and scratch resistance and a lithographic printing plate precursor which is good in all performances of the on-press development property, ink receptivity, sensitivity and printing durability, and a method of producing thereof. A lithographic printing plate precursor has a support, an image-recording layer containing a radical polymerization initiator and a radical polymerizable compound, and an overcoat layer containing a polymer resin which has a cloud point in an aqueous solution and includes a monomer unit containing at least any of an amino group and an amido bond, in this order.
US08828640B2 Photo-curing polysiloxane composition and application thereof
This invention relates to a photo-curing polysiloxane composition including a polysiloxane, a quinonediazidesulfonic acid ester, a methylene alkoxyaryl-containing compound as a curing agent, and a solvent for dispersing the polysiloxane, the quinonediazidesulfonic acid ester, and the methylene alkoxyaryl-containing compound. This invention also provides a protecting film made from the photo-curing polysiloxane composition, and an element containing the protecting film.
US08828639B2 Toner
The invention provides a toner that is capable of low-temperature fixing even in high-speed electrophotographic processes while keeping the cleaning performance when used at high temperatures and the high-temperature storage stability. This toner having toner particles, each of which contains a binder resin and a colorant is characterized in that the temperature of Tp [° C.] when the loss elastic modulus obtained by dynamic viscoelastic measurements on the toner exhibits a maximum value in the temperature range from at least 30° C. to not more than 200° C., is from at least 40° C. to not more than 55° C., and in that, with G″(Tp) [Pa] being this maximum value, G″(Tp+15) [Pa] being the loss elastic modulus at the temperature of Tp+15 [° C.], and G″(Tp+30) [Pa] being the loss elastic modulus at the temperature of Tp+30 [° C.], G″(Tp), G″(Tp+15), and G″(Tp+30) satisfy prescribed relationships.
US08828635B2 Toner, developer, process cartridge, and image forming apparatus
A toner including a resin particle (C) is provided. The resin particle (C) includes a resin particle (B) and a resin particle (A). The resin particle (B) includes a resin (b). The resin particle (A) or covering layer (P) includes a resin (a). The resin particle (A) or covering layer (P) is adhered to a surface of the resin particle (B). The resin (a) is a polyester resin. The resin (a) has a total acid value of 15 to 36 mgKOH/g. The resin particle (A) or covering layer (P) has a surface acid value of 10 to 27 mgKOH/g.
US08828631B2 Pigment dispersion composition, photosensitive resin composition including the same and color filter using the same
Disclosed are a pigment dispersion composition including a pyridone azo-based compound including a monomer represented by the following Chemical Formula 1, a polymer including a repeating unit represented by the following Chemical Formula 2, or a combination thereof, wherein each substituents of Chemical Formulae 1 and 2 are the same as defined the detailed description, (B) a pigment, (C) a binder resin, (D) a dispersing agent, and (E) a solvent; a photosensitive resin composition including the same; and a color filter including the same.
US08828628B2 Method and system for design of a reticle to be manufactured using variable shaped beam lithography
A method for optical proximity correction (OPC) is disclosed, in which a set of VSB shots is determined, where the set of shots can approximately form a target reticle pattern that is an OPC-compensated version of an input pattern. The set of shots is simulated to create a simulated reticle pattern. A substrate image is calculated, based on using the simulated reticle pattern in an optical lithographic process to form the substrate image. A system for OPC is also disclosed.
US08828613B2 Membrane electrode assemblies and fuel-cell systems with surface-modified electrocatalysts and methods for electrocatalyst surface modification
Fuel-cell assemblies containing a membrane electrode assembly, methods for preparing the membrane electrode assembly, and methods for functionalizing catalytic surfaces of catalyst particles in the membrane electrode assembly of the fuel cell assembly have been described. The fuel-cell assemblies and their membrane electrode assemblies contain cathode catalyst materials having catalytic surfaces that are functionalized with cyano groups to improve catalyst activity. The cathode catalyst materials may include a catalytic metal such as platinum or a platinum alloy. The cyano groups may be derived from a cyanide source that is electro-oxidized onto the catalytic surfaces. Nonlimiting examples of cyanide sources include amino acids such as glycine, alanine, and serine. The cyano groups may improve catalyst activity toward the oxygen-reduction reaction in a hydrogen fuel cell by blocking catalyst surface adsorption of contaminant species such as sulfates or sulfonates while allowing access of oxygen molecules to the catalyst surface.
US08828612B2 Fuel cell system
The fuel cell system is simplified and made more compact while providing the favorable recirculation of hydrogen-containing off-gas regardless of the increase or decrease in its flow rate. The fuel cell system is provided with: a cell unit that generates electricity by means of separating hydrogen-containing gas and oxygen-containing gas from each other while placing in flow contact to each other; and a recirculation mechanism for recirculating to the cell unit hydrogen-containing off-gas discharged from the cell unit. The fuel cell system has a flow rate determination unit that determines whether or not the hydrogen-containing gas fed to the cell unit is less than a predetermined flow rate; and a gas feeding pressure varying mechanism that cause the pressure of the hydrogen-containing gas to vary to increase and decrease when it is determined that the hydrogen-containing gas fed to the cell unit is less than the predetermined flow quantity.
US08828607B2 Cathode material, cathode, and lithium ion secondary battery
It is an object to provide a cathode active material and a cathode which can attain a lithium ion secondary battery with high capacity and high security, and further to provide the lithium ion secondary battery with high capacity and high security.According to the present invention, the cathode active material is represented by the following composition formula: Li1.1+xNiaM1bM2cO2 wherein M1 represents Co, or Co and Mn; M2 represents Mo, W or Nb; −0.07≦x≦0.1; 0.6≦a≦0.9; 0.05≦b≦0.38; and 0.02≦c≦0.06.
US08828604B2 Battery
A battery capable of ensuring storage characteristics and overcharge characteristics is provided. The battery comprising a cathode, an anode, and an electrolytic solution. The cathode has a cathode current collector and a cathode active material layer provided on the cathode current collector. The cathode active material layer includes an aromatic compound having three or more benzene rings. The electrolytic solution includes at least one of an ester carbonate containing a halogen and an ester carbonate containing an unsaturated bond.
US08828602B2 Secondary battery with electrode leads at an outer side of a battery case
A secondary battery including: an electrode assembly including a plurality of first and second electrode plates and a plurality of separators between the first and second electrode plates; a first electrode tab on each of the first electrode plates; a second electrode tab on each of the second electrode plates; a case housing the electrode; and first and second electrode leads at an outer side of the case and electrically coupled to the first and second electrode tabs, respectively, wherein the first and second electrode leads and the first and second electrode tabs are respectively electrically coupled by bolts.
US08828600B2 Battery with reinforcing member for press-fitted terminal
The present disclosure provides a battery, which includes a case having through holes, electric terminals projecting outward from the case and fixed to the holes, and insulating members interposed between the case and the terminals. A flanged portion standing out from the case, located around the hole is formed, a reinforcing member is fitted to the outer periphery of the flanged portion that reinforces against the outward force applied to the flanged portion, and the terminal and the insulating member are inserted into the flanged portion, and then the flanged portion is press-fitted from the outside of the case for fixing the terminal to the hole. The battery may have a high sealing property at the fitted portion among the case and the terminal.
US08828596B2 Secondary battery including a lower terminal plate and an upper terminal plate
A secondary battery, including an electrode assembly including a first electrode, a second electrode, and a first electrode tab and a second electrode tab connected to the first electrode and the second electrode, respectively; a case including a receiving part that receives the electrode assembly, the case having an open side; a cap plate sealing the open side of the case; and a first electrode terminal and a second electrode terminal passing through the cap plate, the first electrode terminal being connected to the first electrode tab, the second electrode terminal being connected to the second electrode tab, the first electrode terminal including a first terminal, a lower terminal plate provided at a top end of the first terminal, and an upper terminal plate provided at a top end of the lower terminal plate, the first electrode tab being connected to a bottom end of the first terminal.
US08828587B2 Deactivation or severing of an energy store
An energy store device, especially for a motor vehicle, includes at least two energy sources, which are connected via an electrical connection, and at least one safety element, the safety element being deformable and/or expandable in order to sever the electrical connection between the energy sources. In a method for severing electrical connections of an energy store device having at least two energy sources, a short-circuit risk is determined with the aid of at least one determination device, a propellant is activated following a determination result of the determination device, and at least one safety element is deformed and/or expanded by the activation of the propellant, in order to sever at least one electrical connection of the energy store device.
US08828584B2 Lithium-ion rechargeable battery module, vehicle with the battery module and generating system with the battery module
A lithium-ion rechargeable battery module having a plurality of lithium-ion battery cells, arranged that battery cells located at an high temperature portion of the module are electrically connected in parallel with battery cells located at a low temperature portion of the module. The battery cells at the high temperature portion have a higher electric resistance at 20° C. and a better high-temperature storage characteristic at 50° C. than those of the battery cells located at the low temperature portion.
US08828582B2 Battery and assembly method
An example includes a method including forming a battery electrode by disposing an active material coating onto a silicon substrate, assembling the battery electrode into a stack of battery electrodes, the battery electrode separated from other battery electrodes by a separator, disposing the stack in a housing, filling the interior space with electrolyte, and sealing the housing to resist the flow of electrolyte from the interior space.
US08828579B2 Battery
The invention provides a battery, which can improve battery characteristics such as high temperature storage characteristics. The battery comprises a battery device, wherein a cathode and an anode are wound with a separator in between. The anode contains an anode material capable of inserting and extracting Li as an anode active material. An electrolytic solution is impregnated in the separator. The electrolytic solution contains a solvent, and an electrolyte salt such as Li[B(CF3)4] dissolved in the solvent, which is expressed by a chemical formula of Li[B(RF1)(RF2)(RF3)RF4]RF 1, RF 2, RF 3, and RF 4 represent a perfluoro alkyl group whose number of fluorine or carbon is from 1 to 12, respectively. Consequently, high temperature storage characteristics are improved.
US08828576B2 Prismatic cell with integrated cooling plate
A battery cell assembly includes a battery cell including active material configured to generate power from an electrochemical reaction. A pouch formed from insulating material envelopes the battery cell. The battery cell assembly further includes a cooling element having an internal portion and an external portion. The internal portion is disposed within the pouch and is in thermal communication with the battery cell. The external portion is disposed outside of the pouch. The cooling element is configured to transfer heat generated during the electrochemical reaction away from the battery cell.
US08828574B2 Electrolyte compositions for aqueous electrolyte lithium sulfur batteries
Provided are lithium sulfur battery cells that use water as an electrolyte solvent. In various embodiments the water solvent enhances one or more of the following cell attributes: energy density, power density and cycle life. Significant cost reduction can also be realized by using an aqueous electrolyte in combination with a sulfur cathode. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage.
US08828572B2 Portable terminal device
A portable terminal device has a battery cover that can be opened/closed without a tool, and is small and thin, with a waterproof structure. The device has a housing with a battery pocket which houses a battery; and a battery cover which slides and opens/closes the battery pocket. The housing has a battery cover engaging section wherein a locking claw disposed on one end of the battery cover slides and is inserted such that the end of the battery cover is supported; and a packing deformation preventing/suppressing wall, which surrounds the battery pocket, except on the battery cover engaging section, and prevents a packing, integrally molded with the battery cover from deforming. The packing is integrally molded with the battery cover and a deformation preventing rib prevents the packing from deforming in the region having no packing deformation preventing/suppressing wall.
US08828570B2 Battery temperature sensor
A battery temperature sensor may include a substrate and a thin film resistive temperature device (RTD). The substrate can be layered on a battery cell element. The battery cell element can be an anode, a cathode, and a separator between the anode and cathode used in a battery cell. The thin film resistive temperature device (RTD) on the flexible substrate can change resistance with a change in temperature. A battery cell housing can enclose the thin film RTD.
US08828569B2 Battery can for storage battery
Disclosed is a battery can for a storage battery, provided with a safety valve having a first and a second score groove portion is provided to inner and outer surface of can bottom, can body, or can lid. The first and the second score groove portion face each other, and have a first and a second score groove bottom portion, which have a radius of curvature R, respectively. The R is more than 0.20 mm and less than 1.20 mm, and a distance between the bottom portions is 0.045 to 0.150 mm. The portion, which has the safety valve, is constituted by a plated steel sheet having a steel sheet portion of C content is less than 0.040 mass %, S content is less than 0.020 mass %, and tensile strength TS is less than 400 MPa, and a plate layer formed on a surface of the steel sheet portion.
US08828568B2 Fuel cell system
A fuel cell system includes a fuel cell, a motor connected to the fuel cell, an FC boost converter which raises the output voltage of the fuel cell to output the voltage to the motor, an inverter, and a controller which controls the fuel cell, the FC boost converter and the inverter. When abnormality occurs in one of the FC boost converter and the inverter, an abnormality signal does not pass through a converter control unit or an inverter control unit but is transmitted to the other device, thereby enabling the stop of both the FC boost converter and the inverter.
US08828565B2 Lubricant composition, fluorine-based compound, and use thereof
Disclosed is a lubricant composition comprising at least one kind of compound represented by following formula (1): where X represents a cyclic group that may be substituted; Y represents a divalent or higher-valent linking group having at least one polar group and having no aromatic cyclic group; p1 represents an integer of 1 to 4; p2, p3, and p4 each represent an integer of 0 to 4; q represents an integer of 0 to 30; n represents an integer of 1 to 10; s represents an integer of 1 to 4; and t represents an integer of 2 to 10.
US08828563B2 Cutting tool for machining metallic materials
A cutting tool for metal material processing has a hard metal body and a multi-layer coating applied to the hard metal body in at least one surface area. The multi-layer coating includes the following, sequentially in direction from the hard metal body to the surface of the cutting tool: at least one layer TiCx1Ny1, where x1+y1=1, x1≧0, y1>0; at least one layer TiCx2Ny2Oz2, where x2+y2+z2=1, 0≦z2≦0.03 and 0.5≦x2≦0.85; at least one layer TiN, or TiCx31Ny31, where 0.2≦x31≦0.8 and x31+y31=1, or TiNy32Bv32, where 0.0001≦v32≦0.05 and y32+v32=1; at least one layer: TiNy41Bv41Oz41, where y41+v41+z41=1 and 0.0001≦v41≦0.05 and 0.01≦z41≦0.6, or TiCx42Ny42Oz42, where x42+y42+z42=1 and 0≦y42≦0.5 and 0.01≦z42≦0.6; and at least one outer layer κ-Al2O3. The at least one layer TiCx2Ny2Oz2 has a texture in the direction having a texture coefficient TC(311)=1.3.
US08828561B2 Compound for organic photoelectric device and organic photoelectric device including the same
A compound for an organic photoelectric device, the compound being represented by the following Chemical Formula (“CF”) 1:
US08828560B2 Biphenyl-metal complexes—monomeric and oligomeric triplet emitters for OLED applications
The present invention relates to light-emitting devices and novel emitter materials as well as emitter systems and, in particular, organic light-emitting devices (OLEDs). In particular, the invention relates to the use of luminescent complexes as emitters in such devices.
US08828557B2 High strength galvanized steel sheet having excellent formability, weldability, and fatigue properties and method for manufacturing the same
A high strength galvanized steel sheet including all in mass %, C: 0.05% to <0.12%, Si: 0.35% to <0.80%, Mn: 2.0 to 3.5%, P: 0.001 to 0.040%, S: 0.0001 to 0.0050%, Al: 0.005 to 0.1%, N: 0.0001 to 0.0060%, Cr: 0.01% to 0.5%, Ti: 0.010 to 0.080%, Nb: 0.010 to 0.080%, and B: 0.0001 to 0.0030%, optionally one or more of Mo: 0.01 to 0.15%, Ca: 0.0001 to 0.0050%, REM: 0.0001 to 0.1%, and Sb: 0.0001 to 0.1%, and Fe and unavoidable impurities as the balance, has a microstructure containing a ferrite phase with a volume fraction in a range of 20 to 70% and an average grain diameter equal to or smaller than 5 μm, and has a galvanized layer on a surface thereof at a coating weight (per side) of 20 to 150 g/m2.
US08828551B2 Silicone composition and process that is useful for improving the tear strength and the combing strength of an inflatable bag for protecting an occupant of a vehicle
The general field of the invention is that of airbags. The invention relates to a process for improving the tear strength and the combing strength of coated fabrics intended for uses in the field of inflatable bags, using a silicone composition comprising an additive consisting of a polyorganosiloxane resin (V) and a calcium carbonate. After coating the composition onto the fabric supports and curing, the coated supports not only have optimum adhesion and crease resistance properties, but also have good properties in terms of combing strength and tear strength.
US08828549B2 Interlayer for laminated glass and laminated glass
The present invention provides an interlayer film for laminated glass, that exhibits an excellent sound-insulating performance for solid-borne sound in an environment at or below 0° C. Another object is to provide laminated glass that is obtained using this interlayer film for laminated glass. The present invention is an interlayer film for laminated glass, that has a sound-insulating layer for which a temperature T1, which is the temperature that gives the maximum value of tan δ at a frequency of 1 Hz, is in the range from −30° C. to 0° C.
US08828546B2 Coated medical device
The invention relates to an article comprising a coating, which coating comprises at least two layers, of which the inner layer is a primer layer, comprising a supporting network comprising a supporting polymer, and the outer layer is a functional layer comprising a multifunctional polymerizable compound.
US08828543B2 Conductive particles comprising complex metal layer with density gradient, method for preparing the particles, and anisotropic conductive adhesive composition comprising the particles
Disclosed herein are anisotropic conductive particles having superior electrical reliability which are useful as materials for electrical connection structures. Further disclosed is a method for preparing conductive particles comprising polymer resin base particles and a conductive complex metal plating layer formed on the surface of the base particles wherein the conductive complex metal plating layer has a substantially continuous density gradient and can include nickel (Ni) and gold (Au).
US08828541B2 Titanium dioxide doped with fluorine and process for the production thereof
A crystalline titanium dioxide containing fluorine atoms within the crystal lattice comprising atoms of titanium and oxygen is described; this titanium dioxide is particularly suitable for the production of solid-state electrolytes, hybrid membranes for fuel cells or electrolysers. A process for producing the aforesaid titanium dioxide is also described.
US08828538B1 Thick doped adhesive tape to enhance backscatter X-ray detectability
Doped adhesive tape is used during the manufacture of aircraft, including positioning marks, covering orifices from debris, allowing locations to be marked. Any doped adhesive tape inadvertently left in sub-assemblies during the manufacturing process can be detected using backscatter X-ray inspection technology. Detection is facilitated in one embodiment by making the tape thicker, to produce an increased mass density, and in another embodiment by adding a dopant comprising an element that is readily detected by the backscatter X-ray technology. The element can be iodine, and can be incorporated into the backing layer or the adhesive layer of the tape during manufacturing. The use of both thicker tape and a dopant can be used in combination to facilitate detection. If the doped adhesive tape is detected after components are assembled using a backscatter X-ray inspection device, then the doped adhesive tape is removed.
US08828536B2 Conductive article having silver nanoparticles
A conductive article includes a metal nanoparticle composition formed on a substrate. The metal nanoparticle composition includes silver nanoparticles and a polymer having both carboxylic acid and sulfonic acid groups. The weight ratio of the polymer to silver is 0.0005 to 0.04.
US08828527B2 Surface-coated cutting tool
A surface-coated cutting tool includes a tool substrate made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet; and a hard coating layer formed by vapor-depositing in order, a lower layer (a), an intermediate layer (b), and an upper layer (c) on the tool substrate. The lower layer (a) is a Ti layer composed of one or more of a titanium carbide layer, a titanium nitride layer, a titanium carbonitride layer, a titanium carboxide layer, and a titanium oxycarbonitride layer, and having a thickness of 3 to 20 μm. The intermediate layer (b) is an aluminum oxide layer having a thickness of 1 to 5 μm, and having an α-type crystal structure in a chemically vapor-deposited state. The upper layer (c) is an aluminum oxide layer having a thickness of 2 to 15 μm, and containing one or more elements of Ti, Y, Zr, Cr, and B.
US08828523B2 Method for manufacturing graphene using light and graphene manufactured using the same
A method for manufacturing graphene using light capable of transferring and patterning graphene, and graphene manufactured using the method are disclosed. The method includes forming a graphene layer on a catalyst metal layer, attaching a support layer losing adhesion by light on the graphene layer, removing the catalyst metal layer, disposing a substrate on the graphene layer, and separating the support layer from the graphene layer by irradiating light to the support layer.
US08828522B1 Door and wall protection structures and material for producing the same
The invention relates to a composition for use in the production of an article of manufacture, and in particular, to the manufacture of wall and corner guards. The composition includes a biopolymer in combination with PETG as well as a modifier. The biopolymer and modifier are preferably produced from an annually renewable source such as corn or sugar as opposed to traditionally used petroleum based plastics. In this manner, the composition of the invention is relatively environmentally friendly as compared to known compositions while maintaining many of the desirable qualities thereof. In addition, the production of the articles of manufacture results in the consumption of fewer fossil fuels and less production of pollutants.
US08828519B2 Infrared-reflective coatings
A composition includes polymer and dispersed infrared-reflective clusters of titanium dioxide primary particles. The titanium dioxide primary particles are cemented together with precipitated silica and/or alumina to form clusters. The titanium dioxide primary particles have an average particle diameter in the range of from about 0.15 to about 0.35 micron, while the clusters of titanium dioxide primary particles have an average cluster diameter in the range of from about 0.38 to about 5 microns and a geometric standard deviation (GSD) in the range of from about 1.55 to about 2.5.
US08828515B2 Predictable bonded rework of composite structures using tailored patches
A patch for reworking an inconsistent area in a composite structure includes a composite laminate patch and a layer of adhesive for bonding the laminate patch to the composite structure. The laminate patch has at least first and second regions for releasing strain energy around the inconsistent area respectively at different rates.
US08828514B2 Fluororesin tube and rotary member for fixing device
Provided are a fluororesin tube that has substantially no scratches formed during manufacturing, and a rotary member for a fixing device, the rotary member obtained by using the fluororesin tube. The fluororesin tube is a heat-shrinkable fluororesin tube that covers a rotary member for a fixing device, such as a fixing roller or a pressure roller, to form an outermost layer of the rotary member, wherein a maximum depth of a linear scratch on a surface of the fluororesin tube is 0.8 μm or less. In one embodiment, the length of the linear scratch is 1 mm or less, and the thickness of the fluororesin tube is 100 μm or less.
US08828513B2 Energy absorbing stitch ripping composite tubes containing collapsible cells
An energy absorbing system has an inner tube and an outer tube that are stitched together. The inner tube contains a set of fibers oriented in a first direction and the outer tube has a second set of fibers oriented in a direction different from the first direction. Preferably these orientations are equal and opposite to each other. The inner tube may be hollow, but preferably has a cellular core. The outer tube may be spaced apart from the inner tube to create an annular cavity that is filled with a cellular material.
US08828511B2 Object made of hollow glass
The invention relates to a hollow glass article having, for a thickness of 5 mm, an overall light transmission greater than or equal to 70%, said overall light transmission being calculated by taking into consideration the illuminant C as defined by the ISO/CIE 10526 standard and the CIE 1931 standard colorimetric observer as defined by the ISO/CIE 10527 standard, and a filtering power greater than or equal to 65%, especially 70%, said filtering power being defined as being equal to the value of 100% reduced by the arithmetic mean of the transmission between 330 and 450 nm, said article having a chemical composition of soda-lime-silica type, which comprises the following optical absorbent agents in a content that varies within the weight limits defined below: Fe2O3 (total iron) 0.01 to 0.15% TiO2 0.5 to 3% Sulfides (S2−) 0.0010 to 0.0050%.
US08828509B2 Party gift wreath apparatus and methods
A gift wreath apparatus hangs similar or different reusable gift boxes to be filled. In one example, a plurality of hangers is configured for removeably and slidably hanging the reusable gift boxes from the wreath member. A plurality of fasteners are configured for attaching one of the reusable gift boxes in a substantially closed configuration to one of the hangers and for detaching the gift box from the second hanger end while keeping the box closed. The fastener can comprise a hook on the free end of the hanger and a ribbon secured to the lid of the box. The box ribbon is bow tied and the bow tie hung from the hook. The apparatus can be assembled from a kit of parts. A method for assembly can be provided in an instruction manual provided with the kit of parts.
US08828508B2 Nematic liquid crystal composition and liquid crystal display element using same
A liquid crystal composition in which deterioration of viscosity that is associated with an increase in Δn and an increase in Δ∈ is suppressed, and a liquid crystal display element having a markedly improved response speed by using the relevant liquid crystal composition. The liquid crystal composition has a large value of Δn and negative Δ∈, and have large absolute values thereof. Also, the liquid crystal composition has low η, has excellent liquid crystal properties, and exhibits a liquid crystal phase that is stable in a wide temperature range. Furthermore, since the liquid crystal composition is chemically stable to heat, light, water and the like, the liquid crystal composition is capable of low voltage driving, and is practically useful and highly reliable.
US08828505B2 Plasma enhanced cyclic chemical vapor deposition of silicon-containing films
The present invention is a process of plasma enhanced cyclic chemical vapor deposition of silicon nitride, silicon carbonitride, silicon oxynitride, silicon carboxynitride, and carbon doped silicon oxide from alkylaminosilanes having Si—H3, preferably of the formula (R1R2N)SiH3 wherein R1 and R2 are selected independently from C2 to C10 and a nitrogen or oxygen source, preferably ammonia or oxygen has been developed to provide films with improved properties such as etching rate, hydrogen concentrations, and stress as compared to films from thermal chemical vapor deposition.
US08828502B2 Making a conductive article
A method of making a conductive article includes depositing on a substrate a metal nanoparticle composition having water, silver nanoparticles dispersed in the water and a water-soluble polymer having both carboxylic acid and sulfonic acid groups. The weight percentage of silver in the composition is greater than 10%. The metal nanoparticle composition is dried. The dried metal nanoparticle composition is converted to improve the electrical conductivity of the dried metal nanoparticle composition.
US08828499B2 Use of a target for spark evaporation, and method for producing a target suitable for said use
The invention relates to a method for using a target for a coating process of metal oxide and/or metal nitride coatings by means of spark evaporation, wherein the target can be operated at a temperature that is higher than the melting point of the metal used in the target, and wherein the target is comprised of a metal whose oxides and/or nitrides are not electrically conducting. The invention further relates to the use of a target for producing metal oxide coatings and/or metal nitride coatings by means of spark evaporation, wherein the target has a matrix comprised of a metal, in which matrix non electrically conducting oxides and/or nitrides of the metal are embedded.
US08828498B2 Method of coating a surface with a water and oil repellant polymer layer
The invention provides a method of coating a surface with a water and oil repellant polymer layer. The method comprises the steps of providing a substrate with a surface, exposing the surface to a monomer compound, and exposing the surface to a continuous plasma having a plasma power provided by a plasma circuit. During the exposition of the surface to the continuous plasma, the plasma power is reduced from an initial higher plasma power to a final lower plasma power, the final lower plasma power being less than 35% of the initial higher plasma power, thus applying an even polymer layer exhibiting a water contact angle of more than 110°.
US08828493B2 Methods of directed self-assembly and layered structures formed therefrom
Methods are disclosed for forming a layered structure comprising a self-assembled material. An initial patterned photoresist layer is treated photochemically, thermally, and/or chemically to form a treated patterned photoresist layer comprising a non-crosslinked treated photoresist. The treated photoresist is insoluble in an organic solvent suitable for casting a material capable of self-assembly. A solution comprising the material capable of self-assembly dissolved in the organic solvent is casted on the treated layer, and the organic solvent is removed. The casted material is allowed to self-assemble with optional heating and/or annealing, thereby forming the layered structure comprising the self-assembled material. The treated photoresist can be removed using an aqueous base and/or a second organic solvent.
US08828491B2 Methods for manufacturing architectural constructs
An architectural construct is a synthetic material that includes a matrix characterization of different crystals engineered to exhibit certain properties. An architectural construct can be fabricated by a process involving layer deposition, formation, exfoliation and spacing. In one aspect, purified methane can be dehydrogenated onto a substrate by applying heat through the substrate. Deposited carbon can form a plurality of layers of a matrix characterization of crystallized carbon through self-organization. The layers can be exfoliated and spaced to configure parallel orientation at a desired spacing and thickness using selected precursors and applying heat, pressure, or both. The desired architectural construct can further be stabilized and doped to exhibit desired properties.
US08828488B2 Methods for producing a thin film consisting of nanosheet monolayer film(s) by spin coat methods, and hyperhydrophilized materials, substrates for an oxide thin film and dielectric materials obtained therefrom
To provide a method for producing a thin film consisting of nanosheet monolayer film(s) and use of the thin film obtained thereby.The method for producing a thin film consisting of nanosheet monolayer film(s) by a spin coat method according to the invention comprises a step for preparing an organic solvent sol formed by allowing nanosheets obtained by the exfoliation of an inorganic layered compound to be dispersed in an organic solvent; and a step for dropping the organic solvent sol onto a substrate and rotating the substrate using a spin coater. Preferably, the nanosheet size, the organic solvent sol concentration and the spin coater rotation speed are controlled.
US08828487B2 Vapor permeable fabric constructs
This invention relates to protective, multi-layered, breathable fabric constructs. The constructs which are flexible employ a fabric layer and a breathable coating layer applied to the fabric. Under certain preferred embodiments, the fabric constructs also employ an energy dissipating fiber material disposed opposite the coating layer. Also, the present invention teaches a method of protecting a valuable or sensitive object from damage caused by corrosion, weather, bio mass, or other environmental related conditions using the fabric material. The fabric constructs may be post-formed using heat or other methods to create shaped-to-form covers.
US08828485B2 Carbon-encased metal nanoparticles and sponges as wood/plant preservatives or strengthening fillers
We disclose novel metallic nanoparticles coated with a thin protective carbon shell, and three-dimensional nano-metallic sponges; methods of preparation of the nanoparticles; and uses for these novel materials, including wood preservation, strengthening of polymer and fiber/polymer building materials, and catalysis.
US08828483B2 Manufacturing method for magnetic recording medium, magnetic recording/reproducing device
Disclosed is a method of manufacturing a magnetic recording medium having a clear magnetic recording pattern through a simple process. The method includes: forming a magnetic layer on the non-magnetic substrate; forming a mask layer which covers a surface of the magnetic layer; forming a resist layer on the mask layer; patterning the resist layer using a stamp; patterning the mask layer using the resist layer, forming a recess by partially removing a portion of the magnetic layer not covered by the mask layer; forming a non-magnetic layer which covers a surface where a recess is formed; flattening a surface of the non-magnetic layer until the mask layer is exposed; removing an exposed mask layer; removing a protruding portion of the non-magnetic layer; and forming a protective layer which covers a surface where the protruding portion was removed.
US08828482B1 Electroless coated disks for high temperature applications and methods of making the same
A disk for a hard disk drive is provided. The disk comprises a substrate comprising aluminum, and a coating layer disposed over the substrate. The coating layer comprises an alloy of Ni, X1 and X2, wherein X1 comprises one or more elements selected from the group consisting of Ag, Au, B, Cr, Cu, Ga, In, Mn, Mo, Nb, Pb, Sb, Se, Sn, Te, W, Zn and Zr, and wherein X2 comprises either B or P, and wherein X1 and X2 do not comprise the same elements.
US08828481B2 Method of depositing silicon on carbon materials and forming an anode for use in lithium ion batteries
A method of modifying the surface of carbon materials such as vapor grown carbon nanofibers is provided in which silicon is deposited on vapor grown carbon nanofibers using a chemical vapor deposition process. The resulting silicon-carbon alloy may be used as an anode in a rechargeable lithium ion battery.
US08828479B2 Process for producing light absorbing layer for chalcopyrite type thin-film solar cell
A process for producing a light absorbing layer for thin-film solar cell that possesses a film structure having a constituent component of chalcopyrite compound (Cu(In+Ga)Se2) uniformly distributed thereinside. There is provided a process for producing a light absorbing layer, including the precursor forming step of superimposing on an Mo electrode layer, adjacent to the electrode layer, an In metal layer and a Cu—Ga alloy layer according to sputtering technique; a first selenization step of, while accommodating precursor-provided substrate in an airtight space, introducing hydrogen selenide gas in the airtight space conditioned so as to range from room temperature to 250° C.; a second selenization step of additionally introducing hydrogen selenide gas in the airtight space heated so as to range from 250° to 450° C.; a third selenization step of, while causing the hydrogen selenide gas having been introduced up to the second selenization step to remain, heating the interior of the airtight space so as to range from 450° to 650° C. and, within this range of temperature, performing heat treatment of the substrate; and a cooling step of cooling the substrate after the heat treatment.
US08828471B2 Method for manufacturing solid milk
The object of the present invention is to provide solid milk having suitable solubility and strength and a method for manufacturing such solid milk.The present invention is based on the knowledge that solid milk combining sufficient strength with sufficient solubility can be obtained basically by compacting and molding only powdered milk as an ingredient under a condition where porosity and free fat content thereof are controlled within fixed ranges and then humidifying and drying. The above-described object can be attained with solid milk with a porosity of 30% to 50% and a method for manufacturing solid milk, comprising a compacting process for compacting powdered milk and obtaining a solid compacted body of powdered milk, a humidifying process for wetting the compacted body of powdered milk obtained in the compacting process, and a drying process for drying the compacted body of powdered milk humidified in the humidification process.
US08828469B2 Use of alkamides for masking an unpleasant flavor
An individual alkamide and/or a mixture having two or more different alkamides, is disclosed for changing, masking or reducing the unpleasant flavor impression of an unpleasant-tasting substance or mixture of substances. The alkamide can be trans-pellitorine; cis-pellitorine; 2Z,4Z- or 2Z,4E-decadienoic acid-N-isobutylamide; 2E,4E-decadienoic acid-N-([2S]-2-methylbutyl)amide; 2E,4E-decadienoic acid-N-([2R]-2-methylbutylamide); 2E,4Z-decadienoic acid-N-(2-methylbutyl)amide; achilleamide; sarmentine; 2E- or 3E-decenoic acid-N-isobutylamide; 3E-nonenoic acid-N-isobutylamide; spilanthol; homospilanthol; 2E,6Z,8E-decatrienoic acid-N-([2R]-2-methylbutyl)amide; 2E- or 2Z-decen-4-oic acid-N-isobutylamide; α-sanshool; α-hydroxysanshool; γ-hydroxysanshool; γ-hydroxysanshool; γ-hydroxyisosanshool; γ-dehydrosanshool; γ-sanshool; bungeanool; isobungeanool; dihydrobungeanool; or tetrahydrobungeanool, or combinations thereof.
US08828464B2 Whitened exine shells
A whitened exine shell having a degree of whiteness (L*) of greater than 65 measured under D 65 illumination. The shell can be used as a delivery vehicle for an active substance, or as an antioxidant. It can be used in a method of surgery, therapy or diagnosis. The invention provides a formulation containing the whitened exine shell together with an active substance; and a method for preparing the shell by isolating an exine shell from a naturally occurring spore under treatment conditions which do not include aceto lysis, and treating the isolated shell or a precursor thereof with a bleaching composition.
US08828463B2 Packaging of respiring biological materials
Packaging of bananas in containers, for example polyethylene bags, having designed permeabilities to oxygen, carbon dioxide, and ethylene. The bags preferably include a gas-permeable membrane comprising (1) a microporous film, and (2) a polymeric coating on the microporous film. The containers enable storage and/or ripening of bananas under controlled conditions. Using the new containers, bananas can be ripened while they are being transported, or in conventional ripening rooms without opening the containers in which they have been transported, or after they have left a ripening room. In addition, bananas can be preserved in a satisfactory ripened state for longer periods of time.
US08828462B2 Method for preparing a proteinaceous vegetable flavor enhancer
This invention includes a method of producing hydrolyzed vegetable protein from proteinaceous vegetable material using commercial enzymes and optimally also fresh baker's yeast as source of proteases and peptidases. The invention further includes a method of solubilizing and pasteurizing proteinaceous vegetable material.
US08828457B1 Emulsions providing stable vitamin compositions and methods of forming compositions thereof
Stable vitamin oil-in-water emulsions and methods of making those emulsions are described herein. The emulsions may be used to make beverage products that include fat-soluble vitamins. The emulsions may also be used in beverage products that are colored and which maintain color stability for an extended period of time.
US08828453B2 Herbal-based compositions for alleviating symptoms associated with autism
Aspects of the invention relate to compositions comprising passiflora extracts that may improve neurological and behavioral symptoms associated with Pervasive Developmental Disorders.
US08828452B2 Method for pain control
Methods for providing post-operative pain control or relief to a patient are disclosed. Methods include, for example, administering bicarbonate to an area of a patient during a surgical or dental procedure, near completion of a surgical or dental procedure or immediately following a surgical or dental procedure, in an area previously administered or containing a regional or local anesthetic in an amount sufficient to provide the patient with pain control or relief for a period of time after the surgical or dental procedure.
US08828447B2 Process for the isolation of a phospholipid
The present invention relates to processes for the isolation of a phospholipid and for producing a polyunsaturated, long-chain fatty acids (PUFA)-enriched fraction from a fish oil comprising the steps of —providing a fish oil containing lipids and phospholipids; —mixing the fish oil with a polar solvent; —centrifuging the mixture of the fish oil and the polar solvent to separate a polar fraction from a lipid fraction; —isolating a phospholipid from the polar fraction or isolating a PUFA-enriched fraction from the polar fraction. The fish oil may be provided by —extracting a fish material with an extractant solvent; —removing the extractant solvent to provide the fish oil; —optionally subjecting the fish oil to a solid-liquid separation. The isolated phospholipids and PUFA's may be used as additives for functional foods, as a dietary supplement and for pharmaceutical application.
US08828445B2 Method for preparing nano-particles utilizing a saccharide anti-coagulant
The present invention relates to a method for preparing nano-particles, and more particularly, to a method for preparing nano-particles containing active materials in a simple and highly efficient manner through a grinding process.
US08828439B2 Titanosilicate molecular sieve supported metallic nanodots and methods of use to adsorb noble gases
A metal nanodot material is formed by ion-exchange with an ETS zeolite, followed by activation to form metallic nanodots. The nanodot may be formed from silver, nickel, copper, gold or a platinum group metal.
US08828436B2 Methods and compositions for treating tissue using silk proteins
Compositions for forming a self-reinforcing composite biomatrix, methods of manufacture and use therefore are herein disclosed. Kits including delivery devices suitable for delivering the compositions are also disclosed. In some embodiments, the composition can include at least three components. In one embodiment, a first component can include a first functionalized polymer, a second component can include a second functionalized polymer and a third component can include silk protein or constituents thereof. In some embodiments, the composition can include at least one cell type and/or at least one growth factor. In some embodiments, the composition can include a biologic encapsulated, suspended, disposed within or loaded into a biodegradable carrier. In some embodiments, the composition(s) of the present invention can be delivered by a dual lumen injection device to a treatment area in situ, in vivo, as well as ex vivo applications.
US08828434B2 Nanocomposite hydrogel and method for preparing it, for industrial and medical applications
Nanocrystalline cellulose (NCC) is employed as the cross-linker and reinforcement domain for developing nanocomposite hydrogels possessing high strength and improved diffusion property; the resulting nanocomposite hydrogels are shown to have high mechanical properties, reversible swelling ability, and are biodegradable and biocompatible; the approach relies on free radical polymerization to form the hydrogels using a variety of hydrophilic vinyl monomers. These hydrogels are suitable for developing highly absorbent hygiene products, as well as for applications in medicine, engineering materials and sensors.
US08828433B2 Hydrogel bioscaffoldings and biomedical device coatings
Bioscaffoldings formed of hydrogels that are crosslinked in situ in an infarcted region of the heart (myocardium) by a Michael's addition reaction or by a disulfide bond formed by an oxidative process are described. Each of the bioscaffoldings described includes hyaluronan as one of the hydrogel components and the other component is selected from collagen, collagen-laminin, poly-1-lysine, and fibrin. The bioscaffolding may further include an alginate component. The bioscaffoldings may have biofunctional groups such as angiogenic factors and stem cell homing factors bound to the collagen, collagen-laminin, poly-1-lysine, or fibrinogen hydrogel component. In particular, the biofunctional groups may be PR11, PR39, VEGF, bFGF, a polyarginine/DNA plasmid complex, or a DNA/polyethyleneimine (PEI) complex. Additionally, the hydrogel components may be injected into the infarct region along with stem cells and microspheres containing stem cell homing factors. The bioscaffolding may be formed on a stent or a cardiac medical device.
US08828430B2 3′-[(2Z)-[1-(3,4-dimethylphenyl)-1,5-dihydro-3-methyl-5-oxo-4H-pyrazol-4-ylidene]hydrazino]-2′-hydroxy-[1,1′-biphenyl]-3-carboxylic acid bis-(monoethanolamine)
Disclosed are novel pharmaceutical compositions containing 3′-[(2Z)-[1-(3,4-dimethylphenyl)-1,5-dihydro-3-methyl-5-oxo-4H-pyrazol-4-ylidene]hydrazino]-2′-hydroxy-[1,1′-biphenyl]-3-carboxylic acid bis (monoethanolamine) (eltrombopag olamine) and processes for preparing the same.
US08828429B2 Release-control composition
The present invention relates to a controlled release capsule preparation for oral administration, which contains (i) a granule containing a physiologically active substance which is a compound represented by the formula: wherein n is an integer of 1 to 3, and Ar is an aromatic ring optionally having substituent(s), or a salt thereof, and a hydrophilic polymer, and coated with an enteric coating agent and the like, and (ii) a fluidizer. According to the present invention, a controlled release composition for oral administration of an imidazole derivative, which has steroid C17,20-lyase inhibiting activity and which has remarkably improved sustainability of the blood concentration, is provided.
US08828428B1 Pharmaceutical delivery systems for hydrophobic drugs and compositions comprising same
A drug delivery system for oral administration of hydrophobic drugs with enhanced and extended absorption and improved pharmacokinetics is provided. In one embodiment, formulations comprising testosterone and testosterone esters, e.g., testosterone palmitate, are disclosed. Methods of treating a hormone deficiency or effecting male contraception with the inventive formulations are also provided.
US08828426B2 Multiparticulate L-carnitine compositions and related methods
Enteric coated multiparticulate compositions that use a L-carnitine compound an active ingredient are disclosed. The multiparticulates have spheroidal core comprising a L-carnitine, microcrystalline cellulose, and hydroxypropyl methylcellulose; a sub-coat comprising hydroxypropyl methyl cellulose on the spheroidal core; and an enteric coat on the sub-coated spheroidal core. The average diameter of the particulates is about 0.1-3 mm. Other aspects of the invention include methods of making and methods of using the multiparticulate compositions.
US08828423B2 Delivery system for active components as part of an edible composition having preselected tensile strength
A delivery system for inclusion in an edible composition is formulated to have at least one active component encapsulated within an encapsulating material, whereby the delivery system has a tensile strength suitable for delivering the active component at a desired release rate.
US08828421B2 Method for encapsulation of orally ingested materials to alter the site of digestion, site of action, or stability
Comestible materials encapsulated by a film-forming composition including a plant protein source and methods of forming the same are provided. The film-forming composition affects the site of digestion of the comestible material within the digestive tract of an animal or a human thereby allowing the material to be most effectively utilized by the body. Also, the film-forming compositions may be used to enhance the stability of the encapsulated material and prevent undesired interaction with other components of a mixture.
US08828415B2 Microcapsules with acetylene carbamide-polyurea polymers and formulations thereof for controlled release
The present Invention deals with an alternative Interfacial polymerization process of microencapsulation, microcapsule's produced thereof, microencapsulated agrochemicals, pharmaceuticals, catalysts and phase transfer materials, and formulations thereof, by means of microcapsules and starting materials with the participation of acetylene carbamide derivatives in the final structure of the microcapsules' wall.
US08828412B2 Stable polyphenol containing ophthalmic emulsion for treating dry eyes
Disclosed herein are stable oil-in-water emulsion ophthalmic topical liquid compositions having an average particle size less than 1 μm including at least one plant-derived oil other than castor oil wherein the oil comprises only aliphatic side chains free of polar pendent groups. The oil-in-water emulsion ophthalmic topical liquid compositions also include a hydrophilic surfactant having an HLB value between approximately 10 and 14, a vegetable oil-derived hydrophobic non-co-block surfactant having unsaturated side chains that contain less than four oxygen atoms having an HLB value between approximately 4 and 6 and is a liquid at room temperature. The oil-in-water emulsion ophthalmic topical liquid compositions disclosed herein can further include an amount of cyclosporine A or polyphenol in an amount effective to relieve dry eye symptoms.
US08828411B2 Dosage forms and methods of use thereof
Pharmaceutical dosage forms with external or internal features to complicate counterfeiting and support authentication are described. External features include surface texture, surface markings defined by patterns of physical or chemical markers, or complex interlocking shapes. Internal features also include physical or chemical markers in two or three-dimensional patterns observable after sectioning, or after breaking along designed fracture lines. Methods of manufacture using solid freeform fabrication (SFF) techniques such as three-dimensional printing (3DP) are described. Method of authentication using dosage form patterns and batch codes are also described.
US08828410B2 Pasty composition and cosmetics containing the same
This invention is a cosmetic material containing a pasty composition obtained by adding at least one acidic substance selected from a group comprising organic acids, phosphoric acid and phosphates to a mixture comprising a crosslinking type organopolysiloxane polymer having a polyoxyalkylene group and a liquid oil, adding a basic neutralizing agent to adjust the pH to 5-8, and removing volatile components by heating and/or decompression. This pasty composition is a composition wherein the propionaldehyde amount produced by adding an identical amount of water to the composition and heating at 60° C. for 24 hours is 100 ppm or less.
US08828404B2 Vaccine and method for treatment of neurodegenerative diseases
Methods and compositions are provided for treatment of neurodegenerative diseases in which there is accumulation of misfolded and/or aggregated proteins, excluding prion diseases. In particular, the invention relates to treatment of the neurodegenerative diseases Huntington's disease (HD), Alzheimer's disease (AD) or Parkinson's disease (PD), by administration of an agent selected from the group consisting of (i) Copolymer 1, (ii) a Copolymer 1-related peptide, (iii) a Copolymer 1-related polypeptide, and (iv) T cells activated with (i), (ii) or (iii).
US08828399B2 Cytomegalovirus surface protein complex for use in vaccines and as a drug target
Immunogenic compositions and prophylactic or therapeutic vaccines for use in protecting and treating against human cytomegalovirus (CMV) are disclosed. Subunit vaccines comprising a human CMV protein complex comprising pUL128 or pUL130, and nucleic acid vaccines comprising at least one nucleic acid encoding a CMV protein complex comprising pUL128 or pUL130 are described. Also disclosed are therapeutic antibodies reactive against a CMV protein complex comprising pUL128 or pUL130, as well as methods for screening compounds that inhibit CMV infection of epithelial and endothelial cells, methods for immunizing a subject against CMV infection, methods for determining the capability of neutralizing antibodies to inhibit CMV infection of cell types other than fibroblasts, and methods of diminishing an CMV infection.
US08828395B2 Antibodies that bind tyrosyl-tRNA synthetases
Hematopoietic-modulating compositions are provided comprising aminoacyl-tRNA synthetase polypeptides, including active fragments and/or variants thereof, as well as compositions comprising related agents such as antibodies and other binding agents. Also provided are methods of using such compositions in the treatment of conditions that benefit from the modulation of hematopoiesis.
US08828392B2 Histone deacetylase (HDAC) inhibitors (PXD101) for the treatment of cancer alone or in combination with chemotherapeutic agent
The present invention relates generally to methods for treating cancer. In one respect, the present invention relates to a method of treating a hematological cancer (e.g., multiple myeloma, leukemia, lymphoma) comprising administering to a patient in need thereof a therapeutically effective amount of a histone deacetylase inhibitor, for example, a histone deacetylase (HDAC) inhibitor as described herein, for example, PXD-101. In another respect, the present invention relates to a method of treating cancer (e.g., solid tumor cancer, e.g., rectal cancer, colon cancer, ovarian cancer; hematological cancer, e.g., multiple myeloma, leukemia, lymphoma) comprising administering to a patient in need thereof, a first amount of a histone deacetylase (HDAC) inhibitor, for example, a histone deacetylase inhibitor as described herein, for example, PXD-101, and a second amount of an other chemotherapeutic agent, for example, an other chemotherapeutic agent selected from: an antibody against VEGF, AVASTIN® (bevacizumab), an antibody against CD20, rituximab, bortezomib, thalidomide, dexamethasone, vincristine, doxorubicin, and melphalan, wherein the first and second amounts together comprise a therapeutically effective amount.
US08828387B2 Antibody having anti-cancer activity
By utilizing an SST-REX method, a cDNA encoding a protein expressed on a cell surface or secreted from the cell was selected from a cDNA library derived from a cancer cell line. Monoclonal antibodies against the protein encoding the selected cDNA were prepared. The in vitro and in vivo anti-cancer activities and binding to various cancer cells lines were examined. As a result, a monoclonal antibody which binds to a PODXL2 protein, and which had excellent anti-cancer activities was found. Further, a region including an epitope of the antibody was successfully identified, and the amino acid sequences of variable regions of a light chain and a heavy chain were successfully determined.
US08828386B2 Method for extending pregnancy by reducing intraventricular hemorrhaging in patients exhibiting at least one symptom of preeclampsia and eclampsia
A method lessening intraventricular hemorrhage in the fetus of a gravid human patient is provided where the patient is administered a therapeutically effective amount of digoxin antibody.
US08828383B2 Nanocarriers with multi-photon response elements
Compositions are provided in which dendrimers and/or nanoparticles are synthesized with multi-photon responsive elements and self-immolative oligomers. The compositions may be utilized to selectively deliver Payloads within tissue by irradiating the compositions. The compositions may also be used to amplify sensitivity to irradiation.
US08828371B2 Antibacterial hair removal composition
An antibacterial, non-aqueous liquid hair removing composition. The composition includes a solubilizing oil effective for solubilizing the ingredients, e.g., mineral oil, and an effective antibacterial amount of an antibacterial agent, e.g., triclosan and/or benzethonium chloride. The composition further includes botanical oils and rosins, e.g., soybean oil, gum rosin, rosin esters and titanium dioxide. The composition may also include fragrances and additional bacteriocides, e.g., phenoxyethanol. The hair removal composition is applied to a person's skin, and after a sufficient amount time, removed from the person's skin with the hair entrapped therein.
US08828370B2 Hair conditioning composition having higher yield point and higher conversion rate of fatty compound to gel matrix
Disclosed is a hair conditioning composition comprising: (a) a cationic surfactant; (b) a high melting point fatty compound; and (c) an aqueous carrier; wherein the cationic surfactant, the high melting point fatty compound, and the aqueous carrier form a gel matrix; wherein the composition has from about 90% to about 100% of a conversion rate of the high melting point fatty compound to the gel matrix; and wherein the composition has a yield point of about 33 Pa or more. Also disclosed is a method of manufacturing of hair conditioning composition. The compositions of the present invention, and the compositions made by the method of the present invention, provide improved conditioning benefits, especially, improved wet conditioning benefits after rinsing and improved dry conditioning, while maintaining wet conditioning benefit before rinsing.
US08828368B2 Cosmetic composition comprising a particular zinc salt and a starch
The present invention relates to a cosmetic composition comprising, in a cosmetically acceptable medium, at least one non-nitrogenous zinc salt and at least one starch, in a weight ratio of the amount of starch to the amount of zinc element ranging from 0.01 to 20. Another subject of the invention relates to a process for treating keratin fibers, using such a composition, and to the use of such a composition, preferably in the form of a leave-on care product, for conditioning keratin fibers and for protecting their artificial color from fading.
US08828367B2 Water-free antiperspirant non-aerosols in which active substances are more readily released
Antiperspirant compositions for personal body care are produced as a non-aerosol, stick, soft solid, cream, gel, non-sprayable suspension, non-sprayable solution, or impregnated on a substrate and include at least one antiperspirant, at least one oil as a carrier, said oil being liquid in normal conditions, 0-7 percent by weight of free water relative to the weight of the composition, and at least one selected alkyl-modified polyether.
US08828365B2 Additive for UV-sunscreen preparations
The invention relates to the use of polymeric particles for boosting the UV absorption of an UV filter in an UV-sunscreen composition, wherein the polymeric particles comprise at least one polymeric particle comprising at least one chromophore having an UV absorption maximum at λmax≧275 nm covalently bound thereto.
US08828363B2 Pharmaceutical composition for improving oral hygiene and methods thereof
An aqueous based pharmaceutical composition for use as a oral hygienic treatment is described. The composition contains a pharmaceutically effective amount of a tetracycline-based antibiotic; a water-soluble calcium salt that aids in solubilizing the tetracycline-based antibiotic; a thickener; a pH adjustment agent; an antifoaming agent; an excipient; a surfactant; a preservative; and a flavoring agent. A method of making the aqueous based pharmaceutical composition includes the steps of adjusting, defoaming, dispensing, dispersing, dissolving, flavoring, heating, minimizing, pouring, solubilizing, suspending, and sweetening. A method of using the aqueous based pharmaceutical composition is also disclosed which includes the steps of expectorating, gargling, obtaining, pouring, receiving, and swishing.
US08828359B2 Particulate materials
Embodiments of the invention relate to particles of active substances, methods for preparing the particles, formulations containing the particles, and metered dose inhalers containing such particles or formulations. In one embodiment, a composition of an aerosol formulation is provided and contains a particulate active substance of non-micronized, solid particles having a mass median aerodynamic diameter of less than 10 μm suspended in a hydrofluorocarbon fluid vehicle at a concentration within a range from about 0.2% w/v to about 5% w/v. The aerosol formulation exhibits a flocculation volume of about 85% or greater about 1 minute after mixing the particulate active substance and the hydrofluorocarbon fluid vehicle. The particulate active substance contains an alkaloid ergotamine, pharmaceutically acceptable salts thereof, analogs thereof, or derivatives thereof. In some examples, the alkaloid ergotamine contains dihydroergotamine, such as dihydroergotamine mesylate and the hydrofluorocarbon fluid vehicle contains HFA 134a, HFA 227ea, or mixtures thereof.
US08828354B2 Pharmaceutical gels and methods for delivering therapeutic agents to a site beneath the skin
Pharmaceutical gels and methods for delivering a therapeutic agent to a target tissue site beneath the skin of a patient are provided, the gel being capable of adhering to the target tissue site and comprising one or more biodegradable depots containing an effective amount of the therapeutic agent. In various embodiments, the gel is sprayable and hardens after contacting the target tissue site.
US08828353B2 Controlled copper leach recovery circuit
The present invention relates generally to a process for controlled leaching and sequential recovery of two or more metals from metal-bearing materials. In one exemplary embodiment, recovery of metals from a leached metal-bearing material is controlled and improved by providing a high grade pregnant leach solution (“HGPLS”) and a low grade pregnant leach solution (“LGPLS”) to a single solution extraction plant comprising at least two solution extractor units, at least two stripping units, and, optionally, at least one wash stage.
US08828351B2 H2S conversion to sulfur using a regenerated iodine solution
Systems and methods of removing sulfur from a gas stream comprising hydrogen sulfide (H2S) is provided. The systems and methods may utilize iodine to remove sulfur from the gas stream. In certain systems and methods, the iodine may be regenerated. In particular, the present systems and methods may be capable of reducing sulfur content in a gas stream comprising hydrogen sulfide H2S gas to levels that are undetectable.
US08828348B2 Reduced puffing needle coke from coal tar
A reduced puffing needle coke is formed, which includes a lesser amount of nitrogen within the coke so that carbon articles produced from such coke experience minimal expansion upon heating to graphitization temperatures.
US08828347B2 Method and apparatus for gasification with CO2 recovery
Gasification of carbon-containing raw material into gasified gas and recovery of CO2 are enabled at the same pressure throughout a system.Provided are a hydration tower 1 for performing hydration reaction by contact of CaO with water vapor while keeping at a predetermined pressure and a temperature at or below an upper limit for production of Ca(OH)2; a gasification reactor 2 with a water removal section 2a for dehydration of Ca(OH)2 introduced through heating to obtain highly active CaO and with a gasification section 2b for production of char through reaction of a raw material with water vapor and production of gasified gas through gasification of the char, CO2 being absorbed by CaO from the section 2a to produce CaCO3, heat of reaction at that time being used for the gasification of the raw material, the gasified gas being used as a heat source for the dehydration in the section 2a; and an absorbent regeneration tower 3 in which, in the presence of the char-containing CaCO3 from the section 2b, CO2, water vapor and oxygen, CaCO3 is calcined with heat of combustion of the char to separate it into CO2 and CaO, the resultant CaO being supplied to the hydration tower 1. The pressure in the reactor 2 and in the tower 3 connected to the tower 1 is the same as pressure in the tower 1.
US08828345B2 Method for manufacturing trichlorosilane
This method for manufacturing trichlorosilane, includes: reacting metallurgical grade silicon with silicon tetrachloride and hydrogen so as to obtain a reaction gas; condensing the reaction gas so as to obtain a condensate; and distilling the condensate using a distillation system including a first distillation column and a secondary distillation column so as to refine trichlorosilane. While maintaining the condensate in a high temperature state so that a concentration of aluminum chloride in the condensate becomes in a range of a saturation solubility or less, the condensate flows to the first distillation column. A liquid distilled in the first distillation column is distilled by the secondary distillation column so as to refine trichlorosilane. A liquid in which aluminum chloride is concentrated is extracted from a bottom portion of the first distillation column. The extracted liquid is concentrated and dried, and then aluminum chloride is exhausted.
US08828344B2 Fuel system inerting
A fuel system comprising a fuel tank, a catalytic inerting device for producing oxygen depleted air (ODA) by reaction of fuel vapor from the fuel tank with air, and a separator device for separating carbon dioxide from the ODA gas before feeding the carbon dioxide depleted ODA gas to the fuel tank so as to render the fuel tank ullage atmosphere inert. Also, a method of reducing the carbon dioxide content of oxygen depleted air (ODA) produced by a catalytic inerting device for inerting a fuel tank ullage atmosphere, the method comprising separating carbon dioxide from the ODA gas before feeding the carbon dioxide depleted ODA gas to the fuel tank. The system may be installed in an aircraft.
US08828339B2 CO shift catalyst, CO shift reactor, and method for purifying gasified gas
A CO shift catalyst according to the present invention is one that reforms carbon monoxide (CO) in gas. The CO shift catalyst includes: active ingredients including one of molybdenum (Mo) and iron (Fe) as a main ingredient and one of nickel (Ni) and ruthenium (Ru) as an accessory ingredient; and one or at least two oxides of titanium (Ti), zirconium (Zr), and cerium (Ce) as a carrier supporting the active ingredients. The CO shift catalyst can be used for a CO shift reactor 20 that converts CO in gasified gas 12 produced in a gasifier 11 into CO2.
US08828334B2 Module for detecting analytes in fluids and chip having the same
Disclosed is a module for rapidly detecting analytes in fluids with high effectiveness and a chip having the module. The module includes a microchannel, which has a filtering zone for removing noise materials and a reaction zone wherein labeling reaction and immobilization reaction for detection of analytes are performed, sample fluid moving through the microchannel due to capillary floating. In a case where the chip having the module is used in detecting analytes in fluids, it is possible to minimize dead volume of sample fluid so that high effective volume ratio can be implemented. Therefore, the chip can be used in detecting analytes from the minimum amount of sample fluid.
US08828330B2 Universal test strip port
The present disclosure provides a sensor port configured to receive a plurality of analyte sensors having different sizes, shapes and/or electrode configurations. Also provided are analyte meters, analyte monitoring devices and/or systems and drug delivery devices and/or systems utilizing the disclosed sensor ports.
US08828326B2 Device for generating gaseous species
The present invention provides a device 10 for generating a non-thermal gaseous plasma which may be a flow of gas plasma in the form of a gas plasma plume emitted from the device. The device comprises a gas capsule, or pressure vessel, 12 for holding a gas or gases 14 under pressure and forming a flow of gas through a plasma generator 16 to an applicator 18 when released from the capsule. Gas released from the gas capsule is energised in the reaction generator to form a gas plasma.The device has a housing 28 for the plasma generator 16, a battery 116 and a signal generator 58 for energising the plasma generator. The gas capsule 12 docks with the housing 28. The device is adapted to be hand-held, typically by the gas capsule 12, and operated to allow it to be used for instance for cleaning and whitening teeth.
US08828315B2 Table with ethylene scrubber
A display for supporting produce generating ethylene gas as the produce ripens includes a surface for supporting the produce, a blower positioned in communication with the produce to move a gas containing at least a portion of the ethylene gas from the produce and an ethylene scrubber positioned in communication with the produce and in a flow path of the gas. The ethylene scrubber removes the at least a portion of the ethylene from the gas. The display does not include a refrigeration system such that a life of the produce is lengthened without use of refrigeration.
US08828307B2 Imprint method, chip production process, and imprint apparatus
An imprint method includes contacting an imprint pattern of a mold and a resin material on a substrate. The resin material is cured by irradiating the resin material with light in a state in which the imprint pattern is in contact with the resin material. The mold is parted from the cured resin material, and gaseous molecules are irradiated, in an atmosphere in which the mold is placed, with an electromagnetic wave having a wavelength that is shorter than a wavelength of the light irradiating the resin material. The electromagnetic wave is emitted from an electrification removing light source that is provided in a lateral side of the mold. In the irradiating step, the gaseous molecules are ionized by the irradiation of the electromagnetic wave from the electrification removing light source. The ionized gaseous molecules are supplied into an atmosphere between the substrate and the mold to remove electrification of at least a portion of the mold.
US08828304B2 Method of forming resist pattern by nanoimprint lithography
A method of forming a resist pattern of high aspect ratio excelling in etching resistance by the use of nanoimprint lithography. The method of forming a resist pattern by nanoimprint lithography comprises the steps of disposing organic layer (4) on support (1); providing resist layer (2) on the organic layer (4) with the use of chemical amplification type negative resist composition containing silsesquioxane resin (A); pressing light transmission allowing mold (3) with partial light shielding portion (5) against the resist layer (2) and thereafter carrying out exposure from the upside of the mold (3); and detaching the mold (3).
US08828303B2 Methods for polymerizing films in-situ using a radiation source
A method for formation of a polymer film in-situ according to the invention comprises steps of: providing a polymerizable composition in one or multiple parts; prior to completion of polymerization of the polymerizable composition, forming a film therefrom; and initiating polymerization of the polymerizable composition using a radiation source to form the polymer film.
US08828300B2 Die for molding CVJ boot and process for molding the same
A die for manufacturing CVJ boot by injection molding includes a central core, and a plurality of divisional molds for molding an inner peripheral surface of the CVJ boot, respectively. The divisional molds move diametrically toward the central core. Moreover, the divisional molds not only approach one another diametrically, but also get away from each other axially.
US08828299B2 Injection moulding plastic components with a slit
Method of injection molding a plastics component includes providing a first mold member with a mold cavity, defined by an internal surface, and a second mold member with an external surface complementary to the mold cavity shape. Either the internal or external surface carry an elongate formation with an elongate apex. Then, the second mold member is advanced into the mold cavity such that the apex is spaced from the opposed one of the internal surface and the external surface by a predetermined distance and the internal surface of the first mold member and the external surface of the second mold member together define a mold space. Molten polyolefin material is then injected into the mold space to substantially fill it. The predetermined distance is so dimensioned that the polyolefin material does not completely fill the space between the apex and the opposed surface and the slit is thus formed.
US08828297B2 Patterning of non-convex shaped nanostructures
Methods of making nano-scale structures with geometric cross-sections, including convex or non-convex cross-sections, are described. The approach may be used to directly pattern substrates and/or create imprint lithography templates or molds that may be subsequently used to directly replicate nano-shaped patterns into other substrates, such as into a functional or sacrificial resist to form functional nanoparticles.
US08828295B2 Method of sealing a gap
A sealing unit for sealing a gap between a pair of surfaces includes a nozzle for injecting sealant into the gap, rollers, an endless track round the rollers, and a curing device. The sealing unit is moved along the length of the gap. A sealant is injected into the gap from the nozzle and the track is rotated around the rollers as they are moved along the length of the gap. The track is pressed onto first and second surfaces so the sealant in the gap is constrained by the track to lie substantially flush with the first and second surfaces. The sealing unit is moved along the length of the gap at a rate such that the sealant becomes sufficiently cured when it is in contact with the track so that the track can be peeled away from the sealant as the track rotates round the second roller.
US08828279B1 Colloids of lead chalcogenide titanium dioxide and their synthesis
The invention comprises the method of growing lead chalcogenide nanocrystals from the surface of titanium dioxide in organic solvents, lead chalcogenide/TiO2 nanocomposites colloids produced by the claimed method, and the application of lead chalcogenide/TiO2 nanostructures as an active absorbing element in nanocrystal-sensitized solar cells.
US08828277B2 Nanocomposite thermoelectric conversion material and method of producing the same
A method of producing a nanocomposite thermoelectric conversion material includes preparing a solution that contains salts of a plurality of first elements constituting a thermoelectric conversion material, and a salt of a second element that has a redox potential lower than redox potentials of the first elements; precipitating the first elements, thereby producing a matrix-precursor that is a precursor of a matrix made of the thermoelectric conversion material, by adding a reducing agent to the solution; precipitating the second element in the matrix-precursor, thereby producing slurry containing the first elements and the second element, by further adding the reducing agent to the solution; and alloying the plurality of the first elements, thereby producing the matrix (70) made of the thermoelectric conversion material, and producing nano-sized phonon-scattering particles (80) including the second element, which are dispersed in the matrix (70), by filtering and washing the slurry, and then, heat-treating the slurry.
US08828276B2 Metal nanoparticle dispersion
According to one embodiment, metal nanoparticle dispersion includes organic solvent, and metal-containing particles dispersed in the organic solvent. The metal-containing particles include first metal nanoparticles and second metal nanoparticles. Each of the first metal nanoparticles has a high-molecular compound on at least part of a surface thereof. Each of the second metal nanoparticles has a low-molecular compound on at least part of a surface thereof. A total amount of the low-molecular compound on all of the second nanoparticles includes an amount of a primary amine as the low-molecular compound.
US08828271B2 Hot melt wetness indicator adhesive composition containing UV fluorescent agent
A wetness indicating adhesive composition comprising an adhesive base composition incorporating a fluorescing agent in the adhesive base composition that only fluoresces when wet, and not when dry. In one embodiment, the adhesive base composition may be composed of water soluble, or at least partially water soluble, components, and in another embodiment the adhesive base composition may be composed of water sensitive components as for example one or more water insoluble polymers and a surfactant. The fluorescing agent can either be dissolved or dispersed in the adhesive base composition, and is preferably a water soluble fluorescing agent that becomes visible under ultraviolet light only when an article such as a disposable diaper becomes wet.
US08828266B2 CMP slurry composition and polishing method using the same
A CMP slurry composition includes metal oxide particles, a diisocyanate compound, and deionized water. The CMP slurry composition is capable of selectively controlling polishing speed of a wafer surface having a convex portion and a concave portion, such that primary polishing and secondary polishing can be performed rapidly while stopping polishing of the nitride layer upon the secondary polishing.
US08828263B2 High durability magnetorheological fluids
A magnetorheological fluid comprising a mixture of soft and hard iron particles, an organic based carrier fluid, and optional additives such as anti-friction, anti-wear, or surfactants unexpectedly have improved durability when used in devices for control vibration and/or noise, for example, shock absorbers, elastomeric mounts, dampers, and the like.
US08828260B2 Substrate processing method
A substrate processing method for forming a space extending along a predetermined line in a silicon substrate includes a first step of converging a laser light which is an elliptically-polarized light having an ellipticity other than 1 at the substrate so as to form a plurality of modified spots within the substrate along the line and produce a modified region including the modified spots, and a second step of anisotropically etching the substrate so as to advance an etching selectively along the modified region and form the space in the substrate. In the first step, the light is converged at the substrate such that a moving direction of the light with respect to the substrate and a direction of polarization of the light form an angle of 45° or greater therebetween, and the modified spots are made align in one row along the line.
US08828257B2 Plasma processing apparatus and operation method thereof
In a plasma processing apparatus including a processing chamber in a vacuum container to form plasma in the processing chamber in which pressure is reduced, a sample stage in lower part of inside of the processing chamber and having an upper surface on which a wafer to be processed by plasma is put, a plurality of pins in the sample stage to be moved in vertical direction so that the pins abut against rear side of the wafer to move the wafer up and down over the upper surface of the sample stage, and a plurality of openings formed in the upper surface of the sample stage so that the pins are moved in the openings, gas is fed from supply ports communicating with the openings into the processing chamber through the openings when the wafer is not put on the upper surface of the sample stage.
US08828256B2 Method for fabricating carbon nanotube film
A method for making a carbon nanotube film includes the steps of providing an array of carbon nanotubes, treating the array of carbon nanotubes by plasma, and pulling out a carbon nanotube film from the array of carbon nanotubes treated by the plasma.
US08828253B2 Lithography using self-assembled polymers
A method of lithography on a substrate uses a self-assembled polymer (SAP) layer deposited on the substrate, with first and second domains arranged in a pattern across the layer. A planarization layer is formed over the SAP and a development etch applied to substantially remove a portion of the planarization layer over the second domain leaving a cap of the planarization layer substantially covering the first domain. The uncapped second domain is then removed from the surface by a breakthrough etch leaving the capped first domain as a pattern feature on the surface. A transfer etch may then be used to transfer the pattern feature to the substrate using the capped first domain. The capping allows the second domain to be removed, e.g., without excessive loss of lateral feature width for the remaining first domain, even when the difference in etch resistance between the first and second domains is small.
US08828251B2 Method for finishing exterior surface of injection-molded product
A method for finishing an exterior surface of an injection-molded product is provided, in which a metal layer is formed on the exterior surface of the injection-molded product, a photoresist layer is formed on the metal layer, a photomask is placed on the photoresist layer, light is projected onto the photomask, and remaining parts of the metal layer and the photoresist layer except for parts corresponding to a pattern formed on the photomask are removed by etching.
US08828249B2 Optical deflector and method of manufacturing the same
An optical deflector has: a movable plate having a reflecting surface and a side surface; and a support portion that supports the movable plate in such a manner that the movable plate is able to rotate around a predetermined axis, in which the side surface of the movable plate is recessed toward the axis.