Document Document Title
US08625344B2 Memory system and method of accessing a semiconductor memory device
A memory system is provided with a processor, a main memory, and a flash memory. Performance of the memory system is improved through achievement of speed-up and high data reliability. The memory system includes a nonvolatile memory device and a controller configured to drive a control program to control the nonvolatile memory device. The control program executes a second access operation for the nonvolatile memory device even before a first access operation to the nonvolatile memory device is completed.
US08625334B2 Memory cell
A memory cell and array and a method of forming a memory cell and array are described. A memory cell includes first and second pull-up transistors, first and second pull-down transistors, first and second pass-gate transistors, and first and second isolation transistors. Drains of the first pull-up and first pull-down transistors are electrically coupled together at a first node. Drains of the second pull-up and second pull-down transistors are electrically coupled together at a second node. Gates of the second pull-up and second pull-down transistors are electrically coupled to the first node, and gates of the first pull-up and first pull-down transistors are electrically coupled to the second node. The first and second pass-gate transistors are electrically coupled to the first and second nodes, respectively. The first and second isolation transistors are electrically coupled to the first and second nodes, respectively.
US08625331B1 Methods of programming and erasing programmable metallization cells (PMCs)
An integrated circuit can include a plurality of programmable metallization cells (PMCs) in a memory array, each PMC comprising an ion conducting material, an active metal dissolvable in the ion conducting material, and two electrodes, a first electrode of at least one PMC being coupled to a program node; and a plurality of program and verify circuits, each including a current source section to enable at least one current path between the program node and a power supply node in a program and verify operation, and a verify signal generator circuit comprising at least a first comparator having a first input coupled to the program node, a second input coupled to receive a first reference voltage, and a comparator output to provide a verify signal that indicates a program operation is complete.
US08625323B2 Memory module having high data processing rate
A memory module having a high data processing rate and high capacity is provided. The memory module may include a memory chip, a controller controlling an operation of the memory chip, an optical detector converting an external input signal into an internal input signal to transmit the converted signal to the controller, and an optical generator converting an internal output signal received from the controller into an external output signal. The optical detector converts an external input optical signal into an internal input signal to transmit the converted signal to the controller. The optical generator converts an internal output signal received from the controller into an external output optical signal.
US08625322B2 Non-volatile memory having 3D array of read/write elements with low current structures and methods thereof
A three-dimensional array read/write (R/W) memory elements is formed across multiple layers of planes positioned at different distances above a semiconductor substrate. It is preferable to operate the R/W elements with low current and high resistive states. The resistance of these resistive states depends also on the dimension of the R/W elements and is predetermined by the process technology. A sheet electrode in series with the R/W element and a method of forming it provide another degree of freedom to adjust the resistance of the R/W memory element. The thickness of the sheet electrode is adjusted to obtain a reduced cross-sectional contact in the circuit path from the word line to the bit line. This allows the R/W memory element to have a much increased resistance and therefore to operate with much reduced currents. The sheet electrode is formed with little increase in cell size.
US08625319B2 Bridgeless PFC circuit for critical continuous current mode and controlling method thereof
The configurations of a bridgeless PFC circuit and a controlling method thereof are provided. The proposed circuit includes an AC power source, a first and a second bridge arms, each of which has a middle point, wherein the first terminal of the first bridge arm connects the first terminal of the second bridge arm, the second terminal of the first bridge arm connects the second terminal of the second bridge arm, and the middle point of the second bridge arm connects the second terminal of the AC power source, a bidirectional switch module connected to the two middle points, an inductor having a first terminal coupled to the AC power source and a second terminal coupled to the middle point of the first bridge arm and a sensing circuit magnetically coupled to the inductor.
US08625318B2 Power converter and fuel cell system including the same
A power converter of the present invention is configured to convert DC power generated by a power generator (1) into AC power. The power converter includes: a boost converter circuit (3) configured to boost an output voltage of the power generator (1); an inverter circuit (5) configured to convert an output voltage of the boost converter circuit (3) into AC power and to interconnect the AC power with a power system (2); a buck converter circuit (8) configured to perform power conversion of output power of the boost converter circuit (3) and to supply resultant power to an internal load (60); and a controller (9). The controller (9) is configured to control the output voltage of the boost converter circuit (3) to be lower than or equal to a second voltage value which is less than the maximum value of AC voltage of the power system (2), in a case of supplying output power of the power generator (1) to the internal load (60) via the boost converter circuit (3) and the buck converter circuit (8).
US08625313B2 High-side synchronous rectifier circuits and control circuits for power converters
A control circuit for a switching power converter is provided. The control circuit is installed between a secondary side and an output of the power converter and coupled to control a switching device. The control circuit includes a linear predict circuit, a reset circuit, a charge/discharge circuit, and a PWM circuit. The linear predict circuit is coupled to receive a linear predict signal from the secondary side for generating a charging signal. The reset circuit is couple to receive a resetting signal for generating a discharging signal. The charge/discharge circuit is coupled to receive the charging signal and the discharging signal for generating a ramp signal. The PWM circuit is coupled to receive the linear predict signal for enabling a switching signal and receive the ramp signal for resetting the switching signal.
US08625311B2 Switching power supply apparatus including a plurality of switching elements
In a switching power supply apparatus, a comparator outputs a first determination criterion signal based on a saw-tooth wave signal whose level fluctuates with a constant period and a detection voltage signal. An inverter subjects the first determination criterion signal to reverse processing, and outputs a second determination criterion signal. The comparator outputs a first switching judgment-use signal from a monitor signal and a threshold value, and the comparator outputs a second switching judgment-use signal from the monitor signal and the threshold value. An AND circuit outputs the first switching control signal from the first determination criterion signal and the first switching judgment-use signal, and the AND circuit outputs the second switching control signal from the second determination criterion signal and the second switching judgment-use signal.
US08625309B2 Semiconductor integrated circuit and switching power supply system
A control circuit can be provided with a comparator detecting a turning-off of a semiconductor switch from a voltage generated in an auxiliary winding of a transformer and inputted to a zero current detecting terminal, a timer outputting a signal after a specified length of time from the time at which the turning-off of the semiconductor switch is detected, and a comparator detecting from voltages inputted to a current detecting terminal a second voltage signal different from an ordinary first voltage signal inputted when the semiconductor switch is made turned-on. Thus, the second voltage signal supplied from mode switching circuits as an externally inputted mode switching signal can be made also detected by the existing current detecting terminal. By detecting the second voltage signal after the specified length of time from the turning-off of the semiconductor switch, switching of an operation mode becomes possible without newly providing any specialized terminal.
US08625307B2 DC to AC power converting apparatus
A neutral point clamped three-phase three-level inverter is connected to a first DC power supply and single-phase inverters are connected in series with AC output lines of individual phases of the three-phase three-level inverter such that sums of output voltages of the three-phase three-level inverter and output voltages of the respective single-phase inverters are output to a load through a smoothing filter. An output control unit controls the three-phase three-level inverter so that the individual phases of the three-phase three-level inverter output primary voltage pulses at a rate of one pulse per half cycle and controls the individual single-phase inverters by PWM, so that output voltages to the individual phases of the load form sine waves of which phases are offset by 2π/3 from one phase to another, the sine waves having the same peak value.
US08625306B2 Electromagnetically-countered display systems and methods
An electromagnetically-countered display system includes at least one wave source and at least one counter unit. The wave source irradiates harmful electromagnetic waves and the counter unit emits counter electromagnetic waves for countering the harmful waves therewith. Examples of the various counter units for the electromagnetically-countered display system and various mechanisms to counter the harmful waves with the counter units include by matching configurations of the counter units with those of the wave sources, and by matching wavefronts of the harmful waves with those the counter waves. Various methods of countering the harmful waves with such counter waves include by source and/or wave matching. Various methods of providing the counter units for emitting the counter waves defining desired wave characteristics. Various electric and magnetic shields can be employed either alone or in conjunction with the counter units for minimizing irradiation of the harmful waves from the display system.
US08625304B2 Supporting mechanism for electronic device
A supporting mechanism for adjusting an angle of an electronic device, includes a retaining member and a supporting member slidably attached to the retaining member. The supporting member includes a first supporting end and a second supporting end opposite to the first supporting end. The first supporting end is located on a first side of the retaining member, and the second supporting end is located on a second side of the retaining member. The supporting member is slidable relative to the retaining member between a first position and a second position, the first supporting end supports the electronic device in a first position, the second supporting end supports the electronic device in a second position, and both the first and second supporting ends cooperatively support the electronic device in a third position.
US08625302B2 Electronic device and port connector thereof
An electronic device includes a main body and a port connector. The main body includes a printed circuit board, a bottom plate and a side plate cooperatively defining a opening. The printed circuit board is fixed parallelly to the bottom plate. The port connector includes an outer angled plate having a first wall, a second wall, and first pins and second pins. The first wall is attached to the bottom plate and defines first ports. The second wall is attached to the side plate and defines second ports. Each of the first pins is retained within one of the first ports and contacting the printed circuit board. Each of the second pins is retained within one of the second ports and contacting the printed circuit board.
US08625298B2 Protection for circuit boards
A system has a circuit board, an integrated circuit being mounted on the circuit board by external contacts, and a cover irreversibly connected to the circuit board. The cover covers the external contacts so that external access to the external contacts is prohibited by the cover.
US08625296B2 Mount board and electronic device
An object of the present invention is to allow stress that may be applied to a semiconductor package to be suppressed, when the semiconductor package is mounted on a curved board. In a mount board 1, a semiconductor package 20 is mounted on a curved board 10 including a curved surface on at least a portion thereof. The curved board 10 includes a pedestal portion 13a disposed on a region of the curved surface portion where the semiconductor package 20 is mounted and having an upper surface thereof formed flat, and a plurality of pad portions 15a disposed on the flat surface of the pedestal portion 13a. The pedestal portion 13a is formed of an insulating material. The semiconductor package 20 is mounted on the pad portions 15a.
US08625281B2 Electronic device with heat dissipating assembly
An exemplary embodiment of an electronic device includes a cover including a first hole, and a heat dissipating assembly. The heat dissipating assembly includes a movable board including a second hole and slidably connected to the cover, and a heat magnifying device received inside the cover and adjacent to a heat element. The heat magnifying device includes a moving end secured with the movable board. When the heat element is maintained room temperature, the first hole and the second hole are staggered from each other to seal the cover. When heat generated by the heat element heats the heat magnifying device and causes the moving end of the heat magnifying device to move under thermal expansion and drive the movable board to slide relatively to the cover, and the first hole of the cover and the second hole of the movable board are communicated with each other.
US08625279B2 Display device and electronic device
According to one embodiment, a display device includes a housing, a circuit board device, a fan, a first wall portion, and a second wall portion. The housing includes an exhaust port. The circuit board device is housed in the housing and includes a circuit board having a first surface and a second surface, a first portion including the first surface, and a second portion including the second surface. The fan includes an ejection port and is housed in the housing at a position separated from the exhaust port to send cooling wind from the ejection port toward the first portion and the second portion. The first wall portion is located between the inner surface of the housing and the first portion, and constitutes a first ventilation path. The second wall portion is located between the inner surface of the housing and the second portion, and constitutes a second ventilation path.
US08625278B2 Electronic device with cooler
An electronic device comprises a cooler comprises a plurality of first locking members, a backboard defining pluralities of first and second positioning holes, and a circuit board. The backboard is attached to the cooler through the first locking members engaged with the second positioning holes. A first mounting member and a second mounting member are adapted to receive the heat generating component. The first mounting member defines a plurality of locking holes. The first positioning holes are among the second positioning holes. The second mounting member receives the heat generating component, the circuit board is between the second mounting member and the backboard, the first mounting member is secured to the circuit board; when the first mounting member receives the heat generating component, the circuit board is between the first mounting member and the backboard, the first mounting member is secured to the backboard.
US08625275B2 Electronic device with heat dissipation apparatus
A heat dissipation apparatus includes a shaped and resilient connecting plate, and a first heat-dissipating plate and a second heat-dissipating plate clamping down on a storage device to dissipate heat.
US08625272B2 Portable electronic device
A portable electronic device capable of signal or power transmission and standing on a surface in a vertical or near-vertical orientation at the same time is provided in the present invention. The portable electronic device includes a flat body having a front surface, a rear surface opposite to the front surface, and a through hole passing through the flat body, and the through hole extending from the front surface to the rear surface. Herein the through hole is adapted to couple with an external docking element for signal or power transmission. Thus, the portable electronic device is capable of signal or power transmission and standing on the supporting surface at the same time via the external docking element coupling with the through hole.
US08625267B2 Button activated spring-loaded hinge assembly
A hinge assembly includes a receiving seat, a control member, a clutch member, a follower, a main shaft and an elastic element. The receiving seat includes a first cam surface. The control member is releasably latched with the receiving seat. The clutch member includes at least one projection. The follower includes a second cam surface engaging with the at least one projection. The receiving seat, the control member, the clutch member and the follower are placed around the shaft. The elastic element provides an elastic force for the follower. After the control member is unlocked, the second cam surface engages with the first cam surface.
US08625265B2 Flat panel display
A flat panel display includes a housing, a support base, a support plate, a connecting plate, and a fixing element. The housing defines a sliding groove and a plurality of holes arranged in a line parallel to the extending direction of the sliding groove. The support plate is fixed at the support base. The connecting plate is rotatably connected with the support base. A protruding part is formed on the connecting plate and is sliably received in the sliding groove. The connecting plate further defines a through hole. The fixing element extends through the through hole and is inserted into one of the holes to fix the position of the connecting plate relative to the housing.
US08625263B2 Portable computer having detachable wireless keyboard
A portable computer includes a main body, a display, and a wireless keyboard. The main body includes a keyboard supporting panel. The display is hinged to the main body. The wireless keyboard detachably attached on the keyboard supporting panel. The wireless keyboard is mechanically coupled to the main body and wirelessly communicatively coupled to the main body.
US08625261B2 Interlocking system for connecting a programmable logic controller and a power supply
An interlocking system for connecting a programmable logic controller and a power supply of an industrial control and automation system is provided. The interlocking system includes features configured to facilitate coupling with a panel or rail and a plurality of vertical slots and a latch disposed on a side surface of the power supply. The latch includes a first attachment feature disposed along a flexible tongue cantilevered proximate an opening in a housing of the power supply such that the tongue can flex into the opening. The interlocking system also includes a plurality of hooks and a second attachment feature formed on a side surface of the programmable logic controller. The plurality of hooks are configured to slide along and engage with the plurality of vertical slots such that the programmable logic controller and the power supply are held together horizontally and the second attachment feature is configured to couple with the first attachment feature to resist disengagement of the plurality of hooks and the plurality of vertical slots.
US08625257B2 Plug-in system
Exemplary embodiments are directed to a plug-in system having a lower part, on which busbars can be arranged, and an upper part which is made of electrically insulating material and is releasable from the lower part in a non-destructive manner on a top side arranged opposite the underside. Protective devices having electrical contacts can be arranged on the plug-in system. The upper part has openings through which the electrical contacts of the protective devices can make direct contact with the busbars. The openings are configured in such a manner that the plug-in system is shockproof to IP XXB. The upper part and lower part are latchable into one another or are screwable to one another in such a manner that the upper part is releasable from the lower part only from the underside of the plug-in system.
US08625256B2 Closed busbar system for low-voltage distribution
Closed busbar system for three-phase low voltage distribution, comprising phase bars that extend lengthways and transverse branch bars, one of which is respectively electrically connected to an associated phase bar. The phase bars are maintained in an inserted manner in a socket of an insulating housing for reducing the cross-section or increasing the power in such a manner that a cooling channel associated with each phase track is formed between the rear side of the phase tracks and the base inner side of the socket.
US08625255B2 Customizable bus system
A customizable bus system includes a system module containing one or more accessory modules and is easily mounted along a surface in a workspace, such as the underside of a cabinet. The accessory modules provide conveniently located utility services and applications such as power, lighting or media connections, and may be interchanged within the bus system to provide particular services and applications where they are needed most. Additionally, the bus system may include a control center for controlling the operation of one or more of the accessory modules, such as manually or automatically. The bus system may also include multiple housings that are functionally linked. Additionally, the housings may be integrated with the applications and take the form of a modular stick, which can be easily installed to provide a service or application in an area, or removed and replaced by a modular stick having another desired service or application.
US08625248B2 Electrostatic discharge protector
The present invention provides an electrostatic discharge protector capable of protecting electronic circuit boards having various designs from electrostatic discharge freely, simply and easily. The electrostatic discharge protector of the present invention comprises at least three conductive members containing one pair of electrodes and the conductive members other than the electrodes, the conductive members are each disposed in such a way that the gap between one conductive member and the other conductive member has a width of 0.1 to 10 μm, an insulating member is disposed and embedded in at least one of gaps having a width of 0.1 to 10 μm which are adjacent to each conductive member and one electrode is connected to the other electrode paired with the one electrode through the insulating member and the conductive members other than electrodes.
US08625247B2 Protective circuit for the input-side protection of an electronic device operating in the maximum frequency range
The invention relates to a protective circuit (10) for the input-side protection of an electronic device (30) operating in the maximum frequency range from high-power interfering impulses in the working frequency range of the device (30), said protective circuit (10) between an input (11) and an output (18) comprising a first limiting circuit (12) having at least one gas discharge tube (GDT1, GDT2) for limiting high interference powers and a second limiting circuit (14, 16) disposed behind the first limiting circuit (12), said second limiting circuit having semi-conductor components (D1, . . . , D4) for limiting smaller interference powers. Protection from particularly high interference powers is achieved in that the first limiting circuit (12) comprises two gas discharge tubes (GDT1, GDT2) connected in parallel and preferably identical.
US08625246B2 DSL protection circuit
The embodiments of the present application provide a DSL protection circuit, including: a DSL and POTS broadband and narrowband mixed signal port, a narrowband POTS port, and a splitter, where the DSL and POTS broadband and narrowband mixed signal port is connected to the narrowband POTS port through the splitter, and a line on which an input end or output end of the splitter is cascaded with a restorable current-limited component for limiting abnormal current; a line on which the splitter and the restorable current-limited component are cascaded is connected in parallel with a voltage-limited component for bypass conduction of the splitter; a line on which the DSL and POTS broadband and narrowband mixed signal port is or a line on which the narrowband POTS port is cascaded with an overcurrent fuse component.
US08625242B2 Failsafe galvanic isolation barrier
A system includes a transmitter, a receiver, a isolation barrier, and a fuse. The isolation barrier is connected to the transmitter. The fuse is connected between the isolation barrier and the receiver. The isolation barrier prevents current flow from the transmitter to the receiver when a voltage across the isolation barrier is less than a first breakdown voltage. The isolation barrier short circuits when the voltage across the isolation barrier is greater than or equal to the first breakdown voltage. The fuse opens when the isolation barrier short circuits. When open, the fuse has a second breakdown voltage that is greater than the first breakdown voltage.
US08625241B2 Video apparatus and video circuit for improving video signal quality
A video circuit employed in a video apparatus is configured for transmitting a video signal via an interface unit. The video circuit includes a display circuit and a compensation circuit. The display circuit switches the video apparatus into a video input mode in response to a user's operation, and blocks specific component of the video signal received from the interface unit. The compensation circuit adds a predetermined amount of direct current to the video signal.
US08625236B2 Patterned storage medium
According to one embodiment, a patterned medium is disclosed herein. The patterned medium includes a patterned layer, a stop layer, and a fill layer. The patterned layer includes plurality of grooves. The stop layer is positioned on the patterned layer. The stop layer is at least partially positioned within the plurality of grooves and a portion of the stop layer may be positioned on walls of the grooves of the patterned layer. The fill layer is at least partially positioned within the grooves between portions of the stop layer. The stop layer substantially separates the fill layer from the patterned layer.
US08625234B2 Graded bevel tapered write pole design for field enhancement
A structure and a process for a perpendicular write pole that provides increased magnetic flux at the ABS is disclosed. This is accomplished by increasing the amount of write flux that originates above the write gap, without changing the pole taper at the ABS. Three embodiment of the invention are discussed.
US08625230B2 Position demodulator and position demodulation method
According to one embodiment, a position demodulator includes a demodulator, a phase corrector, and a position demodulating module. The demodulator demodulates a first demodulated signal and a second demodulated signal having a phase difference of 90 degrees from the first demodulated signal as a result of discrete Fourier transform operation on a read signal of a null servo pattern recorded in a servo area of a medium read out by a head. The phase corrector carries out correction to tilt respective vectors of the first demodulated signal and the second demodulated signal represented on a phase plane by a predetermined angle. The position demodulating module demodulates a positional signal for determining the position of the core of the head based on the first demodulated signal and the second demodulated signal corrected by the phase corrector.
US08625229B2 Servo control in a patterned-media magnetic recording disk drive using a reference table
A patterned-media magnetic recording disk drive has head positioning servo sectors on the disk that do not contain special patterns but merely use the same type of dots that are used for data. The “data” dots in angularly spaced sectors of the data tracks function as the servo sectors and are denoted as D-servo regions. The D-servo regions extend across an annular band of the disk, which may be a bootstrap band for self-servowriting. The dots in the annular band are randomly magnetized so that each track in each D-servo region provides a generally random readback signal at the data frequency. The precise radial and circumferential position of the read/write head within a D-servo region is determined by comparing the readback signal with a set of reference signal waveforms from a look-up reference table and finding the reference signal waveform that matches the readback signal.
US08625228B1 Method and system for compensating for track squeeze
A storage device includes a storage medium having a plurality of tracks of data. Reading apparatus for reading a current track of data that has been subject to previous encroachment to an extent from at least one adjacent track of data includes a write head that writes interfering data to the adjacent track of data while intentionally encroaching at least to that extent onto the current track of data, and circuitry that recovers data on the current track of data using the interfering data. A method for reading a current track of data, that has been subject to previous encroachment to an extent from at least one adjacent track of data, includes writing interfering data to the adjacent track of data while intentionally encroaching at least to that extent onto the current track of data, and recovering data on the current track of data using the interfering data.
US08625227B2 Transport speed adjustment device, transport speed adjustment method and transport speed adjustment program for adjusting transport speed of tape medium
A tape drive capable of switching the transport speed of a tape medium among multilevel speeds calculates a data transfer rate from/to a host device, and selects an adjustment mode of the transport speed of the tape medium from a constant speed mode and a speed switch mode according to the calculated data transfer rate. The tape drive in the speed switch mode, pauses a data write or read operation to switch the transport speed of the tape medium while data is written at a first transport speed and when an available capacity of a buffer memory reaches a data volume to be received from the host device during switching of the transport speed and is read out at the first transport speed and when a data volume of a buffer memory reaches a data volume to be transmitted to the host device during switching of the transport speed.
US08625225B1 Disk drive compensating for asymmetry of magnetoresistive read element
A disk drive is disclosed comprising a head actuated over a disk, the head comprising a magnetoresistive (MR) read element. An analog read signal emanating from the MR read element is amplified to generate an amplified analog read signal. The amplified analog read signal is filtered in continuous-time to extract a dc component. An amplitude of the amplified analog read signal is measured in continuous-time, and an asymmetry in the amplified analog read signal is estimated in response to the dc component and the amplitude. The amplified analog read signal is modified in response to the estimated asymmetry to generate a compensated analog read signal.
US08625224B1 Characterizing magnetic recording parameters of a disk drive by evaluating track profile of dual microtracks
A disk drive is disclosed comprising a head actuated over a disk comprising a plurality of tracks. The head is positioned over a track minus a first delta and a first frequency pattern is written at a first frequency. The head is positioned over the track plus a second delta and a second frequency pattern is written at a second frequency different from the first frequency. After writing the first frequency pattern and second frequency pattern, a third frequency pattern is written substantially centered on the track at a third frequency. After writing the third frequency pattern, the head is scanned across the track while reading the disk to generate a read signal. A first frequency component is extracted from the read signal representing the first frequency, and a second frequency component is extracted from the read signal representing the second frequency.
US08625223B2 Multi-directional self servo-writing for a disk drive
A method of self servo-writing servo information to a plurality of disk surfaces in a disk drive that includes writing servo information to a plurality of disk surfaces in a first direction, writing servo information to a plurality of disk surfaces in a second direction, and determining an amount of overlap to be written on a reference surface with the reference head that will produce an overlap of servo information on each of the surfaces in the disk drive to which servo information is to be written. The method also includes switching to different tables when seeking across the overlap or border areas.
US08625222B2 Storage device having calibration circuitry providing programmable phase update values
A hard disk drive or other disk-based storage device comprises a storage disk, a read/write head configured to read data from and write data to the disk, and control circuitry coupled to the read/write head and configured to process data received from and supplied to the read/write head. The control circuitry comprises calibration circuitry configured to vary a phase of a clock signal as a test pattern is written to the storage disk as part of a calibration procedure, and disk locked clock circuitry coupled to the calibration circuitry and configured to obtain phase lock between the clock signal and a timing pattern on a surface of the storage disk. The calibration circuitry is further configured to determine an initial phase update value to be applied by the disk locked clock circuitry in a control loop as the phase of the clock signal is varied as part of the calibration procedure.
US08625220B2 Constrained on-the-fly interleaver address generator circuits, systems, and methods
An interleave address generation circuit includes a plurality of linear feedback shift registers operable to generate addresses for permuting a data block in a first domain to a data block in a second domain on a subword basis. The interleave address generation circuit is operable to generate the lane addresses for each subword and the linear feedback registers configured to generate circulant addresses and sub-circulant address to map bits in each subword in the data block in the first domain to a corresponding subword in the second domain.
US08625218B1 ACQ in the presence of baseline pop
Systems and methods for the correction of DC noise in signals read by a head of a disk drive are presented. Circuitry on a first data path may be configured to filter an input signal to remove a DC component. Acquisition parameters on the first data path may be configured based on the filtered signal. Circuitry on a second data path may be configured to adjust the input signal based on the configured acquisition parameters. A mean of a window of data samples of the adjusted input signal may be computed. Based on the computed mean, a correction may be applied to the adjusted input signal until a stopping rule is satisfied.
US08625216B2 Servo zone detector
The present inventions are related to systems and methods for transferring information to and from a storage medium, and more particularly to systems and methods for positioning a sensor in relation to a storage medium. For example, an apparatus for determining a sensor position is disclosed that includes discrete Fourier transform calculators operable to process input data to yield a magnitude response of the input data at each of a number of candidate frequencies, a comparator operable to compare the magnitude responses to yield a winning candidate frequency, a servo controller operable to process at least one servo field in the input data to identify a position of a sensor based on the at least one servo field, and a servo frequency synthesizer operable to establish a frequency of operation in the servo controller based at least in part on the winning candidate frequency.
US08625215B1 Method and system for compensating for adjacent tracks during writing of data
A method of writing data to a storage device includes writing current data to a first track of data, monitoring write head position, and on detection of encroachment of the write head position on a second track of previously written data, using the current data to recover the previously written data on the second track, and rewriting the current data to the first track. A storage controller includes a device controller that writes data to a current track of data on a storage device. The device controller monitors write head position. On detection of encroachment of the write head position on a second track of previously written data uses the current data to recover the previously written data on the second track, and rewrites the current data to the first track. A storage system includes a storage medium having a plurality of tracks of data thereon, and a storage controller.
US08625210B2 Micro-lens module
A micro-lens module including a first lens group and a second lens group is provided. The first lens includes a first lens and a second lens arranged in sequence from the object side to the image side. The second lens is closest to the image side in the first lens group, and a surface of the second lens facing the image side is an aspheric surface. The second lens group includes a third lens and a fourth lens arranged in sequence from the object side to the image side. The first lens group is composed of a first complex lens. The first complex lens includes a plurality of lenses. The lenses are adhered to each other, and a refractive index of at least one lens in the lenses is different from refractive indexes of the other lenses.
US08625208B2 Image pickup optical system and image pickup apparatus using the same
An image pickup optical system of the present invention comprises, in order from an object side, a first lens having a positive refractive power, a second lens having a negative refractive power, a third lens having a positive refractive power, a fourth lens having a positive refractive power, a fifth lens having a negative refractive power, which is formed into a meniscus shape facing its concave surface toward the object side, and an aperture located on the most object side. Thus, there can be provided an image pickup optical system and an image pickup apparatus having the same, in which the maximum effective lens aperture is small and various aberrations are corrected properly.
US08625206B2 Image pickup lens for solid-state image pickup element
An image pickup lens includes a first lens having a positive refractive power with a convex surface facing the object side, a second lens having a negative refractive power with a concave surface facing an image side, a third lens of a meniscus shape having a convex surface facing the object side, a fourth lens of a meniscus shape having a positive refractive power with a convex surface facing the image side, and a fifth lens having a negative refractive power with a concave surface facing the image side, wherein the both surfaces of the fifth lens have an aspherical shape, and the curvature radius of the fourth lens satisfies conditional expression (13) below: 1.4
US08625205B2 Zoom type lens barrel and image pickup apparatus
A lens barrel which can increase the relative movement interval of lens units in the direction of an optical axis without increasing the dimension of a translating cylinder, which inhibits the rotation of the lens units, in the direction of the optical axis. The movement of a second lens unit holding second group lenses is switched from linear guide by a first translating guide unit to linear guide by a second translating guide unit when the second lens unit moves in a direction relatively away from a first lens unit holding first group lenses.
US08625202B2 Zoom lens system, lens barrel, interchangeable lens apparatus and camera system
Compact and lightweight zoom lens systems having less aberration fluctuation in association with focusing, lens barrels, interchangeable lens apparatuses, and camera systems are provided. The zoom lens system comprises: a first lens unit having positive optical power; a first focusing lens unit which is located on an image side relative to the first lens unit, has negative optical power, and moves along an optical axis in zooming and focusing; and a second focusing lens unit which is located on the image side relative to the first focusing lens unit, has positive optical power, and moves along the optical axis in the zooming and the focusing, and satisfies the condition: |d2T/d1T|<1.0 (d1T: an amount of movement of the first focusing lens unit in focusing at a telephoto limit, d2T: an amount of movement of the second focusing lens unit in focusing at a telephoto limit).
US08625200B2 Head-mounted display apparatus employing one or more reflective optical surfaces
Head-mounted displays (100) are disclosed which include a frame (107), an image display system (110) supported by the frame (107), and a reflective surface, e.g., a free-space, ultra-wide angle, reflective optical surface (a FS/UWA/RO surface) (120), supported by the frame (107). In certain embodiments, the reflective surface (120) produces spatially-separated virtual images that are angularly separated by at least 100, 150, or 200 degrees. Methods and apparatus for designing reflective optical surfaces, including FS/UWA/RO surfaces, for use in head-mounted displays (100) are also disclosed.
US08625199B2 Pulse modifier with adjustable etendue
A beam modifying unit increases both temporal pulse length and Etendue of an illumination beam. The pulse modifying unit receives an input pulse of radiation and emits one or more corresponding output pulses of radiation. A beam splitter divides the incoming pulse into a first and a second pulse portion, and directs the first pulse portion along a second optical path and the second portion along a first optical path as a portion of an output beam. The second optical path includes a divergence optical element. A first and a second mirror, each with a radius of curvature, are disposed facing each other with a predetermined separation, and receive the second pulse portion to redirect the second portion, such that the optical path of the second portion through the pulse modifier is longer than that of the first portion, and the separation is less than radius of curvature.
US08625195B2 Objective-type dark-field illumination device for microfluidic channel
An objective-type dark-field illumination device for a microfluidic channel is provided and includes an optical stop having a pair of symmetric curved slits used to adjust the optical path and inner numerical aperture of a dark-field light source generated by the device. The dark-field illumination can focus on a smaller spot to illuminate a sample in the microfluidic channel by matching a pin-hole combined with a transmitter objective lens. The optical path and smaller spot is advantageous to solve the problem of a traditional dark-field illumination that may generate background light noise scattered from inner walls of the microfluidic channel to lower the image contrast. Therefore, the signal or image resolution of capturing the scattered light and/or emitted fluorescent light emitted from the sample in the microfluidic channel can be enhanced. Meanwhile, the device can simultaneously excite and detect multiple fluorescent samples with different excited wavelengths in the microfluidic channel.
US08625194B2 Semiconductor optical amplifier
A semiconductor optical amplifier includes an input-side optical amplifier waveguide section that has a first active core layer. An output-side optical amplifier waveguide section connects to the input-side optical amplifier waveguide section and has a second active core layer that is wider than the first active core layer. The width of the first active core layer and relative refractive index difference between the first active core layer and adjacent clad section in the width direction of the first active core layer, and the width of the second active core layer and relative refractive index difference between the second active core layer and adjacent clad section in the width direction of the second active core layer are set such that the carrier density and optical confinement factor in the first active core layer are higher than the carrier density and optical confinement factor in the second active core layer.
US08625187B2 Holographic visualization system comprising a high data refresh rate DND driver array
A DND chip is disclosed. In one aspect, the chip includes a 2D DND array of DND elements logically arranged in rows and columns, and a DND driver architecture for actuating the DND elements. The DND driver has a set of first drive lines along the rows and a set of second drive lines along the columns, a set of first line drivers for each biasing one line from the set of first drive lines and a set of second line drivers for each biasing a line from the set of second drive lines. A plurality of second line drivers are spatially grouped together to serve a block of DND elements, and that plurality of second line drivers are spatially covered substantially completely by at least some DND elements of the block of DND elements. A holographic visualization system including the DND chip is provided.
US08625180B2 Apparatus, method, program and storage medium for selecting a display image from multiple images
During a display of a slideshow of a composite image comprising a plurality of images, a user operates a print bookmark, resulting in composite images and individual images that can be printed being set and stored as print candidate images. By displaying, in a list, stored candidate images on a display unit as print candidate images, an image processing apparatus is provided which enables the user to specify a desired image for printing.
US08625179B2 Color adjustment method and image forming system using gamma curve associating densities of patches from different printers
Disclosed is a color adjustment method for each of image forming apparatuses, including: a gradation pattern creation step of forming a gradation pattern image including patches different in gradation for each of colors in n pieces of coloring materials; a density detection step of detecting densities of the respective patches, and obtaining density information; a gamma curve creation step of associating the density information of the respective patches in a second image forming apparatus with that in the first, and creating a gamma curve correcting a gradation of received image data so as to obtain densities of the respective patches in the first image forming apparatus; and a color adjustment step of extracting respective color components, deciding output values based on the gamma curve corresponding to the second image forming apparatus, creating output image data, and forming an image on a sheet in the second image forming apparatus.
US08625177B2 Image processing apparatus, image forming apparatus, image processing method, and storage medium, each of which performs, on monochrome image data to image display device, or two-color image data, color matching process of reducing differences in color between image to be outputted by image display device and image to be outputted by printing apparatus
An image processing apparatus of the present invention includes a color matching section for performing, on monochrome or two-color image data to be supplied to an image display device, a color matching process of reducing differences in color from a single- or two-color image to be outputted by an image display device, and as such, can display a comfortable preview of a single- or two-color image data by reducing differences in color between an image to be previewed and an image to be actually printed.
US08625176B2 Image forming apparatus configured to perform a calibration operation
An image forming apparatus includes an image forming unit, a calibration unit, a determination unit, and a control unit. The calibration unit is configured to perform a calibration operation including forming a measurement image by the image forming unit to adjust an image forming condition. The determination unit is configured to determine available electric energy allowed to be used by the image forming apparatus. The control unit is configured to determine an interval at which to perform the calibration operation based on the available electric energy determined by the determination unit and control the calibration unit to perform the calibration operation each time the determined interval is reached.
US08625175B2 Image processing for correction of colorimetric values based on temperature
The invention provides an image processing apparatus comprising: forming means for forming a patch based on patch data on a medium; temperature measuring means for measuring the temperature of a white paper portion of a medium to obtain a white paper temperature; colorimetry means for obtaining a colorimetric value by measuring the color of the patch formed on the medium; estimation means for estimating a colorimetry temperature, which is the temperature of the patch at the time when the colorimetry means measures its color, based on the patch data and the white paper temperature; and correction means for correcting the colorimetric value based on the estimated colorimetry temperature.
US08625173B2 Image recording apparatus
An image recording apparatus including: a main frame including (a) a pair of side plates facing each other in one direction and (b) a base plate whose opposite end portions in the one direction are respectively supported by the pair of side plates; a guide member provided at an inside area interposed between a pair of side plates in the one direction, so as to define a conveying path through which a recording medium is conveyed; and a sensor device supported by one of the pair of side plates and configured to sense the recording medium conveyed through the conveying path.
US08625170B2 Illuminating device, image-reading apparatus provided with the illuminating device, and image-forming apparatus provided with the image-reading apparatus
The present invention provides an illuminating device including a plurality of light-emitting elements arranged in a line, the illuminating device illuminates an irradiation target by irradiating the irradiation target with light that is emitted from the light-emitting elements via a first and a second optical paths. In the illuminating device, a light diffusing portion for diffusing light is provided in one of the first optical path and the second optical path, and an irradiation light amount of said one of the first optical path and the second optical path in which the light diffusing portion is provided is larger than an irradiation light amount of the other optical path.
US08625167B2 Image processing, reading or forming apparatus and method for adding specific image data to obtained image data while encrypting details data specifying specific data and adding encrypted details data to obtained image data, and non-transitory recording medium recording program for causing computer to function as the same
A gradation pattern on the basis of the second data for the security of predetermined image data and the details data showing the detail information of a specific image of the image data is provided to a two-dimensional code on the basis of the first data for the security of the image data so that the data for the security of the image data is efficiently added to the image data in a limited space.
US08625161B2 Multibit digital halftoning, indexing 2D and 3D lookup tables
Digital halftoning processes for producing a halftone image include, for each pixel in the image: indexing a two-dimensional look up table using a position of the pixel, identifying a threshold value for the pixel from the two-dimensional look up table, creating an index that indexes a three-dimensional lookup table using the threshold value and the position of the pixel, and obtaining an output value for the pixel from the three-dimensional look up table via the index. The digital halftoning processes also produce a halftone representation of the image from output values for corresponding pixels.
US08625160B2 Color adjustment method, a color adjustment apparatus and a recording medium storing a program which prevent processing load from increasing, save color material, and maintain color reproducibility with high accuracy
A color adjustment method includes a color adjustment step to obtain an adjusted CMYK value from an output CMYK value using a color adjustment table. The color adjustment table is to convert the output CMYK value into the adjusted CMYK value and created based on first and third tables. The third table is created based on: a CMYK value determined by C, M and Y values and a K value found from the C, M and Y values, the CMYK value having a proportion of the K value to the CMYK value larger than the proportion used when a second table is created; and a relationship between the CMYK value and the output color value for the CMYK value. This relationship is obtained based on a relationship between an input CMYK value and the output color value of the first table.
US08625157B2 Identifying a color profile for an illuminant
A method includes collecting, within a printer body, ambient light entering the printer body. Characteristics of the collected ambient light are measured. A color profile based on the measured characteristics is identified. The identified color profile is provided for use in forming a color image on a medium.
US08625155B2 Image forming system, controlling apparatus, and recording medium having program recorded therein
An image forming system includes an image forming device configured to form an image on a recording material using a color toner and a transparent toner, a fixing device, a glossing device that has a conveying device which conveys the recording material, a heating device heating the recording material, and a cooling device cooling the recording material, and a controller controlling said image forming device so that an amount of the transparent toner per unit area on the recording material in a first image forming mode in which the image is formed using said fixing device and said glossing device is smaller than the amount of the transparent toner per unit area on the recording material in a second image forming mode in which the image is formed using said fixing device without using said glossing device.
US08625153B2 Multi-dimensional data registration integrated circuit for driving array-arrangement devices
A multi-dimensional data registration integrated circuit is configured for driving array-arrangement devices. The array-arrangement devices comprise a plurality of first hierarchy sets, each which comprises a plurality of second hierarchy sets. The multi-dimensional data registration integrated circuit comprises a first hierarchy address selection circuit, a second hierarchy address selection circuit and a data supply circuit. The first hierarchy address selection circuit scans the first hierarchy sets, and selects a unit of the first hierarchy sets to activate it. The second hierarchy address selection circuit scans the second hierarchy sets. The data supply circuit writes a plurality of data into each designated unit of the second hierarchy sets according to the scanning sequence of the second hierarchy address selection circuit.
US08625145B1 Method and apparatus for estimating usage of print substance in a printer
Embodiments of the present disclosure provide a method for estimating usage of a print substance. The method comprises receiving a plurality of pixels of a page to be printed, and generating, for one of the plurality of pixels, a look-up address based on (i) pixel bits of the one of the plurality of pixels, and (ii) pixel bits of one or more other pixels proximal to the one of the plurality of pixels. The method further comprises estimating an amount of print substance deposited on the page at a location associated with the one of the plurality of pixels based on reference to a print substance amount in a table of print substance amounts, wherein the reference to the print substance amount in the table is made using the look-up address.
US08625138B2 Server apparatus, image forming system, and method of managing print data
According to one embodiment, a server apparatus includes a reception unit, a storage unit, a list sending unit, and a transmission unit. The reception unit receives print data designating a user who is able to execute printing. The storage unit stores the print data received by the reception unit. The list sending unit sends a list of the print data, which the user who is an operator of an image forming apparatus is able to execute, to the image forming apparatus. The transmission unit transmits the print data selected from the list of the print data sent by the list sending unit to the image forming apparatus.
US08625137B2 Job execution management apparatus, job execution apparatus, job execution system and computer-readable medium
A job execution apparatus includes a partial job allocation processing section and a partial job execution instruction section. The partial job allocation processing section allocates each partial job formed by segmenting a received job to a data processing apparatus capable of executing the partial job. The partial job execution instruction section instructs the data processing apparatus to execute the partial job. The partial job allocation processing section reallocates a partial job, which execution was not completed by the data processing apparatus to which the partial job is allocated until a preset end time, to a data processing apparatus capable of executing the unfinished partial job, other than the data processing apparatus to which the unfinished partial job is allocated. The partial job execution instruction section transmits an instruction for executing the unfinished partial job to the reallocated data processing apparatus.
US08625136B2 Method for direct transfer from a portable device to a scanning device using optical codes
One embodiment provides a system for transferring a file from a portable device to a scanning device. During operation, the system displays an optical code associated with the file on the portable device. Next, the system detects successful scanning of the current optical code by the scanning device. Subsequently, the system displays a next optical code associated with the file on the portable device, thereby allowing the scanning device to decode the file after a sequence of optical codes are scanned.
US08625135B2 Information processing apparatus capable of communicating with an image forming apparatus having a web browser
An information processing apparatus is provided that appropriately selects a push-type printing method or a pull-type printing method according to an image forming apparatus that requested data to be printed, thus effectively allowing the image forming apparatus to have the advantages of the respective printing methods. To accomplish this, in the information processing apparatus, when a request from a web browser of the image forming apparatus has been received, the information processing apparatus selects whether to transmit image data to the image forming apparatus by a first method in which image data is transmitted to the web browser as a response to the request from the web browser, or by a second method in which image data is transmitted as a new request without employing the web browser, and the information processing apparatus transmits the image data to the image forming apparatus according to the selected method.
US08625131B2 Communication between server and image forming apparatus
A problem that it is difficult to associate a log of processing executed in a web browser of an image forming apparatus with a log of processing executed in a web application server, and thus it is difficult to track the logs as a series of processing logs. The image processing apparatus receives an execution request of a function of the image forming apparatus and obtains identification information for a log of processing executed in the server apparatus in response to the received execution request of the function. The image forming apparatus stores a log of processing in the image forming apparatus related to the processing in the server apparatus corresponding to the obtained identification information, in association with the obtained identification information.
US08625130B2 Method and system for automatically creating print governance rules and policies
A method and system for accommodating a plurality of printing systems arranged as an enterprise printing system including a memory for storing printer usage information related to a plurality of tasks performed with respect to the enterprise printing system and a processing module including a tangible processor. The tangible processor is manipulate to (1) analyzing the printer usage information and (2) responsive to said analyzing, automatically generating, at selected time intervals, at least one print governance rule, said at least one print governance rule being used to reduce printing costs for at least one of the plurality of printing systems in the enterprise printing system.
US08625127B2 Image forming apparatus that outputs image data to plural destinations
An image forming apparatus includes a receiving unit that receives image data; an extracting unit that extracts specific information from the image data; a first recognizing unit that recognizes destination information from the specific information; and a control unit that outputs the image data, wherein, when the first recognition unit recognizes a plurality of destination information, the control unit outputs the image data to respective destinations corresponding to each of the plurality of the destination information.
US08625126B2 Management of recording medium storage when outputting print job log information
An output job in an image forming apparatus not connected to a network is managed. To accomplish this, an image forming apparatus in an image forming system includes an input unit which inputs document data stored in a recording medium, a verification unit which verifies the validity of the document data on the basis of verification information associated with the input document data, an output unit which forms and outputs an image on a print medium on the basis of the document data, and an output log storing control unit which, when it is determined that the document data is valid, stores, in the recording medium, output log information containing no output image, and when it is determined that the document data is invalid, stores output log information containing the output image in the recording medium.
US08625125B2 Print processing method and information processing apparatus implementing the method
A printer driver for generating print job data to be transferred to a printer in response to a drawing instruction determines, based on combining condition, whether the received drawing instruction can be combined with another drawing instruction. If the printer driver determines that the received drawing instruction can be combined, the printer driver stores the received drawing instruction as intermediate data. If the printer driver determines that the received drawing instruction cannot be combined, the printer driver combines intermediate data of already stored drawing instructions into a single item of print job data and outputs the print job data to the printer. The combining condition is that the received drawing instruction meets all of three conditions.
US08625119B2 Multifunction apparatuses each of which carries out a cooperation process in cooperation with an application which is executable on an external information processing apparatus
A multifunction apparatus includes an application information storage section in which, for each of a plurality of applications, (i) identification information for identifying the each of the plurality of applications and (ii) function information indicating what function(s) has been previously carried out in a cooperation process carried out by the multifunction apparatus and the application in cooperation with each other, are stored, and a device control section which determines, when the device control section receives an instruction to start a cooperation process, whether or not Condition A is satisfied, the device control section causing, if Condition A is satisfied, a switching operation for switching an image forming section from a waiting mode to a normal operation mode to be started, Condition A: function information associated with identification information indicating the selected application indicates a specific function which causes the image forming section to operate.
US08625116B2 Multi-function device
A multi-function device may be connected with a color printer capable of printing in a communicable manner. The multi-function device may be configured to store identification information of the color printer, to color-scan an object to be scanned, to monochrome-print based on first image data representing an scanned object, to allow a user to input an instruction, and to send second image data representing a color-scanned object with the identification information of the color printer as a destination if a predetermined instruction is input.
US08625114B2 Electronic device and medium for changing dialog box to be displayed
An electronic device comprises a display system that displays a setting window for configuring setting items for each of functions of the electronic device, an input system through which information is inputted, a setting item information storing system that stores setting item information including location information for each of the setting items, a setting information storing system that stores setting information including information on an intended setting item and other setting items to be configured before configuring the intended setting item, a searching system that searches the intended setting item based on information inputted through the input system and the setting item information, a setting information generating system that generates the setting information, and a display control system that controls the display system to display the generated setting information and a setting window for each of the searched setting item and said other setting items.
US08625111B2 Optical film thickness meter and thin film forming apparatus provided with optical film thickness meter
An optical film thickness meter capable of measuring an optical film thickness and spectroscopic characteristics highly accurately, and a thin film forming apparatus with the optical film thickness meter are provided. The optical film thickness meter includes a light projector, a light receiver, a monochromator, and a reflection mirror having a reflection surface substantially perpendicularly to the optical axis of measurement light on the side opposite to an actual substrate. The actual substrate is disposed having a predetermined angle to the optical axis. The measurement light passes through the actual substrate twice, whereby a change in transmissivity can be increased, and control accuracy of thickness measurement is improved. Measurement errors caused by a difference in transmission positions is prevented. Since the measurement light which has not passed through the measurement substrate twice is not detected by the light receiver, the optical film thickness and spectroscopic characteristics is measured highly accurately.
US08625109B2 Method of determining an overlap distance of an optical head and digital exposure device using the method
An apparatus and a method for determining an overlap distance of an optical head is disclosed. Positions and light amount distributions of each light spot can be measured, which may be provided from an optical head to a substrate. Gaussian distribution may be applied to the positions and the light amount distributions to calculate a compensation model of each of the light spots. A first accumulated light amount corresponding to each first area of the substrate may be calculated if the optical head is scanning along a first direction of the substrate using the compensation model. A second accumulated light amount corresponding to each second area overlapped with the each first area is calculated if the optical head is scanning along the first direction, which is moved in a second direction by a first distance using the compensation model. An overlap distance may be determined based on a uniformity of summations of the first and second accumulated light amount.
US08625108B2 Protective optical metrology system for determining attitude and position
Described herein is a projective optical metrology system including: a light target equipped with a plurality of light sources having a pre-set spatial arrangement; an optoelectronic image sensor; an optical unit receiving a light signal coming from the light target and defining two different optical paths for the light signal towards the optoelectronic image sensor, the two optical paths being such as to cause simultaneous formation on the optoelectronic image sensor of at least two images of the light target; and an electronic processing unit coupled to the optoelectronic image sensor and determining a plurality of different quantities indicating the position and attitude of the light target with respect to the optical unit, on the basis of the two images.
US08625105B2 Vehicle tyre measurement
An apparatus measures the tread of a tire on a vehicle, in which a laser line generator (34) generates an elongate pattern of light. Mirrors (36) are arranged to reflect light from the laser line generator (34) onto the rolling surface of the tire. Mirrors (36, 38, 42) are arranged to reflect light from different regions of the rolling surface of the tire towards a camera (32). The camera images the regions of the rolling surface of the tire. The apparatus may be hand-held or arranged such that a tire to be aged is driven onto or over it.
US08625102B2 Aberration measurement method and system including interferometer and signal processing unit
An aberration measurement system includes an interferometer that includes a polarization adjuster configured to adjust a polarization plane of coherent light, and a phase shifter configured to shift a phase of reference light. The aberration measurement system further includes a signal processing unit configured to obtain a nonpolarization aberration of the test object, and coefficients a=sin ε cos 2θ, b=sin ε sin 2θ, and c=cos ε for a retardation amount 2ε and a principal axis direction θ of a polarization aberration of the test object, based on data of a plurality of interference pattern images which provide at least three complex visibilities obtained from the interferometer after a polarization adjuster adjusts the polarization plane of the coherent light, and to determine signs of the coefficients a, b, and c based on the nonpolarization aberration.
US08625100B2 Method for the optical determining of a measured variable of a medium
In a method for determining a measured variable of a measured medium, wherein the measured medium is brought in contact with an indicator or an indicator mixture, whose absorption spectrum has a first, and a second, wavelength range, which essentially do not overlap, a first light source is activated for emitting a first light signal with a wavelength from the first wavelength range and a second light source is activated for emitting a second light signal with a wavelength from the second wavelength range. The intensity of the first light signal is modulated by a first and the intensity of the second light signal by a second, periodic signal, wherein at least a part of the first light signal and at least a part of the second light signal propagate as first and second measurement light signals along a measuring path and are transformed on the measuring path by optical interaction with the indicator or the indicator mixture to transformed measurement light signals, and wherein a total intensity of the transformed first and second measurement light signals is registered. The first periodic signal has a first phase difference relative to the second, periodic signal, and a second phase difference between the total intensity of the transformed first and second measurement light signals and the first, or the second, periodic signal is ascertained. The measured variable is determined with application of the second phase difference.
US08625099B2 Particle concentration measuring device
A particle concentration measuring device includes: a measurement region formation part which has a wall (10) of substantially ring-form and through an inner opening of which gas relatively flows orthogonally; a light curtain forming unit (12A, 12B) forming a planar light curtain (FL) in the inner opening: a particle detecting unit (15) receiving scattered light from particles passing through the light curtain (FL) to detect the particles; and a calculating unit (22) calculating particle concentration based on the total number of the particles detected by the particle detecting unit (15) in a volume of an airflow passing through the light curtain (FL) in a unit time.
US08625097B2 Light emitting diode illumination system
The present invention provides a light engine having four LED light sources in combination with one or more laser light sources. A combination of collimators, bandpass filters, dichroic mirrors, and other elements is operative to direct light from the light sources onto a main optical axis from where it may be focused into a light guide for transport to a instrument or device. Particular embodiments of the invention provide for computer control, intensity control, color control, and light source modulation. The light engine provides light suitable for applications in microscopy, endoscopy, and/or bioanalytical instrumentation.
US08625094B2 DNA sequencing system
An apparatus for detecting labeled beads is provided. The apparatus can include: one or more irradiation sources disposed for irradiating the one or more detection zones with radiation; at least one detector disposed for collecting charges corresponding to light signals emitted from labeled beads in the one or more detection zones, which have been excited by the radiation; and a system coupled to the at least one detector for effecting time delay integration of the charges by accumulating the charges before reading the charges at the output of the at least one detector.
US08625089B2 Foreign matter inspection apparatus and foreign matter inspection method
A foreign-matter inspection apparatus is implemented which allows the stable detection sensitivity to be maintained. A laser beam emitted from a laser apparatus is applied to a beam irradiation sample via an irradiation unit and a mirror. Then, the laser beam is captured into a beam-capturing camera via an image-forming lens and a beam-direction switching mirror. Based on the captured beam image, an image computational processing unit judges inclination of the laser beam, then adjusting the irradiation unit thereby to correct the inclination of the laser beam. Also, the beam is captured into the beam-capturing camera in specified number-of-times while focus of the laser beam is being changed by an arbitrary amount by the irradiation unit. Based on the captured beam, the focus of the laser beam is corrected by adjusting the irradiation unit.
US08625087B2 Packing container, method of packing optical probe, laser system, and checking method
Disclosed herein is a packing container including: a packing container body including a leading-out section which contains an optical probe having a first end section for incoming of a laser beam and a second end section for outgoing of the incoming laser beam, which leads out the first end section of the optical probe thus contained to the exterior and which is sealed, and a window section by which the laser beam going out from the second end section of the contained optical probe is led out to the exterior; and a light-transmitting member which closes the window section and permits the laser beam to pass therethrough.
US08625086B2 Determining coordinates of a target in relation to a survey instrument having a camera
A method is disclosed for determining coordinates of a target in relation to a surveying instrument wherein a first image is captured using a camera in a first camera position and orientation, a target is selected by identifying an object point in the first image, and first image coordinates of the object point in the first image are measured. The surveying instrument is then rotated around the rotation center so that the camera is moved from the first camera position and orientation to a second camera position and orientation, while retaining the rotation center of the surveying instrument in a fixed position. A second image is captured using the camera in the second camera position and orientation, the object point identified in the first image is identified in the second image, and second image coordinates of the object point in the second image are measured. Target coordinates in relation to the rotation center of the surveying instrument are then determined based on the first camera position and orientation, the first image coordinates, the second camera position and orientation, the second image coordinates, and camera calibration data. Furthermore, a surveying instrument for performing the method is disclosed.
US08625081B2 Method and device for measuring distance
There is provided an apparatus (300) for measuring a distance to a target (312), comprising: a transmitter (302) configured to transmit an optical pulse (310) towards the target (312), a receiver channel (304) configured to receive the optical pulse (310) reflected from the target (312), and a processor (306) configured to measure a time intervaf between the transmission and detection of the optical pulse (310) at a predefined amplitude threshold level (11OA, 110B), to determine a time domain parameter from the detected optical pulse (310) at one or more amplitude threshold levels (110A, 110B), to convert the time domain parameter value into a correction value by a conversion model; to correct a timing error in the measured time interval by the correction value, and to convert the error-corrected time interval into a distance to the target (312).
US08625080B2 Optoelectronic sensor and method for the measurement of distances in accordance with light transit time principle
An optoelectronic sensor (10) for the measurement of distances in accordance with the light transit time principle is provided having a light transmitter (12) for the transmission of a light signal, having a light receiver (16) for the reception of a remitted or reflected received signal and having an evaluation unit (18) which is made to satisfy a transition condition for the received signal by systematic selection of a transmission delay time for the transmission of the light signal at an observation time and to calculate the light transit time from the transmission delay time required for this. In this respect, a regulator (44) is provided which is made to adjust the transmission delay time such that the transition condition is satisfied at the observation time.
US08625079B2 Multicolored range-finder
The present invention relates to a range-finder comprising a laser pulse emission device and a device for detecting the pulses reflected by a distant object.The emission device is capable of emitting pulses of N distinct wavelengths, N being an integer greater than 1, with, for each wavelength, a pulse repetition frequency less than a predetermined threshold frequency.Thus, no given wavelength emission will be faced with the problem of distance ambiguity.
US08625074B2 Exposure apparatus and device fabrication method
The present invention provides an exposure apparatus including a projection optical system configured to project a pattern of a reticle located on an object plane onto a substrate located on an image plane, a phase shift type mark mounted on a stage which holds the substrate, an image sensor which is set at one of a position of the object plane and a position optically conjugate to the object plane, and is configured to capture an image of the mark via the projection optical system, and a controller configured to control the stage based on an interval between edge images, formed by a pair of edge portions, in the image of the mark captured by the image sensor.
US08625072B2 Exposure apparatus, exposure method, and method of manufacturing device
A scanning exposure apparatus measures levels of a substrate at a predetermined position on the substrate at a first measurement point during the acceleration period and a second measurement point during the constant velocity period, obtains a correction value for a measurement error due to factors associated with acceleration based on the measurement results, corrects the measured level using the obtained correction value and exposes the substrate so that the level at a given position on the substrate becomes equal to the corrected level, when the substrate is exposed at the given position after the level is measured while the stage accelerates, and exposes the substrate so that the level at a given position on the substrate becomes equal to the measured level measured, when the substrate is exposed after the level of the substrate at the given position is measured while the stage moves at a constant velocity.
US08625070B2 Lithographic apparatus, projection system and damper for use in a lithographic apparatus and device manufacturing method
In a lithographic apparatus, dampers are provided that may be used within mounts for optical elements in order to damp the motion of the optical element relative to the component to which it is mounted.
US08625064B2 Systems and methods for preparing films using sequential ion implantation, and films formed using same
Systems and methods for preparing films using sequential ion implantation, and films formed using same, are provided herein. A structure prepared using ion implantation may include a substrate; an embedded structure having pre-selected characteristics; and a film within or adjacent to the embedded structure and including ions having a perturbed arrangement arising from the presence of the embedded structure. The perturbed arrangement may include the ions being covalently bonded to each other, to the embedded structure, or to the substrate, whereas the ions instead may be free to diffuse through the substrate in the absence of the embedded structure. The embedded structure may inhibit or impede the ions from diffusing through the substrate, such that the ions instead covalently bond to each other, to the embedded structure, or to the substrate. The film may include, for example, diamond-like carbon, graphene, or SiC having a pre-selected phase.
US08625062B2 Transparent display device and driving method thereof having particular active reflector
A transparent display device and a driving method thereof. The transparent display device includes a light guide plate transmitting incident light impinging from its exterior or its back surface and reflecting backlight light impinging from its side surface to its front surface; and an active reflector disposed on the back surface of the light guide plate. The active reflector includes a cholesteric liquid crystal layer transmitting the incident light in a planar phase in a transparent mode.
US08625058B2 Photodetector and display device
The amount of light incident on a photoelectric conversion element is increased while stray light from a backlight below a light-transmitting substrate is prevented from being incident on the photoelectric conversion element. A light-blocking film is formed with a color filter covering a photoelectric conversion element over a light-transmitting substrate and a color filter covering a photoelectric conversion element in an adjacent pixel which overlap each other at the side with respect to the direction in which light travels. In addition, by providing a microlens over the color filter, light which is conventionally not detected is collected to a photoelectric conversion element, and accordingly the amount of light incident on the photoelectric conversion element is increased.
US08625057B2 Color filter substrate, multi-view liquid crystal display apparatus and method of manufacturing the same thereof
A color filter substrate for multi-view displaying including a substrate, a light shielding-layer, and a color filter layer is provided. The substrate has a first surface, a second surface, and a plurality of concaves. The first surface is opposite to the second surface. The concaves are located at the first surface. The light-shielding layer disposed on the first surface of the substrate defines a plurality of light-transparent openings. The color filter layer has a plurality of sub-pixel areas including at least one first sub-pixel area and at least one second sub-pixel area. A first light is transmitted to a first viewer by passing through one of the light-transparent openings and one of the at least one first sub-pixel area, and simultaneously, a second light is transmitted to a second viewer by passing through the same one of the light-transparent openings and one of the at least one second sub-pixel area.
US08625055B2 Organic light emitting display device
An organic light emitting display device includes a substrate having a transmitting region interposed between pixel regions; thin film transistors on a first surface of the substrate; a passivation layer covering the thin film transistors; pixel electrodes on the passivation layer; an opposite electrode disposed to face the pixel electrodes; an organic emission layer between the pixel electrodes and the opposite electrode; a polymer dispersed liquid crystal (PDLC) device disposed such that the thin film transistors are between the PDLC device and the passivation layer, the PDLC device having: a first electrode; a second electrode; and a PDLC layer in which liquid crystal is dispersed in polymer matrix. Distortion of images transmitted through the organic light emitting display device is prevented by restricting scattering of the transmitted light, the transmission of the external light may be adjusted simply, and degradation of the brightness and color coordinate reproduction may be prevented.
US08625053B2 Light emitting diode and backlight unit and liquid crystal display device with the same
A light emitting diode adapted to improve light efficiency is disclosed. The light emitting diode includes: a light emitting chip; a first lead frame loaded with the light emitting chip and configured to include first through fourth tilted surfaces which expand outwardly from a region loaded with the light emitting diode, the first and second tilted surfaces being arranged symmetrically with each other in a first direction and the third and fourth tilted surfaces being symmetrical with each other in a second direction perpendicular to the first direction; a second lead frame separated by a fixed distance from the first lead frame; first and second wires configured to connect the first and second lead frames to the light emitting chip, respectively; and a mold frame configured to encompass the first and second lead frames and to include first and second reflection surfaces, which are arranged symmetrically with each other in the first direction of the first lead frame, and third and fourth reflection surfaces which are arranged symmetrically with each other in the second direction of the first lead frame.
US08625049B2 Backlight unit and liquid crystal display including the same
A liquid crystal display includes a liquid crystal display panel, a backlight and a cover. The backlight includes optical sheets that are configured to be mounted to the cover using a plurality of holes provided on the optical sheet that material to corresponding protrusions provided on the cover. The holes and protrusions are configured to reduce damage or misalignment to the optical sheet that may be caused by heat generated inside the liquid crystal display.
US08625047B2 Fluid ingress resistant interactive display device
A fluid ingress resistant interactive display device is disclosed herein. The device includes one or more gasket layers to serve as a fluid barrier to resist fluid from entering an interior of the device.
US08625045B2 LCD device and backlight module thereof
A backlight module is disclosed. The backlight module comprises a first optical film, a second optical film, a backplate frame, and an optical film supporting device adapted to splice and support the first optical film and the second optical film. The optical film supporting device comprises a body, a splicing portion and a fixing portion. The splicing portion is adapted to splice and support the first optical film and the second optical film, and the fixing portion is fixed to the backplate frame. A liquid crystal display (LCD) device comprising the backlight module described above is also disclosed. By providing an optical film supporting device in the backlight module of the present invention, two or more optical films can be spliced by the optical film supporting device to satisfy the demands for a large-sized optical film. This solution is practical, reliable and low in the cost.
US08625041B2 Array substrate, liquid crystal display for the same and manufacturing method thereof
An array substrate, liquid crystal display for the same and manufacturing method thereof are described. The array substrate includes a substrate, a plurality of scan lines, a plurality of data lines, a plurality of contact pads, a passivation layer and transparent conducting layer. The substrate has a first display region, a second display region and a first non-display region. The contact pads are disposed in the first non-display region. The transparent conducting layer disposed in the passivation layer includes a first pixel electrode, a second pixel electrode and a plurality of comb electrode. The first pixel electrode and second pixel electrode are disposed in the first display region and the second display region wherein the widths of the first pixel electrodes either are equal to or approximate the widths of the second pixel electrodes. The comb electrodes are disposed in the first non-display region and connected to the contact pads.
US08625039B2 Liquid crystal display device
Disclosed herein is a liquid crystal display device having first and second substrates disposed to face each other so as to hold a liquid crystal layer therebetween, and a gate potential creating circuit for outputting a selection potential and a non-selection potential, scanning lines, signal lines, thin film transistors formed so as to correspond to intersection portions between the scanning lines and the signal lines, respectively, pixel electrodes electrically connected to the thin film transistors, respectively, and a gate control circuit for switching the selection potential and the non-selection potential supplied from the gate potential creating circuit over to each other, thereby supplying one of the selection potential and the non-selection potential to corresponding ones of the thin film transistors through corresponding one of the scanning lines being formed on the first substrate, and a common electrode being formed either on the first substrate or the second substrate.
US08625037B2 Stereoscopic image display device
The present invention relates to stereoscopic image display device which can compensate mismatch of bonding between a switchable panel and a liquid crystal panel.The stereoscopic image display device includes a liquid crystal panel for forwarding a 2D image, a switchable panel formed on the liquid crystal panel to have n (where n is 2 or greater than 2) first electrodes in correspondence to one switchable region for forwarding the 2D image in a 3D image upon application of a voltage thereto, and a voltage generating unit having n voltage sources for applying voltages to the n first electrodes, independently.
US08625032B2 Video capture from multiple sources
A method for capturing video frames from a plurality of video channels is provided. A list of a least two descriptors is formed for each of the plurality of video channels in a memory accessible to a direct memory access (DMA) engine, wherein each of the two or more descriptors for each channel is programmed to define a storage location for a sequential frame of video data for the channel. A sequence of video frames is received from the plurality of video channels, wherein for each channel, video frames are received at a frame rate for that channel. A DMA engine uses descriptors from the list to store video frames as they are received. The list is updated periodically to replace used descriptors.
US08625029B2 HDMI source detection
A circuit for detection of an HDMI source device to an HDMI sink device through an HDMI sink connector without regard for the activity state of the HDMI source device has a pull-up resistor having first and second terminals with the first terminal coupled to a DC power source. A switching device is coupled between the pull-up resistor's second terminal and ground at a circuit node. The switching device is switched on to couple the circuit node to ground when power is applied to a control terminal thereof from the HDMI sink connector power pin, and being switched off otherwise. The circuit node is coupled to a DDC/CEC GROUND pin of the HDMI sink connector. The circuit node is readable as a binary signal to indicate the presence of a source device to the HDMI sink connector, wherein the node exhibits a logic low signal when either the node is grounded by the DDC/CEC GROUND pin connection to a source device or when the switching device is switched on. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.
US08625020B2 Method and apparatus for operating camera function in portable terminal
A method and an apparatus for operating a camera function in a portable terminal are provided. State information representing at least one of a direction and a rotation state of the portable terminal is obtained, and at least one of a sequence of reading an image from a camera sensor and an appropriate user interface is determined depending on the state information. Thus, the camera function is performed depending on the determined sequence or user interface.
US08625015B2 AD conversion circuit and solid-state imaging apparatus
A comparison section includes an analog signal to be subjected to AD conversion to a reference signal that increases or decreases with the passage of time, and terminates a comparison process at a timing at which the reference signal has satisfied a predetermined condition for the analog signal. A first count section counts a clock signal of a predetermined frequency as a count clock and outputs a count value. A latch section latches the count value output from the first count section. A latch control section enables the latch section at a first timing related to an end of the comparison process and causes the latch section to execute a latch operation at a second timing delayed by a predetermined time from the first timing.
US08625011B2 Solid-state image taking device and electronic apparatus
Disclosed herein is a solid-state image taking device including a pixel section and a scan driving section wherein on each pixel column included in the pixel area determined in advance to serve as a pixel column having the unit pixels laid out in the scan direction, the opto-electric conversion section and the electric-charge holding section are laid out alternately and repeatedly, and on each of the pixel columns in the pixel area determined in advance, two the electric-charge holding sections of two adjacent ones of the unit pixels are laid out disproportionately toward one side of the scan direction with respect to the optical-path limiting section or the opto-electric conversion section.
US08625010B2 Solid-state imaging apparatus with each pixel including a photoelectric converter portion and plural holding portions
A solid-state imaging apparatus including a plurality of pixels each including: a first holding portion for holding signal carriers from a photoelectric conversion portion; an amplifying portion for amplifying and reading a signal based on the signal carriers generated in the photoelectric conversion portion; and a carrier discharging control portion for discharging charge carriers in the photoelectric conversion portion to an OFD region, and having a carrier path between the photoelectric conversion portion and the first carrier holding portion, in which the solid-state imaging apparatus further includes a second carrier holding portion electrically connected with the first carrier portion in parallel through a first transfer unit, when viewed from an output node of the photoelectric conversion portion, thereby smoothing an movie imaging without causing discontinuous frame while suppressing generation of noise mixing into the charge carrier holding portion.
US08625005B2 First-in-first-out (FIFO) buffered median scene non-uniformity correction method
A buffered scene-based non-uniformity correction method includes receiving a plurality of frames of video image data from an image detector; determining relative movement of a current image frame with respect to a previous image frame and responsive to a determination of substantial movement, adding the current image frame to a buffer memory sized to store a predetermined number of video frames; averaging pixel values of the frames in the buffer to determine a mean (or weighted mean) value for each pixel of a reference image; determining correction terms for each pixel of the current image frame by determining the difference between the current image frame pixel values and the corresponding reference image pixels; and correcting the current image frame using the correction terms. A scene-based non-uniformity correction system is also disclosed.
US08625003B2 Digital camera and method for monitoring a signal processing device
A digital camera includes an image sensor for producing analog image signals; an analog/digital converter for converting the image signals into digital raw data; and a signal processing unit for producing processed data from the raw data, wherein the signal processing device has a signal output. The camera has at least one first buffer memory for buffering at least some of the digital raw data and an evaluation device which is made to compare raw data stored in the first buffer memory with the processed data.
US08625001B2 Pre- and post-shutter signal image capture and sort for digital camera
A camera system includes an image sensor and a processing apparatus receiving image frames from the sensor before and after receipt of a user picture signal. The processing apparatus discards frames that do not meet a quality criterion such as under-exposed frames. Also, the processing apparatus compresses only a subset of remaining frames, specifically, those that meet a compression amount threshold. The remaining frames are presented to a user, who can select a representative frame as the “picture” that was taken.
US08624999B2 Imaging apparatus
An imaging apparatus, including an optical system forming an image of an optical image of an object; an imaging element imaging the optical image and producing image data at a frame frequency Ffs out of a frame frequency Ffr of NTSC system; a frame memory storing the image data; and a controller progressively writing the image data in the frame memory and interlacedly reading out the image data from the frame memory at the frame frequency Ffr of NTSC system. The frame memory is divided into at least three areas comprising a writing-in area and a read-out area, wherein the controller sequentially switches the areas of the frame memory and progressively writes one frame of image data in each area and interlacedly reads out one frame of image data from each area in sequence.
US08624998B2 Camera image selection based on detected device movement
Systems and methods are provided for selecting one or more of several images captured in sequence and stored in a buffer in response to receiving a user instruction to store a captured image. An electronic device can capture information describing the movement of the device at the time each of the several images was captured, such that each image can be associated with specific device movement information. The electronic device can then select the one of the captured and buffered images for which the movement information of the device satisfies particular criteria. This can ensure that the particular image stored is not blurry due to device movement at the time the image was captured.
US08624995B2 Automatic white balancing method, medium, and system
A white balancing detecting method, medium, and system. The white balancing method includes setting an illuminant detection region of an input image in accordance with an exposure integration time indicative of a collected amount of light when the image is taken, and detecting an illuminant by using data contained in the illuminant detection region in a color gamut of the image.
US08624985B2 Apparatus for and method of imaging targets with wide angle, athermalized, achromatic, hybrid imaging lens assembly
A wide angle, athermalized, achromatic, hybrid imaging lens assembly captures return light from a target over a field of view, and projects the captured return light onto an array of image sensors of a solid-state imager during electro-optical reading of the target. The assembly includes a plastic lens group for optical aberration compensation, a glass lens group spaced away from the plastic lens group along an optical axis, and an aperture stop between the lens groups and having an aperture through which the optical axis extends. The glass lens group has substantially all the optical power of the imaging lens assembly for thermal stability, and the plastic lens group has substantially no optical power. A holder holds the lenses and the aperture stop in front of the array.
US08624984B2 Electronic camera
An electronic camera includes a wireless communication means for connecting to a wireless network; a transfer control means for transferring a captured image to a server through the wireless network connected by the wireless communication means; a power supply judgment means for judging whether or not power supply from outside has started; and a power source switching means for switching a power source of the electronic camera to ON or OFF. When the power source of the electronic camera has been switched to OFF by the power source switching means and if it has been judged by the power supply judgment means that supply of the power has started, the transfer control means transfers the captured image to the server, and when the power source of the electronic camera has been switched to ON by the power source switching means and if it has been judged by the power supply judgment means that supply of the power has started, the transfer control means prohibits transfer of the captured image to the server.
US08624983B2 Digital information input apparatus
If a request of handle information to identify data existing in a recording medium is made to a digital camera by a PC, the digital camera collects the data existing in the recording medium by accessing a file system, generates unique handle information independent of the file system on the basis of a file path of the file system, and transmits it to the PC. When the request accompanied by the handle information is received from the PC, the digital camera executes a file path restoring process to the handle information, thereby restoring the file path which depends on the file system in the digital camera, retrieves the requested file by using the obtained file path, and transmits the data to the PC. According to this arrangement, installation costs can be suppressed by making an identification information management table unnecessary even while identification information which is independent of a logical data management system is used.
US08624982B2 Receiver and a transmitter
A receiver is described for a testing device for a data stream in which the data stream comprises a plurality of encoded data components. The receiver comprises an input for inputting a plurality of encoded data components, a processor for processing the plurality of encoded data components; and a plurality of outputs each for outputting a processed one of the plurality of encoded data components. The receiver is arranged, such that, in use, a plurality of encoded data components received at the input are processed by the processor and a processed one of the plurality of encoded data components is output from one of the plurality of outputs.
US08624981B2 Testing method for camera
A testing method includes: providing a camera under test and a planar light source having a first mark, wherein the camera includes a voice coil motor (VCM) and a lens module is fixed on the VCM by glue, the VCM moves the lens module, the VCM includes an elastic tab for limiting and restoring the movement of the lens module; taking an image of a light source using the camera during the movement of the VCM; displaying the image having the first mark; determining if the first mark tilts using a detector; displaying a first message indicating that the tab is not stuck by glue when the detector determines the first mark does not tilt; and displaying a second message indicating that the tab is stuck by glue when the detector determines the first mark tilts.
US08624976B2 Supporting continuous pan rotation in a pan-tilt camera
The invention relates to a method for moving a maneuverable part of a pan-tilt camera from a first pan-tilt position, having a first pan coordinate and a first tilt coordinate, to a second pan-tilt position, having a second pan coordinate and a second tilt coordinate. The maneuverable part is moved by inverting the maneuverable part of the camera and panning to the second pan coordinate. The first pan coordinate is part of a pan-tilt coordinate system and the second pan coordinate is part of a complementary pan-tilt coordinate system, which represents positions of the inverted maneuverable part. The maneuverable part is moved from the first tilt coordinate to the second tilt coordinate. The first tilt coordinate is part of the pan-tilt coordinate system and the second tilt coordinate is part of the complementary pan-tilt coordinate system. The invention also relates to a corresponding device and a corresponding computer program.
US08624974B2 Generating a three-dimensional model using a portable electronic device recording
Systems and methods are provided for navigating a three-dimensional model using deterministic movement of an electronic device. An electronic device can load and provide an initial display of a three dimensional model (e.g., of an environment or of an object). As the user moves the electronic device, motion sensing components can detect the device movement and adjust the displayed portion of the three-dimensional model to reflect the movement of the device. By walking with the device in the user's real environment, a user can virtually navigate a representation of a three-dimensional environment. In some embodiments, a user can record an object or environment using an electronic device, and tag the recorded images or video with movement information describing the movement of the device during the recording. The recorded information can then be processed with the movement information to generate a three-dimensional model of the recorded environment or object.
US08624972B2 Inspection device for recognizing embossings and/or labels on transparent vessels, in particular beverage bottles
An inspection device and a method for recognizing embossings and/or labels on transparent vessels, in particular beverage bottles, and having a camera for imaging an embossing and a label of a vessel to be examined, and a transmitted light lamp provided with a luminescent screen and used for sending transmitted light through the embossing. In this way, a compact inspection device for recognizing labels and/or embossings and for examining their positions is provided.
US08624969B2 Methods of electromagnetic migration imaging of geologic formation
Methods and systems for imaging-while-drilling and look-ahead imaging of a geological formation using a borehole devices measuring multi-component vector and/or tensor logging data. An electromagnetic field transmitter generates an electromagnetic field. Electromagnetic receivers measure the response from the geological formation around the borehole and ahead of the device at various receiving positions. A central processing unit may compute a migration field by simulating the replacement of the receivers with conceptual transmitters, calculate an integrated sensitivity of the recorded electromagnetic field data, compute a reference field, and calculate a cross power spectra of the reference and the migration fields or cross correlation functions between the reference and the migration fields. A spatial weighting of the cross power spectra or cross correlation functions produces a numerical reconstruction of directional images and look-ahead images of the conductivity distribution around the borehole and/or ahead of the device located within the borehole.
US08624964B2 Depth dependent filtering of image signal
A method and apparatus for rendering of image data for a multi-view display, such as image data for a lenticular auto-stereoscopic display, is disclosed. The method comprises the steps of receiving an image signal representing a first image, the first image comprising 3D image data, and spatially filtering the first image signal to provide a second image signal. The second image signal represents a second image, the spatial filtering being, e.g., a low-pass filter, a high-pass filter or a combination of a low-pass and a high-pass filter. A strength of the spatial filter is determined by a reference depth of the first image and a depth of an image element of the first image. The second image is sampled to a plurality of sub-images, each sub-image being associated with a view direction of the image.
US08624963B2 Stereoscopic image display device and method for manufacturing the same
Disclosed is a stereoscopic image display device and a method for manufacturing the same, which facilitates to improve picture quality and to realize wide viewing angle and high luminance of stereoscopic images by improving crosstalk of left-eye image and right-eye image, wherein the stereoscopic image display device comprises a display panel including lower and upper substrates which are bonded to each other, and are provided with a left-eye displaying area (LDA) for displaying a left-eye image of stereoscopic image, and a right-eye displaying area (RDA) for displaying a right-eye image of stereoscopic image; a light-guiding member formed in the upper substrate and overlapped with an interface between the left-eye displaying area (LDA) and the right-eye displaying area (RDA); and an optical-axis changing member formed on the upper substrate, wherein the optical-axis changing member includes a left-eye retarder corresponding to the left-eye displaying area, and a right-eye retarder corresponding to the right-eye displaying area.
US08624962B2 Systems and methods for simulating three-dimensional virtual interactions from two-dimensional camera images
A computer implemented method for incorporating a representation of a participant into a virtual 3D environment substantially in real-time is provided. An image including a participant is captured by a camera. A contour of the participant is automatically determined. Depth data is automatically associated with the participant contour. A first virtual 3D representation of the participant is automatically generated by extruding the participant contour based on the associated depth data. An interaction between the first virtual 3D representation of the participant and a second virtual 3D representation of a second object is displayed.
US08624961B2 Method and devices for 3-D display based on random constructive interference
The present invention relates to a method and an apparatus for 3-D display based on random constructive interference. It produces a number of discrete secondary light sources by using an amplitude-phase-modulator-array, which helps to create 3-D images by means of constructive interference. Next it employs a random-secondary-light-source-generator-array to shift the position of each secondary light source to a random place, eliminating multiple images due to high order diffraction. It could be constructed with low resolution liquid crystal screens to realize large size real-time color 3-D display, which could widely be applied to 3-D computer or TV screens, 3-D human-machine interaction, machine vision, and so on.
US08624958B2 Method and apparatus for accessing multi-dimensional mapping and information
A method and apparatus for providing an interactive mapping and panoramic imaging application for utilization by a computer user is provided. A plurality of panoramic images are stored on a panoramic database, each panoramic image corresponding to a geographical location. A panoramic image is displayed on a screen and is navigable in response to input by the user. The panoramic image has embedded hotspots corresponding to selected panoramic images of geographically adjacent locations. Also displayed on the screen, simultaneously with the panoramic image, is a map image corresponding with the panoramic image. The map image is stored on a map database, and the map is navigable in response to input by the user. The map has embedded hotspots corresponding to the plurality of panoramic images. Also displayed on the screen, simultaneously with the panoramic image and the map image, is a text panel displaying textual information corresponding to the displayed panoramic image. The text panel is capable of receiving textual input from the user for activating a search of a text database having a plurality of text data corresponding to the plurality of panoramic images. The displayed panoramic image, the displayed map image and the displayed textual information are updated in response to the user activating a hotspot, such that the displayed panoramic image, the displayed map image and the displayed textual information correspond to one another.
US08624954B2 Methods and systems for sharing content via a collaboration screen
Video conferencing methods and systems that enable shared content to be displayed in a separate window within a screen or in a separate display are described. In one aspect, a method for establishing a video conference with shared content using a computing device includes capturing images of a first participant through a screen using a camera. The screen is located between the first participant and the camera. The method also includes projecting images of a second participant on the screen to be viewed by the first participant using a projector, and displaying shared content separate from the images of the second participant. The shared content is to be presented in different format than the images of the second participant presented on the screen.
US08624950B2 Surface-emitting laser comprising emission region having peripheral portion with anisotropy in two perpendicular directions, and surface-emitting laser array, optical scanning apparatus and image forming apparatus including the same
A surface-emitting laser includes a substrate; a lower semiconductor multilayer film reflector disposed on the substrate; a resonator structure including an active layer and disposed on the lower semiconductor multilayer film reflector; and an upper semiconductor multilayer film reflector disposed on the resonator structure. The second semiconductor multilayer film reflector includes a confinement structure in which a current passage region is surrounded by an oxidized portion of a selectively oxidized layer containing aluminum. An emission region includes a central portion and a peripheral portion, the peripheral portion being covered with a transparent dielectric film whose reflectivity is lower than a reflectivity of the central portion. The selectively oxidized layer has a thickness in a range from 30 nm to 40 nm. The temperature at which an oscillation threshold current is minimized is 60° C. or lower.
US08624948B2 Apparatus and method of detecting horizontal synchronization signal in image forming apparatus
Provided is a device for detecting a horizontal synchronization signal of an image forming apparatus. The device includes a light intensity converter to convert light intensity of a first beam emitted from a first light source and light intensity of a second beam emitted from a second light source to be different from each other, and outputting the first and second beams; a photo detector to receive the first beam and the second beam output from the light intensity converter, and outputting a first signal having a first level at a time of receiving the first beam and a second level at a time of receiving the second beam; and a horizontal synchronization signal detector to detect a horizontal synchronization signal of the first beam and a horizontal synchronization signal of the second beam by using the first signal.
US08624946B2 Thermal head, method of manufacturing thermal head, and printer equipped with thermal head
A thermal head has a support substrate including a concave portion formed in a front surface thereof. An upper substrate is bonded in a stacked state to the front surface of the support substrate and includes a convex portion formed within a region corresponding to the concave portion. A heating resistor is provided on a front surface of the upper substrate at a position straddling the convex portion. A pair of electrodes is provided on both sides of the heating resistor. At least one of the pair of electrodes has a thin portion and a thick portion. The thin portion is connected to the heating resistor at one of a side surface and a top surface of the convex portion in the region corresponding to the concave portion. The thick portion is connected to the heating resistor and is formed thicker than the thin portion.
US08624945B1 Printing device for printing a stereograph and related method
A printing device for printing a stereograph is disclosed in the present invention. The printing device includes an actuating unit, a ribbon, a thermal print head and a controller. The actuating unit conveys a print medium. The ribbon includes a plurality of dye regions and at least a protecting layer. The thermal print head can transfer the dye regions and the protecting layer onto the print medium, and further manufacture a lenticular lens structure on a surface of the protecting layer in a heat working manner. The controller is coupled to the actuating unit and the thermal print head. The controller drives the actuating unit to convey the print medium according to a target image datum, further controls the thermal print head to respectively transfer the dye regions and the protecting layer onto the print medium, and simultaneously manufactures the lenticular lens structure on the protecting layer.
US08624944B2 Rapid image rendering on dual-modulator displays
Apparatus and methods are provided that employ one or more of a variety of techniques for reducing the time required to display high resolution images on a high dynamic range display having a light source layer and a display layer. In one technique, the image resolution is reduced, an effective luminance pattern is determined for the reduced resolution image, and the resolution of the effective luminance pattern is then increased to the resolution of the display layer. In another technique, the light source layer's point spread function is decomposed into a plurality of components, and an effective luminance pattern is determined for each component. The effective luminance patterns are then combined to produce a total effective luminance pattern. Additional image display time reduction techniques are provided.
US08624942B2 Luminance correction system for organic light emitting display
There is provided a luminance correction system for an organic light emitting display, in which reference offset values are set in order to correct gamma voltages of reference gray scale levels and an additional offset value is set for at least one gray scale level among the remaining gray scale levels other than the reference gray scale levels to apply the offset value to the correction of the gamma voltage corresponding to the gray scale level so as to prevent color coordinates from being distorted in the respective gray scale levels and luminance components.
US08624941B2 Apparatus, methods, and systems for multi-primary display or projection
An apparatus, methods, and systems for multi-color projection or display for video or lighting applications. One aspect of the present invention comprises an algorithm for utilizing at least four primary light sources to represent a projected pixel color. The algorithm and associated system can be applied to both a natively monochromatic light source or traditional light sources filtered for their colored components. The algorithm can be used for either color sequential or parallel modes of operation. The algorithm takes input pixel data represented in a universal color coordinate system, performs a color transform, and disperses the results among parallel display devices or sequentially to a single device such that each pixel is presented by the combination of four or more primaries.
US08624939B2 Liquid crystal display device and driving method thereof
A liquid crystal display (LCD) device includes a display control circuit to receive data of each frame of an external image signal and a liquid crystal panel. When the data of an n+1 frame currently received is the same as that of an n frame previously received, the display control circuit outputs first gray scale voltages corresponding to the data of the n+1 frame to drive the liquid crystal panel. When the data of the n+1 frame is different from that of the n frame, the display control circuit generates data of at least one inserted frame between the data of the n and the n+1 frames, and outputs second gray scale voltages respectively corresponding to the data of the at least one inserted frame and the n+1 frame to drive the liquid crystal panel to display first an image of the least one inserted frame and then that of the n+1 frame. An absolute value of a second gray scale voltage exceeds that of a first gray scale voltage for a same gray scale.
US08624937B2 Data driving device and liquid crystal display device using the same
A gray scale voltage generator includes a voltage dividing resistor string to generate blue (B), red (R), and green (G) gamma voltage signals, the voltage dividing resistor string including a B gamma voltage signal generating section, a R/G gamma voltage generating section, and a common (COM) gamma voltage generating section to individually control a B gray scale voltage and a R/G gray scale voltage to maintain a constant color temperature.
US08624935B2 Smart keyboard management for a multifunction device with a touch screen display
A method is performed at a multifunction device with a touch screen display. The method includes displaying a text entry interface with a soft keyboard in a first area and a viewing area with a first size to display scrollable information. The method detects a finger gesture on the viewing area, and responds to the gesture. When the viewing area displays only a portion of the information, the response includes: (1) ceasing to display the soft keyboard, (2) expanding the viewing area to a second size, including at least some of the first area, and (3) scrolling the information in the expanded viewing area. When the viewing area with the first size displays all of the information, the response includes: (1) maintaining display of the soft keyboard, (2) keeping the viewing area at the first size, and (3) moving the information in the viewing area based on the finger gesture.
US08624930B2 Method and system for rendering of labels
A method for rendering static labels in a mobile device in applications such as map applications. Panning increments are received for panning a previously rendered frame to a panned frame and a rendering region is defined based on the panning increments. Ones of the labels that overlap the region and that overlap with the panned frame by a threshold amount are determined. Geometry that overlaps the rendering region is rendered and a portion of the previously rendered frame is copied. The ones of the labels are rendered to provide the panned frame.
US08624925B2 Content boundary signaling techniques
Methods and devices provide a user interface that provides visual cues when a document pan or scroll has reached an end or boundary by distorting the document image in response to further user inputs. The image distortion functionality may include shrinking, stretching, accordion expansion, or bouncing of a document image. The degree of image distortion may be proportional to the distance that a user input would have the document move beyond the encountered boundary. When a boundary of a document image is reached during a rapid pan or scroll, a bouncing image distortion may be applied to the document image to inform the user that the document reached a boundary during the movement.
US08624918B2 Electronic reader and control method thereof
An electronic reader which includes a storage unit, and an input unit generating signals in response to user input. In addition, a processing unit detects the signals corresponding to the user input; controls the electronic reader to enter a reading mode, and displays a file according to the user input, records a length of duration time for which the electronic reader operates in the reading mode; determines the duration time and executes a variety of protective instructions and steps depending on the length of duration time for which the electronic reader operates in the reading mode. A control method is also provided.
US08624916B2 Processing global atomic operations using the bending unit datapath
One embodiment of the invention sets forth a CROP configured to perform both color raster operations and atomic transactions. Upon receiving an atomic transaction, the distribution unit within the CROP transmits a read request to the L2 cache for retrieving the destination operand. The distribution unit also transmits the source operands and the operation code to the latency buffer for storage until the destination operand is retrieved from the L2 cache. The processing pipeline transmits the operation code, the source and destination operands and an atomic flag to the blend unit for processing. The blend unit performs the atomic transaction on the source and destination operands based on the operation code and returns the result of the atomic transaction to the processing pipeline for storage in the internal cache. The processing pipeline writes the result of the atomic transaction to the L2 cache for storage at the memory location associated with the atomic transaction.
US08624914B2 Image processing apparatus and image processing method
An inspection apparatus specifies a region for displaying an advertisement from an image of a virtual space. The inspection apparatus comprises: an image mapping unit that maps an image, which uses a color that is not used in the virtual space and where the display status of the advertisement varies in accordance with a viewpoint of a user, on a region where the advertisement is to be displayed in the virtual space; an inspection image acquiring unit that acquires a virtual space that is actually displayed on a screen on a frame-by-frame basis; and an advertisement region extracting unit operative to extract, by color-filtering the acquired image of the virtual space, a region that is rendered with a color that is not used in the virtual space, as a region for displaying the advertisement perceived by a user.
US08624912B2 Program, image generation device, and image generation method
A program causing a computer to select a first color range from a plurality of color ranges based on input information, and to determine a color within the first color range to be a color of one of part objects corresponding to categories that form main parts of a model object under a predetermined condition.
US08624910B2 Register indexed sampler for texture opcodes
One embodiment of the present invention sets forth a technique for dynamically specifying a texture header and texture sampler using an index. The index corresponds to a particular register value that may be static or computed during execution of a shader program. Any texture operation instruction may specify an index value for each of the texture header and the texture sampler.
US08624907B2 Graphics analysis techniques
Embodiments provide techniques for the analysis of graphics applications. For instance, an apparatus may include a graphics application program interface (API), a graphics engine, and a graphics analysis tool. The graphics analysis tool may receive multiple draw calls issued to the graphics API, and arrange the draw calls into multiple sequences, each sequence corresponding to a particular render target. From this information various analysis tasks may be performed. For instance, overdraw images may be generated. Such overdraw images may be enhanced to improve their dynamic range. Also, pixel histories may be generated based on corresponding pixel selections. The effect of draw calls on selected pixels may also be determined. Further, such tasks may be performed on a per render target basis.
US08624903B2 Modifying a display quality of an area in a virtual universe according to avatar characteristics
Described herein are processes and devices that modify a display quality of an area of a virtual universe. Some embodiments include operations to determine a number of avatars that occupy the area, determine a display quality of the area that can be reduced to conserve a computing resource that processes data to present the area and modify the display quality of the area proportionally to the number of avatars that occupy the area. The operations can further modify usage of a computing resource to process data to present the area in response to modification of the display quality of the area.
US08624902B2 Transitioning between top-down maps and local navigation of reconstructed 3-D scenes
Technologies are described herein for transitioning between a top-down map of a reconstructed structure within a 3-D scene and an associated local-navigation display. An application transitions between the top-down map and the local-navigation display by animating a view in a display window over a period of time while interpolating camera parameters from values representing a starting camera view to values representing an ending camera view. In one embodiment, the starting camera view is the top-down map view and the ending camera view is the camera view associated with a target photograph. In another embodiment, the starting camera view is the camera view associated with a currently-viewed photograph in the local-navigation display and the ending camera view is the top-down map.
US08624899B2 Arc spline GPU rasterization for cubic Bezier drawing
A curve drawing system is described herein that rasterizes arc splines in the GPU of a computer for cubic Bezier drawing of strokes and thin features. The curve drawing system first converts a cubic Bezier representation into an arc spline representation. Then the curve drawing system uses a similar approach to Loop/Blinn modified to cause the pixel shader to perform a point-in-circular-arc test instead of a point-in-Bezier test. Calculating arc radius is a much simpler operation than the alternatives and can be easily and efficiently performed by the pixel shader. Since the stroke of an arc spline is also an arc spline, the drawing system provides a resolution-independent representation of strokes. Thus, the curve drawing system allows several previously difficult graphical features to be efficiently drawn by readily available legacy hardware and used in software programs that are designed to run on a wide variety of hardware.
US08624897B2 Method and apparatus for automatic transformation of three-dimensional video
A method of transforming a 3D video format of a 3D video, the method including receiving a video sequence comprising 3D video that includes left-viewpoint video and right-viewpoint video; estimating at least one of disparity information between the left-viewpoint video and the right-viewpoint video and correlation information between neighboring pixel values of the left-viewpoint video and the right-viewpoint video, and determining a 3D video format of the 3D video based on a result of the estimating; transforming the left-viewpoint video and the right-viewpoint video into a format, based on the determined 3D video format; and displaying the transformed left-viewpoint video and the transformed right-viewpoint video three-dimensionally on a the display device.
US08624893B2 System and method for generating 2D texture coordinates for 3D meshed surfaces
Systems and methods for generating 2D texture coordinates for 3D surfaces meshes may assign initial 2D texture coordinates to each node within a mesh using dead reckoning, compute a conformal mapping solution to revise the texture coordinates dependent on the initial mapping, and store the texture coordinates for subsequent use in a graphics application (e.g., applying a texture and/or re-meshing a surface). The methods may include designating one node as the origin, determining the shortest distance from each other node to the origin, and computing texture coordinates for each other node in order of increasing distance to the origin. The dead reckoning operation may compute texture coordinates of each node dependent on the distance and direction of a vector formed between the node and a neighbor node to which texture coordinates have already been assigned. Isometric terms reflecting stretching or compression may be introduced following convergence by the conformal mapping.
US08624891B2 Iterative reprojection of images
Techniques are disclosed for performing image space reprojection iteratively. An insignificant parallax threshold depth is computed for a source image. Portions of the image having depth values greater than the insignificant parallax threshold depth may be shifted uniformly to produce corresponding portions of the reprojection (target) image. An iterative fixed-point reprojection algorithm is used to reproject the portions of the source image having depth values less than or equal to the insignificant parallax threshold depth. The fixed point reprojection algorithm quickly converges on the best pixel in the source image for each pixel in a target image representing an offset view of the source image. An additional rendering pass is employed to fill disoccluded regions of the target image, where the reprojection algorithm fails to converge.
US08624889B2 Multiple instantiable effects in a hair/fur pipeline
A surface definition module of a hair/fur pipeline may be used to define a surface. An interpolation module may be used to interpolate at least one final hair on the surface based upon at least one control hair. An effects module including an effects pipeline may be utilized to apply a plurality of effects to the final hair in a user-defined order to generate a modified final hair that may be ultimately rendered.
US08624886B2 Light emission driving device, illumination device, display device
A light emission driving device sequentially on a time division basis drives a red light source (200R), a green light source (200G), and a blue light source (200B), to calculate a light emission amount control parameter (PWM(k+1)) for setting the light emission amount for one of the light sources. The following values are used: a detected light emission amount (DET(k)) detected for a previous illumination of the same light source, a predetermined value (REF(k+1)) for comparison to the detected light emission amount (DET(k)), and the light emission amount control parameters (PWM(k)) for a previous illumination of the same light source.
US08624882B2 Digital display with integrated computing circuit
A digital display device includes a display substrate; an array of pixels formed on the display substrate; an array of driving circuits located on the display substrate, each driving circuit electrically connected to one or more pixels for controlling a pixel current provided to each pixel; an array of computing circuits located on the display substrate, each computing circuit including circuits for signal or image processing and for communicating with neighboring computing circuits; a plurality of electrical conductors formed on the display substrate and connected to each of the driving circuits and digital computing circuits, wherein each computing circuit is connected with an electrical conductor to each of its neighbors in the array of computing circuits; and means for providing an image signal connected to one or more of the electrical conductors.
US08624881B2 Image display control device, image display device, image display control method, and image display control program
To display an image on an electronic paper display properly, even when image data is transmitted continuously from a host of the existing LCD display system, for example. A sampling section inputs a single image data by each prescribed period from a plurality of pieces of continuously transmitted image data corresponding to one screen of the electronic paper display. A difference detecting section detects a difference amount showing a difference between previous image data and latter image data of two pieces of consecutive image data inputted by the sampling section, and determines to perform screen update by using the latter image data when the difference value is equal to or larger than a threshold value. A driving section generates a driving signal of the latter image data and outputs the signal to the electronic paper display, when the screen update is determined by the difference detecting section.
US08624876B2 Display device having optical sensing frame and method for detecting touch using the same
A display device having an optical sensing frame, including a display panel; at least one waveguide unit arranged at two adjacent sides of the display panel, the waveguide unit having a stacked structure, the stacked structure including a light-emitting layer, and a light-receiving layer to receive reflected light, and a plurality of retroreflectors arranged at opposing sides of the waveguide unit.
US08624875B2 Method for driving touch panel
A touch panel includes a plurality of pixels each of which is provided with a photo sensor including a photodiode, a first transistor, and a second transistor. Each pixel performs first operation in which a potential of a photodiode reset signal line which is electrically connected to the photodiode is set so that a forward bias is applied to the photodiode, second operation in which a potential of a gate of the first transistor is changed by a photocurrent of the photodiode, and third operation in which a potential of a gate of the second transistor is changed and the photo sensor output signal line and a photo sensor reference signal line are brought into conduction through the first transistor and the second transistor so that the potential of the photo sensor output signal line is changed in accordance with the photocurrent.
US08624866B2 Touch method and device for distinguishing true touch
This invention discloses a touch device for distinguishing true touch. The touch device includes a touch screen, a driving unit, and a sensing unit. The touch screen has a plurality of first conductive lines and second conductive lines where the first and second conductive lines are electrically isolated from each other and stacked to form a plurality of coupling intersections. The driving unit operatively drives the first conductive lines. The sensing unit determines the first conductive lines touched or approached by a plurality of objects and also determines the coupling intersections touched or approached by the objects when the first conductive lines touched or approached by the objects are driven. By doing so, the true touch and the false touch caused by the objects can be determined and distinguished.
US08624865B2 Device for improving the accuracy of the touch point on a touch panel and a method thereof
A device for improving the detection accuracy of a touch point on a touch panel and a method thereof are disclosed. The device includes a plurality of first and second X external conducting wires and a plurality of first and second Y external conducting wires that are electrically coupled with the first X side and the second X side of the touch panel and the first Y side and the second Y side of the touch panel to alternatively and respectively receive a first detection signal and a second detection signal from a first detection signal source and a second detection signal source. By using the relation of the currents generated form the first detection signal and the second detection signal, a x coordinate and a y coordinate of the location of the touch point is obtained.
US08624864B2 System and method for display of multiple data channels on a single haptic display
A system that produces a haptic effect and generates a drive signal that includes at least two haptic effect signals each having a priority level. The haptic effect is a combination of the haptic effect signals and priority levels. The haptic effect may optionally be a combination of the two haptic effect signals if the priority levels are the same, otherwise only the haptic effect signal with the highest priority is used. The frequency of haptic notifications may also be used to generate a drive signal using foreground and background haptic effect channels depending on whether the frequency ratio exceeds a foreground haptic effect threshold.
US08624863B2 Touch driven method and apparatus to integrate and display multiple image layers forming alternate depictions of same subject matter
An interactive display system, including a touch sensitive display, establishes a first image and at least one secondary image, each image representing various spatial coordinates, the spatial coordinates overlapping at least in part such that each image comprises an alternate depiction of subject matter common to all of the images. The first image is presented upon the display. Responsive to user input including contact with the display, imagery presented by the display is updated to integrate a region of at least one of the secondary images into the display. Each integrated region has substantially identical represented coordinates as a counterpart region of the first image. Further, each integrated region is presented in same scale and display location as the counterpart region of the first image.
US08624860B2 Electronic device including touch screen display, interface method using the same, and computer-readable storage medium storing the same
According to an embodiment of the present invention, an interface for controlling a display of a plurality of layers on a touch screen display includes displaying, on a touch screen display of the device, a main display layer and at least one sub display layer, detecting an object-down event at a first position within the main display layer, detecting an object-dragging event at a second position within the main display layer, and moving the main display layer along a movement direction from the first position to the second position, wherein at least one of the at least one sub display layer is displayed to be pulled to the movement direction in accordance with the movement of the main display layer.
US08624858B2 Portable electronic device including touch-sensitive display and method of controlling same
A method includes: detecting a first touch at a first location on a touch-sensitive display; detecting a second touch at a second location on the touch-sensitive display; and displaying a navigation indicator on the touch-sensitive display in response to detecting the second touch while first touch contact is maintained.
US08624852B2 Semiconductor device for determining whether touch electrode is touched by human body, and touch sensor using the semiconductor device
A touch sensor IC includes a switch for connecting, to an external terminal with its voltage to be sensed, a selected one of a plurality of external terminals to which a plurality of touch electrodes is connected. Only one set of two capacitors and a resistor element may therefore be provided for a plurality of touch electrodes. Thus, the number of required components is smaller as compared with a conventional sensor requiring two capacitors and a resistor element for each touch electrode.
US08624850B2 Displays and information input devices
An integrated display and input device including a pixel array operative to provide a visually sensible output, at least one sensor operative to sense at least a position of at least one object with respect to the pixel array when the at least one object has at least a predetermined degree of propinquity to the pixel array and circuitry receiving an output from the at least one sensor and providing a non-imagewise input representing the position of the at least one object relative to the pixel array to utilization circuitry.
US08624848B2 Electronic device and automatically hiding keypad method and digital data storage media
A method for automatically hiding keypad, an electronic device, and a digital data storage medium are provided. The keypad automatically hiding method is applied to an electronic device having a touch screen. The method includes the following steps. Firstly, an input field and a keypad are shown on the touch screen. Next, an item of data is received from the keypad and inputted to the input field. Then, a search list is shown on the touch screen according to the data. Afterwards, the keypad is hidden when the input signal for checking the search list is generated.
US08624846B2 Display device
Disclosed herein is a display device including, a display section having a display surface, and capable of displaying information on the display surface, and a light storing section capable of receiving incident light including visible light, absorbing a part of the incident light, and outputting the part of the incident light as an afterglow including non-visible light, wherein a light sensor configured to detect an object to be detected on a side of the display surface on a basis of a non-visible light component of output light from the light storing section is disposed within the display section.
US08624845B2 Capacitance touch screen
A touch screen is described. The touch screen is configured to have an array of conductive, optically transmissive sensor elements coupled to sensor circuitry. The sensor elements are disposed over a display to have a single layer of conductive, optically transmissive material positioned over pixels of the display.
US08624843B2 Keyboard apparatus integrated with combined touch input module
A keyboard apparatus integrated with a combined touch input module is disclosed. The combined touch input module having a touchpad module and a tablet module conducts a handwriting mode and a cursor mode for the keyboard apparatus. According to one of the embodiments, a keyboard controller for processing and transferring keystroke signals is included. The keyboard controller also performs the interpretation of the signals generated in the touch input module, which is integrated into the keyboard for providing both touching and handwriting functions. Further, a mode switching circuit, in response to user's operation, is used to switch the touch input module to the handwriting mode or the cursor mode. A micro controller within the touch input module is included to process the input signals generated by the touchpad and tablet modules.
US08624837B1 Methods and apparatus related to a scratch pad region of a computing device
In one general aspect, a computing device can include a display, a touchpad configured for moving a cursor on the display, and a keyboard for inputting input into the computing device. The computing device also can include a scratch region mutually exclusive from the touchpad and the keyboard. The scratch region can be configured to receive input to the computing device based on contact with the scratch region. An interaction detection module can be configured to detect an interaction with the scratch region, and configured to generate an indicator of the interaction. The computing device can also include a scratch region analyzer configured to define an alphanumeric character based on the indicator of the interaction with the scratch region.
US08624833B2 E-paper display control of classified content based on e-paper conformation
A method for one or more portions of one or more regions of an electronic paper assembly having one or more display layers includes, but is not limited to: obtaining and controlling display of one or more portions of one or more display layers of the electronic paper assembly regarding display of second information having one or more classifications in response to the first information associated with one or more changes in the one or more conformations of the one or more portions of the one or more regions of the electronic paper assembly. In addition to the foregoing, other related method/system aspects are described in the claims, drawings, and text forming a part of the present disclosure.
US08624832B2 Drive method for an electrophoretic display device and an electrophoretic display device
A drive method for an electrophoretic display device that has an electrophoretic device composed of a suspension fluid containing electrophoretic particles disposed between a common electrode and a plurality of pixel electrodes, a driver that drives the electrophoretic device by applying voltage between the common electrode and the plural pixel electrodes, and a controller that controls the driver. The control method has a display redrawing process that changes the displayed image by applying a common electrode drive pulse that repeats two different potentials to the common electrode, and applying either of the two different potentials to the pixel electrodes according to the updated display content. The display redrawing process includes a first pulse application step that applies a first pulse train to the common electrode as the common electrode drive pulse train, and a second pulse application step that executes after the first pulse application step to apply a second pulse train to the common electrode as the common electrode drive pulse train, the pulses of the second pulse train being wider than the pulses of the first pulse train.
US08624825B2 Transflective display apparatus having all-in-one type light guide plate
A display apparatus according to example embodiments may include a light source; an all-in-one type light guide plate; a reflective plate; and a display panel. The all-in-one type light guide plate may include a light guide member and light emitting members, wherein the light guide member reflects light incident from the light source toward the light emitting members, and the light emitting members protrude from one side of the light guide member and emit light incident from the light guide member. The light guide member and the light emitting members may be integrally formed or individually combined to form an all-in-one type light guide plate. The display apparatus may form an image using light from a backlight unit and external light.
US08624824B2 Area adaptive backlight with reduced color crosstalk
A backlight display has improved display characteristics. An image may be displayed on the display where the image includes a liquid crystal material with a light valve. The display receives an image signal and uses the image signal to modify the light for a backlight array and a liquid crystal layer.
US08624819B2 Driving circuit of liquid crystal display
A driving circuit of a liquid crystal display includes: a timing controller to output a gate control signal and a data control signal to control driving of a gate driving unit and a data driving unit and to output digital video data; a pair of gate driving units to be alternately driven by using at least one frame as a period to supply gate signals to gate lines of a liquid crystal panel in response to the gate control signal; and a data driving unit to supply pixel signals to data lines of the liquid crystal panel in response to the data control signal. Degradation of characteristics of transistors constituting each gate driver can be prevented.
US08624812B2 Liquid crystal display
A liquid crystal includes a plurality of pixels, a plurality of gate lines, and a plurality of data lines. The plurality of pixels are arranged in a matrix format. The plurality of gate lines transmit a gate signal to the pixels. The plurality of data lines cross the gate lines and transmit data voltages respectively corresponding to the plurality of pixels a plural number of times. A voltage that is the same as that of the data lines neighboring the first and last data lines is applied to the first and last data lines among the plurality of data lines at least once.
US08624810B2 Liquid crystal display to which infrared rays source is applied and multi-touch system using the same
There are provided a liquid crystal display (LCD) to which infrared rays (IR) light sources are applied and a multi-touch system using the same. The LCD to which IR light sources are applied includes a back light in which a plurality of lamp light sources and a plurality of IR light sources are repeatedly arranged in column and row directions, a diffusion plate and a plurality of optical sheets arranged on the back light, and an LCD panel provided on the back light to display an image using light incident from the back light.
US08624803B2 Electroluminescent display device having pixels with NMOS transistors
An active matrix electroluminescent display device has pixels using an amorphous silicon or microcrystalline silicon drive NMOS transistor (22) connected between the anode of the display element (2) and a power supply line (26). A storage capacitor (24) is connected between the anode of the display element and the gate of the drive transistor (22). An amorphous silicon or microcrystalline silicon second drive NMOS transistor (30) supplies a holding voltage to the anode of the display element (2). This arrangement enables the voltage across the display element to be held while the transistor gate drive voltage is stored on the storage capacitor. This enables an accurate current source pixel circuit to be implemented using NMOS transistors.
US08624799B2 Illumination unit, projection display unit, and direct view display unit
An illumination unit includes: one or more light sources, an optical member, and an optical device. The optical member includes an integrator having a first fly-eye lens on which light from a solid-state light-emitting device is incident and a second fly-eye lens on which the light from the first fly-eye lens is incident. The integrator uniformalizes an illuminance distribution of light in a predetermined illumination region illuminated by the light incident from the solid-state light-emitting device. The optical device is disposed on an optical path between the first fly-eye lens and one or more light sources including one or more chips configured by the laser diode, and allows a shape of a luminance distribution of incidence light on an incidence plane of the first fly-eye lens to be expanded along a minor axis direction of the shape of the luminance distribution.
US08624798B2 Imaging display apparatus and method
An imaging display apparatus, includes: display means for image display; first image signal generation means for generating a display image signal based on a captured image signal captured by an imaging section with a field of view direction of a user being a direction of an object; second image signal generation means for generating a display image signal of an image different from an image of the display image signal generated by the first image signal generation means; and control means for allowing, simultaneously on the display means, display of the image of the display image signal generated by the first image signal generation means and display of the image of the display image signal generated by the second image signal generation means.
US08624797B2 Mobile terminal and controlling method thereof
A mobile terminal is presented. The mobile terminal includes a main display unit comprising a first display unit, a transparent display unit comprising a second display unit, the transparent display unit being attached to the main display unit such that the transparent display unit may be viewed at an angle in comparison to the main display unit, and a controller controlling a three-dimensional (3D) and a two-dimensional (2D) image to be output by selectively displaying an image on at least the first display unit or the second display unit while the main display unit and the transparent display unit are positioned at an angle.
US08624796B2 Apparatus and method for controlling dual display using RGB interface in mobile terminal with projector module
A method and apparatus is provided for controlling a dual display using a Red, Green and Blue (RGB) interface in a mobile terminal with a projector module, in which the projector module expends a high-resolution image and projects the expended image to the outside, a display displays a menu image for operation of the projector module, an image processor has a first buffer assigned to the display for data transmission to the display, and a second buffer assigned to the projector module for data transmission to the projector module, and a controller transmits image data to the first and second buffers, and outputs control signals for activating both or a selected one of the first and second buffers, depending on selection of a display mode.
US08624789B2 Apparatus for adjusting an inclination angle in an antenna
An apparatus for adjusting an inclination angle of an antenna using a rotatory power is disclosed, wherein a remote control unit is easily combined with the apparatus. The apparatus in an antenna having a phase shifter includes a power delivering member connected to the phase shifter, and a driving member combined with the power delivering member, and for providing a power to the power delivering member. Here, an inserting section is formed at a part of outside surfaces of the driving member, a remote control unit is inserted into the inserting section and rotates the driving member, and the power delivering member rotates in response to the power provided from the driving member. Accordingly, any given member is not removed when the remote control unit is combined with the apparatus. As a result, the remote control unit may be easily combined with the apparatus, and any member is not lost.
US08624787B2 Wearable antenna assembly for an in-vivo device
A wearable antenna assembly includes a posterior antenna assembly and an anterior antenna assembly. The posterior antenna assembly may include a posterior base that includes a lateral portion having a lateral line, and one or two protrusions that continue from the lateral portion and extend away from it, and one or more antenna elements that are formed in the respective protrusion. The protrusions may be configured such that each antenna element lies on the buttocks and is situated adjacent to, or in front of, a greater sciatic notch of the pelvis. The anterior antenna assembly may include an anterior lateral base having a lateral line, and n antenna elements that are formed in the anterior lateral base along the lateral line. The anterior lateral base may be configured such that, when the belt is worn, the n antenna elements are situated adjacent to, or in front of, the abdomen. The orientations of the antenna elements may be optimized to maximize reception of signals originating from a swallowed in-vivo device.
US08624783B2 Internal antenna module and wireless communication apparatus having the same
An internal antenna module and a wireless communication apparatus having the same are disclosed. The internal antenna module includes a carrier having a partition formed on a surface thereof and a space defined by the partition; and a radiator disposed on the partition of the carrier. The space is formed in a region of the surface of the carrier excluding a region required to support the radiator. Therefore, influence of the carrier is minimized so that the radiation performance may be improved.
US08624782B2 Method and apparatus for utilization of location determination signal samples in noisy environments
An apparatus for location determination includes a location determination receiver configured to receive location determination signals, a location determination signal quality assessment component configured to assess a quality of received location determination signals, and a location determination processor responsive to an output of the location determination signal quality component. The apparatus determining a location of the location determination receiver based on the location determination signals that are received during time periods when the location determination signal meets or exceeds a location determination signal quality threshold. A method for location determination is also disclosed.
US08624780B2 Method and system for using a wireless local area network (WLAN) phase shifter for smart antenna beam steering
Phase shift values between signals received at a plurality of receiving antennas are determined to orient one or more receiving antennas of the plurality of receiving antennas during signal location. Subsequent signals are received utilizing the oriented receiving antennas. Candidate angle of arrival (AOA) values are computed based on the determined phase shift values during the signal location so as to adaptively orient the receiving antennas. Each of the candidate AOA values is iteratively selected one at a time to adaptively orient the receiving antennas. The receiving antennas may be adaptively oriented according to the computed receive signal power levels. The determined phase shift values may be rounded to nearest discrete phase shift values. In this regard, one candidate AOA value is selected for each of the receiving antennas based on the corresponding rounded phase shift values such that the receiving antennas may be adaptively oriented during the signal location.
US08624773B2 Multidirectional target detecting system and method
A method and system for investigating and displaying an image of an area of interest comprising a moving vehicle; at least one processor for producing an image of the area of interest; at least one first transmitter for emitting first signals substantially in a first direction, the at least one first transmitter being operatively associated with the moving vehicle and the processor; at least one first receiver for receiving backscattered signals resulting from the first radar signals, the at least one first receiver being operatively associated with the moving vehicle and the processor; at least one second transmitter operatively for emitting second signals in a direction substantially opposite to the first direction, the at least one second transmitter being operatively associated with the moving vehicle and the processor; at least one second receiver for receiving backscattered signals resulting from the second signals, the at least one second receiver being operatively associated with the moving vehicle and the processor, a GPS subsystem for providing position data relating to the position of the vehicle; the at least one first receiver and the at least one second receiver operating to provide image data to the at least one processor; the at least one processor operating to combine image data from the at least one first receiver and the at least one second receiver with the position data to form a single image; and a display to display the combined image data.
US08624767B2 Electronic device and method for analog to digital conversion according to delta-sigma modulation using double sampling
The modulator comprises a first and second integration stages, and a comparator, the first integration stage is fully differential having: an amplifier, sets of input sampling capacitors and feedback capacitors, and the first integration stage is configured to sample the analog input voltage on a set of input capacitors during a first portion of a clock cycle and on a set of input capacitors during a second portion of the clock cycle and to sample the feedback reference voltage on a set of feedback capacitors during the first portion of the clock cycle and on a set of feedback capacitors during the second portion of the clock cycle, and the first set of feedback capacitors and the second set of feedback capacitors are randomly selected out of the plurality of sets of feedback capacitors from cycle to cycle.
US08624764B2 Test circuits and methods for redundant electronic systems
A redundant analog-to-digital conversion system can include at least one input multiplexer, first and second redundant analog-to-digital converters, a comparison circuit and an output multiplexer. The at least one input multiplexer can receive a plurality of analog input signals and output at lest one multiplexed analog input signal. The first and second redundant analog-to-digital converters can convert the at least one multiplexed analog input signal to respectively generate first and second digital output signals, the first digital output having a greater digital resolution than the second digital output. The comparison circuit can produce a comparison output signal as a function of a comparison of a plurality of most significant corresponding bit pairs of the first and second digital output signals. The output multiplexer can produce a multiplexed output including information from the comparison output signal and one of the digital output signals.
US08624759B2 Apparatus and method for an actuator in an electronic device
In accordance with an example embodiment of the present invention, an apparatus is provided, comprising: a base element; a key top configured to pivot in relation to the base element; a first electrode coupled with the key top; a second electrode coupled with the base element; an isolating layer; the key top having a first pivoted position in which the first electrode, the second electrode, and the isolating layer form a capacitor with a first capacitance, and a second pivoted position in which the first electrode, the second electrode, and the isolating layer form a capacitor with a second capacitance.
US08624756B2 Fully automated parking system
The present invention relates to a parking system, which comprises: (a) plurality of Curb Devices for communication with car device and a host, each Curb Device having its own unique Curb Device ID and is installed close to a corresponding parking space; the Curb device is also provided with a sensor for sensing a physical positioning of a car within the respective parking space; (b) plurality of Car Devices, each Car Device is provided with its own unique Car Device ID, and is positioned at a corresponding car at a location which is visible from the outside; and (c) a Host which is provided with Users Data and Parking Spaces Data, for remotely managing, billing, enforcing and controlling on line and in real time parking of vehicles at each of said parking spaces. The invention also enables a driver of a car which is not provided with a car device to use a cellular alternative, where the driver uses his cellular phone to report to the Host the Curb Device ID, as visually displayed, while his phone number serves as a replacement for the Car Device ID. The invention also relates to a parking enforcement by the system of the present invention, which enforces parking in real time, while providing to the enforcement inspector the exact parking location where a proven violation has occurred.
US08624754B2 System and method for detecting a property of a strobe cover
A method and system for determining at least one property of a strobe cover are disclosed. The determined property of the strobe cover may then be analyzed to determine whether it is the proper property for the strobe device. The property of the strobe cover may include the color of the strobe cover (such as clear, blue, amber, etc.), the shape of the strobe cover (such as a strobe cover with a lens or a strobe cover without a lens), the material of the strobe cover, etc. The method and system may include determining the property of the strobe cover and checking whether the determined property is the expected property of the strobe cover (such as the expected color of the strobe cover). The strobe cover may include one or more property indicators. The one or more property indicators may interface with a circuit, such as mechanically interface with the circuit, in order for the circuit to determine the property of the strobe cover.
US08624753B2 Event sensor including printed electronic circuit
An event sensor device comprises a detector and circuitry, connected thereto, produced by printed electronics processes. This circuitry may be comprised of fixed characteristic devices, such as a series resistive chain, or variable characteristic devices such as thin film transistors (TFTs) and the like. A pulse is input to the printed electronic circuitry. The printed electronic circuitry divides the pulse across the various devices comprising the circuitry according to pulse amplitude and pulse width. The circuitry provides an output signal which is provided to a plurality of display elements, which are capable of indicating the division performed at the printed electronic circuitry. In one embodiment, each display element is an electrophoretic display which changes contrast as a function of the applied voltage. Not only the pulse amplitude and pulse width, but the number of pulses applied to the printed circuitry (i.e., sensed by the detector) may be indicated.
US08624751B2 Capacitive proximity alarm circuit and system
An alarm system for emitting an alarm includes a distance detecting circuit, a gate circuit, a voltage conversion circuit, a distance judging circuit and an alarm circuit. The distance detecting circuit receives a first signal, detects a distance between an object and the alarm system, outputs a second signal and a third signal according to the distance. The gate circuit receives the second signal and the third signal and outputs a voltage level signal. The voltage conversion circuit receives the voltage level signal and converts the voltage level signal into a DC voltage signal. The distance judging circuit receives the DC voltage signal and compares the DC voltage signal against a reference voltage signal to output a control signal if necessary. The alarm circuit receives the control signal and produces the alarm when the distance between the object and the alarm system is less than a threshold distance.
US08624745B2 High sensitivity and high false alarm immunity optical smoke detector
A high sensitivity smoke detector includes a housing which defines an internal, closed, scattering region, and an external, open scattering region. A cyclone-type separator draws atmosphere adjacent the external scattering region into the detector and separates the larger, non-smoke related particulate matter which flows into the internal, closed scattering region for sensing and subsequent analysis. An annular inflow pattern can be established with a central exit flow.
US08624740B2 Controllable RFID card
Systems and methods for providing personalized information are provided. Based on an identification of a customer through the use of a card, personalized information is selectively produced and wirelessly provided to a display such as a wireless display. The identification of the customer, as well as additional information, can be provided through the use of the card, wherein functions of the card can be enabled or disabled by the customer through the use of on-card switches, buttons, slides and/or bistable domes.
US08624734B2 Intruder identifying method, intruder identifying device and intruder identifying sensor device
In an intruder identifying method and device, an intruder identifying sensor device identifies an intruder as a detection target to be originally detected by determining whether a variation style for a predetermined time of intruder intrusion state information based on the reception signal of the electric wave receiving unit during a time period from the time when the intruder identifying sensor device detects an intruder till the time when the intruder identifying sensor device does not detect the intruder is a predetermined variation style.
US08624733B2 Device for electronic access control with integrated surveillance
Described is a device for electronic access control (EAC) and surveillance. The device includes an EAC module and an imager integrated in a single unit. The EAC module controls physical access through a secure portal and the imager maintains surveillance of an observation area near the portal. A data signal is provided at a data port proximate to the EAC module and imager. The data signal includes EAC data for the portal, image or video data of the observation area and optional audio data. The device can be configured to communicate with a remote server and database over an IP data network. The device can also include one or more analytical modules for real-time computation and processing of data and generation of metadata for transmission over the data network. Correlating and combining current and historical data from multiple devices results in powerful real time threat detection and forensic search capability.
US08624731B2 Information handling system status alert system
An information handling system status alert system includes an information handling system (IHS). The IHS includes a frame, a processor supported by the frame and a memory module communicatively coupled to the processor. The IHS additionally includes an operational display device coupled with the frame such that the operational display device is viewable from a first side of the frame. Furthermore, the IHS includes a status alert display device coupled with the frame such that the status alert display device is viewable from a second side of the frame, wherein the second side of the frame is substantially opposite the first side of the frame.
US08624727B2 Personal safety mobile notification system
In described embodiments, a system establishes a perimeter around an area, and mobile devices within the established perimeter communicate with a server that provides and collects personal and asset safety information. The provided information might enable users associated with the mobile devices to plan actions or take routes based on a given criteria, such as a safest route, through display on the mobile device. The collected information from the mobile device might be location, emergency event, environmental factors, sensor information and the like, which might then be communicated to users and/or administrators of the system. Location information, such as through global positioning system (GPS), might provide tracking of mobile devices and users or assets associated with each mobile device. GPS functionality associates latitude, longitude and elevation (X-Y-Z coordinate axis) data with the collected and provided information.
US08624724B2 Position information acquisition apparatus and method of controlling the same
A position information acquisition apparatus capable of wireless communication with an imaging apparatus, the position information acquisition apparatus includes position information acquisition apparatus configured to acquire position information that indicates a position of the position information acquisition apparatus, reception apparatus configured to receive a request for the position information from the imaging apparatus; position information transmission apparatus configured to transmit by the wireless communication the position information acquired by the position information acquisition apparatus in response to a request for position information from the imaging apparatus, determination apparatus (209) configured to determine whether the position information acquisition apparatus transmit the position information, and signal transmission apparatus configured to transmit a signal to the imaging apparatus by the wireless communication if the determination apparatus determines that position information acquisition apparatus does not transmit the position information, the signal inhibiting a request for the position information.
US08624723B2 Position and proximity detection systems and methods
According to an aspect, a computing device may include a processor configured to determine a position coordinate of a first movable device. Further, the processor is configured to determine whether the position coordinate of the first movable device is a predetermined distance from a second movable device. The processor is also configured to signal the second movable device in response to determining that the position coordinate of the first movable device is a predetermined distance from a second movable device.
US08624720B2 Security infrastructure
An automated security infrastructure is disclosed that includes security agents that are designed to analyze security issues. The security agents process events received from event-messages, and records data associated with a security issue in a ticket. Security and management personnel are kept informed based on notification subscription lists. Assigned security personnel's progress in resolving outstanding security issues is monitored until those issues are resolved.
US08624719B2 Smart phone control and notification for an electric vehicle charging station
A system and method for remote control of and notification by an electric vehicle supply equipment (EVSE). The system including a remote device, such as a smart phone, having a software configured to remotely control the EVSE and remotely retrieve and receive information from the EVSE. The smart phone may identify and connect to a communication network, automatically identify the EVSE, connect to the EVSE, and send the EVSE instructions for various functions of the EVSE, including charging, vehicle control, and reporting functions. The EVSE may execute the instructions received and return a confirmation to the remote device. The remote device may present the confirmation to a user.
US08624718B2 Alert signal control using receiver velocity
An electronic communication system provides text or voice messages to remote receiving devices, such as cell phones or PDA's. The remote receiving devices are equipped with velocity sensors, or position sensors from which velocity may be inferred. The remote receiving devices periodically report a velocity or current position to an alert signal control node of the communication system. The alert signal control node determines a most recent-determinable velocity for each receiving device before transmitting a message alert signal. If the velocity exceeds a predetermined threshold, the alert signal may be delayed until the velocity drops below the threshold. The system may be operated as a safety measure to prevent reception of distracting alert signals while driving, thereby silencing messaging devices at appropriate times.
US08624715B2 System and method for altering obstruction for a bicycle mounted on a vehicle
Systems and methods may be provided for alerting a user of an obstruction to a bicycle mounted on a vehicle. An obstruction sensing device may be provided that may be mounted on the bicycle. The obstruction sensing device may include an engagement mechanism configured to attach the obstruction sensing device to a bicycle, an emitter configured to emit a detection signal, a receiver configured to receive a reflection of the emitted detection signal that may indicate an obstruction, and a transmitter configured to transmit an alarm signal when the reflection is received by the receiver. In some embodiments, a remote may be provided that may alert a user.
US08624714B2 Virtual simulator having an eddy current brake for providing haptic feedback
A virtual simulator includes a movable user object, an eddy current brake actuator, and a controller. The eddy current brake actuator includes an elongated conductor that is slidingly positioned within at least one magnet. The elongated conductor is coupled to the user object and movement of the user object causes the conductor to move through the at least one magnet which imparts a transient drag force on the conductor. The controller is electrically coupled to the user interface and to the at least one magnet. The controller monitors the velocity of the user object and controls a magnetic field of the at least one magnet to vary the drag force on the conductor in order to provide haptic feedback to a user that relates to force applied to the user object. The virtual simulator may include a display and be configured to perform a medical simulation procedure.
US08624713B2 Programming a universal remote control via physical connection
A method and system for programming a universal remote control (URC) to operate with a remote-controlled device is disclosed. A connection to the remote-controlled device may be established. In response, the remote-controlled device may send device information. The device information may include programming codes for programming the URC to control the remote-controlled device. The device information may also be used to query a server to obtain the programming codes.
US08624710B2 System and method for interrogation radio-frequency identification
A system and method for communicating with contactless IC cards of multiple protocols and power levels includes generating a first alternating magnetic field with an interrogator for energizing a proximate IC card and receiving a data transmission from the IC card. A processor of the interrogator is configured to decode the received data transmission. The interrogator then generates a second alternating magnetic field having a different magnetic field strength than the first alternating magnetic field when failing to decode the data transmission being received from the IC card. The processor then attempts to decode a data transmission received from the IC card in response to the second alternating magnetic field.
US08624709B2 System and method for camera control in a surveillance system
A method and a system for calibrating a camera in a surveillance system. The method and system use a mathematical rotation between a first coordinate system and a second coordinate system in order to calibrate a camera with a map of an area. In some embodiments, the calibration can be used to control the camera and/or to display a view cone on the map.
US08624707B2 Detection target identifying/position estimating system, its method, and program
Information from one or more transmitters installed in a detection object area is received. The reception feature value of when a detection object is present in a predetermined position of the detection object area is measured. A reception pattern of when the detection object is present in the predetermined position is formed. The reception pattern is compared with reference reception patterns, and the presence position corresponding to the reference reception pattern most approximate to the reception pattern is acquired from a reference reception pattern database where the presence positions of the detection object and the reference reception patterns of when the detection object is present in the presence positions are associated with one another. The presence position of the detection object is estimated according to the acquired presence position. The estimated presence position of the detection object is associated with received detection object identification information.
US08624704B2 Safety apparatus having a configurable safety controller
A safety apparatus has a configurable safety controller (10) and a configuration means, wherein the safety controller (10) has at least one input (18) for the connection of a sensor (20a-c), at least one output (22) for the connection of an actuator (24a-b), and a control unit (14) configured to carry out a control program which generates a control signal at the outputs (22) in a dependence on input signals at the inputs (18) by means of logic rules. The logic rules are settable by means of the configuration means. A number code representing the logic rules can be generated in the configuration means, and the safety controller (10) includes an interface (30) for the input of the number code. The control unit (14) is configured to carry out a control program with the logic rules represented by the number code.
US08624700B2 Electromechanical inductors and transformers
Devices and systems for power electronic circuits are provided. Embodiments of the present invention enable high density inductive energy storage by using electromechanical coupling between an electrically conducting inductive element and a mechanical resonator to passively store energy via both electromagnetic and mechanical mechanisms. A microelectromechanical inductor (MEMI) is provided utilizing a magnet and a conductor. In a specific embodiment, the MEMI includes a permanent magnet on a compliant layer centrally disposed within a spiral coil. In a further embodiment, a second coil is provided near the magnet to provide a resonating transducer.
US08624698B2 Transformer and power module having the same
A transformer capable of security insulting reliability and a power module having the same are provided. The transformer includes: a winding unit having at least one winding space in which a plurality of coils are wound in a stacked manner on an outer circumferential surface of a cylindrical body portion; and a terminal fastening unit formed to extend from one end of the winding unit in an outer diameter direction and having a plurality of external connection terminals fastened to an end thereof, wherein a width of the winding space is less than 0.45 times that of a diameter of the body portion.
US08624693B2 High-frequency signal transmission line
A flexible high-frequency signal transmission line includes a dielectric body including laminated flexible dielectric layers. A signal line is provided in the dielectric body. A grounding conductor is arranged in the dielectric body to be opposed to the signal line via one of the dielectric layers. The grounding conductor is of a ladder structure including a plurality of openings and a plurality of bridges arranged alternately along the signal line. A characteristic impedance of the signal line changes between two adjacent ones of the plurality of bridges such that the characteristic impedance of the signal line rises from a minimum value to an intermediate value and to a maximum value and falls from the maximum value to the intermediate value and to the minimum value in this order.
US08624690B2 Surface acoustic wave device, oscillator, module apparatus
A surface acoustic wave device includes: a sapphire substrate having a C-plane main surface; an aluminum nitride film which is formed on the main surface of the sapphire substrate; comb-like electrodes which are formed on the surface of the aluminum nitride film to excite surface acoustic waves; and a silicon dioxide film which covers the comb-like electrodes and the surface of the aluminum nitride film.
US08624689B2 Power line filter
A power line filter including a socket, a housing, a plurality of filter elements and a ground inductor is disclosed. The socket includes at least one power pin and a ground pin. The housing is assembled with the socket, and includes a first receptacle and a second receptacle. The opening direction of the first receptacle is opposite to the opening direction of the second receptacle. The plurality of filter elements is disposed in the first receptacle. At least one of the filter elements is electrically connected to the power pin. The ground inductor is disposed in the second receptacle and electrically connected to the ground pin.
US08624688B2 Wideband, differential signal balun for rejecting common mode electromagnetic fields
Provided are assemblies and processes for efficiently coupling wideband differential signals between balanced and unbalanced circuits. The assemblies include a broadband balun having an unbalanced transmission line portion, a balanced transmission line portion, and a transition region disposed between the unbalanced and balanced transmission line portions. The unbalanced transmission line portion includes at least one ground and a pair of conductive signal traces, each isolated from ground. The balanced portion does not include an analog ground. The transition region effectively terminates the analog ground, while also smoothly transitioning or otherwise shaping transverse electric field distributions between the balanced and unbalanced portions. Beneficially, the balun is free from resonant features that would otherwise limit operating bandwidth, allowing it to operate over a wide bandwidth of 10:1 or greater. Assemblies can include RF chokes with back-to-back baluns, and other elements, such as balanced filters, and also can be implemented as integrated circuits.
US08624687B2 Differential signal crosstalk reduction
In some embodiments a second differential signal pair is located near a first differential signal pair. The second differential signal pair switches polarity near a middle point of a routing length of the second differential signal pair. Other embodiments are described and claimed.
US08624686B2 Micromechanical component and method for oscillation excitation of an oscillation element of a micromechanical component
A micromechanical component and a method for providing the oscillation excitation of an oscillation element of a micromechanical component, the micromechanical component having a frame, which is connected to a carrier substrate by an outer suspension element, in which the frame being tiltable about a first axis and oscillatory about a second axis that is positioned perpendicular to the first axis, and in which the micromechanical component having an oscillation element that is connected to the frame by an inner suspension element, and is tiltable about the second axis, the outer suspension element being provided to be dimensioned in such a way that a first oscillation of the frame about the second axis and a second oscillation of the oscillation element about the second axis have a maximum coupling.
US08624684B2 Adaptive current limit oscillator starter
A power-oscillator-starting circuit for an electronic high frequency induction-heater driver. The induction-heater driver, upon receipt of a turn-on signal, generates a high frequency alternating current, wherein the alternating current through an induction-heater coil is magnetically coupled to an appropriate loss component for a variable-spray fuel-injection system. The induction-heater driver uses a power oscillator that is started and restarted as is appropriate based on a threshold current limit referenced to the supply voltage of the induction-heater driver.
US08624677B2 Semiconductor device
A semiconductor device includes a semiconductor chip in which an internal circuit is formed, with the internal circuit having an output signal that fluctuates due to variation of fluctuation in electrical characteristics of multiple circuit elements constituting the internal circuit; a chip tab on which the semiconductor chip is mounted, with the semiconductor chip completely overlapping the chip tab and the circuit elements in the semiconductor chip arranged on the chip tab, and encapsulation resin within which the semiconductor chip and the chip tab are sealed. A horizontal surface area of the chip tab is smaller than that of the semiconductor chip, and a distance between a periphery of the chip tab and a periphery of the semiconductor chip is sufficient to cause stress exerted on the semiconductor chip by the encapsulation resin to be uniform across the horizontal surface area of the chip tab.
US08624675B2 Method and system for providing automatic gate bias and bias sequencing for field effect transistors
A feedback gate bias circuit for use in radio frequency amplifiers to more effectively control operation of LDFET, GaNFET, GaAsFET, and JFET type transistors used in such circuits. A transistor gate bias circuit that senses drain current and automatically adjusts or biases the gate voltage to maintain drain current independently of temperature, time, input drive, frequency, as well as from device to device variations. Additional circuits to provide temperature compensation, RF power monitoring and drain current control, RF output power leveler, high power gain block, and optional digital control of various functions. A gate bias circuit including a bias sequencer and negative voltage deriver for operation of N-channel depletion mode devices.
US08624674B2 Output stage of a class-A amplifier
An output stage of an integrated class-A amplifier in a technology adapted to a first voltage and intended to be powered by a second voltage greater than the first one, including: one or several transistors of a first channel type between a first terminal of application of the second voltage and an output terminal of the stage; transistors of a second channel type between this output terminal and a second terminal of application of the second voltage, wherein: a first transistor of the second channel type has its gate directly connected to an input terminal of the stage; at least a second and a third transistors of the second channel type are in series between the output terminal and said first transistor, the gate of the second transistor being connected to the midpoint of a resistive dividing bridge between said output terminal and the gate of the third transistor, and the gate of the third transistor being biased to a fixed voltage.
US08624671B2 Audio amplifying circuit with improved noise performance
An amplifying circuit includes a first circuit component configured to receive and amplify first and second input voltages to generate an output voltage. The first circuit component is formed by a first amplifier and a second amplifier. A second circuit component is configured to provide a first offset current that is associated with a first input current of the first amplifier. The first offset current compensates for variation in the first input current. A third circuit component is configured to provide a second offset current that is associated with a second input current of the second amplifier. The second offset current compensates for variation in the second input current.
US08624668B2 Common-mode step response for autozero amplifiers
An auto-zero amplifier includes a main amplifier for amplifying an input signal; the main amplifier receives an offset-correction signal for cancelling an offset at a first common-mode level of the input signal. At the first common-mode level, the offset-correction signal is based on a first value stored using a first offset-storage element. When a change is detected in the input common-mode from the first level to a second level, the first offset-storage element is switched out and a second offset-storage element, having a second value based on the second common-mode level, is switched in.
US08624664B2 Fuse circuit
A fuse circuit includes a programming fuse signal generation block configured to generate parity signals, logic levels of which are determined according to addresses selected among a plurality of addresses with a programming enable signal enabled, and generate programming fuse signals which are programmed in response to the programming enable signal, the plurality of addresses and the parity signals; a corrected pulse generation block configured to correct an error included in the programming fuse signals and generate corrected pulses; and a fuse unit configured to generate fuse signals which are reprogrammed according to the corrected pulses.
US08624661B2 Method and circuit for curvature correction in bandgap references with asymmetric curvature
A non-linear correction current ICTAT2 (current complementary to the square of absolute temperature) is generated from a current IPTAT (current proportional to absolute temperature) and a current ICTAT (current complementary to absolute temperature), both modified in a circuit having a topology and components which capitalize on the logarithmic relationship between transistor collector current and base-emitter voltage. The resulting ICTAT2 current (current complementary to the square of absolute temperature) is injected into a node of a bandgap reference circuit to compensate for non-linear temperature effects on output voltage. A more general correction circuit generates both IPTAT2 and ICTAT2, and applies each to a respective multiplier which, in a preferred embodiment, is a current DAC configured as a multiplier. Control inputs CTL1 and CTL2 to respective multipliers set the amplitudes of the modified IPTAT2 and ICTAT2 output currents, which are then summed to generate the compensating current Icomp which is injected to the appropriate node in the bandgap reference circuit as described above. By adjusting the relative amplitudes of the IPTAT2 and ICTAT2 currents, a wide range of compensating current versus voltage curves is produced, allowing the optimization of a wide range of bandgap reference circuits. An optimal value for CTL1 is determined by holding CTL2 constant, then measuring curvature at a plurality of CTL1 values. That CTL1 value closest to the interpolated value at which curvature is minimized is then used.
US08624658B1 Frequency mixer having parallel mixer cores
A frequency mixer having parallel mixer cores is described that is configured to heterodyne a signal. In an implementation, the frequency mixer includes a first mixer core and a second mixer core. A first balun is connected to the first mixer core and configured to furnish a LO signal occurring in a first range of frequencies to the first mixer core. The mixer includes a second balun coupled to the second mixer core, and the second balun is configured to furnish a LO signal occurring in a second range of frequencies during a second time interval. The mixer includes a first biasing voltage source that is center tapped to the first balun and a second biasing voltage source is center tapped to the second balun to further prevent operation of the at least substantially non-operational mixer core.
US08624657B2 Squaring circuit, integrated circuit, wireless communication unit and method therefor
A squaring circuit has current mode triplet metal oxide semiconductor (MOS) devices, including a first MOS device, a second MOS device and a third MOS device each having a source operably coupled to a first current source; and a fourth MOS device, a fifth MOS device and a sixth MOS device each having a source operably coupled to a second current source. The drain of first and fourth MOS device is operably coupled to a first supply, the drain of second and fifth MOS device is operably coupled to a first differential output port and the drain of third and sixth MOS device is operably coupled to a second differential output port. The gate of first, second and sixth MOS device is connected to a first differential input port, and the gate of third, fourth and fifth MOS device is connected to a second differential input port.
US08624656B2 Semiconductor device and electronic appliance
The amplitude voltage of a signal input to a level shifter can be increased and then output by the level shifter circuit. Specifically, the amplitude voltage of the signal input to the level shifter can be increased to be output. This decreases the amplitude voltage of a circuit (a shift register circuit, a decoder circuit, or the like) which outputs the signal input to the level shifter. Consequently, power consumption of the circuit can be reduced. Alternatively, a voltage applied to a transistor included in the circuit can be reduced. This can suppress degradation of the transistor or damage to the transistor.
US08624648B2 System reset circuit and method
A system reset circuit and a method for resetting a system automatically according to an operation state of the system are provided. The system reset circuit includes a system, which is triggered by a first logic state during an operation of a program and a second logic state at termination of the program, for generating a trigger signal for maintaining the first logic state in a lockup state and a counter for receiving the trigger signal as an enable signal, for counting a period of the first logic state of the trigger signal, and for clearing the counting for a period of the second logic state, and of which an output node is connected to a reset node of the system, wherein, when the first logic state period of the trigger signal is maintained before the counter expires, the system generates a reset signal automatically.
US08624643B2 Semiconductor memory apparatus
A semiconductor memory apparatus includes a phase comparator configured to compare phases of rising and falling feedback clocks with that of a reference clock, a delay circuit configured to delay the reference clock by a predetermined time based on a comparison result of the phase comparator to thereby generate rising and falling delayed clocks, a clock transmission block configured to invert the rising delayed clock outputted from the delay circuit when the rising and falling feedback clocks have substantially different phases, a duty compensator configured to compensate a duty ratio from outputs of the clock transmitting block to generate a delay locked clock having a compensated duty ratio, and a delay model configured to delay an output and an inverse output of the duty compensator by a modeled delay time respectively to generate the rising and falling feedback clocks.
US08624640B2 Inductive load driving device
An inductive load driving device includes a first switching element, a second switching element, a counter current regeneration circuit, and a circuit element protection circuit. The first switching element is coupled between an output terminal of the power circuit and one end of the inductive load. The second switching element is coupled between the other end of the inductive load and a ground terminal. The counter current regeneration circuit is configured to supply to the output terminal of the power circuit, a counter current output from the other end of the inductive load when the first and second switching elements are in off-state. The circuit element protection circuit is configured to turn on the second switching element when a value of the output voltage of the power circuit becomes equal to or more than a threshold value.
US08624638B2 Semiconductor device including driving circuit
A semiconductor device includes an information generation circuit configured to generate first information, an information multiplexing circuit configured to multiplex the first information and second information, and an information driving circuit configured to drive an output pad in response to an output signal of the information multiplexing circuit.
US08624631B2 Programmable pulse width discriminator
Disclosed is a programmable pulse width discriminator circuit operable to receive a set of parameters from a user and indicate when an input signal satisfies conditions set by the user-defined parameters. The input signal is sampled by the pulse width discriminator circuit to detect a desired state of the input signal. The user may set the parameters such that the pulse width discriminator indicates the condition wherein the number of consecutive samples for which the input signal is the desired state is (i) greater than a first threshold value, (ii) less than a second threshold value, or (iii) between the first and second threshold values. In these embodiments, the user sets the first and second threshold values and selects which set of conditions are indicated by the output of the circuit.
US08624630B2 Clock and data recovery system, phase adjusting method, and phasedetector
Disclosed is a phase discriminator, including: a first XOR gate connected to a trigger and a delay unit, a second XOR gate connected to the trigger and a latch, wherein the first XOR gate is a current mode logic XOR gate, the first XOR gate comprises a first offset current source circuit outputting a first adjustable offset circuit for controlling amplitude of the error signal output by the first XOR gate; and/or, the second XOR gate is a current mode logic XOR gate, the second XOR gate comprises a second offset current source circuit outputting a second adjustable offset circuit for controlling amplitude of reference signal output by the second XOR gate. Also disclosed are a clock and data recovery system and a phase adjustment method. The present invention can prevent introducing noise coupling to the voltage control oscillator (VCO) module.
US08624628B1 Adjustable level shifter
Described embodiments include a level shifter that provides a voltage level shift to applied signals, the amount of voltage shift being accurately controlled and independent of PVT. The level shifter has first transistor configured as a voltage follower with the gate coupled to an input terminal of the shifter and the source coupled to a node, a diode-connected transistor coupled between the node and an output terminal of the circuit, a first controlled current source coupled to the node, and a second controlled current source coupled to the output terminal. A controller receives a bandgap-stabilized voltage, squares the stabilized voltage to produce a control signal that controls the first and second controlled current sources. The voltage shift is proportional to a digitally-controlled scale factor (K) times the stabilized voltage. The ratio of the current from the first current source to the second current source is (K+1)/K.
US08624626B2 3D IC structure and method
An apparatus comprises a first integrated circuit (IC) die, and a second IC die stacked on the first IC die. The first and second IC dies are operational independently of each other. Each respective one of the first and second IC dies has: at least one circuit for performing a function; an operation block coupled to selectively disconnect the circuit from power; and an output enable block coupled to selectively connect the circuit to at least one data bus.
US08624625B2 High definition multimedia interface (HDMI) apparatus including termination circuit
A termination circuit for a HDMI transmitter includes a bias unit and a termination resistor unit connected in parallel between a positive transmission pin and a negative transmission pin. The bias unit generates a bias voltage by selecting the higher voltage among a first voltage received through the positive transmission pin and a second voltage received through the negative transmission pin. The termination resistor unit is formed on a well region biased by the bias voltage, and conditionally provides a termination resistance between the positive transmission pin and the negative transmission pin in response to a termination resistor control signal. The termination circuit conditionally provides a termination resistance without a leakage current. The termination resistance may be varied by using an n-bit control code.
US08624622B2 Fault tolerant integrated circuit architecture
The exemplary embodiments provide a resilient integrated circuit. An exemplary IC comprises a plurality of composite circuit elements, a state machine element (SME), and a plurality of communication elements. Each composite circuit element comprises an element interface and a selected circuit element which may vary by element type, and which may be configurable. The state machine element assigns various functions based on element type, such as assigning a first configuration to a first element type, assigning a second configuration to a second element type, and providing a first data link for the corresponding assignments. In response to detection of a fault or failure, the state machine element re-assigns the first configuration to another composite circuit element and creates a second data link for performance of the same function, providing for the IC to continue the same functioning despite defects which may arise during operation.
US08624620B2 Test system and write wafer
A test system for testing a plurality of semiconductor chips formed on a semiconductor wafer includes: a test wafer on which a plurality of test circuits corresponding to the plurality of semiconductor chips are formed, each test circuit testing a corresponding one of the plurality of semiconductor chips based on test data provided to the test circuit; where each of the plurality of test circuits includes a nonvolatile and rewritable pattern memory for storing the test data such as pattern data and sequence data, and the test system writes the same test data to all the plurality of test circuits in parallel.
US08624618B2 Apparatus and method for inspecting circuit of substrate
An apparatus and method for inspecting a circuit of a substrate is described. The apparatus includes a pin probe coming into contact with a first end of an electrode formed on a first side of a substrate, a voltage source for applying a voltage to the pin probe, a film disposed at a second end of the electrode formed on a second side of the substrate, a dielectric fluid sealed in the film, and an electronic ink dispersed in the dielectric fluid, and charged with electricity to flow when the electrode is electrified. The present invention is advantageous in that whether an electrode has been electrified is measured using charged electronic ink, so that the use of a pin probe is limited to one side of a substrate, thus reducing cost required for the entire inspection.
US08624616B2 Suspended IO trace design for SSP cantilever data read / write
A suspended IO trace design for SSP cantilever Read/Write is described. Instead of having the whole I/O trace attached to surface of the cantilever, the cantilever is designed with fish-bone-like support and the I/O traces are anchored to cantilever structures 110 at some specific attachment locations with dielectric insulation in between. This design provides very compliant trace compared to cantilever's see-saw actuation around the torsional beam pivot and is also insensitive to residual stress variations from I/O trace in fabrication.
US08624615B2 Isolation circuit
The present disclosure includes various method, device, and system embodiments for isolation circuits. One such isolation circuit embodiment includes: a first transistor configured for connection to a supply voltage via a first terminal; a register connected to the first transistor; a second transistor in parallel with a resistor, wherein the second transistor is configured for connection to the first terminal, with a gate of the second transistor configured for connection to an output of the register; and wherein the second transistor is configured for connection to a second terminal, the second transistor having a state that depends on a status of the register.
US08624610B2 Synthesized current sense resistor for wide current sense range
A circuit has a first sense resistor circuit having components including a first-circuit active element to provide a sense resistance to sense a current in a load in series therewith, the sense resistance being established by an input command voltage. A second sense resistor circuit has components replicating the components of the first sense resistor circuit including a replicated active element, a resistance of the replicated active element also being established by the input command voltage. A precision resistor is coupled to the replicated active element to provide a load thereto. When the input command voltage establishes a voltage across the replicated active element, a voltage is established across the first-circuit active element in proportion thereto to command a desired current in the load.
US08624609B2 Two-dimensional position sensor
A two-dimensional position sensor is formed by drive electrodes (52) and sense electrodes (62, 64, 66) both extending in the x-direction and interleaved in the y-direction. The sense electrodes comprise several groups, two of which co-extend in the x-direction over each different portions of extent in the x-direction. The drive and sense electrodes are additionally arranged to capacitively couple with each other. In use, drive signals are applied to the drive electrodes and then the resultant sense signals received from the sense electrodes measured. The position of a touch or stylus actuation on the sensor is determined in the x- and y-directions as follows. In the x-direction, the position is determined by an interpolation between sense signals obtained from co-extending pairs of sense electrodes, and in the y-direction by interpolation between sense signals obtained from different sequences of drive signals applied to the drive electrodes.
US08624607B2 Measuring voltage
In one embodiment, a method includes, at a first input of a comparator, receiving from an analog multiplexer one of multiple first voltages. Each of the first voltages results at least in part from an interaction between an object and an electrode of each of one or more nodes of a capacitive touch sensor. The method includes, at a second input of the comparator, receiving a second voltage across a measurement capacitor that has a first terminal coupled to the second input of the comparator. The method includes charging the measurement capacitor at least in part through a measurement resistor coupled in series to the first terminal of the measurement capacitor and monitoring an output of the comparator during the charging of the measurement capacitor. The output of the comparator changes state when the second voltage becomes approximately equal to or greater than the one of the first voltages. The method includes determining an amount of time from a start of the charging of the measurement capacitor to a change in state of the output of the comparator.
US08624605B2 Apparatus and method to distinguish nominally identical objects through wave fingerprints apparatus and method to distinguish nominally identical objects through wave fingerprints
The present invention exploits extreme sensitivity to initial conditions in ray-chaotic enclosures to create a method to distinguish nominally identical objects through their unique “wave fingerprints.” The fingerprint can be measured through transmission of a pulsed microwave signal as a function of carrier frequency and time. When internal components are re-arranged, the Electromagnetic Fingerprints (EMF) changes in significant ways. The EMF can be detected by direct injection measurements of the enclosure or through remote measurement.
US08624603B2 Sensor assembly and methods of adjusting the operation of a sensor
A microwave sensor probe includes a probe housing, an emitter body coupled to the probe housing, and an emitter coupled to the emitter body. The emitter is configured to generate an electromagnetic field from at least one microwave signal. At least one electromagnetic absorbent member is configured to absorb at least one of a current transmitted through the emitter and an electromagnetic radiation generated by the emitter.
US08624595B2 Magnetic resonance imaging apparatus and magnetic resonance imaging method
A magnetic resonance imaging apparatus according to an embodiment includes an executing unit, a calculating unit, and a correcting unit. The executing unit executes a pre-scan while using a pulse sequence by which a plurality of echo signals are collected. The calculating unit calculates a phase difference between at least two echo signals of which a fluctuation of phase differences is stable and that are selected out of the plurality of echo signals collected during the pre-scan and are selected while excluding echo signals collected during an initial time period. The correcting unit that corrects a pulse sequence used for a main scan, based on the phase difference calculated by the calculating unit.
US08624594B2 Polarized xenon gas concentration method, polarized xenon gas manufacturing supply device, and MRI system
The present invention relates to a polarized xenon gas manufacturing supply device that is provided with a polarization cell 6 that produces a polarized xenon gas by polarizing a mixture of xenon gas and a diluent gas that consists primarily of a high-boiling-point gas that has a boiling point higher than that of the xenon gas, and a condenser (9) that cools the mixed gas discharged from the polarization cell (6) and condenses and separates the high-boiling-point gas by using the difference in boiling points between the xenon gas and the high-boiling-point gas, wherein the supply device is constructed so as to re-vaporize the condensed liquid of the high-boiling-point gas produced by the condenser (9) and introduce it to the polarization cell (6). This polarized xenon gas manufacturing supply device makes it possible to continuously manufacture and supply highly polarized and highly concentrated xenon gas.
US08624581B2 Input power measuring device
An input power measuring device includes a board with an edge connector, a first dual inline memory modules (DIMM) socket, a resistor, a differential amplifier circuit, a voltage dividing circuit, a display screen, and a controller. When the edge connector is inserted into a second DIMM socket of a motherboard and the motherboard is powered on, the resistor samples first current, and converts the first current into a first voltage. The differential amplifier circuit amplifiers the first current to a second current. The voltage dividing circuit divides the first voltage, and outputs a second voltage. The controller converts the second current into a third current, converts the second voltage into a third voltage, and calculates a power according to the third current and the third voltage.
US08624574B2 Pulse width modulation controller of DC-DC converter
A DC-DC converter including a Pulse Width Modulation (PWM) controller for converting an input voltage into an output voltage is provided. The PWM controller includes: an error amplifier, receiving a reference voltage and a feedback voltage and provides an error signal; a compensation unit coupled to an output of the error amplifier, compensating the error signal and comprising a first resister and a first capacitor; a ramp generator, generating a ramp signal according to a constant on time PWM signal; a first comparator coupled to the compensation unit and the ramp generator, comparing the compensated error signal with the ramp signal to generate a trigger signal; and a PWM generator coupled to the first comparator, providing the constant on time PWM signal according to the trigger signal, an input voltage of the DC-DC converter and the output voltage of the DC-DC converter.
US08624573B2 Power converters including zero-current detectors and methods of power conversion
A power converter includes a zero-current detector having an adjustable offset voltage. The power converter includes a power converting unit and a switch driving circuit. The power converting unit generates a DC output voltage based on a pull-up driving signal, a pull-down driving signal and a DC input voltage. The switch driving circuit generates a first detection voltage signal based on the DC output voltage. The switch driving circuit includes a zero-current detector configured to adjust an offset voltage based on the first detection voltage signal and generate a zero-current detecting signal based on the offset voltage. The offset voltage and the zero-current detecting signal are associated with a current in the power converting unit. The switch driving circuit also includes a pulse-frequency modulating circuit configured to perform a pulse-frequency modulation (PFM) to generate the pull-up driving signal and the pull-down driving signal based on the zero-current detecting signal.
US08624571B2 DC-DC converters with pulse generators shared between PWM and PFM modes
A DC-DC converter system having at least one DC-DC converter operating in either a PWM mode or a PFM mode is provided. The DC-DC converter system includes a state machine configured to control the switching between the PWM mode and PFM mode. The state machine determines whether an inductor current provided by the DC-DC converter reaches a first specified value for a selective number of clock cycles so switching between the PWM mode and PFM mode is to occur. A pulse generator circuit is connected to the state machine and being configured to provide the appropriate switching period for the PWM mode and the PFM mode at the time of switching. The pulse generator circuit is shared amongst the PWM mode or PFM mode and utilizes a master clock for its operations.
US08624557B2 Sliding conductor transmission cable
Methods and devices for connecting a current source to a target storage device via a transmission cable extendable and/or retractable via a conduit that may be repositioned.
US08624551B2 Electrical device for a portable electronic device
A charger unit includes: a housing, prongs for engaging an electrical outlet, the prongs being coupled to one another by a cross-member and being movable relative to the housing between a retracted position in which the prongs are received in the housing and an extended position in which the prongs protrude from the housing, the prongs being biased toward the extended position, a locking arm comprising a first end, a cut out for receiving the cross-member when the prongs are in the retracted position and a second end for abutting the cross-member when the prongs are in the extended position, the first end of the locking arm being coupled to a carriage and the cutout being provided between the first end and the second end, the locking arm being movable by the carriage into and out of engagement with the cross-member and the locking arm being biased toward the passage.
US08624549B2 Fuel cell system for charging an electric vehicle
A method for charging electric vehicles includes receiving information regarding an electric vehicle. At least a portion of the information is received through a vehicle interface configured to place a battery of the electric vehicle into electrical communication with a fuel cell system. A charge is delivered from the fuel cell system to the battery of the electric vehicle through the vehicle interface without use of a direct current to alternating current (DC/AC) converter. The charge is delivered based at least in part on the information.
US08624543B2 Switching strategy for switched reluctance machine
A method of controlling a motor is provided. The method may determine a speed of the motor, and engage a soft chopping routine on a first switch and a second switch of each phase if the motor speed is relatively low. The first switch may be driven by a first pulse width modulated PWM signal and the second switch being driven by a second PWM signal. The first and second PWM signals may be alternatingly configured such that at least one of the first switch and the second switch is closed at any point during the distributed soft chopping routine and both the first switch and the second switch are never simultaneously open.
US08624540B2 Driving apparatus
A driving apparatus has a correction value output unit for outputting correction values ΔTa and ΔTb to correct differences between signals which are output from an A sensor a B sensor when an A-phase coil and a B-phase coil are not energized and signals which are output from the A sensor and the B sensor when the A-phase coil and the B-phase coil are energized. An energization direction of the A-phase coil is switched on the basis of a time A which is measured by a time measurement unit and the correction value ΔTa which is output from the correction value output unit. An energization direction of the B-phase coil is switched on the basis of a time B which is measured by the time measurement unit and the correction value ΔTb which is output from the correction value output unit.
US08624535B2 Power supply circuit
A power supply circuit includes two half bridge circuits, a controller and two terminals for connecting a motor. The controller includes a signal input terminal, a phase inverter, a wiring board having four soldering pads, and two conductors. The four soldering pads are connected to the signal terminal, an output terminal of the phase inverter, control terminals of lower switches of the two half bridge circuits. Two ends of the first conductor are connected to the first and the fourth soldering pads and two ends of the second conductor are connected to the second and the third soldering pads. Alternatively, two ends of the first conductor are connected to the first and the third soldering pads and two ends of the second conductor are connected to the second and the fourth soldering pads.
US08624532B2 System and method for synchronizing sinusoidal drive to permanent magnet motor without distorting drive voltage
A system for controlling a motor (3) includes a driver circuit (5) for generating a drive voltage (v) to generate a phase current (i) in the motor. Phase current sensing circuitry (10,21) digitizes the phase current. A first circuit (23) provides a reconstructed digital representation of a BEMF signal (vbemf) of the motor to generate an error-corrected synchronization signal (SYNC) in response to the phase current and a detected error in the motor speed, an amplitude feedback signal (15), and information (iR,iL,ΔiL,vL) indicative of a resistance (Rm) and an inductance (Lm) of the motor. A motor drive signal (15) having an error-corrected frequency is generated in response to the synchronization signal. A PWM circuit (16) produces a PWM signal (17) having a frequency equal to the error-corrected frequency of the synchronization signal (SYNC) and a duty cycle controlled according to the detected error.
US08624531B2 Method and system for evaluating electrical connections between a motor controller and motor
A pair of direct d-q-axis voltage commands is associated with a monotonically varying test sequence of test rotor angular positions to determine a correct rotational direction of a rotor of the motor in response to application of the pair of direct d-q-axis voltage commands to the motor. The rotor of the motor rotates (e.g., self spins in a diagnostic mode) in response to the applied direct d-q-axis voltage commands and applied monotonically varying test sequence of test rotor angular positions. The primary positioning module or data processor determines that conductor connections between the inverter (e.g., motor controller) and the motor are correct if the calculated shaft speed sign is positive with respect to an applied monotonically varying test sequence of rotor angular positions that monotonically increases.
US08624530B2 Systems and methods for transmission of electric power to downhole equipment
Systems and methods in which output power that would conventionally be provided by surface equipment to drive downhole equipment, is transformed to increase the voltage before transmitting the power over a power cable to downhole equipment. The downhole equipment includes a step-down transformer that receives power from the power cable at a voltage which is too high to drive the motor or other downhole equipment and reduces the voltage to a level that is suitable for use by the downhole equipment. The step-down transformer may utilize toroidal transformers that are positioned around other components of the system, such as the shaft that couples a motor to an electric submersible pump. The step-down transformer may be configured as a modular unit that can be inserted between components (e.g. motor and seal) that are manufactured using conventional designs.
US08624528B2 Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods
The invention relates generally to treatment of solid cancers. More particularly, the invention relates to enhancing synchrotron acceleration cycle usage efficiency by adjusting the synchrotron's acceleration cycle to correlate with a patient's respiration rate where efficiency refers to the duty cycle or the percentage of acceleration cycles used to deliver charged particles to the tumor. The system senses patient respiration and controls timing of negative ion beam formation, injection of charged particles into a synchrotron, acceleration of the charged particles, and extraction to yield delivery of the particles to the tumor at a predetermine period of the patient's respiration cycle. Independent control of charged particle energy and intensity is maintained during the timed irradiation therapy. Multi-field irradiation ensures efficient delivery of Bragg peak energy to the tumor while spreading ingress energy about the tumor.
US08624525B2 Flat display, backlight module and driving method thereof
A flat display used for displaying a 2D image and a 3D image is provided. The flat display includes a panel and a backlight module. The backlight module provides a light to the panel. When the flat display displays the 2D image, the backlight module provides a first light intensity to the panel. When the flat display displays the 3D image, the backlight module provides a second light intensity to the panel. The second light intensity is higher than the first light intensity.
US08624522B2 Backlight control circuit
A backlight control circuit includes a driver circuit, a sensing circuit, and a control circuit. The driver circuit adjusts an illumination intensity of a backlight source. The sensing circuit senses an environmental illumination intensity. The control circuit is set between the driver circuit and the sensing circuit. The control circuit controls the driver circuit to adjust an illumination intensity of a backlight source according to the sensed environmental illumination intensity.
US08624520B2 Electrical appliance having a lighting device having light emitting diodes
An electrical appliance, particularly a television or a monitor, having a lighting device (8) having light emitting diodes (12). The light emitting diodes (LED) (12) are collected in LED strings (11) and controlled by a balancing network (17). The balancing network (17) has a circuit branch (19) for each string (11), the circuit branches (19) being connected in parallel to each other. Disposed in each circuit branch (19), is a bridge rectifier (20) to which the LED string (11) is connected. Moreover, each circuit branch has a balancing transformer (23), wherein all the secondary windings (26) of the balancing transformer (23) are connected in series in a closed conductor loop (27), by which the currents in all circuit branches are balanced.
US08624519B2 Variable load line gas curve intercept method to optimize system efficiency
The operation of gas discharge devices involves stabilizing drive stage with a highly dynamic load exhibiting both negative resistance and non-linear behavior. Stabilization is typically accomplished by inserting impedance in series with the plasma load so the combination impedance has a voltage division that is characterized by the intersection of the linear series impedance and the instantaneous voltage-current. This is stable as long as there is an ample excess of voltage driving the plasma/series impedance complex. However providing series impedance that insures stable operation over varying power levels, lamp types/chemistries and changes resulting from aging can lead to inefficient operation as a result of either high voltage/power drops in the series impedance or a high source voltage driving smaller impedance. A method to optimize the series impedance and driving voltage through a dynamic adjustment process of both the voltage and impedance parameters to provide stable gas plasma drive and maximize system efficiency is described.
US08624518B2 Power management circuit and liquid crystal display using same
A power management circuit comprising a power-on signal input, an output terminal a control unit, a switching unit, and a discharge unit. The control unit configured to selectively turn on the switching unit to output a power-on signal to a display module and selectively turn off the switching unit to cut off an electrical connection between the power-on signal input and the output terminal. The discharge unit configured to discharge residual electrical charges in the display module when the switching unit is turned off.
US08624513B2 Multichannel lighting unit and driver for supplying current to light sources in multichannel lighting unit
A lighting unit includes at least two channels of light sources, and a driver for the light sources. The driver includes a DC/DC converter and a control arrangement for controlling the current supplied to at least one of the two channels in response to a control signal produced by the DC/DC converter. Beneficially, a feedback loop controls a switching device in the DC/DC converter to maintain the light level produced by the light sources at a desired level regardless of changes in the supply voltage and the load.
US08624506B2 Lighting device
A remote control light receiver receives the infrared rays from an infrared LED incorporated in a remote control unit operated by the user, extracts the signal transmitted from the remote control unit, and outputs the extracted signal to a control microcomputer. The carrier frequency of the signal transmitted from the remote control unit is 38 kHz. A PWM control circuit performs PWM control by using an arbitrary PWM frequency within a range of 300 Hz to 3 kHz. By separating the PWM frequency and the frequency (carrier frequency) of the signal for remote control into different bands, the signal for remote control can be restrained from being affected by the turning on of the light source by PWM control, whereby remote control can be prevented from malfunctioning.
US08624505B2 Light color and intensity adjustable LED
An integrated photonic device includes a number of LEDs and a feedback mechanism that measures individual LED light outputs using a photo sensor via a light transmitter disposed in the vicinity of individual LEDs. A controller or driver adjusts a current driven to each LED using the detected values according to various logic based on the device application.
US08624502B2 Particle beam source apparatus, system and method
An ion source is disclosed including: a chamber disposed about a longitudinal axis and containing a gas, a magnetic confinement system configured to produce a magnetic field in a confinement region within the chamber, an electron cyclotron resonance driver which produces a time varying electric field which drives the cyclotron motion of electrons located within the confinement region, the driven electrons interacting with the gas to form a confined plasma. During operation, the magnetic confinement system confines the plasma in the confinement region such that a portion of atoms in the plasma experience multiple ionizing interactions with the driven electrons to form multiply ionized ions having a selected final ionization state.
US08624501B2 Measuring and controlling parameters of a plasma generator
Methods, systems, and computer program products are described for measuring and controlling parameters of a plasma generator. A current in a primary winding of a transformer or inductive element that generates a plasma is measured. A voltage across a secondary winding of the transformer or inductive element is measured. Based on the current of the primary winding and the voltage across the secondary winding, a parameter of the plasma is determined. The parameter includes a resistance value associated with the plasma, a power value associated with the plasma, or both.
US08624499B2 Power converter and vehicle lighting device, vehicle headlight and vehicle using power converter
A power converter that receives a plurality of direct current (DC) powers, which are received in different modes and have a common ground and substantially the same potential, and operates a plurality of loads, wherein the power converter operates the respective loads according to input states of the plurality of DC powers and supplies the plurality of loads with power via at least a common switch element or a common coil.
US08624498B2 Method for controlling a lighting system in an aircraft cabin
A method for controlling a lighting system in an aircraft cabin is provided. The lighting system has lighting units each including a controller for controlling RGB light-emitting diodes, and a central processor connected to each controller for data exchange. Each controller has a storage unit for storing scene programs each controlling a respective scene. Control data records are transmitted to the controllers from the central processor for controlling an overall luminous behavior generated by the lighting units. The control data records have scene program identification information and synchronization information for controlling the sequence of the scene program corresponding to the scene program identification information with time.
US08624496B2 Phase and frequency locked magnetron
A magnetron of improved performance capable of stabilizing the frequency and phase of magnetron output for use in particle accelerators and other applications. Thin variable-permeability blocks are attached inside the resonant anode structures of a standard magnetron design. A variable bias electromagnet, with field orthogonal in direction to the RF magnetic field, is used to vary the permeability of each block and therefore the resonant frequency of each anode structure. An electronic feedback control circuit adjusts the bias magnetic fields to lock in the frequency and phase of the magnetron output to an external low-level reference signal. Such devices may be used to provide synchronized high-power RF to many locations (e.g. the RF cavities of a particle accelerator), while requiring the distribution only of electrical power and an appropriate low-level RF reference signal.
US08624493B2 Integrated gas discharge lamp with an ignition electronics integrated into the base for generating asymmetrical ignition pulses
An integrated gas discharge lamp (5) with ignition electronics integrated into the base, comprising an ignition transformer (TIP), an ignition capacitor (CIP), and a controlled switching element (SIP), wherein the integrated ignition electronics are configured to generate an asymmetrical ignition pulse, and wherein the voltage ratio between the first lamp electrode near the base and the second lamp electrode distant from the base ranges from 22:1 to 5:4.
US08624490B2 Organic light-emitting device and method of manufacturing the same
An organic light-emitting device including a first substrate with an array of organic light-emitting pixels formed thereon, and a second substrate is disclosed. A transparent moisture absorption layer is disposed between the first and second substrates. The transparent moisture absorption layer efficiently absorbs moisture and/or oxygen, and thus the lifetime characteristics of the organic light-emitting device are improved. The transparent moisture absorption layer has a transmittance of about 85% or higher with respect to visible light. The layer has a thickness of about 10 to about 60,000 nm and a refractive index of about 1.45 to about 1.65 in an inert and/air atmosphere. The layer is formed on the second substrate by using chemical vapor deposition or physical vapor deposition.
US08624486B2 Light-emitting device having organic elements connected in series
The present invention provides a light-emitting device comprising a supporting substrate and a plurality of organic EL elements provided on the supporting substrate to be connected in series, in which each of the organic EL elements comprises a pair of electrodes and a light-emitting layer placed between the electrodes, the light-emitting layer extends in the prescribed array direction across the plurality of organic EL elements, each electrode out of the pair of electrodes comprises an extended portion that extends, as viewed from one thickness direction of the supporting substrate, protruding from the light-emitting layer in a width direction vertical to both of the thickness direction of the supporting substrate and the array direction, and one electrode out of the pair of electrodes further comprises a connecting portion that extends from the extended portion in the array direction to the other electrode of the organic EL element neighboring in the array direction so as to be connected to the other electrode.
US08624485B2 Electroluminescent device
The present invention provides a color tunable electroluminescent device, such as an OLED device, comprising a substrate, two electrodes, a stack of at least two electroluminescent emission layers (1, 3) comprising electroluminescent molecules that is disposed between said two electrodes and an interlayer (2) disposed between at least two adjacent emission layers. The interlayer furthermore is an undoped interlayer and has a thickness that allows the formation of an interface region comprising electroluminescent molecules present in each of the at least two electroluminescent emission layers. Furthermore, methods of color tuning and producing such an electroluminescent device are provided.
US08624483B2 Fixture and socket assembly for replaceable and flexible panel lighting device
A fixture and socket assembly is provided for replaceable and flexible panel lighting device. Preferably, perimeter edges of the flexible light source devices which may be arranged into a matrix or panel are mechanically and electrically connected to socket contacts provided at desired locations on the first surface of the fixture, which makes mechanical and electrical engagement with associated conductive portions or surface contacts on rear surfaces of the flexible light source devices.
US08624479B2 Plasma display panel
Provided is a high-efficiency plasma display panel having short decay time and high luminance and color purity. The plasma display panel includes a green phosphor layer emitting visible light when excited with vacuum ultraviolet rays, in which the green phosphor layer is formed of a green phosphor containing 30% by weight or more and 60% by weight or less of a phosphor represented by a general formula: dZnO.(2−d)MnO.eSiO2 (1.80≦d≦1.90, 1.00≦e≦1.02) and one of a phosphor represented by a general formula: aYO3/2.(3−a)CeO3/2.bAlO3/2.cGaO3/2.fWO3 (2.80≦a≦2.99, 3.00≦b≦5.00, 0≦c≦2.00, 0.003≦f≦0.020, where 4.00≦b+c≦5.00) and a phosphor represented by a general formula: aYO3/2.(3−a)CeO3/2.bAlO3/2.cGaO3/2.gK2WO4 (2.80≦a≦2.99, 3.00≦b≦5.00, 0≦c≦2.00, 0.003≦g≦0.015, where 4.00≦b+c≦5.00).
US08624474B2 Spark plug
A spark plug having a metal shell, the metal shell having a tool engagement portion, a trunk portion and a cylindrical groove disposed between the tool engagement portion and the trunk portion, wherein the following relationship is satisfied: Z1<=Z2, where “Z1” represents a section modulus of a first groove end of the groove, and where “Z2” represents a section modulus of a second groove end of the groove.
US08624471B1 Piezoelectric-on-semiconductor micromechanical resonators with linear acoustic bandgap tethers
Microelectromechanical resonators include a resonator body anchored to a substrate by at least one tether containing a coupled-ring linear acoustic bandgap structure therein. The coupled-ring linear acoustic bandgap structure can include a plurality of piezoelectric-on-semiconductor rings connected together by a plurality of piezoelectric-on-semiconductor tether segments. A first electrode may also be provided, which extends on the resonator body and the coupled-ring linear acoustic bandgap structure. This resonator body, which may be suspended opposite a recess in the substrate, may include a semiconductor (e.g., silicon) body having a piezoelectric layer (e.g., AlN) thereon, which extends between the semiconductor body and the first electrode. The coupled-ring linear acoustic bandgap structure may be a periodic structure, where a pitch between each of the plurality of piezoelectric-on-semiconductor rings in the at least one tether is equivalent, or a non-periodic structure.
US08624466B2 Component having stress-reduced mounting
A component (1) is proposed wherein the suspension of the component (1) is effected in a stress-reduced manner. The component (1) can rest on a membrane (4) or be held by a spring element (2). The membrane (4) or the spring element (2) is situated above a depression (6) or an opening (7) partially spanned by the membrane (4). Preferably, the membrane (4) has a modulus of elasticity that is less than or equal to the modulus of elasticity of the component (1) or of the substrate (3). The component (1) can be covered with metal electrodes (10) wholly or partially over the area on two sides.
US08624465B2 Surface acoustic wave sensor system and measurement method using multiple-transit-echo wave
A surface acoustic wave (“SAW”) sensor system comprises a signal generating part, which applies an electrical signal to a SAW sensor, the SAW sensor connected to the signal generating part, which converts the electrical signal into a SAW, senses a measurement target using the SAW, and converts a SAW output corresponding to the measurement target into an electrical signal, and a signal measuring part connected to one side of the SAW sensor, which detects a change in the electrical signal by time-gating a multiple-transit-echo wave.
US08624463B2 Transverse flux motor as an external rotor motor and drive method
The invention relates to a transverse flux motor comprising at least one stator and at least one rotor. Magnetically active elements of the stator are formed in an annular manner and with a U-shaped inner contour on the stator and the rotor is in the form of a disk or a ring. The rotor comprises magnetically active sections consisting of a soft-magnetic or permanent-magnetic material, that are radially oriented in an annular manner towards at least one front surface of the rotor. The invention also relates to a drive method according to the transverse flux principle, whereby magnetically active sections of at least one disk-type or annular rotor, that are radially oriented in an annular manner towards at least one front surface of the rotor, interact with magnetically active elements having a U-shaped inner contour in an annular manner on at least one stator, in order to rotate the rotor.
US08624461B2 Motor stator
A motor stator includes an insulating frame having a plurality of projecting rods, an induction unit, and a plurality of conductive members. The induction unit includes an induction circuit board, a plurality of induction coils embedded within the induction circuit board, and a plurality of coil windings wound respectively on the projecting rods. The conductive members extend through the insulating frame and the induction circuit board for establishing an electrical connection between each of the induction coils and a corresponding one of the coil windings. The turn numbers of the coil windings are not limited by the area and thickness of the induction circuit board, and can be increased. Alternatively, the coil windings may be positioned to increase the magnetic pole slot number when energized. As such, a driving force of the motor stator can be increased.
US08624457B2 Permanent magnet electric motor
An increase of the magnetization current can be prevented during demagnetization and magnetization, and a variable speed operation can be achieved at a high power output over a wide range of from a low speed to a high speed. A rotor (1) is configured by a rotor core (2), a variable magnetic force magnet (3) and a fixed magnetic force magnet (4). A variable magnetic force magnet (3) and a fixed magnetic force magnet (4a) are overlapped in the magnetization direction thereof to form a series of magnets. The series of magnets is located within the rotor core at a position where the magnetization direction is in the direction of a d-axis. On either side of the series of magnets of the variable magnetic force magnet (3) and the fixed magnetic force magnet (4a), fixed magnetic force magnets (4b, 4b) are located at a position where the magnetization direction is in the direction of the d-axis. When the flux linkage of the variable magnetic force magnet is reduced, a current of an armature coil allows a magnetic field to act in the reverse direction to the magnetization direction of the variable magnetic force magnet. When the flux linkage of the variable magnetic force magnet is increased, a current of the armature coil allows a magnetic field to act in the same direction as the magnetization direction of the variable magnetic force magnet.
US08624455B2 Electrical motor having rotor support shield
A bearing change in an electrical motor and in particular a generator having permanent magnetic excitation should be able to be carried out safely. To this end, the invention relates to an electrical motor having a shaft (2) on which a rotor is mounted and a bearing unit (5) by means of which the shaft (2) is rotatably mounted. In addition, the electrical motor has a rotor support shield (1) to which the bearing unit (5) is fastened. Furthermore, the rotor support shield (1) is sized so as to be capable of supporting the shaft (2) when the bearing unit (5) is removed and seals a grease chamber (8) of the bearing unit (5) opposite the shaft (2). With the rotor support shield, a permanent magnet-equipped rotor can in particular be prevented from coming into contact with the stator when the bearing is removed.
US08624448B2 Electrodynamic linear oscillating motor
The invention is an electrodynamic linear oscillating motor, which has high power densities in the magnet gap, a high efficiency, and magnetically restores the oscillating system to a center position. The linear oscillating motor has a stator system, which has at least one magnet, and an oscillating system, which is movably mounted in the magnetic field of the stator. The oscillating system has at least one core made of a soft magnetic material, and at least one driving coil. The electrodynamic linear motor combines the advantages of the known moving coil and moving magnet linear motor, achieving electrodynamic conversion levels of up to 99%. The motor is suited as a drive for refrigerating and air conditioning systems having low power and also for pumping and injection systems, and, reversing the electrodynamic principle, as a generator, such as for shock absorber systems in a motor vehicle.
US08624447B2 Electrical energy-generating device and remote control equipped with such a device
An electric power-generating device (1) comprising a movable portion forming a magnetic circuit fitted with a core (5) and branches (11, 12, 13, 14) coupled magnetically to the said core, a fixed portion provided with a permanent magnet (31, 32, 33, 34), a mechanism for rotating the movable portion about an axis of rotation (20) supporting the said core, and an electric coil (21) wound around the said core in order to gather the electric power obtained when the said movable portion rotates, the said generating device comprising priming and driving means (51, 52) coupled to control means (71, 72) in order to establish a priming of the said mechanism and interacting with the said movable portion in order to drive it by releasing a priming power at the end of travel of the said control means.A remote control provided with the generating device.
US08624444B2 Energy saving switch for and process for conserving energy while operating a water heater
A process for conserving energy while operating a water heater includes the steps of programming a system controller with at least one time interval and assigning a target temperature, comparing the current time to the programmed time interval and the current water temperature setting for the water heater against the target temperature, and heating the water as long as the current time is within the time interval and the water temperature setting is less than the target temperature. An energy saving switch includes a programmable logic controller, geared control shafts, a motor, a control lever, and a mating cuff. Together, these members control the water heater thermostat control valve to ensure that hot water is available only during the times of day when it is required.
US08624443B2 Renewable energy monitoring system
A solar photovoltaic monitoring system for monitoring and controlling a solar photovoltaic inverter is provided. The system includes a wireless transceiver coupled to a solar photovoltaic inverter that includes a device monitor for monitoring and controlling the inverter. The device monitor generates monitoring data defining a status of the system and transmits the data by using the transceiver coupled to the inverter. The system also includes a wireless repeater for receiving data from the inverter and retransmitting the data and a transceiver coupled to a gateway capable of communicating the received retransmitted data to a monitoring station. The gateway also transmits control data received from the monitoring station. The repeater receives control data from the gateway and retransmits data to the inverter. The inverter receives the retransmitted control data and controls its operation based on the received data.
US08624441B2 Control circuit of cycling switch and control method thereof
A control circuit of a cycling switch for controlling an electronic equipment includes a switch loop, a first control loop and a second control loop. The switch loop generates a driving signal to drive the electronic equipment. The first control loop is electrically connected with the switch loop and the electronic equipment respectively, and generates a first control signal according to a variation of the driving signal. The second control loop is electrically connected with the first control loop and the electronic equipment respectively. The second control loop has a storage unit which charges and discharges according to the first control signal, so that the second control loop generates a second control signal. The second control signal is inputted to the first control loop and controls the electronic equipment. A control method applied to the control circuit of the cycling switch is also disclosed.
US08624440B2 Power management circuit and electronic device
The power management circuit includes a sampling unit, a reference voltage unit, a comparator, and a power managing unit. The sampling unit divides an input voltage from the power supply to generate a sampling voltage. The reference voltage unit receives the input voltage and generates a reference voltage when the input voltage is larger than a predetermined value. The comparator compares the sampling voltage with the reference voltage, generates a first signal when the sampling voltage is larger than the reference voltage, and generates a second signal when the sampling voltage is smaller than the reference voltage. The power managing unit establishes an electrical connection between the power supply and the load according to the first signal, and cuts off the electrical connection between the power supply and the load according to the second signal. A related electronic device is also provided.
US08624419B2 Downhole power generation by way of electromagnetic induction
Electrical power may be generated at a downhole position of a production well by way of electromagnetic induction through oscillating linear translation driven by the flow of a fluid being transported by the production well. In exemplary embodiments, a conductive coil is disposed in a fixed position along a length of a production pipe such that the conductive coil encircles the production pipe. A linear translation apparatus is disposed radially inward from the conductive coil and is configured to move linearly parallel to a longitudinal axis of the production pipe and within the conducting coil by harnessing mechanical energy from fluid flowing within the production pipe. Magnets are affixed to the linear translation apparatus to cause electrical power to be generated in the conductive coil by way of electromagnetic induction responsive to the magnets passing by the conductive coil when the linear translation apparatus is in motion.
US08624418B2 Device for converting wave energy into electricity
A device for converting wave energy into electricity, the device including: a float; a guiding-accelerating wheel, the guiding-accelerating wheel including a wheel body including a casing, a wheel center, and a chamber; an impeller; and an electric generator, the electric generator including a rotor. The float is upward and downward movable in accord with a movement of wave. The guiding-accelerating wheel is connected to a lower part of the float. The wheel center is disposed inside the casing. A plurality of deflectors is annularly arranged between the casing and the wheel body, and the deflectors are inclined to a same direction. Water channels are formed by the casing, the wheel center, and every two adjacent deflectors, each water channel including a water outlet. The impeller is clamped on the guiding-accelerating wheel at a position corresponding to the water outlet of the water channel.
US08624412B2 Locking device for the rotor of wind turbines
The invention relates to a wind turbine comprising a tower, a nacelle that is located on the tower and is provided with a machine support, a rotor shaft bearing and a generator, and comprising a rotor with a rotor shaft, a rotor hub and at least one rotor with at least one rotor blade that is fixed to the rotor hub. According to the invention, the wind turbine has a locking device established by a locking bolt that can be driven into a locking bolt recess in order to positively lock the rotor. The invention is characterized in that the locking bolt is located on the rotor hub and the locking recess is located on the nacelle.
US08624410B2 Electricity generation device with several heat pumps in series
The device for generating electricity (1) comprises: a first heat pump (3) provided with a first closed circuit (15) in which a first heat-transfer fluid circulates, and with a first heat exchanger (17) between the first heat-transfer fluid and a flow of atmospheric air in which the flow of atmospheric air transfers a quantity of heat to the first heat-transfer fluid, at least a second heat pump (5), provided with a second closed circuit (23) in which a second heat-transfer fluid circulates, and with a second heat exchanger (25) between the second heat-transfer fluid and a third heat-transfer fluid in which the second heat-transfer fluid transfers a quantity of heat to the third heat-transfer fluid; means for transferring a quantity of heat from the first heat-transfer fluid to the second heat-transfer fluid; a third closed circuit (9), in which the third heat-transfer fluid circulates; a turbine (11) inserted on the third closed circuit (9) and driven by the third heat-transfer fluid; an electric generator (13), mechanically driven by the turbine (11).
US08624409B2 Shock absorber electrical generator
The shock absorber electrical generator includes a piston adapted for reciprocating motion within a cylindrical piston chamber as a vehicle's suspension system deflects. A working fluid is contained within the piston chamber. During the compression stroke of the piston, working fluid is forced through a circuit having at least one chamber in the cylinder opposite the piston. The working fluid communicates with at least one fan turbine motor disposed in the chamber, and with the piston chamber, which captures the working fluid on the return stroke. Upon compression of the piston, the working fluid passes through the fan turbine motor, thereby turning a shaft connected to a DC generator. The electric energy generated is routed to vehicle electrical components and/or charges the vehicle battery. Multi-generator systems, fan, and housing units are deployed in a plurality of shock absorber electrical generators that are attached to the vehicle's wheel system.
US08624408B2 Circuit device and method of manufacturing the same
In a circuit device of the present invention, the lower surface side of a circuit board and part of side surfaces thereof are covered with a second resin encapsulant, and the upper surface side and the like of the circuit board are covered with a first resin encapsulant. Since heat dissipation to the outside of the circuit device is achieved mainly through the second resin encapsulant, a particle size of filler contained in the second resin encapsulant is made larger than a particle size of filler contained in the first resin encapsulant. Heat dissipation to the outside of the circuit device is greatly improved.
US08624406B2 Semiconductor device, and method for supplying electric power to same
Disclosed is a liquid crystal driver having a plurality of output cells (101), wherein operational amplifiers (105), which are components of the output cells (101), are connected to a power wire (109a) formed in the liquid crystal driver, which is a semiconductor element. Further, the semiconductor element is mounted on a substrate on which a bypass wire (201) has been formed. The bypass wire (201) is connected to the power wire (109a) through bumps (203) for each separate one of the operational amplifiers (105) of all of the output cells.
US08624402B2 Mock bump system for flip chip integrated circuits
A mock bump system includes providing a flip chip integrated circuit having an edge and forming a mock bump near the edge.
US08624400B2 Semiconductor device and method for manufacturing the same
A technique of manufacturing a semiconductor device in which etching in formation of a contact hole can be easily controlled is proposed. A semiconductor device includes at least a semiconductor layer formed over an insulating surface; a first insulating layer formed over the semiconductor layer; a gate electrode formed over the first insulating layer; a second insulating layer formed over the gate electrode; and a conductive layer formed over the second insulating layer connected to the semiconductor layer via an opening which is formed at least in the semiconductor layer and the second insulating layer and partially exposes the insulating surface. The conductive layer is electrically connected to the semiconductor layer at the side surface of the opening which is formed in the semiconductor layer.
US08624397B2 Electrode layer structure for a thin-film transistor and process for manufacture thereof
This wiring layer structure includes: an underlying substrate of a semiconductor substrate or a glass substrate; an oxygen-containing Cu layer or an oxygen-containing Cu alloy layer which is formed on the underlying substrate; an oxide layer containing at least one of Al, Zr, and Ti which is formed on the oxygen-containing Cu layer or the oxygen-containing Cu alloy layer; and a Cu alloy layer containing at least one of Al, Zr, and Ti which is formed on the oxide layer.
US08624396B2 Apparatus and method for low contact resistance carbon nanotube interconnect
An apparatus comprises a first dielectric layer formed over a substrate, a first metal line embedded in the first dielectric layer, a second dielectric layer formed over the first dielectric layer, a second metal line embedded in the second dielectric layer, an interconnect structure formed between the first metal line and the second metal line, a first carbon layer formed between the first metal line and the interconnect structure and a second carbon layer formed between the second metal line and the interconnect structure.
US08624386B1 Bottom port multi-part surface mount silicon condenser microphone package
The present invention relates to a surface mount package for a silicon condenser microphone and methods for manufacturing the surface mount package. The surface mount package uses a limited number of components which simplifies manufacturing and lowers costs, and features a substrate that performs functions for which multiple components were traditionally required, including providing an interior surface on which the silicon condenser die is mechanically attached, providing an interior surface for making electrical connections between the silicon condenser die and the package, and providing an exterior surface for surface mounting the package to a device's printed circuit board and for making electrical connections between package and the device's printed circuit board.
US08624384B1 Bottom port surface mount silicon condenser microphone package
The present invention relates to a surface mount package for a silicon condenser microphone and methods for manufacturing the surface mount package. The surface mount package uses a limited number of components which simplifies manufacturing and lowers costs, and features a substrate that performs functions for which multiple components were traditionally required, including providing an interior surface on which the silicon condenser die is mechanically attached, providing an interior surface for making electrical connections between the silicon condenser die and the package, and providing an exterior surface for surface mounting the package to a device's printed circuit board and for making electrical connections between package and the device's printed circuit board.
US08624379B2 Semiconductor device
A semiconductor device is improved in reliability. A switching power MOSFET and a sense MOSFET for sensing a current flowing in the power MOSFET, which is smaller in area than the power MOSFET, are formed in one semiconductor chip. The semiconductor chip is mounted over a chip mounting portion via a conductive bonding material, and sealed in a resin. Over the main surface of the semiconductor chip, a metal plate is bonded to a source pad electrode of the power MOSFET. In the plan view, the metal plate does not overlap a sense MOSFET region where the sense MOSFET is formed. The metal plate is bonded to the source pad electrode so as to surround three of the sides of the sense MOSFET region.
US08624378B2 Chip-housing module and a method for forming a chip-housing module
A chip-housing module including a carrier configured to carry one or more chips; the carrier including: a first plurality of openings, wherein each opening of the first plurality of openings is separated by a first pre-determined distance, and is configured to receive a chip connection for providing a voltage lying within a first range of voltage values to a chip; a second plurality of openings, wherein each opening of the second plurality of openings is separated by a second pre-determined distance, and configured to receive a chip connection for providing a voltage lying within a second range of voltage values to a chip; and wherein a pair of openings consisting of one opening of the first plurality of openings and one opening of the second plurality of openings is separated by a distance different from at least one of the first pre-determined distance and the second pre-determined distance, is provided.
US08624374B2 Semiconductor device packages with fan-out and with connecting elements for stacking and manufacturing methods thereof
An embodiment of a semiconductor device package includes: (1) an interconnection unit including a patterned conductive layer; (2) an electrical interconnect extending substantially vertically from the conductive layer; (3) a semiconductor device adjacent to the interconnection unit and electrically connected to the conductive layer; (4) a package body: (a) substantially covering an upper surface of the interconnection unit and the device; and (b) defining an opening adjacent to an upper surface of the package body and exposing an upper surface of the interconnect; and (5) a connecting element electrically connected to the device, substantially filling the opening, and being exposed at an external periphery of the device package. The upper surface of the interconnect defines a first plane above a second plane defined by at least a portion of the upper surface of the interconnection unit, and below a third plane defined by the upper surface of the package body.
US08624370B2 Integrated circuit packaging system with an interposer and method of manufacture thereof
A method of manufacture of an integrated circuit packaging system includes: mounting a device over an integrated circuit having a through via; attaching an interposer, having an opening, and the integrated circuit with the device within the opening; and forming an encapsulation at least partially covering the integrated circuit and the interposer facing the integrated circuit.
US08624364B2 Integrated circuit packaging system with encapsulation connector and method of manufacture thereof
An integrated circuit packaging system includes: a base integrated circuit package having a base integrated circuit on a base substrate thereof; a base barrier on the base substrate adjacent a base perimeter of the base substrate; a stack substrate over the base substrate, the stack substrate having a stack substrate aperture with the stack substrate having an inter-substrate connector thereon; a connector underfill through the stack substrate aperture encapsulating the inter-substrate connector, overflow of the connector underfill prevented by the base barrier; and a cavity formed of the stack substrate, the base integrated circuit package, and the connector underfill, the cavity horizontally offset from the base barrier.
US08624362B2 IC wafer having electromagnetic shielding effects and method for making the same
An IC wafer and the method of making the IC wafer, the IC wafer includes an integrated circuit layer having a plurality of solder pads and an insulated layer arranged thereon, a plurality of through holes cut through the insulated layer corresponding to the solder pads respectively for the implantation of a package layer, and an electromagnetic shielding layer formed on the top surface of the insulated layer and electrically isolated from the solder pads of the integrated circuit layer for electromagnetic sheilding. Thus, the integrated circuit does not require any further shielding mask, simplifying the fabrication. Further, the design of the through holes facilitates further packaging process.
US08624356B2 Group III nitride semiconductor substrate production method, and group III nitride semiconductor substrate
A group III nitride semiconductor substrate production method includes preparing a bulk crystal formed of a group III nitride semiconductor single crystal. The group III nitride semiconductor single crystal has one crystalline plane and an other crystalline plane. Hardness of the other crystalline plane is smaller than hardness of the one crystalline plane. The prepared bulk crystal is cut from the other crystalline plane to the one crystalline plane of the bulk crystal.
US08624355B2 Semiconductor device and method for manufacturing the same
A semiconductor device includes an n-type first guard ring layer provided between an emitter layer and a collector layer on a surface side of a base layer, and having a higher n-type impurity concentration than the base layer, and an n-type second guard ring layer provided between the first guard ring layer and a buried layer, connected to the first guard ring layer and the buried layer, and having a higher n-type impurity concentration than the base layer. The first guard ring layer has an n-type impurity concentration profile decreasing toward the second guard ring layer side, and the second guard ring layer has an impurity concentration profile decreasing toward the first guard ring layer side.
US08624354B2 Semiconductor devices including 3-D structures with support pad structures and related methods and systems
A semiconductor device may include a semiconductor substrate and a plurality of three-dimensional capacitors on the semiconductor substrate. Each of the plurality of three-dimensional capacitors may include a first three-dimensional electrode, a capacitor dielectric layer, and a second three-dimensional electrode with the first three-dimensional electrode between the capacitor dielectric layer and the semiconductor substrate and with the capacitor dielectric layer between the first and second three-dimensional electrodes. A plurality of capacitor support pads may be provided with each capacitor support pad being arranged between adjacent first three-dimensional electrodes of adjacent three-dimensional capacitors with portions of the capacitor dielectric layers between the capacitor support pads and the semiconductor substrate. Related methods and apparatuses are also discussed.
US08624353B2 Semiconductor device and method of forming integrated passive device over semiconductor die with conductive bridge and fan-out redistribution layer
A semiconductor device has a first semiconductor die. A first inductor is formed over the first semiconductor die. A second inductor is formed over the first inductor and aligned with the first inductor. An insulating layer is formed over the first semiconductor die and the first and second inductors. A conductive bridge is formed over the insulating layer and electrically connected between the second inductor and the first semiconductor die. In one embodiment, the semiconductor device has a second semiconductor die and a conductive layer is formed between the first and second semiconductor die. In another embodiment, a capacitor is formed over the first semiconductor die. In another embodiment, the insulating layer has a first thickness over a footprint of the first semiconductor die and a second thickness less than the first thickness outside the footprint of the first semiconductor die.
US08624352B2 Mitigation of detrimental breakdown of a high dielectric constant metal-insulator-metal capacitor in a capacitor bank
An IC capacitor bank includes a plurality of high-k metal-insulator-metal (MIM) capacitors connected to a pair of conductive traces. A fusible trace located on an end of one of the pair of conductive traces forms a capacitor column connected between supply lines, such that failure of a dielectric in the MIM capacitors causes the fusible trace to at least partially open thereby limiting a fault current in the capacitor column. Additionally, a method of manufacturing an IC capacitor bank includes providing a plurality of high-k metal-insulator-metal (MIM) capacitors connected to a pair of conductive traces and locating a fusible trace on an end of the pair of conductive traces to form a capacitor column that is connected between supply lines, such that failure of a dielectric in the MIM capacitors causes the fusible trace to at least partially open thereby limiting a fault current in the capacitor column.
US08624347B2 Schottky barrier diode
A Schottky barrier diode includes a semiconductor layer having a plurality of trenches formed by digging in from a top surface and having mesa portions formed between adjacent trenches, and a Schottky metal formed to contact the top surface of the semiconductor layer including inner surfaces of the trenches.
US08624346B2 Exclusion zone for stress-sensitive circuit design
A semiconductor structure less affected by stress and a method for forming the same are provided. The semiconductor structure includes a semiconductor chip. Stress-sensitive circuits are substantially excluded out of an exclusion zone to reduce the effects of the stress to the stress-sensitive circuits. The stress-sensitive circuits include analog circuits. The exclusion zone preferably includes corner regions of the semiconductor chip, wherein the corner regions preferably have a diagonal length of less than about one percent of the diagonal length of the semiconductor chip. The stress-sensitive analog circuits preferably include devices having channel lengths less than about five times the minimum channel length.
US08624344B2 Solid state imaging device and method for manufacturing the same
A solid state imaging device according to an embodiment includes a light sensing part which conducts photoelectric conversion on incident light. The solid state imaging device includes a ferroelectric layer including an organic compound on a surface of the light sensing part on which light is incident. The solid state imaging device includes a transparent electrode formed on the ferroelectric layer.
US08624343B2 Epoxy resin composition for optical semiconductor device, lead frame for optical semiconductor device and substrate for optical semiconductor device obtained using the same, and optical semiconductor device
The present invention relates to an epoxy resin composition for an optical semiconductor device, including the following ingredients (A) to (E): (A) an epoxy resin; (B) a curing agent; (C) a white pigment; (D) an inorganic filler; and (E) a silane coupling agent, in which a total content of the ingredient (C) and the ingredient (D) is from 69 to 94% by weight of the whole of the epoxy resin composition, and the ingredient (E) is contained in an amount satisfying the specific conditions.
US08624341B2 Light sensor having IR cut and color pass interference filter integrated on-chip
A light sensor is described that includes an IR cut interference filter and at least one color interference filter integrated on-chip. The light sensor comprises a semiconductor device (e.g., a die) that includes a substrate. Photodetectors are formed in the substrate proximate to the surface of the substrate. An IR cut interference filter is disposed over the photodetectors. The IR cut interference filter is configured to filter infrared light from light received by the light sensor to at least substantially block infrared light from reaching the photodetectors. At least one color interference filter is disposed proximate to the IR cut interference filter. The color interference filter is configured to filter visible light received by the light sensor to pass light in a limited spectrum of wavelengths (e.g., light having wavelengths between a first wavelength and a second wavelength) to at least one of the photodetectors.
US08624340B2 Plasma processing apparatus and method thereof
In a plasma torch unit, copper rods forming a coil as a whole are disposed inside copper rod inserting holes formed in a quartz block so that the quartz block is cooled by water flowing inside the copper rod inserting holes and cooling water pipes. A plasma ejection port is formed on the lowermost portion of the torch unit. While a gas is being supplied into a space inside an elongated chamber, high-frequency power is supplied to the copper rods to generate plasma in the space inside the elongated chamber so that the plasma is applied to a substrate.
US08624335B2 Electronic module metalization system, apparatus, and methods of forming same
Embodiments of electronic module metallization systems and apparatus and methods for forming same are described generally herein. Other embodiments may be described and claimed.
US08624332B2 Vertical conduction power electronic device and corresponding realization method
A vertical conduction electronic power device includes respective gate, source and drain areas in an epitaxial layer arranged on a semiconductor substrate. The respective gate, source and drain metallizations may be formed by a first metallization level. Corresponding gate, source and drain terminals or pads may be formed by a second metallization level. The power device is configured as a set of modular areas extending parallel to each other, each having a rectangular elongate source area perimetrically surrounded by a narrow gate area. The modular areas are separated from each other by regions with the drain area extending parallel and connected at the opposite ends thereof to a second closed region with the drain area forming a device outer peripheral edge.
US08624329B2 Spacer-less low-K dielectric processes
A first example embodiment provides a method of removing first spacers from gates and incorporating a low-k material into the ILD layer to increase device performance. A second example embodiment comprises replacing the first spacers after silicidation with low-k spacers. This serves to reduce the parasitic capacitances. Also, by implementing the low-k spacers only after silicidation, the embodiments' low-k spacers are not compromised by multiple high dose ion implantations and resist strip steps. The example embodiments can improve device performance, such as the performance of a rim oscillator.
US08624326B2 FinFET device and method of manufacturing same
A semiconductor device and method for fabricating a semiconductor device is disclosed. An exemplary semiconductor device includes a substrate including a first dielectric layer disposed over the substrate. The semiconductor device further includes a buffer layer disposed over the substrate and between first and second walls of a trench of the dielectric layer. The semiconductor device further includes an insulator layer disposed over the buffer layer and between the first and second wall of the trench of the dielectric layer. The semiconductor device also includes a second dielectric layer disposed over the first dielectric layer and the insulator layer. Further, the semiconductor device includes a fin structure disposed over the insulator layer and between first and second walls of a trench of the second dielectric layer.
US08624321B2 Thin film transistor including a microcrystalline semiconductor layer and amorphous semiconductor layer and display device including the same
A thin film transistor is provided, which includes a gate insulating layer covering a gate electrode, a microcrystalline semiconductor layer provided over the gate insulating layer, an amorphous semiconductor layer overlapping the microcrystalline semiconductor layer and the gate insulating layer, and a pair of impurity semiconductor layers which are provided over the amorphous semiconductor layer and to which an impurity element imparting one conductivity type is added to form a source region and a drain region. The gate insulating layer has a step adjacent to a portion in contact with an end portion of the microcrystalline semiconductor layer. A second thickness of the gate insulating layer in a portion outside the microcrystalline semiconductor layer is smaller than a first thickness thereof in a portion in contact with the microcrystalline semiconductor layer.
US08624318B2 Semiconductor switching circuit employing quantum dot structures
A semiconductor circuit includes a plurality of semiconductor devices, each including a semiconductor islands having at least one electrical dopant atom and located on an insulator layer. Each semiconductor island is encapsulated by dielectric materials including at least one dielectric material portion. Conductive material portions, at least one of which abut two dielectric material portions that abut two distinct semiconductor islands, are located directly on the at least one dielectric material layer. At least one gate conductor is provided which overlies at least two semiconductor islands. Conduction across a dielectric material portion between a semiconductor island and a conductive material portion is effected by quantum tunneling. The conductive material portions and the at least one gate conductor are employed to form a semiconductor circuit having a low leakage current. A design structure for the semiconductor circuit is also provided.
US08624316B2 Nonvolatile semiconductor memory device and method of fabricating the same
According to one embodiment, a semiconductor device, including a substrate, a stacked layer body provided above the substrate, the stacked layer body alternately stacking an insulator and an electrode film one on another, silicon pillars contained with fluorine, the silicon pillar penetrating through and provided in the stacked layer body, a tunnel insulator provided on a surface of the silicon pillar facing to the stacked layer body, a charge storage layer provided on a surface of the tunnel insulator facing to the stacked layer body, a block insulator provided on a surface of the charge storage layer facing to the stacked layer body, the block insulator being in contact with the electrode film, and an embedded portion provided in the silicon pillars.
US08624315B2 Field effect transistor having an asymmetric gate electrode
The gate electrode of a metal oxide semiconductor field effect transistor (MOSFET) comprises a source side gate electrode and a drain side gate electrode that abut each other near the middle of the channel. In one embodiment, the source side gate electrode comprises a silicon oxide based gate dielectric and the drain side gate electrode comprises a high-k gate dielectric. The source side gate electrode provides high carrier mobility, while the drain side gate electrode provides good short channel effect and reduced gate leakage. In another embodiment, the source gate electrode and drain gate electrode comprises different high-k gate dielectric stacks and different gate conductor materials, wherein the source side gate electrode has a first work function a quarter band gap away from a band gap edge and the drain side gate electrode has a second work function near the band gap edge.
US08624314B2 Semiconductor device and method for manufacturing semiconductor device
According to one embodiment, a semiconductor device comprises an active area extending in a first direction, a contact plug located on a first portion of the active area, and a transistor located on a second portion adjacent to the first portion of the active area in the first direction. A width of a top surface area of the first portion in a second direction perpendicular to the first direction is smaller than that of a top surface area of the second portion in the second direction.
US08624310B2 Image sensors with lightly doped drain (LDD) to reduce dark current
A method of fabricating an image sensor may include providing a substrate including light-receiving and non-light-receiving regions; forming a plurality of gates on the non-light-receiving region; ion-implanting a first-conductivity-type dopant into the light-receiving region to form a first dopant region of a pinned photodiode; primarily ion-implanting a second-conductivity-type dopant, different from the first-conductivity-type dopant, into an entire surface of the substrate, using the gates as a first mask; forming spacers on both side walls of the gates; and secondarily ion-implanting the second-conductivity-type dopant into the entire surface of the substrate, using the plurality of gates including the spacers as a second mask, to complete a second dopant region of the pinned photodiode. An image sensor may include the substrate; a transfer gate formed on the non-light-receiving region; a first dopant region in the light-receiving region; and a second dopant region formed on a surface of the light-receiving region.
US08624308B2 Image sensor five transistor pixel element with four control signals
The invention provides a solid-state image pickup device and method for realizing a higher sensitivity and a higher S/N ratio especially in the low-luminance region while maintaining a wide dynamic range. Plural pixels are integrated in an array configuration on a semiconductor substrate with each pixel having photodiode PD, which receives light and generates and stores photoelectric charge, transfer transistor Tr1, which transfers such photoelectric charge from such photodiode, floating diffusion FD, which transfers such photoelectric charge through such transfer transistor, additive capacitive element Cs, which is set connected via the floating diffusion to the photodiode, capacitive coupling transistor Tr2, which combines or divides the capacitance of such floating diffusion and the capacitance of such additive capacitive element, and reset transistor Tr3, which is connected to such additive capacitive element or floating diffusion; and the capacitance of the floating diffusion is smaller than that of the photodiode.
US08624307B2 Image pickup device
An image pickup device includes pixels, each including a photoelectric conversion unit and a transfer unit. The photoelectric conversion unit includes a first-conductivity-type first semiconductor region and a second-conductivity-type second semiconductor region. A second-conductivity-type third semiconductor region is formed on at least a part of a gap between a photoelectric conversion unit of a first pixel and a photoelectric conversion unit of a second pixel adjacent to the first pixel. A first-conductivity-type fourth semiconductor region having an impurity concentration higher than an impurity concentration of the first semiconductor region is formed between the photoelectric conversion unit and the third semiconductor region. A first-conductivity-type fifth semiconductor region having an impurity concentration higher than the first semiconductor region is arranged between the photoelectric conversion unit and the third semiconductor region and is arranged deeper than fourth semiconductor region.
US08624306B2 Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
A solid-state imaging device includes a substrate, a through-hole, a vertical gate electrode, and a charge fixing film. A photoelectric conversion unit generating signal charges in accordance with the amount of received light is formed in the substrate. The through-hole is formed from a front surface side through a rear surface side of the substrate. The vertical gate electrode is formed through a gate insulating film in the through-hole and reads out the signal charges generated by the photoelectric conversion unit to a reading-out portion. The charge fixing film has negative fixed charges formed to cover a portion of the inner circumferential surface of the through-hole at the rear surface side of the substrate while covering the rear surface side of the substrate.
US08624304B2 Printed material constrained by well structures and devices including same
A first patterned contact layer, for example a gate electrode, is formed over an insulative substrate. Insulating and functional layers are formed at least over the first patterned contact layer. A second patterned contact layer, for example source/drain electrodes, is formed over the functional layer. Insulative material is then selectively deposited over at least a portion of the second patterned contact layer to form first and second wall structures such that at least a portion of the second patterned contact layer is exposed, the first and second wall structures defining a well therebetween. Electrically conductive or semiconductive material is deposited within the well, for example by jet-printing, such that the first and second wall structures confine the conductive or semiconductive material and prevent spreading and electrical shorting to adjacent devices. The conductive or semiconductive material is in electrical contact with the exposed portion of the second patterned contact layer to form, e.g., an operative transistor.
US08624301B2 Back-illuminated solid-state image pickup device
In a back-illuminated solid-state image pickup device including a semiconductor substrate 4 having a light incident surface at a back surface side and a plurality of charge transfer electrodes 2 disposed at a light detection surface at an opposite side of the semiconductor substrate 4 with respect to the light incident surface, a plurality of openings OP for transmitting light are formed between charge transfer electrodes 2 that are adjacent to each other. Also, a plurality of openings OP for transmitting light may be formed inside each charge transfer electrode 2.
US08624299B2 Stacked bit line dual word line nonvolatile memory
An arrangement of nonvolatile memory devices, having at least one memory device level stacked level by level above a semiconductor substrate, each memory level comprising an oxide layer substantially disposed above a semiconductor substrate, a plurality of word lines substantially disposed above the oxide layer; a plurality of bit lines substantially disposed above the oxide layer; a plurality of via plugs substantially in electrical contact with the word lines and, an anti-fuse dielectric material substantially disposed on side walls beside the bit lines and substantially in contact with the plurality of bit lines side wall anti-fuse dielectrics.
US08624298B2 Display device including thin film transistor
A flat panel display includes a gate line, a data line, and a power supply line and a plurality of pixels connected to the lines, wherein each of the pixels includes a first thin film transistor that includes an active layer having a channel region, a source region, and a drain region and a bias supply layer in contact with the channel region so as to apply a voltage to the channel region of the first thin film transistor, wherein the bias supply layer of the first thin film transistor is connected to the power supply line.
US08624294B2 Semiconductor with power generating photovoltaic layer
An apparatus, system, and method are disclosed for providing optical power to a semiconductor chip. An active semiconductor layer of the semiconductor chip is disposed toward a front side of the semiconductor chip. The active semiconductor layer comprises one or more integrated circuit devices. A photovoltaic semiconductor layer of the semiconductor chip is disposed between the active semiconductor layer and a back side of the semiconductor chip. The back side of the semiconductor chip is opposite the front side of the semiconductor chip. The photovoltaic semiconductor layer converts electromagnetic radiation to electric power. One or more conductive pathways between the photovoltaic semiconductor layer and the active semiconductor layer provide the electric power from the photovoltaic semiconductor layer to the one or more integrated circuit devices of the active semiconductor layer.
US08624293B2 Carbon/tunneling-barrier/carbon diode
A carbon/tunneling-barrier/carbon diode and method for forming the same are disclosed. The carbon/tunneling-barrier/carbon may be used as a steering element in a memory array. Each memory cell in the memory array may include a reversible resistivity-switching element and a carbon/tunneling-barrier/carbon diode as the steering element. The tunneling-barrier may include a semiconductor or an insulator. Thus, the diode may be a carbon/semiconductor/carbon diode. The semiconductor in the diode may be intrinsic or doped. The semiconductor may be depleted when the diode is under equilibrium conditions. For example, the semiconductor may be lightly doped such that the depletion region extends from one end of the semiconductor region to the other end. The diode may be a carbon/insulator/carbon diode.
US08624290B2 Display device and method for manufacturing the same
A display device is provided which includes: lower electrodes each have a light-reflective first metal material layer and a second metal material layer provided thereon which has a superior alkaline-solution resistance to that of the first metal material layer; an insulating pattern which is formed from a photosensitive composition material, which has opening portions to expose the lower electrodes, and which covers peripheries of the lower electrodes; organic layers each of which at least include an organic light emitting layer and which are provided in the opening portions so as to cover the lower electrodes; and a light-transmissive upper electrode provided to sandwich the organic layers with the lower electrodes.
US08624284B2 Light-emitting device and lighting device
Provided is a light-emitting device having a structure in which a high refractive index component is provided between a solid light-emitting element and air, has an uneven structure on a surface in contact with air, and can be reused. The light-emitting device includes a substrate having a refractive index of 1.6 or higher and a light-transmitting property, a solid light-emitting element including a light-emitting region having a refractive index of 1.6 or higher on one surface of the substrate, and a component having a refractive index of 1.6 or higher and a light-transmitting property on the other surface of the substrate, wherein the component includes an uneven structure on a surface in contact with air and is connected to the substrate via a liquid having a refractive index of 1.6 or higher and a light-transmitting property.
US08624281B2 Optical designs for high-efficacy white-light emitting diodes
A method for increasing the luminous efficacy of a white light emitting diode (WLED), comprising introducing optically functional interfaces between an LED die and a phosphor, and between the phosphor and an outer medium, wherein at least one of the interfaces between the phosphor and the LED die provides a reflectance for light emitted by the phosphor away from the outer medium and a transmittance for light emitted by the LED die. Thus, a WLED may comprise a first material which surrounds an LED die, a phosphor layer, and at least one additional layer or material which is transparent for direct LED emission and reflective for the phosphor emission, placed between the phosphor layer and the first material which surrounds the LED die.
US08624280B2 Light emitting device package and method for fabricating the same
A light emitting device package comprises a substrate, an electrode on the substrate, a light emitting device on the substrate and electrically connected to the electrode layer, and a pattern enclosing the light emitting device.
US08624276B2 Semiconductor light emitting device, method of manufacturing the same, and semiconductor light emitting device package using the same
There is provided a semiconductor light emitting device, a method of manufacturing the same, and a semiconductor light emitting device package using the same. A semiconductor light emitting device having a first conductivity type semiconductor layer, an active layer, a second conductivity type semiconductor layer, a second electrode layer, and insulating layer, a first electrode layer, and a conductive substrate sequentially laminated, wherein the second electrode layer has an exposed area at the interface between the second electrode layer and the second conductivity type semiconductor layer, and the first electrode layer comprises at least one contact hole electrically connected to the first conductivity type semiconductor layer, electrically insulated from the second conductivity type semiconductor layer and the active layer, and extending from one surface of the first electrode layer to at least part of the first conductivity type semiconductor layer.
US08624275B2 Organic light-emitting panel for controlling an organic light emitting layer thickness and organic display device
A pixel in the panel includes sub-pixels 100a, 100b, and 100c. Non-light-emitting cells 100d and 100e are provided between the pixel and adjacent pixels on both sides thereof, respectively. The organic light-emitting layer of sub-pixel 100a and non-light-emitting cell 100d are separated by bank 105a. Similarly, the organic light-emitting layer of sub-pixel 100c and non-light-emitting cell 100e are separated by bank 105d; the organic light-emitting layers of sub-pixels 100a and 100b are separated by bank 105b; and the organic light-emitting layers of sub-pixels 100b and 100c are separated by bank 105c. Inclination angle θaa of sidewall 105aa of bank 105a adjacent to sib-pixel 100a and inclination angle θdc of sidewall 105dc of bank 105d adjacent to sib-pixel 100c are larger than other inclination angles θba, θbb, θcb, and θcc.
US08624265B2 Semiconductor element
According to one embodiment, the semiconductor element includes a semi-insulating substrate which has a first first-conductivity-type layer. The semiconductor element includes a first semiconductor layer. The first semiconductor layer contains non-doped AlXGa1-XN (0≦X<1). The semiconductor element includes a second semiconductor layer. The second semiconductor layer contains non-doped or second-conductivity-type AlYGa1-YN (0
US08624264B2 Semiconductor device with low resistance SiC-metal contact
A semiconductor device according to an embodiment includes a first electrode and a first silicon carbide (SiC) semiconductor part. The first electrode uses a conductive material and the first silicon carbide (SiC) semiconductor part is connected to the first electrode, in which at least one element of magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba) is contained in an interface portion with the first electrode in such a way that a surface density thereof peaks, and whose conduction type is a p-type.
US08624263B2 Diamond semiconductor device and method of manufacturing the same
The present invention is contemplated for providing a diamond semiconductor device where an impurity-doped diamond semiconductor is buried in a selected area, and a method of manufacturing the same. That is, a diamond semiconductor device having an impurity-doped diamond area selectively buried in a recessed portion formed in a diamond substrate; and a method of manufacturing a diamond semiconductor device, including the steps of selectively forming an recessed portion on the {100}-facet diamond semiconductor substrate, wherein the bottom face of the recessed portion is surrounded by the {100} facet and the side face of the recessed portion is surrounded by the {110} facet, and forming an impurity-doped diamond area by epitaxially growing diamond in the <111> direction while doping with impurities and burying the recessed portion.
US08624260B2 Enhancement-mode GaN MOSFET with low leakage current and improved reliability
An enhancement-mode GaN MOSFET with a low leakage current and an improved reliability is formed by utilizing a SiO2/Si3N4 gate insulation layer on an AlGaN (or InAlGaN) barrier layer. The Si3N4 portion of the SiO2/Si3N4 gate insulation layer significantly reduces the formation of interface states at the junction between the gate insulation layer and the barrier layer, while the SiO2 portion of the SiO2/Si3N4 gate insulation layer significantly reduces the leakage current.
US08624259B2 Organic light-emitting display device
An organic light-emitting display device includes a substrate; a thin-film transistor on the substrate; a first insulating layer covering the thin-film transistor; a first electrode on the first insulating layer, and electrically connected to the thin-film transistor; a second insulating layer on the first insulating layer so as to cover the first electrode, and having an opening for exposing a part of the first electrode; a porous member in the second insulating layer; a second electrode on the second insulating layer, and facing the first electrode so as to correspond to the opening; and an organic emission layer between the first electrode and the second electrode so as to correspond to the opening. The organic light-emitting display device may prevent degradation of characteristics of an organic light-emitting device due to discharge of gas from an organic material.
US08624255B2 Array substrate and method of fabricating the same
An array substrate includes an active layer including a channel region, a gate electrode positioned corresponding to the channel region, and a gate insulating film between the active layer and the gate electrode. The gate electrode includes a transparent conductive film and an opaque conductive film, and the transparent conductive film is between the channel region and the opaque conductive film.
US08624249B2 Organic light emitting display device and manufacturing method for the same
An organic light emitting display device includes a substrate, a thin film transistor formed on the substrate and including an active layer, a gate electrode including a gate lower electrode and a gate upper electrode, a source electrode, and a drain electrode, an organic light emitting device electrically connected to the thin film transistor, wherein a pixel electrode formed of the same material as at least a part of the gate electrode in the same layer, an intermediate layer including a light emitting layer, and an opposed electrode arranged to face the pixel electrode are sequentially deposited.
US08624246B2 Display device and method of manufacturing the same
A display device and a method of manufacturing the same. In one embodiment, a display device includes a substrate having a pixel region, a transistor region and a capacitor region, a transistor arranged within the transistor region of the substrate and a capacitor arranged within the capacitor region of the substrate, wherein the capacitor includes a lower electrode arranged on the substrate, a gate insulating layer arranged on the lower electrode and an upper electrode arranged on the gate insulating layer and overlapping the lower electrode, the upper electrode includes a first conductive layer and a second conductive layer arranged on the first conductive layer, wherein the first conductive layer is opaque.
US08624245B2 Semiconductor device and manufacturing method thereof
A semiconductor device includes an oxide semiconductor layer including a crystalline region over an insulating surface, a source electrode layer and a drain electrode layer in contact with the oxide semiconductor layer, a gate insulating layer covering the oxide semiconductor layer, the source electrode layer, and the drain electrode layer, and a gate electrode layer over the gate insulating layer in a region overlapping with the crystalline region. The crystalline region includes a crystal whose c-axis is aligned in a direction substantially perpendicular to a surface of the oxide semiconductor layer.
US08624244B2 Thin film transistor including a light-transmitting semiconductor film and active matrix substrate
A thin film transistor includes a gate electrode, a semiconductor layer, and a source electrode and a drain electrode placed on the semiconductor layer and electrically connected with the semiconductor layer. The semiconductor layer includes a light-transmitting semiconductor film and an ohmic conductive film placed on the light-transmitting semiconductor film and having a lower light transmittance than the light-transmitting semiconductor film. The ohmic conductive film is formed not to protrude from the light-transmitting semiconductor film. The ohmic conductive film is formed in separate parts with a channel part between the source electrode and the drain electrode interposed therebetween. The source electrode and the drain electrode are connected to the light-transmitting semiconductor film through the ohmic conductive film.
US08624242B2 Semiconductor integrated circuit
There is offered a semiconductor integrated circuit provided with a function to electrically identify a location where a defect such as chipping of an LSI die or separation of resin is caused. Corresponding to each of the four corners of a semiconductor substrate, each of L-shaped first through fourth peripheral wirings having a first end and a second end is disposed on a periphery of the semiconductor substrate. The first end of each of the first through fourth peripheral wirings is connected with a power supply wiring. Each of first through fourth detection circuits detects breaking of corresponding each of the first through fourth peripheral wirings in response to a voltage at the second end of corresponding each of the first through fourth peripheral wirings, and outputs corresponding each of first through fourth detection signals to corresponding each of output pads.
US08624239B2 Semiconductor device
In a transistor, a drain electrode to which a high electric field is applied is formed over a flat surface, and an end portion of a gate electrode on the drain electrode side in a channel width direction and an end portion of the gate electrode in a channel length direction are covered with an oxide semiconductor with a gate insulating layer between the gate electrode and the oxide semiconductor layer, so that withstand voltage of the transistor is improved. Further, a semiconductor device for high power application, in which the transistor is used, can be provided.
US08624237B2 Semiconductor device and method for manufacturing the same
An embodiment is to include an inverted staggered (bottom gate structure) thin film transistor in which an oxide semiconductor film containing In, Ga, and Zn is used as a semiconductor layer and a buffer layer is provided between the semiconductor layer and a source and drain electrode layers. The buffer layer having higher carrier concentration than the semiconductor layer is provided intentionally between the source and drain electrode layers and the semiconductor layer, whereby an ohmic contact is formed.
US08624233B2 Organic electroluminescence display device and electronic apparatus
An organic electroluminescence display device includes a pixel isolating film that is provided over a substrate and has a plurality of apertures, and a plurality of pixels provided corresponding to the plurality of apertures. Each of the plurality of pixels has a first electrode, a functional layer including at least an organic light emitting layer, and a second electrode sequentially from the side of the substrate, and part or whole of the first electrode is separate from an edge part of the aperture on the side of the substrate.
US08624230B2 Organic light emitting diode display
Disclosed is an organic light emitting diode (OLED) device, which includes: an organic light emitting diode including a first electrode, a second electrode, and an emission layer interposed between the first electrode and the second electrode; a base substrate supporting the organic light emitting diode; and a sealing member disposed on the base substrate while covering the organic light emitting diode. Herein, the sealing member includes a fluorinated epoxy sealing material including a fluorinated epoxy resin.
US08624229B2 Organic electronic device and dopant for doping an organic semiconducting matrix material
An organic electronic device includes a substrate, a first electrode arranged on the substrate, at least a first functional organic layer arranged on the first electrode and a second electrode arranged on the first functional organic layer. The first functional organic layer includes a matrix material and a p-dopant with regard to the matrix material, wherein the p-dopant includes a copper complex containing at least one ligand.
US08624226B2 Organic light emitting device and method of fabricating the same
An organic light emitting device (OLED) is formed by assembling a first substrate and a second substrate. The second substrate includes several sub-pixels. The first substrate includes several transistors electrically connected to each other and, for each subpixel, a first connecting electrode electrically connected to one of the transistors. Each subpixel includes a light-emitting region and a non light-emitting region. A second connecting electrode is formed in the non light-emitting region and electrically connected to the respective first connecting electrode.
US08624224B2 Nanotube array bipolar transistors
Carbon nanotube (CNT)-based devices and technology for their fabrication are disclosed. The planar, multiple layer deposition technique and simple methods of change of the nanotube conductivity type during the device processing are utilized to provide a simple and cost effective technology for large scale circuit integration. Such devices as p-n diode, CMOS-like circuit, bipolar transistor, light emitting diode and laser are disclosed, all of them are expected to have superior performance then their semiconductor-based counterparts due to excellent CNT electrical and optical properties. When fabricated on semiconductor wafers, the CNT-based devices can be combined with the conventional semiconductor circuit elements, thus producing hybrid devices and circuits.
US08624223B2 Side-gate defined tunable nanoconstriction in double-gated graphene multilayers
A graphene-based electrically tunable nanoconstriction device and a non-transitory tangible computer readable medium encoded with a program for fabricating the device that includes a back-gate dielectric layer over a conductive substrate are described. The back-gate dielectric layer may be hexagonal boron nitride, mica, SiOx, SiNx, BNx, HfOx or AlOx. A graphene layer is an AB-stacked bi-layer graphene layer, an ABC-stacked tri-layer graphene layer or a stacked few-layer graphene layer. Contacts formed over a portion of the graphene layer include at least one source contact, at least one drain contact and at least one set of side-gate contacts. A graphene channel with graphene side gates is formed in the graphene layer between at least one source contact, at least one the drain contact and at least one set of side-gate contacts. A top-gate dielectric layer is formed over the graphene layer. A top-gate electrode is formed on the top-gate dielectric layer.
US08624222B2 Homogeneous multiple band gap devices
An electrical device comprising (A) a substrate having a surface and (B) a nanohole superlattice superimposed on a portion of the surface is provided. The nanohole superlattice comprises a plurality of sheets having an array of holes defined therein. The array of holes is characterized by a band gap or band gap range. The plurality of sheets forms a first edge and a second edge. A first lead comprising a first electrically conductive material forms a first junction with the first edge. A second lead comprising a second electrically conductive material forms a second junction with the second edge. The first junction is a Schottky barrier with respect to a carrier. In some instances a metal protective coating covers all or a portion of a surface of the first lead. In some instances, the first lead comprises titanium, the second lead comprises palladium, and the metal protective coating comprises gold.
US08624221B2 Light emitting device having a well structure different of a multi-quantum well structures
A light emitting device is provided. The light emitting device comprises an active layer comprising a plurality of well layers and a plurality of barrier layers. The bather layers comprise a first barrier layer having a first band gap which is the nearest to the second conductive type semiconductor layer, a second barrier layer adjacent to the first barrier, and a third barrier layer between the second bather layer and the first conductive type semiconductor layer. The well layers comprise a first well layer having a third band gap different from the first band gap between the first and second bather layers, and a second well layer between the second barrier layer and the third barrier layer, the second well layer having a second band gap. The first well layer has a thickness thinner than that of the second well layer.
US08624220B2 Nitride semiconductor
To provide a high-quality nitride semiconductor ensuring high emission efficiency of a light-emitting element fabricated. In the present invention, when obtaining a nitride semiconductor by sequentially stacking a one conductivity type nitride semiconductor part, a quantum well active layer structure part, and a another conductivity type nitride semiconductor part opposite the one conductivity type, the crystal is grown on a base having a nonpolar principal nitride surface, the one conductivity type nitride semiconductor part is formed by sequentially stacking a first nitride semiconductor layer and a second nitride semiconductor layer, and the second nitride semiconductor layer has a thickness of 400 nm to 20 μm and has a nonpolar outermost surface. By virtue of selecting the above-described base for crystal growth, an electron and a hole, which are contributing to light emission, can be prevented from spatial separation based on the QCSE effect and efficient radiation is realized. Also, by setting the thickness of the second nitride semiconductor layer to an appropriate range, the nitride semiconductor surface can avoid having extremely severe unevenness.
US08624218B2 Non-volatile memory structure and method for fabricating the same
The disclosure provides a non-volatile memory structure and a method for fabricating the same. The non-volatile memory structure includes a first contact connected to a first transistor. A second contact is connected to a second transistor. A resistance-changing memory material pattern covers and contacts the second contact but not the first contact. A top electrode contacts both the resistance-changing memory material pattern and the first contact. An area of the resistance-changing memory material pattern is substantially larger than an area of its interface with the second contact.
US08624215B2 Phase change memory devices and methods comprising gallium, lanthanide and chalcogenide compounds
A new class of phase change materials has been discovered based on compounds of: Ga; lanthanide; and chalcogenide. This includes compounds of Ga, La, and S (GLS) as well as related compounds in which there is substitution of S with O, Se and/or Te. Moreover, La can be substituted with other lanthanide series elements. It has been demonstrated that this class of materials exhibit low energy switching. For example, the GLS material can provide an optical recording medium with erasability 3-5 dB greater than the erasability of GeSbTe (GST) material which is the standard material for phase change memories.
US08624213B2 Optocoupler circuit for gate driver
An optocoupler circuit includes a switch connected in parallel with a photo LED, the photo LED having an anode and a cathode. The anode is connected to a power supply via a decoupling capacitor. The optocoupler circuit is arranged so that the switch turns on the photo LED when in the open position. When closed, the switch directs current flow through a series resistor to ground and shunts current flow away from the photo LED to turn off the photo LED. A second capacitor is connected to the cathode of the photo LED. The second capacitor is wired in series with a second switch and a current limiting resistor connected to ground. The first switch and second switch operate in complementary states to prevent the cathode connected capacitor from discharging. The disclosed optocoupler circuit provides the ability to function at increased levels of common mode voltage transients.
US08624206B2 Pattern modification schemes for improved FIB patterning
An improved method of directing a charged particle beam that compensates for the time required for the charged particles to traverse the system by altering one or more of the deflector signals. According to one embodiment of the invention, a digital filter is applied to the scan pattern prior to digital-to-analog (D/A) conversion in order to reduce or eliminate over-shoot effects that can result from TOF errors. In other embodiments, analog filters or the use of signal amplifiers with a lower bandwidth can also be used to compensate for TOF errors. By altering the scan pattern, over-shoot effects can be significantly reduced or eliminated.
US08624196B2 X-ray detector and driving method thereof
An X-ray detector and a method of driving the X-ray detector. Each of a plurality of light sensing pixels of the X-ray detector includes: a photodiode which generates an electric detection signal corresponding to an emitted X-ray in an X-ray detection section; a first switching device which transmits the electric detection signal to the outside; a second switching device which applies a voltage for making both ends of the photodiode equipotential to a node to which the photodiode and the first switching device are connected, in an idle section; and a third switching device which applies a voltage for maintaining a constant potential difference at the both ends of the photodiode to the node in the idle section.
US08624194B2 Radiation detecting device and method of manufacturing the same
A radiation detecting device is manufactured by a method that includes forming a scintillator layer on a substrate carrying a plurality of photodetectors and a plurality of convex patterns each including a plurality of convexities, the plurality of convex patterns coinciding with the respective photodetectors, the scintillator layer being formed in such a manner as to extend over the plurality of convex patterns; and forming a crack in a portion of the scintillator layer that coincides, in a stacking direction, with a gap between adjacent ones of the convex patterns by cooling the substrate carrying the scintillator layer. The plurality of convex patterns satisfy specific conditions.
US08624191B2 Measuring device and method for analyzing the lubricant of a bearing
A measuring device for analyzing a lubricant of a bearing. The measuring device has an electromagnetic radiation emitter, a receiving element and a test area that is arranged between the emitter and the receiving element. The measuring device allows for current information on the condition of the lubricant in the bearing to be obtained. At least some sections of the test area are inside the bearing and the receiving element supplies a spectrum of electromagnetic radiation captured by the test area. Also, a bearing and a seal for the bearing and a method for detecting and monitoring the condition of the lubricant of a bearing.
US08624190B2 Method and device for determining the sex of fertilized, non-incubated bird eggs
The invention relates to a method and a device (1, 100) for determining the sex of fertilized, nonincubated bird eggs (13, 130), where an egg (13, 130) has a solid egg shell (14), an egg yolk (2) which is surrounded by the egg shell and further egg integuments and a blastodisc (3) associated with the egg yolk (2), and where a probe (4, 40) for measuring a spectrum is introduced through a hole (17) of the egg shell (14) towards the blastodisc (3) with blastodisc cells (23), with the following steps: —positioning of the probe (4, 40) in the region of the blastodisc (3), —spectroscopic in-ovo characterization of the blastodisc cells (23), and —identification of the sex by an automatic classification of spectra.
US08624178B2 Method of correcting sensitivity and matrix image sensor for implementing this method
The invention relates to matrix image sensors, and more particularly to a method for correcting the spatial noise caused by the dispersion of the physical properties of the various pixels of the matrix. According to the invention, a signal Xi(L) is established pixel by pixel that corresponds to the illumination of a pixel Pi by a luminance L; a fixed reference K0 is defined for this signal, the value K0 being chosen such that, for a given luminance L0, the pixels all supply an identical signal Xi(L0) that is equal to K0; and a corrected signal X*i(L) is established by applying to the duly referenced signal Xi(L)−K0 a multiplying correcting coefficient specific to the pixel concerned, the correcting coefficient being determined from the signal Xi(Lr) supplied by the pixel Pi for a determined reference luminance Lr which is the same for all the pixels. The correcting coefficient is preferably stored in an initialization register REG1 specific to the pixel, which contains a value dTi for modulating the integration time of a counting frequency representing the luminance.
US08624176B2 Detector assembly comprising a cap assembly including a radially expandable member
A detector assembly includes a cap assembly configured to close an end of a detector housing that is configured to contain a sensor therein, the cap assembly has a radially expandable member configured to expand radially within the detector housing and lock the position of the cap assembly relative to the detector housing.
US08624173B2 Sensing pixel structure for generating sensed image with uniform resolution and light sensor
A sensing pixel structure for generating a sensed image with uniform resolution is applied in a light sensor. The sensing pixel structure includes a plurality of first sensing pixels and a plurality of second sensing pixels. The location of the plurality of first sensing pixels corresponds to a center region of a lens. Each of the plurality of first sensing pixels has a first pixel area. The location of the plurality of second sensing pixels corresponds to the peripheral region of the lens. Each of the plurality of second sensing pixels has a second pixel area. The first pixel area is larger than the second pixel area, so that number of the sensing pixels corresponding to the peripheral region of the lens is larger than that corresponding to the center region of the lens. Therefore, the light sensor generates the sensed image with uniform resolution.
US08624172B2 Shift lock assembly
A shift lock assembly includes a drive member carried by a drive shaft and configured to rotatably couple to a drive motor and a shift mechanism disposed between the drive member and a ground plate, the shift mechanism configured to move between a first position and a second position relative to the drive member and the ground plate. When disposed in the first position, the shift mechanism is configured to couple the drive shaft to the ground plate and decouple the drive shaft from the drive member to allow rotation of the drive member relative to the drive shaft. When disposed in the second position, the shift mechanism is configured to couple the drive shaft to the drive member and decouple the drive shaft from the ground plate to allow rotation of the drive shaft in response to rotation of the drive member.
US08624171B2 Tail thruster control for projectiles
A system and method for guiding a projectile is presented. A nozzle system includes a boom assembly body that can be attached to a rear end of a projectile. A gas tank in the boom assembly contains pressurized gas. Fins are attached to the boom assembly body to guide the projectile. A valve lets a pulse of gas out of the gas tank. A nozzle expels the pulse of gas to control an angle of attack and lift of the projectile to guide the projectile to a target.
US08624169B1 Electric grilling appliance
A heating appliance comprises a chamber portion defining a heating chamber, a lid portion, a heating apparatus to heat air in the heating chamber, a food temperature sensor to sense an internal temperature of an item located in the heating chamber, a user interface configured to receive designation of a desired time of completion of heating of the item from the user, and a control circuit configured to control the supply of power to the heating apparatus. The control circuit is in communication with the temperature sensor and the user interface. The control circuit may control the heating apparatus so that the internal temperature of the item reaches a predetermined temperature at the desired time of completion designated by the user. The control circuit may control the heating apparatus so that the internal temperature of the item is maintained at a predetermined temperature for a predetermined period of time before an end of the desired time of completion.
US08624162B2 Device for connecting welding wire for CO2 gas welding
A device for connecting welding wires for CO2 gas welding includes a base frame, first and second electrode plates that are disposed apart from each other on the base frame and including disposing grooves to which an old wire and a new wire are respectively disposed, and clampers that are disposed to each electrode plate and that clamp the used wire and the new wire disposed to the disposing grooves, respectively.
US08624160B2 Systems for rating a stick electrode
A system and method of rating the arc maintainability of an electric arc welding stick electrode by creating an arc between the electrode and a workpiece; moving the electrode along the workpiece while maintaining the arc; decreasing either the current or the voltage until a point is reached where the arc is extinguished; determining the open circuit voltage at the point; and, rating the electrode based upon at least the open circuit voltage point.
US08624157B2 Ultrashort laser pulse wafer scribing
Systems and methods are provided for scribing wafers with short laser pulses so as to reduce the ablation threshold of target material. In a stack of material layers, a minimum laser ablation threshold based on laser pulse width is determined for each of the layers. The highest of the minimum laser ablation thresholds is selected and a beam of one or more laser pulses is generated having a fluence in a range between the selected laser ablation threshold and approximately ten times the selected laser ablation threshold. In one embodiment, a laser pulse width in a range of approximately 0.1 picosecond to approximately 1000 picoseconds is used. In addition, or in other embodiments, a high pulse repetition frequency is selected to increase the scribing speed. In one embodiment, the pulse repetition frequency is in a range between approximately 100 kHz and approximately 100 MHz.
US08624153B2 Laser processing method and device
A laser processing method which can efficiently perform laser processing while minimizing the deviation of the converging point of a laser beam in end parts of an object to be processed is provided.This laser processing method comprises a preparatory step of holding a lens at an initial position set such that a converging point is located at a predetermined position within the object; a first processing step (S11 and S12) of emitting a first laser beam for processing while holding the lens at the initial position, and moving the lens and the object relative to each other along a main surface so as to form a modified region in one end part of a line to cut; and a second processing step (S13 and S14) of releasing the lens from being held at the initial position after forming the modified region in the one end part of the line to cut, and then moving the lens and the object relative to each other along the main surface while adjusting the gap between the lens and the main surface after the release, so as to form the modified region.
US08624150B2 Adapter for a plasma arc torch
An apparatus and method for extending a plasma arc torch is disclosed. The apparatus includes a plasma torch adapter for relocating a mounting location of plasma torch consumables with respect to a plasma arc torch. The adapter is configured to be mounted between a plasma arc torch and the plasma torch consumables. The adapter is connectable to a consumable interface of the torch and includes a generally longitudinal body having a first end and a second end. The adapter includes a first connector at the first end of the body that is adapted to mate with the consumable interface. The adapter further includes a second connector at the second end of the body for mating with a set of plasma torch consumables, such that a second mounting location for consumables is established in a spaced relationship relative to the first connector, the mounting location adjacent the second connector.
US08624149B2 Plasma torch with reversible baffle
A plasma arc torch includes an annular baffle defining distinct faces A, B, C, and D. Faces A and C are opposite from each other, and faces B and D are opposite from each other. First passages for fluid flow extend between the faces A and C, and second passages extend between the faces B and D. The baffle is installable in an annular space between an inner wall and an outer wall, in either of two orientations. In a first orientation, the first passages are open to fluid flow and the second passages are closed by engagement of the inner and outer walls with the faces B and D, and in a second orientation, flipped over relative to the first orientation, the second passages are open to fluid flow and the first passages are closed by engagement of the inner and outer walls with the faces A and C.
US08624145B2 Indicator device of a circuit breaker
An indicator device displays a status of switching contacts of a circuit breaker that includes an energy store. The indicator device includes a lever and a coupling element. The lever includes a display element and is movable between a triggered position and a non-triggered position based upon at least one operational parameter. The coupling element is operatively connected to the lever so as to be movable between a triggered, position and a non-triggered position by the lever. The coupling element is configured to be further operatively connected to a first actuator of the energy store so as to be movable by the first actuator into the non-triggered position when energy is stored in the first energy store and so as to not be moved from the non-triggered position into the triggered position when energy stored in the energy store is released.
US08624144B2 Push button cap mounting details
A button or key structure includes a cap, a base and a connecting member. The cap includes at least two stopper portions. The base includes at least two hooks. The connecting member includes a resilient part. The connecting member is engaged between the at least two hooks and located between the cap and the base. The resilient part is configured for driving the cap away from the base. Each of the at least two hooks is engaged with each of the at least two stopper portions to prevent the cap from disengaging from the base.
US08624143B2 Moving element for a low voltage switching device and switching device comprising this moving element
A moving element for a low voltage switching device is provided. The moving element comprises a shaped body provided for each pole, a housing unit housing at least one electrical contact, and an actuating connecting rod provided with a pair of lateral portions connected by a transverse portion. The actuating connecting rod is connected to the shaped body through pin connection means comprising a first and a second pin shaped portion, emerging from one side of a corresponding lateral portion. The shaped body comprises a pair of seats, each to house a corresponding pin shaped portion so as to define a rotation axis for the connecting rod with respect to the shaped body. The first lateral portion and the second lateral portion of the connecting rod respectively comprise a first and a second mating surface.
US08624140B2 Key switch and keyboard
A key switch preferably used for a keyboard as an input device in electronic equipment. The key switch includes a base section; a key top disposed above the base section; a pair of link members interlocked to each other to support and direct the key top in a vertical direction relative to the base section; a switch member including a contact section capable of opening and closing in response to a vertical movement of the key top; and a biasing member capable of applying an elastic biasing force in a vertically upward direction to the key top. The key switch further includes a protection member disposed and inserted between the base section and the key top at a position where the protection member surrounds the pair of link members, the contact section and the biasing member. The protection member is elastically deformed to follow the vertical movement of the key top, and protects the pair of link members, the contact section and the biasing member from penetration of foreign matter.
US08624136B2 Cable termination systems and isolating apparatus for electrical power transmission conductors and methods using the same
A conductor termination system for use with an electrical power transmission conductor includes a termination assembly and a connector. The termination assembly includes an end member and an integral retainer mechanism. The end member includes a receiver portion configured to receive a segment of the conductor. The retainer mechanism includes a moveable keeper member on the end member. The retainer mechanism is operable to selectively clamp a segment of the conductor in the receiver portion to the end member and to apply a retention load to the conductor segment. The connector is adapted to be applied to the end member and the conductor to securely clamp the conductor segment to the end member.
US08624133B2 Filler panel with cable management feature
A filler panel for an electronics shelf is provided. The electronics shelf includes a number of slots each configured to receive an electronic device. The filler panel includes a non-conductive main body that includes a front wall, a side wall, and a back wall. The front wall and back wall are configured to fill a width of a slot of the electronics shelf and the side wall is configured to extend into a depth of the slot. The filler panel also includes an electromagnetic shielding portion made of a conductive material and coupled to the main body. Furthermore, the main body includes one or more cable clips each configured to retain one or more cables within the main body.
US08624132B2 Printed wiring board
A printed wiring board including a wiring substrate provided with at least one conductor circuit, a solder resist layer provided on the surface of the wiring substrate, at least one conductor pad formed from a part of the conductor circuit exposed from an opening provided in the solder resist layer, and at least one solder bump for mounting electronic parts on the conductor pad. In the printed wiring board, since the at least one conductor pad is aligned at a pitch of about 200 μm or less, and a ratio (W/D) of a diameter W of the solder bump to an opening diameter D of the opening formed in the solder resist layer is about 1.05 to about 1.7, connection reliability and insulation reliability can be easily improved.
US08624130B2 Circuit board having grown metal layer in a flexible zone
A circuit board has a grown metal layer in a flexible zone. A circuit board has a first part, a second part and a recess in the circuit board that is arranged between the first part and the second part. A thickness of the circuit board reduced in the region of the recess. The first part can be pivoted relative to the second part as a result of the recess. The flexibility of the circuit board is improved in the range of the recess by a metal layer applied on a surface section of the circuit board in the recess by deposition. Furthermore, EMC problems can be reduced by the metal layer on a side wall of the recess and electrical contacts to conductor path metallization layers can be created.
US08624125B2 Metal foil laminated polyimide resin substrate
The present invention relates to a metal foil laminated polyimide resin substrate wherein a metal foil is directly laminated on one side or both sides of a polyimide resin substrate; and the surface of the metal foil to be bonded to the polyimide resin substrate has a surface roughness (Rzjis) of 3.0 μm or less; a surface area ratio (B) of 1.25 to 2.50, in which the surface area ratio (B) is calculated as a ratio [A/6550] of a surface area of a two-dimensional region with a surface area of 6550 μm2 which is determined by a laser method (three-dimensional area: A μm2) to the area of the two-dimensional region; and a chromium content per unit area of the two-dimensional region of 2.0 mg/m2 or more.
US08624121B2 Multilayer printed wiring board for semiconductor devices and method for manufacturing the board
A multilayer printed wiring board includes one or more resin layers having via-holes and a core layer having via-holes. The via-holes formed in the one or more resin layers are open in the direction opposite to the direction in which the via-holes formed in the core layer are open. A method for manufacturing a multilayer printed wiring board includes a step of preparing a single- or double-sided copper-clad laminate; a step of forming lands by processing the copper-clad laminate; a step of forming a resin layer on the upper surface of the copper-clad laminate, forming openings for via-holes in the resin layer, and then forming the via-holes; and a step of forming openings for via-holes in the lower surface of the copper-clad laminate and then forming the via-holes.
US08624118B2 Water-soluble polymer coating for use on electrical wiring
A water-soluble polymer coating for application to electrical wiring used in aircraft and other electrical structures is provided. The coating includes a water-soluble polymer such as polyvinyl acetate, polyvinyl alcohol, and methyl cellulose which is dissolved in water to form a solution. The solution may be applied to electrical wiring during manufacturing and dried to a film such that if the wire becomes damaged and exposed to water, a protective water-insoluble deposit is formed on the wiring. Alternatively, the solution may be applied to wiring which is already damaged to form a protective water-insoluble deposit.
US08624116B2 Communication wire
The present invention relates to an improved isolated core or insulated conductor with a low dielectric constant and reduced materials costs. Apparatuses and methods of manufacturing the improved isolated core or insulated conductor are also disclosed.
US08624115B2 Wire harness
A wire harness is provided. A bent portion is formed into a bent shape corresponding to a bent shape of a wire harness arrangement path on a vehicle body panel. An insulating coating of a plurality of wires constituting the bent portion or at least one of the wires has such a flexural rigidity that the bent portion has a rigidity for maintaining the bent shape thereof.
US08624112B2 Shell assembly and assembly method thereof
A shell assembly includes a first shell having a plurality of elastic sheets mounted, and a second shell defining a plurality of securing grooves. The elastic sheets are capable of deforming and latching in the securing grooves, detachably latching the first shell and the second shell. An assembly method for assembling the shell assembly is also disclosed.
US08624105B2 Energy conversion device with support member having pore channels
Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.
US08624104B2 Heterojunction III-V solar cell performance
An InxGa1-xAs interlayer is provided between a III-V base and an intrinsic amorphous semiconductor layer of a heterojunction III-V solar cell structure. Improved surface passivation and open circuit voltage may be obtained through the incorporation of the interlayer within the structure.
US08624096B2 Plectrum sleeve
A plectrum sleeve has a sleeve body with an extending sheet. The sleeve body has a longitudinal open on an upper side thereof. The extending sheet is slantingly extending from an edge of a bottom side of the sleeve body. A plectrum piece is extending from an end of the extending sheet. The sleeve body is slid to a distal end of a finger with the extending sheet attached to the tip of the finger and the plectrum piece located in the front of the tip of the finger like an extension of the nail. The plectrum piece plunks a string of an instrument by bending or stretching the finger, the force back to the plectrum sleeve from the string will be strongly and steadily supported by the finger. A real and direct counterforce will be given to the finger and the user for better experience of plunking.
US08624095B2 Musical instrument
A musical instrument has an instrument body with a neck extending from the instrument body and including a finger board thereon and eight strings arranged to provide the sounds of a Violin, Viola and Cello. The strings cooperate with two separate bridges for supporting the strings and communicating the sounds to two compartments within the body. The strings connect with tuning pegs carried on a peg support mounted at the base of the body. The body is shaped and arranged to be carried in the manner of a guitar and to cooperate with a curved bow with a center handle.
US08624093B2 Soybean variety S110148
The invention relates to the soybean variety designated S110148. Provided by the invention are the seeds, plants and derivatives of the soybean variety S110148. Also provided by the invention are tissue cultures of the soybean variety S110148 and the plants regenerated therefrom. Still further provided by the invention are methods for producing soybean plants by crossing the soybean variety S110148 with itself or another soybean variety and plants produced by such methods.
US08624092B1 Soybean variety XB48E12
A novel soybean variety, designated XB48E12 is provided. Also provided are the seeds of soybean variety XB48E12, cells from soybean variety XB48E12, plants of soybean XB48E12, and plant parts of soybean variety XB48E12. Methods provided include producing a soybean plant by crossing soybean variety XB48E12 with another soybean plant, methods for introgressing a transgenic trait, a mutant trait, and/or a native trait into soybean variety XB48E12, methods for producing other soybean varieties or plant parts derived from soybean variety XB48E12, and methods of characterizing soybean variety XB48E12. Soybean seed, cells, plants, germplasm, breeding lines, varieties, and plant parts produced by these methods and/or derived from soybean variety XB48E12 are further provided.
US08624090B1 Soybean variety XB48W12
A novel soybean variety, designated XB48W12 is provided. Also provided are the seeds of soybean variety XB48W12, cells from soybean variety XB48W12, plants of soybean XB48W12, and plant parts of soybean variety XB48W12. Methods provided include producing a soybean plant by crossing soybean variety XB48W12 with another soybean plant, methods for introgressing a transgenic trait, a mutant trait, and/or a native trait into soybean variety XB48W12, methods for producing other soybean varieties or plant parts derived from soybean variety XB48W12, and methods of characterizing soybean variety XB48W12. Soybean seed, cells, plants, germplasm, breeding lines, varieties, and plant parts produced by these methods and/or derived from soybean variety XB48W12 are further provided.
US08624080B2 Plant virus-based inducible expression system
A process of producing one or more than one protein of interest, comprising: (a) providing a plant or plant cells comprising a first heterologous nucleotide sequence comprising a nucleotide sequence encoding an RNA replicon, and a first inducible promoter operably linked to said nucleotide sequence encoding said RNA replicon; said RNA replicon not encoding a protein providing for cell-to-cell movement of said RNA replicon in said plant; said RNA replicon encoding a polymerase and said one or more than one protein of interest, said polymerase being adapted for replicating said RNA replicon; and (b) inducing, in said plant or plant cells of step (a), said inducible promoter, thereby producing said one or more than one protein of interest in said plant or plant cells.
US08624074B2 Reactor flowscheme for dehydrogenation of propane to propylene
A process for the dehydrogenation of paraffins is presented. The process utilizes a rapid recycling of dehydrogenation catalyst between the dehydrogenation reactor and the catalyst regeneration unit. The process comprises preheating a combined hydrogen and paraffin hydrocarbon feedstream and passing the combined stream to a dehydrogenation reactor. The hydrocarbon feedstream and the catalyst pass through the reactor at a rate to limit the average residence time of the catalyst in the reactor. The catalyst is cycled to a regeneration unit, and passed through the regeneration unit to limit the average residence time of the catalyst in the regeneration unit.
US08624073B1 Homogeneous catalysts for biodiesel production
Non-basic and non-acidic homogeneous catalysts organo-metallic compound of the formula: M(OCH3)x wherein M is B, Na, Mg, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Al, Sn, Sb, Mo, Ag, and Cd and x is an integer from 2, 3 or 4 can catalyze transesterification of oils and fats having high free fatty acid content and with an acid number from 0.5 to 20, into biodiesel. B(OCH3)3 and Ge(OCH3)4, having low boiling points, are easily recovered from the biodiesel and glycerol phases and recycled for reuse. Continuous biodiesel production with the novel homogenous catalysts is achieved without the complicated and troublesome steps attendant with conventional processes using base or acid homogeneous catalyst. The high purity biodiesel is produced without acid-base neutralization, water wash, filtration, and solid disposal steps for removing the spent catalyst from the product streams associated with prior techniques.
US08624068B2 Gas oil composition
The present invention provides a gas oil composition for use in a diesel engine with a geometric compression ratio of 16 or less, equipped with a supercharger and an EGR, containing an FT synthetic base oil and having a sulfur content of 5 ppm by mass or less, an oxygen content of 100 ppm by mass or less, a bulk modulus of 1250 MPa or greater and 1450 MPa or less, a saybolt color of +22 or greater, a lubricity of 400 μm or less, an initial boiling point of 140° C. or higher and an end point of 380° C. or lower in distillation characteristics, and the following characteristics (1) to (3) in each fraction range wherein: (1) the cetane number in a fraction range of lower than 200° C. is 40 or greater and less than 60; (2) the cetane number in a fraction range of 200° C. or higher and lower than 280° C. is 60 or greater and less than 80; and (3) the cetane number in a fraction range of 280° C. or higher is 50 or greater. The gas oil composition is used in a summer or winter season, suitable for both diesel combustion and homogeneous charge compression ignition combustion.
US08624064B2 4-hydroxyphenylalkylamine derivative
The present invention relates to a compound represented by the following general formula (I): wherein R1 and R2 independently represent a monovalent hydrocarbon group; R3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; X represents a divalent hydrocarbon group; and R4, R5 and R6 independently represent a monovalent organic group or a group represented by the following general formula (II): in which R7 and R8 independently represent a monovalent hydrocarbon group; and R9 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, with the proviso that R5 and R6 may combine together to form a divalent hydrocarbon group. The aforementioned compounds are useful as a polymerization inhibitor and the like.
US08624062B2 Method for producing phenylacetamide compound
A method for producing a phenylacetamide compound represented by formula (1): wherein Q represents a hydrogen atom or a halogen atom, R2 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, R4 represents an alkyl group having 1 to 4 carbon atoms, Ar represents an unsubstituted or substituted phenyl group, R5 represents R4 when R2 is a hydrogen atom, and R5 represents a hydrogen atom when R2 is an alkyl group having 1 to 4 carbon atoms; including reacting a phenylacetamide compound represented by formula (2): wherein Q, R2 and Ar have the same meanings as defined above; with a dialkyl sulfate represented by formula (3): wherein R4 has the same meaning as defined above; in the presence of a base.
US08624057B2 Isoprenoid compounds, their isolation and use
There is provided an isoprenoid according to the general formula (I) wherein R1 and R2 are independently selected from H and alkyl; and R3, R4, R5 and R6 are independently selected from groups of the general formula (II) and (III) wherein R7 and R8 each represent a group of general formula CO—R9, in which each R9 is independently selected from H, OH, alkyl and alkoxy groups, or R7 and/or R8 present in R3 and R4 and/or in R5 and R6 combine to form a group of the general formula (IV) wherein R10 is selected from OH and alkoxy; or salts thereof. The isoprenoids are of particular use in the preparation of liposomes, for use in the delivery of pharmaceutically active components to a subject human or animal.
US08624052B2 S-t-butyl protected cysteine di-peptide analogs and related compounds
S-t-butyl protected cysteine di-peptide analogs and related compounds and methods of using these compounds for the treatment of diseases and/or conditions, including but not limited to diseases and/or conditions of Central Nervous System (CNS).
US08624050B2 Solution process for transparent conductive oxide coatings
A process according to the present invention comprises combining in a reaction mixture at least one metal alkyl compound of formula MRx with at least one silanol compound of formula; forming a film from the reaction mixture; and treating the film with heat and moisture; wherein an amount of the at least one silanol compound present ranges from about one quarter to about three quarters of an amount required to replace all alkyl groups of the at least one metal alkyl compounds with groups derived from the at least one silanol compound; M is, independently at each occurrence, Zn, Cd, Al, Ga, In, Tl, Hg, Pb, Bi or a combination thereof; x is, independently at each occurrence, an integer equal to 2 or 3; z is 0, 1 or 2; R is, independently at each occurrence, alkyl; and R1-R5 is independently H, alkyl, or hydroxyl.
US08624047B2 Solvent-less preparation of polyols by ozonolysis
Solvent-less methods to convert oil derivatives, and modified oils to highly functionalized esters, ester polyols, amides, and amide polyols. The products can be used to make polyurethane and polyester films and foams.
US08624044B2 Orthoester derivatives of crown ethers as carriers for pharmaceutical and diagnostic compositions
This invention relates to A crown ether of formula (I) wherein m is 4, 5, 6, 7, or 8 and i is, independently for each occurrence, 1 or 2; each occurrence of R1 and R2 is independently selected from hydrogen; linear or branched and substituted or unsubstituted C1 to C10 alkyl, alkenyl and alkinyl; and substituted or unsubstituted aryl with up to 10 ring atoms; or R1 and R2 together form an oxo group; at least one occurrence in the crown ether of R1, R2 and the carbon to which R1 and R2 are attached, said carbon being bound directly to an ether oxygen of formula (I), form together a group of formula (II) wherein L is a linker which is absent or selected from a covalent bond and (CR5R6)n, each occurrence of R5 and R6 being independently selected from hydrogen; linear or branched and substituted or unsubstituted C1 to C10 alkyl, alkenyl and alkinyl; and substituted or unsubstituted aryl with up to 10 ring atoms, n being 1, 2 or 3; X and Y, independently from each other, are selected from O and S; Z, independently for each occurrence, is absent or an electron-withdrawing group; R3 and R4, independently for each occurrence, are selected from hydrogen; linear or branched and substituted or unsubstituted C1 to C10 alkyl, alkenyl and alkinyl; substituted or unsubstituted aryl with up to 10 ring atoms; H(OCH2CH2)k— and H(OCH2CH2)kO—, wherein k is an integer number from 1 to 10; wherein substituents, if present, are selected from OH, O—CH3 and halogens.
US08624043B2 Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities
Described is a method to make liquid chemicals. The method includes deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to γ-valerolactone, and converting the γ-valerolactone to pentanoic acid. Alternatively, the γ-valerolactone can be converted to a mixture of n-butenes. The pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C9 and C18 olefins, which can be hydrogenated to yield a mixture of alkanes.
US08624040B2 Substituted hydroxamic acids and uses thereof
This invention provides compounds of formula (I): wherein R1, R2, G, n, p and q have values as described in the specification, useful as inhibitors of HDAC6. The invention also provides pharmaceutical compositions comprising the compounds of the invention and methods of using the compositions in the treatment of proliferative, inflammatory, infectious, neurological or cardiovascular diseases or disorders.
US08624037B2 Imidazolidine-2,4-dione derivatives and use thereof as a medicament
The subject matter of the present application is novel imidazolidine-2,4-dione derivatives. These products have an antiproliferative activity. They are particularly advantageous for treating pathological conditions and diseases associated with abnormal cell proliferation, such as cancers. The invention also relates to pharmaceutical compositions containing said products and to the use thereof for preparing a medicament.
US08624035B2 Functionalized cyanine having a silane linker arm, a method of preparing thereof and uses thereof
A silane-modified cyanine of Formula (I) includes the valence tautomers thereof: wherein R1 is a linear, saturated or unsaturated alkyl chain, having 1 to 30 carbon atoms, wherein one or more carbon atoms are optionally substituted by a 4-, 5- or 6-membered aromatic or non aromatic cyclic grouping of carbon atoms; R8 and R9 are independently selected from the group consisting of —OCH3, —OCH2CH3, —OCH2CH2CH3, —OCH(CH3)2, —OCH2CH2OCH3, —Cl, —Br, —I, Formula (II), Formula (III), —N(CH3)2, Formula (IV), Formula (V), methyl, ethyl, propyl, isopropyl. The synthesis method and the use as a fluorescent marker are for inorganic solid supports, for example silica nanoparticles, and/or for biomolecules such as peptides, antibodies, DNA, RNA, etc.
US08624032B2 Compound libraries made through phosphine-catalyzed annulation/Tebbe/Diels-Alder reactions
A method for producing libraries of structurally and stereochemically diverse molecules that can be screened for biological or chemical activity. A library of 91 heterocyclic compounds composed of 16 distinct scaffolds was synthesized through a sequence of phosphine-catalyzed ring-forming reactions, Tebbe reactions, Diels-Alder reactions, and, in some cases, hydrolysis to illustrate the methods. Three compounds inhibiting migration of human breast cancer cells are identified from the library.
US08624030B2 N-demethylation of 6-keto morphinans
The present invention provides processes for the demethylation of an N-methyl morphinan comprising a ketone functional group. In particular, the invention provides methods for the protection of the ketone functional group such that impurities are not generated during the demethylation of the N-methyl morphinan.
US08624029B2 Lipidated imidazoquinoline derivatives
The compounds of the subject invention are adjuvant molecules that comprise a imidazoquinoline molecule covalently linked to a phospho- or phosphonolipid group. The compounds of the invention have been shown to be inducers of interferon-a, IL-12 and other immunostimulatory cytokines and possess an improved activity profile in comparison to known cytokine inducers when used as adjuvants for vaccine antigens.
US08624027B2 Combination therapy for treating cancer and diagnostic assays for use therein
The present disclosure relates to a combination of therapeutic agents for use in treating a patient a subject suffering from cancer. In addition, the present disclosure also relates to diagnostic assays useful in classification of patients for treatment with one or more therapeutic agents.
US08624026B2 Method of preparing sitagliptin and intermediates used therein
Disclosed are a novel, simple and low-cost method for preparing sitagliptin of formula (I), as DPP-IV (dipeptidyl peptidase IV) inhibitor, which is useful in treating type 2 diabetes mellitus and key intermediates used in said preparation of sitagliptin:
US08624019B2 ENA nucleic acid drugs modifying splicing in mRNA precursor
Oligonucleotides having a nucleotide sequence complementary to nucleotide numbers such as 2571-2607, 2578-2592, 2571-2592, 2573-2592, 2578-2596, 2578-2601 or 2575-2592 of the dystrophin cDNA (Gene Bank accession No. NM_004006.1) and therapeutic agents for muscular dystrophy comprising such oligonucleotides.
US08624018B2 Probe, polymorphism detection method, method of evaluating drug efficacy or tolerance, and reagent kit
A probe for detecting polymorphism in the ABCC2 gene is constituted by including, for example, an oligonucleotide which is complementary to a base sequence including the 207th to the 217th bases of the base sequence indicated in SEQ ID NO:1 and having a length of from 11 bases to 60 bases, and has an identity of at least 80%, and in which a base corresponding to the 217th base has been labeled with a fluorescent dye.
US08624017B2 Probe, polymorphism detection method, method of evaluating drug efficacy or tolerance, disease prediction method and reagent kit
A probe for detecting polymorphism in the ABCG2 gene is constituted by including, for example, an oligonucleotide which is complementary to a base sequence including the 301st to the 311th bases of the base sequence indicated in SEQ ID NO:1 and having a length of from 11 bases to 50 bases, and has an identity of at least 80%, and in which a base corresponding to the 311th base has been labeled with a fluorescent dye.
US08624016B2 Detection of nucleic acid sequence differences using the ligase detection reaction with addressable arrays
The present invention describes a method for identifying one or more of a plurality of sequences differing by one or more single base changes, insertions, deletions, or translocations in a plurality of target nucleotide sequences. The method includes a ligation phase, a capture phase, and a detection phase. The ligation phase utilizes a ligation detection reaction between one oligonucleotide probe, which has a target sequence-specific portion and an addressable array-specific portion, and a second oligonucleotide probe, having a target sequence-specific portion and a detectable label. After the ligation phase, the capture phase is carried out by hybridizing the ligated oligonucleotide probes to a solid support with an array of immobilized capture oligonucleotides at least some of which are complementary to the addressable array-specific portion. Following completion of the capture phase, a detection phase is carried out to detect the labels of ligated oligonucleotide probes hybridized to the solid support.
US08624013B2 Interleukin-10 antibodies
The methods and compositions provided herein relate generally to IL-10 specific antibodies and uses thereof. More specifically, compositions of humanized IL-10 specific antibodies and methods to use such antibodies in modulating the biological activity of IL-10, particularly in autoimmune disorders and pathogen-mediated immunopathology.
US08624012B2 Nucleic acids encoding T2R bitter taste receptors
The invention provides nucleic acid and amino acid sequences for a novel family of taste transduction G-protein coupled receptors, antibodies to such receptors, methods of detecting such nucleic acids and receptors, and methods of screening for modulators of taste transduction G-protein coupled receptors.
US08624004B2 Purification of HBV antigens for use in vaccines
The present invention relates to a method for the production of a hepatitis B antigen suitable for use in a vaccine, the method comprising purification of the antigen in the presence of cysteine, to vaccines comprising such antigens.
US08624003B2 Methods for preparation of antibody-maytansinoid conjugates
This invention describes a method of conjugating a cell binding agent such as an antibody with an effector group (e.g., a cytotoxic agent) or a reporter group (e.g., a radionuclide), whereby the reporter or effector group is first reacted with a bifunctional linker and the mixture is then used without purification for the conjugation reaction with the cell binding agent. The method described in this invention is advantageous for preparation of stably-linked conjugates of cell binding agents, such as antibodies with effector or reporter groups. This conjugation method provides in high yields conjugates of high purity and homogeneity that are without inter-chain cross-linking and inactivated linker residues.
US08623999B2 Modified Clostridial toxins with enhanced targeting capabilities for endogenous Clostridial toxin receptor systems
The specification discloses modified Clostridial toxins comprising a Clostridial toxin enzymatic domain, a Clostridial toxin translocation domain and an enhanced Clostridial toxin binding domain; polynucleotide molecules encoding such modified Clostridial toxins; and method of producing such modified Clostridial toxins.
US08623991B2 IPA/polyester copolymer fiber
A process for producing an IPA/PET copolymer fiber that is homogenous having a substantially level, single IPA copolymer content, said fiber having improved pilling resistance and dye uptake.
US08623988B2 Polydiorganosiloxane polyamide copolymers having organic soft segments
Polydiorganosiloxane polyamide, block copolymers having organic soft segments and methods of making the copolymers are provided.
US08623987B2 Room temperature fast-curing organopolysiloxane composition and its curing method
A room temperature fast-curing organopolysiloxane composition which has excellent fast curability as well as deep curability is provided without using an organic compound having C═O group and the organic compound having NH2 group which are the volatile components. A method for curing such composition is also provided. The room temperature fast-curing organopolysiloxane composition comprises: (A) 100 parts by weight of a diorganopolysiloxane having both ends terminated with hydroxy group and/or a hydrolyzable group; (B) 0.5 to 10 parts by weight of a silane and/or a siloxane having at least 3 alkenoxysilyl groups in its molecule and being capable of forming a compound having —NH2 group by hydrolysis; (C) 0.5 to 10 parts by weight of a silane and/or a siloxane having at least 3 aminosilyl groups in its molecule and being capable of forming a compound having —NH2 group by hydrolysis; and (D) 0.01 to 10 parts by weight of a curing catalyst.
US08623986B2 Gels
The present invention relates to biostable gel comprising: (a) at least one silicon-containing polyol, polyamine, polyepoxy or polyisocyanate having 1 or more functional groups and a molecular weight of at least 20,000 which is cured in the presence of: (b) at least one diol, diamine or diisocyanate having a molecular weight of less than 10,000; and/or (c) an initiator, processes for their preparation and their use in the manufacture and repair of biomaterials and medical devices, articles or implants, in particular the manufacture of a soft tissue implant such as breast implants and the repair of orthopaedic joints such as spinal discs.
US08623980B2 Process for making a saturated dendritic hydrocarbon polymer
A process for making a substantially saturated dendritic hydrocarbon polymer. The process has the following steps: (a) polymerizing an amount of a first alkadiene monomer under anionic conditions in the presence of a first organic monolithium initiator to produce a linear polyalkadiene having a lithiated chain end; (b) reacting the linear polyalkadiene with an amount of a second organic monolithium initiator in the presence of tetramethylethylene diamine to form a multilithiated polyalkadiene; (c) reacting the multilithiated polyalkadiene with an amount of a second alkadiene monomer to form a branched polyalkadiene; (d) repeating steps (b) and (c) with the branched polyalkadiene one or more times to prepare a dendritic polyalkadiene; and (e) hydrogenating the dendritic polyalkadiene to form the substantially saturated dendritic hydrocarbon polymer.
US08623978B2 Process for the preparation of low-peroxide crosslinked vinyllactam polymer
Process for the preparation of low-peroxide crosslinked vinyllactam polymer by free-radical polymerization in the presence of at least one organic substance acting as antioxidant, low-peroxide crosslinked vinyllactam polymer obtainable by this process, and its use.
US08623977B2 Non-hydrocarbyl hydrophobically modified polycarboxylic polymers
The present invention involves a cross-linked carboxylic acid hydrophobically modified copolymer product in which cross-linked carboxylic acid is modified with a non-hydrocarbyl hydrophobe, namely, poly(dimethyl siloxane) or fluoronated alkyl methacrylates.
US08623976B2 Polymerization catalyst compositions containing metallocene complexes and polymers produced by using the same
The present invention provides a novel catalyst composition comprising a metallocene complex, and a novel producing method for various polymer compounds. Preferably, the invention provides a novel polymer compound, and a producing method thereof. Specifically, the invention provides a polymerization catalyst composition, comprising: (1) a metallocene complex represented by the general formula (I), including: a central metal M which is a group III metal atom or a lanthanoid metal atom; a ligand Cp* bound to the central metal and including a substituted or unsubstituted cyclopentadienyl derivative; monoanionic ligands Q1 and Q2; and w neutral Lewis base L; and (2) an ionic compound composed of a non-ligand anion and a cation: where w represents an integer of 0 to 3.
US08623975B2 Process for producing polydienes
A process for preparing a polydiene, the process comprising the step of polymerizing conjugated diene monomer in the presence of a dihydrocarbyl ether, where said step of polymerizing takes place within a polymerization mixture that includes less than 20% by weight of organic solvent based on the total weight of the polymerization mixture, and where said step of polymerizing employs a lanthanide-based catalyst system that includes the combination of or reaction product of ingredients including (a) a lanthanide compound, (b) an aluminoxane, (c) an organoaluminum compound other than an aluminoxane, and (d) a bromine-containing compound selected from the group consisting of elemental bromine, bromine-containing mixed halogens, and organic bromides.
US08623970B2 Diaphragm for electro-acoustic transducer
A diaphragm for electro-acoustic transducers, especially a diaphragm for speakers, and a film for the diaphragm excellent in the formability and the durability in high-output operation are obtained. A diaphragm for electro-acoustic transducers formed of a film that contains a polybiphenyl ether sulfone resin (A) having a specific repetitive unit or contains it and a crystalline resin (B) such as polyaryl ketone resin; and a film for use for the diaphragm.
US08623969B2 Terminal silicone capped regiospecific glycerin polyesters
The present invention is directed to a series of glycerin based polymers that have been designed to have very specific substitution patterns, herein referred to as regiospecific substitution (RSS). The attachment of terminal mono-functional silicone polymers engineered polyesters of glycerin results in heretofore unrecognized products. The unique properties include lower surface tension, better spreadability and a dry skin feel, all of which cannot be attained without the use of a terminal silicone. Incorporation of silicone into the terminal position requires a very specific synthesis regime to establish the sought after regiospecificity.
US08623966B2 Process for preparing acrylamide copolymers by Hofmann degradation reaction
In a process for preparing cationic or amphoteric (co)polymers derived from acrylamide by a Hofmann degradation reaction in aqueous solution in the presence of an alkali and/or alkaline-earth metal hydroxide and an alkali metal hypohalide on a base copolymer, a solution of base copolymer on which the reaction is performed contains a polyvalent cationic salt representing at least 0.5% by weight, preferably from 2 to 10% by weight of the base copolymer.
US08623962B2 Olefin functionalization by metathesis reaction
This invention relates to a process to functionalize propylene co-oligomer comprising contacting an alkene metathesis catalyst with a heteroatom containing alkene, and a propylene a co-oligomer having an Mn of 300 to 30,000 g/mol comprising 10 to 90 mol % propylene and 10 to 90 mol % of ethylene, wherein the oligomer has at least X % allyl chain ends, where: 1) X=(−0.94 (mol % ethylene incorporated)+100), when 10 to 60 mol % ethylene is present in the co-oligomer, and 2) X=45, when greater than 60 and less than 70 mol % ethylene is present in the co-oligomer, and 3) X=(1.83*(mol % ethylene incorporated)−83), when 70 to 90 mol % ethylene is present in the co-oligomer. This invention also relates to a process to functionalize propylene homo-oligomer comprising contacting an alkene metathesis catalyst with a heteroatom containing alkene, and a propylene homo-oligomer, comprising propylene, wherein the oligomer has: at least 93% allyl chain ends, an Mn of about 500 to about 20,000 g/mol, an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.2:1.0, and less than 100 ppm aluminum.
US08623957B2 Method of preparing fluoropolymers by aqueous emulsion polymerization
Method of making fluoropolymers by emulsion polymerization of one or more fluorinated monomers in an aqueous phase in the presence of a fluorinated emulsifier, said method comprises adding a doping agent in a weight ratio with respect to the emulsifier of from about 1:2 to about 1:20, said doping agent has a melting point of equal or less than 30° C. and a boiling point of at least about 100° C. and is selected from the group consisting of fluorinated cyclic hydrocarbons, fluorinated polyoxyalkenes, fluorinated alkenes and fluorinated polyoxyalkenes.
US08623955B2 Polyhedral-modified polymer
A macromolecule including a polymer and a polyhedral radical chemically bonded to a terminus of the polymer provides numerous processing and performance advantages. Further functionalization of this macromolecule also is described as being advantageous in certain circumstances. Methods of providing, functionalizing, and utilizing the macro-molecule also are provided.
US08623954B2 Fuser coating composition and method of manufacture
The present teachings include a coating composition of a powder of fluorine containing particles, aerogel particles and poly(alkylene carbonate). A method of making a fuser member and the fuser member resulting therefrom is also provided.
US08623948B2 Polycarbonate compositions having antistatic enhancers, method of preparing, and articles comprising the same
A thermoplastic composition comprising a polycarbonate, a perfluoroalkyl sulfonate phosphonium salt, and a non-phosphonium perfluoroalkyl sulfonate salt is disclosed, wherein a molded flat disk prepared from the thermoplastic composition has a surface resistivity of 1.0×1010 to 1.0×1014 ohms measured at a temperature of 23±2° C. and at 50±1% relative humidity. A method of making the thermoplastic composition, and articles prepared therefrom, are also disclosed.
US08623939B2 Ink
An ink contains at least a first solid particle, and a second solid particle formed of a base material of a different main component from that of the first solid particle. The first solid particle and the second solid particle have zeta potentials of the same polarity, or zeta potentials of 0±5 mV. The first and second solid particles in the ink have the same surface property, specifically the same interface property in the ink. This makes it possible to use a common dispersant suited for adsorption on the first and second solid particles. In this way, more than one kind of solid particle can be stably dispersed using a sole kind of dispersant.
US08623938B2 Inkjet ink and method for making the same
An inkjet ink includes carbon nanotubes, flake graphites, an organic carrier, a binder, a surfactant, a film enhancer and a solvent. A method for making an inkjet ink includes dispersing the plurality of carbon nanotubes in the surfactant solvent to form a first mixture, dispersing the plurality of flake graphites in the organic carrier solvent to form a second mixture, adding the film enhancer into the second mixture to form a third mixture, and mixing the first mixture and the third mixture.
US08623936B2 Weighted elastomers, cement compositions comprising weighted elastomers, and methods of use
Methods and compositions are provided that relate to weighted elastomers. The weighted elastomers may comprise an elastomer and a weighting agent attached to an outer surface of the elastomer. An embodiment includes a method of cementing that comprises providing a cement composition containing cement, water, and a weighted elastomer. In addition, the cement composition may be introduced into a subterranean formation and allowed to set therein.
US08623934B2 Silicone (meth)acrylamide monomer, polymer, ophthalmic lens, and contact lens
The present invention relates to a silicone (meth)acrylamide monomer, and this silicone (meth)acrylamide monomer is particularly suitable for use in contact lenses, intraocular lenses, artificial cornea, and the like.
US08623929B2 Method and equipment for conditioning low-metal plastic scrap
In a method and equipment for conditioning low-metal scrap high in plastics, which contains at least partially scrap high in plastics from shredder processes, especially of scrap vehicles, the method includes: splitting up ferromagnetic components from the scrap that is high in plastics; separating a first raw sand fraction from the scrap high in plastics that has been reduced in metals; reducing in size the fraction high in plastics that remains after the isolation of the first raw sand fraction; separating a second raw sand fraction after reducing in size the remaining fraction high in plastics; and splitting up the remaining fraction, that is high in plastics, into a light fraction and a heavy fraction.The equipment has the appropriate device for carrying out the individual method steps.
US08623928B2 Polymers of intrinsic microporosity containing tetrazole groups
The invention provides a tetrazole-containing polymer of intrinsic microporosity comprising (10) or more subunits, wherein one or more of the subunits comprise one or more tetrazolyl moieties. In one embodiment, a polymer of intrinsic microporosity (PIM-1) was modified using a “click chemistry” [2+3] cycloaddition reaction with sodium azide and zinc chloride to yield new PIMs containing tetrazole units. Polymers of the present invention are useful as high-performance materials for membrane-based gas separation, materials for ion exchange resins, materials for chelating resins, materials for superabsorbents, materials for ion conductive matrixes, materials for catalyst supports or materials for nanoparticle stabilizers.
US08623927B2 Catalyst for synthesizing methanol from synthesis gas and preparation method thereof
Disclosed are a catalyst for synthesis of methanol from synthesis gas and a method for preparing the same. The catalyst includes a Cu—Zn—Al oxide containing CuO, ZnO and Al2O3 in a predetermined ratio or Cu—Zn—Al—Zr oxide containing CuO, ZnO, Al2O3 and ZrO2 in a predetermined ratio, in combination with a cerium-zirconium oxide obtained by a sol-gel process. As compared to the existing Cu—Zn—Al catalysts for synthesizing methanol, the catalyst disclosed herein inhibits formation of byproducts and improves yield of methanol. Therefore, it is possible to improve methanol purification efficiency and carbon conversion efficiency.
US08623926B2 Process for the production of methanol including two membrane separation steps
Disclosed herein is a methanol production process that includes at least two membrane separation steps. Using the process of the invention, the efficiency of methanol production from syngas is increased by reducing the compression requirements of the process and/or improving the methanol product yield. As an additional advantage, the first membrane separation step generates a hydrogen-rich stream which can be sent for other uses. An additional benefit is that the process of the invention may debottleneck existing methanol plants if more syngas or carbon dioxide is available, allowing for feed of imported carbon dioxide into the synthesis loop. This is a way of sequestering carbon dioxide.
US08623921B2 Bis(thio-hydrazide amide) formulation
Disclosed herein are compositions comprising a compound represented by structural formula (I): 2 g of which is reconstitutable in 10 mL of a water in less than 10 minutes, and methods for preparing these compositions. Also disclosed are compositions comprising a compound represented by structural formula (I) and a pharmaceutically acceptable excipient, wherein the molar ratio of said compound to said excipient is from 1:20 to 1:1, and methods for preparing these compositions.
US08623920B2 Method of treating post-surgical acute pain
A method is provided for treating pain in patients recovering from post-surgical trauma by administering between about 13 to about 30 mg of diclofenac potassium in a liquid dispersible formulation over a period of at least 24 hours, wherein the daily total amount of diclofenac potassium administered is less than or equal to about 100 mg. The method is particularly useful in treating acute pain in bunionectomy patients.
US08623919B2 Method of synthesizing S-allyl-cysteine analogues and their therapeutic application in treating myocardial infarction
A pharmaceutical composition and methods of producing and application of the composition for treating myocardial infarction of a subject are disclosed. The pharmaceutical composition comprises a therapeutically effective amount of at least one synthesized compound selected from the group consisting of SEC, SPC, SBC, SPEC, SAC, SAMC, and SPRC, and a pharmaceutically acceptable carrier.
US08623918B2 Amino acid salts of prostaglandins
The present invention is directed to novel amino acid prostaglandin salts and methods of making and using them.
US08623912B2 Fostriecin derivatives and the pharmaceutical uses thereof
Novel Fostriecin (or FST) derivatives represented by formula (I), the pharmaceutical compositions and preparation methods thereof. The pharmaceutical uses of these compounds, especially the use for the preparation of pharmaceutical compositions for treating tumor, inhibiting cell over growth, or lowering myocardial infarction and the injury to cells.
US08623905B2 Modulators of ATP-binding cassette transporters
Compounds of the present invention and pharmaceutically acceptable compositions thereof, are useful as modulators of ATP-Binding Cassette (“ABC”) transporters or fragments thereof, including Cystic Fibrosis Transmembrane Conductance Regulator (“CFFR”). The present invention also relates to methods of treating ABC transporter mediated diseases using compounds of the present invention.
US08623902B2 Microbiocides
Compounds of Formula (I), in which the substituents are as defined in claim 1, are suitable for use as microbiocides.
US08623901B2 Compounds for the treatment of CNS disorders
The invention relates to novel 1,6-disubstituted pyrazolopyrimidinones of formula (I), in which Hc is a tetrahydropyranyl-group and R1 is the group V−W−*, whereby V and W independently of each other may be an aryl group or an heteroaryl group, which independently of each other may optionally be substituted. According to one aspect of the invention the new compounds are for use as medicaments or for the manufacture of medicaments, in particular medicaments for the treatment of conditions concerning deficits in perception, concentration, learning or memory. The new compounds are also for the manufacture of medicaments and/or for use in the treatment of e.g. Alzheimer's disease, in particular for cognitive impairment associated with Alzheimer's disease.
US08623900B2 Amino alcohol derivatives and their therapeutic activities
The present invention relates to amino alcohol derivatives of general formula I: These derivatives possess an interesting activity in that they block the secondary products of lipid oxidative stress, and are consequently suitable for therapeutic use in all disorders related with the presence of reactive carbonyl compounds.
US08623898B2 Glycine transporter inhibiting substances
The present invention aims to provide novel compounds of formula [I] or pharmaceutically acceptable salts thereof that are based on a glycine uptake inhibiting action and which are useful in the prevention or treatment of such diseases as schizophrenia, Alzheimer's disease, cognitive dysfunction, dementia, anxiety disorders (generalized anxiety disorder, panic disorder, obsessive-compulsory disorder, social anxiety disorder, posttraumatic stress disorder, specific phobia, acute stress disorder, etc.), depression, drug addiction, spasm, tremor, and sleep disorder:
US08623894B2 Solid forms of N-[2,4-Bis(1,1-dimethyethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquioline-3-carboxamide
Solid forms of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide are described herein, including crystalline forms thereof.
US08623890B2 Nematocidal sulfonamides
Disclosed are compounds of Formula 1, N-oxides, and salts thereof, wherein Z is O or S; and R1, R2, R3, Q and n are as defined in the disclosure. Also disclosed are compositions containing the compounds of Formula 1 and methods for controlling a parasitic nematode comprising contacting the parasitic nematode or its environment with a biologically effective amount of a compound or a composition of the invention.
US08623889B2 Substituted 6,6-fused nitrogenous heterocyclic compounds and uses thereof
The invention provides novel compounds having the general formula: wherein X1 is N or N+O−, and one of X2, X3 and X4 is N or N+—O− and the remainder of X2, X3 and X4 is C. R2, R3, R4, R5, R6. A, B and Y are as described herein. Additionally compositions compounds of Formula I and methods of use are further described herein.
US08623887B2 Compounds
The present invention encompasses compounds of general formula (1) wherein R1, R2, R4, Rg, X, m, n and p are defined as in claim 1, which are suitable for the treatment of diseases characterized by excessive or abnormal cell proliferation, and their use for preparing a pharmaceutical composition having the above-mentioned properties.
US08623884B2 Quinazolinedione derivatives as PARP inhibitors
The present invention provides compounds of formula (I), their use as PARP inhibitors as well as pharmaceutical compositions comprising said compounds of formula (I) wherein R1, L1, L2, X, Y and Z have defined meanings.