Document | Document Title |
---|---|
US08605826B2 |
Multi-gigabit millimeter wave receiver system and demodulator system
A receiver system and a demodulator system are configured to receive and demodulate, respectively, multi-gigabit millimeter wave signals being wirelessly transmitted in the unlicensed wireless band near 60 GHz. |
US08605822B2 |
Apparatus and method for transmitting and receiving data
A data transmitting apparatus performs symbol mapping on each of first and second input data to generate a plurality of first and second modulation data symbols, performs inverse fast Fourier transform (IFFT) on the plurality of first and second modulation data symbols to convert the same into first and second real signals of a time domain from a frequency domain, angle-modulates the first and second real signals, and transmits the same to a data receiving apparatus. Thus, a peak-to-average power ratio (PAPR) can be lowered, while the same data transfer amount as that of the general OFDM data transmitting apparatus is maintained. |
US08605820B2 |
Method of transmitting data in wireless communication system
The method includes generating coded bits by encoding information bits, dividing the coded bits into a first bit-stream and a second bit-stream, generating a first data symbol by performing anti-gray mapping on the first bit-stream, generating a second data symbol by performing gray mapping on the second bit-stream, and transmitting the first data symbol and the second data symbol. |
US08605818B2 |
Selective peak power reduction
A communication system comprising signal processing circuitry and up-conversion circuitry. The signal processing circuitry is configured to: i) generate a first signal of a first modulation type and a second signal of a second modulation type; ii) combine the first and second signals to form a combined input signal; iii) generate peak reduction distortion based on the combined input signal; iv) select a portion of the peak reduction distortion that corresponds to a first frequency band; and v) apply the selected portion of the peak reduction distortion in the first frequency band of the combined input signal to provide a combined output signal. The up-conversion circuitry up-converts the combined output signal to an RF signal for transmission. |
US08605815B2 |
Delay amount estimating apparatus and signal transmitting apparatus
A delay amount estimating apparatus includes a delay value search section that searches for a first delay value smaller than a delay setting value at which a given correlation value between an input signal and a feedback signal is provided, and also for a second delay value greater than the delay setting value, the feedback signal coming from a signal processing apparatus that applies signal processing on the input signal, wherein respective correlation values of the first delay value and the second delay value satisfy a given condition; and a delay estimating section that estimates a delay amount of the feedback signal relative to the input signal based on the first delay value and the second delay value. |
US08605809B2 |
Method and apparatus for using factorized precoding
According to one or more aspects, the teachings herein improve user equipment (UE) Channel State Information (CSI) feedback, by letting the precoder part of a CSI feedback report comprise factorized precoder feedback. In one or more such embodiments, the factorized precoder feedback corresponds to at least two precoder matrices, including a recommended “conversion” precoder matrix and a recommended “tuning” precoder matrix. The recommended conversion precoder matrix restricts the number of channel dimensions considered by the recommended tuning precoder matrix and, in turn, the recommended tuning precoder matrix matches the recommended precoder matrix to an effective channel that is defined in part by said recommended conversion precoder matrix. |
US08605804B2 |
Method of channel estimation and a channel estimator
The method includes receiving a signal comprising a symbol-carrier matrix, the symbol-carrier matrix including a predetermined pattern of pilot symbols, and determining first channel estimates at pilot symbol positions of the pilot symbols in the symbol-carrier matrix. The method further includes correcting the first channel estimates at the pilot symbol positions using Bayesian estimation, and determining second channel estimates at symbol positions other than the pilot symbol positions using interpolation based on the correct first channel estimates. |
US08605798B2 |
Power and bidirectional data transmission
Systems and methods for power and bidirectional data transmission using a plurality of wires. A multiphase digital signal is downlinked from a main unit to a remote unit over the plurality of wires and is converted to a DC power signal used to power the remote unit. Uplink data is sent from the remote to the main over one selected wire during a predetermined time period for an uplink transmission by amplitude modulating the received digital signal at the remote. During an uplink, the output impedance of the line driver in the main unit connected to the wire selected for the uplink is increased to allow for the uplink amplitude modulation. The modulated signal is maintained within the noise margins of the digital circuits in the main and remote units. |
US08605792B2 |
Slice coding allocation method, apparatus and circuit
A coding apparatus is for performing a deblocking filter process by dividing input moving image data into frames, and coding the moving image data by dividing the frames into macroblock lines and by shifting and changing, for each frame, a refresh area in which an amount of coding information allocated to a specific macroblock line is larger than that of another macroblock line. The coding apparatus includes a determining unit that determines that a refresh area in a current frame as well as a macroblock line in the current frame corresponding to a macroblock line that will become a refresh area in a frame being subsequently subjected to the coding process becomes a next refresh area. The coding apparatus includes a coding unit that codes the refresh area and the next refresh area by allocating a larger amount of coding information than an amount allocated to the other macroblock line. |
US08605791B2 |
Video processor using an optimized slicemap representation
A method for executing video encoding operations. The method includes encoding an incoming video stream into a plurality of macro blocks by using a video encoder and receiving a box out slice map specification for the plurality of macro blocks. The box out slice map specification is converted to a foreground-background slice map specification. The plurality of macro blocks are then processed in accordance with the foreground-background specification and by using a common hardware encoder front end. |
US08605790B2 |
Frame interpolation apparatus and method for motion estimation through separation into static object and moving object
Provided are frame interpolation apparatus and methods in which motion estimation is performed by separation into a static object and a moving object. The frame interpolation apparatus interpolates multiple frames including an nth frame and an (n−1)th frame located adjacent the nth frame in order to generate an interpolation frame. Some embodiments of the apparatus include a static object separation unit, a motion vector (MV) estimation unit, and an interpolation frame generation unit. The static object separation unit may compare a macroblock (MB) of the nth frame with an MB of the (n−1)th frame, which may correspond to the MB of the nth frame, in order to separate each MB of the nth frame into a static object and a moving object. The MV estimation unit may search in the (n−1)th frame for an MB that matches with each of MBs of the nth frame, which may be determined to be the moving object, to estimate an MV. The interpolation frame generation unit may generate the interpolation frame using the estimated MV, the nth frame, and the (n−1)th frame. |
US08605787B2 |
Image processing system, image processing method, and recording medium storing image processing program
Provided is an image processing system that can uniquely identify a motion vector for each pixel of an interpolation frame and accurately identify a motion vector. A motion vector candidate selection unit (301) sequentially selects predetermined motion vector candidates in an interpolation frame. A differential image generation unit (302), a binary image generation unit (303) and an area image generation unit (304) generate a differential image, a binary image and an area image, respectively, based on a selected motion vector candidate. For each pixel of the interpolation frame, a motion vector determination unit (305) identifies a motion vector candidate with which a pixel value of a pixel in the area image corresponding to the pixel is the largest as a motion vector. A pixel value determination unit (306) determines each pixel value of the interpolation frame by using the motion vector identified for each pixel, thereby generating an interpolation frame. |
US08605784B2 |
Method and apparatus for encoding video, and method and apparatus for decoding video
Disclosed are a method and a apparatus for encoding a video, and a method and apparatus for decoding a video, in which neighboring pixels used to perform intra prediction on a current block to be encoded are filtered and intra prediction is performed by using the filtered neighboring pixels. |
US08605783B2 |
Composite video generation
Composite video generation is described. In an embodiment, mobile video capture devices, such as mobile telephones, capture video streams of a common event. A network node receives the video streams and time-synchronizes them. Frames from each of the video streams are then stitched together to form a composite frame, and these are added to a composite video sequence. In embodiments, the composite video sequence is encoded and streamed to a user terminal over a communications network. In embodiments, the common event is a live event and the composite video sequence is generated in real-time. In some embodiments, the stitching of the video streams is performed by geometrically aligning the frames. In some embodiments, three or more mobile video capture devices provide video streams. |
US08605782B2 |
Reconstruction of de-interleaved views, using adaptive interpolation based on disparity between the views for up-sampling
Method for reconstructing interleaved views of a 3D image comprising the steps of: receiving interleaved views of a 3D image, de-interleaving said interleaved views into a first view and a second view, each de-interleaved view comprising missing pixels, at each pixel location determining an amount of disparity between said first and second views, for each view interpolating each missing pixel based on the amount of disparity determined at the associated pixel location, wherein when the determined disparity is above a predetermined disparity threshold, the missing pixel value is interpolated from the data of the view to be interpolated only (i.e. the view comprising said missing pixel value), and when the determined disparity is at or below said predetermined disparity threshold, the missing pixel value is interpolated from the data of both views. |
US08605781B2 |
Real-time and bandwidth efficient capture and delivery of live video to multiple destinations
Disclosed is a method and system to deliver real-time video data over the Internet in a bandwidth efficient manner. A streaming processor receives raw video data from a video source and communicates a compressed version of the video data to a reflector network. The video data is compress by grouping pixels into blocks and comparing blocks of adjacent frames of video data to identify any changes. Only blocks that have been changed are transmitted to the reflector network. In addition, if a block has been changed in a manner to create a previously transmitted block, then only an identification index for the block is transmitted. The actual content of the block can then be recreated by comparing the index to a list of previously received blocks. The reflector network provides the compressed video stream to multiple clients through a series of reflectors. Each client can customize the quality of the video stream received by requesting a full-stream of a sub-stream from the reflector network. |
US08605777B2 |
Circuit for recognizing a beginning and a data rate of data and method thereof
A circuit for recognizing a beginning and a data rate of data includes at least two data rate detecting units and a post processing unit. The at least two data rate detecting units are used for comparing at least two alignment patterns corresponding to different data rates with data simultaneously to recognize a data rate of the data. The post processing unit is coupled to the at least two data rate detecting units for recognizing a beginning of the data according to an alignment pattern corresponding to the data when the data rate of the data is recognized. |
US08605776B2 |
Proximity contactless communication apparatus capable of selecting appropriate encoding method according to bandwidth between antennas
A comparator circuit compares a test pattern generated by a test pattern generator circuit, with a test pattern transmitted to a memory card and returned from the memory card. A control circuit determines a bandwidth corresponding to frequency components correctly transmitted between a host apparatus and the memory card, based on the returned test pattern, and selects an encoding method requiring a maximum available bandwidth. The control circuit generates a notification message indicating the selected encoding method, and encodes the notification message using the selected encoding method, and transmit the encoded notification message to the memory card. The control circuit establishes communication between the host apparatus and the memory card, when receiving a response message including an acknowledgement to the notification message, from the memory card. |
US08605773B2 |
Apparatus and method for data communication using radio frequency
A data communication apparatus using a radio frequency and a data processing method thereof are provided. A first communication apparatus frequency shift keying and phase shift keying modulates and transmits data from a service server to a radio frequency band. A second communication apparatus modulates, demodulates, and outputs the data. The data communication apparatus using a radio frequency, includes: a data modulation module frequency shift keying and phase shift keying modulates data to a radio frequency band to generate a modulated data signal; and a data transmission module transmitting the modulated data to another communication apparatus. |
US08605769B2 |
Semiconductor laser device and manufacturing method thereof
A semiconductor laser device includes: a substrate having a principal plane; a photonic crystal layer having an epitaxial layer of gallium nitride formed on substrate in a direction in which principal plane extends and a low refractive index material having a refractive index lower than that of epitaxial layer; an n-type clad layer formed on substrate; a p-type clad layer formed on substrate; an active layer that is interposed between n-type clad layer and p-type clad layer and emits light when a carrier is injected thereinto; and a GaN layer that covers a region directly on photonic crystal layer. Thus, the semiconductor laser device can be manufactured without fusion. |
US08605767B2 |
Long semiconductor laser cavity in a compact chip
Long semiconductor laser cavities are placed in relative short length chips through the use of total internal reflection (TIR) surfaces formed through etched facets. In one embodiment, a laser cavity is formed along the perimeter edges of a rectangular semiconductor chip by using three 45° angled TIR facets to connect four legs of a ridge or buried heterostructure (BH) waveguide that defines the laser cavity. In other embodiments, even more TIR facets and waveguide legs or sections are employed to make even longer laser cavities in the shape of rectangular or quadrilateral spirals. These structures are limited in the spacing of adjacent waveguide sections, which if too small, can cause undesirable coupling between the sections. However, use of notches etched between the adjacent sections have been shown to decrease this coupling effect. |
US08605764B1 |
Laser diode junction temperature compensation
A projection apparatus includes at least one laser diode and a laser diode junction temperature estimator to estimate the junction temperature of the at least one laser diode. Laser diode current drive values are modified in response to the estimated laser junction temperature. The modification of laser diode current drive values may occur as frequently as once per pixel. |
US08605763B2 |
Temperature measurement and control for laser and light-emitting diodes
The existing diodes in an LED or laser diode package are used to measure the junction temperature of the LED or laser diode. The light or laser emissions of a diode are switched off by removing the operational drive current applied to the diode package. A reference current, which can be lower the operational drive current, is applied to the diode package. The resulting forward voltage of the diode is measured using a voltage measurement circuit. Using the inherent current-voltage-temperature relationship of the diode, the actual junction temperature of the diode can be determined. The resulting forward voltage can be used in a feedback loop to provide temperature regulation of the diode package, with or without determining the actual junction temperature. The measured forward voltage of a photodiode or the emissions diode in a diode package can be used to determine the junction temperature of the emissions diode. |
US08605759B1 |
Device with pre-emphasis based transmission
A device is provided and includes a multiplexer that receives signals and generates an output signal based on a selected one of the signals. The output signal includes frequencies and has a respective signal magnitude at each of the frequencies. A control circuit determines gain values. A transmitter provides pre-emphasis to the output signal to offset a characteristic of a channel, and transmits the output signal with the pre-emphasis on the channel. The transmitter, in providing the pre-emphasis: provides delayed versions of the output signal, where each of the delayed versions of the output signal has a different amount of delay than other delayed versions of the output signal; and amplifies each of the delayed versions of the output signal based on a respective one of the gain values such that certain ones of the signal magnitudes are amplified, and other ones of the signal magnitudes are attenuated. |
US08605757B2 |
Closed-loop clock synchronization
A network comprising a destination node, and a plurality of source nodes configured to transmit high-priority data and low-priority data to the destination node, wherein the source nodes correlate the transmission of the high-priority data to the destination node such that the high-priority data from each source node does not substantially contend with the high-priority data from the other source nodes upon arrival at the destination node. Also disclosed is a network component comprising at least one processor configured to implement a method comprising creating a periodic time window, partitioning the time window into low-priority time-bands and high-priority time-bands, placing a plurality of high-priority packets in the high priority time-bands, and placing a plurality of low-priority packets in the low-priority time-bands. |
US08605755B2 |
Methods, systems, and devices for bandwidth conservation
Methods, systems, and devices are disclosed for conserving bandwidth. If a presence of a multimedia device is detected, then a stream of data is delivered to the multimedia device. If the presence of the multimedia device is not detected, then the stream of data is degraded to conserve bandwidth. |
US08605752B2 |
Communication apparatus, communication method, and computer program
A communication apparatus includes: a higher-layer processing unit that starts up a retransmission process of a corresponding packet in accordance with reception of a Duplicate ACK packet; and a lower-layer processing unit that collects a plurality of the Duplicate ACKs received through a network as one ACK and sends the one ACK to a higher layer. |
US08605751B2 |
Symbol mapping apparatus and method
In a symbol mapping apparatus, a channel coder outputs a codeword including a plurality of information bits and a plurality of redundancy bits by encoding transmission data. A symbol mapper maps the codeword to the symbol while changing a mapping scheme in the unit of the codeword. |
US08605749B2 |
Frame-merging apparatus and method
A frame-merging method is adapted for a network that includes mesh and terminal units, in which any two units capable of communication form a communication pair, and one of the units operates as a key unit to transmit pending frames according to the frame-merging method. The frame-merging method includes: determining whether the key unit is a mesh or a terminal unit; for the communication pair recorded in each pending frame, selecting a suitable scheme from a plurality of frame-merging schemes, and extracting at least one of the pending frames from among the pending frames for use as part or all of a priority frame set; and comparing a total size of all frames included in the priority frame set with a suitable frame size, so as to determine whether the key unit is to send an aggregated frame. A frame-merging apparatus is also disclosed. |
US08605747B2 |
Using dedicated upstream channel(s) for cable modem initialization
A system facilitates initialization of devices in a cable modem network. The system may provide downstream channels for transmitting data to the devices and upstream channels for receiving data from the devices. At least one of the upstream channels may be dedicated to providing initialization opportunities. This dedicated upstream channel(s) includes less than all of the upstream channels. The system may transmit upstream channel identifiers on the downstream channels, where each of the upstream channel identifiers identifies one of the upstream channels. The system receives initialization data on the dedicated upstream channel(s). |
US08605743B2 |
Power line communications device transmitting at differing power levels in same communication
A power-line communications (PLC) device communicates with a second PLC device via a PLC medium and includes a transmitter and a receiver. The transmitter transmits a Request to Send (RTS) communication to the second PLC device at a first power level. The receiver receives a Clear to Send (CTS) communication from the second PLC device. The transmitter transmits data to the second PLC device at a second power level that is less than the first power level. The transmitter transmits a TDM frame to the second PLC device that includes a preamble and header transmitted at a first power level and at least one special data symbol and a payload transmitted at a second power level that is less than the first power level. The special data symbol resides between the preamble or header and the payload and is usable by the second PLC device for processing of the payload. |
US08605733B2 |
Method of data transmission, data transmitting apparatus, and network system
A method of data transmission that includes: transmitting first data to be transferred in a synchronous packet using a second asynchronous packet having priority higher than that of a first asynchronous packet; and requesting transmission of second data following the first data using the second asynchronous packet after a lapse of a certain time from the transmission of the second asynchronous packet. |
US08605732B2 |
Method of providing virtual router functionality
A method of presenting different virtual routers to different end users, classes of service, or packets is provided. An incoming packet is received having a VLAN field and at least one additional field. A key is formed from the VLAN field and at least one other packet field, and mapped into a virtual router identifier (VRID) using an indirection mapping process. The VRID identifies a particular virtual router configuration from a plurality of possible virtual router configurations. A networking device is configured to have the particular virtual router configuration identified by the VRID, and the packet is then forwarded by the configured device. |
US08605731B2 |
Network system and server
One or more LAN switches capable of accessing the contents of a MAC address table, which the LAN switch contains, from the outside; and a presence server storing in a storage device a first correspondence table between a MAC address of a network interface, which equipment contains, and its user, and a second correspondence table between a port of the above-described LAN switch, and a physical range wired therefrom, are used to thereby obtain a correspondence table between the equipment, its user, and its physical location (range), whereby making applicable also to a wired LAN at the time of determining the location of the equipment or the location of a user using the equipment in a building, and making realizable at low cost, and allowing the location to be determined accurately within a predetermined segmented area, and not being affected even if an IP address is changed. |
US08605728B2 |
Method of implementing traversal of multimedia protocols through network address translation device
The present invention discloses a method of implementing traversal of multimedia protocols through Network Address Translation device, wherein the Network Address Translation (NAT) device establishes a mapping relationship between address of a terminal in a private network and address of a terminal in a public network, and enables the terminal in the private network to access the public network with a common address, so as to implement the interaction of media streams between the terminal in the private network and the terminal in the public network, in which the common address is a address of the private network for accessing the public network. |
US08605723B2 |
MPLS traffic engineering for point-to-multipoint label switched paths
A method and apparatus for providing point-to-multipoint label switch paths (LSPs) in a Multi-Protocol Label Switching (MPLS) network is described. In one embodiment, a point-to-multipoint LSP is built in a MPLS network by using Resource Reservation Protocol Traffic Engineering (RSVP-TE) to signal the point-to-multipoint LSP as separate point-to-point LSPs and to merge the separate point-to-point LSPs into the point-to-multipoint LSP. |
US08605720B2 |
Analyzing a network with a cache advance proxy
In an example embodiment described herein, there is disclosed an implementation for analyzing a network having cache advance (CA) segments, such as a session control protocol (SCTP) pipe. The path between endpoints, e.g. a client on a first local area network (LAN) and a server on a second LAN, wherein the first and second LAN are coupled by an SCTP pipe, is determined and properties of the path are acquired. |
US08605719B2 |
Circuit with network of message distributor circuits
Source circuits (10) produce messages that may each be processed by any one of a plurality of processing circuits (14). A network of distributor circuits is provided between the source circuits and the processing circuits (14). Local decisions by the distributor circuits in the network decide for each message to which one of the processing circuits the message will be routed. Messages are supplied to at least two parallel distributor circuits. These distributor circuits (12a) select from further distributor circuits (12b) in the network on the basis of current availability of individual ones of the further distributor circuits (12b). The respective messages are in turn forwarded from the selected further distributor circuits (12b) to data processing circuits (14) along routes selected by the selected further distributor circuits (12b) on the basis of current availability of the data processing circuits (14) and/or subsequent distributor circuits (12c) in the network. |
US08605717B2 |
Two-dimensional circulating switch
A one-dimensional circulating switch may be defined by connections between several switch modules and one or more temporal cyclic rotators. Where a switch module that is part of a first one-dimensional circulating switch is also connected one or more temporal cyclic rotators that define a second one-dimensional circulating switch, a two-dimensional circulating switch is formed. A two-dimensional circulating switch is flexible and may scale to capacities ranging from a few gigabits per second to multiple Petabits per second. |
US08605712B1 |
Method and apparatus for distributing video with offload engine
A method and apparatus for enabling video distribution with a transport layer protocol offload engine are disclosed. The present invention provides a transport layer protocol offload engine-enabled NIC card with capabilities to classify the received packets, process transport layer protocols, and process the video packets directly on the NIC card. |
US08605711B1 |
Small office or home office (SOHO) IP phone service
An approach for supporting telephony services for use over a data network that includes at least one of the Internet and a private Intranet is disclosed. A communications system includes a switch that is coupled to a telephone network and is configured to determine presence of a dialing prefix of a call. The system also includes a gateway that is coupled to the data network and configured to communicate with the switch. The switch selectively routes the call based upon the presence of the dialing prefix to the gateway. |
US08605702B2 |
Maintaining a maintenance channel in a reverse link of a wireless communications system
In a reverse link of a wireless CDMA communication system, a method of maintaining an idling mode connection between a field unit and a base transceiver station is provided using various techniques to maintain the idle mode connection at a reduced power level. A preferred embodiment computes a time slot or frame offset based on modulo function using a field unit identifier in order to distribute field unit maintenance transmissions among available slots or offsets. An alternate embodiment detects explicit signaling states changes at the physical layer and causes power target changes. A further embodiment transmits maintenance data during predetermined time intervals, coordinated between the field units and BTS, allowing power levels to be adjusted accordingly. |
US08605697B2 |
On-demand services by wireless base station virtualization
Initiating a virtual presence at a physical access point in response to a request for a service from a wireless access device is provided. A particular wireless service may be provided to a subscriber on an on-demand basis according to location and/or type of service requested. The service may be terminated when demand for the service comes to an end whereby a common wireless service infrastructure may be shared amongst service providers thus eliminating the need for radio channel coordination and otherwise enhancing service quality for those service providers. |
US08605691B2 |
Enhanced site report by low latency roaming by passive scanning in IEEE 802.11 networks
In order to reduce the average wait time, information regarding regulatory domain, a component of channel availability, may be obtained through an apparatus and method for transmitting within available channels in a wireless network. This includes determining available channels in a wireless network by: receiving regulatory domain information within the wireless network; generating a frame with at least one component corresponding to the regulatory domain information; transmitting the frame unsolicited by a beacon; receiving the report at a station; and determining whether a channel is available for transmission based, at least in part, on the component corresponding to the regulatory domain information contained in the frame. |
US08605684B2 |
System and method for coordinated multi-point network operation to reduce radio link failure
A system and method for implementing call handover (HO) is disclosed. A user equipment (UE) is configured to communicate with a wireless communication network. The UE is configured to transmit a measurement report to at least one of a serving cell and at least one cell of a coordinated multi-point (CoMP) cell set. The UE is also configured to listen for control channel transmissions from at least one of the serving cell and a first cell in the CoMP cell set, receive a resource allocation from at least one of the serving cell and the first cell in the CoMP cell set, and receive an HO command jointly from the serving cell and the first cell in the CoMP cell set. The HO command identifies a target cell. The UE is also configured to perform handover to the target cell identified in the HO command. |
US08605682B2 |
Systems and methods for handoff of a mobile telephone call in a VOIP environment
When a mobile telephony device is conducting a voice over Internet protocol (VOIP) telephone call via a data network, and the mobile telephone device transitions from a first wireless data connection to a second wireless data connection, signaling between the mobile telephone device and a media relay inform the media relay how to address data packets bearing the media of the call after the transition has occurred. In some embodiments, the mobile telephone device establishes multiple simultaneous wireless data connections, and the mobile telephony device switches the media of the call between the wireless data connections depending on the quality of the wireless data connections. |
US08605679B2 |
Method for avoiding resource being released mistakenly during tracking area update or handover process
A method for avoiding resource being released mistakenly during tracking area update or handover process comprising: determining, by a target Mobility Management Entity MME, whether to use an old System Architecture Evolution Serving GW or to reselect a new Serving GW; if the target MME determines to select a new serving GW, notifying the original MME, the original MME sending a request for deleting bearer to the old Serving GW. The technical scheme of the present invention can avoid that the original MME will still send a request for deleting subscriber context to the old Serving GW when the target MME still uses the old Serving GW rather than selects a new one during tracking area update or handover process of the subscriber, which results in the appearance of a problem that the resource related to the subscriber in the old Serving GW is released mistakenly. |
US08605674B2 |
Method and apparatus for transmitting and receiving duplicate data in a multicarrier wireless communication system
The present invention relates to a wireless communication system, and more particularly, discloses a method and an apparatus for transmitting and receiving duplicate data in a multicarrier wireless communication system. According to one embodiment of the present invention, a method in which a transmitter, which supports carrier aggregation for performing communication using N (N≧2) component carriers, transmits duplicate data, comprises the steps of: generating, in a media access control (MAC) layer of the transmitter, N duplicate data using radio link control (RLC) protocol data units (PDUs) from an RLC layer, and simultaneously transmitting, to a receiver, the respective N duplicate data on the N component carriers through respective N hybrid automatic repeat and request (HARQ) entities. |
US08605669B2 |
System and method for signaling control information in a mobile communication network
A method of wirelessly transmitting control information includes generating control information comprising a plurality of control bits and encoding the control bits using a block code that outputs an encoded bit sequence comprising encoded bits b(0), b(1), . . . , b(19). The control bits are encoded using the block code by generating a linear combination of a plurality of basis sequences. The method also includes dividing the encoded bits into a first group and a second group. The first group includes the encoded bits {b(0), b(1), b(5), b(6), b(8), b(11), b(12), b(14), b(17), b(19)} and the second group includes the encoded bits {b(2), b(3), b(4), b(7), b(9), b(10), b(13), b(15), b(16), b(18)}. Additionally, the method includes transmitting the first group of encoded bits on a first set of carriers and transmitting the second group of encoded bits on a second set of carriers. The second set of carriers have different frequencies from the first set of carriers. |
US08605668B2 |
Common channel configuration for multipoint communications
A user equipment UE obtains channel configurations from each of a serving cell and n neighbor cells which have been determined to be suitable for data communications with the UE, from which the UE creates a combined channel configuration and utilizes it for multipoint communications with those cells. In specific embodiments: the respective channel configurations are obtained from the respective cells' system information; the n neighbor cells are determined to be suitable by the UE comparing each cell's received signal strength/quality against a threshold. The UE may get a neighbor cell list NCL and the threshold and consider each cell on the NCL as one of the n neighbor cells if its signal strength/quality exceed the threshold, then the UE may acquire system information for only those n neighbor cells instead of all cells on the NCL. The UE then reports in uplink signaling that the n neighbor cells are suitable. |
US08605665B2 |
Apparatus and method for transmission time interval reconfiguration in a mobile communication system
An apparatus and method for Transmission Time Interval (TTI) reconfiguration in a mobile communication system are provided. The apparatus includes an ACK/NACK determiner, an ACK/NACK controller, and a TTI controller. The ACK/NACK determiner determines if a response signal to be transmitted is ACKnowledgment (ACK) or Non ACKnowledgment (NACK) depending on an error or non-error of data received from a User Equipment (UE). The ACK/NACK controller counts the ACK and NACK determined in the ACK/NACK determiner. The TTI controller identifies if number of the latest ACKs counted in the ACK/NACK controller is continuously generated by preset number of times and, if it is continuously generated by the present number of times, reconfigures a new TTI. |
US08605664B2 |
Adaptive modulation and coding in a SC-FDMA system
A method and a system for transmitting data by a transmitter over a channel having a predetermined channel quality estimate, comprises the steps of splitting (S2P) input data stream (S40, S60, S80) to be transmitted into a plurality of data sub-streams (S40a, S40b, S40c); processing (SYM1, SYM2, SYMj) each of the plurality of data sub-streams (S40a, S40b, S40c) into a plurality of symbol subsets (S41, S42, S43) by selecting a certain scheme of coded-modulation (BPSK, QPSK, 16-QAM); processing, separately, each of the plurality of symbol subsets (S41, S42, S43), via a plurality of separate Discrete Fourier Transforms (DFT1, DFT2, DFT3), herein after denoted as DFTs, to obtain a plurality of DFT-precoded data sub-streams (S44, S45, S46); allocating each DFT-precoded data sub-stream (S44, S45, S46) in a frequency resource block (RB1, RB2, RB3), via a sub-carrier mapping module (SCM), so that for each data sub-stream (S40a, S40b, S40c) the selected scheme of coded-modulation (BPSK, QPSK, 16-QAM) is chosen in dependence of the values of the channel quality estimate at the frequencies of its own allocated frequency resource block (RB1, RB2, RB3). |
US08605661B2 |
Method and system for implementing a single weight spatial multiplexing (SM) MIMO system
Certain aspects of the method may comprise generating at least one control signal that may be utilized to control at least a first of a plurality of received spatially multiplexed communication signals. An amplitude and/or phase of the first received spatially multiplexed communication signal may be adjusted via the generated control signal so that the amplitude and/or phase of the first received spatially multiplexed communication signal may be equivalent to an amplitude and/or phase of a second received spatially multiplexed communication signal. The amplitude of the first received spatially multiplexed communication signal is adjusted within the processing path used to process the first received spatially multiplexed communication signal. |
US08605659B2 |
Method for enhanced dedicated channel (E-DCH) transmission overlap detection for compressed mode gap slots
A method and apparatus for detecting an overlap of an E-DCH transmission or retransmission in TTIs that overlap with an assigned uplink compressed mode gap is disclosed. More specifically, detecting an overlap of an E-DCH transmission or retransmission in TTIs that overlap with an uplink compressed mode gap assigned by a Node B when a WTRU is configured with a 2 ms TTI is disclosed. After detecting the overlap of the E-DCH transmission or retransmission and the uplink compressed mode gap, the E-DCH transmission or retransmission is paused. |
US08605658B2 |
Multi-antenna wireless communication method and multi-antenna wireless communication device
The wireless communication devices A and B determine the optimal diversity combining weight information that optimizes a diversity reception state at each antenna group A1, A2, . . . , AP through two-way training signal transfer between the wireless communication devices A and B. This optimal diversity combining weight information is set to each antenna of each antenna group A1, A2, . . . , AP. Wireless communication units A′, B′ perform spacial mapping of signals from antenna group A1, A2, . . . , AP using MIMO technology. Communication area can be enlarged by hierarchization MIMO using the optimal diversity combining weight information. |
US08605654B2 |
Apparatus, system, and method for a remote radio module with relay capability
Provided are an apparatus, system, and method for facilitating wireless communication between a hub and a mobile terminal via a remote radio module. The remote radio module includes a first transceiver operable to wirelessly communicate with the mobile terminal, a second transceiver operable to wirelessly communicate with the hub that is coupled to a core network, and a processor for executing instructions stored in memory. The instructions include instructions for receiving a signal from the hub at a first carrier frequency and processing the signal so that the signal can be retransmitted to the mobile terminal at a second carrier frequency different from the first carrier frequency. |
US08605640B2 |
Network aware content pre-delivery over a radio access network
Efficient delivery of subscription content over a wireless network is described herein. In one implementation a device may receive load information regarding network traffic load at radio interfaces for a cellular network. The device may maintain subscription information relating to subscribers that have subscribed to receive content items and to availability of the content items. The device may determine whether a quantity of mobile devices, that are attached to the base station and are associated with subscribers that have subscribed to the first content item, is above a threshold. Finally, the device may transmit, when it is determined that the quantity of mobile devices is above the threshold, the first content item to the quantity of mobile devices as a multicast transmission over a radio interface associated with the base station. |
US08605638B2 |
Voice messaging method and mobile terminal supporting voice messaging in mobile messenger service
A voice messaging method and a mobile terminal supporting the voice messaging method in a mobile messenger service are provided. The mobile terminal includes a microphone for capturing sound wave and converting the sound wave into an audio signal; an audio storage unit for storing the audio signal; an audio data generation unit for generating audio data packets with the audio signal; a packet data communication network interface unit for providing a packet data communication network; and a control unit for controlling the microphone, audio storage unit, audio data generation unit, and packet data communication network interface unit to capture the audio signal and transmit the audio signal in the form of the audio data packets in response to audio message transmission request entered in the middle of a mobile messenger service session. The voice messaging method includes recording a voice message in response to a voice message transmission request entered in the middle of the mobile messenger service session, generating audio data packets containing the voice message; and transmitting the audio data packets through a packet data communication network in a predetermined period. |
US08605637B2 |
Throttling access points
A technique for controlling the amount of power consumed by access points (APs) of a wireless network involves implementing throttleable APs (TAPs). It would be desirable for the TAPs to be in a relatively low power mode during periods of low activity, and switch to a high power mode in response to increased wireless activity. To that end, a throttling engine can be implemented to throttle TAPs up in power in response to increases in wireless activity, and throttle TAPs down in power in response to decreases in wireless activity. |
US08605628B2 |
Utilizing betweenness to determine forwarding state in a routed network
A set of critical nodes or links is identified on the network through which most of the shortest paths on the network occur. Each node compares their distance to end points on the network with a distance between the end points and each of the distinct critical nodes. Where the distance between the end points and the critical nodes is shorter than the distance between the end points and the node, the node is not on the shortest path and does not install forwarding state. Where the distance between the end points and the critical node is larger than or equal to the distance between the end points and the node, the node may be on the shortest path between the pair of end nodes and installs forwarding state. Installation of forwarding state may cause packet duplication, but determining forwarding state is dramatically simplified. |
US08605627B2 |
Provider link state bridging (PLSB) computation method
A method of multicast route computation in a link state protocol controlled network. A spanning tree is computed from a first node to every other node in the network using a known spanning tree protocol. The network is then divided into two or more partitions, each partition encompassing an immediate neighbor node of the first node and any nodes of the network subtending the neighbor node on the spanning tree. Two or more of the partitions are merged when a predetermined criterion is satisfied. Nodes within all of the partitions except a largest one of the partitions are then identified, and each identified node examined to identify node pairs for which a respective shortest path traverses the first node. |
US08605624B2 |
Methods and devices for exchanging peer parameters between network devices
Methods and devices are provided for detecting whether peer ports interconnecting two network devices can perform a novel protocol called Exchange Peer Parameters (“EPP”). If the peer ports are so configured to perform EPP, EPP services are exchanged between the peer ports. In a first phase, information is exchanged about peer port configurations of interest. In a second phase, the results of the exchange of information are applied to hardware and/or software of the respective ports, as needed. |
US08605622B2 |
Route setup server, route setup method and route setup program
A route setup server has a storage unit, an IP routing unit and a flow management unit. A routing determination table indicating a router node assigned to an IP router among the plurality of nodes is stored in the storage unit. The IP routing unit has a software-based IP routing module having a same function as an IP router with respect to each router node. The flow management unit refers to the routing determination table to check whether or not a requestor node of a route setup request corresponds to any router node. The IP routing unit performs packet IP routing by using the software-based IP routing module associated with the corresponding router node to update a header of the packet. After that, the requestor node of the route setup request is updated to a destination node designated by a destination MAC address of the packet. Such the processing is repeated and thus the communication route is determined. |
US08605621B2 |
Methods and devices for discovering a gateway and for routing towards said gateway in a hybrid wireless network
A gateway (25) between an ad hoc network (5) and a fixed network (2) in a hybrid telecommunications network (1) selects, from amongst candidate nodes (10) of the ad hoc network (5) that are located one hop from that gateway (25) and that have connectivity with that gateway (25) above a predetermined threshold, at least one gateway node (10′) for relaying at least part of the traffic between other nodes (10) of the ad hoc network (5) and the gateway (25). |
US08605620B2 |
System for transmitting high quality speech signals on a voice over internet protocol network
The VoIP quality speech process is activated when a subscriber accesses a speech quality sensitive resource or in response to an activation of the feature by the subscriber, or when it is determined that the originating subscriber terminal device requires the transmission of high quality speech signals. A transmit buffer, associated with the port circuit that serves the originating device, stores a predetermined number of packets as they are transmitted from the originating device. In the case of lost or damaged packets, the VoIP quality speech system activates the transmit buffer to retransmit the missing or damaged packet to the destination device. Intelligent buffer management is provided, where the destination device can regulate the size of the transmit buffer as well as the size of its jitter buffer. |
US08605619B2 |
Dynamic TE-LSP priority and preemption
In one embodiment, a node of a computer network receives a request to establish a traffic engineering (TE) label switched path (LSP). The node accesses a pre-defined range of preemption-priority values that may be used with the requested TE-LSP. The node determines a preemption-priority value at which adequate network resources to accommodate the requested TE-LSP would be available that is as low as possible within the pre-defined range of preemption-priority values. The node signals the requested TE-LSP with the determined preemption-priority value. The node receives notifications from one or more other nodes within the computer network indicating information about other TE-LSPs that would be preempted if the requested TE-LSP were established at the determined preemption-priority value. In response to the information regarding other TE-LSPs that would be preempted, the node determines whether to proceed with establishment of the requested TE-LSP at the determined preemption-priority value. |
US08605617B2 |
Packet capture system, packet capture method, information processing device, and storage medium
A sharing control processing unit controls sharing of capture of packets among measuring devices connected to the same network. An aggregating unit collects the captured packets. Each measuring device notifies the sharing control processing unit of a state about its capture. The sharing control processing unit determines which measuring device is to start/stop the capture, according to a predetermined rule and the notified state. When determining that the capture is to be switched from a first measuring device to a second measuring device, the sharing control processing unit instructs the second measuring device to start the capture. After receiving a notification that the second measuring device has actually captured a packet(s), the sharing control processing unit instructs the first measuring device to stop the capture. The aggregating unit identifies a duplicate packet(s) double captured by the first and second measuring devices. |
US08605615B2 |
Method and apparatus for multi-radio coexistence with a system on an adjacent frequency band having a time-dependent configuration
A method (500) and apparatus for multi-radio coexistence has a victim user equipment (UE) that receives (515) a sequence of subframes at a first transceiver from a serving base station, measures (520) channel state on the subframes to obtain channel state measurements, determines (530) a high-low interference pattern based on the channel state measurements, and transmits (550) to the serving base station a report that includes an indicator related to the high-low interference pattern. The method can include the victim UE receiving (610) an aggressor reference waveform (ARW) from the second transceiver, determining (620) spatial characteristics of the second transceiver from the ARW, and configuring (630) its antenna system based on the spatial characteristics. The method can have the victim UE determining (640) second transceiver characteristics from the ARW and transmitting (650) information regarding the second transceiver characteristics to its serving base station. |
US08605613B2 |
Mobile hardware and network environment simulation
The present technology provides an ability to simulate the performance of mobile content in a more realistic testing environment than previously available. Specifically, the present technology can mimic the fluctuations in network states that mobile devices typically experience. As the mobile content is tested using the simulated network states, the present technology can record the performance of the mobile content and create a log of the performance. Further, the present technology can also analyze the mobile content performance log and recommend various optimizations to increase the performance of the content. |
US08605612B2 |
Method and apparatus for extracting QoS parameters in mobile device
Provided are a method and an apparatus for extracting QoS parameters in a mobile device. In the method, all packets received from a terminal device are monitored, and SIP packets are filtered. When a real-time service application is executed on the terminal device, and an SIP request packet or an SIP response packet is filtered and input, QoS parameters are extracted from the SIP request packet or the SIP response packet. The extracted QoS parameters are incorporated into a wireless link data resource request and transmitted to a wireless network device. When a response to the wireless link data resource request is received, an uplink filter value for a new resource is extracted and added to a packet monitoring list. |
US08605608B2 |
Network buffer
Systems, methods, and other embodiments associated with generating a network buffer are provided. A network data model is input that includes a set of network elements, such as nodes and links, and respective costs associated with respective network elements. A center network element around which to generate the network buffer and an offset cost to define a boundary of the network buffer are also input. A network buffer is generated by determining a buffer coverage and cost. The network buffer is made up of a set of buffer network elements located within the offset cost with respect to the center network element. The cost for each buffer network element is determined as the cost associated with travelling a path with minimum cost from the center network element to the corresponding buffer network element. The buffer coverage and costs are output for subsequent analysis. |
US08605607B2 |
Method for implicit conveying of uplink feedback information
Method and apparatus for conveying feedback reports from a data receiving party (300) for data received from a data sending party (302) in a wireless connection. A plurality of feedback resources (304) assigned to different feedback information codes are allocated to the data receiving party for transmitting feedback reports. After checking whether the data was received correctly or not, the data receiving party selects a feedback resource (FR2) with a feedback information code that corresponds to one or more feedback reports on the received data. The data receiving party then sends feedback information on the selected feedback resource to the data sending party, thereby conveying the corresponding feedback information code. In this way, multiple feedback reports can be conveyed in a single feedback resource to the data sending party while still retaining single carrier properties. |
US08605606B2 |
Method and apparatus for triggering radio link control packet discard and radio link control re-establishment
A method and apparatus for triggering radio link control (RLC) re-establishment and/or protocol data unit (PDU) discard are disclosed. An RLC entity maintains a state variable for counting a total number of transmissions and/or retransmissions of an RLC PDU and its PDU segments. If the state variable reaches a threshold, the RLC entity initiates RLC re-establishment and/or discards the RLC PDU and PDU segments. The state variable may be incremented each time a negative acknowledgement is received for at least a portion of the RLC PDU or when a retransmission is considered for the RLC PDU or a portion of the RLC PDU. The RLC entity may increase a state variable proportionate to a retransmitted data size. The RLC entity may maintain separate state variables for the RLC PDU and PDU segments and counts the number of transmissions and/or retransmissions for the RLC PDU and the PDU segments. |
US08605605B1 |
Setting initial data transmission size based on prior transmission
A network device is configured to monitor a data size of data transmitted to a particular destination during a particular time period, determine, based on the monitored data size, an average data size for the particular destination and for the particular time period, establish a data connection toward the particular destination during the particular time period, set an initial data size for the data connection based on the average data size, and transmit data on the data connection in an amount equal to the initial data size. |
US08605603B2 |
Route convergence based on ethernet operations, administration, and maintenance protocol
In an example embodiment, a method of route convergence is provided. In this method, a loss of connectivity is detected along a communication route by way of an Ethernet Operations, Administration, and Maintenance (OAM) protocol. Examples of Ethernet OAM protocols include Connectivity Fault Management protocol and Ethernet Local Management Interface protocol. Thereafter, a data link layer identifier associated with the communication route is identified and this data link layer identifier is mapped to a network layer address. Convergence on an alternate communication route can then be based on the mapped network layer address. |
US08605600B2 |
Wireless communication system, access point, controller, network management device, and method of setting network identifier of access point
There is provided a wireless communication system including: a wireless terminal that communicates information; an access point that performs wireless communication with the wireless terminal; a main server that communicates with the access point through a network and manages line connection of the wireless terminal; and a survival server that communicates with the access point through the network and manages the line connection of the wireless terminal in place of the main server, wherein the access point detects a communication state between the main server and the access point and between the survival server and the access point, and sets a network identifier of the access point according to the communication state, and wherein the wireless terminal performs wireless communication with the access point using the network identifier, and communicates information with the main server or the survival server according to the network identifier. |
US08605595B2 |
Method and apparatus for transmitting and receiving data using multiple access links
A data receiving method in a wireless LAN system using multiple channels includes: determining whether a difference value of signal levels of first and second access points is equal to or less than a preset value; transmitting an association request frame to the first and second access points according to the determination result; and receiving association response frames from the first and second access points. |
US08605592B2 |
Method and arrangement in a communication system
The present invention proposes a solution in the area of HSDPA flow control. It proposes an improvement to transport network congestion detection and avoidance. The improvement proposes to use a measurement of incoming bitrate to determine the reduction of bitrate after a transport network congestion event. The advantage is that high bitrate reduction is only used when it is necessary; otherwise only small bitrate reduction is used, which results in small oscillation, and consequently higher transport network utilization. |
US08605591B2 |
System and method for optimizing packet routing in a mesh network
A method is provided in one example and includes receiving a first packet and a second packet that propagate in a mesh network and evaluating hop count metrics associated with the first packet and the second packet (e.g., evaluate the number of hops traversed in the mesh network, hop characteristics, etc.). The first packet is sent to a first queue, the second packet is sent to a second queue. The first queue is associated with a first hop count detected in the first packet, and the second queue is associated with a second hop count detected in the second packet. A buffer overflow condition can be identified. The method further includes discarding the second packet based on the second hop count being less than the first hop count. Discarding of the second packet may be performed in response to any type of congestion parameter detected in the mesh network. |
US08605586B2 |
Apparatus and method for load balancing
Systems and methods of balancing traffic load in a wireless communication network include calculating a load metric for each of a plurality of users, wherein each of the plurality of users, in operation, are in communication with a first base station using an overloaded carrier associated with the first base station. Such load metric for each user may include a plurality of metric factors related at least to an associated communication link. Based on the calculated load metric, a transfer-deserving user from the plurality of users may be determined. The transfer-deserving user may be associated with a highest value of an associated calculated load metric. For load balancing at the first base station, the associated communication link of the transfer-deserving user may be transferred from the overloaded carrier to a target carrier, wherein the target carrier may be associated with either the first base station or a second base station. |
US08605582B2 |
IP network system and its access control method, IP address distributing device, and IP address distributing method
An IP network system includes an IP address generating device that sets a specific area in a node identifier of an IP address as an access control area that can be filtered by a network layer control device, and generates an IP address including a communication policy of the IP network system embedded in the access control area, and the network layer control device capable of filtering the access control area, wherein the network layer control device is configured to perform filtering setting according to the communication policy and thereby performs access control. |
US08605580B2 |
Maximization of throughput under a fairness constraint in DWDM-based optical networks
A method for enhancing the carrying capacity of a network, comprising the steps of detecting the level of traffic incident on the network, and reserving, dynamically, wavelengths for a class of traffic according to the level of traffic incident on the network. The network can be a dense wavelength division multiplexing optical network. |
US08605576B2 |
Communication network system, data transmission method, and node apparatus
A communication network system includes a processor, and a plurality of node apparatuses using a protocol to establish paths therebetween, wherein the processor determines each of the node apparatuses to be a packet source or a packet destination, and operates to detect an occurrence of failure in two paths being established between the packet source and the packet destination in the communication network system, and wherein the processor transmits packet data including user data through one of the two paths, and when one of the node apparatuses detects an occurrence of a failure in one of the two paths, the processor changes the path to the other path. |
US08605569B2 |
Methods for superframe/frame overhead reduction within OFDMA-based communication systems
A method for tessellating a subframe using maximal-sized bricks. A brick bandwidth and a brick time duration are computed based on the heights and widths of the bursts in the subframe. Bursts within the brick-tessellated subframe are referenced using a brick-based coordinate system in which burst location and size are specified in units of bricks. A method for assembling and disassembling brick-based superframes is also disclosed. Bricked-based superframes are assembled and disassembled using a Superframe Preamble, a Superframe Control Header (SFCH), a Superframe Downlink Map (SDL-MAP), a Superframe Uplink MAP (SUL-MAP) and brick-structured downlink and uplink frames. |
US08605560B2 |
Storage system and storage control method
A storage system includes plural drive devices and a control device. Each of the plural drive devices reads or writes data from or to a portable recording medium. The control device performs a parallel process in which a first process and a second process are performed in parallel. The first process is to write specified data to a first portable recording medium via a first drive device of the plural drive devices. The second process is to write the specified data to a second portable recording medium via a second drive device of the plural drive devices. The control device cancels, upon completion of either one of the first process and the second process, the other one of the first process and the second process. |
US08605557B2 |
Optical pickup
An optical pickup which excels in assembly workability and which can increase the drive force generated in a focusing coil is provided. The optical pickup has an objective lens, a lens holder holding the objective lens, and a first and a second focusing coil wound around the lens holder. The first focusing coil includes an upper part wound about a central axis extending in parallel with an optical axis of the objective lens and a lower part connected to the upper part. The second focusing coil includes an upper part wound, in a wiring system separate from the first focusing coil, about a central axis extending in parallel with the optical axis of the objective lens and a lower part connected to the upper part. |
US08605556B1 |
Channel waveguide extending into a gap of a near-field transducer
An apparatus includes a near-field transducer that having two metal elements configured as side-by-side plates on a substrate-parallel plane with a gap therebetween. The gap is disposed along the substrate-parallel plane and has an output end at a media-facing surface, and an input end opposite the output end. A channel waveguide is configured to deliver light to the input end of the near-field transducer. The channel waveguide has a core and cladding, and a portion of the core extends into the gap of the near-field transducer. |
US08605555B1 |
Recording media with multiple bi-layers of heatsink layer and amorphous layer for energy assisted magnetic recording system and methods for fabricating the same
An energy assisted magnetic recording (EAMR) system includes a magnetic recording medium including a plurality of bi-layers and a magnetic recording layer on the plurality of bi-layers, a magnetic transducer configured to write information to the magnetic recording medium, and a light source positioned proximate the magnetic transducer and configured to heat the magnetic recording medium. Each of the plurality of bi-layers includes a heatsink layer and an amorphous under-layer on the heatsink layer. |
US08605554B2 |
Laser power management for super-RENS optical recording media
Methods for operating an apparatus for reading from or writing to a Super-RENS optical recording medium, an apparatus for reading from Super-RENS optical recording media using such methods, and a Super-RENS optical recording medium suitable for such methods are described. The super-RENS optical recording medium has location information that is readable without super-RENS effect. The location information is provided as low-frequency information. For locating a position on the super-RENS optical recording medium, a reading light beam with a power below a power necessary for achieving a super-RENS effect is generated and the location information is retrieved from the super-RENS optical recording medium. |
US08605553B2 |
Annual calendar device for a timepiece
The annual calendar device carries a date ring (1) and a drive wheel (5) for said ring. The drive wheel (5) carries a mechanism (10) including a first finger (6) driving the ring (1) through one step each day and a second finger (7) which is inserted, at the end of the months of less than thirty-one days, into the trajectory of the teeth (4) of the ring (1) to move said ring forward one additional step. The second finger (7) is inserted into said trajectory by a kinematic chain (9) controlled by a toothing (8) carried by the ring (1). |
US08605552B1 |
Autonomous waterproof electronic signaling device
The autonomous waterproof electronic signaling device disclosed comprises an activator; an audible signal emitter and a visual signal emitter, the audible signal emitter to emit a primary signal upon activation of the activator, the audible signal emitter comprising one or more of the following: a hydrophone, a siren, a speaker, or a transducer; and a head assembly, the head assembly positioned so as to alter at least a portion of the primary signal producing a notification signal. The visual signal emitter comprises at least one of incandescent bulbs, compact fluorescent bulbs, strobe bulbs, high intensity discharge (HID) bulbs, and light emitting diodes (LED) bulbs. The audible signal emitter and a visual signal emitter are operative singly or in combination, continuously or intermittently. |
US08605550B2 |
Downscan imaging sonar
A downscan imaging sonar utilizes a linear transducer element to provide improved images of the sea floor and other objects in the water column beneath a vessel. A transducer array may include a plurality of transducer elements and each one of the plurality of transducer elements may include a substantially rectangular shape configured to produce a sonar beam having a beamwidth in a direction parallel to longitudinal length of the transducer elements that is significantly less than a beamwidth of the sonar beam in a direction perpendicular to the longitudinal length of the transducer elements. The plurality of transducer elements may be positioned such that longitudinal lengths of at least two of the plurality of transducer elements are parallel to each other. The plurality of transducer elements may also include at least a first linear transducer element, a second linear transducer element and a third linear transducer element. |
US08605548B2 |
Bi-directional wireless acoustic telemetry methods and systems for communicating data along a pipe
A bi-directional acoustic telemetry system is presented for communicating data and/or control signals between a first modem and a second modem along tubing. The system includes a communication channel defined by the tubing, a transducer of the first modem, and a transducer of the second modem. The transducer of each modem are configured to transmit and receive data and/or control signals, and are further configured to electrically communicate with a power amplifier characterized by an output impedance Zs and a signal conditioning amplifier characterized by an input impedance Zr. The system also includes a reciprocal response along the communication channel between the output impedance Zs and the input impedance Zr. |
US08605546B2 |
Seismic data acquisition systems and method utilizing a wireline repeater unit
A system and methods for acquiring seismic data is provided. In one aspect, the system and methods utilize a plurality of field service units placed over a region of interest, a repeater unit that wirelessly communicates with the field service units and a remote unit for controlling and processing the seismic data acquired by the field service units. In one aspect, the system and methods determine a condition associated with each of a plurality of attributes relating to acquisition of the seismic data at each field service unit, generate messages at each field service unit when the condition of a particular attribute meets a selected criterion, transmit the generated messages, receive the messages transmitted by at least a group of field service units at a repeater unit placed in the region of interest, analyze the messages received from the group of field service units at the repeater unit and then transmit information relating to the received messages to the remote unit for further processing. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. |
US08605544B1 |
Hybrid seismic sensor network
A system for monitoring seismicity during fluid injection at or near a hydrocarbon reservoir comprising: a first set of seismic sensors for deployment at a site for collecting seismic data; a second set of seismic sensors for sub-surface deployment at the site at a depth lower than the first set of seismic sensors for collecting seismic data, the first set of seismic sensors having a lower frequency response than that of the second set of seismic sensors; and a data collection system in communication with the first and second set of sensors. |
US08605543B2 |
Method and apparatus for correcting the timing function in a nodal seismic data acquisition unit
A wireless seismic data acquisition unit with a wireless receiver providing access to a common remote time reference shared by a plurality of wireless seismic data acquisition units in a seismic system. The receiver is capable of replicating local version of remote time epoch to which a seismic sensor analog-to-digital converter is synchronized. The receiver is capable of replicating local version of remote common time reference for the purpose of time stamping local node events. The receiver is capable of being placed in a low power, non-operational state over periods of time during which the seismic data acquisition unit continues to record seismic data, thus conserving unit battery power. The system implements a method to correct the local time clock based on intermittent access to the common remote time reference. The method corrects the local time clock via a voltage controlled oscillator to account for environmentally induced timing errors. The invention further provides for a more stable method of correcting drift in the local time clock. |
US08605541B2 |
Three-dimensional deghosting
The method presented accounts for three-dimensional effects when deghosting marine seismic data. The method relies on having second-order spatial derivatives in the cross-line direction available. The second-order cross-line derivative can be estimated directly or through indirect measurements of other wavefield quantities and by using wave-equation techniques to compute the desired term. The method preferably employs either a multicomponent streamer towed in the vicinity of the sea surface, a twin-streamer configuration near the sea-surface, or a configuration of three streamers that are separated either vertically or horizontally to estimate the second-order vertical derivative of pressure. |
US08605539B2 |
Hardware-based data eye training for high speed links
Hardware-based methods and apparatus are provided for training high speed data links used in data transfer applications. A data valid window is calibrated on one or more high speed links by determining an offset delay value for at least one datapath using a finite state machine, wherein the offset delay value is based on a maximum offset delay value and a minimum offset delay value for the at least one datapath; and delaying a read data strobe signal based upon a base delay and the offset delay value for the at least one datapath. The offset delay value can be, for example, an average of the maximum offset delay and the minimum offset delay. The received pattern can be a predefined pattern or a programmable pattern. In addition, the received pattern can cover single-bit transitions and/or multi-bit transitions. |
US08605534B2 |
Circuits, architectures, apparatuses, systems, algorithms, and methods for memory with multiple power supplies and/or multiple low power modes
Circuits, architectures, a system and methods for memories with multiple power supplies and/or multiple low power modes. The circuit generally includes peripheral circuitry operating at a first voltage, a memory array operating at a second voltage, and translation circuitry configured to receive an input from the peripheral circuitry at the first voltage and provide an output to the memory array at the second voltage, the translation circuitry further configured to prevent leakage during a standard operating mode of the memory. The method generally includes operating peripheral circuitry at a first voltage from a first power rail, operating a memory array at the first voltage or a second voltage, the memory array being coupled to a second power rail, coupling the first and second power rails during standard operating mode when the memory array operates at the first voltage, otherwise not coupling the first and second power rails, and reducing leakage in the memory array during a leakage reduction mode by reducing a voltage differential between a ground plane in the memory array and the second power rail. |
US08605528B2 |
Sense amplifier having an isolated pre-charge architecture, a memory circuit incorporating such a sense amplifier and associated methods
Disclosed are a sense amplifier and a memory circuit that incorporates it. The amplifier comprises cross-coupled inverters, each with a pull-down transistor and a pull-up transistor connected in series. One inverter has a voltage-controlled switch controlling the electrical connection between drain nodes of the transistors. During a read operation, the pull-up transistor drain node is pre-charged high and the pull-down transistor drain node receives an input signal. The switch is tripped, thereby making the electrical connection only when the voltage at the pull-down transistor drain node is less than the switch's trip voltage. In this case, the sense node discharges to the same level as the input signal. Otherwise, the switch prevents the electrical connection and the sense node remains high. The trip voltage depends on a reference voltage, which can be variable, thereby allowing the sensitivity of the sense amplifier to be selectively adjusted. Also disclosed are associated methods. |
US08605527B2 |
Mechanisms for built-in self test and repair for memory devices
Mechanisms for self-testing and self-repairing memories are efficient in testing and repairing failed memory cells. The self-test-repair mechanisms are based on self-test results of failed bit map (FBM) data of the entire memories and enable early determination of non-repairable memories to prevent and limit wasting time and resources on non-repairable memories. The self-test-repair mechanisms also involve identifying candidates for column and row repairs and allow repeated repair cycles until either the memories are deemed irreparable or are fully repaired. |
US08605523B2 |
Tracking capacitive loads
A time delay is determined to cover a timing of a memory cell in a memory macro having a tracking circuit. Based on the time delay, a capacitance corresponding to the time delay is determined. A capacitor having the determined capacitance is utilized. The capacitor is coupled to a first data line of a tracking cell of the tracking circuit. A first transition of the first data line causes a first transition of a second data line of the memory cell. |
US08605521B2 |
Sense amplifiers, memories, and apparatuses and methods for sensing a data state of a memory cell
Sense amplifiers, memories, and apparatuses and methods for sensing a data state of a memory cell are disclosed. An example apparatus includes a differential amplifier configured to amplify a voltage difference between voltages applied to first and second amplifier input nodes to provide an output. The example apparatus further includes first and second capacitances coupled to the first and second amplifier input nodes. A switch block coupled to the first and second capacitances is configured to couple during a first phase a reference input node to the first and second capacitances and to the first amplifier input node. The switch block is further configured to couple during the first phase an output of the amplifier to the second amplifier input node to establish a compensation condition. During a second phase, the switch block couples its input nodes to the first and second capacitances. |
US08605519B2 |
Pump circuit and semiconductor memory device including the same
A pump circuit includes a plurality of clock control circuits configured to transfer a clock to respective output terminals in response to respective pump-off signals or block the clock from being transferred to the respective output terminals, a plurality of charge pumps configured to generate respective high voltages by performing respective pumping operations in response to respective clock signals of the output terminals, and a plurality of switching circuits configured to transfer the respective high voltages to a final output terminal in response to respective control signals. |
US08605515B2 |
Memory devices and their operation with different sets of logical erase blocks
Methods of operating memory devices include storing data of a first type in a first set of logical erase blocks and storing data of a second type in a second set of logical erase blocks. The logical erase blocks of the first set of logical erase blocks each have a first size the logical erase blocks of the second set of logical erase blocks each have a second size different than the first size. |
US08605510B2 |
Flash memory device and method of verifying the same including a compensated erase verify voltage
Provided are a flash memory device and a method of verifying the same. The flash memory device includes: a memory cell for storing data; a sense amplifier for reading information of the memory cell; a load current input device for providing a load current to the sense amplifier; and a control circuit for controlling the load current input device to provide a load current during a memory cell reading operation, verifying the memory cell by using a program verify voltage if the memory cell is a programmed memory cell, and verifying the memory cell by using a compensated erase verify voltage if the memory cell is an erased memory cell. |
US08605504B2 |
Memory system
According to the embodiments, a memory system includes a nonvolatile semiconductor memory and a writing-loop-count monitoring unit that monitors a loop count of an applied voltage to the nonvolatile semiconductor memory required for data writing of the nonvolatile semiconductor memory as a writing loop count. Moreover, the memory system includes a management table for managing the writing loop count in block unit that is a unit of data erasing and a life managing unit that determines a degraded state of the nonvolatile semiconductor memory based on the management table. |
US08605503B2 |
Nonvolatile semiconductor memory device
A nonvolatile semiconductor memory device comprises a cell unit including a first and a second selection gate transistor and a memory string provided between the first and second selection gate transistors and composed of a plurality of serially connected electrically erasable programmable memory cells operative to store effective data; and a data write circuit operative to write data into the memory cell, wherein the number of program stages for at least one of memory cells on both ends of the memory string is lower than the number of program stages for other memory cells, and the data write circuit executes the first stage program to the memory cell having the number of program stages lower than the number of program stages for the other memory cells after the first stage program to the other memory cells. |
US08605498B2 |
Reliable set operation for phase-change memory cell
A Phase-Change Memory (PCM) device and a method of writing data to the PCM device are described. The PCM device includes a multi-phase data storage cell having at least a Set state and a Reset state that may be established using a heater configured to heat the data storage cell. A memory interface may be coupled with the heater configured to write data to the data storage cell, the data being represented by the Set or the Reset states. A write Reset pulse is used to place the data storage cell in the Reset state corresponding to a read value that is less than a read threshold. A write Set pulse that is a predetermined function of the write Reset pulse is used to place the data storage cell in the Set state. The PCM device may include additional intermediate states that enable each data storage cell to store two or more bits of information. Other embodiments may be described and claimed. |
US08605497B2 |
Parallel programming scheme in multi-bit phase change memory
A system, a method for parallel programming multiple bits of a phase change memory array for high bandwidth. The system and method includes parallel programming scheme wherein a common wordline (WL) is driven with a first pulse of one of: gradually increasing (RESET) or decreasing (SET) amplitudes which control current flow through one or more phase change memory cells associated with the WL. Simultaneously therewith, one or more bitlines (BLs) are driven with one or more second pulses, each second pulse more narrow than that of the first pulse applied to the WL. The starting time of the one or more second pulses may vary with each bitline driven at a time later than, but within the window of the wordline pulse to achieve a programming current suitable for achieving the corresponding memory cell state. |
US08605493B2 |
Phase change memory
A phase change memory with an operating current that can be gradually increased or gradually decreased. The phase change memory has a phase change storage element, a transistor, and a control circuit. The transistor is operable to adjust the operating current flowing through the phase change storage element. The transistor has a first terminal coupled to a voltage source, a second terminal coupled to the phase change storage element, and a control terminal receiving a control signal from the control circuit. The control circuit is specially designed to limit the transistor in a linear region. |
US08605492B2 |
Memory device, recording method, and recording and reproducing method
A memory device, includes a recording medium; a probe to write a plurality of the signals; a first driving portion to vibratory drive the recording medium; a detecting unit which, when the first driving portion changes a frequency to vibratory drive the recording medium, detects a change in an amplitude of the resonance drive, detects the frequency at which the amplitude becomes maximum as a resonance frequency; and a calculating unit which calculates a timing when the probe writes a plurality of the signals using the resonance frequency; wherein, the first driving portion vibratory drives the recording medium and the probe writes a plurality of the signals. |
US08605490B2 |
Non-volatile SRAM cell that incorporates phase-change memory into a CMOS process
A SRAM cell having two cross-coupled inverters formed by CMOS technology and first and second chalcogenic elements integrated with the SRAM cell to add nonvolatile properties to the storage cell. The PCM resistors are programmed to the SET state and the RESET state, and upon power-up the SRAM cell takes on the data contained in the PCM cells. |
US08605489B2 |
Enhanced data retention mode for dynamic memories
A memory device includes memory cells, each of the memory cells having corresponding bit and word lines connected thereto for accessing the memory cells, a word line circuit coupled with at least one word line, and a bit line circuit coupled with at least one bit line. The memory device further includes at least one control circuit coupled with the bit and word line circuits. The control circuit is operative to cause state information to be stored in the memory cells. At least one switching element selectively connects the memory cells, the bit and word line circuits, and the control circuit to at least one power supply as a function of at least one control signal. The control circuit generates the control signal for disconnecting at least portions of the word line and bit line circuits from the power supply while state information is retained in the memory cells. |
US08605481B2 |
Crossbar array memory elements and related read methods
Apparatus and related fabrication and read methods are provided for crossbar memory elements. An exemplary crossbar memory element includes a crossbar array structure including a set of access lines, unswitched resistance elements coupled electrically in series between the set of access lines and a reference voltage node, and switched resistance elements coupled electrically in series between the first set of access lines and the reference voltage node. To read from a selected access line, the switched resistance element associated with that access line is enabled while the remaining switched resistance elements are disabled. |
US08605478B2 |
Semiconductor device
In a sense circuit for DRAM memory cell a switch is provided between the bit line BL and local bit line LBL connected to the memory cells for isolation and coupling of these bit lines. The bit line BL is precharged to the voltage of VDL/2, while the local bit line LBL is precharged to the voltage of VDL. VDL is the maximum amplitude voltage of the bit line BL. A sense amplifier SA comprises a first circuit including a differential MOS pair having the gate connected to the bit line BL and a second circuit connected to the local bit line LBL for full amplitude amplification and for holding the data. When the bit line BL and local bit line LBL are capacitance-coupled via a capacitor, it is recommended to use a latch type sense amplifier SA connected to the local bit line LBL. |
US08605477B2 |
Semiconductor memory device
To provide a semiconductor memory device storing data, in which a transistor whose leakage current between a source/drain in off state is small is used as a writing transistor. In a matrix of a memory unit formed of two memory cells, in each of which a drain of a writing transistor is connected to a gate of a reading transistor and one electrode of a capacitor, a gate of the writing transistor, and the other electrode of the capacitor in a first memory cell are connected to a first word line, and a second word line, respectively. In a second memory cell, a gate of the writing transistor, and the other electrode of the capacitor are connected to the second word line, and the first word line, respectively. Further, to increase the degree of integration, gates of the reading transistors of memory cells are disposed in a staggered configuration. |
US08605476B2 |
Semiconductor device having hierarchical structured bit line
A sense operation with respect to simultaneously-accessed two memory cells is performed by time division by using two sense amplifiers, and thereafter restore operations are performed simultaneously. With this arrangement, it is not necessary to provide switches in the middle of global bit lines, and no problem occurs when performing the restore operation by time division. Further, because a parasitic CR model of a first sense amplifier and that of a second sense amplifier become mutually the same, high sensitivity can be maintained. |
US08605475B2 |
Semiconductor memory device, method of controlling read preamble signal thereof, and data transmission system
A system, includes a controller including a plurality of first external terminals configured to supply a command, a clock signal and an address, and communicate a data, and communicate a strobe signal related to the data, and a semiconductor memory device including a plurality of second external terminals corresponding to the plurality of first external terminals, one of the plurality of first external terminals and one of the plurality of second external terminals transferring an information specifying a length of a preamble of the strobe signal before the semiconductor memory device communicates the data. |
US08605474B2 |
Semiconductor memory device, method of controlling read preamble signal thereof, and data transmission system
A semiconductor memory device, includes a clock terminal provided to receive a clock signal, a data terminal provided to transfer a data therethrough in synchronization with the clock signal, a strobe terminal provided to be related in the data terminal and to transfer a strobe signal therethrough, a command terminal provided to receive a command that communicates the data with an outside thereof, and an address terminal provided to be supplied an information specifying a length of a preamble of the strobe signal from an outside of the semiconductor memory device, prior to communicating the data. |
US08605473B2 |
Semiconductor memory device, method of controlling read preamble signal thereof, and data transmission system
A system, includes a controller comprising a plurality of first external terminals configured to supply a command and an address, and communicate a data, and communicate a strobe signal related to the data; and a semiconductor memory device including a plurality of second external terminals corresponding to the plurality of first external terminals, at least one of the plurality of first external terminals and at least one of the plurality of second external terminals each being capable of supplying an information specifying a length of a preamble of the strobe signal before the semiconductor memory device communicates the data between the controller and the semiconductor memory device, the semiconductor memory device further including a preamble register configured to be capable of storing the information. |
US08605472B2 |
Buck-boost rectifier, refrigeration system including a buck-boost rectifier, and method of providing power to a refrigeration unit via a buck-boost rectifier
A buck/boost rectifier. The rectifier is connectable to an alternating current power source and includes an upper bus, a lower bus, an upper rectifier, a lower rectifier, a pulse-width-modulation (PWM) controller, a phase-angle (PA) controller, and a capacitor. The upper rectifier is coupled to the upper bus, and the lower rectifier is coupled in a series-type relationship with the upper rectifier and to the lower bus. The PWM controller is coupled to the lower rectifier and is configured to boost a direct current (DC) voltage output by the rectifier. The PA controller is coupled to the lower rectifier and is configured to buck the DC voltage output by the rectifier. The capacitor is coupled between the upper bus and the lower bus. |
US08605468B2 |
Switching power supply and image forming apparatus with EMF reduction of the current sense circuit
In a switching power supply, a current detection resistor is connected to a switching unit to detect a current flowing through the switching unit. A diode is connected in parallel to the current detection resistor to reduce heat generated in the switching unit by back electromotive force generated by an inductance component of the current detection resistor. |
US08605465B2 |
Methods of controlling a synchronous rectifier
Consistent with an example embodiment, there is a method of controlling a synchronous rectifier having an input signal having oscillations therein and a switch which is switchable between an open state and a closed state. The method comprises filtering the input signal to produce a filtered signal, comparing the filtered signal with a reference value, and opening the switch in response to the comparison, in which the filtering is active filtering.The active filtering may be based on determination of the peaks (positive and/or negative) of the signal, either directly, including a quarter period offset, or including decay—or a combination of the above; alternatively, the active filtering may be based on the a smoothing functions such as a switched low-pass filter or a short time integrator. |
US08605462B2 |
Switching circuit for primary-side regulated resonant power converters
The present invention provides a switching circuit to regulate an output voltage and a maximum output current at the primary side of a resonant power converter. The switching circuit includes a pair of switching devices and a controller. The controller is coupled to a transformer to sample a voltage signal thereof and generates switching signals to control the switching devices. The switching frequency of the switching signals is increased in response to the decrease of the output voltage. The increase of the switching frequency of the switching signals decreases the power delivered to the output of the resonant power converter. The output current is therefore regulated. |
US08605461B2 |
Phase current detection device and power conversion device using the same
A control section which repeats inverter control in units of an inverter control period having a predetermined length is provided. In the control section, a phase current detection period in which a phase current is detected is provided between predetermined two inverter control periods, each of switching states of switching elements of a inverter circuit is controlled so that a voltage pulse having a larger width than a width of a voltage pulse in the inverter control period is output from a shunt resistor in the phase current detection period. |
US08605460B2 |
Method for starting up DC-DC converter
Aspects of the invention provide a method for starting up a DC-DC converter by which an output voltage can be prevented from overshooting and body diodes of switching devices can be prevented from reverse recovery. In the start-up method, the phases of gate signals of third and fourth switching devices are gradually shifted relative to the phases of gate signals of first and second switching devices. With increase of the phase shift, a voltage on a primary side of a transformer is also increased, and an output voltage is also increased. |
US08605459B2 |
Stackable cable tray
A cable tray is provided comprising a housing defining an interior portion, the housing having at least one positioned opening formed therein and also having plural, open ends in communication with the interior portion and the at least one positioned opening for passage of at least one cable therethrough. The housing is adapted to be coupled to at least one external surface, such that at least one of the plural, open ends substantially aligns with at least one open end of a housing of at least one further cable tray. |
US08605457B2 |
Antenna for wireless utility meters
An integrated antenna and electromagnetic (EM) noise shield apparatus for use with a radio frequency communicating device and EM noise generating electronic equipment housed within a generally cylindrical outer glass enclosure or bezel of wireless utility meter. A flexible printed circuit (PC) board has an upper region and a lower ground plane region. A radiating element is defined on the PC board in the upper region. A metal ground plane component has a first portion having the shape of a circle segment and a second orthogonal portion. The ground plane component is mechanically fixed and electrically connected to the ground plane region of the PC board, with the orthogonal second portion being proximate to and shielding the radiating element. The ground plane component and the ground plane portion of the PC board define an electromagnetic shield for electromagnetic emissions between EM noise generating electronic equipment housed within said outer bezel and the radiating element. |
US08605452B2 |
Chip card holding mechanism and portable electronic device
A chip card holding mechanism includes a bracket, an unlock member and a tray. The bracket defines a receiving chamber. The unlock member is assembled adjacent to the opening of the bracket. The movable tray is assembled to and received within the receiving chamber of the bracket by the unlock member. The tray includes a supporting portion for receiving a chip card, a draw-off portion formed on a first end of the supporting portion, and a resisting block formed on the draw-off portion. The unlock member includes a main portion and an ejecting portion formed on the main portion, the ejecting portion slidably resists against the corresponding resisting block of the tray, for providing an ejecting force to eject the tray away from the bracket. An electronic device using the chip card holding mechanism is also provided. |
US08605450B2 |
In-vehicle electric storage device
An in-vehicle electric storage device includes: a battery block including a metal casing and battery cells; a control unit including a metal cabinet and a circuit board on which an electronic component is mounted, the control unit being on a top side of the battery block and monitoring a physical state of the battery cells; wherein the cabinet includes a case having a bottom plate and an open top surface and a cover closing the open top surface, the case has an internal boss protrudes toward inside of the case from a top side of the bottom plate and an external boss protrudes toward outside the case from a bottom side of the bottom plate, the circuit board is on a top side of the internal boss, and a top side of the casing is provided with a depressed portion in which the external boss is accommodated. |
US08605448B2 |
Printed wiring board
A printed wiring board includes a bridge located in a surface layer, a noise absorber located on the bridge, a plurality of grounds directly connected or high-frequency-connected to the bridge, a first device using one of the plurality of grounds as a reference potential, a second device using one of the plurality of grounds other than the ground for the first device as a reference potential, and a high-speed signal line that connects the first device and the second device. The high-speed signal line is routed through a layer adjacent to the bridge in a layer direction of the printed wiring board to form a transmission line structure. |
US08605447B2 |
Printed circuit board assembly
A mounting apparatus for a printed circuit board includes an enclosure and a tray. The enclosure includes a bottom wall and a side wall extending from the bottom wall. The side wall is substantially perpendicular to the bottom wall. The tray includes a bottom panel substantially parallel to the bottom wall and a side panel substantially perpendicular to the bottom panel. The bottom panel is configured to secure the printed circuit board, and the side panel contacts and is mounted to the side wall. |
US08605446B2 |
Electronic apparatus
According to one embodiment, an electronic apparatus includes a housing, a board in the housing, a pad on the board, and a component. The pad includes a first portion and a second portion. The second portion includes a protrusion toward the first portion. The component includes a first electrode connected to the first portion and a second electrode connected to the second portion. |
US08605436B2 |
Outdoor display apparatus
The outdoor display apparatus has a display unit, a blowing unit which generates air along the display unit, and a channel part which emits the air passed the display unit, wherein the channel part is extended to the lower part of the displaying unit from its side part, and at least a portion of the channel part is laid underground. |
US08605435B1 |
Data frame hot/cold isle baffle system
A data room air circulation system has adjacent racks located. The racks have a front, a rear, and a first and second side. A computer system component is mounted in at least one of the racks. A cold aisle, containing cold air, is located at the front of the racks. As the cold air passes through the component, hot air is formed and discharged to a hot aisle located at the rear of the racks. A baffle, having a front end, a rear end, and a hot air side is located between the racks. The front baffle end is attached to the front of one of the racks, and the rear end is attached to the rear of the other of the racks. The baffle separates the cold aisle from the hot aisle for at least the height of the baffle. |
US08605431B2 |
Support and electronic device employing same
A support is provided for supporting an electronic device on a supporting surface. The support includes a shell configured to receive the electronic device, a frame rotatably connected to the shell, and two adjusting arms. Top ends of the two adjusting arms and two opposite sides of the shell are configured such that the top ends of the two adjusting arms are slidable along longitudinal directions of the two opposite sides of the shell when a user applies force to the support, and further configured for holding the top ends of the two adjusting arms in stationary positions relative to the two opposite sides of the shell when the user does not apply force to the support. Opposite ends of the two adjusting arms are rotatably connected to the frame. |
US08605428B2 |
Apparatus, system and method for concealed venting thermal solution
Some embodiments of an apparatus, system and method are described for a concealed venting thermal solution. An apparatus may comprise an enclosure arranged around one or more heat generating components, a duct arranged around an internal perimeter of the enclosure and a seam inlet arranged around an external perimeter of the enclosure to allow an airflow to enter the duct. Other embodiments are described. |
US08605427B2 |
Heat dissipation device utilizing fan duct
A heat dissipation device includes a heat sink and a fan duct. The fan duct includes a cover and a baffle. The cover includes a top plate, a first sidewall and a second sidewall respectively extending from opposite sides of the top plate. The baffle is located between the first sidewall and the second sidewall of the cover and pivotally contacts the first and second sidewalls. The baffle forms an angle with the top plate and is rotatable relative to the first and second sidewalls to adjust the angle between the baffle and the top plate. |
US08605424B2 |
Media drive unseating mechanism
An assembly configured for attachment to a media drive can include a base with a hinge end and a hinge axis and a handle with a hinge end, a locking tab and a swing end where the handle is configured for a locked orientation with respect to the base with the hinge end of the base extending outwardly beyond the hinge end of the handle and configured for an unlocked orientation with respect to the base with the hinge end of the base extending outwardly beyond the hinge end of the handle. Various other apparatuses, systems, methods, etc., are also disclosed. |
US08605423B2 |
Computing device with disk drive module
A computing device includes a chassis, a motherboard, a mounting plate, and a disk drive module attached to the mounting plate. The chassis includes a base panel and a pair of side panels connected to opposite sides of the base panel. The motherboard is mounted on the base panel. The mounting plate is secured to the pair of side panels and is inclined at an angle relative to the base panel. The disk drive module is inclined at the same angle as the mounting plate. At least one expansion card is attached substantially perpendicular to the motherboard. The disk drive module includes a first end and a second end opposite to the first end. The first end is located higher than a top edge of the at least one expansion card. The second end is located lower than the at least one the expansion card. |
US08605420B2 |
Hinge module and portable electronic device using the same
A hinge module and a portable electronic device using the same are provided. The hinge module includes a hinge body, a protruding portion, a column and a sleeve. The protruding portion is coupled to and protrudes from the hinge body. The column is coupled to and protrudes from the protruding portion. The sleeve has a connecting portion and a threaded stud portion which are connected together. The connecting portion has a receiving tank and a helix groove which are connected together. The protruding portion is disposed in the receiving tank. The column is disposed in and slides in the helix groove. When the column slides along the helix groove, the sleeve is rotated with respect to the protruding portion. |
US08605416B2 |
Bag computer two part display panel
Disclosed is an improvement to the bag computer of application Ser. No. 11/796,920. The bag computer has a pivoting display panel near its top front which can store against the bag front or pivot into the line of sight of the bag computer wearer/operator. The display panel may have controls on the side opposite the display. To gain advantage through multiple components, the display panel may be divided into a front portion with display and back portion with controls. Ways to divide and assemble these display panel components are described and include: 1) direct attachment between the two portions with one portion connecting to the bag; 2) a fastening frame attaching the two portions with one portion connecting to the bag; 3) an attachment frame which connects to the bag and accepts the two portions. |
US08605415B2 |
Bag computer display panel support assembly
Disclosed is a pivoting computer equipment mount (PCEM) designed to pivotally hold a display panel to the outside of the bag. In particular, the PCEM is able to temporarily hold various angular positions relative to the bag front without the operator using his hands. The PCEM includes a free section which suspends the display panel while an extension of the display panel toward the bag front acts as a lever to hold the display panel in a desired angular position. The free section may be made of flexible fabric or may be rigid with hinged connections to the bag and to the display panel. There may be one sheet-like free section or there may be column-like free sections to the right and left of the display panel connection to the bag. In this latter case, the extension of the display panel may be eliminated. |
US08605413B2 |
Electronic device housing and manufacturing method thereof
An electronic device housing includes a bottom housing, a support plate, a display panel, and a side frame. The support frame is welded in the bottom housing. The display panel is positioned on the support plate. The side frame is connected to a top edge of the bottom housing, such that the display panel is sandwiched between the support plate and the side frame. A manufacturing method for an electronic device housing is also provided. |
US08605412B2 |
Gas insulated switchgear
A gas insulated switchgear is configured including phase-A, phase-B, and phase-C breaker units. For example, the phase-A breaker unit includes breakers connected in series in a horizontal first direction, disconnectors annexed on the breaker, disconnectors annexed on a breaker, and disconnectors annexed on a breaker. The disconnector is connected to a main bus that extends in the first direction, and the disconnector is connected to a main bus that extends in the first direction. Each of the disconnectors on the breakers is arranged while a longitudinal direction thereof is set to a second direction orthogonal to the first direction so that a switching direction of the disconnector is equal to the second direction. Thereby, the length of the main buses can be shortened, and an interphase distance and a breaker-to-breaker distance can be reduced. |
US08605410B2 |
Thin-film capacitor and manufacturing method thereof
To provide a thin-film capacitor capable of improving the stability of electric connection between an internal electrode layer and a connection electrode. The thin-film capacitor comprises: two or more dielectric layers deposited above a base electrode; an internal electrode layer being deposited between the dielectric layers and having a projecting portion which projects from the dielectric layer when seen from a laminating direction; and a connection electrode electrically connected to the internal electrode layer via at least a part of a surface and an end face of the internal electrode layer included in the projecting portion, wherein a ratio L/t between a projection amount L of the projecting portion of the internal electrode layer with respect to the dielectric layer and a thickness t of the internal electrode layer is 0.5 to 120. |
US08605408B2 |
Power semiconductor device for igniter
A power semiconductor device for an igniter comprises: a first semiconductor switching device; and an integrated circuit, wherein the integrated circuit includes: a second semiconductor switching device connected in parallel with the first semiconductor switching device and having a smaller current capacity than a current capacity of the first semiconductor switching device; a delay circuit delaying a control input signal so that the second semiconductor switching device is energized prior to the first semiconductor switching device; a third semiconductor switching device including a thyristor structure connected to a high voltage side main terminal of the second semiconductor switching device and being made conductive by a part of a main current flowing through the energized second semiconductor switching device; and a first excess voltage detection circuit stopping the first semiconductor switching device when voltage on the high voltage side main terminal is equal to or more than a predetermined voltage. |
US08605404B2 |
Cascade electromagnetic pulse protection circuit for high frequency application
The present invention discloses a cascade EMP protection circuit, which comprises an LEMP protection circuit and a fast-response protection circuit, wherein a symmetric capacitive varactor element is cascaded to the path of signal transmission. Thereby, the present invention can protect electronic devices against LEMP or EMP released by an electronic weapon (NEMP, HEMP, or PEMP). |
US08605403B2 |
Thermal protection circuit and electronic device using the same
A thermal protection circuit to protect an electronic device from over-heat comprises a temperature sensor, a hysteresis comparator and a switch circuit. The temperature sensor senses internal temperature of the electronic device and output an internal temperature signal with voltage. The hysteresis comparator outputs a power-off signal when the voltage of the internal temperature signal is lower than a low voltage threshold representing an a determined temperature, or outputs a power-on signal when the voltage of the internal temperature signal is higher than a high voltage threshold representing a restarting temperature. The switch circuit stops transmitting power signals to the electronic device in response to the power-off signal, or continues to transmit the power signals to the electronic device in response to the power-on signal. |
US08605400B2 |
Device for diverting surge currents or transient overvoltages
The subject matter of the invention is a device for diverting surge currents or transient overvoltages (1), with a switching stage (2) and a switching element (3). The switching stage (2) is so designed as to switch on the switching element (3) upon identification of an overvoltage or a surge current. The switching element (3) is a reversible semiconductor switching element, while the switch-on event is achieved by operating of the switching element (3) outside of the specified parameters. |
US08605398B2 |
Electronic device with protection circuit
An electronic device comprises an application circuit; a first supply rail having a first electric potential; a second supply rail having a second electric potential different from the first electric potential; at least one terminal having a third electric potential, connected to the application circuit; and a protection circuit for protecting the application circuit from an injected current. The protection circuit comprises a first conductive line connected between the at least one terminal and the first supply rail, the first conductive line comprising a first switch having a first control input; and a first voltage amplifier circuit having a first input connected to the at least one terminal, a second input connected to the second supply rail and a first output connected to the first control input. |
US08605395B1 |
Dual plug adapter and household high current apparatus
The adapter is a circuit that allows the combination of two plugs on a standard duplex receptacle to be connected to a single electrical load. Each plug's hot and neutral outputs are controlled by a single throw electrical switch that is actuated by it's control input being transversely wired in parallel to the other plug. This arrangement doubles the connection's surface contact area since four prongs are used instead of two, thereby lowering the electrical resistance and increasing the current capacity. It has circuit protective devices wired in series between the hot output of each plug and the input of it's corresponding electrical switch. The circuit will not power up if a short, open or miss wired condition is encountered. |
US08605387B2 |
Thermally-assisted magnetic recording head including a magnetic pole and a heating element
A thermally-assisted magnetic recording head includes a magnetic pole and a heating element. The magnetic pole has a front end face located in a medium facing surface. The magnetic pole forms on a track a distribution of write magnetic field strength that peaks at a first position on the track. The heating element forms on the track a distribution of temperature that peaks at a second position on the track. The first position is located on the trailing side relative to the second position. The front end face of the magnetic pole has a main portion and first and second extended portions. The first and second extended portions are extended in the track width direction from the main portion at positions on the leading side relative to the center of the main portion in the direction of travel of a magnetic recording medium. |
US08605385B1 |
Spindle motor and hard disc drive including the same
A spindle motor and a hard disc drive including the same are provided. The spindle motor including: a rotary member; and a fixed member rotatably supporting the rotary member by fluid dynamic pressure, wherein upper radial dynamic pressure generating grooves and lower radial dynamic pressure generating grooves are formed in at least one of surfaces of the rotary member and the fixed member facing each other in a radial direction, and thrust dynamic pressure generating grooves are formed in at least one of surfaces of the rotary member and the fixed member facing each other in an axial direction. In the thin spindle motor, a burden of slope rigidity may be transferred from the radial bearing to the thrust bearing so that the rotary member can have slope rigidity enough to be returned to its original position, when the rotary member is sloped to one side. |
US08605383B1 |
Methods, devices and systems for characterizing polarities of piezoelectric (PZT) elements of a two PZT element microactuator
A method for characterizing polarities of piezoelectric (PZT) elements of a two-element PZT microactuator mechanically coupled to a structure may include calculating an impedance of the two PZT element microactuator over a predetermined frequency range; summing the calculated impedance over the predetermined frequency range; and characterizing the polarities of the PZT elements of the two PZT element microactuator as being different if the summed impedance is greater than a threshold value and as being the same if the summed impedance is less than or equal to the threshold value. |
US08605382B1 |
Disk drive to load a head to a load/unload (LUL) zone of a disk
A disk drive to load a head to a load/unload (LUL) zone of a disk is disclosed. The disk drive comprises an actuator including a head; a disk having a plurality of tracks; and a processor to control the movement of the actuator and the head relative to the disk. The processor may further: measure a back electromagnetic force (BEMF) of a spindle stator of a spindle motor after turning off the spindle motor; identify a modulation feature of the BEMF that indicates an identifiable circumferential position; command the storage the modulation feature of the BEMF; and control loading the head onto the LUL zone of the disk when the modulation feature is matched. |
US08605376B2 |
Motor having pulse mode and brushless mode, and control method and apparatus of the motor
A motor includes a rotor having a magnet, a stator having two coils, and a controller configured to control excitations of the two coils. The stator includes first and second yokes excited by the coils, and first and second rotor detectors configured to detect a magnetic flux. The first yoke is arranged for each electric angle of 360°, and the second yoke shifts from the first yoke by an electric angle of 90°. The first rotor position detector is arranged at the same position as the first yoke. The controller generates an excitation switching signal for each coil based on detection signals from the first and second rotor position detectors, and excites a corresponding coil, and obtains first and second delay angles. |
US08605375B2 |
Mounting flexure contacts
A device may comprise a flexure formed of a first semiconductor material. A first trench may be formed in the flexure. The first trench may separate the first semiconductor material into a first portion and a second portion thereof. An oxide layer may be formed in the first trench. The oxide layer may extend over a top portion of the first semiconductor material. A second semiconductor material may be formed on the oxide layer. The first trench and the oxide layer may cooperate to electrically isolate the first portion and the second portion from one another. |
US08605374B2 |
High speed piezoelectric optical system with tunable focal length
A varifocal optical system includes a substantially circular membrane deposited on a substrate, and a ring-shaped PZT thin film deposited on the outer portion of the circular membrane. The membrane may be a MEMS-micromachined membrane, made of thermal oxide, polysilicon, ZrO2 and SiO2. The membrane is initially in a buckled state, and may function as a mirror or a lens. Application of an electric voltage between an inner and outer electrode on the piezoelectric thin film induces a lateral strain on the PZT thin film, thereby altering the curvature of the membrane, and thus its focal length. Focal length tuning speeds as high as 1 MHz have been demonstrated. Tuning ranges of several hundred microns have been attained. The varifocal optical system can be used in many applications that require rapid focal length tuning, such as optical switching, scanning confocal microscopy, and vibration compensation in optical storage disks. |
US08605372B2 |
Voice coil motor and lens module including same
A voice coil motor includes a case, a moving barrel, magnetic elements, a lower plate, an elastic plate, a first and a second coil assemblies. The case includes an upper plate and a sidewall extending downward from peripheral edges of the upper plate. The upper plate and the sidewall cooperatively define a receiving room. The moving barrel is received in the receiving room. The magnetic elements are received in the receiving room and surround the moving barrel. The lower plate is positioned on one end of the sidewall The elastic plate is connected between the upper plate and the moving barrel or between the lower plate and the moving barrel. The first coil assembly includes pairs of coils. Each pair of the coils is opposite to each other and attached on the moving barrel. The second coil assembly is annular shaped and sleeved over the moving barrel. |
US08605371B2 |
Miniature zoom lens
A Miniature zoom lens, in particular for use in mobile telephones, in which the zoom lens, as viewed from the object plane, has the following in the stated sequence: at least one negative first optical lens group, at least one negative second optical lens group, at least one positive third optical lens group, and at least one positive fourth optical lens group. The second, third, and fourth optical lens groups are configured in such a way that focusing is achieved solely by displacement of the fourth optical lens group, and during the focusing the positions of the second and third lens groups remain unchanged. |
US08605370B2 |
Imaging lens, optical apparatus equipped therewith, and method for manufacturing imaging lens
An imaging lens, an optical apparatus equipped therewith, and a method for manufacturing the imaging lens are disclosed. An imaging lens consists of, in order from an object, a front group having negative power, and a rear group including a sub-lens group having negative power. At least a portion of the sub-lens group is movable in a direction including a component substantially perpendicular to an optical axis. The sub-lens group includes, in order from the object, a first negative component having negative power, a second negative component having negative power and a positive component having positive power. The shape of an air lens formed by the first negative component and the second negative component is a double convex shape. An antireflection coating is applied on at least one optical surface of the front group, and the antireflection coating including at least one layer formed by use of a wet process. |
US08605368B2 |
Image capturing optical system
An image capturing optical system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element. The first lens element with positive refractive power has a convex object-side surface. The second lens element with negative refractive power has a concave object-side surface and a convex image-side surface. The third lens element has refractive power, wherein the surfaces of the third lens element are aspheric. The fourth lens element has positive refractive power, wherein the surfaces of the fourth lens element are aspheric. The fifth lens element with refractive power is made of plastic material, and has a concave image-side surface, wherein the surfaces of the fifth lens element are aspheric, and the fifth lens element has inflection points formed on at least one of the surfaces thereof. |
US08605367B2 |
Optical lens assembly for imaging pickup
An optical lens assembly for imaging pickup, sequentially arranged from an object side to an image side, comprising: a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element. The first lens element with positive refractive power has a convex object-side surface. The second lens element has negative refractive power. The third lens element with refractive power has bi-aspheric surfaces. The fourth lens element with positive refractive power has a concave object-side surface and a convex image-side surface and both being aspheric. The fifth lens element with negative refractive power has a concave image-side surface, bi-aspheric surfaces and at least one inflection point. Therefore, the optical lens assembly for imaging pickup satisfies conditions related to shorten the total length and to reduce the sensitivity for use in compact cameras and mobile phones with camera functionalities. |
US08605366B2 |
Driver
A driver includes: a first member that holds a lens; a second member to which the first member is fixed; and drive means for driving the second member, wherein a portion in which at least part of the drive means is accommodated is provided in the side surface of the second member. |
US08605364B2 |
Miniature zoom lens
A zoom lens of the present invention includes a first lens group, a second lens group, an aperture, a third lens group, a fourth lens group, and an image surface in sequence along an optical axis from an object side to an image side. The first lens group has positive refractive power, and includes at least two lenses. The second lens group has negative refractive power, and includes three lenses. The third lens group has positive refractive power, and includes at least two lenses. The fourth lens group has positive refractive power. The zoom lens is switched to a telephoto mode from a wide-angle mode by moving the first lens group toward the object side, moving the second lens group toward the image side, and moving the third lens group toward the object side. |
US08605362B2 |
Zoom lens system, optical apparatus and method for manufacturing zoom lens system
A zoom lens system includes, in order from an object side: a first lens group having positive refractive power; a second lens group having negative refractive power; a third lens group having positive refractive power; a fourth lens group having negative refractive power; and a fifth lens group having positive refractive power. Upon zooming from a wide-angle end state to a telephoto end state, a position of the first lens group is fixed. At least a portion of any one of the lens groups is moved in a direction including a component perpendicular to an optical axis, and a given conditional expression is satisfied, thereby providing a zoom lens system capable of excellently suppressing variation in aberrations upon zooming and upon correcting an image blur, an optical apparatus including the zoom lens system, and a method for manufacturing the zoom lens system. |
US08605358B2 |
Diffractive optical element, optical system, and optical apparatus
A diffractive optical element includes a first diffractive grating including a first grating surface and a first grating wall surface, a light shielding member disposed on the first grating wall surface, and a second diffractive grating including a second grating surface and a second grating wall surface, disposed so that the second grating surface contacts the first grating surface and the second grating wall surface contacts the light shielding member. An extinction coefficient k of a material that constitutes the light shielding member meets the expression of 0.001 |
US08605357B2 |
Wavelength selective switch and optical transfer device
A wavelength selective switch includes a polarization controller to control a polarization controller configured to control a polarization plane of a first optical signal as wavelength-multiplexed light input through a first input port, and control a polarization plane of a second optical signal as wavelength-multiplexed light input through a second input port such that the polarization plane of the second optical signal is aligned in a direction perpendicular to the polarization plane of the first optical signal, a demultiplexer to demultiplex optical signals multiplexed in the first and the second optical signals, a polarization separator to separate, an optical collector to collect the optical signals separated by the polarization separator, an optical signal reflector to reflect each of the optical signals collected by the optical collector; and a reflection controller to control the optical signal reflector in accordance with an incident position of the optical signal. |
US08605356B2 |
Window for year-round solar energy conservation
A window for energy conservation in all seasons and a method of energy conservation using the window are described. The window operates as solar energy collector in winter and solar energy reflector in summer without using energy consuming devices such as pumps or fans. The window includes an optically transparent first component and a partially reflecting partially absorbing second component that is disposed close and parallel to the first component. The lateral separation between the first and second component can be changed from a smaller separation between the parallel first and second components to cool the room to a greater separation between the parallel first and second components to heat the room. |
US08605349B2 |
Large area surveillance scanning optical system
An optical scanning system includes a frame having a central axis along which is mounted a first elevation mirror for receiving an incident light and reflecting the incident light along a first optical path, a telescope for receiving the reflected incident light and outputting an output light, a visible linear array imager for receiving the output light from the telescope, and a folding mirror positioned to receive part of the output light from the telescope and directing it to a linear array infrared imager. The optical scanning system scans large areas of sky using multiple linear sensors in order to detect, identify and track low and slow flying manned and unmanned aircraft as well as to surveil large areas of terrain. |
US08605347B2 |
Image reading apparatus with shading correction
An image reading apparatus which performs shading correction using black reference data, wherein in the process of obtaining the black reference data, the image reading apparatus includes a reading control section that outputs a shift pulse which is the start timing of charge accumulation corresponding to each RGB color and controls the process of lighting of the light source of a predetermined color for a predetermined period after a predetermined period having elapsed since the output of each shift pulse, and a data processing section that does not obtain the data output from the image sensor as the black reference data according to the shift pulse and obtains the data output from the image sensor as the black reference data during a period that at least overlaps with the lighting period. |
US08605345B2 |
Image processing apparatus, image processing method and computer program product
A color determination unit divides an original image input from an image scanning unit into blocks, and determines whether or not each block is a color image area. The color determination unit determines whether the original is in color or monochrome in each of a plurality of set areas on the basis of the result of determination on the blocks included in that area. |
US08605343B2 |
Automatic document feeder, method of transporting document, and image reading apparatus
According to the embodiment, an automatic document feeder includes a first transport unit which transports a document fed from a document tray to a reading portion in a first direction after turning over the document, and a second transport unit which transports the document fed from the document tray to the reading portion in a second direction and transports the document passed through the reading portion to the reading portion in the first direction after turning over the document. When an image on one side of the document is read, the document is sorted to be transported to the first transport unit, and when images on both sides of the document are read, the document is sorted to be transported to the second transport unit. |
US08605342B2 |
Image reading apparatus
An image reading apparatus may include a main unit, a cover unit, an openable unit, and a conductive member. The cover unit is pivotable relative to the main unit, and includes a metal frame and a reading device configured to read an image of a document conveyed through an upper path of a U-shaped conveying path. The openable unit is pivotable relative to the cover unit, and includes a document pressing member configured to face the reading device when the openable unit is closed relative to the cover unit. The conductive member is configured to electrically connect the metal frame and the document pressing member. |
US08605340B2 |
Scanner
A scanner for an electronic device having image display functionality includes lower and upper housings, a scan unit, and an adaptor. The lower housing is formed on opposite sides with a paper inlet and a paper outlet. The upper housing is mounted on the lower housing, and includes a main body provided with a terminal hole, and a support member disposed proximate to the terminal hole and to abut against the electronic device when the electronic device is connected to the scanner. The scan unit includes a scan module disposed between the lower and upper housings, a control module coupled to the scan module, and a connecting terminal coupled to the control module and accessible via the terminal hole. The adaptor is removably mounted to the connecting terminal so as to permit direct electrical connection between the scanner and the electronic device. |
US08605339B2 |
Optical reading device, control method for an optical reading device, and storage medium
An optical reading device, a control method for an optical reading device, and a program for directing execution of the method each enables efficient and quick transmission of digital image data obtained from reading a document to a host computer or other control device. A dot impact printer having an optical reading device that optically reads documents and stores the resulting digitized image data, sets target reading areas, and transmits digital image data stored in a scan buffer rendered in a RAM to the host computer. When multiple target areas are set, the transmission order of the target areas is determined according to specific conditions, and the target areas are transmitted according to this transmission sequence. |
US08605338B2 |
User feedback via see through platen overlay
A printing system and apparatus assembly that incorporates a transparent platen for supporting and scanning a first image therethrough. The transparent platen includes a translucent display layer having an array of light devices that comprise organic light emitting diodes. A user interface of the system is coupled to the transparent platen with a processor. Based on input and/or data provided at the user interface, an image is displayed through the platen with the display layer. |
US08605337B2 |
Image scanning device
An image scanning device has first and second image scanning units to scan an image on the front and rear surfaces of a document to sequentially output image data on a line-by-line basis. A determining unit determines whether or not the number of lines of the front image is greater than or equal to a predetermined number, and whether or not the number of lines of the rear image is greater than or equal to the predetermined number. A processing unit reads out the front and rear image data on a line-by-line basis for the predetermined number of lines and performs image-processing on the readout data if the number of lines of the front image data is greater than or equal to the predetermined number and performs image-processing on the readout data if the number of lines of the rear image data is greater than or equal to the predetermined number. |
US08605335B2 |
Image processing device having scanned-document distributed-transmission capability
An image processing device, such as multifunction peripheral, includes a reading section, a judging section and a transmission section. The reading section reads an image on each of a plurality of objects and outputs a plurality of pieces of image data. Each piece of image data represents the image on each of the plurality of objects. The judging section judges whether each piece of image data meets a predetermined criterion. The transmission section transmits one or more pieces of image data that are judged by the judging section to meet the predetermined criterion to a predetermined destination set in relation with the criterion. |
US08605333B2 |
Depositing texture on receiver
Apparatus for depositing a texture on a receiver includes a data source that provides multilevel input tint data values. A lossy compressor produces compressed multilevel tint data values from the multilevel input tint data values. A decompressor produces multilevel decompressed tint data values from the compressed multilevel tint data values. A texture memory receives those values from the decompressor and provides corresponding multilevel texture pixel data values. A print engine deposits at each of a plurality of pixel sites on the receiver an amount of texture-forming material corresponding to the respective multilevel texture pixel data value. A loader loads into the texture memory a texture set including multilevel texture pixel data values for each of a plurality of textures, and each texture in the texture set corresponds to a respective selected range of multilevel decompressed tint data value. |
US08605332B2 |
Image processing method and apparatus
An image processing method (300) for converting an original image (601) into a final, pixelated image (610) suitable for printing on a printer arranged to print two-tone images and capable of printing partial area exposed pixels, comprises antialiasing (301) the original image (601) into an intermediate pixelated image (605) comprising greyscale pixels having assigned greyscale values. The method comprises the further-step, of translating (302) the intermediate image (605) into the final, pixelated image (610) by translating the assigned greyscale values into partial exposure values indicative of the amount of desired pixel area for a corresponding pixel or pixels in the final image. |
US08605330B2 |
Image processing apparatus and method for converting multivalue image data into multivalue image data corresponding to relative movements
An image processing apparatus and an image processing method are provided which, when forming an image using a plurality of different sizes of dots, can produce a satisfactory image free from problematical levels of density unevenness, graininess and insufficient density with any of these dot sizes. To this end, when printing on pixel areas of a print medium by a plurality of relative movements between the printing unit and the print medium, the dot overlap rate of a dot size that tends to show density unevenness is set higher than that of a dot size that tends to show other image impairments more conspicuously than the density unevenness. This results in a satisfactory image that eliminates such image impairments as density unevenness, graininess and density insufficiency in the entire grayscale range. |
US08605329B2 |
CMYK color conversion using iterative coordinate revision
Systems and methods for color conversion from one CMYK color space to another CMYK color space. The system receives a color defined by a first coordinate in the first CMYK color space. The system converts the color to a second coordinate for the second CMYK color space, and determines a location in a perceptual color space for each of the first coordinate and the second coordinate. The system further identifies a distance between the locations in the perceptual color space, and reduces the distance in the perceptual color space between the two locations by iteratively revising the second coordinate in the second CMYK color space while holding the black level of the second coordinate constant. |
US08605325B2 |
Device, method, and computer readable medium for inserting a user selected thumbnail into an image file
There is provided an image processing device, comprising: an input unit configured to accept a user instruction to designate first image data; and an image addition unit configured to add the first image data corresponding to the user instruction to second image data, as a thumbnail for the second image data. |
US08605320B2 |
Method for setting storage time for print jobs and memory management in printing apparatus
A printing apparatus includes: a receiving section which receives a print data from the external apparatus; a storage section in which the print data received by the receiving section is stored; an input section which receives from a user a print instruction for printing based on the print data stored in the storage section; a print section which performs the printing of the image on the recording medium based on the print data stored in the storage section in a case that the input section receives the print instruction from the user; and a controller which controls the storage section and which calculates and sets for the print data stored in the storage section a storage time-period within which the print data is storable in the storage section. |
US08605318B2 |
Print system, relay apparatus, print server, and print method
A relay apparatus in a print system in which a print server, the relay apparatus, and a plurality of print apparatuses are connected to a network, and which performs print processing, comprises: a search unit configured to search for a print apparatus with which the relay apparatus can communicate; a sending unit configured to send, to the print server, pieces of information of the relay apparatus and the print apparatus found by the search unit; and a relay unit configured to receive a print instruction that is issued by the print server and includes location information of document data to be printed and information of a print apparatus used to perform print processing, to download the document data based on the location information included in the print instruction, and to send both the print instruction and the downloaded document data to the print apparatus designated by the print instruction. |
US08605317B2 |
Information distributing apparatus, information processing apparatus, and computer program
An information distributing apparatus obtains a serial number input from the image forming apparatus and information regarding an apparatus connected to the image forming apparatus. The information distributing apparatus determines permission or inhibition of distribution with respect to each program specified by the serial number. |
US08605313B2 |
Communication system, communication device, and computer readable storage media for information displaying device and for the communication device
A communication system including a communication device, and a plurality of information displaying devices capable of receiving status information of a communication device is provided. Each information displaying device includes a first judging unit to judge whether the received status information includes error settling information, a first display unit to display the error information and an operable image when the judgment is made that the received status information lacks the error settling information, a first transmitter to transmit error settling information to the communication device in response to an operation to the operable image, and a display restrictor to restrict the error information from being displayed when judgment is made that the received status information includes the error settling information. The communication device includes a second transmitter to transmit at least the error information, and additionally with the error setting information. |
US08605311B2 |
Methods and systems for providing device specific print options to remote printing services
Systems and methods are disclosed for enabling remote printing services to consistently obtain and utilize print capabilities of printing devices across a wide variety of connection topologies. A client device retrieves the print capabilities from one or more printing devices selected for printing a document. The document and the print capabilities are transmitted to a web print service for rending the document. The web print service generates a print job based on the document and the print capabilities of the printing device selected for printing the document. The web print service provides the print job to the selected printing device for subsequent printing. |
US08605301B2 |
Image processing apparatus, image processing system, and computer program product
An image processing apparatus includes a reading unit, an acquiring unit, a transmission control unit, and a printing control unit. The reading unit reads images of multiple pages of originals. The acquiring unit acquires device information from connected child devices. The transmission control unit determines a child device which takes charge of part of a printing process of the read images and images to be transmitted to the child device based on the acquired device information, and transmits the determined images to the determined child device. The printing control unit determines printing order according to the acquired device information, and transmits an instruction to print the images in the determined printing order to the child device. |
US08605295B2 |
Optical reflector having semi-reflective blades for a position detection device for a helmet, and helmet comprising such a device
The general field of the invention is that of optical position/orientation devices for a helmet and more particularly those whose helmet comprises neither emitters, nor receivers but solely passive optical components, detection of which is ensured by fixed opto-electronic means outside the helmet. The optical component for the optical device for detecting position/orientation of a helmet according to the invention comprises a particular “optical cube corner”. It comprises a prism in the form of a trirectangular trihedron, each of the three plane surfaces of the trihedron comprising a blade with plane and mutually parallel faces, the first face being coincident with the plane surface on which it rests, the interface between this first face and said surface comprising a semi-reflecting treatment. |
US08605293B2 |
Position sensor
A position sensor for detecting a position of a movably arranged component with respect to its original position including a channel which is implemented to guide electromagnetic radiation and direct the same to the component, a detector, at least two back channels which are implemented to receive the electromagnetic radiation reflected by the device and direct the same to the detector, wherein the channel and the at least two back channels are arranged with respect to each other such that the at least two back channels each receive a predefined portion of the electromagnetic radiation reflected by the component. |
US08605292B2 |
Method and device for cleaning an optical position measurement system for substrates in a coating installation
A method and device are provided for cleaning of an optical position measurement system in a coating installation. The optical position measurement system includes a cantilever, and a sensor head having a radiation inlet and/or outlet for the reception and/or emission of an optical signal, at a free end of the cantilever. For tempering of the sensor head, a local thermoregulation is applied using a heater and/or cooling device for heating and/or cooling of the sensor head depending on thermal conductivity of material of at least the sensor head and depending on secondary heat in the coating installation. |
US08605291B2 |
Image correlation displacement sensor
An image correlation displacement sensor is provided for measuring yaw rotation relative to a target surface using a simple configuration compatible with a fast measurement sample rate. The image correlation displacement sensor may include: an illumination portion (130) which emits illumination light to the target surface to produce a speckle field; an imaging portion (240) which captures a plurality of images including the speckle fields produced on the target surface; and a processing portion (200) which measures a displacement including a rotation about a yaw axis of the target surface in accordance with first and second region translational displacements determined based on the plurality of images captured along the first optical path and the second optical path, and a known separation between the first and second regions. |
US08605290B2 |
Precision measuring system
A non-invasive imaging and analysis method and system/apparatus suitable for non-invasive imaging and analysis of a target is disclosed. Targets include biological tissue structures or components; optical structures or components; electronic structures or components; or structures in general. A preferred embodiment of the invention provides a precision optical measuring module that modifies the spatial separation of multiple reference interference signals by adjusting the separation between a partial reflective element and a full mirror mounted on a piezo device and determining the distance between surfaces or structures within the target by simultaneously monitoring the magnitude of the separation between the partial reflective element and the full mirror and processing generated interference signals. Techniques for simultaneously monitoring the magnitude of the separation between the partial reflective element and the full mirror include conventional measurement techniques, such as, capacitive, optical, or strain techniques or alternatively the use of one or more etalons. Another embodiment of the invention provides a system and method of precisely measuring the position of a surface of interest. |
US08605287B2 |
Extended range imaging
An imager that can provide separated images corresponding to differing depths in a sample is presented. In accordance with some embodiments of the invention, an imager can include a light source; a sample arm that receives light from the light source, directs the light to a sample, and captures light returning from the sample; a modulation source that provides different modulations corresponding to differing imaging depths in the sample; a detector system to receive the captured light from the sample with the different modulations; and a processor that receives signals from the detector system and separates a plurality of images corresponding with the differing image depths in the sample. |
US08605286B2 |
Biaxial optical gyroscope
A biaxial optical gyroscope is provided, which realizes mode separation using the waveguide devices with different material, and the biaxial optical gyroscope includes: a surface Plasmon Polariton Y-type mode splitter (1), a Y waveguide integrated optical device (2), a Y waveguide integrated optical chip (3), a first polarization-maintaining fiber coil (41), a second polarization-maintaining fiber coil (42), directional couplers (51, 52) and detectors (61, 62), wherein the two output ends of the surface Plasmon Polariton Y-type mode splitter (1) are respectively connected to the Y waveguide integrated optical device (2) and the Y waveguide integrated optical chip (3), and the output ends of the Y waveguide integrated optical device (2) and the Y waveguide integrated optical chip (3) are respectively connected to the first polarization-maintaining fiber coil (41) and the second polarization-maintaining fiber coil (42). |
US08605283B2 |
Apparatus and method for increasing collection efficiency in capillary based flowcytometry
In a particle analyzing apparatus including a capillary for passing through a fluid containing particles to be analyzed, an optical system is employed to collect fluorescent light emitted from particles or substances labeled to the particles with improved collection efficiency preserving resolution of the instrument. The optical system may include a first collection lens attached to the capillary and a first reflection element arranged adjacent to the first collection lens configured to reflect fluorescent light of one or more wavelengths. The optical system may include a second collection lens attached to the capillary and a second reflection element arranged adjacent to the second collection lens configured to reflect fluorescent light of one or more wavelengths. |
US08605281B2 |
Probe having nano-fingers
A probe for use in a sensing application includes an elongate body having a first end and a free end, wherein the first end is to be attached to a support. The probe also includes a plurality of nano-fingers having respective bases and tips, wherein each of the plurality of nano-fingers is attached to the free end and is composed of a flexible material, and wherein the plurality of nano-fingers are collapsed toward each other such that the tips of the plurality of nano-fingers are substantially in contact with each other. |
US08605280B2 |
Multimetallic nanoshells for monitoring chemical reactions
The invention relates to a multimetallic nanoshell sensor which comprises a core that is less conductive that a first metallic layer and having a catalytically active second metallic layer partially or completely surrounding the first metallic layer. The sensor can be used in any surface enhanced spectroscopic applications. |
US08605279B2 |
Micro cuvette assembly and method for examining biological samples
Relates to a micro cuvette assembly (1), comprising a first partial plate (2) with one or more first cuvette surfaces (3) and a second partial plate (4) which is arrangeable relative to the first partial plate and has at least one or more second cuvette surfaces (5) which, in an active position of the micro cuvette assembly (1), are arranged in register plane-parallel to the first cuvette surfaces (3) and spaced apart by a distance (6), thus forming, in the active position of the micro cuvette assembly (1), one or more micro cuvettes (7) in which a liquid volume (8) applied previously to one of the cuvette surfaces (3,5) is held between these two cuvette surfaces (3,5). The micro cuvette assembly (1) according to the present invention is characterized in that each of the first cuvette surfaces (3) of the first partial plate (2) is formed individually and completely in each case by a surface of a transparent body (10) which is accomplished as a free beam optical element and arranged in each case in an opening (9) penetrating the first partial plate (2). Also disclosed is the use of this micro cuvette assembly (1) in the carrying-out of a method for examining biological samples. |
US08605276B2 |
Enhanced defect scanning
One of the broader forms of the present disclosure involves a method of enhanced defect inspection. The method includes providing a substrate having defect particles and providing a fluid over the substrate and the defect particles, the fluid having a refractive index greater than air. The method further includes exposing the substrate and the defect particles to incident radiation through the fluid, and detecting, through the fluid, radiation reflected or scattered by the defect particles. |
US08605274B2 |
Laser reference system
A method of operating a laser reference system orients a reference plane of laser light generated by a transmitter so compensation is made for rake angles between the first and second axes of the transmitter and first and second non-orthogonal alignment axes. The transmitter includes an optical system arranged to generate a laser beam, the optical system projecting said laser beam radially along a rotational arc defined about a central rotational axis, thereby substantially defining a reference plane of laser light, and a positioning arrangement, coupled to said optical system, for adjusting the angular orientation of the optical system with respect to a first transmitter axis and with respect to a second transmitter axis. Detectors are arranged to detect reception of the laser beam. |
US08605267B2 |
Sensor for checking valuable documents
A value-document processing apparatus for documents of value, such as, e.g. bank notes, checks, etc. having a transport system and one or more sensors. The sensors have a sensor surface past which the bank notes are transported, where the sensor surface is provided with a plurality of elevations or depressions. Through the structured surface, the friction is decreased between the sensor surface and the transported document of value, so that the transport of the document of value is stabilized and the proneness to jamming is reduced. |
US08605265B2 |
Optical detection process for detecting micron-sized objects in solution
An optical detection process relates to detecting micron- or submicron-sized particles or organisms by means of a contact imaging device, the particles or organisms being immersed in a liquid droplet and the detection being carried out by means of a matrix of photosensitive cells or photosites. The process includes one detection step or a succession of detection steps carried out while the liquid droplet is evaporating. The process may also include a detection step carried out after the liquid droplet has evaporated. The process allows a three-dimensional distribution of the particles or organisms in the initial unevaporated droplet to be reconstructed. |
US08605261B2 |
Device and method for the determination of distance by means of light pulses
Methods and devices for the determination of distance by means of light pulses are disclosed. A light source emits light pulses with specified frequency. A detector receives reflected light pulses. A controller controls the light source and detector by means of signals. At least two timers are connected to the controller and the detector. When a light pulse is emitted by the light source, the controller generates a start signal triggering a time measurement by each of the at least two timers, in order, and beginning again from the start. Upon receiving a reflected light pulse, the detector generates a stop signal which stops the time measurement by the timer of the at least two timers, to which at that instant a measuring window is assigned by the controller. The device can be designed as a fiber-optic scanner. |
US08605260B2 |
Range finder
A range finder includes a device for transmitting a laser beam and a device for receiving the laser echoes backscattered by a target, comprising a frontal optical system focusing the echoes on a detection zone which comprises at least one elementary detection zone associated with an individual detector with a large bandwidth, referred to as a temporal detector, and means for transporting the detection zone to the individual detector. An elementary zone is furthermore associated with a low-noise individual detector, referred to as a spatial detector, and the receive device furthermore comprises, connected to the transporting means, a switch suitable for associating said elementary detection zone with the temporal detector and with the spatial detector, alternately or in a static manner. |
US08605255B2 |
Imaging optical system and projection exposure system including the same
An imaging optical system has a plurality of mirrors. These image an object field in an object plane into an image field in an image plane. In the imaging optical system, the ratio of a maximum angle of incidence of imaging light) on reflection surfaces of the mirrors and an image-side numerical aperture of the imaging optical system is less than 33.8°. This can result in an imaging optical system which offers good conditions for a reflective coating of the mirror, with which a low reflection loss can be achieved for imaging light when passing through the imaging optical system, in particular even at wavelengths in the EUV range of less than 10 nm. |
US08605254B2 |
Constrained optimization of lithographic source intensities under contingent requirements
A method for illuminating a mask to project a desired image pattern into a photoactive material is described. The method includes receiving an image pattern. Determining a relationship between source pixels in a set of source pixels to desired intensities at one or more points in the image pattern is performed. Linear constraints are imposed on a set of intensity values based on one or more contingent intensity condition. The contingent intensity conditions include integer variables specifying contingent constraints. The method includes determining values of the set of intensity values in accordance with the linear constraints, using a constrained optimization algorithm. The set of intensity values represents intensities of a set of source pixels. The set of intensity values are output. Apparatus and computer readable storage media are also described. |
US08605250B2 |
Method and system for detecting particle contamination in an immersion lithography tool
In an immersion lithography tool, the status of the immersion hood surface may be estimated on the basis of an inline detection system that generates optical measurement data. For example, a digital imaging system may be implemented in order to obtain optical measurement data without requiring exposure of the interior of the lithography tool to ambient air. In other cases, other optical measurement techniques, such as FTIR and the like, may be applied. |
US08605246B2 |
Liquid crystal display device wherein a first auxiliary spacer is in direct contact with a driver and a signal line and comprises a plurality of pattern structures spaced apart from each other
A liquid crystal display device includes first and second substrates spaced apart from each other, on which a display area and a non-display area are defined, a liquid crystal layer interposed between the first and second substrates, a seal pattern in the non-display area between the first and second substrates, a driver in the non-display area on the first substrate, column spacers in the display area between the first and second substrates, and a first auxiliary spacer between the driver and the second substrate. |
US08605245B2 |
Liquid crystal display panel and method of manufacturing the same
A liquid crystal display (LCD) panel and a method of manufacturing the same are provided, and the LCD panel comprises: a first substrate and a second substrate, which are assembled together to form a cell, in which liquid crystal; and spacers formed between the first substrate and the second substrate. The spacers comprise, at least, first-type spacers and second-type spacers, which are formed of different kinds of materials, the material for the first-type spacers has a thermal expansion coefficient lower than that of liquid crystal, the material for the second-type spacers has a thermal expansion coefficient higher than that of liquid crystal, and the first-type spacers and the second-type spacers are disposed in alternation. |
US08605243B2 |
Liquid crystal display device
A liquid crystal display device includes a pixel area surrounded and defined by a first drain line, a second drain line and a first gate line and a second drain line. The pixel area includes: a first pixel part having a plurality of line-like linear electrodes and extend in a first direction; a second pixel part having a plurality of line-like linear electrodes extend in a second direction; a boundary electrode that is formed in an area sandwiched between the first pixel part and the second pixel part, and has a side edge portion inclined in the first direction and a side edge portion inclined in the second direction; and a light-blocking film that is formed in superimposition on the boundary electrode, and has sides formed to extend along the side edge portions of the boundary electrode inclined in the first and second directions. |
US08605241B2 |
Biaxial birefringent component, liquid crystal projector, and method for manufacturing biaxial birefringent component
A phase compensator having a biaxial birefringent component (40) is fabricated by oblique deposition of an inorganic material on a base plate (69). A polar angle of an evaporation path of the inorganic material is controlled in a predetermined angular range to a surface normal of the base plate (69). In the oblique deposition process, the base plate (69) is oscillated in a horizontal direction. The phase compensator is arranged such that its slow axis (L4) is perpendicular to a slow axis (L3) of tilt components (24a, 24b) in a liquid crystal panel (20), and that an index ellipsoid (41) is tilted in an opposite direction to a tilt direction of the tilt components (24a, 24b). |
US08605236B2 |
Liquid crystal display apparatus having color filter with color connection on black matrix and method of manufacturing the same
An LCD apparatus and method of manufacturing the same is disclosed. The LCD apparatus includes a backlight; a first electrode and a second electrode disposed over the backlight; a liquid crystal layer disposed between the first electrode and the second electrode; and a color filter unit including a first color filter, a second color filter, and a third color filter, disposed over the second electrode, where the first color filter includes a plurality of first regions and a plurality of first connection portions, each first connection portion connecting two adjacent first regions to each other, and the second color filter includes a plurality of second regions and a plurality of second connection portions, each second connection portion connecting two adjacent second regions to each other. |
US08605234B2 |
Light guide, patterned light emitting diode device, illumination system and method of generating the light guide or patterned light emitting diode device
The invention relates to a light guide (10), a patterned light emitting diode device, to an illumination system (100) and to a method of generating a light guide and/or patterned light emitting diode device. The light guide comprising a light-emitting window (20), a rear wall (22) situated opposite said light-emitting window, edge walls (24) extending between the light-emitting window and the rear wall. The light guide further comprises a deformable substantially transparent layer (30) arranged between a light-reflective layer (40) and the rear wall of the light guide. The light-reflective layer comprises a pattern (42) constituted of local deformations (42A, 42B) of the light-reflective layer for scattering impinging light. |
US08605233B2 |
Light guide panel for LCD back light unit and LCD back light unit thereby
A light guide plate for an LCD back light unit has a rear surface formed with a main prism portion including a plurality of prisms, and a front surface formed with a front-lens part including a plurality of optical members such as lenticular lenses or microlenses so as to improve visibility of a predetermined pattern of the main prism part, and a liquid crystal display device using the light guide plate. |
US08605226B2 |
Projector
A projector is disclosed. The present invention relates to a projector that is able to radiate heat generated in a display device converting a video signal into a projected image. |
US08605221B2 |
Determining key video snippets using selection criteria to form a video summary
A method for forming a video summary for a digital video having a time sequence of video frames, comprising using a processor to perform the steps of: determining a set of key video frames for the digital video; ranking the key video frames responsive to a predefined criterion; forming key video snippets corresponding to one or more highest-ranked key video frames according to a predefined set of criteria, including a criterion which specifies the total time duration for the video summary and a criterion which specifies the minimum time duration for each of the key video snippets; assembling the key video snippets to form a video summary; and storing a representation of the video summary in a processor-accessible memory. |
US08605220B2 |
Generation of video transitions on an auxiliary bus using a video switcher
A mix-effects bank architecture of a video switcher having a plurality of video processing units; and an internal switcher routing matrix. The internal switcher routing matrix routing, a video source currently providing a video feed to an auxiliary output and a desired new source for the auxiliary output to a video processing unit that is not contributing towards video processing and routing an output of said video processing unit to said auxiliary output. The video processing unit that is not contributing towards video processing performs a transitional effect for the auxiliary output. |
US08605218B2 |
Home audio video display device (AVDD) as sensor monitor
An audio video display device (AVDD) system includes a display, a processor controlling the display, and a computer readable storage medium accessible to the processor and programmed with instructions. The instructions cause the processor to establish communication with at least one sensor. The instructions then cause the processor to receive information from the sensor conforming to an application programming interface (API) provided by a manufacturer of the AVDD to an entity affiliated with the sensor, or sent from the AVDD to the sensor. Thereafter, the instructions cause the processor to present the information from the sensor on the display in accordance with the API. |
US08605216B2 |
Digital broadcast receiver and method for processing caption thereof
A digital cable broadcast receiver and a method for automatically processing caption data of various standards and types, is disclosed. The digital broadcast receiver includes: a demultiplexer for dividing a received broadcast stream into video data, audio data, supplementary information; a controller for determining whether caption data included in the video data is digital caption data or analog caption data on the basis of caption information included in the supplementary information, and outputting a control signal according to a result of the determining; a digital caption decoder for extracting and decoding digital caption data from the video data according to the control signal; and an analog caption decoder for extracting and decoding analog caption data from the video data according to the control signal. |
US08605215B2 |
Methods and apparatus for providing portable photographic images
Methods and apparatus for providing portable photographic images are described. The present invention includes a small, portable electronic display unit that may be placed within a wallet or purse. The display unit may include an input port for downloading digital images from a computer or digital camera. The display unit may also include one or more buttons to provide a user with the ability to select an image for display from a given set of digital images that have been stored in memory. The display unit may be preloaded with one or more digital images, or it may be configured to be loaded by a user. The digital images may, for example, include still digital photographs or short video clips that have been captured from a digital camera. |
US08605208B2 |
Small form factor modules using wafer level optics with bottom cavity and flip-chip assembly
A disclosed method of manufacturing a camera module includes providing a stack of optical elements, providing an integrated circuit image capture device (ICD) having a top surface with an array of sensors, rigidly attaching the stack of optical elements to top surface of the image capture device, providing a substrate having an opening therethrough and a recess around said opening, and attaching the image capture device to the substrate such that edges of the image capture device are disposed in the recess and the stack of optical elements extends through the opening. The method further includes providing a second substrate (e.g., host PCB) and mounting the substrate on the second substrate to attach the camera module to the host device. Optionally, the substrate is mounted to the second substrate via a reflow solder process. |
US08605207B2 |
Small industrial electronic imaging camera provided with external interface cable
A box-type camera housing having a four-piece structure which allows an external interface connector to be provided in an arbitrary face among five faces except a front face is configured by a lens mount, a board mount frame, a tri-face cover, and a connector metal bracket attached with an external interface connector. In addition, the camera functions are integrated by containing, in an imaging chamber in the camera housing, a control board for controlling a sensor substrate and a power supply board for controlling supply of an operation power for the sensor board and control board, in addition to a sensor board. |
US08605206B2 |
Control apparatus, control method, imaging apparatus, program and imaging system
The present invention relates to a control apparatus, a control method, an imaging apparatus, a program, and an imaging system able to prevent cable wrapping, etc. which has a risk of occurring when rotating an imaging apparatus while a cable is connected in an imaging system which conducts automatic imaging operations by automatic composing and which is provided with an imaging apparatus and a motorized platform apparatus that rotatably drives the imaging apparatus, for example.It is determined whether or not a cable is connected to a cable port, and on the basis of the determination results, it is controlled such that the rotational angle range for a rotational driving unit is restricted. Thus, the above problem can be solved. |
US08605205B2 |
Display as lighting for photos or video
A system and method are disclosed for using one or more displays as a lighting source to illuminate a field of view captured by an image capture device. An image capture engine may be provided for ensuring synchronization of the one or more displays with the image capture device so that the one or more displays may be illuminated concurrently with capturing the image by the image capture device. In one example, the image capture engine flashes the display to white light for capture of a single frame of image data. |
US08605204B2 |
Image-pickup apparatus and method for adjusting tracking curves
The method includes a first adjusting step of adjusting a first tracking curve which has been set so as to keep an in-focus state between a position of a magnification-varying lens and a position of an image sensor, and a second adjusting step of adjusting a second tracking curve which has been set so as to keep the in-focus state between the position of the magnification-varying lens and a position of the focus lens for an object distance. The magnification-varying lens is moved in an optical axis direction during a variation of magnification. The image sensor generates an image signal by photoelectrically converting an optical image formed by an image-pickup optical system. The image-pickup optical system including the magnification-varying lens and a focus lens moved in the optical axis direction during focusing. |
US08605199B2 |
Adjustment of imaging properties for an imaging assembly having light-field optics
Image capture using an image capture device which includes an imaging assembly having a spectral sensitivity tunable in accordance with a spectral capture mask and light-field optics for projecting a light-field of a scene onto the imaging assembly. A first spectral capture mask is applied to the imaging assembly and preview image data of a scene is captured under the first capture mask. A designation of a region of interest, and a designation of a capture preference in the region of interest are received. A second spectral capture mask is calculated by calculations which use the preview image data and the capture preference for the region of interest. The second spectral capture mask is applied to the imaging assembly, and light-field image data of the scene is captured under the second spectral capture mask. |
US08605198B2 |
Imaging device
An imaging device for an imaging apparatus adapted to image an object through an image formation lens includes: a light receiving section having a plurality of light receiving elements; a microlens section having a plurality of microlenses respectively provided corresponding to a plurality of the light receiving elements to make the corresponding light receiving elements receive an object light beam that passed through the image formation lens; a control section adapted to control shapes of the plurality of the microlenses so as to control pupil regions in an exit pupil of the image formation lens that pass a light beam that should be received by each of the plurality of the light receiving elements; and an image signal generation section adapted to generate an image signal of an image of the object based on imaging signals of the plurality of the light receiving elements. |
US08605193B2 |
Portable electronic device with camera module
A portable electronic device includes a housing defining a through hole, a barrel positioned in the housing, a lens fixed at an end of the barrel and a light detection unit fixed at the other end of the barrel away from the lens. The lens includes an imaging portion facing the light detection unit and an incidence portion facing the through hole. The incidence portion forms a reflecting surface angled relative to an optical axis of the imaging portion, such that light entering from the through hole through the incidence portion is then reflected by the reflecting surface and refracted by the imaging portion, and is then received by the light detection unit. |
US08605187B2 |
CCD image sensors having multiple lateral overflow drain regions for a horizontal shift register
A charge-coupled device (CCD) image sensor includes a layer of a semiconductor material having a first conductivity type. A horizontal CCD channel region of a second conductivity type is disposed in the layer of the semiconductor material. The horizontal CCD channel region includes multiple phases that are used to shift photo-generated charge through the horizontal CCD channel region. Distinct overflow drain regions are disposed in the layer of semiconducting material, with an overflow drain region electrically connected to only one particular phase of the horizontal CCD channel region. A buffer region of the second conductivity type can be used to electrically connect each overflow drain to the one particular phase of the horizontal CCD channel. Multiple barrier regions are disposed in the layer of semiconductor material, with each barrier region disposed between each overflow drain and the one particular phase electrically connected to the drain. |
US08605186B2 |
Video format conversion without a flicker for the solid imaging apparatus
In an imaging apparatus which subjects signal electric charges of photodiodes of IT-CCD for interlaced scanning of 1080 effective scanning lines to vertical pixel addition to be read out as image signals, at least one of vertical transfer at the last horizontal period and horizontal transfer at half period in reading of pixels is stopped while fixing pairs of vertical pixels to be subjected to vertical pixel addition to be read out as image signals of progressive scanning of 540 effective scanning lines from the CCD and the read-out image signals of 540 effective scanning lines are subjected to scanning line conversion of 3 to 4 to be converted into image signals of progressive scanning of 720 effective scanning lines, the image signals of progressive scanning of 720 effective scanning lines being outputted. |
US08605185B2 |
Capture of video with motion-speed determination and variable capture rate
A method of capturing a video of a scene depending on the speed of motion in the scene, includes capturing a video of the scene; determining the relative speed of motion within a first region of the video of the scene with respect to the speed of motion within a second region of the video of the scene; and causing a capture rate of the first region of the video of the scene to be greater than a capture rate of the second region of the video of the scene, or causing an exposure time of the first region to be less than exposure time of the second region. |
US08605181B2 |
Pixel for correlated double sampling with global shutter
A method of scanning pixels, each pixel including a photodiode and a sense node formed in the substrate, including a transfer gate coupled between the photodiode and the sense node, and including a memory gate coupled between the photodiode and the transfer gate. The method switches a control signal, connected to a memory gate electrode of all pixels, alternately between a first voltage and a second voltage that is intermediate between the first voltage and a substrate voltage. The first voltage transfers all photo charge in each photodiode into the respective memory gate. The second voltage both (1) holds all photo charge already transferred into the memory gate and (2) blocks further transfer of photo charges into each memory gate. The method further includes reading out photo charge from the memory gate on a row-by-row basis while the control signal is at the second voltage. |
US08605179B2 |
Image pickup apparatus
An image pickup apparatus in which, a taking lens is installable or fixed, includes an image pickup element in which, pixels having a photoelectric conversion portion are arranged two dimensionally. The pixels include focal-point detection pixels which are arranged to restrict a direction of incidence of a light beam which is incident, and image-pickup pixels which are arranged such that, the direction of incidence of the light beam which is incident is not restricted more than the direction of incidence restricted by the focal-point detection pixel.The focal-point detection pixel outputs at least a signal for ranging, and the image-pickup pixel outputs at least a signal for an image.The image pickup apparatus includes an overflow judging section which judges whether or not the photoelectric conversion portion has overflowed, and a calculating section which calculates an amount of defocus based on a judgment result of the overflow judging section and the signal for ranging. |
US08605178B2 |
Solid-state imaging apparatus and method for driving the same
An object of the present invention is to provide a solid-state imaging apparatus capable of providing a high S/N ratio in a plurality of operation modes, and a method for driving the same. Provided is a solid-state imaging apparatus including: a plurality of pixels (1), each of the pixels including a photoelectric conversion unit for generating a charge by photoelectric conversion and accumulating the charge; and an amplifier 2 connected to a plurality of the pixels, to amplify the charge generated by the pixels, wherein the amplifier 2 includes an offset voltage setting unit (SW1) for setting at least two offset voltages. |
US08605167B2 |
Flexible color space selection for auto-white balance processing
Various techniques are disclosed for processing statistics data in an image signal processor (ISP). In one embodiment, a statistics collection engine may be configured to acquire statistics relating to auto white-balance. The statistics collection engine may receive raw Bayer RGB data acquired by an image sensor and may be configured to perform one or more color space conversions to obtain pixel data in other color spaces. A set of pixel filters may be configured to accumulate sums of the pixel data conditionally based upon YC1C2 characteristics, as defined by a pixel condition per pixel filter. Depending on a selected color space, the pixel filters may generate color sums, which may be used to match a current illuminant against a set of reference illuminants with which the image sensor has been previously calibrated. |
US08605166B2 |
Photographing apparatus, photographing method and recording medium
The photographing apparatus includes an image pickup unit that generates a raw image; a feature extractor that extracts a feature image containing at least one feature part from the raw image; an image processor that performs image processing of the raw image according to a first scene information and that performs image processing of the feature image according to a second scene information; a quantizer that performs discrete cosine transform and quantization of a raw-processed image obtained by performing image processing of the raw image and a feature-processed image obtained by performing image processing of the feature image; a difference data generator that generates difference data indicating a difference between image data obtained by processing the raw-processed image in the quantizer and feature image data obtained by processing the feature-processed image in the quantizer on a feature image data basis; and an image compressor. |
US08605161B2 |
Intra-frame optical-stabilization with intentional inter-frame scene motion
In an imaging system, intentional scene motion across the image detector from frame-to-frame, and more particularly the rate of intentional scene motion is “decoupled” from smearing of the scene in the detected image by applying the intentional scene motion in the interval between frames to produce the intentional scene motion in a discrete step across the image detector from frame-to-frame. The intentional scene motion may be quantized or provided as a sub-pixel dither signal to control the sub-pixel phase frame-to-frame. In register/sum applications, this substantially eliminates misregistration of the images and may allow for super-sampling of the images onto a higher resolution grid. The ability to decouple intentional scene motion from smearing and to control the sub-pixel phase defines a new trade space that relaxes the limitations on intentional scene motion across the image detector. |
US08605160B2 |
Camera shake correction device and imaging device
According to one embodiment, a camera shake correction device includes a substrate, a fixed part, a linking part, a movable part, a first spring part, a second spring part, a first damper, and a second damper. The fixed part is provided on the substrate and fixed to the substrate. The linking part is provided around the fixed part on the substrate that can move in a first direction within a plane of the substrate with respect to the fixed part. The movable part is provided on the substrate and arranged around the fixed part and the linking part that can move in a second direction that intersects with the first direction within the plane of the substrate. |
US08605157B2 |
Video display apparatus and afterimage correcting method
To provide a video display apparatus and an afterimage correcting method for solving the problem of image quality degradation. Removing unit 2 removes DC components from the video signal received by input terminal 1. Integrating unit 3 integrates the video signal with DC components removed by removing unit 2 to generate an integration signal. Subtracting unit 4 subtracts the integration signal generated by integrating unit 3, from the video signal received by input terminal 1. |
US08605152B2 |
Method and apparatus for yoga class imaging and streaming
The ability to view and participate in various types of instructional classes, including Yoga, remotely and on-demand has become increasingly popular and accessible. However, participating in instructional classes off-site does not replicate the same experience as participating in an instructional class on-site, live with an instructor. The claimed system and method allow the viewer participant to view and take part in an instructional class from any location and at any time without compromising the viewer's ability to experience a participatory class experience. The system and method place the instructor at the head of the classroom with live-participants arranged between the instructor and the camera with a direct line of sight between the camera and the instructor allowing for the viewer participant to have unobstructed views while simultaneously allowing for the viewer participant to have live participants in the periphery, as if the viewer was attending a live class. |
US08605149B2 |
Seed classification using spectral analysis to determine existence of a seed structure
This disclosure relates to a method and system that models a seed structure and uses a spectral analysis to identify which morphological seed structures are existent in the seed/seedling. Additionally, this disclosure relates to a method and system that applies multi-spectral analysis using predetermined models of a seed/seedling to identify which morphological structures are existent in the seed/seedling. The information about the existence or non-existence of structures of the seed/seedling is used to classify the seed as having a specific characteristic, for later commercial use or sale. The seed market determines which specific characteristic the method will use to classify the seed/seedling. The individual seed classification may help determine associated seed lot germination values. |
US08605146B2 |
Apparatus for optically inspecting an at least partially reflecting surface of an object
An apparatus for optically inspecting an at least partially reflecting surface of an object includes first and second transverse carriers (12, 14) defining respective substantially circular segment-shaped cutouts (32). The transverse carriers (12, 14) are disposed at a longitudinal distance (D) from one another and the longitudinal distance (D) defines a longitudinal direction (17). A plurality of longitudinal members are configured to hold the first and second transverse carriers at the longitudinal distance (D). The longitudinal members are arranged at a defined radial distance to the circular segment-shaped cutouts. A translucent diffusing screen is held in the circular segment-shaped cutouts by the transverse carriers to form a tunnel-shaped inspection space. A multiplicity of light sources are arranged outside of the tunnel-shaped inspection space behind the diffusing screen. The light sources are configured to be controlled individually or in small groups to generate variable light-dark patterns on the diffusing screen. A workpiece receptacle is configured for accommodating the object in the tunnel-shaped inspection space. At least one camera is directed into the tunnel-shaped inspection space. An evaluation and control unit is configured to control the light sources and the camera to generate various light-dark patterns on the diffusing screen and to record and evaluate a plurality of images of the object in dependence on the light-dark patterns. |
US08605144B2 |
Imaging apparatus
A plurality of image sensors are arranged so that each of odd rows is constituted by image sensors lined up in the X direction, and each of even rows is constituted by image sensors, more than that of the odd row by 1, lined up in the X direction at the same pitch as the odd row with a 1/2 phase shift with respect to the odd row. Light receiving areas of image sensors on both ends of the even row include both ends in the X direction of an imaging target area image respectively, and a length in the Y direction of an area covering the light receiving areas of the image sensors on the first row to the light receiving areas of the image sensors on the last row is longer than a length in the Y direction of the imaging target area image. |
US08605140B2 |
Shutter glasses and shutter control method
Shutter glasses for allowing a user to perceive 3D video includes: a shutter for a right eye and a shutter for a left eye performing open and close operations of shutters in accordance with a timing signal synchronized with 2D video displayed on a display; a detection means for detecting light intensity of linear polarized light; and a shutter control means for controlling ON/OFF for driving the shutter for the right eye and the shutter for the left eye in accordance with the detected light intensity of the linear polarized light. |
US08605139B2 |
Stereoscopic video display apparatus and display method
In one embodiment, a stereoscopic video display apparatus includes: a plane display unit including a display screen in which first to third subpixels having respectively different color components are arranged in a matrix form; and an optical plate disposed to be opposed to the plane display unit and having a plurality of optical aperture parts. The plane display unit includes a configuration obtained by arranging the first subpixels on a first subpixel row, arranging the third subpixels on a second subpixel row adjacent to the first subpixel row, arranging the second subpixels on a third subpixel row adjacent to the second subpixel row, arranging the third subpixels on a fourth subpixel row adjacent to the third subpixel row, and arranging a set of the first to fourth subpixel rows in the column direction of subpixels on the display screen repeatedly. |
US08605137B2 |
Stereoscopic image display having particular optical grating
A stereoscopic image display including an image displaying unit and an optical grating is provided. The image displaying unit has a black matrix and pixels surround by the black matrix, and each pixel has a width P in a first direction. The optical grating is disposed corresponding to the image displaying unit, wherein the optical grating comprises a plurality of constitutional groups arranged in the first direction. Each of constitutional groups comprises a plurality of slits having the same width W to expose the corresponding pixels, the width P of pixel and the width W of slit satisfy a specific relationship, so as to reduce the morie phenomenon and provide excellent stereo image quality. |
US08605134B2 |
Video monitoring system and method
A method for monitoring a target area using a video monitor device that controls a video camera located at the target area to capture left images and right images of the target area. The video monitor device analyzes each of the left and right images to form a combined image, compresses all of the combined images to generate compressed images, and stores the compressed images into a storage system. When an event happened in the target area, a compressed image corresponding to the event time is obtained from the storage system. The video monitor device decompresses the compressed image to generate a 3D image of the target area, and displays the 3D image on a display device. |
US08605131B2 |
Image forming apparatus and image forming method
An image forming apparatus that performs a shading correction includes a light source that emits a light beam; a light-source drive unit that drives the light source; and a light-quantity-adjustment-amount control unit that performs an adjustment of a light quantity in accordance with a shading correction curve by controlling, for the light-source drive unit, a light-quantity adjustment amount and an increase/decrease cycle of the light-quantity adjustment amount. The increase/decrease cycle is a unit of time within a time period during which the light-quantity adjustment amount increases or, decreases. |
US08605130B2 |
Image forming apparatus and image forming method
An image forming apparatus includes: a plurality of optical systems, each of which includes a light-beam generating unit that generates a light beam, a rotary polygon mirror that deflects the light beam so as to scan a image carrier, and a light-beam detecting unit that detects the light beam deflected for scanning at a predetermined position on a scanning path by rotationally driving the rotary polygon mirror; a time-difference measuring unit that measures a time difference between light-beam detecting signals; a generation-timing determining unit that determines time of generation timing for generating a start signal that designates a start of an image writing operation so that the generation timing does not overlap another timing when each of the light-beam detecting signals is output from the corresponding time-difference measuring unit; and a start-signal generating unit that generates the start signal based on the time for the generation timing. |
US08605125B2 |
Gamma control mapping circuit and method, and organic emitting display device
A gamma control data mapping circuit, a mapping method, and a display device using the gamma control data mapping circuit are provided. The gamma control data mapping circuit is for converting input data into grayscale data to display an original image on a display device. The mapping circuit separates the input data into high-order bit data and low-order bit data, and outputs a low-order grayscale boundary and a high-order grayscale boundary by using the high-order bit data. The gamma control data mapping circuit divides a grayscale region defined by the low-order grayscale boundary and the high-order grayscale boundary by a unit grayscale number to calculate unit grayscale data of the grayscale region, multiplies the low-order bit data by the unit grayscale data to calculate linear grayscale data, and adds the low-order grayscale boundary to the linear grayscale data to generate the grayscale data. |
US08605122B2 |
Gamma voltage generation circuit
A gamma voltage generation circuit is provided. The gamma voltage generation circuit includes a plurality of resistor strings, a plurality of second resistors and a plurality of switches. Each of the resistor strings has a plurality of first resistors connected in series. Each of ends of the first resistors provides a gamma reference voltage. Each of second resistors is connected in series with the resistor strings. Each of the switches is coupled to a corresponding one of the resistor strings, selects and outputs one of the gamma reference voltages provided by the ends of the first resistors of the corresponding one of the resistor strings according to a control signal. Therefore, levels of the gamma voltages can synchronously displaced, so that the effects presented by pixels with different common voltage levels are similar or equal. |
US08605114B2 |
Gaming system having reduced appearance of parallax artifacts on display devices including multiple display screens
Various embodiments of the present disclosure provide gaming systems having reduced appearance of parallax artifacts on display devices including multiple display screens. In one embodiment, the gaming system determines a location on a first display screen of a display device at which to display a portion of a first image and subsequently determines, based on that determined location and one or more other variables, a location on a second display screen of the display device at which to display a portion of a second image such that the appearance of parallax artifacts associated with the first image and the second image is reduced or eliminated. |
US08605103B2 |
Image quality configuration apparatus, system and method
A method includes detecting one of an application access or a file type access, and configuring, in response to detecting the application or file type access, automatically without user interaction, a display system in an image quality configuration for the application or the file type where the image quality configuration is based on providing best image quality with respect to the application or the file type. Configuring the display system in an image quality configuration, may involve determining that a profile associated with the application or associated with the file type is stored in memory, and configuring the display system according to the profile. The method may adjust at least one anti-aliasing parameter or at least one anisotropic filter parameter. The method may monitor an operating system to obtain an indication that an application has been accessed or that a file type has been accessed. |
US08605102B1 |
Rasterization tile coalescer and reorder buffer
A raster unit generates graphic data for specific regions of a display device by processing each graphics primitive in a sequence of graphics primitives. A tile coalescer within the raster unit receives graphic data based on the sequence of graphics primitives processed by the raster unit. The tile coalescer collects graphic data for each region of the display device into a different bin before shading and then outputs each bin separately. |
US08605098B2 |
Memory structure for optimized image processing
A memory architecture for image processing comprising a memory array having multiple multi-byte memory data paths of equal multi-byte data width, and a multiplexing structure connected to the output of the multiple multi-byte data paths, capable of selectively providing a multi-byte data path of a desired width containing a desired permutation of bytes chosen from one or more of the multiple data paths. |
US08605096B2 |
Enhanced coronary viewing
Movies of volume rendered medical images that give an impression of the anatomy, become more and more important, because this type of visualization comes close to reality. An apparatus for creating a fly-path movie of a volume rendered medical image dataset is provided. The apparatus is configured to perform segmentation of an object, such as the coronary arteries, in the medical image dataset, such that key images on the fly-path may be defined with different classification and opacity. By fading from one to the other the coronaries are visualized one by one in an optimal way. A method, computer-readable medium and use are also provided. |
US08605084B2 |
Dynamic creation of virtual regions
In various embodiments, virtual universe regions are dynamically generated within a virtual universe based on user requests. Dynamic generation allows virtual universe users or “residents” to create virtual universe regions that are tailored to their desired specifications. Additionally, in some implementations, virtual universe users may have the option to instantly discard or retain a created region after evaluation based on whether the region meets the user's expectations. Furthermore, dynamic generation of regions may increase user satisfaction and provide additional means for revenue generation for the virtual universe administrator and for virtual universe businesses and entrepreneurs. |
US08605080B2 |
Organic electroluminescent display device and method of driving the same
An organic electroluminescent display device includes: a plurality of sub-pixels in a matrix form along a plurality of row and column lines and each including a light emitting diode; first and second driving transistors in the sub-pixel, connected in parallel with each other, and connected to the organic light emitting diode; first and second switching transistors in the sub-pixel, and connected to the first and second driving transistors, respectively; first and second gate lines along the row line and connected to the first and second switching transistors, respectively; and a data selecting portion selecting a refresh data or an image data, wherein the data selecting portion selects one of the refresh data and the image data when the first switching transistor is turned on, and selects the other one of the refresh data and the image data when the second switching transistor is turned on, and wherein the plurality of sub-pixels include sub-pixels an input sequence of the refresh data and the image data to which is reversed for a frame. |
US08605072B2 |
Power control system for display module including external DC-DC converter
A power control system includes a display module for displaying an image in accordance with image data, a DC-DC converter being external to the display module and for applying power to the display module, a host for generating a control signal for controlling the display module and outputting the control signal through a signal output pin of signal input/output pins of the host, and a connector connected to the signal input/output pins and for applying the control signal to the DC-DC converter and the display module. The DC-DC converter is adapted to apply power to the display module according to the control signal. Accordingly, the number of signal input/output pins of the connector can be reduced. |
US08605071B2 |
Apparatus for generating over-drive values applied to LCD display and method thereof
An over-drive value generating apparatus applied to an LCD display includes a pixel value converting unit, a gain generating unit and a calculation unit. The pixel value converting unit generates a converted pixel according to a current pixel of a current image and a corresponding pixel of a previous image. The gain generating unit generates a gain according to a position of the current pixel. The calculation unit generates an output pixel according to the current pixel, the converted pixel and the gain. |
US08605069B2 |
Image display device
An image display device includes switches directly connected a constant current source to a self-luminous element to be able to detect a characteristic of the self-luminous element, generate a coordinates and convert information of the characteristic and coordinates into a system communication signal, transferring an input with a temperature variation to a system side. |
US08605068B2 |
Light emitting device and method of controlling the same using a differential amplifier
Provided is a light emitting device and a method of controlling the same are disclosed. The light emitting unit includes a power supply unit for supplying a drive voltage to the light emitting unit, and a control unit for comparing a first current level previously applied to the light emitting unit with a second current level to be applied to the light emitting unit in accordance with image information to be displayed using the light emitting unit, and controlling a voltage level applied to the light emitting unit based on a result of comparison. |
US08605067B2 |
Source-driving circuit, display apparatus and operation method thereof
A source-driving circuit comprises a plurality of first and second data-outputting units, a first and a second charge-sharing units and a charge-sharing switch circuit. The first and second data-outputting units have corresponding first and second output terminals respectively for outputting data signals with a first polarity and a second polarity. The first and second charge-sharing units comprise a plurality of first and second switches respectively. Each first switch is electrically connected between each two first output terminals and each two second output terminals. Each second switch is electrically connected between one of the first outputting terminals and a corresponding one of the second outputting terminals. A charge-sharing switch circuit is electrically connected to the first and second charge-sharing units for outputting a switch signal to the first and second charge-sharing units according to a polarity signal, so as to determine the on/off statuses of the first and second switches. |
US08605066B2 |
Display apparatus including display pixels and light detection units, method for controlling light detection operation
Disclosed herein is a display apparatus, including: pixel circuits disposed in a matrix at positions at which a plurality of signal lines and scanning lines cross each other and each including a light emitting element; a light emission driving section adapted to apply a signal value to each of the pixel circuits; a light detection section having a light sensor; a correction information production section adapted to detect the light detection information outputted to the light detection line and supply information for correction of the signal value corresponding to a result of the detection to the light emission driving section; and an initialization control section adapted to set all nodes of the detection signal outputting circuit to an equal potential within a period in which the light detection section does not carry out the light detection operation. |
US08605064B2 |
Current driving circuit and display device using the current driving circuit
A current drive circuit which can improve a rate for signal writing and a driving rate of an element even when a signal current is small, and a display device using the current drive circuit are provided. The current drive circuit for supplying a signal current to a node of a driven circuit through a signal line includes a precharge function for supplying a precharge voltage to the node through the signal line and the precharge function includes a supply function for supplying the precharge voltage to the node and the signal line prior to supplying the signal current. |
US08605059B2 |
Input/output device and driving method thereof
An object is to reduce power consumption. An input/output device including: a display selection signal output circuit outputting a display selection signal during a first display mode and stopping outputting the display selection signal during a second display mode; a photodetection reset signal output circuit outputting N (N is a natural number) photodetection reset signals during a first photodetection mode and outputting M (M is a natural number smaller than N) photodetection reset signals during a second photodetection mode; an output selection signal output circuit outputting N output selection signals during the first photodetection mode and outputting M output selection signals during the second photodetection mode; and a photodetector circuit being reset in accordance with a photodetection reset signal, generating data according to an intensity of light entering the photodetector circuit subsequently, and outputting the data as a data signal in accordance with the output selection signal. |
US08605057B2 |
Reflection detection apparatus, display apparatus, electronic apparatus, and reflection detection method
A reflection detection apparatus includes: a light-emitting surface; a detection light output portion to obliquely emit detection light from an emission area as a part of the light-emitting surface; a plurality of light-receiving devices to selectively receive, as reflected detection light, the detection light that is emitted to an external object from the emission area and enters the light-emitting surface with a predetermined angle after being reflected by the external object; and a height detection portion to obtain a height of a spot at which the detection light is reflected by the external object using positional information of the light-receiving device which has received the reflected detection light and positional information of the emission area, the height being a distance from the light-emitting surface. |
US08605053B2 |
Method and device for detecting user input
A method and a device for detecting user input includes receiving a user input at an input arrangement of a user interface. The input arrangement has at least one piezoelectric sensor that generates an electric signal in response to the input. The electric signal is processed to determine the presence of the input. The processing may indicate the magnitude of the force of the input, in addition to the input's location. An output arrangement of the user interface generates an output in response to the processing. The output may be a haptic, audio or visual output. |
US08605051B2 |
Multipoint touchscreen
A touch panel having a transparent capacitive sensing medium configured to detect multiple touches or near touches that occur at the same time and at distinct locations in the plane of the touch panel and to produce distinct signals representative of the location of the touches on the plane of the touch panel for each of the multiple touches is disclosed. |
US08605048B2 |
Method and apparatus for controlling multimedia contents in realtime fashion
The present invention discloses a method for controlling in realtime fashion multimedia contents on a second screen at a TX side from a first screen at a RX side. The method comprising: detecting at least one touch signal via the first screen, and converting the at least one touch signal into touch data associated with a first position information defining a virtual operation on the first screen corresponding to an actual operation on the second screen, the first position information being with respect to a first coordinate system of the first screen; transmitting the touch data of the RX side to the TX side via the network communication, and calculating at the TX side a second position information with respect to a second coordinate system of the second screen based on the first position information; and performing the actual operation at the second screen based on the second position information. |
US08605047B2 |
Threshold compensation method on touch device
The disclosure provides a threshold compensation method applied to a touch device including a plurality of touch points. The threshold compensation method includes steps of: selecting at least one of the plurality of touch points as a selected object; obtaining a sensing data of each the touch point of the selected object in each of multiple initializing frequency periods; obtaining a sensing data difference value between the sensing data of each the touch point of the selected object in each adjacent two of the initializing frequency periods; obtaining a maximum sensing data difference value in the multiple sensing data difference values of the selected object in the multiple initializing frequency periods; and setting a default threshold of the selected object according to the maximum sensing data difference value. |
US08605046B2 |
System and method for providing multi-dimensional touch input vector
A touch panel method and system detects one or more touch objects placed on a surface of a touch panel and assigns consistent ID, position, size and convex contour to each touch object. The method and system allows multiple simultaneous touch objects on the touch panel to be distinguished. The touch panel includes on its periphery at least one light transmitter and at least one light sensor, each positioned around at least a portion of a perimeter of the touch panel. A processor in communication with the at least one light sensor acquires light intensity data from the sensor(s), wherein any one or more touch objects placed within a touch detectable region of the panel interrupts at least a subset of light paths between transmitter and sensor. Based on the interrupted light paths, the processor generates a touch input vector (assigned ID and spatial properties) that represents the placement of each touch object on the touch panel. |
US08605043B2 |
Touch display system and control method thereof
A control method is applied to a touch display system. The touch display system includes a display module, a touch module, and a programmable circuit. The programmable circuit is electrically connected between the touch module and the display module for executing the control method. The method includes: the touch module providing a first sense area; detecting whether the first sense area being touched or not; the display module displaying an boot image when the first sense area being touched; providing a second sense area after the boot image being displayed; detecting whether the second sense area being touched or not; and the display module displaying an on-screen display menu when the second sense area being touched, wherein the on-screen display menu includes a power item and a plurality of function items. |
US08605040B2 |
Input device and display device with input function
Provided is a resistance film type input device including: a first light transmission substrate and a second light transmission substrate which face each other; a first light transmission planar electrode formed on the surface of the first light transmission substrate, which faces the second light transmission substrate, in an input region, and first band-shaped electrodes having a sheet resistance value lower than that of the first planar electrode and electrically connected along both ends which face each other in a first direction of the first planar electrode; and a second light transmission planar electrode formed on the surface of the second light transmission substrate, which faces the first light transmission substrate, in the input region, and second band-shaped electrodes having a sheet resistance value lower than that of the second planar electrode and electrically connected along both ends which face each other in a second direction perpendicular to the first direction of the second planar electrode, wherein a plurality of openings is formed in at least one of the first planar electrode and the second planar electrode, and wherein island patterns formed of the same light transmission conductive film as the planar electrodes are formed at the inside of the openings. |
US08605033B2 |
Display system
A flat-screen display system is providing having a transmitting unit that includes a power supply, a display signal generating unit, a transmitter for transmission of the display signal and for transmission of the supplied power; and a receiving unit that includes a receiver for receiving the transmitted display signal and wirelessly coupling to the power supplied from the transmitter for power supply of the receiving unit, a control unit that decodes the received display signal, and a display that displays the decoded display signal. |
US08605032B2 |
Electrophoretic display with changeable frame updating speed and driving method thereof
An electrophoretic display and a driving method thereof are provided. The electrophoretic display includes a display panel, a storage unit, a timing controller (TCON). The display panel has a plurality of sub-pixels. The storage unit stores a plurality sets of driving waveforms, wherein the lengths of driving waveforms in the sets of driving waveforms are different from each other. The TCON has an analysis module, couples to the display panel and the storage unit, and receives an image signal having a plurality of display data. The analysis module analyzes the display data to obtain a analysis result. The TCON selects one of the sets of driving waveforms according to the analysis result, and drives the sub-pixels according to the selected set of driving waveforms. |
US08605030B2 |
Method of preventing the temperature of a backlight source from remaining at a low temperature based on the duty ratio history of the backlight
A light source device includes a light source module having a light-emitting block, an image analysis part, a duty ratio calculation part, a duty ratio determination part and a signal generation part. The image analysis part extracts representative luminance data of the light-emitting block based on pixel data. The duty ratio calculation part calculates duty ratio data of the light-emitting block based on the representative luminance data. The duty ratio determination part generates determined duty ratio data of the light-emitting block based on the duty ratio data from a first period, and the signal generation part generates a driving signal having a duty ratio corresponding to the determined duty ratio data to drive the light-emitting block. |
US08605022B2 |
Image displaying method for display device
An exemplary image displaying method for a display device includes steps of: providing display data to pixels of the display device for displaying images; taking a special amount of frame of images as an image group, making polarities of a same pixel being of adjacent two frame of images in the image group and using a same polarity inversion in the adjacent two frame of images be different from each other, and making polarities of a same pixel being of the last frame of image in a former one of adjacent two image groups and of the first frame of image in a latter one of the adjacent two image groups and using the same polarity inversion in the last and first frame of images be the same with each other. |
US08605020B2 |
Liquid crystal display device and method for driving same
A liquid crystal display device of at least one embodiment of the present invention includes a TN-mode liquid crystal display panel which is constituted by pixels of three colors (red, green, and blue) and a color filter. A thickness of a liquid crystal layer (cell thickness) is determined on a basis of a retardation value of green light or red light, which has a larger wavelength than blue having shortest wavelength among the three colors. A display data switching circuit carries out gradation conversion of shifting input gradation values to lower gradation values with respect to image data supplied to pixels of blue. Thus, grayscale inversion is prevented. The liquid crystal display device of the present invention produces an effect of improving transmittance of pixels of colors having wavelengths other than the wavelength of blue. |
US08605017B2 |
High dynamic contrast display system having multiple segmented backlight
In one embodiment, a display system includes a subpixelated display panel and a backlight array of individually controllable multi-color light emitters. When the display panel comprises a multi-primary subpixel arrangement having a white (clear) subpixel, the backlight control techniques allows the white subpixel to function as a saturated primary display color. In another embodiment, the display system may calculate a set of virtual primaries for a given image and process the image using a novel field sequential control employing the virtual primaries. In another embodiment, a display system comprises a segmented backlight comprising: a plurality of N+M light guides, said light guides forming a N×M intersections; a plurality of N+M individually addressable light emitter units, each of said N+M light emitter unit being associated with and optically connected to one of said N+M light guide respectively. |
US08605015B2 |
Spatial light modulator with masking-comparators
Described is a device comprising a spatial light modulator comprising a plurality of comparators for computing a respective drive for each pixel of a plurality of pixels. |
US08605013B2 |
Plasma display device, and plasma display panel driving method
Provided to stabilize generation of address discharge and improve gradation characteristics of display images are the following elements: a plasma display panel; a sustain pulse generating circuit; and a ramp voltage generating circuit including a first ramp voltage generating circuit, a second ramp voltage generating circuit, and a switching circuit. The first ramp voltage generating circuit generates a first ramp voltage gently increasing in an initializing period. The second ramp voltage generating circuit generates a second ramp voltage increasing with a gradient gentler than that of the rising edge of a sustain pulse and steeper than that of the first ramp voltage, at the end of each sustain period. The switching circuit stops the operation of the second ramp voltage generating circuit immediately after the second ramp voltage reaches a predetermined electric potential. In at least one sustain period of one field, no sustain pulse but the second ramp voltage is generated. |
US08605012B2 |
Method of driving plasma display apparatus
A method of driving a plasma display apparatus including a scan electrode and a sustain electrode, that are positioned parallel to each other, are disclosed. The method includes supplying a scan signal to the scan electrode during an address period of a first subfield among a plurality of subfields of a frame, supplying a reset signal to the scan electrode during a reset period of a second subfield immediately following the first subfield, supplying a first signal between the scan signal and the reset signal to the scan electrode, and supplying a second signal overlapping the first signal to the sustain electrode. A pulse width of the second signal is smaller than a pulse width of the first signal. |
US08605009B2 |
In-vehicle display management system
A system and method for displaying information within a vehicle is described. The system includes at least one sensing device detecting a set of data associated with the vehicle, driver, or surroundings, which is processed using a processing unit for identifying a set of information to be displayed. The system also includes a set of display devices coupled to the vehicle. A router selects one or more display devices for displaying the display element based on a set of conditions. A display control unit generates an appropriate display element for the set of information identified and the selected display. |
US08605006B2 |
Method and apparatus for determining information for display
An apparatus, comprising a processor and memory including computer program code, the memory and the computer program code configured to, working with the processor, cause the apparatus to perform at least the following, determining a first angle between a first display and a second display that is simultaneously viewable with the first display, causing display of a first information on the first display, determining a second information based, at least in part, on first information and on the first angle, and causing display of the second information on the second display is disclosed. |
US08605004B2 |
Dynamically reconfigurable microstrip antenna
A dynamically-reconfigurable antenna having a microstrip patchwork radiating surface wherein individual radiating patches can be connected to and disconnected from each other via photoconductive interconnections between the radiating patches. Commands from software alternately turn light from light emitting sources on or off, the light or lack thereof being channeled from an underside layer of the antenna so as to enable or disable the photoconductive interconnections. The resultant connection or disconnection of the radiating patches will vary the antenna's frequency, bandwidth, and beam pointing. |
US08605003B2 |
Miniature wire antenna
A miniature wire antenna includes N rectangular metal plates located at a first layer of a PCB, a tunable metal plate located at the first layer of the PCB and N serpentine lines located at a second layer of the PCB. The positions of the N serpentine lines correspond to the positions of the rectangular metal plates. A first end of each of the serpentine lines is connected to the corresponding rectangular metal plate, and a second end of each of the serpentine lines is connected to the next rectangular metal plate. A first end of the last serpentine line is connected to the corresponding rectangular metal plate, and a second end of the last serpentine line is connected to the tunable metal plate. |
US08605002B2 |
Antenna device including helical antenna
In an antenna device, a first helical part of a first antenna and a second helical part of a second antenna is disposed in a dielectric body on a ground plane. Each helical part is helically wound up in a direction perpendicular to the ground plane and includes a plurality of one-turn portions. Each one-turn portion of the first helical part has a peripheral length of M times a wavelength λ of use, where M is a positive natural number. One of the one-turn portions of the second helical part closest to the ground plane has a peripheral length Ks that is N times the wavelength λ of use, where N is a positive natural number greater than M. One of the one-turn portions of the second helical part farthest away from the ground plane has a peripheral length Ke, and (M·λ) |
US08605001B2 |
Radome equipment
Radome equipment that includes an antenna device, and a radome that protects the antenna device by housing the antenna device therein and that transmits electric power necessary for communication, in which: a matching layer made of a single-layer dielectric is attached to an inner surface of the radome; and the matching layer has a thickness that is set to a value that minimizes reflection based on an impedance estimated from an interface between the matching layer and the radome before the matching layer of the radome is attached, a characteristic impedance of a medium of the matching layer, a wavelength in the matching layer, and a characteristic impedance of a medium of a space in which the radome is disposed. |
US08605000B2 |
Antenna mounting structure of electronic device
An antenna mounting structure of an electronic device includes a casing and an antenna in the casing. The antenna includes a signal receiving portion and a first securing member connecting the signal receiving portion. The first securing member defines a through hole. The casing includes a first pin, a first catch near the first pin, and a first rib extending from the first pin. The first pin extends through the through hole of the first securing member of the antenna. The first rib supports the first securing member. The first catch fixedly clasps the first securing member on the first pin and the first rib. |
US08604997B1 |
Vertical array antenna
A vertical array antenna is disclosed. The antenna includes a housing configured to be positioned above a ground plane and a plurality of antenna elements. Each antenna element produces an individual beam pattern. The antenna elements are attached to the housing at different distances from the location of the ground plane such that the amplitudes of the individual beam patterns of the respective antenna elements have local maxima at a common angle and frequency when the housing is positioned above the ground plane. |
US08604994B2 |
Antenna apparatus including feeding elements and parasitic elements activated as reflectors
An antenna apparatus includes an antenna element and a parasitic element provided on a first surface of a dielectric substrate, and an antenna element and a parasitic element provided on a second surface of the dielectric substrate. Each of the parasitic elements is provided at a position away from the antenna elements by a distance of one-fourth of an operating wavelength λ in communication. |
US08604993B2 |
Antenna coil to be mounted on a circuit board and antenna device
In an antenna coil including a first magnetic core, a second magnetic core, and a flexible board, coil conductors are provided on a surface of the flexible board. By winding the flexible board around the first magnetic core and the second magnetic core, a first coil portion is disposed around the first magnetic core, and a second coil portion is disposed around the second magnetic core. The winding direction of the second coil portion is opposite to that of the first coil portion. The first coil portion and the second coil portion are connected to define one coil as a whole. |
US08604989B1 |
Steerable antenna
An integrated phased array including an array of antenna elements (130), a plurality of waveguides (122), a beam forming network (120), and an RF switch (110). The phased array may further comprise a monolithic integration module (160) comprising a dielectric layer (165) sandwiched between two conductive layers (166, 167). |
US08604984B2 |
Mobile wireless communications device with selective antenna load switching and related methods
A mobile wireless communications device may include at least two antennas having a different structure. The device may also include wireless transceivers, a load(s), signal processing circuitry, and a controller. The controller may be for selectively switching the signal processing circuitry to a desired one of the wireless transceivers, selectively switching a desired one of the antennas to the desired one of the wireless transceivers, and selectively switching a different one of the antennas to at least one of the loads. |
US08604982B2 |
Antenna structures
Antenna structure having a ground electrode formed outside a footprint of a conductive patch, wherein the conductive patch is a radiating element of the antenna structure. The antenna structure in one embodiment is a composite left and right handed (CRLH) based structure. Antennas and antenna arrays based on enhanced CRLH metamaterial structures are configured to provide broadband resonances for various multi-band wireless communications. |
US08604974B2 |
Glonass/GPS de-rotation and filtering with ADC sampling at 60-80 MSPS
An electronic circuit separates frequency-overlapped GLONASS and GPS overlapped in an approximately 4 MHz passband. The circuit uses a multiple-path analog-to-digital converter circuit (ADC). A sampling rate circuit is coupled to concurrently operate the analog-to-digital converter circuit at a sampling rate between about 60 Msps and about 80 Msps. A digital processing circuit includes storage defining complex de-rotation and low pass filtering. The digital processing circuit is fed by the analog-to-digital converter circuit and is operable A) to establish an access rate and respective distinct phase increments for the complex de-rotation, B) to execute the complex de-rotation by combinations of trigonometric multiplications using the distinct phase increments approximately concurrently and C) to execute the low pass filtering on the complex de-rotation resulting at the access rate and respective distinct phase increments, thus delivering GPS and Glonass signals separated from each other. |
US08604973B2 |
Data access and management using GPS location data
Disclosed are methods, systems and products, including a method that includes maintaining a plurality of records associated with a plurality of objects, the plurality of records are configured to include global positioning system (GPS)-based data representative of locations of the plurality of objects. The method also includes accessing at least one of the plurality of records based, at least in part, on determined global position system-based data representative of location of at least one object associated with the at least one of the plurality of records. |
US08604970B1 |
Systems and methods for generating data in a digital radio altimeter and detecting transient radio altitude information
Present novel and non-trivial systems and methods for generating data in a digital radio altimeter system and detecting transient radio altitude (“RA”) information are disclosed. Preliminary RA data is generated by a preliminary spectrum analyzer by analyzing spectrum data (e.g., frequency spectrum data) within a first range, where the spectrum data is representative of RA information. Final RA data is generated by a final spectrum analyzer by analyzing the spectrum data within a second range, where the second range is based upon the preliminary RA data and final RA data previously-generated and fed through a feedback data generator. The final RA data may be provided as source data to one or more user units. One user unit may be a transient RA detector which detects transient RA information based upon the preliminary RA data and the final RA data. |
US08604969B2 |
System and method of using image grids in detection of discrete objects
A sensor is used to identify detections of discrete objects in a search grid. An image grid of the detections is created. The image grid is analyzed to identify a pattern of detections. The pattern of detections is used to identify objects of interest. |
US08604968B2 |
Integrated radar-camera sensor
An integrated radar-camera sensor is provided which includes a camera sensor component and a radar sensor component both housed within a common single module housing. The sensor module also includes processing circuitry for processing the radar sensor and camera outputs. The sensor module is located behind the windshield of a vehicle and may include glare and/or EMI shields. |
US08604966B1 |
Correction of radar beam refraction using electro-optical measurements
A method determines the atmospheric refraction of a radar beam by utilizing a stabilized optical telescope directed toward a star near the radar target location. This allows measuring the target refraction as observed from ships at sea without a-priori knowledge of the local refraction index or weather conditions in the target area. The telescope may employ an infra-red (IR) sensor and is capable of imaging stars. The atmospheric refraction of the star light is determined by pointing the telescope based on star ephemeris data, and measuring the star image deviation from the center of the telescope's field-of-view (FOV). The corresponding refraction of the radar beam can be determined by employing a conversion factor relating the IR-to-RF atmospheric propagation characteristics. This conversion factor can be obtained by dedicated tracking measurements. |
US08604964B2 |
System for determining the movement of a swaying structure
A system for determining the movement of a swaying structure, on which a receiver is fixedly mounted, is proposed, wherein at least three reference transmitters having known and fixed positions are provided and transmit the transmission signals received by the receiver at defined carrier frequencies. In addition, an evaluation unit is provided, which determines measured phase values from the received signals, taking into account the defined carrier frequency, wherein the distance from the reference transmitters and the changes in position of the receiver and therefore of the swaying structure can be calculated from said phase values. |
US08604963B1 |
Radar system and method
A system includes an aircraft radar system configured to perform at least one radar scan of a specific region and receives airborne radar return data from the at least one radar scan. The aircraft radar system transmits the airborne radar return data to a weather system via a wireless communication link for supplementing the ground based radar return data with the airborne radar return data. |
US08604960B2 |
Oversampled data processing circuit with multiple detectors
Various embodiments of the present invention provide apparatuses and methods for processing data in an oversampled data processing circuit with multiple detectors. For example, an apparatus for processing data is disclosed that includes a first analog to digital converter operable to sample a continuous signal at a first sampling phase to yield a first digital output, a second analog to digital converter operable to sample the continuous signal at a second sampling phase to yield a second digital output, wherein the second sampling phase is different from the first sampling phase, a first detector operable to process the first digital output to yield a first detector output, and a second detector operable to process the second digital output and the first detector output to yield a detected output. |
US08604959B2 |
Multi-phased digital-to-analog converters for interpolation
A method and device for digital filtering of a digital signal in a radio frequency (RF) device front end are disclosed. In one embodiment, 2M+1 groups of N digital-to-analog converters (DAC) are grouped to emulate a (2M+1)*N tap finite impulse response (FIR) filter. Each DAC in a group receives a clock that differs in phase from the clocks of the other DACs in the group. The filter is implemented to suppress image spectra of the digital signal without increasing a clock rate by which the signal is sampled. |
US08604957B2 |
Sampling/quantization converters
Provided are, among other things, systems, methods and techniques for converting a continuous-time, continuously variable signal into a sampled and quantized signal. According to one representative embodiment, an apparatus includes multiple quantization-noise-shaping continuous-time filters, each in a separate processing branch and having an adder that includes multiple inputs and an output; an input signal is coupled to one of the inputs of the adder; the output of the adder is coupled to one of the inputs of the adder through a first filter; and the output of a sampling/quantization circuit in the same processing branch is coupled to one of the inputs of the adder through a second filter, with the second filter having a different transfer function than the first filter. |
US08604953B2 |
Calibrating timing, gain and bandwidth mismatch in interleaved ADCs
A method and a corresponding device for calibrating an interleaved analog-to-digital converter (ADC) involve injecting a randomly determined amount of dither into at least one of a flash component and a multiplying digital-to-analog converter (MDAC) in a selected channel in the ADC. A correlation procedure is performed to estimate, based on an overall ADC output, a gain experienced by the injected dither after propagating through the channel. The injection and the correlation procedure are repeated on at least one additional channel to estimate a gain for each at least one additional channel. The estimated gains of the selected channel and the at least one additional channel are then compared to determine a degree of mismatch between the selected channel and each at least one additional channel. At least one channel is calibrated as a function of the determined degree of mismatch. |
US08604952B2 |
Multiplier-free algorithms for sample-time and gain mismatch error estimation in a two-channel time-interleaved analog-to-digital converter
Techniques for the estimation of sample-time and gain mismatch errors in a two-channel time interleaved analog to digital converter that are devoid of any multiplication operation. In a sample-time mismatch error evaluation, the signs and the absolute values from the two ADCs are used to provide an estimate of the sample-time mismatch error. In a gain error estimation algorithm, the absolute values of the outputs from the two ADCs are subtracted and accumulated. The errors can then be corrected, in a preferred embodiment, using suitable adaptive sample time and gain correction techniques. |
US08604951B2 |
System and method for optimizing context-adaptive binary arithmetic coding
A system and method is provided for ordering intervals rLPS and rMPS of a range to increase speed of binary symbol decoding in a binary arithmetic decoder. The method comprises the steps of: placing rLPS at a bottom of the range; enabling subtraction for rMPS to occur in parallel with comparison of rLPS and offset; and, reducing time that it takes to decode a bin. A method is also provided for performing context selection for a given syntax element, comprising the steps of: first, comparing information regarding properties of neighboring pixels with a threshold; second, adding results of threshold comparison of neighboring pixels, to provide a secondary result; and using the secondary result to select a context. |
US08604950B2 |
Digital signal coding method and apparatus, digital signal arithmetic coding method and apparatus
A digital signal coding apparatus and method for outputting a bitstream containing coded data of a digital signal of a predetermined transmission unit is disclosed. The coding apparatus includes an arithmetic coding unit for compressing, by arithmetic coding, the digital signal of the transmission unit, multiplexing information with the bitstream as an element of header information associated with the transmission unit, the information indicating whether a data indicating a context model status to be used for arithmetic decoding of the transmission unit is multiplexed or not. |
US08604948B2 |
Protection control monitoring device
In one embodiment, a protection control monitoring device includes a conversion unit sequentially converting analog data corresponding to an amount of electricity of a power system into digital data and outputting the results as a data sequence, a calculation unit sequentially calculating difference data representing a difference between adjacent data in the data sequence and outputting results as a difference data sequence, a data block generation unit dividing each of a plurality of difference data in the difference data sequence into a plurality of partial data, generating data blocks from a plurality of corresponding partial data, and outputting results as a data block sequence, a compression unit losslessly compressing the data block sequence, and a storage unit storing the losslessly compressed data block sequence. |
US08604947B2 |
Variable length coding method and variable length decoding method
An image coding apparatus provides a run-length encoding unit RLE1 that subjects quantized coefficients which are obtained by quantizing frequency components of an image signal to a variable length coding process by using a run value Run that indicates the number of successive zero coefficients and a level value Lev that indicates a value of a non-zero coefficient following the zero coefficients. The run-length encoding unit RLE1 includes a reordering unit Lreodr for reordering level values Lev; a variable length coder LVLC for coding reordered level values ROLev by using a code table that is selected according to the value of a quantization parameter QP; a reordering unit Rreodr for reordering run values Run from high frequency component of the quantized coefficients to low frequency component; and a variable length coder RVLC for coding reordered run values RORun by using a code table that is selected according to the number of already-processed run values. |
US08604940B2 |
Vehicle communication system
A vehicle communication system including a communications link and optionally a vehicle position indicator provided at a medical facility. A visual indicator is provided that is temporarily attachable to or usable in a non-official passenger vehicle to alert other road users that a vehicle is traveling in an emergency situation. A communications link and optionally a vehicle position locator are also temporarily attachable to or usable in a non-official passenger vehicle to communicate with the medical facility to alert the medical facility that the vehicle is traveling to the medical facility in an emergency situation. The visual indicator may be a flashing light, or a lighted warning message or symbol, and may be a one-time use light or may be operable only after receipt of an activation code from the medical facility. |
US08604936B2 |
Coaxial cable connector, system and method of use thereof
Disclosed herein is a coaxial cable connector that includes a backscattering arrangement configured to receive an RF signal in a coaxial transmission line and produce a modulated backscattered response. The modulated backscattered response corresponds to a sensed condition in the coaxial cable connector. |
US08604933B2 |
System and method for safe handling of information handling resources by monitoring thermal properties of resources
Systems and methods for safe handling of information handling resources are provided. In some embodiments, a method is provided. The method may include detecting occurrence of a power down sequence and in response to detecting of the power down sequence, controlling operation of a cooling fan coupled to information handling resources based at least on a first criteria of a predetermined policy. The method may include receiving a signal from a sensor, the signal indicating a thermal property of a particular information handling resource coupled to the sensor. The method may include determining if the thermal property satisfies a second criteria of the predetermined policy, the second criteria comprising a safe temperature range for handling the particular information handling resource. If the thermal property meets the second criteria, the method may provide an alert via an indicator to a user indicating the particular information handling resource is safe for handling. |
US08604932B2 |
Driver fatigue monitoring system and method
Method and system for monitoring a vehicle driver includes an optical imaging system that obtains images of the driver, and a processor coupled to the optical imaging system and arranged to analyze the images obtained by the optical imaging system to locate a head of the driver in the images and monitor the driver's head or a part thereof over time. The processor also determines, based on the monitoring of the driver's head or part thereof, whether the driver has lost the ability to operate the vehicle. A reactive component is affected by the processor's determination that the driver has lost the ability to operate the vehicle, and requires action by the driver to indicate regaining of the ability to operate the vehicle or exerting control over the vehicle to slow the vehicle and bring it to a stop. |
US08604928B2 |
RFID ionosphere
A method, system, and apparatus are disclosed wherein an RFID transponder response signal is coupled with a data file as an identifier. The RFID transponder response signal is used in its raw, or a digitized version of its raw, state. |
US08604927B2 |
Retractable merchandise security tether with alarm
A retractable merchandise security tether with alarm is provided. The security tether includes a housing carrying a spool for winding an unwinding a cable therefrom. A security module is also packaged within the housing. The security module includes a sensor operable to detect the presence of a severed end of the cable within the housing. Upon detection, the security arrangement is operable to provide an indication of the presence of the severed end in the form of an alarm or other indication. |
US08604924B2 |
Wireless tracking and monitoring system
The invention relates to a wireless tracking and monitoring system having at least one mobile unit and at least one central unit, wherein each mobile unit has at least one first communication component for communication with the central unit, wherein each mobile unit has at least one sensor, and wherein position finding can be carried out via a position finding system by at least one of the sensors. In this case, each mobile unit has a second communication component for communication with the central unit or with a target unit, and wherein the first and the second communication components of the mobile unit can be operated at the same time. |
US08604920B2 |
Systems and methods for vehicle performance analysis and presentation
A method of operating a driver analysis system, the method including receiving vehicle operation data corresponding to operation of vehicles by drivers, identifying a peer group associated with a target driver, processing at least a portion of the vehicle operation data to determine driving performance of the target driver relative to driving performance of the peer group, generating a driving report which identifies the driving performance of the target driver, and transferring the driving report to a target device for viewing by the target driver. |
US08604919B2 |
Determining status of high voltage battery for emergency responders
The described method and system provide an early notification to emergency responders regarding a non-nominal condition associated with a vehicle involved in a collision. The system provides a short range wireless system controller in communication with a battery controller. The short range wireless system controller is further in communication with a communications device associated with an emergency responder via broadcast over a short range wireless RF network. If battery physical parameters indicate that the battery has suffered damage rendering the vehicle inoperable, this battery damage information is broadcast over the short range wireless RF network to the communications device associated with the emergency responder. In this way, the emergency responder can quickly aid incident victims without time lost in determining whether or not the high voltage vehicle battery is in a nominal state after the crash. |
US08604914B2 |
Smart power sockets, boards, and plugs
An approach is provided where a smart socket receives a request over a power line and generates a request based on the received request. The second request is transmitted over a power cord connecting the smart power socket to a device. A response is received from the device and a power setting is identified therefrom. The smart socket regulates electrical current flowing from the smart power socket to the device using the identified setting. In a related approach, the device receives a power down request over a power cord from a smart power socket. The device determines whether power is still needed at the device in order to perform one or more device operations. The device then returns a response to the smart power socket, with the response indicating whether power is still needed at the device. |
US08604909B1 |
Methods and systems for synchronized ultrasonic real time location
Methods and systems for determining a location and an identity of a portable device are provided. The system includes apparatus for transmitting timing synchronization information, a plurality of stationary ultrasonic base stations and a plurality of portable devices. Each ultrasonic base station is configured to receive the timing synchronization information and to transmit a corresponding ultrasonic location code in a time period based on the received timing synchronization information. Each portable device is configured to: 1) receive the timing synchronization information, 2) detect the ultrasonic location codes from the ultrasonic base stations and 3) transmit an output signal including a portable device ID representative of the portable device and the detected ultrasonic location code. Each portable device is synchronized to detect the ultrasonic location code in the time period based on the received timing synchronization information. |
US08604906B1 |
Method and system for secret fingerprint scanning and reporting
Disclosed is a method, system, and device for secret fingerprint scanning and reporting. When a portable communication device has been lost or stolen, an entity may transmit a fingerprint scan-report trigger message to the device. In response to receipt of the fingerprint scan-report trigger message, the device then automatically invokes an integrated fingerprint scanner to scan a fingerprint of a user of the device and to report the resulting fingerprint data to a remote destination. Optimally, the scanning and reporting are done without notification to a user of the device. The method, system, and device may thereby help to identify the user of the device and to potentially recover the device. |
US08604905B2 |
Finger biometric sensor including laterally adjacent piezoelectric transducer layer and associated methods
A finger biometric sensor may include a finger biometric sensing layer having an upper major surface and at least one sidewall surface adjacent thereto. The finger biometric layer may be for generating signals related to at least one biometric characteristic of the user's finger when positioned adjacent the first major surface. The finger biometric sensor may also include a piezoelectric transducer layer coupled to the at least one sidewall surface of the finger biometric sensing layer and a plurality of electrically conductive layers coupled to the piezoelectric transducer layer to define transducer electrodes. At least one of the electrically conductive layers may also cooperate with the finger biometric sensing layer for sensing the at least one biometric characteristic. |
US08604904B2 |
Portable device
A portable device has an opening formed in one case of a dual structure, a partitioning member for partitioning the opening, a projection formed on the partitioning member so as to project to a front surface side of the case, and at least two push buttons attached from a back surface side of the case to partitions partitioned by the partitioning member. The push button has a substantially flat plate-shaped push button portion, and a locking portion formed at an outer edge of the push button portion. The locking portion contacts an outer edge of the opening to prevent slip-out of the push button when the push button is attached to the partition from the back surface side of the case. |
US08604899B2 |
Electrical transformer with diaphragm and method of cooling same
An electrical transformer is disclosed which includes an enclosure; a magnetic core assembly arranged within the enclosure, the magnetic core assembly having a first core limb, a second core limb and a third core limb; and three coil assemblies having a first coil assembly, a second coil assembly, and a third coil assembly. At least two diaphragms are arranged within the enclosure, the diaphragms being essentially sealed to a first outermost coil of the first coil assembly, and arranged for guiding a cooling fluid in series through a first inner fluid duct, a second inner fluid duct, a third inner fluid duct and an extra-coil volume along outsides of third, second and first outermost coil coils of the third, second and first coil assemblies. |
US08604898B2 |
Vertical integrated circuit switches, design structure and methods of fabricating same
Vertical integrated MEMS switches, design structures and methods of fabricating such vertical switches is provided herein. The method of manufacturing a MEMS switch, includes forming at least two vertically extending vias in a wafer and filling the at least two vertically extending vias with a metal to form at least two vertically extending wires. The method further includes opening a void in the wafer from a bottom side such that at least one of the vertically extending wires is moveable within the void. |
US08604897B1 |
Metamaterial-based devices and methods for fabricating the same
Various embodiments of the present invention are directed to metamaterial-based devices and to methods of fabricating metamaterial-based devices. In one embodiment, a metamaterial-based device comprises a channel layer, a top metallic layer, and a bottom metallic layer. The channel layer has a top and a bottom surfaces, and at least one channel configured to transmit at least one material. The top metallic layer has a top surface and a bottom surface attached to the top surface of the channel layer and has a first lattice of openings extending between the top and bottom surfaces of the top metallic layer. The bottom metallic layer has a top surface and a bottom surface, wherein the top surface of the bottom metallic layer is attached to the bottom surface of the channel layer. |
US08604896B2 |
Left-handed resonator and left-handed filter using the same
A left-handed resonator according to the present invention includes: a series body in which an inductor component and a capacitor component are connected in series; and a parallel body in which an inductor component and a capacitor component are connected in parallel, wherein one end of the series body and one end of the parallel body are connected, the other end of the parallel body is grounded, and the other end of the series body is grounded. With this configuration, a −1-order mode is excited using only one unit cell including the series body and the parallel body, so that dimensions of the left-handed resonator can be miniaturized. |
US08604895B2 |
Filter and method for filtering the switching noise in a pulse-width-modulated transmit signal
Analogue filter for filtering out a high-frequency switching noise in a pulse-width-modulated transmit signal, which is fed into a line by a line driver by means of a transformer, wherein at least one capacitor is connected in parallel to a secondary winding of the transformer and, together with a stray inductivity of the transformer, forms the analogue filter. |
US08604893B2 |
Electrical prism: a high quality factor filter for millimeter-wave and terahertz frequencies
Filters and methods which may be used with millimeter-wave and terahertz frequency range are disclosed. The filter is formed as an electrical prism which may include a first lattice forming an interface with a second lattice. Each lattice may include a plurality of passive elements, such as inductors, capacitors, and the like. The first lattice may include an input disposed at an input boundary thereof, while the second lattice may include an output disposed at an output boundary thereof. Furthermore, the first and second lattices may be configured to receive a signal at the input of the first lattice, propagate the signal to the interface, and direct the signal to the outputs of the second lattice. |
US08604892B2 |
High frequency attenuator and high frequency device using the same
Provided are a high frequency attenuator to attenuate high frequency energy by a minute amount and a high frequency device using the high frequency attenuator. The attenuator includes a dielectric base, a ground conductor provided on a back surface of the base, a first and second strip conductors provided on a front surface of the base, and a resistor. The first and second strip conductors constitute first and second high frequency transmission lines respectively in conjunction with the ground conductor and the base. The first strip conductor has a first end portion, and the second strip conductor has a second end portion which forms a gap with the first end portion. The resistor is provided in the gap. The first end portion is inclined with respect to the first high frequency transmission line, and the second end portion is inclined with respect to the second high frequency transmission line. |
US08604891B2 |
High frequency substrate including a signal line breaking portion coupled by a capacitor
A high-frequency substrate in which a coplanar line including a signal line which transmits a signal and a pair of front ground patterns disposed in parallel with the signal line interposed therebetween is formed on one surface of a dielectric substrate, a back ground pattern is formed to cover the other surface of the dielectric substrate, and a plurality of conductive vias which connect the front ground patterns to the back ground pattern are arranged at a predetermined interval, the high-frequency substrate including: a signal line breaking portion which breaks the signal line; a substantially rectangular parallelepiped signal-line capacitor which is formed to connect the breaking ends of the signal line to each other; and ground pattern breaking portions which are disposed on both sides of the signal line breaking portion of the signal line to break the front ground patterns. |
US08604887B1 |
Current-feedback operational amplifier-based sinusoidal oscillator
The current-feedback operational amplifier-based sinusoidal oscillator provides oscillations based on a single external resistor and a single external capacitor, which exploit the internal parasitic components of the CFOA. The external resistor and external capacitor are passive, externally connected, and grounded. |
US08604882B2 |
Single-ended to differential amplifier
A circuit for single ended to differential conversion is disclosed. The circuit comprises a source for providing a single ended signal; and a transformer for receiving the single ended signal. The transformer includes first and second inductors. The first and second inductors are mutually coupled. When the operating frequency changes, a phase difference of currents flowing through the inductors changes, and therefore a phase difference between effective impedance of the first and second inductors changes to maintain a substantially 180 degree phase difference due to the mutual coupling. |
US08604879B2 |
Matched feedback amplifier with improved linearity
An impedance-matched amplifier utilizing a feed-forward linearization technique involving multiple negative feedbacks and distortion compensation without active tail current sources reduces noise, distortion, power consumption and heat dissipation requirements and increases linearity, dynamic range, signal-to-noise-ratio, sensitivity and quality of service. Some differential amplifier embodiments of the invention consume less than 2 mA at 5 Volts or 10 mW power consumption per 1 mW in peak and sustained output IP3 performance above 40 dBm. In contrast, for an input signal frequency of 200 MHz, a 16 dB gain state-of-the-art differential amplifier consumes 100 mA at 5 Volts with a peak output IP3 of 36 dBm while an implementation of a 16 dB gain differential amplifier embodying the invention consumes 77.7 mA at 5 Volts with a peak output IP3 of 46 dBm and sustained at or above 40 dBm over a wide frequency range. |
US08604875B2 |
High speed power supply system
A power supply system includes a high-speed power supply providing a first output, operating in conjunction with an externally supplied DC source or low frequency power supply which provides a second output. A frequency blocking power combiner circuit combines the first and second outputs to generate a third output in order to drive a load, while providing frequency-selective isolation between the first and second outputs. A feedback circuit coupled to the combined, third output compares this combined, third output with a predetermined control signal and generates a control signal for controlling the high-speed power supply, based on a difference between the third output and the predetermined control signal. The feedback circuit does not control the DC source or the low frequency power supply, but controls only the high-speed power supply. |
US08604872B2 |
Highly linear, low-power, transconductor
Systems and methods which implement a transconductor replica feedback (TRF) block in a transconductor circuit are shown. In accordance with embodiments, the TRF block comprises a feedback transistor disposed as a replica of a corresponding transconductance transistor of the transconductor circuit. The TRF block provides enhanced looking-in degeneration impedance for the transconductor circuit, thereby allowing for higher linearity and lower power at the same time. TRF transconductors of embodiments can be implemented in, or otherwise applied to, various different circuits such as LNAs, filters, etc. |
US08604866B2 |
Method and system for bandwidth enhancement using hybrid inductors
A method and system for bandwidth enhancement using hybrid inductors are disclosed and may include a complementary metal oxide semiconductor (CMOS) transceiver providing an electrical impedance that increases with frequency via hybrid inductors comprising a transistor, a capacitor, an inductor, and a resistor. A first terminal of the hybrid inductors may comprise a first terminal of the transistor. A second terminal of the transistor may be coupled to a first terminal of the resistor and a first terminal of the capacitor. A second terminal of the resistor may comprise a second terminal of the hybrid inductors. A third terminal of the transistor may be coupled to a first terminal of an inductor, and a second terminal of the inductor may be coupled to a second terminal of the capacitor. The hybrid inductors may be configured by varying transconductance, resistance, and/or capacitance and may be utilized as an amplifier load. |
US08604857B2 |
Power supply-insensitive buffer and oscillator circuit
One embodiment of the present invention sets forth a technique for reducing jitter caused by changes in a power supply for a clock generated by a ring oscillator of inverter devices. An inverter sub-circuit is coupled in parallel with a current-starved inverter sub-circuit to produce an inverter circuit that is insensitive to changes in the power supply voltage. When the ring oscillator is used as the voltage controlled oscillator of a phase locked loop, the delay of the inverters may be controlled by varying a bias current for each inverter in response to changes in the power supply voltage to reduce any jitter in a clock output produced by the changes in the power supply voltage. When the transistor devices are sized appropriately and the bias current is adjusted, the sensitivity of the inverter circuit to changes in the power supply voltage may be reduced. |
US08604853B1 |
State retention supply voltage distribution using clock network shielding
An integrated circuit including a state retention node, a conductive clock network shielding and multiple state retention devices for maintaining a state of the integrated circuit during the low power state. The state retention node receives a state retention supply voltage which remains at an operative voltage level during a low power state. The conductive clock network shielding is distributed with clock signal conductors and is coupled to the state retention node. Each state retention device has a supply voltage input coupled to the clock network shielding so that it remains powered during the low power state. The state retention node may be implemented as a minimal set of conductive traces. A state retention buffer may be provided for buffering a power gating signal indicative of the low power state, in which the buffer has a supply voltage input coupled to the clock network shielding. |
US08604851B2 |
Digital phase locked loop device and method in wireless communication system
A digital Phase Locked Loop (PLL) in a wireless communication system is provided. The PLL includes a Digitally Controlled Oscillator (DCO), a divider, a Phase Frequency Detector (PFD), a Time to Digital Converter (TDC), a delay comparator, and a level scaler. The DCO generates a frequency signal depending on an input Digital Tuning Word (DTW). The divider divides the frequency signal at an integer ratio. The PFD generates a signal representing a phase difference between a divided frequency signal and a reference signal. The TDC measures a time interval of the phase difference using the signal representing the phase difference. The delay comparator calculates a time interval in the case where rising edges coincide from values measured by the TDC. The level scaler generates a DTW that operates the DCO using a digital code representing the time interval. |
US08604850B2 |
Measurement initialization circuitry
Measurement initialization circuitry is described. Propagation of a start signal through a variable delay line may be stopped by either of two stop signals. One stop signal corresponds to a rising edge of a reference clock signal. A second stop signal corresponds to a falling edge of the reference clock signal. The start signal propagation is stopped responsive to the first to arrive of the first and second stop signals. Accordingly, in some examples, start signal propagation through a variable delay line may be stopped responsive to either a rising or falling edge of the reference clock signal. |
US08604845B2 |
Triangular wave generator and method generating triangular wave thereof
Disclosed is a triangular wave generator which includes a square wave signal generating unit configured to output a first signal transitioning to a high level from a low level via an output terminal in response to a first transition of a clock signal and to transition the first signal to a low level from a high level in response to a reset signal; a resistance unit configured to adjust a voltage level of a the square wave signal; and a capacitance unit configured to receive an output signal of the resistance unit to generate a second signal rising to a high level from a low level with a slope, to provide the reset signal to the square wave signal generating unit, and to output a triangular signal by falling the second signal to a low level from a high level with a slope. |
US08604839B2 |
Filter comprising a current-to-voltage converter
A current-to-voltage converter for providing a voltage signal based on a current signal has a first active stage having an input and an output. The first active stage is configured to receive the current signal at its input and provide the voltage signal at its output. In addition, the current-to-voltage converter has a second active stage that is coupled between the output of the first active stage and the input of the first active stage. The second active stage is configured to provide the input of the first active stage with a feedback signal that frequency-selectively counteracts amplification, by the first active stage, of signal components of a current signal applied to the input of the first active stage that have a frequency outside of a prescribed useful frequency band. |
US08604836B2 |
Detector circuit
A detector circuit, has a first diode, to an anode of which an AC signal is input and to which a constant voltage is supplied, a second diode, to an anode of which the constant voltage is supplied, and a difference current generation circuit, which generates the difference current between a first current flowing in the first diode and a second current flowing in the second diode. |
US08604834B2 |
Received signal strength indicator and method thereof
An apparatus includes a PMOS (p-channel metal-oxide semiconductor) transistor, a NMOS (n-channel metal-oxide semiconductor) transistor, a first capacitor, and a second capacitor, wherein: a first terminal of the PMOS transistor is coupled to a first signal; a second terminal of the PMOS transistor is coupled to a second signal; a third terminal of the PMOS transistor is coupled to the first capacitor; a first terminal of the NMOS transistor is coupled to the second signal; a second terminal of NMOS transistor is coupled to the first signal; and a third terminal of the NMOS transistor is coupled to the second capacitor. |
US08604831B2 |
Integrated circuit, clock gating circuit, and method
An integrated circuit 2 comprises a functional circuit 4, 6 which is arranged to operate in response to an operational clock signal having an operational clock frequency. To conserve power, the clock signal is distributed across the integrated circuit 2 at a distribution clock frequency which is less than the operational clock frequency. A clock converter 10 is provided to convert the distribution clock signal into the operational clock signal for controlling operation of the functional circuit 4, 6. |
US08604829B2 |
Low-power wide-tuning range common-mode driver for serial interface transmitters
A method is provided for controlling a data transmission device. The method includes providing a reference voltage to the common mode driver and putting the data transmission device in a low power state. The method also includes driving a differential signal pair output from the common mode driver during a portion of the low power state. Also provided is a device that includes a data output driver portion configured to drive an output signal at a common mode voltage and a data output driver portion configured to drive an output signal at a differential voltage level during at least a portion of time when the device is not in a low power state. Also provided is a computer readable storage device encoded with data for adapting a manufacturing facility to create the device. Also provided is an apparatus configured to perform the method. |
US08604827B2 |
Logic circuit, integrated circuit including the logic circuit, and method of operating the integrated circuit
The logic circuit includes at least one variable resistance device configured such that a resistance value of the at least one variable resistance device varies according to at least one selected value. The selected value is selected from among a voltage and a current of an input signal, and the at least one variable resistance device is configured to memorize the resistance value. The logic circuit is configured to store multi-level data by setting the memorized resistance value. |
US08604822B2 |
Methods and apparatus for testing electric power devices
A method of assembling a testing apparatus for a full-power converter assembly includes coupling an electric power supply apparatus to an electric power grid. The method also includes coupling a direct current (DC) generation apparatus to the electric power supply apparatus. The method further includes coupling an electric power grid simulation device to the DC generation apparatus. The method also includes coupling a full-power converter assembly test connection to the electric power grid simulation device. |
US08604821B2 |
Power supply voltage monitoring circuit and electronic circuit including the power supply voltage monitoring circuit
Provided is a power supply voltage monitoring circuit (50) including: a signal output circuit (1) for outputting a signal voltage (Vsignal) which exhibits a saturation characteristic with respect to an increase in a power supply voltage (VDD); and a signal voltage monitoring circuit (4) for comparing the power supply voltage (VDD) with the signal voltage (Vsignal), and outputting a signal (Vout) indicating that the signal voltage (Vsignal) is normal when there is a predetermined voltage difference. With this configuration, a minimum operating power supply voltage may be reduced in an electronic circuit, and the power supply voltage may be used with efficiency. |
US08604820B2 |
Test access component for automatic testing of circuit assemblies
A reliable and durable method of testing of printed circuit boards is presented. Test access components are placed in contact regions for providing electrical connectivity between test probes and the printed circuit board. In some cases, a test access component may be a surface mount resistor. The test access component may provide two points of contact for test probes to make electrical and mechanical contact with the printed circuit board. Test access components may also provide for increased durability of testing, allowing for a greater number of test contacts to be made between test probes and printed circuit boards than were previously possible. |
US08604814B2 |
Tester and test apparatus including the same
A tester may include a test head with a movable coupler, a probe card with a connector unit that is coupled with the coupler, and a needle block disposed on the probe card. In one example, the tester may test respective subsets of semiconductor devices on a wafer via a one-touch operation by moving a coupler on the test head, while the wafer remains in continuous and uninterrupted electrical contact with the tester during testing. |
US08604807B2 |
Method for the operative monitoring of track brakes
Operative monitoring of track brakes involves passing an electric current through a winding of a brake magnet, measuring the electric current and comparing the temporal progression of the measured current with a saved temporal progression of a reference current. Comparison is achieved by calculating the difference between the measured current and the reference current. The difference between measured current and reference current may be temporally integrated and compared with a threshold value. To determine a magnetic coupling between track brake and track, a calculation may be made as to whether the measured current has local minima and/or local maxima during the activation of the track brake, only the temporal progression of the measured current as the current increases being subjected to a comparison with the reference current. The current may be activated in pulses, with the comparison of the measured current and the reference current being restarted with each pulse. |
US08604800B2 |
Frequency extension methods and apparatus for low-frequency electronic instrumentation
An electronic measuring system for extending the effective measurement input frequency range of an electronic measuring instrument includes an electronic measuring instrument and a plurality of downconverting frequency extenders from which two or more downconverting frequency extenders can be selected and configured in series between a test signal output of a device under test (DUT) and a measuring input of the electronic measuring instrument, to selectively and effectively extend the permissible input frequency range of the electronic measuring instrument. The electronic measuring system may optionally include a plurality of upconverting frequency extenders from which one or more upconverting frequency extenders can be selected to selectively and effectively extend the maximum output frequency range of a signal generator used to generate stimulus signals for the DUT. |
US08604795B2 |
Split gradient coil and PET/MTI hybrid system using the same
A generally cylindrical set of coil windings includes primary coil windings and shield coil windings at a larger radial position than the primary coil windings, and an arcuate or annular central gap that is free of coil windings, has an axial extent of at least ten centimeters, and spans at least a 180° angular interval. Connecting conductors disposed at each edge of the central gap electrically connect selected primary and secondary coil windings. In a scanner setting, a main magnet is disposed outside of the generally cylindrical set of coil windings. In a hybrid scanner setting, an annular ring of positron emission tomography (PET) detectors is disposed in the central gap of the generally cylindrical set of coil windings. |
US08604793B2 |
Superconducting magnet having cold iron shimming capability
A method of shimming a superconducting magnet assembly that includes a cryostat and a superconducting magnet configured to be installed in the cryostat. The method includes determining a plurality of field inhomogeneity characteristics of the superconducting magnet while the superconducting magnet is at room temperature and prior to the superconducting magnet being sealed in the cryostat, and installing an initial set of passive shims inside the cryostat while the superconducting magnet is at room temperature, the initial set of passive shims reducing the determined field inhomogeneity characteristics when the superconducting magnet is operating at a normal operational temperature. |
US08604789B2 |
RF coil assembly for use in magnetic resonance imaging
An apparatus for intra-operative MRI includes a patient table with a movable magnet and an RF coil having an upper portion and a lower portion. The upper portion is formed of a foam material flexible to different shapes with a pair of stiffeners formed of connected pivotal elements extending from a central back-bone embedded in the top sheet of the foam to hold the flexible material in the different shapes and is carried at one end of a flexible foam arm attached to a side rail of the table and stiffened by a longitudinal stiffener. A head clamp is attached to the table with a C-shaped holder for the skull clamp pins. The lower coil is movable by flexing about longitudinal lines to different curvatures and is held channel shaped by the C-shaped holder. It is attached at one longitudinal end to an adjustable mount connected to the head clamp. |
US08604788B2 |
Method for three-dimensional turbo spin echo imaging
A three-dimensional turbo spin echo imaging method of applying, within a repetition time TR, N groups of pulses to respectively scan N slabs in succession, with each group including one excitation pulse and more than one refocusing pulse, wherein N is a positive integer greater than 1, is improved by applying a first slice selection gradient at the same time as applying each said excitation pulse, and applying a second slice selection gradient at the same time as applying each said refocusing pulse, and applying a phase encoding gradient after having applied each refocusing pulse, then applying a frequency encoding gradient and acquiring scan signals during the duration of the frequency encoding gradient. An image according to the scan signals is reconstructed. |
US08604787B2 |
Magnetic resonance spectroscopy with real-time correction of motion and frequency drift, and real-time shimming
Disclosed are MR Spectroscopy and MR Spectroscopic Imaging (MRSI) methods comprising the sequential steps of water suppression, spatial prelocalization and spatial-spectral encoding, wherein the water suppression is modified to additionally measure and correct the frequency drift, the change in magnetic field inhomogeneity in the volume of interest, and the object movement. By inserting between the water suppression RF pulse and the dephasing gradient pulses either a phase sensitive MRI encoding module, or a 1D, 2D or 3D high-speed MRSI encoding module with simultaneous acquisition of the decaying water signal it is possible to measure frequency drift, magnetic field inhomogeneity and object movement. This information is used to dynamically change the synthesizer frequency of the scanner, the shim settings and to rotate the encoded k-space. In the preferred implementation this information is computed in real-time during the ongoing scan and via feedback loop downloaded to the acquisition control unit to update the aforementioned parameters before the subsequent data acquisition. |
US08604785B2 |
Magnetic resonance method and system to create an image data set
In a method to create an image data set by operating a magnetic resonance system, at least two phase coding gradients are switched in respective spatial directions, an RF excitation pulse is radiated and a raw data point in a k-space data set belonging to the image data set is read out a predetermined time period after the radiation of the RF excitation pulse. The predetermined time period thereby corresponds to the maximum of a set of a respective minimum time period for each of the at least two phase coding gradients. The minimum time period of the respective at least one of the at least two phase coding gradients is determined depending on the strength of the respective phase coding gradient such that the Nyquist theorem is complied with. |
US08604782B2 |
Eddy current sensor
An eddy current sensor includes: an excitation coil that applies a predetermined alternating-current excitation signal to a measurement target component; and a detection coil that detects a detection signal, generated by eddy current, from the measurement target component to which the alternating-current excitation signal is applied. The excitation coil has a plurality of solenoid coils. The detection coil is arranged at least on one of two sides of the excitation coil in a direction of a central axis of each solenoid coil. Then, the plurality of solenoid coils are arranged in parallel with one another so that winding directions of the adjacent solenoid coils are opposite to each other. |
US08604780B2 |
Rotating field sensor
A field generation unit generates a rotating magnetic field including a first partial magnetic field in a first position and a second partial magnetic field in a second position. The first and second partial magnetic fields differ in direction by 180° and rotate in the same direction of rotation. A first detection unit located in the first position has first and second detection circuits whose output signals differ in phase by ¼ the period. A second detection unit located in the second position has third and fourth detection circuits whose output signals differ in phase by ¼ the period. A detected value of the angle that the direction of the rotating magnetic field in a reference position forms with respect to a reference direction is calculated based on a first signal generated from the output signals of the first and third detection circuits and a second signal generated from the output signals of the second and fourth detection circuits. |
US08604775B2 |
Current detection device
In a wiring pattern formed on a printed circuit board, a current detection pattern having a predetermined area is formed in the wiring pattern for detecting a current, which flows to a subject body for current measurement, based on magnetic flux density generated by the current. The current detection pattern is formed of a same material as the wiring pattern. An excitation current is supplied to the current detection pattern for detecting the magnetic flux density. An output voltage outputted from the current detection pattern in correspondence to the excitation current and the magnetic flux density is measured. The current flowing to the subject body is calculated based on the magnetic flux density calculated from the excitation current and the output voltage. |
US08604773B2 |
Receiving apparatus, test apparatus, receiving method, and test method
Provided is a receiving method and a receiving apparatus comprising a multi-strobe generating section that generates a multi-strobe including a plurality of strobes having different phases with respect to a reception signal; an acquiring section that acquires the reception signal using each of the strobes; a detecting section that detects a change position at which a value of the reception signal changes, based on the acquisition result of the acquiring section; and a selecting section that selects, as a reception data value, the value of the reception signal acquired using a strobe at a position shifted by a predetermined phase from the change position. The receiving apparatus may further comprise a reference clock generating section that generates a reference clock having a preset period, and the multi-strobe generating section generates the multi-strobe for each pulse of the reference clock. |
US08604768B2 |
Control loop for switching power converters
A pulse regulation loop for a clocked switching power converter where the loop is around a bridge converter. The loop features a comparator, a charge pump and a filter in series, feeding a pulse modulator controlling the clock duty cycle of the bridge. Ripple in the bridge converter output is feed to the comparator which causes the charge pump to inject or remove charge from the filter at the clock rate providing control over the modulator that establishes converter efficiency. The charge pump is of the PLL type, having switches responsive to voltage output from the comparator, evaluating the converter ripple relative to a reference voltage. |
US08604767B2 |
Boundary conduction mode switching regulator and driver circuit and control method thereof
A boundary conduction mode (BCM) switching regulator controls a power stage to convert an input voltage to an output voltage or output current. The BCM switching regulator detects whether it is operating in continuous conduction mode (CCM) or discontinuous conduction mode (DCM), and adjusts the On-time, Off-time, or frequency of the power stage accordingly, so that the switching regulator operates in or near BCM. |
US08604765B2 |
Resistance simulation and common mode rejection for digital source-measure units
A source-measure unit (SMU) may be implemented with digital control loops. The output voltage and output current may be measured with dedicated ADCs (analog-to-digital converters), and the readings obtained by the ADCs may be compared to a setpoint in a digital loop controller, which may produce an output to drive a DAC (digital-to-analog converter) to maintain the output voltage and/or output current at a desired setpoint. The digital loop controller may also digitally implement simulated resistance with high resolution, accuracy, and range, using Thévenin and Norton power supply models. Simulated resistor values may range from 10Ω to 10Ω for output currents in the 100 mA range, with a sub-200μΩ resolution. The range may be expanded up to 100 kΩ for output currents in the 10 μA range. The Norton and Thévenin implementations may be combined, and a “pure resistance” mode may be created for simulating any desired resistance value. A variation of the general resistance-simulation technique may also be used to compensate for Common Mode Voltage effects in the current measurement path, providing tighter output and measurement specifications at a lower component cost. |
US08604759B2 |
Power regulation circuit and electronic device with the same
A power regulation circuit is connected to a voltage supply unit for receiving a power-on voltage supplied by the voltage supply unit and to a voltage management unit for enabling an enable port thereof. The power regulation circuit includes a first regulation unit and the second regulation unit. The first regulation unit is used for outputting an enable signal to the enable port when the power-on voltage is lower than a threshold value such that the voltage management unit can output a first working voltage to a load via a first output port thereof. The first regulation unit stops outputting the enable signal after the expiry of a certain period of time following the drop in a power supply to a level which is below a certain threshold value for a predetermined period. |
US08604757B2 |
DC/DC power conversion apparatus
A DC/DC power conversion apparatus includes a reactor connected to a DC power supply and a DC voltage conversion section connected to the reactor. The DC voltage conversion section includes a plurality of switching devices, a charge-discharge capacitor which is charged or discharged by ON/OFF operations of the switching devices, a plurality of diodes which provide a charging route and a discharging route for the charge-discharge capacitor. The DC/DC power conversion apparatus also includes a smoothing capacitor on an output side, which is connected to the DC voltage conversion section and including a plurality of voltage division capacitors connected in series to each other, and a switching device for voltage equalization provided on a connection line provided between the negative terminal of the charge-discharge capacitor and a connection point between the voltage division capacitors. |
US08604756B2 |
Controlling transient response of a power supply
A method and apparatus is provided to, among other things, supply power to a load under various load conditions. Output voltage transient responses of the system, such as may be caused by transients changes in the load conditions, may be controlled through current transformation on the output in order to correct or impede over-voltage conditions of the transient response. |
US08604752B2 |
Portable battery charging and audio unit
An audio power unit is disclosed which provides an audio output and charges removable battery packs as well as providing a number of AC receptacles for powering other tools and the like when the unit is connected to a source of AC power. The unit can optionally also provide DC power. When the unit is connected to a source of AC power, the AC power drives the audio unit which may be a radio or a combination radio and CD player and the AC source also powers a charger which recharges a battery pack if a battery pack is inserted into the charger receptacle. If the unit is not connected to a source of AC power, the radio may be powered by a battery pack when it is placed in the charger receptacle. When the unit is connected to a source of AC power, a relay is opened to isolate the radio unit from the charger and battery pack. The unit has a unique protective frame structure that is connected to the housing of the unit. |
US08604751B2 |
Charging system for vehicle and method for controlling charging system
A charge control device includes a charge power detection unit for detecting charge power supplied to a power storage device; a target value determination unit for determining a target value of the charge power to the power storage device; a feedback control unit for correcting the target value based on a difference between the charge power and the target value to generate the power command value; a supply power detection unit for detecting supply power output from the charger; and a charge abnormality monitoring unit for, in a case where the charge power is decreased below a first threshold value and the supply power is decreased below a second threshold value, confirming a diagnosis that an abnormality occurs in the charger when the target value falls within an abnormality detectable range, and suspending performing a diagnosis of an abnormality in the charger when the target value is out of the abnormality detectable range. |
US08604749B2 |
Battery pack
A battery pack includes a plurality of batteries; a circuit unit for controlling charging and discharging operations of the plurality of batteries; a case for containing the plurality of batteries and the circuit unit, and comprising an assembly of at least two sub-cases; and a submersion checking unit formed on a coupling portion between the at least two sub-cases. By using the battery pack, it is possible to rapidly cope with the submersion by easily checking the submersion of the battery pack, and to easily find the cause of functional deterioration or a malfunction. |
US08604748B2 |
Methods and systems for detecting battery presence
A device has a battery presence detection system. A line charging pulse signal is applied to a terminal battery detection line, which is connected when the battery is present to a ground line via a resistor and a capacitance. A detector determines whether the battery is connected to the mobile terminal based on detecting whether a line voltage edge or a line voltage level on the terminal battery detection line is present. |
US08604743B2 |
Method for operating an electric window lift of a convertible
An especially failsafe method for operating an electric window lift for closing and opening a window of a convertible is provided. A threshold value that is relevant to the triggering of an anti-pinch protection system of the window lift is regularly adapted to the actuation-position-dependent behavior of a sensed operating quantity of the window lift, at least in a lower region of the actuation path of the window, both when the top of the convertible is closed and when it is open. At least for the first window closing process after a closing of the top, the threshold value is rigidly predefined in an upper region of the actuation path of the window. |
US08604742B2 |
Robotic devices with arms and related methods
Various robotic devices and related medical procedures are disclosed herein. Each of the various robotic devices have an arm. The arm can have two arm components coupled at a joint. |
US08604740B2 |
Power supply and control unit, particularly for submersed electric motors
A power supply and control unit for submersed electric motors includes an enclosure which is jointly connected to the motor of a submersed electric pump and forms a hermetic chamber that contains an electronic power supply that can be connected to the motor. The unit includes a heat exchange means in the liquid state that completely fills the empty space within the hermetic chamber in order to transfer to the enclosure the heat generated by the electronic power supply. |
US08604738B2 |
Method of and apparatus for controlling oil temperature increase for electric vehicle and electric vehicle
An electric vehicle employs an oil commonly used as a lubricating oil for gears and a coolant for a motor and is propelled by transmitting the rotational torque of the motor to wheels through the gears, the motor being partly immersed in the oil. It is determined whether the motor is in a state prior to being started or not. If it is judged that the motor is in the state prior to being started, coils of the motor are energized alternately with a first current supplied to the motor at an advanced angle for no torque to generate a magnetic flux, and a second current supplied to the motor at another advanced angle for no torque to generate a magnetic flux in a direction opposite to the magnetic flux generated by the first current, thereby heating the oil. |
US08604736B2 |
Method for analyzing the operation of an electromechanical actuator for the motorized maneuvering of a screen and actuator for its implementation
Method of operating an actuator (1) for maneuvering a movable element (52), comprising a motor of asynchronous type or of brushless type or comprising a motor associated with a differential brake, and comprising a partially irreversible reduction gear, which comprises a step of establishing a measurement of an operating parameter of the actuator and a step of using this measurement to determine whether the actuator is driving the movable element or whether the actuator is being driven by the movable element, and then a step of implementing first logic for determining an end of travel or an obstacle, or a step of implementing second logic for determining an end of travel or an obstacle, depending on whether the actuator drives the movable element or the actuator is driven by the movable element. |
US08604730B2 |
Electric power converter, driving apparatus and electric power steering apparatus
A control unit of an electric power converter, which is used in a three-phase motor having two winding wire systems, performs for a first duty instruction signal regarding a voltage applied to a first winding wire group a flatbed two-phase modulation process, and performs for a second duty instruction signal regarding a voltage applied to a second winding wire group a flattop two-phase modulation process. By phase-shifting the second duty instruction signal by 30° from the first duty instruction signal, a timing of maximum value of the first duty instruction signal is shifted from a timing of minimum value of the second duty instruction signal. Even when the maximum value is greater than a center output value and the minimum value is smaller than the center output value, overlapping of capacitor discharge is avoided, thereby reducing a ripple electric current. |
US08604727B2 |
Power state diagnosis method and apparatus
[Problem]An object of the present invention is to provide a power state diagnosis method and a power state diagnosis apparatus that do not need to make a control period fast and also do not need to excessively increase a responsibility, and do not give an uncomfortable feeling to a driver.[Means for Solving the Problem]The present invention is a power state diagnosis method that diagnoses a power state of a vehicle which comprises an electrical control system supplied from a power supply and a motor controlled by a vector control method, comprising: starting a diagnosis of said power state at a time that an ignition key is switched from “OFF” to “ON” or at a time that said ignition key is switched from “ON” to “OFF”, storing a value obtained by adding an offset to an angle of said motor that is read at a start of said diagnosis as a pseudo-motor-angle, performing said vector control based on said pseudo-motor-angle during said diagnosis, and diagnosing said power state based on a voltage that is supplied to said motor. |
US08604718B2 |
Auto-addressing method for a tiled lighting system
This invention relates to a method of controlling a lighting system (1) which has a plurality of polygonal lighting modules (3) arranged as an array, and a controlling device (7) connected to one of the lighting modules. The lighting modules are arbitrarily arrangeable by each lighting module being able to communicate with neighboring lighting modules via communication units (11) arranged at all sides of the lighting module. In an upstart mode each lighting module performs a configuration procedure, which includes: —receiving address data and lighting orientation data from a neighboring lighting module, wherein the address data comprises several address elements, which are related to a relative position of the neighboring lighting module within the lighting system; —aligning its own lighting orientation with the lighting orientation of the neighboring lighting module from which it receives address data and lighting orientation data; and —determining its own address by one of incrementing and decrementing at least one of the address elements depending on the lighting module's position relative to the neighboring lighting element, and according to a predetermined addressing plan. The lighting module which is connected with the controlling device receives initial address data and lighting orientation data from the controlling device. |
US08604717B2 |
Method and apparatus for providing high speed, low EMI switching circuits
Methods and apparatus are provided for generating low EMI display driver power supply. The methods and apparatus include switching circuits that utilize two groups of parallel circuit traces, each of which is coupled to one end of a switching device. The two groups of traces are configured to be interleaved with each other such that no two traces from either group are next to any other traces from the same group. When the switching device is activated, current flows through the circuit and charges an energy storage element. When the switching device is deactivated, the energy storage element discharges a portion of its energy to a second energy storage element and to the driver circuits. In another embodiment, an additional circuit trace is provided which is only connected on one end and is free floating on the other end to capture the majority of EMI remaining that was generated by the switching circuit. |
US08604715B2 |
Lamp tube switch circuit and method thereof
A lamp tube switch circuit includes a first connector and a second connector for connecting a lamp tube, a power supply, a switch module including at least six switches connected between the power port, the first connector and second connector, a detecting unit connected between the first connector and the second connector, a control unit, a ballast and a starter. The detecting unit detects impedances between the pins of the lamp tube to determine the type of the lamp tube. The control unit is connected to the detecting unit, and operated to have some of the switches to turn one and the others to turn off whereby a drive circuit is formed enabling power from the power supply to flow through the lamp tube to make the lamp tube to generate light. |
US08604713B2 |
Method, apparatus and computer-readable media for controlling lighting devices
A method for controlling pulse width modulated lighting devices within a lighting apparatus comprising a plurality of sets of lighting devices is disclosed. The method includes setting a counter for a first set of the plurality of sets of lighting devices using a master counter and an activation duration for one or more other sets of the plurality of sets of lighting devices. The method further includes determining an activation time period within a duty cycle for the first set of lighting devices using the counter for the first set of lighting devices and an activation duration for the first set of lighting devices. In some embodiments of the present invention, the lighting devices are light emitting diodes grouped into sets (or banks) and controlled to limit the magnitude and/or quantity of instantaneous current fluctuations in a power supply within the lighting apparatus. |
US08604712B2 |
LED luminaires power supply
An LED luminaires power supply that isolates dangerous line power from the LED luminaires. The power supply's footprint may enable retrofitting in existing lighting fixtures (e.g., replace ballast in florescent tube troffer). The power supply may individually power a plurality of LED luminaires based on power requirements of the individual LED luminaires. The power supply may receive and interpret TRIAC dimmer signals and/or other lighting protocol commands and provide dimming and/or other lighting scenarios to the LED luminaires. The power supply may include identification readers to read identification and/or power requirements for the LED luminaires being powered thereby (stored in luminaires or in adapters connected to luminaires). The LED luminaires driven by the power supply may include individual lighting fixtures (e.g., LED tubes, LED bulbs), a plurality of LED light arrays in a single light fixture (e.g., LED street lights, LED high hats), or some combination thereof. |
US08604711B2 |
Intelligent dimmer for managing a lighting load
An intelligent dimmer (12) for managing a lighting load (172) coupled to an AC voltage source (174) is disclosed. In particular embodiments, the intelligent dimmer (12) may be incorporated into a system (10) and method (220-228) for managing lighting power density. In one embodiment of the intelligent dimmer (12), a control circuit (170) is coupled between the lighting load (172) and the AC voltage source (174). A threshold load current value is established for the lighting load (172). A line voltage sensor (178) reads the line voltage across the lighting load (172) and a load sensor (178) samples the load current being provided to the lighting load (172). The control circuit (170) compares the sampled load current to the threshold load current to determine the presence of a cutoff condition and, in response thereto, selectively adjusts the line voltage applied to the lighting load (172). |
US08604709B2 |
Methods and systems for controlling electrical power to DC loads
Fixed Frequency, Fixed Duration power controls methods and systems are described for application of power to electrical loads. FFFD techniques according to the present disclosure utilize power train pulses with fixed-frequency fixed-duration pulses to control power applied to a load. The load can be any type of DC load. FFFD techniques allows for controlled variation of the fixed length of the ON pulse, the Fixed length of the OFF or recovery period, the total time period for one cycle, and/or the number of pulses in that time period. Applications to electric motors, electric lighting, and electric heating are described. Related circuits are also described. |
US08604708B2 |
Voltage-controlled light diffusing module, flash lamp module and controlling method thereof based on face information
A voltage-controlled light diffusing module, a flash lamp module and a controlling method thereof are provided. The voltage-controlled light diffusing module includes a light diffuser, a driving circuit and an information processing unit. The information processing unit receives face information for deciding a driving voltage of the driving circuit, so as to change transmission of the light diffuser. |
US08604707B2 |
Power supply
A power supply includes: a step-down chopper unit for stepping down a DC voltage from a DC power source to a voltage required for lighting; and a dimming control unit which dims the light source by alternately repeating a switching ON period during which a drive signal having a frequency higher than that of the dimming signal is supplied to the switching element and a switching OFF period during which the supply of the drive signal to the switching element is stopped. Further, the power supply includes an inrush current prevention unit for preventing an inrush current occurring when the DC power source is turned on, and a compensation unit which applies a drive voltage to the thyristor in the switching OFF period. |
US08604704B2 |
Semiconductor device
A light emitting device capable of performing signal electric current write-in operations at high speed and without dispersion in the characteristics of TFTs structuring pixels influencing the brightness of light emitting elements is provided. The gate length L of a transistor in which an electric current flows during write-in of a signal electric current is made shorter than the gate length L of a transistor in which electric current supplied to EL elements flows during light emission, and high speed write-in is thus performed by having a larger electric current flow than the electric current flowing in conventional EL elements. A converter and driver transistor (108) is used for signal write-in. By using the converter and driver transistor (108) and a driver transistor (107) when supplying electric current to a light emitting element during light emission, dispersion in the transistor characteristics can be made to have less influence on brightness than when using a structure in which write-in operations and light emission operations are performed using different transistors. |
US08604703B2 |
Inductive LED lamp bulb
An inductive LED lamp bulb comprising a male connector, casing, LED, lamp panel and PIR sensor, of which the male connector is set at upper part of the casing, both LED and lamp panel are set at lower part of the casing; moreover, the lamp panel covers said LED, while a controller is embedded into said casing, which is also equipped with a timing switch and a contrast switch; said PIR sensor of a removable structure is mounted at the lower part of the casing, and protruded from said lamp panel; said controller is electrically connected with LED, PIR sensor, timing switch and contrast switch; thus, the utility model can be used as a common LED lamp bulb with more control functions and broader range of applications by disassembling easily the PIR sensor. |
US08604702B2 |
Method and apparatus for setting a chromaticity coordinate
A method for setting a color locus of a luminaire (110) comprising at least one phosphor-converted light-emitting diode (103, 105) and at least one monochromatic light-emitting diode (104), wherein the method comprises the steps of: setting a current for the at least one phosphor-converted light-emitting diode (103, 105) setting a pulse width modulation for the at least one phosphor-converted light-emitting diode (104); and setting a current or a pulse width modulation for the at least one monochromatic light-emitting diode (104). |
US08604700B2 |
Illumination arrangement for illuminating horticultural growths
The invention provides an illumination arrangement (1) for illuminating horticultural growths (100) with for instance LEDs as a light source. These LEDs are placed in a lighting unit (10). The lighting unit may especially have the ability to direct substantially all light from the light source (here the LEDs) to the horticultural growths (in the greenhouse). Additionally, a horticultural growth-recognition system (50) can be implemented in the illumination arrangement, so that the system can adapt for instance its beam (11) to the location of the horticultural growth(s) (in the case of growth or moving of plants, etc). |
US08604699B2 |
Self-power for device driver
The disclosed implementations utilize the voltage drop inherent in the device string to power a device control IC. In some implementations, current is drawn from the bottom of the device string and applied to a voltage supply pin of the device control IC. In some implementations, current is drawn from some other location in the device string (e.g., near the bottom or midpoint of the device string) using a switch. In some implementations, current is drawn from near the bottom and the bottom of the device string at different times, such that less current is drawn from the bottom of the device string as the duty cycle of the device string increases and more current is drawn from near the bottom of the device string as the duty cycle of the device string increases. |
US08604695B2 |
Automatic backup lighting system
An emergency lighting system induces an AC current in a toroidal coil encircling a non-shielded electrical element of a power circuit. The AC current is rectified to DC and delivered to a rechargeable standby battery. The battery provides a first input to a NAND gate, and a proximity transducer provides a second input to the NAND gate. When the power circuit is energized from the power grid, both inputs to the NAND gate are high and the output is low. When no current is sensed by the transducer one of the input NAND gates is low so that the NAND gate output is high thereby delivering an illumination current to an emergency lighting LED either directly or through a boost amplifier. |
US08604693B2 |
Plasma display device containing cover glass and substrates having similar thermal expansion coefficients
To provide a plasma display device whereby it is possible to improve the image quality and at the same time to reduce warpage of a thin cover glass plate having a large area. A plasma display device 10 is provided which comprises a plasma display panel 20 provided with glass substrates 21, 22, and a cover glass plate 30 bonded to the display side of the plasma display panel 20, wherein the cover glass plate 30 has a diagonal length of at least 81 cm and a thickness of at most 1.5 mm, and the average thermal expansion coefficient of the cover glass plate 30 is from 80 to 120% of the average thermal expansion coefficient of the glass substrates 21, 22 within a range of from 50 to 350° C. |
US08604692B2 |
Mass spectrometry assay for eIF4E and eIF4E regulon activity
Provided is a highly sensitive high throughput mass spectrometry-based quantitative assay for 4E/4E regulon pathway proteins has been developed which provides for single sample multiplexed analysis, as well as the analysis of protein phosphorylation states. It may be adapted for use as the first single sample analytical method of the 4E/4E regulon biological pathway. |
US08604683B2 |
Bucket-type ion source for fanning cusped magnetic fields inside a plasma generation chamber
An ion source includes a plasma generation chamber, at least one filament disposed inside the plasma generation chamber, at least one electrode disposed so as to be opposed to the plasma generation chamber, and configured to extract out an ion beam from the plasma generation chamber, and a plurality of permanent magnets disposed outside the plasma generation chamber, and configured to form cusped magnetic fields inside the plasma generation chamber, and a deposition preventive plate disposed parallel with an inner surface of a wall of the plasma generation chamber. The deposition preventive plate has recesses which are formed at such positions as to be opposed to the respective permanent magnets with the wall of the plasma generation chamber interposed in between. |
US08604682B2 |
Built-in lamp with cable, in particular for aerodrome lighting
A lamp which has a lamp glass envelope (14) having contact pins (16) projecting from its end (15) and which is held in a socket receptacle (9) having an insulator (2, 6), wherein the insulator (2, 6) holds a small metallic tube (1) between a contact pin (16) of the lamp envelope (14) and a current-feeding connecting cable (4) in at least one through hole, to which small tube (1) the contact pin (16) is crimped and the connecting cable (4) is connected. |
US08604681B2 |
Cold cathodes and ion thrusters and methods of making and using same
Described herein are improved ion thruster components and ion thrusters made from such components. Further described are methods of making and using the improved ion thruster components and ion thrusters made therefrom. An improved cathode includes an emitter formed from a plurality of vertically aligned carbon nanotubes. An ion thruster can include the improved cathode. |
US08604680B1 |
Reflective nanostructure field emission display
A pixel element includes a substrate layer, a reflector layer, and an emitter layer, electrically isolated from the reflector layer. A first potential is applied to the reflector layer, wherein a potential difference between the emitter layer and the corresponding one reflector layer is operable to draw electrons from the emitter layer to the corresponding reflector layer. The pixel element also includes a transparent layer oppositely positioned a predetermined distance from the emitter layer. The transparent layer has a conductive layer deposited thereon. A second potential is applied to the conductive layer to attract electrons reflected from the reflective layer. The pixel element also includes at least one phosphor layer on the conductive layer oppositely opposed to the corresponding reflector layer. The emitter layer includes a plurality of nanostructures. |
US08604676B1 |
Crystalline relaxor-ferroelectric phase transition transducer
A piezoelectric transducer includes a single crystal piezoelectric material having a phase transition from one crystalline phase to a second crystalline phase at a predetermined stress level. A pre-stress is applied to the single crystal piezoelectric material so that the material is maintained near its phase transition point. An electrical field source is joined to the material such that, in cooperation with the pre-stress, an increase or decrease in the electrical field causes a crystalline phase transition in the single crystal piezoelectric material. Crystalline phase transition induces strain larger by an order of magnitude than that caused by the non-phase transition piezoelectric effect. |
US08604675B2 |
Piezoelectric resonator and method of manufacturing piezoelectric resonator
To provide a piezoelectric resonator that suppresses spread of a conductive adhesive and is low in cost and a method of manufacturing a piezoelectric resonator. At positions, of a base 3, corresponding to electrode terminals on a crystal resonating piece 10, projection portions 41, 42 are formed by etching the base 3, and a metal film is formed on front surfaces of the above projection portions 41, 42, and the above metal films and the electrode terminals on the above-described crystal resonating piece 10 are electrically connected with a conductive adhesive 34. The conductive adhesives 34 rise on side surfaces of the above-described projection portions 41, 42 due to surface tension to bring the conductive adhesives 34 into a state where they do not easily flow outward, so that it is possible to suppress spread of the conductive adhesives 34. Further, it is possible to reduce a film thickness of the metal film to be formed on the front surfaces of the projection portions 41, 42, so that the crystal resonating piece 10 is reduced in cost. |
US08604674B2 |
Piezoelectric power generator and wireless sensor network apparatus
A piezoelectric power generator that includes a piezoelectric multilayer body including a piezoelectric element that converts vibration into electricity and a substrate on which the piezoelectric multilayer body is mounted. The resonant frequency of the piezoelectric element coincides with the reference of the substrate so that the piezoelectric element efficiently vibrates. The addition of vibration portions in the substrate allows various resonant frequencies to be set. |
US08604669B2 |
Passive alternating current sensor
A passive alternating current sensor for sensing a current-carrying conductor is disclosed. The passive alternating current sensor includes a substrate, a magnetic body, at least one coil and a first measuring circuit. The substrate has a flexible structure layer. The magnetic body is disposed correspondingly to the current-carrying conductor and located at one side of the substrate. The coil is disposed on the substrate and correspondingly winds around the magnetic body. The first measuring circuit is connected with the coil. When the magnetic body is subjected to the magnetic field generated by the current-carrying conductor and enabled a relative motion with the coil, the coil produces an induced electromotive force. The first measuring circuit measures the induced electromotive force and accordingly outputs a first induction signal. |
US08604667B2 |
Ultrasonic motor and electronic apparatus which mounts the motor thereon
An ultrasonic motor exhibits stable performances by suppressing irregularities of magnitudes of two standing waves excited by a piezoelectric element. A plurality of divided electrodes are mounted on one surface of the piezoelectric element and are equidistantly arranged in the circumferential and radial directions and have equal polarized areas. Alternate ones of the divided electrodes are short-circuited in the radial direction by inner electrodes arranged on the inner peripheral side of the divided electrodes, and the other alternate ones of the divided electrodes are short-circuited in the radial direction by outer electrodes arranged on the outer peripheral side of the divided electrodes. |
US08604661B2 |
Rotor of an electrical machine with cord lashing
A rotor of an electrical machine has slots which are tapered on an inlet side, a machine winding having winding overhangs, a cord lashing which reaches over the winding overhangs, extends in the slots, and is formed by a cord, and at least one end of the cord is pressed by a filler element inserted in one of the slots in order to fix it in position in an interstice of the slot formed between the machine winding and the slot taper. |
US08604659B2 |
Stator with insulation for an electric motor, insulation for a stator, and electric power tool
The invention is based on a stator having an insulation which is arranged around a coil winding package, wherein a stator packet is arranged on the insulation. It is proposed that the insulation means be embodied as a self-supporting sleeve. |
US08604658B2 |
Permanent magnet type rotating electrical machine and electric power steering device
A permanent magnet type rotating electric machine includes: a rotor including a rotor core having a polygonal shape and a plurality of permanent magnets; and a stator including a stator core and armature windings, in which, when the number of poles is M, the number of slots is N, M permanent magnets are sequentially numbered from first to M-th in a circumferential direction, and a positional shift amount in the circumferential direction from a corresponding one of equiangularly arranged reference positions, each being at the same radial distance from a center of a rotating shaft, for an i-th (i=1, 2, . . . , M) permanent magnet is hi, M unit vectors in total, each being in an angular direction of 2πN(i−1)/M (rad), are defined, and a sum of M vectors obtained by multiplying the unit vectors respectively by the positional shift amount hi is smaller than a maximum value of an absolute value of the positional shift amount hi. |
US08604657B2 |
Yoke for a permanent magnet machine
A yoke for a permanent magnet machine shows a surface with an accommodation area for accommodating a permanent magnet, wherein two recesses are provided adjacent to the accommodation area to increase reluctance. |
US08604655B1 |
Multi-phase permanent magnet brushless DC electric motor
A multi-phase, permanent magnet brushless DC electric motor includes 24 phase windings operating at a reduced voltage so that the motor can be powered by batteries or other sources of DC voltage to enable the motor to be used safely for propelling watercraft or other vehicles where the higher voltages required for conventional high horsepower motors would not be acceptable. The motor is wound by solid conductors spaced apart by 7.5 degrees. The conductors are interconnected and electrically driven by a sequence of drive currents to provide a six-pole stator. The connections to and interconnections between the stator windings are mirrored at each end of the stator to distribute the connections and interconnections between the two ends of the motor. A corresponding six-pole rotor using permanent magnets secured to a hollow rotor core is caused to rotate by the fields generated by the stator. |
US08604651B2 |
Cooling of permanent magnet electric machine
A cooling system for a sealed permanent magnet electric machine includes a fan element configured to urge an airflow across a plurality of permanent magnets of a rotor of the electric machine to remove thermal energy therefrom. A plurality of cooling channels are located in a housing of the electric machine and are configured to transfer thermal energy from a stator of the electric machine to a flow of liquid coolant through the plurality of cooling channels. A heat exchanger is located in thermal communication with the plurality of cooling channels to transfer thermal energy from the airflow to the liquid coolant. One or more coolant supply conduits are configured to divert a portion of the airflow from the heat exchanger to an ancillary component of the electric machine to allow for transfer of thermal energy from the ancillary component to the airflow. |
US08604650B2 |
Motor and fan motor using the same motor
A motor includes a shaft, a bearing for supporting the shaft rotatably, a rotor including a rotor frame to be mounted to the shaft along an axial direction of the shaft, a stator confronting an outer wall of the rotor via a space, and a washer disposed between the bearing and the rotor frame. On top of that, a step section forming a recess is provided to the rotor frame at a place where the washer confronts the rotor frame. |
US08604648B2 |
Flat spring and voice coil motor using the same
A flat spring for a voice coil motor includes an curved internal flat spring, an outer flat spring placed outward the internal flat spring, a first connection body folded at least twice and interposed between the internal flat spring and the outer flat spring, a second connection body placed between the internal flat spring and the outer flat spring in parallel with the first connection body and having an identical shape with the first connection body, and a connection flat spring including a connecting part connecting adjacent ends of the first and the second connection body, where an end of the first connection body which has no connection with the connecting part is connected to the internal flat spring, and an end of the second connection body which has no connection with the connecting part is connected to the outer flat spring. |
US08604644B2 |
Load impedance decision device, wireless power transmission device, and wireless power transmission method
A load impedance decision device, a wireless power transmission device, and a wireless power transmission method are provided. At least one of a distance and an angle between two resonators may be measured. A load impedance may be determined based on at least one of the measured distance and the measured angle. When the distance between the two resonators changes, a high power transfer efficiency may be maintained without using a separate matching circuit. Where the load impedance is determined, a test power may be transmitted. Depending on a power transfer efficiency of the test power, the load impedance may be controlled and power may be wirelessly transmitted from the source resonator to the target resonator. |
US08604634B2 |
Energy harvesting from flow-induced vibrations
Electrical energy is produced at a remote site by converting kinetic energy from fluid flow to electrical energy using a downhole harvesting apparatus. The downhole harvesting apparatus includes a vibrating sleeve member that vibrates in response to fluid flow through a tubular housing structure. The vibration of the sleeve is used to generate electrical power. The harvesting apparatus may include features to help maintain constant fluid flow in the tubular structure. The harvesting apparatus can be tuned to different vibration and flow regimes in order to enhance energy conversion efficiency. |
US08604633B2 |
System for evaluating and controlling the efficiency of a wind turbine
The invention relates to a system for evaluating the efficiency of a wind turbine (3), with a control system comprising means (11, 15) which are used to measure meteorological parameters M1, M2 and are respectively arranged in the wind turbine (3) and in a meteorological tower (5), and means (13) for measuring the orientation β of the wind turbine and the power Pr generated by same. The system according to the invention comprises a computerised unit (21) which is connected to said measuring means (11, 13, 15) and provided with a first calculating module (23) designed to obtain a characteristic power Pc as a function of said parameters from the data obtained during a first operating step, and a second calculating module (25) designed to obtain the mean deviation Dm between the power Pr actually generated and the characteristic power Pc according to the function obtained by the first calculating means (23) in the set of at least one series of data. |
US08604629B1 |
Reclaiming energy from waste water in tall buildings
Electrical power is generated from falling liquids such as captured rain water, gray water and black water in tall buildings using two or more reservoirs. Fill valves for each of the reservoirs are controlled to fill the first reservoir in a raised position while emptying the second reservoir in a lowered position. When full, the first reservoir is dropped to the lowered position while imparting mechanical energy to an electrical generator and while raising the second reservoir. Next, the second reservoir is filled until full while the first reservoir is emptied, followed by dropping the second reservoir to the lowered position while imparting mechanical energy to the electrical generator and while raising the first reservoir. The cycle is repeated so that electrical generation from the falling of the liquid avoids the liquid contacting or passing through a turbine or impeller. |
US08604627B2 |
Semiconductor device
The present invention aims at providing a semiconductor device capable of reliably preventing a wire bonded to an island from being disconnected due to a thermal shock, a temperature cycle and the like in mounting and capable of preventing remarkable increase in the process time. In the semiconductor device according to the present invention, a semiconductor chip is die-bonded to the surface of an island, one end of a first wire is wire-bonded to an electrode formed on the surface of the semiconductor chip to form a first bonding section and the other end of the first wire is wire-bonded to the island to form a second bonding section, while the semiconductor device is resin-sealed. A double bonding section formed by wire-bonding a second wire is provided on the second bonding section of the first wire wire-bonded onto the island. |
US08604624B2 |
Flip chip interconnection system having solder position control mechanism
A flip chip interconnection system includes: providing a conductive lead coated with a protective coating; forming a groove through the protective coating to the conductive lead for controlling solder position on a portion of the conductive lead; and attaching a flip chip having a solderable conductive interconnect to the portion of the conductive lead. |
US08604622B2 |
Semiconductor chip package, semiconductor chip assembly, and method for fabricating a device
A method for fabricating a device, a semiconductor chip package, and a semiconductor chip assembly is disclosed. One embodiment includes applying at least one semiconductor chip on a first form element. At least one element is applied on a second form element. A material is applied on the at least one semiconductor chip and on the at least one element. |
US08604620B2 |
Semiconductor structure having lateral through silicon via
The present invention provides a semiconductor structure having a lateral TSV and a manufacturing method thereof. The semiconductor structure includes a chip having an active side, a back side disposed opposite to the active side, and a lateral side disposed between the active side and the back side. The chip further includes a contact pad, a lateral TSV and a patterned conductive layer. The contact pad is disposed on the active side. The lateral TSV is disposed on the lateral side. The patterned conductive layer is disposed on the active side and is electrically connected to the lateral TSV and the contact pad. |
US08604615B2 |
Semiconductor device including a stack of semiconductor chips, underfill material and molding material
A stack of semiconductor chips, a semiconductor device, and a method of manufacturing are disclosed. The stack of semiconductor chips may comprise a first chip of the stack, a second chip of the stack over the first chip, conductive bumps, a homogeneous integral underfill material, and a molding material. The conductive bumps may extend between an upper surface of the first chip and a lower surface of the second chip. The homogeneous integral underfill material may be interposed between the first chip and the second chip, encapsulate the conductive bumps, and extend along sidewalls of the second chip. The homogeneous integral underfill material may have an upper surface extending in a direction parallel to an upper surface of the second chip and located adjacent the upper surface of the second chip. The molding material may be on outer side surfaces of the homogeneous integral underfill material above the upper surface of the first chip, wherein, in view of a first cross sectional profile, the molding material is separated from sidewalls of the second chip by the homogeneous integral underfill material such that the molding material does not contact sidewalls of the second chip. |
US08604611B2 |
Semiconductor device assembly utilizing a DBC substrate
A semiconductor device package is formed of DBC in which thinned MOSgated and/or diode die are soldered to the bottom of an etched depression in the upper conductive layer. A via in the insulation layer of the DBC is filled with a conductive material to form a resistive shunt. Plural packages may be formed in a DBC card and may be separated individually or in clusters. The individual packages are mounted in various arrays on a support DBC board and heat sink. Integrated circuits may be mounted on the assembly and connected to the die for control of the die conduction. |
US08604605B2 |
Microelectronic assembly with multi-layer support structure
A method of forming a microelectronic assembly includes positioning a support structure adjacent to an active region of a device but not extending onto the active region. The support structure has planar sections. Each planar section has a substantially uniform composition. The composition of at least one of the planar sections differs from the composition of at least one of the other planar sections. A lid is positioned in contact with the support structure and extends over the active region. The support structure is bonded to the device and to the lid. |
US08604595B2 |
Multi-chip electronic package with reduced stress
An electronic component includes lead fingers and a die paddle. A tape pad is mounted below the lead fingers and the die paddle. A first semiconductor chip is bonded onto the tape pad by a layer of first adhesive and a second semiconductor chip is bonded onto the die paddle by a layer of second adhesive. Electrical contacts are disposed between the contact areas of the semiconductors chips and the lead fingers. An encapsulating compound covers part of the lead fingers, the tape pad, the semiconductor chips and the electrical contacts. |
US08604593B2 |
Reconfiguring through silicon vias in stacked multi-die packages
Through silicon vias (TSVs) in a stacked multi-die integrated circuit package are controlled to assume different connection configurations as desired during field operation of the package in its normal mission mode. TSV connections may be reconfigured to connect an affected die in a manner different from, for example, a factory default connection of that die. TSV connections to the inputs and/or outputs of a die's native circuitry may be changed. A die may be disconnected altogether from an interface that interconnects dice in the stack, or a die that was originally disconnected from such an interface may be connected to the interface. |
US08604591B2 |
Nitride-type semiconductor element and process for production thereof
A nitride-based semiconductor device includes a p-type AldGaeN layer 25 whose growing plane is an m-plane and an electrode 30 provided on the p-type AldGaeN layer 25. The AldGaeN layer 25 includes a p-AldGaeN contact layer 26 that is made of an AlxGayInzN (x+y+z=1, x≧0, y>0, z≧0) semiconductor, which has a thickness of not less than 26 nm and not more than 60 nm. The p-AldGaeN contact layer 26 includes a body region 26A which contains Mg of not less than 4×1019 cm−3 and not more than 2×1020 cm−3 and a high concentration region 26B which is in contact with the electrode 30 and which has a Mg concentration of not less than 1×1021 cm−3. |
US08604587B2 |
Capacitor integration at top-metal level with a protective cladding for copper surface protection
An on-chip decoupling capacitor (106) and method of fabrication. The decoupling capacitor (106) is integrated at the top metal interconnect level (104) and includes surface protection cladding (109) for the copper metal (104b) of the top metal interconnect. |
US08604583B2 |
Semiconductor device comprising a Schottky barrier diode
The present invention aims to enhance the reliability of a semiconductor device equipped with a Schottky barrier diode within the same chip, and its manufacturing technology. The semiconductor device includes an n-type n-well region formed over a p-type semiconductor substrate, an n-type cathode region formed in part thereof and higher in impurity concentration than the n-well region, a p-type guard ring region formed so as to surround the n-type cathode region, an anode conductor film formed so as to integrally cover the n-type cathode region and the p-type guard ring region and to be electrically coupled thereto, n-type cathode conduction regions formed outside the p-type guard ring region with each separation portion left therebetween, and a cathode conductor film formed so as to cover the n-type cathode conduction regions and to be electrically coupled thereto. The anode conductor film and the n-type cathode region are Schottky-coupled to each other. |
US08604580B2 |
Silicon-based visible and near-infrared optoelectric devices
In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns. |
US08604578B2 |
Chip package
An embodiment of the invention provides a chip package which includes: a substrate having a first surface and a second surface; an optoelectronic device disposed at the first surface; a protection layer located on the second surface of the substrate, wherein the protection layer has an opening; a light shielding layer located on the second surface of the substrate, wherein a portion of the light shielding layer extends into the opening of the protection layer; a conducting bump disposed on the second surface of the substrate and filled in the opening of the protection layer; and a conducting layer located between the substrate and the protection layer, wherein the conducting layer electrically connects the optoelectronic device to the conducting bump. |
US08604574B2 |
Transparent photodetector
The transparent photodetector includes a substrate; a waveguide on the substrate; a displaceable structure that can be displaced with respect to the substrate, the displaceable structure in proximity to the waveguide; and a silicon nanowire array suspended with respect to the substrate and mechanically linked to the displaceable structure, the silicon nanowire array comprising a plurality of silicon nanowires having piezoresistance. In operation, a light source propagating through the waveguide results in an optical force on the displaceable structure which further results in a strain on the nanowires to cause a change in electrical resistance of the nanowires. The substrate may be a semiconductor on insulator substrate. |
US08604569B2 |
Magnetoresistive element
A magnetoresistive element includes a first electrode layer, a first fixed layer provided on the first electrode layer and having a fixed magnetization direction, a first intermediate layer provided on the first fixed layer and made of a metal oxide, a free layer provided on the first intermediate layer and having a variable magnetization direction, and a second electrode layer provided on the free layer. At least one of the first electrode layer and the second electrode layer contains a conductive metal oxide. |
US08604567B2 |
Micromechanical system and method for manufacturing a micromechanical system
A micromechanical system having at least one micromechanical device, in particular a sensor device and/or an actuator device, the micromechanical system having a substrate on which at least one micromechanical device is provided, the micromechanical device having at least one structured or unstructured film adhesive on at least one side. |
US08604565B2 |
Physical quantity detection device and method for manufacturing the same
A physical quantity detection device includes: an insulating layer; a semiconductor layer on the insulating layer; and first and second electrodes in the semiconductor layer. Each electrode has a wall part, one of which includes two diaphragms and a cover part. The diaphragms facing each other provide a hollow cylinder having an opening covered by the cover part. One diaphragm faces the other wall part or one diaphragm in the other wall part. A distance between the one diaphragm and the other wall part or the one diaphragm in the other wall part is changed with pressure difference between reference pressure in the hollow cylinder and pressure of an outside when a physical quantity is applied to the diaphragms. The physical quantity is detected by a capacitance between the first and second electrodes. |
US08604563B2 |
Semiconductor device and manufacturing method of the same
In a power MISFET having a trench gate structure with a dummy gate electrode, a technique is provided for improving the performance of the power MISFET, while preventing electrostatic breakdown of a gate insulating film therein. A power MISFET having a trench gate structure with a dummy gate electrode, and a protective diode are formed on the same semiconductor substrate. The protective diode is provided between a source electrode and a gate interconnection. In a manufacturing method of such a semiconductor device, a polycrystalline silicon film for the dummy gate electrode and a polycrystalline silicon film for the protective diode are formed simultaneously. A source region of the power MISFET and an n+-type semiconductor region of the protective diode are formed in the same step. |
US08604555B1 |
Semiconductor structure and manufacturing method of the same
A semiconductor structure and a manufacturing method of the same are provided. The semiconductor structure includes a substrate, a gate dielectric layer, a gate structure, a source conductive structure, a drain conductive structure, and a gate conductive structure. The substrate has a channel area. The gate dielectric layer is formed on the channel area, and the gate structure is formed on the gate dielectric layer. The source conductive structure and the drain conductive structure penetrate through the gate structure and are electrically connected to the substrate, and the source conductive structure and the drain conductive structure are electrically isolated from the gate structure. The gate conductive structure is formed on the gate structure. The source conductive structure and the drain conductive structure are separated by a distance which is equal to a length of the channel area. |
US08604550B2 |
Semiconductor devices including gate structure and method of fabricating the same
A semiconductor device includes a semiconductor substrate having at least two oblique side surfaces and a first bottom surface in a recessed portion. A gate insulating layer is formed on the recessed portion. A gate electrode is formed on the gate insulating layer. A channel region is formed below the gate electrode. Gate spacers are formed on side surfaces of the gate electrode. |
US08604549B2 |
Multi-gate field-effect transistor with enhanced and adaptable low-frequency noise
A field-effect transistor has an extra gate above a shallow trench isolation (STI) to enhance and to adapt the low-frequency noise induced by an STI-silicon interface. By changing the voltage applied to the STI gate, the field-effect transistor is able to adapt its low-frequency noise over four decades. The field-effect transistor can be fabricated with a standard CMOS logic process without additional masks or process modification. |
US08604547B2 |
Memory element and semiconductor device
It is an object of the present invention to provide a nonvolatile memory device, in which additional writing is possible other than in manufacturing and forgery and the like due to rewriting can be prevented, and a semiconductor device having the memory device. It is another object of the present invention to provide an inexpensive and nonvolatile memory device with high reliability and a semiconductor device. According to one feature of the present invention, a memory device includes a first conductive layer formed over an insulating surface, a second conductive layer, a first insulating layer interposed between the first conductive layer and the second conductive layer, and a second insulating layer which covers a part of the first conductive layer, wherein the first insulating layer covers an edge portion of the first conductive layer, the insulating surface, and the second insulating layer. |
US08604546B1 |
Reducing gate resistance in nonplanar multi-gate transistor
A semiconductor transistor structure has a plurality of fins, a cap on the center portion of the top of each of the fins, a conductive liner lining the cap and the sidewalls of the center portion of the fins, and an insulator between the center portions of the fins. The insulator contacts the conductive liner, and the fins extend further from the surface of the substrate relative to an amount the insulator extends from the surface of the substrate. The structure further includes a conductive layer positioned on the insulator between the center portions of the fins and positioned between the cap of the fins. The conductive layer contacts the conductive liner. |
US08604544B2 |
Semiconductor device
According to one embodiment, a semiconductor device includes a first main electrode, a base layer of a first conductivity type, a barrier layer of the first conductivity type, a diffusion layer of a second conductivity type, a base layer of the second conductivity type, a first conductor layer, a second conductor layer, and a second main electrode. Bottoms of the barrier layer of the first conductivity type and the diffusion layer of the second conductivity type are positioned on the first main electrode side of lower ends of the first conductor layer and the second conductor layer. The barrier layer of the first conductivity type and the diffusion layer of the second conductivity type form a super junction proximally to tips of the first conductor layer and the second conductor layer. |
US08604543B2 |
Compensated isolated p-well DENMOS devices
An integrated circuit with a core PMOS transistor formed in a first n-well and an isolated DENMOS (iso-DENMOS) transistor formed in a second n-well where the depth and doping of the first and second n-wells are the same. A method of forming an integrated circuit with a core PMOS transistor formed in a first n-well and an iso-DENMOS transistor formed in a second n-well where the depth and doping of the first and second n-wells are the same. |
US08604542B2 |
Circuit structure with conductive and depletion regions to form tunable capacitors and resistors
A circuit structure with a capacitor or a resistor includes a semiconductor substrate, a first conductive region positioned in the semiconductor substrate, a plurality of second conductive regions and third conductive regions positioned in the first conductive region, a first depletion region positioned between the first conductive region and the third conductive region, a second depletion region positioned between the second conductive region and the third conductive region, and a plurality of separating regions positioned in the first conductive region, configured to separate the second and the third conductive regions. In operation, a first voltage is applied to the separating region to control the capacitance or the resistance of the circuit structure. A second voltage is applied to the first conductive region and a third voltage is applied to the second conductive region to measure the capacitance and the resistance of the circuit structure. |
US08604541B2 |
Structure and fabrication process of super junction MOSFET
This invention discloses a specific superjunction MOSFET structure and its fabrication process. Such structure includes: a drain, a substrate, an EPI, a source, a side-wall isolation structure, a gate, a gate isolation layer and source. There is an isolation layer inside the active area underneath the source. Along the side-wall of this isolation layer, a buffer layer with same doping type as body can be introduced & source can be extended down too to form field plate. Such buffer layer & field plate can make the EPI doping much higher than convention device which results in lower Rdson, better performance, shorter gate so that to reduce both gate charge Qg and gate-to-drain charge Qgd. The process to make such structure is simpler and more cost effective. |
US08604539B2 |
Bulk fin-field effect transistors with well defined isolation
A fin field-effect-transistor fabricated by forming a dummy fin structure on a semiconductor substrate. A dielectric layer is formed on the semiconductor substrate. The dielectric layer surrounds the dummy fin structure. The dummy fin structure is removed to form a cavity within the dielectric layer. The cavity exposes a portion of the semiconductor substrate thereby forming an exposed portion of the semiconductor substrate within the cavity. A dopant is implanted into the exposed portion of the semiconductor substrate within the cavity thereby creating a dopant implanted exposed portion of the semiconductor substrate within the cavity. A semiconductor layer is epitaxially grown within the cavity atop the dopant implanted exposed portion of the semiconductor substrate. |
US08604538B2 |
Non-volatile semiconductor memory device with intrinsic charge trapping layer
A non-volatile semiconductor memory device includes a substrate, a first gate formed on a first region of a surface of the substrate, a second gate formed on a second region of the surface of the substrate, a charge storage layer filled between the first gate and the second gate, a first diffusion region formed on a first side of the charge storage layer, and a second diffusion region formed opposite the charge storage layer from the first diffusion region. The first region and the second region are separated by a distance sufficient for forming a self-aligning charge storage layer therebetween. |
US08604535B2 |
Non-volatile memory device and method of manufacturing the same
A non-volatile memory device includes an active region in which a channel of a transistor is formed in a substrate, element isolation films defining the active region and formed on the substrate at both sides of the channel at a height lower than an upper surface of the active region, a first dielectric layer, a second dielectric layer, and a control gate electrode formed on the active region in this order, and a floating gate electrode formed between the first dielectric layer and the second dielectric layer so as to intersect the length direction of the channel and extend to the upper surfaces of the element isolation films at both sides of the channel, thereby surrounding the channel. |
US08604532B2 |
Computing apparatus employing dynamic memory cell structures
A dynamic random access memory cell is disclosed that comprises a capacitive storage device and a write access transistor. The write access transistor is operatively coupled to the capacitive storage device and has a gate stack that comprises a high-K dielectric, wherein the high-K dielectric has a dielectric constant greater than a dielectric constant of silicon dioxide. Also disclosed are a memory array using the cells, a computing apparatus using the memory array, a method of storing data, and a method of manufacturing. |
US08604531B2 |
Method and apparatus for improving capacitor capacitance and compatibility
A semiconductor device includes a semiconductor substrate, an isolation structure disposed in the semiconductor substrate, a conductive layer disposed over the isolation structure, a capacitor disposed over the isolation structure, the capacitor including a top electrode, a bottom electrode, and a dielectric disposed between the top electrode and the bottom electrode, and a first contact electrically coupling the conductive layer and the bottom electrode, the bottom electrode substantially engaging the first contact on at least two faces. |
US08604530B2 |
Electronic devices and systems, and methods for making and using the same
Some structures and methods to reduce power consumption in devices can be implemented largely by reusing existing bulk CMOS process flows and manufacturing technology, allowing the semiconductor industry as well as the broader electronics industry to avoid a costly and risky switch to alternative technologies. Some of the structures and methods relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced VT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors. Additional structures, configurations, and methods presented herein can be used alone or in conjunction with the DDC to yield additional and different benefits. |
US08604529B2 |
Apparatus with photodiode region in multiple epitaxial layers
A CMOS image sensor includes a substrate including silicon, a silicon germanium (SiGe) epitaxial layer formed over the substrate, the SiGe epitaxial layer formed through epitaxial growth and doped with a predetermined concentration level of impurities, an undoped silicon epitaxial layer formed over the SiGe epitaxial layer by epitaxial growth, and a photodiode region formed from a top surface of the undoped silicon epitaxial layer to a predetermined depth in the SiGe epitaxial layer. |
US08604527B2 |
Electronic devices and systems, and methods for making and using the same
Some structures and methods to reduce power consumption in devices can be implemented largely by reusing existing bulk CMOS process flows and manufacturing technology, allowing the semiconductor industry as well as the broader electronics industry to avoid a costly and risky switch to alternative technologies. Some of the structures and methods relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced σVT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors. Additional structures, configurations, and methods presented herein can be used alone or in conjunction with the DDC to yield additional and different benefits. |
US08604517B2 |
Non-volatile semiconductor memory device for suppressing deterioration in junction breakdown voltage and surface breakdown voltage of transistor
According to one embodiment, a non-volatile semiconductor memory device includes a plurality of memory cells and a transistor. The transistor includes a gate insulating film, a gate electrode on the gate insulating film, a sidewall insulating film on both side surfaces of the gate electrode, a source diffusion layer corresponding to the sidewall insulating film, a first hollow formed in a position at a height less than a bottom surface of the gate insulating film directly below an outer side surface of the sidewall insulating film of another side of the gate electrode, a second hollow formed in the first hollow at a position at a height less than the first hollow, and a drain diffusion layer corresponding to another side of the gate electrode and including a low-concentration drain region formed on a bottom surface of the second hollow and a high-concentration drain region. |
US08604513B2 |
Semiconductor device having SOI substrate
A semiconductor device includes: a SOI substrate; a semiconductor element having first and second impurity layers disposed in an active layer of the SOI substrate, the second impurity layer surrounding the first impurity layer; and multiple first and second conductive type regions disposed in a part of the active layer adjacent to an embedded insulation film of the SOI substrate. The first and second conductive type regions are alternately arranged. The first and second conductive type regions have a layout, which corresponds to the semiconductor element. |
US08604510B2 |
Light-emitting diode mounted on intersected and discontinuous transparent conductive pattern layers and manufacturing method thereof
A light-emitting diode (LED) and manufacturing method thereof are disclosed. The LED includes a transparent substrate, a plurality of transparent conductive layers, a plurality of metal circuits, and a LED chip. The LED chip is suitable for emitting a light and a portion of the light emits toward the transparent substrate. The manufacturing method of LED includes the following steps. First, a transparent conductive layer is formed on the transparent substrate. Next, a conductive pattern is formed by etching transparent conductive layer. The intersection metal circuit is formed by disposing the metal on a portion of the transparent conductive layer. Finally, the LED chip is disposed on the metal circuit so that the LED chip is electrically connected to the metal circuit. |
US08604507B2 |
Optical-semiconductor device and method for manufacturing the same
A method for manufacturing an optical-semiconductor device, including forming a plurality of first and second electrically conductive members that are disposed separately from each other on a support substrate; providing a base member formed from a light blocking resin between the first and second electrically conductive members; mounting an optical-semiconductor element on the first and/or second electrically conductive member; covering the optical-semiconductor element by a sealing member formed from a translucent resin; and obtaining individual optical-semiconductor devices after removing the support substrate. |
US08604506B2 |
Surface mounting type light emitting diode and method for manufacturing the same
This invention provides a surface mounting type light emitting diode excellent in heat radiation performance, reliability and productivity. The surface mounting type light emitting diode includes a metallic base member, a semiconductor light emitting element having a bottom face fixedly bonded to a top face of the base member, and a metallic reflector joined to the top face of the base member with a heat conduction type adhesive sheet interposed therebetween, to surround the semiconductor light emitting element. Heat generated from the semiconductor light emitting element is transferred to the reflector via the base member and the heat conduction type adhesive sheet, and then is radiated to the outside. The metallic reflector can efficiently radiate the heat to the outside. The cutting margin provided for the reflector facilitates a dicing process, which improves productivity. |
US08604505B2 |
Semiconductor device and a method of manufacturing the same and designing the same
There is provided a technique for improving the flatness at the surface of members embedded in a plurality of recesses without resulting in an increase in the time required for the manufacturing processes. According to this technique, the dummy patterns can be placed up to the area near the boundary BL between the element forming region DA and dummy region FA by placing the first dummy pattern DP1 of relatively wider area and the second dummy pattern DP2 of relatively small area in the dummy region FA. Thereby, the flatness of the surface of the silicon oxide film embedded within the isolation groove can be improved over the entire part of the dummy region FA. Moreover, an increase of the mask data can be controlled when the first dummy patterns DP1 occupy a relatively wide region among the dummy region FA. |
US08604504B2 |
Organic light-emitting element
An organic light-emitting element including an organic light-emitting layer, a transparent substrate, and a transparent electrode disposed between the organic light-emitting layer and the transparent substrate; and which treats the surface of the transparent substrate on the opposite side from the transparent electrode as a light-extraction surface. The transparent substrate has birefringence, and has a refraction index of a P polarized light that is less than a refraction index of an S polarized light. A polarized light wherein an oscillation direction of an electric field is parallel to a laminated surface of the light-emitting layer is designated S polarized light, and a polarized light that includes a vector of the direction of the progression of the light and in which the oscillation direction of the electric field is included in a plane perpendicular to the laminated surface is designated P polarized light. |
US08604499B2 |
Light-emitting device
Provided is a light-emitting device provided with a light reflection layer which has a high light reflectivity and which is less susceptible to deterioration of the reflectivity due to corrosion, and having an improved light extraction efficiency.A light-emitting device comprising a substrate having a conductor layer formed on its surface and a light-emitting element disposed on the conductor layer, characterized in that an overcoat layer is formed between the conductor layer and the light-emitting element, and the overcoat layer is a borosilicate glass which comprises, as represented by mol % based on oxides, from 62 to 84% of SiO2, from 10 to 25% of B2O3, from 0 to 5% of Al2O3 and from 0 to 5% in total of at least one of Na2O and K2O, provided that the total content of SiO2 and Al2O3 is from 62 to 84%, and may contain from 0 to 10% of MgO and at least one of CaO, SrO and BaO in a total content of at most 5%. |
US08604481B2 |
Thin film transistor
A thin film transistor includes a gate insulating layer covering a gate electrode, a semiconductor layer in contact with the gate insulating layer, and impurity semiconductor layers which are in contact with part of the semiconductor layer and which form a source region and a drain region. The semiconductor layer includes a microcrystalline semiconductor layer formed on the gate insulating layer and a microcrystalline semiconductor region containing nitrogen in contact with the microcrystalline semiconductor layer. The thin film transistor in which off-current is small and on-current is large can be manufactured with high productivity. |
US08604480B2 |
Thin film transistor array substrate, organic light emitting display device including the same, and manufacturing method of the thin film transistor array substrate
A thin film transistor array substrate includes a thin film transistor on a substrate, the thin film transistor including an active layer, a gate electrode, a source electrode, and a drain electrode; a capacitor including a lower electrode in a same layer as the active layer and an upper electrode in a same layer as the gate electrode; a pixel electrode in a same layer as the gate electrode and the upper electrode; a first insulation layer between the active layer and the gate electrode and between the lower electrode and the upper electrode; a second insulation layer on the first insulation layer, a protection layer extending along side surfaces of the lower electrode, and a third insulation layer on the protection layer and exposing the pixel electrode. |
US08604471B2 |
Semiconductor structure and organic electroluminescence device
A semiconductor structure and an organic electroluminescence device applying the same are provided. A gate insulating layer covers a gate electrode disposed on a substrate. A channel layer has a channel length L along a channel direction and has a first side and a second side opposite to the first side. The channel layer is located on the gate insulating layer over the gate electrode. A source electrode and a drain electrode are located at and electrically connected to the first side and the second side of the channel layer, respectively. A conductive light-shielding pattern layer is disposed on a dielectric layer covering the source electrode, the drain electrode and the channel layer, and is overlapped to a portion of the source electrode and a portion of the channel layer in a vertical projection. The conductive light-shielding pattern layer and the channel layer have an overlapping length d1, and 0.3≦d1/L≦0.85. |
US08604467B2 |
Organic electro-optical component
An organic electro-optical component, with an electrode, counter-electrode, and organic region made up of one or more organic materials, which is in electrical contact and in an active region overlapping with the electrode and the counter-electrode, wherein the electrode and/or the counter-electrode have part electrodes which extend from a part electrode connecting section which is arranged outside of the active region, a distal electrode section is electrically connected via a proximal electrode section to the part electrode connecting section, the distal electrode section is formed at least in sections within the active region, and the proximal electrode section is formed outside of the active region and by means of an electrical pathway, the pathway length of which is larger than the shortest distance between an end of the distal electrode section facing the part electrode connecting section and the part electrode connecting section. |
US08604461B2 |
Semiconductor device structures with modulated doping and related methods
A semiconductor device may include a doped semiconductor region having a modulated dopant concentration. The doped semiconductor region may be a silicon doped Group III nitride semiconductor region with a dopant concentration of silicon being modulated in the Group III nitride semiconductor region. In addition, a semiconductor active region may be configured to generate light responsive to an electrical signal therethrough. Related methods, devices, and structures are also discussed. |
US08604452B2 |
Drive laser delivery systems for EUV light source
An EUV light source is disclosed herein which may comprise a droplet generator producing a stream of target material droplets, a first optical gain medium amplifying light on a first beam path without a seed laser providing a seed laser output to the first beam path, a second optical gain medium amplifying light on a second beam path without a seed laser providing a seed laser output to the second beam path, and a beam combiner combining light from the first beam path and the second beam path for interaction with a target material droplet to produce EUV light emitting plasma. |
US08604449B2 |
Glitch control during implantation
An ion implantation system and method are disclosed in which glitches in voltage are minimized by modifications to the power system of the implanter. These power supply modifications include faster response time, output filtering, improved glitch detection and removal of voltage blanking. By minimizing glitches, it is possible to produce solar cells with acceptable dose uniformity without having to pause the scan each time a voltage glitch is detected. For example, by shortening the duration of a voltage to about 20-40 milliseconds, dose uniformity within about 3% can be maintained. |
US08604447B2 |
Solar metrology methods and apparatus
Methods and apparatus are presented to measure the photoluminescence of incoming wafers and extract parameters such as minority carrier life time, diffusion length, and defect density that may be used to predict final solar cell efficiency. In some examples, illumination light is supplied to a side of an as-cut silicon wafer and the induced luminescence measured from the same side and the opposite side of the wafer is used to determine an indication of the minority carrier lifetime. In another example, the luminescence induced by two instances of illumination light of different wavelength is used to determine an indication of the minority carrier lifetime. In another example, the spatial distribution of luminescence intensity over an area surrounding a focused illumination spot is used to determine an indication of the minority carrier lifetime. Other apparatus useful to passivate the surface of a wafer for inspection are also presented. |
US08604442B2 |
Method for determining the material composition of a material sample
A Method for determining the material composition of a material sample which emits radiation comprises the following method steps: recording a spectrum of the energy deposited in a detector material by the radiation; determining a first energy deposited in a first energy range, a second energy deposited in a second energy range, and a third energy deposited in a third energy range; assigning a first colour parameter to the first deposited energy, a second colour parameter to the second deposited energy, and a third colour parameter to the third deposited energy; and comparing the assigned colour parameters with predetermined values for the colour parameters, the predetermined values typically corresponding to colour parameters of a predetermined material composition. |
US08604440B2 |
Use of flat panel microchannel photomultipliers in sampling calorimeters with timing
Large-area, flat-panel photo-detectors with sub-nanosecond time resolution based on microchannel plates are provided. The large-area, flat-panel photo-detectors enable the economic construction of sampling calorimeters with, for example, enhanced capability to measure local energy deposition, depth-of-interaction, time-of-flight, and/or directionality of showers. In certain embodiments, sub-nanosecond timing resolution supplies correlated position and time measurements over large areas. The use of thin flat-panel viewing radiators on both sides of a radiation-creating medium allows simultaneous measurement of Cherenkov and scintillation radiation in each layer of the calorimeter. The detectors may be used in a variety of applications including, for example, medical imaging, security, and particle and nuclear physics. |
US08604436B1 |
Proximity sensor device
Proximity sensor devices are described that integrate a light emitting diode with a light sensor assembly in a single, compact package. The proximity sensor devices comprise a lead frame having a surface. The light emitting diode and light sensor assembly are mounted to the lead frame proximate to the surface. The light emitting diode is configured to emit electromagnetic radiation in a limited spectrum of wavelengths, while the light sensor assembly is configured to detect electromagnetic radiation in the limited spectrum of wavelengths emitted by the light emitting diode. An encapsulation layer is formed on the surface over the light emitting diode and light sensor assembly. A trench is formed in the encapsulation layer to receive electromagnetic radiation blocking material configured to block electromagnetic radiation in the limited spectrum of wavelengths to at least partially mitigate crosstalk between the light emitting diode and the light sensor assembly. |
US08604430B2 |
Method and an apparatus of an inspection system using an electron beam
The inspection apparatus disclosed generates an electron beam, an acceleration electrode accelerates the electron beam, a convergence lens converges the electron beam, an electron beam deflector scans the beam over a sample, an objective lens converges the electron beam on the sample, a detector located between the sample and the objective lens detects charged particles emitted from the sample, a power supply applies a retarding voltage to the sample for decelerating the electron beam to the sample, an electrode is disposed between the objective lens and the sample, and a voltage is generated between the sample and the electrode by said electrode, the voltage being determined depending on the sample. The apparatus solves problems encountered in conventional inspection systems. |
US08604429B2 |
Electron beam device and sample holding device for electron beam device
An object of the invention is to provide an electron beam device and a sample holding device for the electron beam device that can observe the reaction between a sample and a gas at high resolution while a gas atmosphere is maintained even by using thin diaphragms.To solve one of the problems described above, in an electron beam device having the function of separately exhausting an electron beam irradiation portion of an optical column, a sample chamber and an observation chamber, a gas supply means for supplying a gas to a sample and an exhaust means for exhausting a gas are provided to sample holding means, diaphragms are disposed above and below the sample to separate the gas atmosphere and vacuum of the sample chamber and to constitute a cell sealing the atmosphere around the sample, and a mechanism for spraying a gas is provided to the outside of the diaphragms. The gas sprayed outside the diaphragms has low electron beam scattering performance such as hydrogen, oxygen or nitrogen. The diaphragm is an amorphous film formed of a light element such as a carbon film, an oxide film and a nitride film capable of transmitting the electron beam. |
US08604428B2 |
Method of controlling particle absorption on a wafer sample being inspected by a charged particle beam imaging system
A method of controlling particle absorption on a wafer sample and charged particle beam imaging system thereof prevents particle absorption by grounding the wafer sample and kept electrically neutral during the transfer-in and transfer-out process. |
US08604427B2 |
Three-dimensional mapping using scanning electron microscope images
A method includes irradiating a surface of a sample, which is made-up of multiple types of materials, with a beam of primary electrons. Emitted electrons emitted from the irradiated sample are detected using multiple detectors that are positioned at respective different positions relative to the sample, so as to produce respective detector outputs. Calibration factors are computed to compensate for variations in emitted electron yield among the types of the materials, by identifying, for each material type, one or more horizontal regions on the surface that are made-up of the material type, and computing a calibration factor for the material type based on at least one of the detector outputs at the identified horizontal regions. The calibration factors are applied to the detector outputs. A three-dimensional topographical model of the surface is calculated based on the detector outputs to which the calibration factors are applied. |
US08604423B2 |
Method for enhancement of mass resolution over a limited mass range for time-of-flight spectrometry
Novel methods and instrumentation for mass spectrometry are described. Zoom-time of flight mass spectrometry (Zoom-TOF) allows increased mass resolution over a pre-determined specific range of masses. Methods for retrofitting traditional time-of-flight (TOF) and distance of flight (DOF) mass spectrometers are described, as well as novel instruments capable of performing Zoom-TOF analyses. |
US08604420B2 |
Mass spectrometer having ion storage with timed pulse output
A spectrometer is offered which can reduce ion loss compared with the prior art even when ions selected by the mass analyzer are modified. The spectrometer includes an ion source for ionizing a sample, an ion storage portion for repeatedly performing a storing operation for storing ions created by the ion source and an expelling operation for expelling the stored ions as pulsed ions, the mass analyzer for passing pulsed ions expelled from the ion storage portion and selecting desired ions according to their mass-to-charge ratio, a detector for detecting pulsed ions passed through the mass analyzer and outputting an analog signal responsive to the intensity of the detection, and a controller for maintaining constant the mass-to-charge ratio of the desired ions selected by the mass analyzer while pulsed ions including the desired ions are passing through the mass analyzer. |
US08604415B2 |
Radiation dosimetry method
A radiation dosimetry method and associated devices for carrying out the method are disclosed herein. More particularly, a method and associated apparatus which compensates for variations in amounts of a radiation sensitive material in a radiation dosimetry film is provided. |
US08604413B2 |
Optical encoder including displacement sensing normal to the encoder scale grating surface
Disclosed is a displacement sensor configuration, comprising a scale grating disposed in a first direction; and a scale light imaging configuration which includes first and second optical paths and a detector including first and second detector portions. The imaging portion inputs a first scale light component output by the scale grating along the first optical path and transmits the first scale light component to the first detector portion, the imaging portion inputs a second scale light component output by the scale grating along the second optical path and transmits the second scale light component to the second detector portion, the first detector portion is configured to output a first displacement signal indicative of a displacement along the first direction, and the second detector portion is configured to output a second displacement signal indicative of a displacement along a second direction perpendicular to the first direction. |
US08604411B2 |
Charged particle beam modulator
The invention relates to a charged particle lithography system comprising a beam generator for generating a plurality of charged particle beamlets, a beam stop array and a modulation device. The beam stop array has a surface for blocking beamlets from reaching a target surface and an aperture array in the surface for allowing beamlets to reach the target surface. The modulation device is arranged for modulating the beamlets by deflecting or not deflecting the beamlets so that the beamlets are blocked or not blocked by the beam stop array. A surface area of the modulation device comprises an elongated beam area comprising an array of apertures and associated modulators, and a power interface area for accommodating a power arrangement for powering elements within the modulation device. The power interface area is located alongside a long side of the elongated beam area and extending in a direction substantially parallel thereto. |
US08604408B2 |
Solid-state imaging device, method of manufacturing the same, and electronic apparatus
A solid-state imaging device includes: a pixel having a photodiode and a pixel transistor; a first isolation region using a semiconductor region containing impurities formed between neighboring photodiodes; and a second isolation region using an semiconductor region containing impurities formed between the photodiode and the pixel transistor, wherein an impurity concentration of the first isolation region is different from an impurity concentration of the second isolation region. |
US08604402B2 |
Spacecraft afterbody device
An afterbody device for a spacecraft fitted with at least one rocket engine at the rear of the craft includes at least one movable cover element designed to take a first position, masking and reducing the vehicle's rear drag, where it prolongs the vehicle's fuselage around at least one part of a rocket engine nozzle of the vehicle and extends beyond the rear of the vehicle's fuselage, and to take a second position fully deployed, increasing the vehicle's aerodynamic drag. |
US08604400B2 |
Multilayer susceptor structure
A microwave heating construct comprises a plurality of heating regions including a first heating region and a second heating region, the first heating region comprising a first layer of microwave energy interactive material, and the second heating region comprising the first layer of microwave energy interactive material and a second layer of microwave energy interactive material, wherein the second heating region is operative for heating, browning, and/or crisping an adjacent food item to a greater extent than the first heating region. |
US08604398B1 |
Microwave purification process
A method of purifying a target powder having an oxygen content, the method comprising: flowing hydrogen gas through a microwave production chamber; applying microwaves to the hydrogen gas as the hydrogen gas flows through the microwave production chamber, thereby forming hydrogen radicals from the hydrogen gas; flowing the hydrogen radicals out of the microwave production chamber to the target powder disposed outside of the microwave production chamber; and applying the hydrogen radicals to the target powder, thereby removing a portion of the oxygen content from the powder. Preferably, the target powder is agitated as the hydrogen radicals are being applied. |
US08604395B2 |
Control system for an electrical appliance
A control system for an electrical appliance, such as a cooking range, that includes a safety switch and one or more auxiliary switches arranged in proximity to the safety switch. The control system is configured to interrupt power to the electrical appliance when only the safety switch is activated and to permit the supply of power to the electrical appliance when the safety switch and an auxiliary switch are simultaneously activated. |
US08604394B2 |
Grilling device
The present invention relates to a grilling device, especially relates to a steam grilling device. It comprises a main body and a steam generator disposed on the main body. Compared to the conventional technique, by adding a steam generator on the main body of grilling device, the grilling device will has not only a general grilling function, but also has the steam heating function, so the heating of the grilling device will speed up, the loss of the nutrition of the food will be eliminated, and it also has effects such as degreasing and freshen, so the cooked food will be more nutritious and healthy. |
US08604389B2 |
Welding wire feed speed control system method
A welding system is disclosed in which the rate of advancement of wire electrode is determined automatically. The device can include a control circuit that determines the rate of advancement of the wire electrode in response to a signal from the voltage selection device of the welding system. Depending upon the operator selected voltage which is selected via the voltage selection device, the control circuit will determine the appropriate rate of wire electrode advancement and control the advancement mechanism (e.g., electric motor) accordingly. Linking of the voltage level and wire-feed speed controls facilities easy of use for more novice operators and, furthermore, facilitates single-handed adjustment of two operational parameters during a welding process. |
US08604385B2 |
Portable air compressor/generator control method and system
A welding system is provided that includes an engine, a compressor coupled to the engine, and a regulator coupled to the compressor and located on a control panel. Another welding system is provided that includes an engine, a compressor coupled to the engine and a monitor circuit configured to monitor the duration of operation of the compressor by monitoring engagement of the clutch. A pressure gauge configured to be coupled to a compressor is also provided. |