Document Document Title
US08503533B1 Motion estimation engine for performing multiple types of operations
An apparatus and method for generating predictors performs motion estimation of a target macroblock in a target field against data segments in reference fields. The same motion estimation engine is used to perform various image processing operations to efficiently use resources of the apparatus. Different reference fields are used depending on modes of operation. In a deinterlacing mode, deinterlacing is performed using directional interpolation, recursive motion compensated deinterlacing, and motion adaptive deinterlacing.
US08503532B2 Method and apparatus for inter prediction encoding/decoding an image using sub-pixel motion estimation
A method of inter prediction encoding of an image, the method including: searching for a first reference block in a reference picture by using a current block, and estimating a first motion vector in a first pel unit in regards to the first reference block; estimating a second motion vector by using pixels included in a pre-encoded area adjacent to the current block, and pixels adjacent to the first reference block, and determining a second reference block based on the second motion vector; and encoding the current block based on the first motion vector and the second reference block.
US08503528B2 System and method for encoding video using temporal filter
A system and method for encoding a video is disclosed having a plurality of frames with spatially correspondent macroblocks. The method includes selecting a coding mode for each spatially correspondent macroblock, such as intra-frame coding or inter-frame coding. A weighting value is determined for each pixel in the macroblock based on the coding mode of the macroblock or other indication of the correlation of the pixel to spatially corresponding pixels in one or more other frames. A temporal filter uses the weighting values to filter noise from the plurality of frames and the resulting noise-reduced output is used in a predictive reference frame.
US08503526B2 Video encoder with multiple outputs having different attributes
A video encoder having multiple channels each capable of producing an independently controlled encoded output. In one embodiment, the video encoder has circuitry common to all of the channels and separate circuitry for each channel. The common circuitry can include a motion compensator, a transformer, and a local decoder. One or more of the separate circuitry can include a quantizer, a scanner, an encoder, and a buffer. Each channel includes quantization feedback, and one channel output is fed back to the local decoder for use in generating reference pictures. The channels are separately controllable for the characteristics of at least one of quantization, scanning, and encoding.
US08503525B2 Method and a system for determining predicted numbers of processor cycles required for respective segments of a media file for playback of the media file
A method of determining predicted numbers of processor cycles required for respective segments of a media file for playback of the media file, a method of playback of a media file, a method of downloading a media file, a device for playback of a media file and a system for downloading a media file. The method comprising performing a bitstream analysis of the media file to determine a number of non-zero IDCT coefficients of the respective segments, input parameters of an MC task function associated with respective segments, or both; and determining the predicted numbers of processor cycles based on the bitstream analysis.
US08503516B2 Method of minimizing feedback overhead using spatial channel covariance in a multi-input multi-output system
Disclosed is a method for minimizing feedback overhead in a multi-input multi-output (MIMO) communication method using multiple transmission and reception antennas. In particular, a method for minimizing feedback overhead in a multi-input multi-output (MIMO) communication system by using spatial channel covariance, as explicit channel status information (CSI) feedback method is disclosed.
US08503515B2 High speed switch with data converter physical ports and processing unit
An integrated circuit chip implements a high-speed switch that includes: a switch fabric; control logic that controls the transmission of digital signals through the switch fabric; a transceiver block comprising one or more transceivers, each transmitting digital signals between the control logic and a corresponding external device; a data converter physical interface comprising one or more data converters, each performing a conversion between analog and digital signals, wherein digital signals associated with the one or more data converters are routed through the switch fabric; and a signal processing engine coupled to the control logic, wherein the signal processing engine performs on-chip processing of digital signals received from the transceiver block and the data converter physical interface.
US08503512B2 Method of generating an index value
A method of generating an index value associated with a primary synchronization code within a communication signal includes splitting a sampled communication signal into even and odd samples. The even and odd samples are correlated with a primary synchronization code of the communication signal and complex values of the even and odd samples are generated. Signal strength values for the even and odd samples are approximated and the approximate signal strength values within a frame of the communication signal are accumulated. A highest accumulated signal strength value is assigned as an index value.
US08503508B2 Method and arrangement for improved G-RAKE scaling parameter estimation
The present invention discloses a method of improved impairment covariance matrix estimation for a received signal in a Generalized Rake receiver arrangement. The method comprises providing for a plurality of despread pilot symbols representative of the signal and determining an estimate of an impairment covariance matrix R for the received signal. Subsequently, providing an estimate of scaling parameters α, β for the estimate of R by means of a weighted least squares estimate based on the color of a residual noise vector for the impairment covariance matrix estimate R, and forming an improved estimate of the impairment covariance matrix based on the weighted squares estimate.
US08503507B2 Method for using a multi-tune transceiver
The method is for using a multi-tune transceiver. A single oscillator (VCO/DCO) is provided that is electronically connected to a divider. An input channel is provided that is in communication with the divider and an analog-to-digital converter. The input channel has a first bandwidth and the converter has a second bandwidth that is broader than the first bandwidth. The single oscillator (VCO/DCO) operates at a frequency higher than frequencies inside the reception band such as the FM band. The divider divides the frequency of the single oscillator that is used as input when producing overlapping sub-bands that cover the entire reception band.
US08503504B2 Method for estimating a carrier-frequency shift in a telecommunication signals receiver, notably a mobile device
This method for estimating a carrier-frequency offset in a telecommunication signals receiver comprises the following steps: computation of the partial correlations relating to several successive portions of a reference binary sequence, each partial correlation being computed between a portion of a signal received by the receiver at said carrier frequency, this signal comprising said reference binary sequence, and a predetermined portion of said reference binary sequence stored and/or generated by the receiver, in several possible relative positions between the received signal and the predetermined portion, and determination of the carrier-frequency offset from the computed partial correlations. It also comprises a step of selecting a synchronization position and the determination step comprises the estimation of a phase shift between computed partial correlations at the selected synchronization position.
US08503501B2 Spread spectrum clock generation circuit and a method of controlling thereof
A spread spectrum clock generation circuit and a controlling method thereof are disclosed, which provide clocks having less jitter and ideal spread spectrum and enable a reduction in circuit scale and in power consumption. To this end, a current control type modulator 19a is equipped with a current source Ia (current 4i). A charger unit CGa and a discharger unit DGa are designed such that currents i, 2i and 4i are allowed to flow, for example, by properly setting the sizes of transistors. Modulation cycles CIa to CIIIa are repeated and an output code is generated from a switching control circuit 20a according to each modulation cycle. A switching unit SSa is controlled according to the output code, thereby charging or discharging a capacitor element C1 with a charge/discharge current CDI corresponding to the output code. Hence, charge amounts and discharge amounts for all the modulation cycles CIa to CIIIa have the same value, i.e., 6i [A·clock].
US08503499B2 Gas discharge chamber
A gas discharge chamber that uses a calcium fluoride crystal which reduces a breakage due to mechanical stress (window holder and laser gas pressure), thermal stress from light absorption, and the like, increases the degree of linear polarization of output laser, and suppresses degradation due to strong ultraviolet (ArF, in particular) laser light irradiation. A first window (2) and a second window (3) of the gas discharge chamber have an incident plane and an emitting plane in parallel with a (111) crystal plane of their calcium fluoride crystal. With respect to an arrangement where laser light entering the calcium fluoride crystal passes through a plane including a <111> axis and a <001> axis of each of the first window (2) and the second window (3) as seen from inside the chamber (1), the first window (2) and the second window (3) are arranged in positions rotated in the same direction by the same angle about their <111> axis.
US08503498B2 Multi-beam semiconductor laser apparatus
A multi-beam semiconductor laser apparatus includes three or more stripe semiconductor laser emission units which are arranged on a substrate, isolation grooves which separate the semiconductor laser emission units from each other, and pad electrodes which are disposed on outer sides of the outermost semiconductor laser emission units. The isolation grooves are formed between the pad electrodes and the semiconductor laser emission units adjacent to the pad electrodes and between adjacent semiconductor laser emission units. A distance between two isolation grooves formed on outer sides of the outermost semiconductor laser light emission units is smaller than a distance between two isolation grooves formed on both sides of inner ones of the semiconductor laser light emission units.
US08503490B2 Information processing apparatus, information processing method, and program
A communication device includes a transmission amplifier supplied with a binary transmission signal is capable of choosing between amplifying the transmission signal and entering a high-impedance state at an output. An antenna is supplied with a transmission signal output from the transmission amplifier. A comparator compares a signal received by the antenna with threshold values to obtain a reception signal, which is supplied to a processing unit. A capacitor is connected between the transmission amplifier and the antenna or between the antenna and the comparator. A control unit allows the transmission amplifier to be in the high-impedance state for a period during which the processing unit receives a reception signal.
US08503488B2 Packet insertion mechanism for an improved ATSC DTV system
A packet insertion mechanism at the front end of a time-synchronized digital television transmission system multiplexes, along with standard packets, packets whose payload is to be transmitted with redundancy for added robustness. The multiplexer also inputs placeholder packets to accommodate duplicated content of the robust packets. Multiplexing of the robust and placeholder packets is configured to alternate and to interleave with the multiplexing of standard packets. The distribution of the robust packets within a frame is determined by the number of robust packets.
US08503484B2 System and method for a cross channel data link
A node comprises a host computer operable to execute application tasks and to transmit data; a local time-triggered Ethernet switch operable to enforce temporal constraints on time-triggered data; and a time-triggered Ethernet controller coupled to the local time-triggered Ethernet switch and operable to be coupled to a time-triggered Ethernet switch in each of a plurality of other control nodes. The time-triggered Ethernet controller is further operable to communicate with the plurality of other control nodes to synchronize a local clock to establish a global time base and to provide a signal to the host computer for the host computer to synchronize execution of the application tasks by the host computer with the execution of application tasks in each of the plurality of other control nodes.
US08503480B2 Managing communications over a shared medium
Systems and methods for allocating network bandwidth between a plurality of networks. Requests for bandwidth allocation from other networks can be received. A coexistence frame requesting an allocation of bandwidth for a local network can be generated based upon the bandwidth allocation requests received from other networks. The coexistence frame can be transmitted, and utilization of the requested allocation can be delayed by a reservation period.
US08503479B2 Systems and methods for transmitting radio link control (RLC) data blocks
In one aspect, the invention provides apparatuses and methods for wirelessly transmitting application data utilizing priority information for each radio link control (RLC) data block transmitted. Advantageously, the application data with a relatively high transmission priority is not substantially delayed by the transmission of application data with substantially lower transmission priorities.
US08503476B2 Communication method in a network comprising a primary network and a secondary network
Communication method between a primary network (110) and a secondary network (24), the secondary network comprising a plurality of remote stations (210 to 230) and having transmission capacities lower than the transmission capacities of the primary network, a base station (20) enabling data transmissions between the primary and secondary networks.In order to guarantee a quality of service, the method comprises: a creation of at least one virtual wireless channel (21 to 23), associated with the secondary network with configurable channel parameters, and a routing of the data that transits by said base station to be transmitted to the secondary network according to the virtual channel or channels created. each virtual channel enabling a point-to-point link between the base station and a station of said plurality.
US08503473B2 Wireless network system and method of transmitting and receiving data over the wireless network system
A wireless network system is provided in which time periods during which packets are transmitted or received for bandwidth allocation request and acknowledgement over a network are separately set in a superframe period, and data is transmitted or received through the bandwidths allocation. The wireless network system includes a frame-generation unit which generates a beacon frame for constructing a superframe including one or more channel time blocks, a bandwidth-management unit which sets among the one or more channel time blocks first channel time blocks as a bandwidth allocated period for a particular station on a network and second channel time blocks as packet transmission or reception periods for a bandwidth-use-request packet on the network, and a communication unit which transmits the beacon frame including reservation information for setting the first and second channel time blocks through a communication channel.
US08503472B2 Partial bandwidth request techniques in wireless networks
An embodiment of the present invention provides a method of requesting bandwidth allocation in a wireless network, comprising using a partial bandwidth request by a mobile station (MS) operable in the wireless network to a base station (BS) operable in the wireless network, wherein the partial bandwidth request requests bandwidth for only a portion of all packets in an uplink (UL) queue.
US08503471B2 Content receiver and content transmitter
A transmitting party adds reproduction time information to each transport packet to form an extended transport packet, encapsulates the extended transport packet, adds capsule counter information, and transmits the capsule. A receiving party has a storage means, and transmits a re-send request including the capsule count information to the transmitting party when a packet loss occurs. At the receiving party, the re-sent data received overwrites data in its original storage region. At reproduction, the receiving party decodes the data after compensating for jitter referring to reproduction time information. Accordingly, a packet loss or jitter is compensated for at both transmitting and receiving parties in a communications network such as the Internet so as to prevent the occurrence of a decoding error at the receiving party.
US08503465B2 Priority scheduling and admission control in a communication network
Techniques for performing priority scheduling and admission control in a communication network are described. In an aspect, data flows may be prioritized, and packets for data flows with progressively higher priority levels may be placed at points progressively closer to the head of a queue and may then experience progressively shorter queuing delays. In another aspect, a packet for a terminal may be transferred from a source cell to a target cell due to handoff and may be credited for the amount of time the packet has already waited in a queue at the source cell. In yet another aspect, all priority and non-priority data flows may be admitted if cell loading is light, only priority data flows may be admitted if the cell loading is heavy, and all priority data flows and certain non-priority data flows may be admitted if the cell loading is moderate.
US08503460B2 Dynamic home network assignment
A method for wireless communications is provided. The method includes establishing a connection with a gateway device in a wireless network. This includes receiving a configuration packet from the gateway device that identifies home mobility options. The method processes at least one home network address from the home mobility options. The method also includes receiving or processing a home network prefix from the home mobility options.
US08503457B2 Method of forming a digital or analog multiplexing data frame
To more fully utilize the available bandwidth of a network link, network nodes in accordance with the present invention allow TDM data to be combined with packet data. A Packet/TDM cross connect switch, having both a TDM switch and a packet switch, is used in these embodiments. Data packets are transformed into TDM packet columns. The TDM packet columns are combined with standard TDM data columns in the payload of a TDM data frame. Data packets may be sorted based on a priority scheme, in which high priority data packets are given precedence over lower priority data. However, both high priority and low priority may be combined in a TDM packet column.
US08503454B2 Apparatus and method for setting up quality of service in a wireless communication system
An apparatus and method for setting up Quality of Service (QoS) in a wireless communication system are provided. The method includes, during an initial network entry, generating at least one static Service Flow (SF) by receiving a QoS profile from a Base Station (BS), if QoS change is requested for the SF, transmitting by a Mobile Station (MS) to the BS a service change request message which requests a service change and includes QoS change information, and by the BS, determining if the service change request is granted, and, if granted, transmitting a service change response message to the MS, and changing a QoS of the SF.
US08503453B2 Adaptive quality of service in an easy virtual private network environment
In one embodiment, a QoS manager process that receives, at an EzVPN server device, connection speed data from an EzVPN client device. In addition, the QoS manager process processes, at the EzVPN server device, the connection speed data to determine a QoS policy for a communications session between the EzVPN client device and the EzVPN server device. Furthermore, the QoS manager process applies, at the EzVPN server device, the QoS policy to the communications session between the EzVPN client device and the EzVPN server device as determined by the processing of the connection speed data.
US08503452B2 Method and apparatus for improving data transmission reliability in a wireless communications system
Techniques for performing duplicate detection and re-ordering for a HARQ transmission are described. For duplicate detection, a receiver determines whether a decoded packet x for an ARQ channel y is a duplicate packet based on packet x and a prior decoded packet for ARQ channel y. For re-ordering, the receiver determines whether an earlier packet is still pending on any other ARQ channel based on prior decoded packets for the ARQ channels and forwards packet x only if there are no pending earlier packets. There are no pending earlier packets on another ARQ channel z if (1) a decoded packet was received on ARQ channel z at a designated time or later or (2) a decoded packet was not received on ARQ channel z within a time window from current time.
US08503448B2 Communications system
A Communications system for communicating over low bandwidth or high latency links incorporates a router MR7 configured to route a message to any like-configured router MR8, MR9 linked to it. Communications are implemented at network layer with UDP IP message packets. There are no hello messages. The message format 20 includes routing information but not designated and backup routers, which avoids loss of service from designated router changes and reduces bandwidth requirements. Configured routers MR7 to MR9 have different message formats 20, 40 for communicating with configured routers MR7 to MR9 and with unconfigured routers R1 to R6 respectively, and can link different protocols. A configured router MR7 deletes routes to like-configured routers MR8, MR9 with route metrics not superior to other routes with like destination. It also deletes routes with inferior metrics to related routes in an incoming message, and retains received route information regarding a new route or a route with superior metric. Some routes are not advertised, e.g. loop-back routes, multicast or broadcast routes, experimental destinations, unconfigured or zero-configured addresses, and routes matching a summary route and any user configured routes/networks.
US08503447B2 Broadcast receiver and channel information processing method
A broadcast receiver and a channel information processing method are disclosed. A network interface transmits and receives an Internet Protocol (IP) packet. A controller detects broadcast data included in the IP packet received by the network interface and parses the detected broadcast data to obtain virtual channel information and physical channel information. The channel information is transmitted based on service discovery & selection (SD&S). The virtual channel information is transmitted in a broadcast discovery record and the physical channel information is transmitted in a cable network information record.
US08503443B2 Method of controlling a wind turbine in a wind power plant
A method of controlling a wind turbine in a wind power plant where the wind turbine includes a wind turbine controller and at least one connected wind turbine component. Upon receiving a packet containing a “write/read” instruction, the wind turbine controller effectuates a write instruction by changing a set point associated with an attribute of a component in the wind turbine. The controller retrieves information data resulting from performing the write instruction from the component and transmits the information data to a central controller. The invention performs a fast and simple control loop by means of transmitting both the write and the read instruction within one single data packet.
US08503441B2 Method of managing a call addressed to a terminal associated to an access device
A method of managing a call addressed to a first terminal operating in a telephone system, which includes a mobile network, a packet-switched network and an access device allowing connection of dual mode terminals to the packet-switched network, wherein the method includes: a) providing configuration information by associating information related to a set of terminals to an identifier of the access device, the set of terminals including a dual mode terminal, which is adapted to operate in the mobile network and in the packet-switched network; b) providing status information related to the at least one dual mode terminal; c) upon reception of a request for the call, checking whether the first terminal belongs to the set of terminals; d) in the affirmative, routing the call to at least one selected terminal of the set of terminals, the selection being performed based on the configuration information and the status information; and d) in the negative, routing the call to the first terminal.
US08503432B2 Method and apparatus for signaling proprietary information between network elements of a core network in a wireless communication network
The invention includes a method and apparatus for signaling proprietary information between network elements of a core network (CN) of a wireless communication network. A method for signaling proprietary information within the CN includes encoding the proprietary information in an IPv4 Options field of an inner header of an IP packet, and pre-pending an outer header to the IP packet for Mobile IPv4 (MIPv4) tunneling the IP packet from a first node of the CN to a second node of the CN. The first and second nodes of the CN may include a mobility anchor node and a mobility gateway node, respectively. The first and second nodes of the CN may include a mobility gateway node and a mobility anchor node, respectively. A method for signaling proprietary information includes receiving a tunneled IP packet at a first node of the CN (where the IP packet includes an outer header, an inner header, and a payload), removing the outer header from the IP packet, stripping an IP Options field from the inner header of the IP packet where the IPv4 Options field includes the proprietary information, and propagating the proprietary information from the first node of the CN to a second node. The first node of the CN may be a mobility gateway node and the second node may be a node of a radio access network (RAN). The first node of the CN may be a mobility anchor node and the second node may be another node of the CN.
US08503427B2 Location functionality in an interworking WLAN system
The present invention relates to system nodes/entities and methods for enabling determination of the location of an attached User Equipment in a tunneled IP network. The User Equipment location can be determined by means of procedures maintained in a Location Function (LF). An application function can retrieve the User Equipment location by querying the Location Function by using the second source address as a key.
US08503422B2 Method and apparatus for transmitting paging control information in a wireless communication system
A method and apparatus for transmitting paging control information in a wireless communication system are provided. A method of operating a Base Station (BS) for paging in a superframe-based wireless communication system includes determining a paging listening interval, determining an interval of at least one or more subframes before the paging listening interval, as a paging control listening interval, and, during the paging control listening interval, broadcasting a paging control message.
US08503417B2 Wireless LAN device and protocol execution method
A wireless LAN device for performing wireless communication with another wireless device in a wireless communication system is disclosed. The wireless LAN device includes first and second communication sections which participate in a configuration process using a predetermined protocol. An execution section executes, based on an instruction received at a reception section, the configuration process by use of one of the first and second communication sections in cooperation with the another wireless device. An exclusion section performs, before the configuration process is completed, an exclusion process that excludes the other of the first and second communication sections from continuing to participate in the configuration process.
US08503413B2 Mobile communication system, mobile station apparatus, base station apparatus and random access channel transmitting method
To improve the delivery probability of a random access channel and increase the information amount notified on the random access channel. In a mobile communication system in which a mobile station apparatus and base station apparatus perform multicarrier communication with each other, the mobile station apparatus sets transmission control information about a random access channel based on a state of the mobile station apparatus in transmitting the random access channel, and the base station apparatus determines the state of the mobile station apparatus based on the transmission control information notified on the random access channel, and performs optimal scheduling corresponding to the state of the mobile station apparatus.
US08503411B1 Method and apparatus for providing a VoIP server in a wireless integrated devices
A method and apparatus for handling a call using a wireless integrated access device that is compatible with Voice over ATM and Voice over DSL on a network side while being compatible with VoIP on a customer premise side are disclosed. For example, the present method employs a wireless integrated access device for receiving an incoming call from a broadband access network that uses dedicated connection switching. In turn, the method establishes a wireless connection for the incoming call with at least one VoIP enabled endpoint device located at a customer premise.
US08503408B2 Method for transmitting and receiving a signal to protect against erroneous feedback information
A base station includes a receiver receiving feedback information including a preferred weight determined by a user equipment (UE); a processor multiplying a weight and data to be transmitted; a transmitter including two antennas and transmitting the weight multiplied data to the UE through a specific physical downlink shared channel where a MIMO transmission scheme for a HS-DSCH (High Speed Downlink Shared Channel) is applied, the transmitter transmitting feed-forward information through a downlink shared control channel when the data is transmitted using the MIMO transmission scheme for the HS-DSCH, wherein the weight applied to the specific physical downlink shared channel is adjusted at a subframe boundary of the specific physical downlink shared channel and the feed-forward information is transmitted through a subframe of the downlink shared control channel corresponding to the specific subframe of the specific physical downlink shared channel.
US08503403B2 Network control of uplink transmit timing for compressed mode
A base station measures the uplink load on an uplink channel and controls the transmit timing of one or more mobile terminals on the uplink channel based on the measurements of the uplink load. The transmit timing of the mobile terminals may be controlled by sending timing control signals to the mobile terminals over a downlink control channel. In one embodiment, the transmit timing of the uplink channel is slaved to the transmit timing on a downlink channel. In this case, the uplink timing may be controlled by adjusting the downlink transmit timing.
US08503399B1 Management of wimax tones to avoid inter-modulation interference
Tones within WiMAX signals are disabled to eliminate interference at third-party receivers. A level of interference is determined between a base station transmitting a WiMAX signal and a third-party receiver. The level of interference is determined based at least on a characteristic of the third-party receiver and the WiMAX signal. One or more tones within the WiMAX signal are determined to disable at the base station to eliminate the interference. The tones are disabled prior to transmitting the WiMAX signal by the base station.
US08503393B2 Method, radio system, and base station
There is provided a method including providing a local breakout service to an Internet protocol gateway while retaining user access control and a remote Internet protocol gateway of a packet core network of a radio network for a mobile terminal; providing information on neighboring macro cells in which the local breakout service can continue, the macro cells belonging to a network using another tracking area than that of the serving cell of the mobile terminal; executing a handover process of the mobile terminal from a source base station in the serving cell of the mobile terminal to a target base station in a neighboring macro cell; and providing session continuation of the mobile terminal local breakout service traffic in the neighboring macro cell by controlling user plane tunneling between the target base station and the local packet switched network from which an Internet protocol address for the local breakout service was assigned.
US08503391B2 CS to IMS hand-back and hand-in for IMS systems for legacy CS UE with home node B access
A system and method for allowing legacy circuit switch user equipment (CS UE) to operate via a packet switch system, such as an IP Multimedia Subsystem (IMS) system, is provided. The mobility and session control aspects of communications with the legacy CS UE is separated. A user agent is placed in the receiving node (e.g., a home node B) that acts as the SIP agent for the CS UE for session control. An interworking function is provided to allow mobility between the macro CS network and the PS (e.g., IMS) network. Hand-back and hand-in procedures with service continuity are also provided.
US08503390B2 Method and system for scanning in WLAN
The embodiments disclose a method for scanning in a radio communication system, in particular in a WLAN (Wireless Local Area Network), including transmitting by a MS on all channels a probe message containing the IP address of the original AP of the MS and an MAC address of the MS; switching to the original channel; transmitting a response inquiry message to the original AP; and receiving a probe response message within a predetermined period, wherein, if the AP of the probe message received on the channel is not the original AP, then the AP transmits the probe response message containing the MAC address to the original AP according to the IP address; and the original AP buffers the probe response message received, and transmits the probe response message to the MS according to the MAC address after the response inquiry message sent by the MS has been received. The embodiments further disclose a scanning system in a WLAN. By using the method and system, not only the time delay during the scanning is reduced, but also the network security is improved and the difficulty for realization is decreased.
US08503388B2 Base station apparatus, user equipment, and communication control method
A base station apparatus capable of communicating with a user equipment terminal using a downlink shared channel is disclosed. The base station apparatus includes a radio resource allocation unit allocating radio resource blocks to the shared channel after allocating the radio resource blocks to at least one of a synchronization signal, a common control channel, a broadcast channel, a paging channel, an MBMS channel, and a random access response channel.
US08503380B2 Method and arrangement in a telecommunication system
The present invention relates to a method in a cellular communication system, for avoiding errors in a HARQ process, wherein an NDI flag is used both for indicating either semi-persistent scheduling, SPS activation or SPS retransmissions, and also for indicating, by toggling of the flag, a new transmission in dynamic scheduling mode. The method comprises the steps of receiving, in a scheduling message, an indication that dynamically scheduled transmission will take place; if a semi persistent resource has occurred for the same HARQ process since a previously received indication for dynamically scheduled transmission, then considering the NDI flag to be toggled regardless of the value of the NDI flag. Thus, if the condition is fulfilled, a UE will always regard the NDI flag as indicating or requesting a new data transmission.
US08503377B2 Methods for multi-band wireless communication and bandwidth management
Embodiments of methods for multi-band wireless communication and bandwidth management are described herein. Other embodiments may be described and claimed.
US08503375B2 Coding and multiplexing of control information in a wireless communication system
Techniques for sending control information in a wireless communication system are described. In an aspect, a UE spreads control information across frequency with a DFT and across time with an orthogonal sequence to obtain output data for the control information. In one design, the UE receives codewords for N HARQ processes in N downlink subframes, determines an ACK value for each HARQ process, codes N ACK values for the N HARQ processes to obtain ACK information, generates output data for the ACK information, and sends the output data in one of M uplink subframes. In another aspect, first control information is processed based on a first coding and multiplexing scheme utilizing code division multiplexing in time and frequency domains. Second control information is processed based on a second coding and multiplexing scheme utilizing code division multiplexing in time domain and spreading in frequency domain.
US08503370B2 Site based media storage in a wireless communication network
A system and methodology that facilitates efficient utilization of bandwidth on a transmission link between a base station and a core mobility network, during content delivery is provided. Moreover, the system includes a data storage device, adjunct to, or integrated within, the base station for storing content locally. Typically, the data storage device is updated by downloading content from the core network at an optimal time. For example, content can be downloaded to the data storage device when the core network-to-base station link is idle, under utilized and/or has sufficient bandwidth for the download. On receiving a request for content from a user equipment (UE), the base station can directly deliver the content to the UE from the data storage device, over an air interface, when the requested content is locally available.
US08503369B2 Cellular phone terminal having built-in wireless LAN, cellular phone system and personal information protection method therefor
Disclosed are a cellular phone terminal, a cellular phone system and a privacy protection method therefor that enable to prevent leakage of private information from the communication data when conducting a search for wireless LAN base stations. The cellular phone terminal comprises, in addition to the cellular phone function section, a cellular phone network transmitter/receiver section, a wireless LAN transmitter/receiver section and a wireless LAN connection control section, an SSID•MAC address management section connected to the wireless LAN connection control section and the cellular phone network transmitter/receiver section. The SSID•MAC address management section is allocated by a MAC address management server one or more temporary MAC addresses together with their time limit by way of the cellular phone network transmitter/receiver section and a cellular phone base station and the temporary MAC addresses are used when conducting a search for wireless LAN base stations.
US08503368B2 Macro-network location determination, local-oscillator stabilization, and frame-start synchronization based on nearby FM radio signals
Exemplary methods and systems may generally be implemented to allow a macro-network base station without access to a GPS reference signal to provide some or all of the functionality for which existing macro-network base stations typically rely on GPS. In a first aspect, an exemplary macro-network base station may determine its location using a location-determination technique that is based upon the angles of arrival of FM radio signals from nearby FM stations. In a second aspect, an exemplary macro-network base station may stabilize its local oscillator by phase-locking its local oscillator to an FM radio signal, and periodically adjusting its local oscillator to account for phase drift of the FM radio signal. And in a third aspect, an exemplary macro-network base station may synchronize its frame-start timing with a nearby base station using a frame-start timing signal that the base station has synchronized to frame transmissions from the nearby base station during a setup routine.
US08503366B2 Radio communication system, radio communication device, radio communication method, and program
A radio communication system includes a plurality of radio communication devices that transmit and receive a subframe as a unit. Each of the plurality of radio communication devices adds a cyclic prefix to the head of the effective symbol of each OFDM symbol that makes up a subframe and adds a postfix to the tail of the effective symbol of the last OFDM symbol of the subframe.
US08503364B2 Broadcast signaling L1 overload indication
Devices and methods are provided for implementing an over-the-air (OTA) broadcast of an overload indication to reduce interference levels at neighboring node(s). In one embodiment, the method involves receiving the OTA broadcast of the overload indication from a neighboring node. The method further involves performing transmit power control based upon the received overload indication to reduce Interference over Thermal (IoT) noise at the neighboring node (e.g., by adjusting the transmit power spectral density). Such a method may be performed, for example, by an access terminal or a small base node.
US08503363B2 Mobile router device
A wireless mobile router (140) includes wireless network interfaces (202) and (218) attached to a network controller (142). The wireless network interface (202) communicates with a cellular network (110) to access cellular network services. The wireless network interface (218) and the network controller (142) comprise a WLAN (170) or PAN (180) and a network router hosting a plurality of client devices. Each client device may access a wide area network, WAN over the cellular network. The wireless mobile router (140) is configured to exchange various cellular network signals with various WLAN and PAN networks. The wireless mobile router (140) is particularly suitable for use in a vehicle or at locations where WAN access is not readily available.
US08503361B2 Enabling IMS services for non-IMS UEs via a home base station subsystem
Apparatuses and methods for enabling IMS services for non-IMS UEs via a home base station subsystem are described. In various embodiments, a home base station subsystem includes a message generator configured to generate an Internet Protocol multimedia subscription request message comprising a unique user identifier and an information request message, the information request message requesting an Internet Protocol multimedia subscription for the user identified by the unique user identifier. The home base station subsystem also includes a transmitter configured to transmit the generated Internet Protocol multimedia subscription request message to a user database.
US08503348B2 Method and apparatus in which a relay station transmits a sounding reference signal
Provided is a method for transmitting a sounding reference signal (SRS) of a relay station. The method includes: receiving SRS parameters; allocating a radio resource by using the SRS parameters; and transmitting the SRS to a base station by using the radio resource, wherein the radio resource indicated by the SRS parameters includes a symbol in which a guard time for switching signal transmission and reception is located in a time domain.
US08503347B2 Transmitting/receiving system and method of processing broadcast signal in transmitting/receiving system
A transmitting system, a receiving system, and a method for processing a broadcast signal are disclosed. The receiving system comprises a tuner, a channel equalizer, a turbo decoder, a demultiplexer, a first error correction decoder, a block deinterleaver, and a second error correction decoder. The tuner receives a broadcast signal including a data group. The data group comprises mobile service data, regularly spaced known data sequences, and signaling data. The turbo decoder performs turbo decoding for the signaling data included in the channel equalized broadcast signal in the channel equalizer. The block deinterleaver performs block deinterleaving for the turbo-decoded FIC data in a block unit of TNoG (the number of all data groups assigned to one subframe)×51 bytes.
US08503344B2 Notification method, access point, station, and wireless system
A notification method, an access point (AP), a station (STA), and a wireless system are disclosed. The notification method includes checking whether a power event occurs, and notifying the power event to an STA if the power event occurs. According to the present invention, the STA can learn about the power event, which helps the STA to decide on the subsequent action according to the power event.
US08503339B2 Wireless communication apparatus and method
A wireless communication apparatus performs bi-directional communication with an initiator. The apparatus is allocated an allocation period for data transmission from the initiator. The apparatus includes means for generating a first physical frame including an acknowledgement frame with respect to data received from the initiator, and generating a second physical frame in which a plurality of transmission data frames addressed to the initiator are aggregated. The apparatus also includes means for transmitting the first physical frame at a first transmission rate and the second physical frame at a second transmission rate, during the allocation period.
US08503335B2 Method and apparatus for transmitting broadcast data, and method and apparatus for receiving broadcast data
A method and apparatus for receiving or transmitting broadcast data are provided. The broadcast data receiving method includes: acquiring first signaling information indicating an ensemble in which service composition information of a broadcasting service is transmitted, acquiring the service composition information based on the first signaling information, and providing the broadcasting service based on the service composition information and the first signaling information.
US08503334B2 System and method for providing network services over shared virtual private network (VPN)
A method includes tagging core routes of a core network service node associated with the core network service with an assigned core service specific route target, and distributing the core routes tagged with the assigned core service specific route target to one or more customers subscribing to the core network service associated with the core service node, whereby the customers are enabled to reach the core network service node via a core network service VPN. A network architecture includes an edge network having provider edge nodes configured to form a core network service VPN logically between subscribing customer network sites and a core service network, the core service network providing a core network service, the core service network including a core network service node, and a plurality of customer network sites having customer edge nodes attached to associated provider edge nodes of the edge network, wherein each customer edge node is configured to import routes tagged with a core service specific route target, and wherein the core network service node is configured to import routes tagged with a core service specific customer route target.
US08503316B2 Method and apparatus for handling inconsistent control information in a wireless communication system
Techniques for handling inconsistent control information in a wireless communication system are described. In an aspect, inconsistent control information is handled in different manners for the downlink and uplink. In one design, a user equipment (UE) receives a first grant with first control information for a first data transmission and also receives a second grant with second control information for a second data transmission. The UE determines that the second control information is inconsistent with the first control information, e.g., due to the two grants conveying different transport block sizes. The UE determines whether to retain or discard the second grant based on whether the two grants are for data transmissions on the downlink or uplink. In one design, the UE retains the second grant if the two grants are for data transmissions on the downlink and discards the second grant if the two grants are for data transmissions on the uplink.
US08503315B2 Data network monitoring system and method for determining service quality measure
Methods and systems for deriving measures indicative of application-level quality of service in relation to a client application operating in a data network whereby application data of relevance to the client application is transmitted in packets from node to node over the network by means of a plurality of application flows, each application flow being an exchange of dat between the client application and a serving application; the method comprising: monitoring characteristics of packets containing application data of relevance to the client application and identifying an application flow associated with each packet; determining from monitored characteristics, according to predetermined criteria and individually in relation to each of a plurality of application flows associated with the client application, a flow-level performance measure; and collating the respective flow-level performance measures and deriving an application-level service-quality measure.
US08503313B1 Method and apparatus for detecting a network impairment using call detail records
A method and system for monitoring a packet network by using call detail records (CDRs) are disclosed. The method first receives at least one call detail record (CDR) at a completion of a call from at least one voice gateway router that serviced said call and analyzes said at least one CDR. The method then monitors at least one performance parameter in accordance with said at least one CDR.
US08503312B2 Failure recovery in an IP multimedia subsystem network
A method is provided for facilitating recovery from the failure of a P-CSCF within an IP multimedia Subsystem network. A gateway, such as a GGSN, monitors signals arriving at the gateway from the P-CSCF and provides an indication if the monitored signals become unacceptable, for example because of an interruption in the signals. The gateway responds by signalling the unavailability of the P-CSCF to user equipment, which was associated with the P-CSCF during a previous registration with the IMS network. In response, for example, the user equipment affected by the failure may request re-registration with the IMS network using a different available P-CSCF.
US08503308B1 Page routing system
A page routing system comprises a communication transceiver and a processing system, wherein a wireless communication network comprises a plurality of paging zones and each of the paging zones comprises a plurality of sectors. The communication transceiver is configured to transmit pages to the paging zones for delivery to wireless communication devices located in the sectors and to receive page responses from the paging zones that were transferred by the wireless communication devices located in the sectors. The processing system is configured to determine page utilization for each of the paging zones, to track the page responses per-sector for each of the wireless communication devices, to receive a new page for one of the wireless communication devices in one of the paging zones, and if the page utilization for the one paging zone exceeds a zone threshold, then to select a target one of the sectors in the one paging zone for page delivery based on the page responses per-sector for the one wireless communication device.
US08503306B2 Technique for route optimization in a communication network
A technique for route optimization in a communication network is provided. A method implementation of this technique comprises the steps of providing a first data element containing information about first data session between a mobile terminal and a first gateway node and further containing mobility management information regarding the mobile terminal, wherein the first data element is associated with a first network address, providing a second data element containing information about a second data session between the mobile terminal and a second gateway node and further containing mobility management information regarding the mobile terminal, wherein the second data element is associated with a second network address, and switching an association of network traffic with the first data element to an association of network traffic with the second data element in order to optimize the flow of network traffic within the communication network.
US08503305B2 Automatic signaling method and device for telecommunication services
A method includes receiving by a first inter network interface (INI) a control message from an entity in a first network, the first INI being located at a border between the first network and networks external to the first network. The first INI translates the control message from a first format used internally in the first network to a second format used to communicate between the first INI and a second INI located at a border between a second network and networks exterior to the second network. The first INI then transmits the translated control message to the second INI. The method can also include translating, by the second INI, the received control message from the second format to a third format used internally in the second network, and forwarding the received and translated control message to an entity in the second network.
US08503304B2 Filtering and route lookup in a switching device
Methods and devices for processing packets are provided. The processing device may Include an input interface for receiving data units containing header information of respective packets; a first module configurable to perform packet filtering based on the received data units; a second module configurable to perform traffic analysis based on the received data units; a third module configurable to perform load balancing based on the received data units; and a fourth module configurable to perform route lookups based on the received data units.
US08503303B2 Congestion handling in multicast networks
The invention relates to techniques for traffic handling in congestion situations in a point-to-multipoint (‘PTM’) enabled network. A method embodiment of the inventive technique is performed in an egress node of the network and comprises the steps of detecting marked packets, the marking being indicative of a congestion situation in a core node of the PTM-enabled network; selecting, based on the detected markings, a particular PTM flow from one or more PTM flows passing the egress node for termination; and indicating the selected PTM flow in an upstream direction of the selected flow.
US08503302B2 Method of detecting anomalies in a communication system using numerical packet features
A method of detecting anomalies in a communication system, includes: providing a first packet flow portion and a second packet flow portion; extracting samples of a numerical feature associated with a traffic status of the first and second packet flow portions; computing from said extracted samples a first statistical dispersion quantity and a second statistical dispersion quantity of the numerical feature associated with the first and second packet flow portions, respectively; computing from the dispersion quantities a variation quantity representing a dispersion change from the first packet flow portion to the second packet flow portion; comparing the variation quantity with a comparison value; and detecting an anomaly in the system in response to said comparison.
US08503299B2 Method and system for packet scheduling
A method and system for packet scheduling are provided. The method includes: the step of receiving an incoming packet; extracting packet identification information associated with the incoming packet, and assessing a delay budget for the incoming packet in dependence upon its arrival time and the associated information. The system includes: an input module for receiving an incoming packet, and extracting information associated with the incoming packet, and a module for assessing a delay budget for the incoming packet in dependence upon its arrival time and the associated information.
US08503291B1 Systems and methods for directing a beam towards a device in the presence of interference based on reciprocity
Methods and apparatus are provided for directing a beam towards a receiving device in the presence of interference. A beam transmitted by a transmission source is received at a receiving device. The received beam is affected by an interference signal from an interfering source. The receiving device computes a covariance matrix that represents a channel estimate associated with the interfering source. The receiving device modifies a predetermined sounding signal based on the covariance matrix for transmission to the transmission source. The receiving device causes the transmission source to estimate an equivalent channel matrix based on the predetermined sounding signal and the modified predetermined sounding signal. The equivalent channel matrix represents the channel estimate associated with the interfering source and a channel estimate associated with the transmission source.
US08503290B2 Communicating data units in a communications network that provides failure protection
A node comprises a first communications interface to a customer network element, where the first communications interface is part of a group of communications interfaces to the customer network element to provide failover support. The node further includes a network interface to communicate over a trunk group to other nodes, where the trunk group includes a primary trunk and a secondary trunk. Just one of the primary and secondary trunks is active for communicating data units.
US08503289B2 Synchronizing multicast information for linecards
In a network device comprising redundant management processors and one or more linecard processors situated on one or more linecards, a linecard processor maintains multicast information that is synchronized with multicast information, or a portion thereof, maintained by an active management processor. When a switchover is performed due to which a previous standby management processor becomes the new active management processor, the switchover is performed without interrupting any multicast routing services provided by the network device. For example, a switchover may be performed in order to upgrade a linecard processor to a new software version.
US08503288B1 Silent failover from a primary control unit to a backup control unit of a network device
A network device includes a primary control unit that establishes a network tunnel with another network device. The network device applies a silent failover technique to failover from the primary control unit to a backup control unit while maintaining the network tunnel. The network tunnel may be, for example, a Layer 2 Tunneling Protocol (L2TP) tunnel, and the network device may be an L2TP Access Concentrator (LAC) or an L2TP Network Server (LNS). The techniques may prevent abnormal termination of the network tunnel during the failover. Once the failover from the primary control unit to the backup control unit is complete, the backup control unit synchronizes sequence numbers associated with the network tunnel with sequence numbers of the non-failed network device, and resolves inconsistencies between subscriber session databases of the backup control unit and the non-failed network device.
US08503287B2 Ultra-wide bandwidth system and method for in-premises wireless networking
An IS-OFDM system for ultra-wideband (UWB) wireless communications that suppresses narrow-band interference, comprising an in-premises base station (IBS) is described. The IBS further comprises an IS-OFDM transceiver for communicating with a plurality of in-premises terminals (ITs) without creating interference outside an in-premises perimeter. Further, a method for operating an IS-OFDM system for ultra-wideband (UWB) wireless communications that suppresses narrow-band interference and provides local area networking services, in-premises distribution of broadcast cable channels and in-premises wireless access and routing to external networks is described, without creating interference outside an in-premises perimeter.
US08503286B2 Method of transmitting control signals in wireless communication system
A method of transmitting control signals in a wireless communication system includes multiplexing a first control signal with a second control signal in a slot, the slot comprising a plurality of orthogonal frequency division multiplexing (OFDM) symbols in time domain, the plurality of OFDM symbols being divided into a plurality of data OFDM symbols and a plurality of reference signal (RS) OFDM symbols, wherein the first control signal is mapped to the plurality of data OFDM symbols after the first control signal is spread by a base sequence in the frequency domain, the RS is mapped to the plurality of RS OFDM symbols, the second control signal is mapped to at least one of the plurality of RS OFDM symbols, and transmitting the first control signal and the second control signal in the slot.
US08503285B2 Radio communication terminal device and radio transmission method
It is possible to provide a radio communication terminal device and a radio transmission method which can improve reception performance of a CQI and a reference signal. A phase table storage unit (112) stores a phase table which correlates the amount of cyclic shift to complex coefficients {w1, W2} to be multiplied on the reference signal. A complex coefficient multiplication unit (113) reads out a complex coefficient corresponding to the amount of cyclic shift indicated by resource allocation information, from the phase table storage unit (112) and multiplies the read-out complex coefficient on the reference signal so as to change the phase relationship between the reference signals in a slot.
US08503280B2 Information recording medium, and recording method and reproducing method thereof
An information recording medium in which bottoms of a guide groove and a pit array formed on a disc substrate are allocated on a same flat plane and shaped in flat. Further, in a transition area from a pit array to a guide groove or from a guide groove to a pit array, the information recording medium is provided with an intermediate area composed of a pit array of which height changes from a height between a bottom and a side of a groove to another height between the bottom and a side of the pit array.
US08503277B1 Photo/light based data storage, distribution and simultaneous data access for multi-processor system
This invention relates generally to a photon/light based data storage, distribution and simultaneous data access system for a multiprocessor computer system.
US08503275B1 Sequential-access of storage media
The present disclosure describes apparatuses and techniques of improved sequential-access of storage media. In some aspects an indication that a media disk interface failed to read a sector of a sequential-read during a revolution of the media disk is received and the media disk interface is caused to attempt to read a next sector of the sequential-read subsequent the sector failed to be read during a same revolution of the media disk.
US08503274B2 Optical disc device that operates with a reduced current consumption after a power-on reset, and method thereof
When power is supplied to an ODD used by being externally attached to a PC via a USB port, it is desirable not to cause an error to occur owing to occurrence of a power-on reset even when the power supplying ability of the PC is insufficient. After the ODD has been connected with the PC and started, the ODD executes an operation of large current consumption for a predetermined period of time and judges whether a power-on reset occurs or not while the operation is being executed. When the power-on reset does not occur, the ODD is set to operate on the basis of the highest specification. When the power-on reset has occurred, the specification is set lower so as to operate the ODD with reduced current consumption.
US08503272B2 Recording/reproducing apparatus having an optical pickup device to read from and record information to disks of different thicknesses
A recording/reproducing apparatus having an optical pickup device which is efficient in light use having little spherical aberration. The recording and/or reproducing apparatus includes an optical pickup having an objective lens, disposed opposite a disk, having a light passing region divided into central, intermediate and periphery regions corresponding to a near axis area, an intermediate axis area and a far axis area of incident light, where the curvature of the central and peripheral regions is optimized for a thin disk and that of the intermediate region is optimized for a thick disk, a light source irradiating light toward a disk through the objective lens; a photo detector for detecting light reflected from the disk, and a beam splitter, disposed between the objective lens and the light source, for transmitting light from the light source toward the objective lens and for diffracting light reflected from the disks toward the photo detector; and a processing unit to process an information signal to control the incident light generated by the light source, and to process the detected light from the photodetector. Therefore, the optical pickup device can be used for both compact disks (CDs) that are thick using light beam passing the near and intermediate regions of said objective lens, and digital video disks (DVDs) that are thin using light beam passing the near and far axis regions of said objective lens, and detect signals without picking up noise regardless of the thickness of the disk.
US08503266B1 Acoustic fluid height monitoring using dynamic surface perturbations
A method of determining the volume or height of fluid in a reservoir is provided. A first burst of focused acoustic energy is used to raise temporarily a protuberance on a free surface of the fluid. A second burst of acoustic energy is directed to the free surface of the fluid. Echoes from the second burst of acoustic energy are detected. The detected echoes are employed to compute the height of the fluid.
US08503265B2 Obstacle detection apparatus and method for detecting obstacle
A transmission and reception device is located at a predetermined height on a movable object and directed toward an outside. The transmission and reception device includes a transmission unit for repeatedly transmitting sensing waves at a predetermined interval and a reception unit for receiving reflective waves of the sensing waves from a detected object. A peak value detecting unit detects peak values of the received reflective waves and stores the detected peak values. A difference arithmetic unit calculates a difference in the detected peak values with movement of the movable object closer to the detected object. An object determination unit determines the detected object to be a near-road-surface obstacle, which is close to a road surface, when the difference is a negative value. The object determination unit determines the detected object to be an other obstacle than the near-road-surface obstacle when the difference is a positive value.
US08503260B2 Semiconductor memory device, method of testing the same and system of testing the same
A method of testing a semiconductor memory device comprises receiving a clock, addresses, commands, and data from a test device through channels, generating an internal bank address in response to the addresses and the commands, performing a multi-bit parallel test for each of a plurality of banks based on the addresses, the commands, the data, and the internal bank address, and providing the test device with a test result signal.
US08503258B2 Stacked device remapping and repair
Various embodiments include apparatus, systems, and methods having multiple dice arranged in a stack in which a defective cell may be replaced by a spare cell on the same die or a different die. Other embodiments are described.
US08503249B2 Semiconductor memory column decoder device and method
Semiconductor memory devices and methods include a flash memory cell array fabricated in a well, with memory cells in the same column connected to each other in series and connected to a respective bit line. The memory devices also include a column decoder, a data register buffer unit, a row decoder, an erase control unit, and an input/output buffer unit. In one or more embodiments, the erase control unit applies voltages to the well to erase the memory cells in a manner that avoids breaking down p-n junctions formed by transistors fabricated in the well. In another embodiment, high voltage transistors are used to selectively isolate the bit lines from and couple the bit lines to a peripheral circuit in pairs so that each high voltage transistor is shared by two bit lines.
US08503248B2 Nonvolatile semiconductor memory device
A nonvolatile semiconductor memory device for raising operating speed is provided. The nonvolatile semiconductor memory device includes plural bit lines extending in a first direction, and a memory cell that includes plural blocks each having plural NAND strings each of which includes a group of memory cells connected in series with one another and selecting transistors connected to the respective ends of the memory cell group. One ends of current paths in ones of the selecting transistors are connected to the bit lines, while one ends of current paths in the other selecting transistors are connected to a source line. The nonvolatile semiconductor memory device further includes a memory cell array and a voltage control circuit that is disposed in the memory cell array in a manner of bisecting the memory cell array and that charges or discharges the bit lines.
US08503246B2 Semiconductor memory device and method of operating the same
A semiconductor memory device includes a memory cell array including cell strings each including a plurality of memory cells, bit lines coupled to the respective cell strings, and page buffers configured to compare a reference current and currents of the respective bit line and output sense data corresponding to a level of a threshold voltage of a selected memory cell based on a result of the comparison, in a sense operation.
US08503245B2 Non-volatile semiconductor memory device and a programming method thereof
A non-volatile semiconductor memory device according to one aspect of an embodiment of the present invention includes: a semiconductor substrate; an element region; a plurality of memory cell transistors which each include a control gate electrode; and programming means for programming data to a programming target memory cell transistor by applying a programming voltage to the programming target memory cell transistor. Moreover, the programming means applies a programming voltage incremented stepwise from an initial programming voltage, to the programming target memory cell transistor while applying a constant initial intermediate voltage to memory cell transistors adjacent to the programming target memory cell transistor. Thereafter, the programming means applies an intermediate voltage incremented stepwise from the initial intermediate voltage, to one of the respective memory cells adjacent to the programming target memory cell transistor, while applying a constant final programming voltage to the programming target memory cell transistor.
US08503240B2 Flash EEPROM system with simultaneous multiple data sector programming and storage of physical block characteristics in other designated blocks
A non-volatile memory system is formed of floating gate memory cells arranged in blocks as the smallest unit of memory cells that are erasable together. One feature is the storage in separate blocks of the characteristics of a large number of blocks of cells in which user data is stored. These characteristics for user data blocks being accessed may, during operation of the memory system by its controller, be stored in a random access memory for ease of access and updating. A typical form of the memory system is as a card that is removably connectable with a host system but may alternatively be implemented in a memory embedded in a host system. The memory cells may be operated with multiple states in order to store more than one bit of data per cell.
US08503236B2 Nonvolatile memory device, methods of programming the nonvolatile memory device and memory system including the nonvolatile memory device
Embodiments of the inventive concept provide a nonvolatile memory device. The nonvolatile memory device includes a memory cell array, a read/write circuit, and a backup circuit. The memory cell array includes a first memory block including a first word line having first memory cells and a second word line having second memory cells. Each of the first memory cells and second memory cells configured to store first-bit data and second-bit data. The read/write circuit is configured to program data into the first and second memory cells and read data stored in the first and second memory cells. The backup circuit is configured to, after first-bit data are programmed into the first word line, but before second-bit data are programmed into the first word line, store first-bit data stored in the second memory cells of the second word line.
US08503234B2 Nonvolatile semiconductor memory device
A nonvolatile semiconductor memory device including a memory cell array of memory cells arranged in a matrix, each of which includes a selecting transistor and a memory cell transistor; a column decoder controlling the potential of bit lines; a voltage application circuit controlling the potential of the first word lines; a first row decoder controlling the potential of the second word lines; and a second row decoder controlling the potential of the source line. The column decoder is formed of a circuit whose withstand voltage is lower than the voltage application circuit and the second row decoder.
US08503233B2 Method of twice programming a non-volatile flash memory with a sequence
A method of twice programming a multi-bit per cell non-volatile memory with a sequence is disclosed. At least one page at a given word line is firstly programmed with program data by a controller of the non-volatile memory, and at least one page at a word line preceding the given word line is secondly programmed with the same program data by the controller.
US08503229B2 P-/Metal floating gate non-volatile storage element
Non-volatile storage elements having a P−/metal floating gate are disclosed herein. The floating gate may have a P− region near the tunnel oxide, and may have a metal region near the control gate. A P− region near the tunnel oxide helps provide good data retention. A metal region near the control gate helps to achieve a good coupling ratio between the control gate and floating gate. Therefore, programming of non-volatile storage elements is efficient. Also, erasing the non-volatile storage elements may be efficient. In some embodiments, having a P− region near the tunnel oxide (as opposed to a strongly doped p-type semiconductor) may improve erase efficiency relative to P+.
US08503219B2 Programmable resistance memory with feedback control
A programmable resistance memory employs a feedback control circuit to regulate the programming current supplied to a selected programmable resistance memory element. The programmable resistance memory may be a phase change memory. The feedback control circuit monitors and controls the characteristics of a current pulse employed to program a memory cell.
US08503216B2 Resistance change type memory
According to one embodiment, a resistance change type memory includes a memory cell and a capacitor which are provided on a semiconductor substrate. The memory cell includes a resistance change type memory and a select transistor. The resistance change type storage element changes in resistance value in accordance with data to be stored. The select transistor includes a first semiconductor region provided in the semiconductor substrate, and a gate electrode facing the side surface of the first semiconductor region via a gate insulating film. The capacitor includes a second semiconductor region provided in the semiconductor substrate, a capacitor electrode facing the side surface of the second semiconductor region, and a first capacitor insulating film provided between the second semiconductor region and the capacitor electrode.
US08503215B2 Vertically stacked field programmable nonvolatile memory and method of fabrication
A memory cell is provided that includes a steering element, and a non-volatile state change element coupled in series with the steering element. The steering element and state change element are disposed in a vertically-oriented pillar. Other aspects are also provided.
US08503214B2 Semiconductor memory device
A semiconductor memory device provided with a new bit line hierarchization method that enables further reduction of power consumption is provided. The semiconductor memory device includes multiple memory blocks provided in a matrix configuration and multiple main bit lines provided in correspondence with the memory blocks. Each of the memory blocks includes: multiple memory cells provided in a matrix configuration; multiple sub bit lines provided on a column-by-column basis; multiple word lines provided with respect to each of columns and rows and common to multiple memory blocks; and a switch circuit that couples a corresponding main bit line to any of the sub bit lines. In the operation of reading a target cell as the target of read, a main bit line corresponding to the target cell is selected, a sub bit line corresponding to the column of the target cell is selected through the switch circuit; and a word line corresponding to the column and the row of the target cell is selected from among the word lines.
US08503212B2 Semiconductor memory apparatus with power-meshed structure
A semiconductor memory apparatus includes a plurality of banks each having a plurality of cell mats; a plurality of power lines disposed over predetermined portions of each of the plurality of banks; a column control region disposed adjacent to at least one of sides of each bank which are perpendicular to an extending direction of the power lines; and a conductive plate disposed over the column control region and electrically connected to the plurality of power lines.
US08503211B2 Configurable module and memory subsystem
A configurable memory subsystem includes a memory module with a circuit board having a first and a second memory-containing device (MCD) pair mounted thereto. Each MCD pair has a first MCD in communication with a second MCD. Each MCD has an input port, an output port, and a memory each communicating with a bridge. In response to a command, the bridge transfers at least one of a portion of a data packet from the input port to the output port or to the memory, or transfers a portion of a memory packet from the memory to the output port. A loop-back device receives the command and the data packet form the first MCD pair and transmits the command and data packet to the second MCD pair.
US08503210B2 Conditionally precharged dynamic content addressable memory
A conditionally precharged content addressable memory (CAM) includes forcing a mismatch on a matchline of the CAM if a data entry in the CAM is invalid. The matchline of the CAM is precharged only if the data entry is valid.
US08503208B2 Converter for single-phase and three-phase operation, D.C. voltage supply and battery charger
A Converter (1a.1c) for single-phase and three-phase Operation which comprises a three-phase rectifier to which three coils (La, Lb, Lc) are connected on the mains side is described. A first coil (La) is provided on the mains side with a switch (S) which connects the first coil (La) to the mains during three-phase Operation and connects it via a capacitor (C) either to the lower end (FP) of the rectifier or on the mains side to another coil (Lb, Lc) during single-phase Operation. In addition, a d.c. voltage supply and a battery charger (5a.5c) which comprise the Converter (1a.1c) according to the invention are described.
US08503206B2 Single-phase voltage source DC-AC power converter and three-phase voltage source DC-AC power converter
The present invention is a single-phase voltage source DC-AC power converter and a three-phase voltage source DC-AC power converter. Each of the single-phase voltage source DC-AC power converter and the three-phase voltage source DC-AC power converter includes a voltage source DC-AC power converting circuit that converts power from a DC voltage source into AC power to output the AC power from an AC terminal; and target current producing means that includes a filter voltage command device and a voltage controller, the filter voltage command device generating a filter voltage command value that becomes a reference of the AC power output from the AC terminal, the AC output voltage at the AC terminal being input as an input signal to the voltage controller, the voltage controller integrating a difference between the filter voltage command value from the filter voltage command device and the AC output voltage at the AC terminal, the target current producing means outputting a PWM command such that a DC component included in the AC output voltage at the AC terminal becomes zero.
US08503202B2 Modular voltage source converter
Voltage source converter based on a chain-link cell topology including one or more phases, each of the phases having one or more series-connected chain-link cell modules connected to each other. The output voltage of the voltage source converter is controlled by control signals applied to the series-connected chain-link cell modules. In case of failure of a chain-link cell module, that module is controlled, by the control signals, such that zero output voltage is provided at its output voltage AC terminal.
US08503199B1 AC/DC power converter with active rectification and input current shaping
An AC/DC power converter has an AC input and a DC output, with an input rectifier circuit coupled to the AC input. The input rectifier circuit includes a passive half-bridge rectifier circuit functional to provide passive rectification of an AC input power sign and at least one current shaper circuit. The current shaper circuit includes an input inductor coupled between the AC input and a switch node in the input active rectifier circuit. The input current shaper circuit is functional to shape an AC input current signal associated with an AC input power signal to a substantially sinusoidal current signal. A bulk capacitor circuit is coupled to the input active rectifier circuit. A DC/AC converter circuit is coupled to the bulk capacitor circuit. A resonant circuit is coupled to the DC/AC converter circuit and an output rectifier circuit may be coupled between the resonant circuit and the DC output.
US08503197B2 Power supply apparatus and image forming apparatus
The power supply apparatus for obtaining a direct current from an alternating voltage source includes a first DC/DC converter for outputting a first direct current and a second DC/DC converter for a second direct current lower than the first direct current from the first DC/DC converter, and the output voltage of the first DC/DC converter is changed to a lower direct current and the second DC/DC converter is driven in a continuously-conducting state.
US08503193B2 Open loop DC to DC converters with enable/disable circuits
Power supplies, power adapters, and related methods are disclosed. One example power supply includes an open loop DC to DC converter having an input for connecting to an input power source and an output for supplying a DC output voltage or current and an enable/disable circuit coupled to the open loop DC to DC converter. The enable/disable circuit is configured to enable and disable the open loop DC to DC converter as a function of the DC output voltage or current. One example method includes determining a DC output voltage or current from an open loop DC to DC converter and enabling and disabling the open loop DC to DC converter as a function of the determined DC output voltage or current.
US08503192B2 Electronic device with adhesive-less fixed flat cable
An electronic device includes an EMI shielding board, two electronic components and a flat cable. The EMI shielding board includes a first side and a second side opposite to the first side. The two electronic components are arranged at the first side of the EMI shielding board. The flat cable is connected between the two electronic components. The EMI shielding board further includes a first through slot and a second through slot both configured therein. The flat cable passes through the EMI shielding board via the first and second through slots. A part of the flat cable is on the first side of the EMI shielding board, and the remaining part of the flat cable is on the second side of the EMI shielding board.
US08503185B2 Bookmark memory stick
A bookmark memory stick includes a PC board, a flat, elongated insulative holder shell having a recessed accommodation portion accommodating the PC board and a retaining hole disposed near the top end thereof, a metal cover shell surrounding the insulative holder shell and a clip, which has a transverse locating base fitted into a locating notch at the top end of the insulative holder shell, a double-bevelled clamping plate obliquely downwardly extended from the front side of the transverse locating base toward the inside of the metal cover shell and stopped against a inverted T-plate of the insulative holder shell and then curved obliquely outwardly for clamping a sheet member on the inverted T-plate, a back plate extended from the back side of the transverse locating base and inserted into the inner top side of the metal cover shell, and a hook plate obliquely extended from the back plate and engaged into the retaining hole of the insulative holder shell.
US08503182B2 Electronic device storage tray
A desk-top storage solution for portable computing devices is formed as a storage tray. The storage tray has pockets sized to cradle individual portable computing devices. Each pocket includes a wire management system to enable an electrical connector to be provided within the pocket and secured relative to the pocket to enable the portable computing device to be quickly electrically connected to the storage tray. A USB hub is provided within the storage tray which interconnects with the electrical connectors and enables the portable computing devices to be charged while stored in the storage tray and also synchronized with an external computer while contained within the storage tray. The storage tray has a lid that is connected to the base by position control friction hinges which regulate the motion of the lid relative to the base during ascent/descent while the lid is moved between open and closed positions.
US08503180B2 Variable frequency drive system apparatus and method for reduced ground leakage current and transistor protection
As applications of variable frequency drives (VFD) (50) continue to grow so do challenges to provide VFD (50) systems meeting application specific requirements. For multiple reasons to include safety standards and electromagnetic interference, reduced ground leakage current is desirable. Building high output voltage VFDs (50) using transistors rated at voltages lower than the VFD output voltage is desireable for economic reasons. The apparatus and method described herein meet these challenges and others, in part by placing an electrically insulating plate (cp176) having high thermal conductivity, a low dielectric constant, and high dielectric strength between the heat sink plate of a VFD power semiconductor module and a grounded cooling plate (80 TE). The positive effects of this plate installation include reducing ground leakage current induced by system capacitances to ground upon high frequency voltage steps and increasing the effective dielectric strength of the VFD's (50) transistor modules engaging in high reliable VFD (50) voltage output for a given transistor rating.
US08503175B2 System and method for variable form handheld computer configurable via modular display screen
A variable form handheld computer may be configurable either as a short form handheld computer or as long form handheld computer. The variable form handheld computer comprises a variable form housing frame configurable as either a short form housing frame or a long form housing frame. The variable form housing frame comprises a plurality of handheld computing modules comprising a keyboard module, a circuitry module, a battery module and a variable form display screen. The variable form display screen is configurable either as a short form display screen or a long form display screen. The long form housing frame securely frames the handheld computing modules when the variable form display screen is configured as the long form display screen, and the short form housing frame securely frames the plurality of computing modules when the variable form display screen is configured as the short form display screen. The variable form handheld computer is configurable as the long form handheld computer using the long form housing frame, and is configurable as the short form handheld computer using the short form housing frame.
US08503171B2 Mounting apparatus for expansion cards
A mounting apparatus for mounting expansion cards to expansion slots set on a circuit board includes a bracket and a number of mounting members. The bracket includes two racks opposite to each other and fixed to the circuit board. A number of spaced bars extend from the mounting piece. Each mounting member includes a fixing plate fixed to a corresponding bar, a locking portion extending from a top of the fixing portion. Two parallel raised portions protrude on an inner surface of the fixing plate to sandwich a corresponding end of the corresponding expansion card. The locking portion abuts against the top of the corresponding expansion card.
US08503170B1 Waterproof and shockproof cover for a PAD computer
A waterproof and shockproof cover for a PAD computer is disclosed. The cover comprises an upper housing, a base housing, a glass, a first rubber ring, a second rubber ring and four shockproof elements. The base housing is corresponding to the upper housing, wherein the upper housing comprises a first connection and the base housing comprises a second connection corresponding to the first connection for fastening with each other. The upper housing comprises a viewing window hole and a first groove formed around the rim of the viewing hole, and the first rubber ring is disposed within the first groove. The glass covers the viewing window hole and the first rubber ring. The four shockproof elements disposed respectively at four corners of a rectangular accommodation space of the base housing for bearing the PAD computer.
US08503167B2 Solid electrolytic capacitor and manufacturing method thereof
The invention aims at providing a solid electrolytic capacitor having a high capacitance and a small equivalent series resistance (ESR) and a method for manufacturing the same. A solid electrolytic capacitor includes: an anode 1 made of a valve metal or an alloy thereof; a dielectric layer 2 provided on the surface of the anode 1; a first coupling agent layer 3 made of a coupling agent having a molecular structure in which at least two phosphonic acid groups are bonded via an alkyl group, the first coupling agent layer 3 being provided on the dielectric layer; a first conductive polymer layer 4 provided on the first coupling agent layer 3; and a cathode layer 11 provided on or above the first conductive polymer layer 4.
US08503159B2 Three-terminal metal-oxide-metal capacitor
A capacitor includes a first metal plate; a second metal plate in close proximity to the first metal plate; a third metal plate in close proximity to the first metal plate, and at least one dielectric layer interposed between the first, second and three vertical metal plates. The first, second and third metal plate are connected to three different terminals of an integrated circuit.
US08503156B2 Methods of processing semiconductor substrates, electrostatic carriers for retaining substrates for processing, and assemblies comprising electrostatic carriers having substrates electrostatically bonded thereto
A method of processing a substrate includes physically contacting an exposed conductive electrode of an electrostatic carrier with a conductor to electrostatically bond a substrate to the electrostatic carrier. The conductor is removed from physically contacting the exposed conductive electrode. Dielectric material is applied over the conductive electrode. The substrate is treated while it is electrostatically bonded to the electrostatic carrier. In one embodiment, a conductor is forced through dielectric material that is received over a conductive electrode of an electrostatic carrier to physically contact the conductor with the conductive electrode to electrostatically bond a substrate to the electrostatic carrier. After removing the conductor from the dielectric material, the substrate is treated while it is electrostatically bonded to the electrostatic carrier. Electrostatic carriers for retaining substrates for processing, and such assemblies, are also disclosed.
US08503146B1 Gate driver with short-circuit protection
According to one embodiment, a power supply system includes a switching device operable to be turned on and off for causing power to be delivered to a load. The switching device has a control terminal. Driver circuitry, coupled to the control terminal of the switching device, is operable to drive the switching device. The driver circuitry further operable to detect a fault condition in the power supply system. If the switching device is turned on when the fault condition is detected, the driver circuitry reduces the voltage at the control terminal of the switching device to a level just above the threshold voltage for the switching device, and holds the voltage at the control terminal to the level just above the threshold voltage for a controlled duration, thereby reducing the saturation current flowing through the switching device. The driver circuitry further reduces the voltage at the control terminal of the switching device after the controlled duration, thereby safely turning off the switching device.
US08503145B2 Fault protected current source for lighting element testing
A fault protected current source is provided that can be used to safely drive LEDs in reliability test systems. The current source is includes circuits and processes that detect the common faults found in LED reliability test systems. After a fault is detected, the current source shuts down drive before destructive spikes are produced. Because only true LED failures are counted, this fault protected current source can be used to construct reliability test systems that produce more accurate reliability test data.
US08503142B2 Method for selectively triggering circuit breakers in the event of a short circuit
A method is disclosed for selectively triggering circuit breakers in the event of a short circuit, wherein an upstream circuit breaker and at least one downstream circuit breaker on the output side are provided. In at least one embodiment, the upstream circuit breaker monitors as to whether the or one of the downstream circuit breakers is already in the process of opening the switch contacts thereof to interrupt the circuit on the output side, while forming a switch arc. In order to reliably determine whether a downstream circuit breaker is already in the process of opening, according to at least one embodiment of the invention the upstream circuit breaker, so as to detect a switch arc on the output side, checks whether the ohmic resistance of the short circuit loop produced by a short circuit has an exponential curve over time in that an exponent is continually computed and based on the computer exponent the switch arc is determined if the computed exponent exceeds a threshold.
US08503141B2 Transient voltage suppressor (TVS) with improved clamping voltage
This invention discloses an electronic device formed as an integrated circuit (IC) wherein the electronic device further includes a transient voltage suppressing (TVS) circuit for suppressing a transient voltage. The transient voltage suppressing (TVS) circuit includes a Zener diode connected between a ground terminal and a node for triggering a snapback circuit. In one embodiment, this node may be a Vcc terminal. The TVS device further includes a snapback circuit connected in parallel to the Zener diode for conducting a transient voltage current with a snapback current-voltage (I-V) characteristic upon turning on of the snapback circuit. And, the TVS device further includes a snapback suppressing circuit connected in series with the snapback circuit for conducting a current with an I-V characteristic complementary to the snapback-IV characteristic for clamping a snapback voltage.
US08503140B2 Bi-directional back-to-back stacked SCR for high-voltage pin ESD protection, methods of manufacture and design structures
Bi-directional back-to-back stacked SCRs for high-voltage pin ESD protection, methods of manufacture and design structures are provided. The device includes a symmetrical bi-directional back-to-back stacked silicon controlled rectifier (SCR). An anode of a first of the back-to-back stacked SCR is connected to an input. An anode of a second of the back-to-back stacked SCR is connected to ground. Cathodes of the first and second of the back-to-back stacked SCR are connected together. Each of the symmetrical bi-directional back-to-back SCRs include a pair of diodes directing current towards the cathodes which, upon application of a voltage, become reverse biased effectively and deactivating elements from one of the symmetrical bi-directional back-to-back SCRs while the diodes of another of the symmetrical bi-directional back-to-back SCRs direct current in the same direction as the reverse biased diodes.
US08503136B2 Protecting circuit and control circuit for reducing leakage current
A protecting circuit for reducing leakage currents comprises a first PMOS transistor (P-channel Metal-Oxide-Semiconductor Field-Effect Transistor), a second PMOS transistor, a first NMOS transistor (N-channel Metal-Oxide-Semiconductor Field-Effect Transistor), and a second NMOS transistor. The first PMOS transistor is coupled between a first voltage node and a node, and comprises a first gate coupled an input node. The second PMOS transistor is coupled between the node and an output node. The first NMOS transistor is coupled between the output node and a ground node, and comprises a third gate coupled to the input node. The second NMOS transistor is coupled between the input node and a second gate of the second PMOS transistor, and comprises a fourth gate coupled to a second voltage node.
US08503135B2 Magnetic sensor with enhanced magnetoresistance ratio
Various embodiments of the present invention are generally directed to a magnetically responsive lamination that may be constructed with a spacer layer disposed between a first and second ferromagnetic free layer. At least one ferromagnetic free layer can have a coupling sub-layer that enhances magnetoresistance ratio (MR) of the magnetically responsive lamination.
US08503128B2 Systems and methods for variable compensated fly height measurement
Various embodiments of the present invention provide systems and methods for determining fly height.
US08503127B2 Method and circuitry for programmably controlling degauss write current decay in hard disk drives
A control circuit to provide a control current to control an amplitude of a write current in a magnetic media drive. The control circuit has an output circuit for providing the control current with an amplitude dependent on a bias voltage. A bias current path provides the bias voltage to the output circuit, and a current diverting circuit is connected to divert current from the bias current path. A programmable ramp voltage generator operates in response to a degauss enable signal, and a voltage-to-current converter receives the programmable ramp voltage to control the current diverting circuit to divert current from the bias current path at a rate determined by the programmable ramp voltage. The bias voltage and the write current decay according to the programmable ramp voltage. The write current decay can be made linear and independent of a beginning write current amplitude.
US08503126B2 Magneto-elastic anisotropy assisted thin film structure
A method includes activating a stress-effecting layer of a thin film structure, having the stress effecting layer adjacent to a magnetic layer, to induce a magneto-elastic anisotropy in the magnetic layer.
US08503122B2 Light control film and multi-layer optical film stack
Film stacks and displays incorporating the same are described. More specifically film stacks that combine a light control film and a color shifting film proximate to one another and, in some embodiments, adhered together are described, as well as displays incorporating such film stacks. Such film stacks may combine the “blacking out” functionality of a conventional louver film (LCF) and the color shifting effect of a multilayer optical film (MOF).
US08503120B2 Voice coil motor and camera module having same
A voice coil motor includes a movable barrel and a spring plate. The movable barrel includes a top end and a number of locating members. Each locating member includes a locating post on the top end, and a blocking portion on the locating post. The spring plate includes a top surface, a bottom surface, and an inner frame. The spring plate defines a through hole passing through the top surface and the bottom surface. The inner frame surrounds the through hole. The inner frame defines a number of locating holes. Each locating hole receives a corresponding locating post. The spring plate is positioned between the blocking portions and the top end. The blocking portions lock the inner frame to the movable barrel. The inner surface of each locating hole defines spaced gaps. Each gap passes through the top and the bottom surfaces.
US08503116B2 Lens transferring device
Provided is a lens transferring device including a lens mounting member to which at least one lens is installed; a guiding member that guides movement of the lens mounting member; a driver that moves the lens mounting member and includes a lead screw; an operation member installation unit that is formed at an end of the lens mounting member; an operation member that includes a screw unit contacting the lead screw, an installation unit installed to the operation member installation unit, and a connection unit connecting the screw unit and the installation unit; and an elastic member including a first end that contacts the installation unit and a second end that contacts the operation member installation unit, wherein a first propping member that contacts a portion of the installation unit and prevents tilting of the operation member is formed on the operation member installation unit.
US08503114B2 Lens module with spacers
A lens module includes a lens barrel, a first lens, a second lens, a third lens, and two spacers. The lens barrel includes an object-side end and an image-side end. The first, second, and third lenses are received in the lens barrel and arranged in that order from the object-side to the image-side. One of the two spacers is positioned between the first lens and the second lens, and the other of the two spacers is positioned between the second lens and the third lens. Each of the spacers is chamfered to prevent the ingress of unwanted light.
US08503111B2 Imaging lens
Disclosed herein is an imaging lens suitable for a camera module using a high resolution imaging sensor, decreasing a flare phenomenon and reducing the sensitivity. The imaging lens comprises, in order from the object side, a first lens having positive (+) refractive force; a second lens having negative (−) refractive force; a third lens having positive (+) refractive force; a fourth lens having positive (+) refractive force; and a fifth lens having negative (−) refractive force, wherein an object side plane of the third lens is convexly formed.
US08503104B2 Motor having small size and high output, and light amount adjustment device equipped with the motor
A light amount adjustment device including a motor which can be reduced in size by reducing radial and axial dimensions and makes it possible to increase the motor output. The device has a stator of a motor drive mechanism formed integrally with a holding member fixed to a cam member with aperture blades and a rotary member for driving them sandwiched therebetween. A stator includes a support portion, and first and second magnetic pole portions. The first and second magnetic pole portions extend toward an outer periphery of the rotor and coils are inserted thereon from respective extending ends. The extending ends are disposed in a manner opposed to the outer periphery of the rotor. The two portions are disposed with an angle therebetween such that respective lines extending in the extending directions intersect with each other.
US08503099B2 Zoom lens system and optical apparatus using the same
Providing a zoom lens system being compact and simple having excellent optical performance suitable for an optical apparatus with a limited space for a zoom lens, and capable of shifting an image, and an optical apparatus equipped therewith. The system includes, in order from an object: a first group having positive power and an optical path bending element; a second group having negative power; a third group having positive power; and a fourth group having positive power. Upon zooming from a wide-angle end to a telephoto end, the first and third groups are fixed relative to an image plane, the second group and the fourth group are moved along the optical axis, an image on the image plane can be shifted by shifting the third group or a portion thereof substantially perpendicularly to the optical axis. The first group includes at least one negative lens, and satisfies a given condition.
US08503098B2 Zoom lens for projection and projection-type display apparatus
A zoom lens for projection includes a negative first lens group, a positive second lens group, a positive third lens group, and a positive fourth lens group, which are arranged from the magnification side of the zoom lens in the order mentioned above. The first lens group and the fourth lens group are fixed during zooming, but the second lens group and the third lens group move on optical axis Z of the zoom lens toward the magnification side, based on an operation for operating the zoom lens from wide end to tele end, in such a manner that a distance between the second lens group and the third lens group changes. Further, the following formula (1) is satisfied: 17
US08503095B2 Zoom lens system and image pickup apparatus including the same
A zoom lens system comprises, from an object side to an image side: a first lens unit; a second lens unit; a third lens unit; a fourth lens unit; and a fifth lens unit having positive refractive power, wherein: in zooming from a wide angle end to a telephoto end, the first, the second, the third, and the fourth lens units move so that an interval between the first and the second lens units is larger at the telephoto end than that at the wide angle end, an interval between the second and the third lens units is smaller at the telephoto end than that at the wide angle end, and a distance between the third and the fourth lens units varies; and a focal length of the first lens unit, and focal lengths of an entire system at the wide angle end and the telephoto end are appropriately set.
US08503094B2 Zoom lens, optical apparatus with the zoom lens, and method of manufacturing zoom lens
A zoom lens ZL, which is mounted on an electronic still camera 1 or the like, is composed of, in order from the object side, a first lens unit G1 having a positive refractive power, a second lens unit G2 having a negative refractive power, a third lens unit G3 having a positive refractive power, a fourth lens unit G4 having a negative refractive power, and a fifth lens unit G5 having a positive refractive power. The first lens unit G1 has, in order from the object side, a negative meniscus lens with a convex surface on the object side, and a positive lens, and the second lens unit G2 has, in order from the object side, a negative meniscus lens with a convex surface on the object side, a biconcave lens, and a positive lens. The zoom lens satisfies a condition of the following expression: 0.005<(−f2)×f3/(f12)<0.023, where f1, f2, and f3 are the respective focal lengths of the first, second, and third lens units G1, G2, and G3.
US08503093B2 Zoom lens, optical apparatus and method for manufacturing zoom lens
A zoom lens ZL comprising a first lens group G1 having negative refractive power, a second lens group G2 having positive refractive power, and a third lens group G3 having positive refractive power, wherein the first lens group G1 includes a first lens having negative refractive power and a second lens which is a plastic lens having positive refractive power, the second lens group G2 includes a third lens having positive refractive power, a fourth lens having positive refractive power and a fifth lens having negative refractive power, the third lens group G3 includes a sixth lens having positive refractive power, and the conditional expressions: 1.50<(−f1)/fw<2.52, 0.4<(−f1)/fL2 <0.8, n2×n2×ν2<77.0 are satisfied respectively.
US08503086B2 System and method for tracking and assessing movement skills in multidimensional space
Accurate simulation of sport to quantify and train performance constructs by employing sensing electronics for determining, in essentially real time, the player's three dimensional positional changes in three or more degrees of freedom (three dimensions); and computer controlled sport specific cuing that evokes or prompts sport specific responses from the player that are measured to provide meaningful indicia of performance. The sport specific cuing is characterized as a virtual opponent that is responsive to, and interactive with, the player in real time. The virtual opponent continually delivers and/or responds to stimuli to create realistic movement challenges for the player.
US08503085B2 Head-mounted display
A head-mounted display for forming a virtual image at a predetermined distance in front of a user includes: a left eye unit and a right eye unit, each eye unit having an image module for generating an image and an optical system disposed at a predetermined distance from the image module and towards the user's eyeball for forming a virtual image at a predetermined distance from the user by enlarging the generated image. A main body has both the left eye unit and the right eye connected thereto, wherein portions of the main body to which the left eye unit and the right eye unit are connected are each inclined to sustain a predetermined angle from the center of the main body. By utilizing a user's visual convergence so that a virtual image may be displayed at a target position, variation of a distance determination between users is reduced, and thus a viewing effect to the user of a virtual image being formed at a target position is obtained, thereby improving user satisfaction.
US08503083B2 Lens sheet for microlens and lenticular lens
A lens sheet for both a microlens and a lenticular lens includes a first lenticular lens layer having semicircular convex lenses which are arranged in parallel; a refraction control adhesive layer formed under the first lenticular lens layer; a second lenticular lens layer formed under the refraction control adhesive layer and having semicircular convex lenses which are arranged in parallel; a focal distance layer formed under the second lenticular lens layer; and a three-dimensional layer formed under the focal distance layer, wherein an extension direction of the semicircular convex lenses arranged in the first lenticular lens layer and an extension direction of the semicircular convex lenses arranged in the second lenticular lens layer are crossed with each other.
US08503078B2 Method and system for shaped glasses and viewing 3D images
Shaped glasses have curved surface lenses and spectrally complementary filters disposed on the curved surface lenses configured to compensate for wavelength shifts occurring due to viewing angles and other sources. The spectrally complementary filters include guard bands to prevent crosstalk between spectrally complementary portions of a 3D image viewed through the shaped glasses. In one embodiment, the spectrally complementary filters are disposed on the curved lenses with increasing layer thickness towards edges of the lenses. The projected complementary images may also be pre-shifted to compensate for subsequent wavelength shifts occurring while viewing the images.
US08503073B2 Light coupling device and system, and method for manufacturing the device and system
Embodiments of the disclosed technique disclose an optical device generating light by luminescence comprising a substrate, a waveguide, a pump light source and a photoluminescent layer, wherein the waveguide is positioned between the substrate and the photoluminescent layer, or the photoluminescent layer is positioned between the substrate and the waveguide. The pump light source is provided opposite to the photoluminescent layer at the backside of the substrate. The pump light source is adapted to pump the photoluminescent layer to emit light; and at least some of the emitted light is evanescently coupled into the waveguide.
US08503070B1 Fiber active path length synchronization
A method of implementing a high-power coherent laser beam combining system in which the output of a master oscillator laser having a linewidth broader than the Stimulated Brillouin Scattering linewidth of the laser signal is split into N signals and fed into an array of N optical fibers. This is a modification of the self-synchronous LOCSET and self-referenced LOCSET phase matching systems in which the optical path length of each optical fiber is matched to less than the signal coherence length of the master oscillator by using a path length matching signal processor to modulate temperature controlled segments of each optical fiber.
US08503068B2 Radiation source apparatus and DUV beam generation method
The present invention provides a radiation source apparatus which can generate a DUV radiation beam having a wavelength of 193.4 nm efficiently. The radiation source apparatus according to the invention has first wavelength conversion means arranged to receive a first laser beam of a first fundamental wavelength and to generate a fourth-harmonic wavelength of the first fundamental wavelength, second wavelength conversion means arranged to receive the beam of the fourth-harmonic wavelength of the first fundamental wavelength (266 nm) and a second laser beam of a second fundamental wavelength and to sum-frequency mix the fourth-harmonic with the second fundamental wavelength radiation to generate a beam of second DUV radiation having a wavelength between approximately 232 nm and 237 nm, and third wavelength conversion means arranged to receive the beam of second DUV radiation and the third laser beam of a third fundamental wavelength and to sum-frequency mix the second DUV radiation with the third fundamental wavelength radiation to generate third DUV radiation having a wavelength between approximately 192.5 nm and 194.5 nm.
US08503065B2 Electrophoretic display structure
An electrophoretic display structure includes a substrate, an activation layer, an electrophoretic display layer, a protective layer, a first sealant, and a second sealant. The activation layer is disposed on the substrate while the electrophoretic display layer is disposed on the activation layer. The electrophoretic display layer has a plurality of electrophoretic display elements and a waterproof layer disposed on the electrophoretic display elements. The protective layer is disposed on the electrophoretic display elements. The protective layer is disposed on the waterproof layer, and the first sealant is disposed between the activation layer and the protective layer to fill in the sides of the electrophoretic display layer. The second sealant covers the outer side of the first sealant and connects with the activation layer and the protective layer. The viscosity of the first sealant in liquid state is lower than the viscosity of the second sealant in liquid state.
US08503052B2 Security holograms
We describe techniques for recording a holographic image onto holographic recording film, in particular for security holograms. We thus describe a structure having a stack comprising the holographic recording film and a multichannel image generation device under the film. A three-dimensional object (or hologram of a 3D object) is provided, located under the multichannel image generation device. At least a portion of the multichannel image generation device is substantially transparent or absent in a region above the object. A holographic image is recorded in the film by illuminating the stack with laser light. The multichannel image generation device under the film may comprise a volume reflection hologram of a lenticularly generated image. The structure records a hologram of the 3D object in conjunction with a multi-channel holographic image.
US08503050B2 Image reading apparatus and image forming apparatus
An optical filter is provided on photoelectric conversion elements for monochrome reading. Each of a reflecting optical system and the optical filter has an end portion and a central portion in a predetermined direction. The optical filter suppresses light at a peak wavelength of a light source such that a difference between a sensitivity of optical path via the end portion of the reflecting optical system and the optical filter and a sensitivity of optical path via the central portion of the reflecting optical system and the optical filter fall within a range of 5% at the peak wavelength of light source.
US08503044B2 Angle detection device and image reading apparatus
An angle detection device includes a rotator including a shaft supported by and inside a case in a direction parallel to a horizontal plane of the case, a center of gravity positioned differently from the shaft, and a diagonal line formed on a surface along a circumferential direction around a rotation axis of the rotator, the line intersecting with a width direction orthogonal to the circumferential direction if the surface is spread into a plane along the circumferential direction; and a sensor including a group of imaging elements arrayed in a line parallel to the shaft direction. The sensor is fixed to and inside the case opposite to the surface. The group intersects with the diagonal line if the surface is viewed from the sensor toward the shaft, and a position of the intersection changes according to rotation of the case around the axis when viewed from the shaft.
US08503043B2 Upright image processing apparatus with cartridge holder portion and recording device between two feed pathways
An image processing apparatus comprises: an image reading portion which has a box-shaped first housing with a reading surface, and a scanning device displaceable along the reading surface in the first housing, and reads a first image on a document by relatively displacing the document and scanning device; and an image recording portion which includes a recording medium supply device accommodating a recording medium, a feeding mechanism feeding the recording medium fed out of the supply device, a recording device recording a second image on the recording medium, and a second housing incorporating at least the feeding mechanism and recording device. The apparatus is placed on a rest surface in a substantially upright position, and the reading portion is changeable in position between an upright position in which the reading surface is opposed to the recording portion, and a horizontal position in which the reading surface faces upward.
US08503042B2 Imaging system
An imaging station for processing a media includes a media output for outputting a processed media, a first media delivery station having a first media entrance, a second media delivery station having a second media entrance, and a passive urging device. The second media entrance has a width smaller than a width of the first media entrance. The second media entrance is positioned downstream from the media output and upstream from the first media entrance. The passive urging device is positioned downstream from the media output such that the media is urged towards the second media entrance.
US08503034B2 Image forming apparatus including halftone table having different dot regions and method of controlling the same
An image forming apparatus to connect a video controller to a laser scanning unit through a cable and the video controller includes a halftone table in order to perform a halftone process with respect to an original image. The halftone table includes a dot region having at least two shapes and a non-dot region.
US08503029B2 Print control terminal, image forming apparatus, print control method, and image forming method
A print control terminal including a user interface to receive a setting of a print command and print options of a document, a screen selection unit to select a halftone screen to be applied to the document, a transparency multiple number selection unit to select a transparency multiple number to correspond to the selected halftone screen, a print data generation unit to generate print data of the document according to the selected transparency multiple number, and a communication interface to transmit the generated print data and the print options to the image forming apparatus. A transparency multiple number is changed according to the characteristics of a halftone screen to improve quality of an output image.
US08503028B2 Image forming apparatus and image forming system
An image forming apparatus having an accepting unit; a printing unit, which performs a high-speed double-sided print processing operation to print an image on a second recording medium during a period between when a first side of a first recording medium is printed and when a second side of the first recording medium is printed; an adjustment unit, which performs an image quality adjustment; a determination unit that determines whether adjustment execution conditions will be fulfilled during performance of the high-speed double-sided print processing operation before the high-speed double-sided print processing operation is initiated; and a control unit, which controls the adjustment unit to perform the image quality adjustment before initiation of the high-speed double-sided print processing operation, when the determination unit determines that the adjustment execution conditions will be fulfilled.
US08503027B2 Method for angle-dependent color value correction
A method for registering color measured values on printing materials with a color sensor includes registering the color measured values on the printing materials at different angles of observation of the color sensor. The angular dependence of the color measured values registered on the printing materials at different angles of observation is corrected in a computer.
US08503026B2 Printing apparatus and printing control method
A printing method of printing an image corresponding to one frame by using inks of a plurality of colors applied to an ink ribbon allows a printing apparatus to print one image on continuous paper by using inks corresponding to a plurality of ink surfaces. When printing one print image by using a plurality of ink surfaces on an ink ribbon, the printing apparatus sets an area in the print image to be printed by one ink surface on the ink ribbon, by dividing the print image. The printing apparatus then prints one print image by using a plurality of ink surfaces on the ink ribbon based on the set area.
US08503024B2 Image processing apparatus and image processing method
An image processing apparatus is provided with an area sensor which is formed by arranging sensor components for a pixel in a two-dimensional array and is attached in an inclined manner with respect to a reference installation position. The apparatus has a sensor unit which reads, from the sensor components which are determined based on an inclination angle indicating an inclination of the area sensor from the reference installation position and have been arranged within the area sensor, image data in which the inclination has been corrected; an image obtaining unit which obtains a plurality of frames of image data having a shift of less than one pixel, by scanning an original document image once by the sensor unit; and a high resolution conversion unit which obtains image data with a resolution higher than resolutions of the sensor components by using the obtained image data to perform interpolation processing.
US08503019B2 Print document conversion apparatus and computer readable medium
A print document conversion apparatus includes plural software-based conversion units and a controller. The plural software-based conversion units perform a software-based conversion process for converting print document data described in a page description language into page image data having a bitmap image format. Each of the software-based conversion units requests a hardware-based image processing apparatus to execute specific image processing in the software-based conversion process, and generates the page image data including a result of the specific image processing in response to the request. The controller activates an additional software-based conversion unit that performs the software-based conversion process when there is a possibility that a state where at least one of the software-based conversion units waits for the hardware-based image processing apparatus to complete the image processing occurs. The controller controls the number of additional software-based conversion units not to exceed a predetermined upper limit.
US08503018B2 Image forming apparatus and method, and apparatus for setting operation conditions of functional unit
An image forming apparatus includes: an image forming unit forming an image on a medium based on image data; a first storage storing image forming conditions; an input device storing image forming conditions set by a user input setting the image forming conditions in the first storage; a second storage storing a history of input operations by the user; a registering device registering, if the history stored in the second storage satisfies a predetermined condition, the image forming conditions stored in the first storage as image forming conditions that can be called by a unique identifier; and a calling device, responsive to a user input designating an identifier, the corresponding image forming conditions from the registering device and storing in the first storage.
US08503016B2 System and method for providing environmental feedback to users of shared printers
Systems and methods are employed to quantify resource usage for review by a user. Marking engine data contains information related to a print job sent to the marking engine and community data relates to resource usage by members of a plurality of communities within a system. A resource profiling component receives the marking engine data and the community data to evaluate resource usage by a user compared to one or more of a user within their community. A visualization component receives the evaluation from the resource profiling component, generates a graphic associated with the evaluation and presents and distributes the graphic to one or more recipients.
US08503015B2 Multiproduct printing workflow system with dynamic cadence
A method and system for managing print jobs in a printing system, including assigning one or more printing resources including at least one printer to a print value stream, the print value stream capable of printing one or more parts from one or more print products, maintaining a prioritized queue of print jobs to be processed by the print value stream, dynamically updating a cadence rate that indicates the maximum number of print units to be printed by the print value stream during a specified period of time, and providing the print jobs from the prioritized queue in priority order to the print value stream at a rate so as not to exceed the cadence rate. The approach is related in principle to Takt Time or Taktzeit.
US08503003B2 Error notification method and apparatus
An image forming apparatus includes a determination unit configured to determine an abnormal state of the image forming apparatus, a storage unit configured to store information indicating a state of the image forming apparatus, and a plurality of output units configured to output the stored information by different output methods. The image forming apparatus also includes a display unit configured to display information regarding each of the plurality of output units, and a selection unit configured to select an output unit designated by a user using the displayed information. The image forming apparatus outputs the stored information using the selected output unit.
US08503000B2 Work processing apparatus receiving a process job from an order management apparatus controlling an order from an orderer
To keep track of which process each process job currently exits and when it comes in own charge or which job must be processed, it is necessary to use a workflow system on a PC, and this necessitates to move back and force between the PC and the apparatus, thereby leading to the deterioration of the operational efficiency. An object of the invention is to provide a system in which the apparatus and the workflow server are connected, and by moving forward the processing by using the operation unit of the apparatus, the workflow of the operator in the centralized copy room and the print center of the company can be smoothly moved forward.
US08502999B2 Image forming apparatus
An image forming apparatus to form an image on a recording medium is provided. The image forming apparatus includes a housing, an image forming unit, an image reader unit, an ejecting space to catch the recording medium, a pickup opening to expose the ejecting space, and a frame assembly to hold the image forming unit and the image reader unit. The housing includes an operation unit, which is configured to form an upper edge of the pickup opening. An enhancement member extending along a widthwise direction to bridge over the ejecting space is arranged in a lower position in the operation unit. The frame assembly includes a first support member and a second support member, which are arranged in widthwise ends of the ejecting space. The enhancement member is connected to the first support member and to the second support member at the widthwise ends thereof.
US08502996B2 Method and system for matching distributed users with distributed multi-function devices
A method and system for matching distributed users with distributed MFDs is disclosed, which incorporates a MFD cloud, a back end unit, and a client application. The MFD cloud is composed of a large number of geographically distributed MFDs and can be logically divided into a public cloud and a private cloud. The back end unit maintains a persistent state of each MFD associated with the MFD cloud. The client application permits the distributed users to submit a rendering job in association with a job criterion to the back end unit which responds with a sorted list of nearby available MFDs that meet the job criterion. The user can select a MFD from the list and turn-by-turn directions from a user's current location to the selected MFD can be provided for collecting the rendering job. The system data can be kept current by periodically sending a status associated with each MFD.
US08502994B2 Image forming apparatus and method of controlling printing job
A method of controlling a printing job of an image forming apparatus having an image forming unit. The method of controlling a printing job includes transforming scanned data into printable data, and determining a time to start driving the image forming unit according to the type of data scanned, starting driving the image forming unit at the determined start time, and printing the scanned data transformed into printable data. The time required to perform a printing job is thereby reduced, and scanned data can be output normally.
US08502993B2 Print data generating apparatus
A print data generating apparatus generates print data to be sent to a printing apparatus for printing image data. The print data generating apparatus includes an information storage unit for storing print guarantee area information of the printing apparatus, and an editing unit for editing the image data according to the print guarantee area information stored in the information storage unit. With the configuration, it is possible to generate an image data file according to the printing apparatus and print an image without imperfection.
US08502987B1 Method and apparatus for measuring near-angle scattering of mirror coatings
Disclosed herein is a method of determining the near angle scattering of a sample reflective surface comprising the steps of: a) splitting a beam of light having a coherence length of greater than or equal to about 2 meters into a sample beam and a reference beam; b) frequency shifting both the sample beam and the reference beam to produce a fixed beat frequency between the sample beam and the reference beam; c) directing the sample beam through a focusing lens and onto the sample reflective surface, d) reflecting the sample beam from the sample reflective surface through a detection restriction disposed on a movable stage; e) recombining the sample beam with the reference beam to form a recombined beam, followed by f) directing the recombined beam to a detector and performing heterodyne analysis on the recombined beam to measure the near-angle scattering of the sample reflective surface, wherein the position of the detection restriction relative to the sample beam is varied to occlude at least a portion of the sample beam to measure the near-angle scattering of the sample reflective surface. An apparatus according to the above method is also disclosed.
US08502985B2 Microfluidic systems
A microfluidic system includes a chip with a microfluidic channel opening onto a chip inlet and a chip outlet. The channel has a sensing area and fluid delivery area. A fluidic adaptor channel opening onto an adaptor inlet and an adaptor outlet can receive a pipette tip through the adaptor inlet wherein receipt of the pipette tip into the adaptor channel creates a direct fluid path between the pipette tip and the channel and wherein the microfluidic system is configured for sensing in the sensing area by interferometry.
US08502982B2 Flow cell and system for detection of target in aqueous environment using arrayed imaging reflectometry
A flow cell for use in an arrayed imaging reflectometry detection system is described herein. The flow cell includes: first and second members that are secured together to define a substantially fluid-tight chamber having an inlet and an outlet, at least the second member being light transmissive; and a chip having a substrate, one or more coating layers on the substrate, and one or more probe molecules tethered to the outermost coating layer, the chip being positioned with the outermost coating layer and the one or more probe molecules thereon exposed to fluid in the chamber and facing the second member, whereby light passing through the second member is reflected by the chip.
US08502980B2 Spectral characteristic measuring system, spectral characteristic measuring instrument, and data processing device
A spectral characteristic measuring system includes, a data processing apparatus, and a program, which correct an illumination light variation caused by a temperature rise in a semiconductor light-emitting element due to light emission or in a scanning type color measurement system, which sequentially measures color samples 1n and in which a semiconductor light-emitting element is used as a light source.Spectral distributions of illumination lights which are measured before and after the color sample is measured are interpolated, to estimate a spectral distribution of an illumination light at the time when a spectral distribution of the color sample is obtained. Spectral characteristics of the color sample are identified based on the spectral distribution of the reflected light or the transmitted light reflected by or transmitted through the color sample and the estimated spectral distribution.
US08502977B1 Angular resolved spectroscopic scatterometer
A spectroscopic system may include: a spectroscopic scatterometer; an angular-resolved spectrometer; and a fiber bundle having a two-dimensional input surface and a one-dimensional output surface.
US08502972B2 Clusters of microresonators for cavity mode optical sensing
A method for sensing a target object using optical mode excitations in microresonators, comprises: preparing at least one cluster including at least two microresonators; obtaining some first spectra of the cluster; adsorbing the target object on a surface of the cluster; obtaining some second spectra of the cluster; and sensing the target object by comparing a lineshape of the first spectra with a lineshape of the second spectra.
US08502971B2 Method for detecting single molecule
A method for detecting single molecule includes providing a carrier. The carrier includes a substrate and a metal layer. The substrate has a surface and defines a number of blind holes caved in the substrate from the surface thereof. The metal layer covers the surface of the substrate and inner surfaces of the number of blind holes. Single molecule samples are disposed on the metal layer. The single molecule samples are detected by a Raman Spectroscopy system.
US08502969B2 Miniature flow-through cuvette and spectrophotometer containing the same
A miniature flow-through cuvette for spectrophotometric measurement of a liquid sample includes a cuvette body of a transparent material including a first outer surface and an opposing second outer surface, and a flow channel disposed through the cuvette body. The flow channel includes first and second interface segments generally vertically oriented, each having an open exit; a measurement segment interconnecting the first and second interface segments; a first inclined planar inner surface disposed in a turning segment between the first interface segment and the measurement segment, facing the first outer surface; and a second inclined planar inner surface disposed in a turning segment between the second interface segment and the measurement segment, facing the second outer surface. The first and second inclined inner surfaces terminate the measurement segment at opposing ends thereof. Further provided is a spectrophotometer including the miniature flow-through cuvette.
US08502968B2 Surface scanning device
A surface scanning device for inspecting a product surface includes an illumination module and an image acquisition device. The illumination module is designed to illuminate the product surface with illumination of substantially uniform illuminance. The illumination module is also designed to configure a configurable range of angles of incidence of the illumination on the product surface. The image acquisition device images the illuminated area.
US08502966B2 Surface defect inspection method and apparatus
The present invention provides an apparatus and method which enable detecting a microscopic defect sensitively by efficiently collecting and detecting scattering light from a defect in a wider region without enlarging the apparatus. In the apparatus for inspecting a defect on a surface of a sample, including illumination means which irradiates a surface of a sample with laser, reflected light detection means which detects reflected light from the sample, and signal processing means which processes a detected signal and detecting a defect on the sample, the reflected light detection means is configured to include a scattering light detection unit which collects scattering light components of the reflected light from the sample by excluding specularly reflected light components by using an aspheric flannel lens and detecting the scattering light components.
US08502958B2 Positioning device, lithographic apparatus using same, and device manufacturing method
The present invention provides a positioning device for positioning a table, including a base, a motor that drives the table in the driving area on the base, a position sensor that detects the position of the table, and a control unit that controls the motor. The control unit includes a first output unit that outputs electric current for controlling the position of the table based on the output of the position sensor; a second output unit that outputs electric current for imparting a thrust force, which is directed toward the center of the driving area, to the table; and a switch unit that switches from a state in which the motor is controlled depending on the output of the first output unit to a state in which the motor is controlled depending on the output of the second output unit, based on a stopping signal for stopping the table.
US08502956B2 Exposure apparatus, mask plate and exposing method
An exposure apparatus comprises: a loading stage for supporting a substrate; a mask plate parallel to the loading stage and above the loading stage, the mask plate including a light transmitting region and a light absorbing region on its lower surface, a light reflecting region being provided in the light absorbing region; a lens device provided between the mask plate and the loading stage; a first illumination light source, light from which vertically striking on the upper surface of the mask plate from above, passing through the mask plate and striking on the loading stage via the lens device; a light reflecting device provided in the lens device; and a second illumination light source, light from which being reflected onto the lower surface of the mask plate by the light reflecting device located in the lens device, the light being reflected by the light reflecting region on the lower surface of the mask plate and striking on the loading stage via the lens device.
US08502954B2 Lithographic apparatus and device manufacturing method
A lithographic apparatus and method in which a system is used to emit a patterned beam. The patterned beam is projected onto a target portion of the surface of a substrate supported on a substrate support. The target portion has predetermined spatial characteristics relative to the substrate table that are appropriate for a desired exposure pattern on the surface of the substrate. The temperature of the substrate is measured, and the dimensional response of the substrate to the measured temperature is calculated. The spatial characteristics of the target portion relative to the substrate table are adjusted to compensate for the calculated dimensional response.
US08502953B2 Liquid crystal lens electrically driven and stereoscopic display device using the same
A liquid crystal lens electrically driven and stereoscopy display device using the same are disclosed, by which a thickness of a liquid crystal layer provided to the liquid crystal lens electrically driven is reduced in a manner of applying fresnel lens within a pitch anisotropically.
US08502952B2 Color cholesteric liquid crystal display devices and fabrication methods thereof
Color cholesteric liquid crystal display devices and fabrication methods thereof are provided. The color cholesteric liquid crystal display device includes a first substrate, a second substrate and a gap interposed therebetween. A patterned enclosed structure, formed by adhering a first patterned enclosed structure on the first substrate and a second patterned enclosed structure on the second substrate, is interposed between the first substrate and the second substrate, dividing a plurality of color sub-pixel channels. A plurality of the color cholesteric liquid crystals are respectively filled into each of the color sub-pixel channel, wherein the first patterned enclosed structure is tightly adhered to the second patterned enclosed structure so as to prevent mixing of the color cholesteric liquid crystals between adjacent color sub-pixel channels.
US08502950B2 Substrate for gate-in-panel (GIP) type liquid crystal display device and method for manufacturing the same
A substrate for a GIP type liquid crystal display device comprising MPS wires for inspecting lines after a cell array process is disclosed herein. The substrate comprises a mother substrate comprising a plurality of panel regions defined therein, each of the panel regions including an active area having a thin film transistor array formed therein, a dummy area and a non-display area, a plurality of TCPs disposed in the non-display area of the mother substrate; a GIP gate driver and signal lines to apply various signals to the GIP gate drivers, the GIP gate driver and signal lines being disposed in the dummy area; and a plurality of MPS wires extending from the non-display area of a first panel region to a non-display area opposite to a data pad of an adjacent panel region to inspect for defects of gate lines, data lines, common line, voltage line and the signal lines.
US08502945B2 Array substrate of fringe field switching mode liquid crystal display panel and method of manufacturing the same
An array substrate of a fringe field switching (FFS) mode liquid crystal display (LCD) panel and manufacturing method thereof are provided. The gate electrodes and the common electrode of the FFS mode LCD panel are formed on the array substrate by the same photolithographic process, and the common electrode, the gate lines and the gate electrodes are disposed on the same layer.
US08502943B2 Liquid crystal display device
A new type of liquid crystal display (LCD) device with improved high transmittance and wide-view-angle characteristics while without gray-level inversion at an inclined viewing angle is provided. The LCD device includes a first substrate with common electrodes, a second substrate with at least one pixel unit, a liquid crystal (LC) layer disposed between the first substrate and the second substrate, a first polarizer, and a second polarizer. The pixel unit has a pixel electrode, which is formed by at least one dense electrode area and at least one sparse electrode area. The LC molecules of the LC layer form a continuous-domain alignment after being driven by a voltage.
US08502939B2 Optical sheet
There is provided an optical sheet for use as a display device surface, which has a functional layer on at least one side of a base material and has a diffusion factor on the outer surface and/or interior of the functional layer, wherein the relationship represented by the following formula (I) is satisfied. 0.16
US08502938B2 Liquid crystal display device
A liquid crystal display device includes: a liquid crystal layer which contains a liquid crystal composition; a pair of substrates opposed to each other across the liquid crystal layer; alignment layers placed on liquid crystal layer sides of the pair of substrates, respectively; and polarization plates placed on opposite sides from the liquid crystal layer sides, respectively. The pair of substrates includes a thin-film transistor substrate including a thin-film transistor for controlling molecule alignment of the liquid crystal composition, and a color filter substrate including a color layer containing pixels of different colors. A blue pixel, which is one of the pixels of different colors, is larger in area than any of the pixels of other colors. A loss of light in a short-wavelength range is thus reduced.
US08502934B2 Light source unit, backlight unit and liquid crystal display having the same
A light source unit includes a substrate, a plurality of light emitting elements mounted on the substrate, a first inner wiring portion formed on the substrate and connected to the plurality of light emitting elements, and a second inner wiring portion formed on the substrate insulated from the first inner wiring portion. Two such light source units may be included in a backlight unit having a plurality of light emitting elements. A receiving member accommodates the first light source unit and the second light source unit, and a length of wires arranged along inside edges of the receiving member is reduced.
US08502929B2 Display apparatus and method for driving the same
A display apparatus and a method of driving the same are provided. The display apparatus includes a backlight module, a liquid crystal panel and a controller. The backlight module has a plurality of light emitting regions capable of emitting light individually. The liquid crystal panel is disposed at a side of the backlight module. The controller is electrically coupled to the backlight module and the liquid crystal panel. When the liquid crystal panel updates a left-eye image to a right-eye image row by row along a column-direction, the controller sequentially turns on and off the light emitting regions along the column-direction, such that a whole region of the liquid crystal panel lighted by light emitting region displays the left-eye image or the right-eye image.
US08502927B2 System and method for integrated timing control for an LCD display panel
A method of displaying an image. The method includes acts of receiving pixel data and pixel timing and control signals corresponding to the image, and formatting the pixel data based on a selected communication standard and a transmitter bit rate that corresponds to a number of pixel data bits to be transmitted each transmitter clock cycle. The method also includes an act of generating a clock signal based on the formatted pixel data, a bit rate of the selected communication standard, and the transmitter bit rate, the generated clock signal identifying a mapped bit rate at which the formatted pixel data is to be received by a television display during each cycle of the generated clock signal and which is different than the transmitter bit rate, and also includes the act of transmitting, at the transmitter bit rate, the formatted pixel data and the generated clock signal to the television display so that the formatted pixel data is received by the television display at the bit rate of the selected communication standard.
US08502924B2 Television signal receiver capable of cancelling linear and non-linear distortion
A television signal receiver comprises: a tuner, an optional IF conditioner, an IF distortion canceller, and an IF demodulator. The tuner selects one channel from a radio frequency television signal to generate an intermediate frequency signal. The IF conditioner outputs an IF conditioned signal. The IF distortion canceller cancels a signal distortion in the IF signal or the IF conditioned signal to generate an IF distortion-cancelled signal. The IF demodulator demodulates the IF distortion-cancelled signal to output a baseband signal.
US08502923B2 Method for switching a channel of an image display device and apparatus therefor
A method for switching a channel of an image display device and an apparatus adopting the method are disclosed. The method for switching a channel includes switching a currently displayed channel to a major channel, which is adjacent to the currently displayed channel, if a channel switch command is input using a first direction key, and switching the currently displayed channel to a minor channel, which is adjacent to the currently displayed channel, if a channel switch command is input using a second direction key. Accordingly, a user can switch to a desired channel, thereby increasing user convenience, and a list of minor channels pertaining to a current channel is displayed, so that all channels provided by the broadcasting station of the current channel can be identified.
US08502921B2 Digital broadcast receiver and digital broadcast reception method
The digital broadcast receiver according to the present invention includes: a signal separating section that separates a main audio signal and a video signal from a decoded digital broadcast signal, and when the decoded digital broadcast signal includes the sub-audio signal, further separates the sub-audio signal; an audio generating section that decodes the main audio signal to generate a decoded main audio signal, and decodes the sub-audio signal, when it has been further separated, to generate a decoded sub-audio signal; a video generating section that decodes the video signal to generate a decoded video signal; a detecting section that detects an input to the audio generating section of the separated sub-audio signal; and a control section that, when the detecting section has detected an input of the sub-audio, controls the video generating section to further generate a sub-audio image signal to display a sub-audio image indicating the presence of sub-audio.
US08502918B2 Method and apparatus for interdependently controlling audio/video signals
A signal control method of analyzing audio and video signals and interdependently enhancing each audio and video signal with regard to a multimedia input sequence including audio and video signal components are provided. The method of controlling audio and video signals includes: analyzing characteristics of components of the audio and video signals; interdependently modifying the audio signal and/or video signal according to the analyzed characteristics of components of the audio and video signals; and synchronizing the modified audio and video signals.
US08502916B2 Video signal processing method and apparatus
Disclosed herein is a video signal processing method and apparatus. In an embodiment of the present invention, video having a second screen size is generated from input video having a first screen size through Wavelet/Bicubic video interpolation, and a parallel Projection Onto Convex Sets (POCS) method is applied to the generated video having the second screen size. In this embodiment, the video having the second screen size, which is generated through Wavelet/Bicubic video interpolation, is used as an initial value for the POCS method, and a motion component estimated based on the video having the first screen size and the video having the second screen size obtained through the use of the POCS method is used as a correction value for the POCS method. Accordingly, HD-class video can be rapidly produced from SD-class video without image degradation.
US08502914B2 Circuit-substrate support structure and image-acquisition device
A circuit-substrate support structure includes a circuit substrate having electronic components mounted thereon, a first substrate-holding member provided at one side edge of the circuit substrate to hold the circuit substrate, a second substrate-holding member provided at the other side edge of the circuit substrate, opposite the one side edge, to hold the circuit substrate, and an elastic member provided together with the second substrate-holding member to hold the circuit substrate by applying elasticity in a surface direction of the circuit substrate.
US08502911B2 Image pickup apparatus, display and image processing apparatus
An image pickup apparatus includes: an image pickup lens; an image pickup device to obtain image pickup data; a microlens array on an image forming plane of the image pickup lens; and an image processing section producing an image based on the image pickup data. The microlens array includes microlenses each provided corresponding to pixels of the image pickup device. The image processing section includes a parallax image producing section and a resizing section. The parallax image producing section extracts pixel data from the image pickup data and synthesizes the pixel data to produce a plurality of parallax images. Each of the extracted pixel data corresponds to each of pixels located at the same position in image pickup regions of the image pickup device, each region corresponding to each microlens. The resizing section resizes each parallax image to change the resolutions thereof.
US08502909B2 Super light-field lens
Light field imaging systems, and in particular light field lenses that can be mated with a variety of conventional cameras (e.g., digital or photographic/film, image and video/movie cameras) to create light field imaging systems. Light field data collected by these light field imaging systems can then be used to produce 2D images, right eye/left eye 3D images, to refocus foreground images and/or background images together or separately (depth of field adjustments), and to move the camera angle, as well as to render and manipulate images using a computer graphics rendering engine and compositing tools.
US08502906B2 Image pickup lens, image pickup apparatus and mobile terminal
Provided is a small-sized five-element image pickup lens which ensures a sufficient lens speed of about F2 and exhibits various aberrations being excellently corrected. The image pickup lens is composed of, in order from the object side, a first lens with a positive refractive power, including a convex surface facing the object side; a second lens with a negative refractive power, including a concave surface facing the image side; a third lens with a positive or negative refractive power; a fourth lens with a positive refractive power, including a convex surface facing the image side; and a fifth lens with a negative refractive power, including a concave surface facing the image side. The image-side surface of the fifth lens has an aspheric shape, and includes an inflection point at a position excluding an intersection point with the optical axis.
US08502905B2 Solid-state imaging device
In one embodiment, a solid-state imaging device includes: an imaging optical system including: a first and second surfaces facing each other; a flat reflector provided on the first surface and having an aperture in an outer circumferential portion; and a plurality of reflectors provided on the second surface and located in a plurality of ring-like areas, each of the reflectors being inclined in a radial direction, the reflectors having different diameters from one another; and an imaging element module including: an imaging element including an imaging area having a plurality of pixel blocks each including a plurality of pixels, and receiving and converting light from the imaging optical system into image data; a visible light transmission substrate provided between the imaging optical system and the imaging element; a microlens array provided on a surface of the visible light transmission substrate on the imaging element side; and an image processing unit processing the image data obtained by the imaging element.
US08502903B2 Image processing apparatus, image processing method and program for superimposition display
There is provided an image processing device including a superimposition display position determining unit which determines a position of an object having a predetermined flat surface or curved surface out of an object imaged in an input image based on an environment map, a superimposition display image generating unit which generates a superimposition display image by setting superimposition display data at the position of the object determined by the superimposition display position determining unit, an image superimposing unit which superimposes the superimposition display image on a visual field of a user, an operating object recognizing unit which recognizes an operating object imaged in the input image, and a process executing unit which executes a process corresponding to an item selected based on a position of the operating object recognized by the operating object recognizing unit.
US08502899B2 Solid-state imaging device, imaging device, electronic equipment, A/D converter and A/D conversion method
In a reference signal comparison AD conversion scheme, a reference signal SLP_ADC and each of P and D phases of a pixel signal voltage Vx are compared. A count clock CKcnt1 is counted based on the comparison result. The counting result data is converted into signal data Dsig, i.e., the difference between the P and D phases, which is also subjected to CDS. At this time, the n-bit AD conversion is performed on each of the P and D phases of the pixel signal voltage Vx, followed by summation for digital integration. This prevents any possible detrimental effects that may be caused by summation in the analog domain. Although the signal data becomes W times greater, noise will likely become √W times greater. This alleviates the problem of random noise resulting from AD conversion such as quantizing noise and circuit noise that do not exist in the analog domain, thus reducing the noise.
US08502895B2 Variable exposure for color image sensor
A method of capturing an image of a scene using an image capture device having an array of pixels, wherein the array of pixels includes pixels of different colors, includes, for a first duration, capturing a first portion of the scene with a first plurality of the pixels of a first color, and for a second duration, capturing a second portion of the scene with a second plurality of the pixels of a second color. The first and second durations are different and the first and second durations are chosen, at least in part, to improve the signal to noise ratio of the image capture device.
US08502884B2 Image processing apparatus, image-capturing apparatus, and recording medium storing image processing program
An image processing apparatus can correct band-like unevenness due to flickering with a simple arrangement. For this purpose, the image processing apparatus includes a detecting unit which detects, in the image to be processed, a band-like unevenness occurring along a direction substantially perpendicular to the scanning direction of the imaging sensor included in the image-capturing apparatus used when performing image-capturing of the image, a calculating unit which calculates a correction amount to correct the band-like unevenness, and a correcting unit which corrects the band-like unevenness in the image based on the correction amount.
US08502882B2 Image pick-up apparatus, white balance setting method and recording medium
In an image pick-up apparatus 1, when an instruction of setting white balance is given by user's manual operation, a central region of a picked up image is set and further the central region of image is divided into plural regions of image. In each of the plural regions of image, RGB components are detected, and gain values of R and B components are calculated, which make these R and B components equivalent to G component. Further, when a variance of colors of the plural regions of image is less than a predetermined threshold value, it is determined that a picture is taken with a color pattern set at the center of viewing angle, an average of gain values set for the plural regions of image is calculated and the average is supplied to a gain controlling unit 41 to be applied to an image signal.
US08502879B2 Camera system and method for taking photographs that correspond to user preferences
A database of user preferences for a high quality picture is maintained. Preferences may be generated over time by tracking attributes of pictures that the user has deleted or failed to select for storage. When the camera is in preview mode, the camera may automatically capture image data for one or more pictures as a background operation. When the user commands the taking of a picture, the camera will capture image data for a user photo. A comparison may be made to determine which one of the automatically taken picture or the user photo has a higher correlation to user preferences for a quality photo. If the user photo has higher correlation, it may be retained in the customary manner for digital pictures. If the automatically taken photo has higher correlation, the user may be given the option to select the user photo or the automatically taken photo for retention.
US08502871B2 Gauge line position measuring device, program for measuring a gauge line position, and gauge line mark
A gauge line position measuring device measures a position of a gauge line provided on a test piece by a non-contact video method. The measuring device includes a gauge line mark adapted to be provided on the test piece and has the gauge line and a first continuous harmonious color density arranged line-symmetrically with respect to the gauge line, and a video camera for taking an image of the gauge line mark on the test piece and outputting gauge line mark image data. A calculation device calculates a gauge line position based on the gauge line mark image data.
US08502868B2 Intelligent camera selection and object tracking
Methods and systems for creating video from multiple sources utilize intelligence to designate the most relevant sources, facilitating their adjacent display and/or catenation of their video streams.
US08502862B2 Method and system for utilizing pre-existing image layers of a two-dimensional image to create a stereoscopic image
Implementations of the present invention involve methods and systems for converting a 2-D multimedia image to a 3-D multimedia image by utilizing a plurality of layers of the 2-D image. The layers may comprise one or more portions of the 2-D image and may be digitized and stored in a computer-readable database. The layers may be reproduced as a corresponding left eye and right eye version of the layer, including a pixel offset corresponding to a desired 3-D effect for each layer of the image. The combined left eye layers and right eye layers may form the composite right eye and composite left eye images for a single 3-D multimedia image. Further, this process may be applied to each frame of a animated feature film to convert the film from 2-D to 3-D.
US08502860B2 Electronic control system, electronic control unit and associated methodology of adapting 3D panoramic views of vehicle surroundings by predicting driver intent
An electronic control system, electronic control unit and an associated methodology for adapting three dimensional panoramic views of vehicle surroundings by predicting driver intent are provided. A plurality of cameras mounted on a vehicle generate images of a surrounding area of the vehicle. A visual sensor detects a three dimensional profile of an occupant of the vehicle. An electronic control unit generates a three dimensional panoramic view based on the images generated by the plurality of cameras, determines three dimensional locations and orientations of a plurality of body parts of the occupant of the vehicle based on the three dimensional profile detected by the visual sensor, and adapts the three dimensional panoramic view based on the determined three dimensional locations and orientations. A display unit displays the adapted three dimensional panoramic view.
US08502853B2 Single-pass imaging method with image data scrolling for improved resolution contrast and exposure extent
A method for generating an elongated concentrated scan image on an imaging surface of a scan structure (e.g., a drum cylinder) in an imaging (e.g., xerographic or lithographic) apparatus, wherein the imaging surface is caused to move in a cross-scan (process) direction. A spatial light modulator having a two-dimensional array of light modulating elements is used to modulate a two-dimensional light field in response to predetermined scan image data, and then the modulated light is anamorphically imaged and concentrated onto an elongated imaging region defined on the imaging surface. To avoid smearing, movement of the imaging surface is synchronized with the modulated states of the light modulating elements such that image features of the scan image are scrolled (moved in the cross-scan direction) at the same rate as the cross-scan movement of the imaging surface, whereby the features remain coincident with the same portion of the imaging surface.
US08502852B2 Surface emitting laser device, surface emitting laser array, optical scanning device, image forming apparatus, and method of manufacturing the surface emitting laser device
A surface emitting laser device includes a substrate and plural semiconductor layers laminated on the substrate, the plural semiconductor layers including a first semiconductor multi-layer film including aluminum (Al), an active layer, and a second semiconductor multi-layer film, a light emitting section having a mesa structure being formed on the first semiconductor multi-layer film. When viewed in a direction orthogonal to a surface of the substrate, an outer shape of the first semiconductor multi-layer film is a macroscopically smooth shape without an angular corner, and a side surface of the first semiconductor multi-layer film is coated with a passivation film and a protection film.
US08502851B2 Optical scanning apparatus and technique for correcting optical characteristics in an image forming apparatus that employs an electrostatic recording method or an electrophotographic recording method
An optical scanning apparatus controls an output of a light source for forming an electrostatic latent image on an image carrier. The optical scanning apparatus includes a correction amount control unit configured to variably control a light quantity correction amount of the light source according to a scanning position on the image carrier during one scanning operation with a beam generated from the light source, an output signal level changing unit configured to change a level of an output signal from the correction amount control unit, and a light quantity control unit configured to control a light quantity of the light source according to the scanning position based on a signal from the output signal level changing unit.
US08502844B1 System, method and computer program product for adjusting a display device viewing experience
A system, method, and computer program product are provided for adjusting a viewing experience associated with a display device. During use, a user interface capable of being used for adjusting the viewing experience associated with the display device is automatically displayed, in response to an event that potentially affects the viewing experience associated with the display device.
US08502841B2 Image display apparatus and method for controlling image display apparatus
An image display apparatus of the present invention includes: a display panel; a storage unit that stores a plurality of correction values which are used for correction processing for decreasing brightness variation; a correction unit; and a control unit, wherein the control unit divides the display panel into a plurality of sub-areas, calculates, for each sub-area, a select block gradation value, and executes, for each sub-area, a control to read correction values, which are used for calculating a correction value corresponding to the select block gradation value, out of the plurality of correction values, using the correction unit, and the correction unit calculates, for each sub-area, a correction value corresponding to the select block gradation value using the read correction values, and converts gradation values of video signals in the sub-area using the calculated correction value.
US08502836B2 Unified visual presenter
The present document relates to the presentation of visual data that is stored on a mobile communication device, in particular to the presentation of sequences of images such as slideshows that may further include animation sequences as well as static images. A method for displaying data includes: transferring visual data from a mobile communication device (100) to a rendering device (200) via a wireless communication link; transferring control data from the mobile communication device (100) to the rendering device (200); rendering the received visual data in the rendering device (200); and displaying the visual data, where the displaying of the visual data is controlled in accordance with the control data received from the mobile communication device (100).
US08502834B2 Representing a printed product using pixel opacity and color modification
An original design image is processed to create a modified design image for blending with an image of a product to create a combined image representing the result of printing the design image onto the product. To create a modified design image, both the alpha value and color of pixels in the original design image are modified. The modified alpha value and the modified color of a pixel are determined as a function of the amount of gray in the original color of the pixel. The modified pixel color is calculated by subtracting the level of gray in the original pixel color from each of the three original component color values and increasing any remaining color component values as a function of the modified alpha value of the pixel.
US08502833B2 Electronic apparatus with multiple screens and image displaying method thereof
An electronic apparatus with multiple screens and an image displaying method thereof are provided. The image displaying method is adapted to an electronic apparatus. The electronic apparatus includes a first display unit and a second display unit. The image displaying method includes following steps. By a processing module, a digital file is read, and a content of the digital file is displayed on the first display unit. Whether the content of the digital file includes at least one dynamic image is detected by the processing module. When the content of the digital file includes the at least one dynamic image, the at least one dynamic image is displayed on the second display unit by the processing module.
US08502832B2 Floating point texture filtering using unsigned linear interpolators and block normalizations
Apparatus and systems utilizing fixed point filtering to perform floating point texture filtering. A texture pipe unit consisting of a texture addressing unit, texture cache unit, and texture filter unit accepts texture requests for a specified pixel from a resource and returns formatted bilinear filtered results based on the specific pixel's corresponding four texels. The texture filtering unit consists of a pre-formatter module, interpolator module, accumulator module and a format module. The pre-formatter module accepts texel data in a floating point or fixed point format. However, if the data is in a floating point format the pre-formatter module converts the floating point data into a normalized fixed point data format whereby the interpolator module may perform its bilinear interpolator functions using standardized fixed point systems and apparatus without necessitating the use of floating point arithmetic units. A method utilizing fixed point filtering to perform floating point texture filtering is also presented.
US08502831B2 Video memory quality of service
Apparatus, methods, and systems are disclosed to manage memory in an embedded system. The system registers video applications and video sources with a memory manager. The memory manager in turn provides memory to the video applications and video sources. The system has an input to receive an output from at least one video source. The memory manager receives a frame from the video source and transfers the frame to memory. Once the frame is in memory the video application may work with the frame. All of these operations are conducted with the memory manager actively managing and allocating the memory resources.
US08502830B2 Image processing apparatus, image processing method, and storage medium
An image processing apparatus is configured to rasterize an object into a bitmap using a first memory and a second memory which can be accessed quicker than the first memory. The image processing apparatus includes an extraction unit configured to extract a plurality of objects to be rasterized on the second memory from a plurality of the objects, and a first combination unit configured to combine a plurality of objects which can be rasterized within capacity of the second memory from among the objects extracted by the extraction unit into an object.
US08502828B2 Utilization of a graphics processing unit based on production pipeline tasks
A method includes performing a task in response to a request of a secondary user interface of a secondary device. The method also includes calculating a utilization of a graphics processing unit of a machine based on the task performed by the graphics processing unit. The method further includes determining the utilization, through a processor, based on a comparison of a consumption of a computing resource of the graphics processing unit and a sum of the computing resource available. The method furthermore includes performing another task in response to the request of another secondary user interface of another secondary device. The method furthermore includes calculating another utilization of another graphics processing unit based on the another task performed by the another graphics processing unit. The method furthermore includes determining the another utilization based on the comparison of a consumption of the computing resource of the another graphics processing unit.
US08502826B2 Music-visualizer system and methods
A music visualization system and methods involving a central processing unit capable of converting waveform data to geometry data, a graphics processing unit capable of recognizing and accepting the geometry data and rendering a plurality of graphical images, a custom shader software program being operable on the graphics processing unit, an embeddable platform being in electronic communication with the graphics processing unit, and an audiovisual display device in electronic communication with the graphics processing unit and the embeddable platform.
US08502824B2 Method and display device for displaying characters
A method is used to control a liquid crystal panel to display a character having a tilted or curved stroke. The liquid crystal panel includes a plurality of original physical pixels arranged in a matrix array. The method includes dividing each original physical pixel into three color dots of red, green and blue, and forming a plurality of display units. Each display unit includes three horizontally consecutive color dots, and at least one of the plurality of display units includes color dots from two of the original physical pixels. The method includes constructing a clear lattice diagram including the plurality of display units for displaying the tilted or bended stroke, and driving the liquid crystal panel to display the character based on the clear lattice diagram. As such, in the clear lattice diagram, at least two of the display units are vertically adjacent to each other and are horizontally offset by one or two color dots with respect to each other.
US08502823B2 Method and system for lane graph visualization
A system and method for lane graph visualization are described. In various embodiments, a system includes modules to receive and display nodes in topological order. In various embodiments, the system determines a structure for nodes and sorts the data nodes. In various embodiments, a user interface is provided for displaying the lane graph visualization. In various embodiments, the user interface offers interactivity features responsive to user interface events. In various embodiments, a method for lane graph visualization is presented. The method includes receiving nodes in topological order and displaying the nodes in a lane graph visualization. In various embodiments, the method provides interactivity features for the lane graph visualization.
US08502822B2 Method and apparatus for visualizing and interactively manipulating profile data
Profile data collected through sampling is transformed and visually and interactively manipulated and displayed. In one scenario, the profile data is collected through statistical profiling of a program for a video game. The game program profile data is visually and interactively manipulated and displayed to visually present a dynamic behavior of the video game that shows correlation of impacts that the functions of the program have on the video game's performance. This allows the developer to identify inefficient sections of the program for optimization.
US08502820B2 Architectures for concurrent graphics processing operations
Ray tracing, and more generally, graphics operations taking place in a 3-D scene, involve a plurality of constituent graphics operations. Scheduling of graphics operations for concurrent execution on a computer may increase throughput. In aspects herein, constituent graphics operations are scheduled in groups, having members selected according to disclosed aspects. Processing for specific graphics operations in a group can be deferred if all the operations in the group cannot be further tested concurrently. Graphics operations that have been deferred are recombined into two or more different groups and ultimately complete processing, through a required number of iterations of such process. In one application, the performance of the graphics operations perform a search in which respective 1:1 matches between different types of geometric shapes involved in the 3-D scene are identified. For example, closest intersections between rays and scene geometry can be identified by processing scheduled according to disclosed aspects.
US08502811B2 Pixel driving device, light emitting device, driving/controlling method thereof, and electronic device
In a pixel driving device that drives a plurality of pixels, each of the plurality of pixels includes a light emitting element, and a pixel driving circuit comprising a driving device having one end of a current path connected to one end of the light emitting element and having another end of the current path to which a power-source voltage is applied. Provided in a controller is a correction-data obtaining function circuit that obtains a characteristic parameter including a threshold voltage of the driving device of each pixel based on a voltage value of each of a plurality of data lines connected to each of the plurality of pixels with a voltage of another end of the light emitting element being set to be a setting voltage. The setting voltage is a voltage set based on a voltage value of each data line at a predetermined timing.
US08502808B2 Image display apparatus
The present invention provides an active matrix image display apparatus including an organic EL element capable of efficiently arranging a wiring pattern on an insulating substrate compared to the related art. The present invention provides a dummy region arranged at the outermost periphery of a display unit as a scanning line coupling region or a pitch conversion region. A power supply scanning line is commonly used by a pixel circuit of an odd-numbered line and a pixel circuit of a following even-numbered line.
US08502805B2 Touch stylus for electronic device having retracted and extended positions
A touch stylus includes a stylus tube, a stylus holder, and a retracting mechanism. The stylus tube includes a tip integrally formed on one end thereof. The stylus holder is retractably coupled to the stylus tube by the retracting mechanism so the stylus holder can be extended out of the stylus tube to improve the convenience of use of the touch stylus or retracted to improve the portability of the touch stylus. The retracting mechanism includes a guiding track defined in the stylus holder and a fixing pin retractably engaged with the guiding track and fixed to the stylus tube so the stylus holder is retractably coupled to the stylus tube.
US08502797B2 Touch panel and portable device using the same
A gap between an upper transparent electrode base member (1) and a lower transparent electrode base member (2) is filled with a transparent adhesive layer (3) as a pressure-sensitive adhesive layer, to eliminate an air layer.
US08502794B2 Capacitive touch sensitive display with dummy pads and without rear shielding layer
The present invention provides a mutual capacitive multi-touch screen. The conductive strip pattern allows that, when a touch range of each external conductive object on the mutual capacitive multi-touch screen is larger than a predetermined condition, capacitive coupling between each external conductive object and first conductive strip is greater than capacitive coupling between each external conductive object and second conductive strip, such that the proportion of a driving signal flowing out of the first conductive strip via at least one first external conductive object in the external conductive objects and into the second conductive strip via at least one second external conductive object in the external conductive objects decreases as the number of second external conductive objects increases.
US08502792B2 Method and apparatus for providing haptic effects to a touch panel using magnetic devices
A touch panel assembly includes a touch-sensitive panel oriented along a plane. An actuator includes a frame having a first portion and a second portion at least partially oriented parallel to the plane. The first portion and the second portion are coupled together with a biasing element. A first magnetic device is coupled to the first portion. A second magnetic device is coupled to the second portion and positioned adjacent to the first magnetic device. The first magnetic device configured to move the first portion in a first direction parallel to the plane when energized by a current to cause a haptic effect to be felt on the touch sensitive panel. The biasing element applies a biasing force which causes the first portion to move in a second direction opposite to the first direction.
US08502789B2 Method for handling user input in an interactive input system, and interactive input system executing the method
An interactive input system comprises a display surface and processing structure communicating with the display surface. The processing structure presents on the display surface at least one graphic object, the graphic object having properties and a respective solution state comprising a value of at least one property. The processing structure in response to gesture input manipulates the value of the at least one property, and provides an indication as to whether the graphic object is in its solution state in response to the application of a predetermined amount of pressure against the display surface in association with the graphic object. A method and computer readable medium are also provided.
US08502787B2 System and method for differentiating between intended and unintended user input on a touchpad
A method and system for differentiating between intended user input and inadvertent or incidental contact with a touchpad is herein disclosed. When a user engages the touchpad, sensors on the touchpad are activated and generate touch sensor signals. Based on the pattern of engaged sensors, a hand pattern can be determined. From the hand pattern, a hand model may be retrieved. The hand model may indicate passive zones and active zones. Contact in the active zones may be considered intentional, while contact in the passive zones may be considered unintended or incidental. Moreover, a global shift may be calculated, and input from the active zones may be compensated for the global shift. The input from the active zones can then be used to control a graphical user interface.
US08502782B2 Electronic device for entering password
An electronic device includes an access control module, a plurality of input areas, and a comparing module. The access control module has a predetermined password. The input areas are configured to be tapped to input characters in the electronic device. The number of the input areas is determined by the number of unique characters of the predetermined password. The comparing module is configured to compare a sequence of the characters entered with the predetermined password.
US08502780B1 Head mount display and method for controlling the same
A Head Mount Display (HMD) and a method for controlling the HMD are disclosed. The method includes detecting an external device in an image captured by the HMD, recognizing at least one component from a first User Interface (UI) of the external device, the at least one component including a keypad or a window for outputting data corresponding to an input signal to the keypad, generating a second UI including the recognized at least one component, displaying the second UI in the HMD, wherein the at least one component of the first UI being displayed on the external device is overlaid with the displayed second UI using the image from which the external device is detected, and displaying data corresponding to an input signal currently received at the external device on the second UI in the HMD.
US08502776B2 Joystick controller
A joystick controller in two-dimensional and one-dimensional versions. The 2-D version employs a unitary sensor surface structure having eight surface-mounted or deposited strain gauges configured as two full bridges or four surface-mounted or deposited strain gauges configured as two half bridges, one for the X direction and one for the Y direction. This unique strain gauge layout design permits a new level of mechanical simplicity not heretofore available in joystick controllers. There are essentially no moving parts to wear out. An elongated post or lever is, in the preferred embodiment, mechanically coupled to the sensor surface structure by a pair of co-axial robust coil springs to provide a psychologically appealing physical motion of the lever during activation of the joystick controller. In the 1-D version, a rotatable cam element is positioned between parallel elongated leaf springs. The cam element is positioned at one end of the springs. The other end of the springs is mechanically coupled to a strain gauge layout which comprises a full bridge or half bridge sensor.
US08502774B2 Input apparatus, control apparatus, control system, control method, and handheld apparatus
To provide an input apparatus, a control apparatus, a control system, and a control method that are capable of restricting a movement of a pointer on a screen by a user operation even while the input apparatus is moving. In a state where a movement button is not pressed by a user, an MPU of an input apparatus is not outputting a movement command or is outputting a movement command with a displacement amount set to 0. In other words, even when the user holds the input apparatus and moves it, a pointer does not move on a screen. As a result, a movement of the pointer unintended by the user can be restricted. When the movement button is pressed, that is, when a first operation signal is input via a first switch, the MPU starts outputting the movement command. By receiving the movement command, an MPU of a control apparatus controls display of the pointer so as to start the movement of the pointer that corresponds to the movement command.
US08502773B2 Information processing apparatus and computer-readable recording medium recording information processing program
Motion information is obtained which is information about a motion applied to an input device housing itself including a pointing device of a plurality of input mean. Next, based on the motion information, a movement amount of the input device housing is calculated. Thereafter, it is determined whether or not the movement amount satisfies predetermined conditions. When the predetermined conditions are satisfied, a position is designated based on an output from the pointing device.
US08502770B2 Display device, controlling method and display system thereof
A display device is provided. The display device includes a command processing unit, a command converting unit, a universal serial bus (USB) interface and a display module. The command processing unit processes a remote-control command from a remote-controller. The command converting unit generates a human interface device (HID) command corresponding to the remote-control command. The USB interface outputs the HID command to an external host which generates an image in response to the HID command. Then the display module displays the image.
US08502768B2 Pulse-width modulation control for backlighting of a video display
A pulse-width modulated backlight control for a video display restarts the pulse-width modulated pulse train on occurrence of a video refresh pulse. In order to prevent an undesirable momentary increase in brightness in the event that the last pulse of the pre-refresh pulse train occurs too close to the first pulse of the post-refresh pulse train relative to the normal pulse interval, the width of the first pulse following refresh may be reduced from a first value determined by the desired brightness to a second value that bears the same proportion to the first value that the interval between the beginning of the previous pulse and the occurrence of the refresh pulse bore to the normal pulse interval. In that way, the duty cycle during the shortened pulse interval is the same as during a normal pulse interval, avoiding or minimizing perceptible increase in backlight brightness.
US08502767B2 Display apparatus and control method thereof
A display apparatus comprising a display unit and a plurality of light emitting diodes (LEDs) provided in a backlight that illuminates the display unit, the display apparatus includes: a power supplier; a current detector which detects a value of a current flowing in each of the LEDs; a current adjusting unit which compares a target current value which is supplied to the LED with a current value detected by the current detector and controls the value of the current flowing in the LED; and a controller which determines the target current value based on grayscale information of a video signal which is displayed on the display unit, provides the target current value to the current adjusting unit, and provides a virtual target current value that is higher than the target current value to the current adjusting unit for a predetermined time period if the target current value is determined.
US08502762B2 Image processing method and liquid-crystal display device using the same
This invention relates to an image processing method for improving the quality of an image to be displayed on a display device and to a liquid-crystal display device using the same, and aims at providing an image processing method for providing wide viewing angle and excellent tonal-intensity viewing angle characteristic and a liquid-crystal display device using the same. Combined together are a higher-luminance pixel to be driven higher in luminance than the luminance data of an image to be displayed and a lower-luminance pixel to be driven lower in luminance than the luminance data, to determine a luminance on the higher-luminance pixel and luminance on the lower-luminance pixel as well as an area ratio of the higher-luminance and lower-luminance pixels in a manner obtaining a luminance nearly equal to a desired luminance based on the luminance data.
US08502761B2 Transparent component with switchable reflecting elements, and devices including such component
The invention relates to a transparent component (100) comprising active members (10) that are juxtaposed in parallel to a surface of the component, and that are each switchable between a transparent state and a reflecting state. Each active member establishes a light path between a light passage opening and a side of the component when said active member is reflecting. An addressing system (2) further controls the switching of the active members so that a reduced number of active members is simultaneously reflecting. Therefore, an image formed by transparency through the component thus appears permanently and continuously. Such a transparent component can be used for making an image superimposition device and an image display and storage device.
US08502759B2 Light modulation element, driving method and drive apparatus
A method for driving a light modulation element includes: applying light to the light modulation element in accordance with an image to be displayed on the light modulation element while applying a DC voltage between a pair of electrode layers of the light modulation element; and applying a pulse voltage having an opposite polarity to the DC voltage applied so far between the pair of electrode layers with the light being applied, and terminating the applying of the light when the applying of the pulse voltage is terminated. The applying of the light, the applying of the pulse voltage and the terminating of the applying of the light are executed sequentially.
US08502753B2 Organic light emitting diode display
An organic light emitting diode display is disclosed. The display includes a first semitransparent electrode, an organic emissive layer placed on the first semitransparent electrode, a second semitransparent electrode placed on the organic emissive layer, and a first selective reflection layer placed on the second semitransparent electrode.
US08502750B2 Method for driving a plasma display panel with attenuation extimation and compensation and corresponding apparatus
The picture quality on a plasma display panel shall be improved when the contrast and/or the brightness are reduced. This is achieved by estimating the reduction of the dynamic occurring in the front-end of the data processing of the plasma display device and by compensating it in the back-end. Specifically, the gain and/or offset of the video input data are adjusted and the power level of the adjusted video data is measured. The resulting power level information is updated on the basis of an attenuation information. The updated power level is used for the power management and the level of the video data being reduced in the front-end is increased on the basis of the attenuation information. Thus, the dynamic of the video and, as a result, the picture quality are improved.
US08502747B2 Dipole antenna assembly
A dipole antenna assembly (100, 200) includes a dipole antenna (10, 30) and a feeding element (20, 40) connecting with the dipole antenna. The dipole antenna includes a radiation portion (12, 32), a ground portion (13, 33) and a circuit (14, 34). The feeding element includes a central conductor (21, 41) soldered on the radiation portion at a first position, and a shielding layer (23, 43) soldered on the ground portion at a second position. The circuit includes one end connecting with the radiation portion at the first position, and another end connecting with the ground position at the second position for impedance matching.
US08502740B2 Portable terminal
A portable terminal includes a first case having one or more side surfaces, and configured such that a part of the side surfaces is removed, and an antenna installed in the first case, and having a conductive radiator and a dielectric carrier for supporting the radiator, wherein the carrier includes a protrusion for filling the removed part of the first case, and the radiator is formed to be extending to the protrusion.
US08502739B2 Antenna arrangement
An antenna arrangement including a ground plane having an electrical length; an antenna element positioned for coupling with the ground plane; a first conductive element; an interconnecting mechanism, connected to the ground plane and to the first conductive element, having a first configuration and a second configuration, wherein the ground plane has a first electrical length when the interconnecting mechanism is in the first configuration and a second electrical length, different to the first electrical length, when the interconnecting mechanism is in the second configuration.
US08502738B2 Electronic device
An electronic device includes: a circuit substrate; and an antenna element installed on the circuit substrate, wherein the antenna element is installed at a position apart from an end of the circuit substrate by a given offset so that distribution variation of irradiation characteristics of the antenna element within a horizontal surface is reduced both in cases where the electronic device in which the antenna element is installed is set in portrait orientation and in landscape orientation.
US08502736B2 Electronic device having antenna
An electronic device includes a multi-layer circuit board, a main antenna, and an electronic element. The multi-layer circuit board includes an outer layer, a ground layer, and a plurality of vias defined therein electrically connected the outer layer and the ground layer. The main antenna is mounted on the outer layer and electrically connected to the ground layer by the vias. The electronic element is mounted on the outer layer, soldered on the main antenna, and electrically connected to the ground layer by the main antenna.
US08502735B1 Antenna system with integrated circuit package integrated radiators
An antenna system that includes one or more radiator packages on a first side of an antenna substrate and one or more support packages on a second side of the antenna substrate are provided. Embodiments of the present invention include antenna systems incorporating a plurality of radiator packages on a first side of the antenna substrate and a plurality of support packages on the second side of the antenna substrate. The radiator packages generally include a radiator element and an integrated circuit that are incorporated into a common package. The integrated circuit of the radiator package can comprise an amplifier and/or other electronic components. The support packages generally provide one or more additional electronic components. For example, a support package integrated circuit can provide a phase shifter, amplifier, and/or other electronic components. The antenna substrate generally incorporates electrical conductors for operatively interconnecting each radiator package to at least one support package.
US08502731B2 System and method for moving target detection
A system and method of detecting moving targets comprises transmitting electromagnetic waves rays from a plurality of transmitters at sequential; receiving reflected waves into a plurality of receivers after each transmission; the compilation of the reflected waves from the plurality of receivers for each transmission representing a data frame; forming a signal that monitors changes between the two sets of frames; at least one processor operating to process and compare frames; forming a difference image using a back-projection algorithm; scanning the difference image using a constant false alarm rate (CFAR) window; the CFAR window scanning the entire difference image and identifying a list of points of interest and eliminating the sidelobe artifacts present in the difference image thereby creating CFAR images; processing the CFAR images using morphological processing to create a morphological image; determining the number of clusters present in the morphological image; using K-means clustering to indicate the centroid of each cluster; and tracking using a Kalman filter. The system comprises a plurality of M transmitters, a plurality of receivers, and at least one memory, the transmitters operating in sequence to transmit electromagnetic waves rays sequentially; the receivers receiving reflected waves after each transmission; the compilation of the reflected waves from the plurality of receivers for each transmission representing a data frame; at least one processor operating to perform the method.
US08502728B2 Method and system for tracking objects using radio tomographic imaging
New systems and methodologies that use radio tomography for object tracking.
US08502727B2 Method of correcting reflectivity measurements and radar implementing this method
A method of correcting reflectivity measurements performed by a radar, such as a weather radar, includes a reflectivity measurement being associated with a resolution volume. The method includes acquiring the reflectivity measurement Zm corresponding to the current resolution volume, estimating the attenuation kc introduced by the cloud droplets, said estimating being carried out by using an average vertical profile of the cloud liquid water content, estimating the attenuation kg,O2 introduced by dioxygen, estimating the attenuation kg,H2O introduced by the water vapor, determining the total specific attenuation k of the non-detectable components taking into account the attenuation kc, the attenuation kg,O2 and the attenuation kg,H2O estimated in the preceding steps, and correcting the measured reflectivity taking into account the estimated total specific attenuation k. The method may be implemented by an onboard weather radar.
US08502726B2 System and method for suppressing radio frequency transmissions
A system and method for suppressing radio frequency (“RF”) transmissions includes a transmitter for transmitting electronic signals that suppresses (e.g., prevents, disrupts, jams, interferes with or otherwise disables) RF transmissions. Some embodiments of the invention include a transmitter that suppresses one or more signals transmitted from a target transmitter in an RF transmission system to a target receiver in a wireless device operating in the RF transmission system to prevent, disrupt, jam, interfere with or otherwise disable an RF transmission between the target transmitter and the target receiver in the wireless device (i.e., target wireless device). These systems and methods may be used to interrupt communication, command and control of non-friendly combatant. These systems and methods may also be used to suppress RF transmissions to prevent the detonation of improvised explosive devices, or IEDs.
US08502721B2 Apparatus and methods thereof for reducing energy consumption for PWM controlled integrated circuits in vehicles
An apparatus, protocol and methods for reducing vehicle energy consumption and for precise electronic event control, by implementing full CPU off-loading, using pulse-width modulation (PWM) with analog feedback diagnosis enabling real-time operation. Accordingly, analog feedback is used for external integrated circuits (IC) controlled by a PWM output, for processes to be analyzed. The apparatus includes a microprocessor that integrates an autonomous PWM module and an analog-to-digital converter (ADC) group manager, each including register modules for enabling analog-to-digital signal conversion comparisons of PWM feedback data, and generating of an interrupt command when required, and more specifically to automatically initiate transfer of data from the ADC to memory responsive of an interrupt trigger. As may be necessary the output of the ADC is calibrated or otherwise scaled to enable proper operation.
US08502720B1 Parallel digital to analog conversion with image suppression
A digital to analog conversion apparatus includes a plurality of gain/phase adjusters configured to receive a digital signal and to output a plurality of adjusted digital input signals, a plurality of digital to analog converters coupled to respective ones of the plurality of gain/phase adjusters and configured to receive the adjusted digital input signals and to generate respective analog signals representative of the adjusted digital input signals, a plurality of phase shift elements coupled to respective ones of the plurality of digital to analog converters and configured to shift the phases of the analog signals generated by the digital to analog converters, and a combiner coupled to the outputs of the plurality of digital to analog converters and configured to combine the respective phase-shifted analog signals to form an analog output signal.
US08502715B2 Signal processing system and self-calibration digital-to-analog converting method thereof
A signal processing system including a DAC, a comparing unit, and a control unit is provided. The DAC receives a digital input and generates an output voltage. The comparing unit receives the output voltage and compares the output voltage with a reference voltage to output an output value. The control unit receives the output value and accordingly generates the digital input in a manner of value mapping through firmware or software to calibrate the DAC. Furthermore, a self-calibration digital-to-analog converting method is also provided.
US08502703B2 System and method for assisting with safe driving, computer program for assisting with safe driving, storage medium upon which the computer program is stored, and Navigation Device
Disclosed is a system and method that offer improved assistance with safe driving using navigation devices, incorporating traffic regulations pertaining to route changes into guidance offered by the navigation devices. The system comprises a traffic regulations data memory (21), which associates, with roadways, data on traffic regulations pertaining to route changes, and stores the data so associated, an onboard vehicle locator (11), which locates the driver's vehicle upon the suggested route, a comparison unit (31), which compares the location of the driver's vehicle, as located by the onboard vehicle locator (11), with the traffic regulations data, and an output unit (40), which outputs, based on the determination made by the comparison unit (31), either information that driving regulations apply upon the road currently being traveled, as part of the suggested route, or that driving regulations apply upon roads ahead of the road currently being traveled, again, as part of the suggested route.
US08502700B2 Apparatus and method for pressurising an aircraft cabin structure and measuring the amount of leakage of the aircraft cabin structure
An apparatus for pressurizing an aircraft cabin structure and measuring the amount of leakage of the aircraft cabin structure comprises an air supply line which at a first end is connectable to a pressurized air source and which at a second end is connectable to the aircraft cabin structure so as to supply pressurized air from the pressurized air source into the aircraft cabin structure, an air supply valve disposed in the air supply fine, a pressure sensor for sensing the pressure inside the aircraft cabin structure and for providing signals indicative of the pressure inside the aircraft cabin structure, an air discharge line which at a first end is connectable to the aircraft cabin structure and which at a second end is connectable to an air discharge opening so as to discharge air from the inside of the cabin structure to the air discharge opening and an air discharge valve disposed in the air discharge line. An electronic control unit is adapted to control the air supply valve and the discharge valve in dependence on signals provided by the pressure sensor.
US08502697B2 Mid-block traffic detection and signal control
A method and system for a mid-block traffic detection and traffic signal control system is provided herein that is suited to monitoring heavy commercial vehicles such as trucks is provided. The method comprises detecting a vehicle and determining at least one pre-determined parameter of the vehicle. A traffic condition is evaluated based on the at least one pre-determined parameter. In response to the evaluation of the traffic condition, a traffic signal is controlled.
US08502696B2 Dual wellbore telemetry system and method
A method of signal processing includes providing at least a first pressure sensor and a second pressure sensor spaced in a drilling system and using an algorithm to separate the downwardly propagating waves from the upwardly propagating waves. In one or more examples, an algorithm may include determining a velocity of pressure signals in a wellbore, time-shifting and stacking pressure signals from at least the first pressure sensor and the second pressure sensor to determine a downwardly propagating noise signal, and subtracting the downwardly propagating noise signal from at least the signal from the first pressure sensor.
US08502694B2 Communication devices and methods for devices including generic indicators configurable for real-time announcement of received communication signals
Disclosed are communication devices and methods of communication devices including generic indicators and a user interface to configure the generic indicators so that a user can privately determine, in real-time, from whom a communication signal has been received and the type of communication signal received. A user may select contacts having communication addresses stored in a memory, particular types of communication signals and correlate them to generic indicators. When communication signals are received by the device that correspond to a selected communication address and a particular type of communication signal an announcement can be made by configured generic indicators. Once configured, when the device is in an indicator state, a device's ringer and/or vibrator may be disabled, particularly where such disturbances are unacceptable and a user nevertheless may be able to determine, according to the configured generic indicators from which contact a particular type of communication has been received.
US08502690B2 Printer, cash drawer drive device, control method for a cash drawer drive device, and a control program
A printer, a printer control method and control program, a POS terminal device, and a cash drawer drive device detect when a non-standard cash drawer is connected, and prevents a non-recoverable overcurrent protection device from operating (such as a fuse blowing) by preventing an overcurrent from flowing to the cash drawer. A printer 10 that can be connected to and drive a cash drawer 20 has a cash drawer drive circuit unit 12 that supplies drive current for driving a lock release coil 21 to open/close the cash drawer 20, a coil resistance detection unit 14 that detects the resistance of the lock release coil 21, and a drive switching unit 15 that connects the cash drawer drive circuit unit 12 or connects the coil resistance detection unit 14 to the lock release coil 21.
US08502689B2 System and method for voltage-based plasma excursion detection
The present invention provides a system and method for the detection of plasma excursions, such as arcs, micro-arcs, or other plasma instability, during plasma processing by directly monitoring direct current (DC) bias voltage on an RF power electrode of a plasma processing chamber. The monitored DC bias voltage is then passed through a succession of analog filters and amplifiers to provide a plasma excursion signal. The plasma excursion signal is compared to a preset value, and at points where the plasma excursion signal exceeds the preset value, an alarm signal is generated. The alarm signal is then fed back into a system controller so that an operator can be alerted and/or the processing system can be shut down. In certain embodiments, multiple processing regions can be monitored by a single detection control unit.
US08502680B2 Hand hygiene compliance monitoring
A system and associated processes monitor hand hygiene compliance. The system includes hand hygiene product dispensers positioned within areas of concern (AOC) in a facility in which hand hygiene events are to be monitored. The dispensers detect dispense events initiated at the dispenser and transmit a dispense event signal indicative that a dispense event occurred along with dispenser identification information. The system also includes a plurality of compliance badges, each worn by a different person in the facility. Each compliance badge receives dispense event signals corresponding dispenser identification information associated with dispense events initiated by the wearer of the compliance badge. The badges store dispense event records associated with each dispense event initiated by the wearer and thus keep track of all dispense events initiated by the wearer of the compliance badge. One or more data gathering stations positioned at various locations through the facility receive the dispense event information from the individual badges when they come within range. The dispense event information may then be transferred to a local or remote computer for analysis and reporting on hand hygiene events taking place within the facility.
US08502679B2 Noninvasive motion and respiration monitoring system
A non-invasive motion and respiration monitor receives impulses from a subject's movement, heartbeat, and respiration. The raw signal is biased and digitized, and a signal processor applies a Fast Fourier Transform to the signal. The transformed signal is filtered to isolate the component representing heart rate from the component representing respiration. An Inverse Fast Fourier Transform is then applied to the component signals, which are sent to a processor. The processor is programmed to detect irregularities in the respiration and heart rate. If severe irregularities or complete cessation is detected in either signal, a mechanical stimulator is actuated to try to stimulate the subject, and an alarm is sounded to alert a caregiver such as a parent or nurse.
US08502678B2 Electromagnetic enhancement and decoupling
Apparatus and methods for providing a substantially surface independent tagging system are disclosed. A resonant dielectric cavity is defined between upper and lower conducting layers, and closed at one end by a conducting base portion. Incident radiation couples into the cavity and is resonantly enhanced. An electronic device or tag paced at the edge of the cavity experiences a high electric field strength on account of this enhancement and is driven into operation.
US08502676B2 PLD package with coordinated RFID tag
A RFID tag programmed with a distinct binary code is embedded in an IC and is electrically integrated with the IC so as to establish a communication path between the RFID tag and the IC. An electronic ID for the IC is defined and coordinated to match with the binary code of the tag. The electronic ID is an active ID that is used to communicate the unique identification information of the IC to other wired electronic components.
US08502674B1 Monitoring the location of an object using a mobile device
A method, system, and medium are provided for monitoring a location of an object using a mobile device, including emitting from the mobile device a radio frequency (RF) signal that activates a radio frequency identifier tag (“RFID tag”) located within a broadcast area (the RFID tag being affixed to the object); receiving at the mobile device an RF signal generated by the RFID tag; determining that the RFID tag is registered among a set of RFID tags that are to be tracked; determining that the RFID tag is not located within the broadcast area; and emitting by way of the mobile device an alert that indicates that the RFID tag is not located within the broadcast area.
US08502671B2 Item dispenser and tracker
An item tracking apparatus includes a tag interrogator that transmits an interrogation signal and receives a signal emitted by a tag affixed to an item in response to the tag receiving the interrogation signal, wherein the tag and item are part of a bio-compatible consumable dosage delivery unit and a controller that determines a state of the item based on the received signal. A consumable dosage delivery unit includes a dosage form and a bio-compatible wireless communications tag.
US08502661B2 Container tracking
A container tracking system comprising a mobile unit configured to be coupled to a container to be tracked and to communicate with a remote control unit through of a communication system. The mobile unit comprising a positioning module, an alarm module adapted to detect alarm conditions related to said container, and a communication module generating a tracking signal containing positioning data of the mobile unit and/or alarm information associated with one or more alarm conditions related to the container. Furthermore, the mobile unit is configured to evolve to a temporary deactivation state whenever a communication unavailability condition of the tracking signal through the communication system occurs.
US08502658B2 Security implemented with a communication device
A security system implemented with a communication device includes a remote communication device, a local communication device, a main controller and at least one main sensor. The remote communication device and local communication device are connected via communication connection. Each main sensor detects status of a monitoring location. When each main sensor is triggered, each main sensor sends an output signal to the main controller. The main controller collects and processes each output signal, and transmits the processed output signals to the local communication device. The local communication device transforms receives output signals into a text warning message. The text warning message transmits to remote communication device via Short Message Service whereby a user is informed of the status occurred in a remote monitoring location.
US08502657B2 User customizable monitoring system
Embodiments of the disclosed invention provide a user customizable monitoring system. For example, in one embodiment, the user customizable monitoring system includes a set of user-programmable portable sensors and a communication hub for enabling a user to customize features associated with the set of user-programmable portable sensors. In one embodiment, the communication hub is further configured to receive data from the set of user programmable portable sensors and perform a user specified action based on the received data. In some embodiments, a user selects any desired combination of different types of user-programmable portable sensors that come preconfigured to operate with the communication hub. Additionally, in some embodiments, a user may configure particular parameters associated with a user-programmable portable sensor using the communication hub.
US08502654B2 Vehicle information display and method
An information display system includes an information display that communicates relevant information relating to the operation of a vehicle. The information display conveys a score representing lifetime or long-term driving or operating efficiency of the vehicle. The score can be conveyed numerically or graphically using a number of indicators, or both. Each indicator may correspond to a different achievement level attained for efficient driving or vehicle use behavior.
US08502651B2 Interactive touch screen gaming metaphors with haptic feedback
A game is provided on one or more portable computing device in which a virtual object travels through views of the game displayed on the interfaces of the one or more portable computing devices. Haptic effects corresponding to the travel of the virtual object through the views are provided on the individual portable computing devices. The haptic effects may be determined based on one or more parameters of the travel of the virtual object, one or more parameters of objects and/or features with which the virtual object interacts, and/or other parameters. The haptic effects may include haptic effects to be provided on portable computing devices that are not currently displaying the virtual object corresponding to the haptic effects.
US08502650B2 Temporary non-responsive state for RFID tags
A radio frequency identification (RFID) tag may have a non-responsive mode, triggered by a command from an RFID reader, that temporarily prevents the RFID tag from responding to a query from any RFID reader for a period of time. In some embodiments this non-responsive mode may automatically end after a certain period of time without further action by the RFID reader. In other embodiments this non-responsive mode may end when directed to by another command addressed specifically to the RFID tag.
US08502649B2 Systems and methods for conveying information using a control signal referenced to alternating current (AC) power
Systems and methods convey information from a controller to at least one slave unit using a single wire referenced to an alternating current (AC) power supply. A control signal has a high voltage and a low voltage. The high voltage is greater than a voltage midpoint of the AC power supply and the low voltage is less than the voltage midpoint. The control signal is conveyed through the single wire to each of the at least one slave unit. At each slave unit, a comparison voltage, representative of the voltage midpoint, is generated by dividing substantially midway the potentials between the power lines of the AC power supply and the control signal is compared to the comparison voltage to determine low and high states of the control signal; the low and high states represent the information.
US08502648B2 Remote-control device with directional audio system
A method of directing an audio signal to an intended user by a remote-control device coupled to an audio/video device is described. The remote-control device sends an instruction to the audio/video device to transmit an audio signal. The remote-control device receives the audio signal and processes the audio signal to generate a directional audio. The directional audio is then routed to an intended user such that the directional audio signal is audible to the intended user, but not to other recipients in the vicinity.
US08502644B1 Physical item security: tracking device activation
Embodiments of the present invention relate to systems and methods for tracking an item by concealing a tracking device in the item and activating the tracking device when the item is relocated or accessed without authorization. In particular, according to some embodiments, a system is provided for tracking the geographic location of a physical item that is stored in a controlled area and then later removed from the controlled area. An exemplary system comprises: an inner sensor located proximate to a perimeter of the controlled area; an outer sensor located between the perimeter and the inner sensor; and a tracking device associated with the physical item, wherein the tracking device is triggered when the physical item passes by the inner sensor and then the outer sensor.
US08502641B2 Rate-of-change switches and controllable apparatus
A switching function is performed in response to a predetermined rate-of-change of an output signal, thereby providing rate-of-change switching. Rate-of-change switches (63 and 154) each include a user-controlled transducer (38A, 38B, or 39), a differentiator (40A, 40B, 112, or 156), and a discriminator (42, 114, 134, 160, or 162). The rate-of-change switches (63 and 154) perform at least one switching function when an output from the differentiator (40A, 40B, 112, or 156) or a second differentiator (158) exceeds an allowable magnitude. The rate-of-change switches (63 and 154) may be used to control a timed-opportunity switch (26 or 172), a conveyance, such as a wheelchair (12), and such functions as extending and retracting leg supports, and/or an environmental control unit (14 or 174). The rate-of-change switches (63 or 154) may be attached to a body member (18, 64, or 67) and be actuated by body-member gestures.
US08502637B2 Surge protective device with thermal decoupler and arc suppression
A device may include a metal-oxide varistor (MOV), wherein the MOV increases in temperature as a voltage applied across the MOV exceeds a rated voltage. The device may include a first conductor contacting the MOV and a second conductor contacting the MOV. The second conductor may be configured to disconnect from the MOV when the MOV reaches a threshold temperature. The device may include an enclosure to surround the MOV, the first conductor, and the second conductor, wherein the enclosure includes a non-conductive fluid to suppress arcing.
US08502632B2 Transformer, power converter, lighting device, lighting device for vehicle, and vehicle using the same
A transformer in this invention comprises substrates constructing a primary winding, substrates constructing the secondary winding, and a core member disposed around the substrates. The substrates defining the primary winding are provided with insertion holes for passing a middle leg portion of the core member, and patterned conductors having one turn. The transformer further comprises an interlayer connection member. The interlayer connection member is located inwardly of the patterned conductors of the substrates defining the primary winding. The interlayer connection member is located on the same side of the patterned conductors defining the primary winding. The interlayer connection member is configured to establish the electrical connection of the patterned conductors defining the primary winding.
US08502625B2 Surface acoustic wave resonator and surface acoustic wave oscillator
A surface acoustic wave resonator includes: an IDT which is disposed on a quartz crystal substrate with an Euler angle of (−1.5°≦φ≦1.5°, 117°≦θ≦142°, 41.9°≦|ψ|≦49.57°) and which excites a surface acoustic wave in an upper mode of a stop band; and an inter-electrode-finger groove formed by recessing the quartz crystal substrate between electrode fingers of the IDT, wherein the following expression: 0.01λ≦G where λ represents a wavelength of the surface acoustic wave and G represents a depth of the inter-electrode-finger groove, is satisfied and when a line occupancy of the IDT is η, the depth of the inter-electrode-finger groove G and the line occupancy η are set to satisfy the following expression: −2.5×G/λ+0.675≦η≦−2.5×G/λ+0.775.
US08502624B2 Thermocompensated mechanical resonator
The invention relates to a thermocompensated mechanical resonator including a strip whose core, which is of polygonal section, includes single crystal silicon. According to the invention, one or a number of faces of the core has a coating for making the resonator less sensitive to temperature variations. The invention concerns the field of timepieces.
US08502622B2 Apparatus and methods for phase tuning adjustment of signals
Apparatus and methods for tuning the phase of a signal communicated by an electrical conductor by adjustably varying a spacing between the electrical conductor and at least a portion of an electrically conductive ground plane that is disposed in spaced relationship with the electrical conductor.
US08502618B2 Measurement and control of electromagnetic interference
The average EMR emissions of an electronic device may be reduced by implementing an electrically-active modulated termination. For example, the impedance may be continuously varied at one or more termination locations between two metal substructures to cause a like variation in the amplitude of each component of the EMR. According to one approach, cyclically varying the electrical impedance with a period of less than the time interval over which the EMR is measured will result in a reduction in the average measured EMR.
US08502616B2 Composite electronic module
In a composite electronic module, electronic components including magnetic substances are mounted on a substrate such that lines of magnetic force generated by a permanent magnet of a non-reciprocal circuit element are concentrated to the non-reciprocal circuit element side. Therefore, even when a metal yoke is omitted, for example, it is possible to reduce the number of lines of magnetic force generated by the permanent magnet and which leak to the outside of the substrate, and hence to significantly reduce and prevent the influence of a magnetic field generated by the permanent magnet upon other electronic components that are arranged near or adjacent to the composite electronic module around the substrate.
US08502610B2 Cascaded local oscillator synthesizer
A representative integrated circuit comprises a clock signal generator that generates a clock signal, a code pattern generator that generates digital pattern data based on the clock signal, and multiple traversal local oscillator synthesizers that are coupled in a cascaded configuration. Each traversal local oscillator synthesizer includes a transversal digital-to-analog conversion (T-DAC) unit that includes a plurality of registers and a unary modulator (Umod) array. The T-DAC provides frequency selection ranges covering wide operational bands based on the digital pattern data and the clock signal.
US08502609B2 Reference-less frequency detector
Embodiments provide a reference-less frequency detector that overcomes the “dead zone” problem of conventional circuits. In particular, the frequency detector is able to accurately resolve the polarity of the frequency difference between the VCO clock signal and the data signal, irrespective of the magnitude of the frequency difference and the presence of VCO clock jitter and/or ISI on the data signal.
US08502607B2 Leakage current reduction in a power regulator
A regulator with decreased leakage and low loss for a power amplifier is described. Switching circuitry is used to connect the regulator input bias to a bias control voltage when the power amplifier is to be operated in an on condition or to a voltage generator when the power amplifier is to be operated in an off condition.
US08502604B2 Layout method for differential amplifier and layout using the same
A differential amplifier layout includes a current mirror having a first transistor, a second transistor, and a third transistor. The current mirror receives a first power supply through the first transistor. The second transistor is part of a reference current branch and the third transistor is part of a mirror current branch. The first transistor comprises a first group of fingers disposed adjacent one side of the second transistor and a second group of fingers disposed adjacent one side of the third transistor.
US08502603B2 Output common mode voltage stabilizer over large common mode input range in a high speed differential amplifier
A circuit includes a differential amplifier having a folded cascode architecture with a pair of cascode transistors. A sensing circuit senses a common mode input voltage of a differential input signal applied to the differential amplifier. A bias generator circuit generates a bias voltage for application to the pair of cascode transistors in the folded cascode architecture. The bias generator circuit is connected to an output of the sensing circuit such that the generated bias voltage has a value which is dependent on the sensed common mode input voltage. This dependence stabilizes a common mode output voltage from the differential amplifier in response to changes in the common mode input voltage.
US08502602B2 Class-D amplifier circuit
A class-D amplifier circuit includes an amplifier that generates pulse-width modulated output signals according to input signals which have phases reverse to each other and are supplied to a first input end and a second input end, a first transistor interposed between a first input path extending from the first input end to the amplifier and a second input path extending from the second input end to the amplifier, and a voltage applying circuit that applies a control voltage corresponding to a predetermined value to a control terminal of the first transistor so that a current flowing between both ends of the first transistor increases in accordance with increase of levels of the input signals within a range in which the levels of the input signals are higher than the predetermined value.
US08502600B2 Combiner-less multiple input single output (MISO) amplification with blended control
Multiple-Input-Single-Output (MISO) amplification and associated VPA control algorithms are provided herein. According to embodiments of the present invention, MISO amplifiers driven by VPA control algorithms outperform conventional outphasing amplifiers, including cascades of separate branch amplifiers using conventional power combiner technologies. MISO amplifiers can be operated at enhanced efficiencies over the entire output power dynamic range by blending the control of the power source, source impedances, bias levels, outphasing, and branch amplitudes. These blending constituents are combined to provide an optimized transfer characteristic function.
US08502582B2 Adaptive digital phase locked loop
In some embodiments, a digital PLL (DPLL) is disclosed with a dynamically controllable filter for changing the effective DPLL bandwidth in response to one or more real-time performance parameters such as phase error.
US08502581B1 Multi-phase digital phase-locked loop device for pixel clock reconstruction
A reconstruction circuit for the pixel clock in digital display units receiving analog display data uses a multi-phase reference clock and an all digital PLL for clock generation and synchronization to an external sync signal. A phase/frequency detector in the digital PLL uses a multi-phase reference clock to achieve a high resolution of the phase error. The digital PLL control algorithm can be implemented with a single loop and can achieved arbitrary large, externally controlled, phase difference between the generated pixel clock and the input sync signal.
US08502578B2 Timing adjustment circuit, solid-state image pickup element, and camera system
A timing adjustment circuit includes at least one data line; a phase synchronization circuit that includes a plurality of oscillation delay elements which oscillate an oscillation signal, and that is configured to oscillate the oscillation signal by synchronizing a phase of a feedback clock with a phase of a reference clock; at least one delay circuit that includes a delay element which is disposed on the data line and which is equivalent to one of the plurality of oscillation delay elements, and that is configured to delay data which is to be transmitted on the data line; and a delay adjustment unit configured to adjust an amount of delay of the delay element of the delay circuit in accordance with a signal associated with oscillation of the phase synchronization circuit.
US08502570B2 High efficiency driving circuit
A high efficiency driving circuit includes a first P-type metal-oxide-semiconductor transistor, a second P-type metal-oxide-semiconductor transistor, a first N-type metal-oxide-semiconductor transistor, a second N-type metal-oxide-semiconductor transistor, a current source, a third N-type metal-oxide-semiconductor transistor, a fourth N-type metal-oxide-semiconductor transistor, a fifth N-type metal-oxide-semiconductor transistor, a first resistor, and a second resistor. The first P-type metal-oxide-semiconductor transistor charges a third terminal of the first P-type metal-oxide-semiconductor transistor according to a first control signal, and the first N-type metal-oxide-semiconductor transistor discharges the third terminal of the first P-type metal-oxide-semiconductor transistor according to a second control signal. A high voltage level of the first control signal is at a first voltage, and a low voltage level of the first control signal is at a third voltage; a high voltage level of the second control signal is at a fourth voltage, and a low voltage level of the second control signal is ground.
US08502566B2 Adjustable input receiver for low power high speed interface
A pseudo-differential input receiver is disclosed which is configured to support a wide-range of reference voltage Vref and a wide-range frequency interface with no parallel termination are described herein. The pseudo-differential receiver implementations described herein are very efficient in terms of area, power, and performance. A wide-frequency-range Vref-adjustable input receiver is described herein. The receiver can be configured with a Vref-monitoring PMOS helper FET or an enabled stacked PMOS helper FET to enable the receiver to work at Vref=0V like a conventional CMOS receiver. The receiver can also be configured with a Vref-monitoring NMOS helper FET to enable a Vref-based input receiver to work with programmability on bias currents & trip-point at Vref=(0.5˜0.7)Vdd, depending on the ratio of output driver's impedance and parallel on/off-die termination impedance.
US08502562B2 Buffering circuit, semiconductor device having the same, and methods thereof
A multipoint low-voltage differential signaling (mLVDS) receiver of a semiconductor device and a buffering circuit of a semiconductor device, includes: an even-number data buffering unit configured to: sample even-number data from input data, amplify and output the even-number data in a section in which a positive clock is activated, and latch the even-number data in a section in which the positive clock is inactivated, and an odd-number data buffering unit configured to: sample odd-number data from the input data, amplify and output the odd-number data in a section in which a negative clock is activated, and latch the odd-number data in a section in which the negative clock is inactivated.
US08502561B2 Signal value storage circuitry with transition detector
A D-type flip-flop includes tristate inverter circuitry passing a processing signal through to storage circuitry 8 from where the processing signal passes via a transmission gate to slave storage circuitry. A transition detector is coupled to the input node of the storage circuitry and serves to generate an error signal if a transition is detected upon that input node during an error detecting period. Other forms of this technique may provide clock gating circuitry.
US08502559B2 Level translator
A circuit has an input configured to receive a periodic signal having a first value. First circuitry is provided to generate a pulse when said periodic signal has a rising edge and a pulse when said periodic signal has a falling edge. Second circuitry is configured to receive said pulses and responsive thereto to provide an output signal, said output signal having a same duty cycle as said input signal and having a second value.
US08502558B1 Computer-aided design tools and memory element power supply circuitry for selectively overdriving circuit blocks
Integrated circuits are provided with circuitry such as multiplexers that can be selectively configured to route different adjustable power supply voltages to different circuit blocks on the integrated circuits. The circuit blocks may contain memory elements that are powered by the power supply voltages and that provide corresponding static output control signals at magnitudes that are determined by the power supply voltages. The control signals from the memory elements may be applied to the gates of transistors in the circuit blocks. Logic on an integrated circuit may be powered at a given power supply voltage level. The memory elements may provide their output signals at overdrive voltage levels that are elevated with respect to the given power supply voltage level. Memory elements associated with circuit blocks that contain critical paths can be overdriven at voltages that are larger than memory elements associated with circuit blocks that contain noncritical paths.
US08502554B2 Current transformer assembly for use with electrical monitoring systems and methods of assembling same
A current transformer assembly for use in an electrical monitoring system is described herein. The current transformer assembly includes a housing including a plurality of shielding members that at least partially define a cavity therein. The housing further includes an inner surface that defines an opening that extends therethough. A first current transformer is positioned within the housing. A second current transformer is positioned within the housing and is spaced a distance from the first current transformer to facilitate reducing electronic noise interference between the first and second current transformers.
US08502552B2 Method for fault detection in controlling a rotary field motor
The invention specifies a method for fault identification when driving a polyphase motor by means of a frequency converter, wherein, in a rest state, the frequency converter controls the phase voltages of the polyphase motor and the phase currents of the polyphase motor are measured. In this case, provision is made for, then in the rest state, the phase currents or current variables derived therefrom to be adjusted by closed-loop control to a predetermined setpoint current variable, for the frequency converter to be controlled so as to output an interference voltage variable for the phase voltages, for the response of the adjustment by closed-loop control to the interference voltage variable to be observed, and for a conclusion to be drawn regarding a fault of the frequency converter and/or the phases of the polyphase motor from the response of the closed-loop control. The cited method allows for largely loss-free detection of faults in the drive system of a polyphase motor. In the event of field-oriented closed-loop control, no additional complexity is required in the measuring device.
US08502544B1 Method for testing mask articles
A method for testing a mask article includes the steps of electrically connecting the mask article to an electrical sensor, applying a bias voltage to a plurality of testing sites of the mask article with a conductor, measuring at least one current distribution of the testing sites with the electrical sensor, and determining the quality of the mask article by taking the at least one current distribution into consideration.
US08502540B2 Wireless magnetic resonance imaging apparatus generating synchronized clock-regenerated signals and video
A magnetic resonance imaging apparatus includes a probe unit and a control/imaging unit. The probe unit includes a converter converting a sampled magnetic-resonance signal into a digital signal, a first transmitter converting the digital signal into a first-radio signal, a first receiver receiving and performing detection on the second-radio signal to obtain a first-received signal, and a clock-regeneration unit regenerating a clock component from the first-received signal to generate a regenerated-clock signals. The control/imaging unit includes a second-receiver receiving the first-radio signal to obtain a second-received signal, a data processor performing data processing on the second-received signal in synchronism with a reference-clock signal to obtain a video signal, and a second transmitter which modulates a carrier wave using the reference-clock signal, converts the reference-clock signal into the second-radio signal, and transmits the second-radio signal through the second-wireless channel.
US08502536B2 Method for accelerated high resolution chemical species separation for magnetic resonance imaging
A method for producing an image of a subject with a magnetic resonance imaging (MRI) system is provided. Image data is acquired at a sequence of multiple echo times occurring within two or more repetition times (TRs). Odd-numbered echoes are sampled during odd-numbered TRs, and even-numbered echoes are sampled during even-numbered TRs. Images are reconstructed and used to calculate the respective signal contributions of two or more chemical species using, for example, an IDEAL separation technique. The respective signal contributions are then used to produce images that depicts substantially only one of the chemical species. For example, separated water and fat images may be produced.
US08502534B2 Accelerated dynamic magnetic resonance imaging system and method
In one embodiment, a method for processing magnetic resonance imaging data is provided. The method includes accessing the magnetic resonance imaging data, the data including a plurality of image data sets defining reconstructable images representative of a subject at different points in time. Each data set includes sampled data for sampled phase encoding points but is missing data for unsampled phase encoding points. An adaptive time window is determined for each image data set, and the missing data of at least one of the image data sets is determined based upon the sampled data for the respective data set and sampled data from at least one other data set within the time window for the respective data set.
US08502531B2 Sensor arrangement
A sensor arrangement and a method for its use for detecting the proximity of a ferrous target, the sensor arrangement comprising a sensor body including a magnetic field source and a Hall effect device, wherein the magnetic field source is an electromagnetic solenoid. The invention has particularly utility, but is not so limited, to the field of fuel injection pumps in which it is necessary to determine the volume of fuel that is delivered to the cylinders of the engine without affecting the operation of the engine.
US08502530B2 Offset cancelling circuit
In an offset cancelling circuit of a Hall element, a voltage is applied from four directions and from outside such that a current flowing in the Hall element is switched by 90°, to set a first state through a fourth state, and output voltages of the Hall element in the first state through the fourth state are averaged.
US08502526B2 Magnetic sensor circuit and electronic apparatus using same
A magnetic sensor circuit of the present invention includes: a Hall device 10; selection switch circuit 20 switching a detection state of the Hall device 10 to either a first switch state or a second switch state; a comparator unit 60 performing comparison using a detection voltage of a magnetoelectric conversion device 10 aid a predetermined reference voltage to generate a comparison result signal COUT; a logic circuit 80 generating, based on an output signal OUT and the comparison result signal COUT, a logic operation signal LOUT for maintaining or inverting the logic of the output signal OUT; a latch circuit 70 latching the logic operation signal LOUT to output this as the output signal OUT; and a control circuit go determining, based on the output signal OUT, an order of switching the detection state of the Hall device 10 (from the first switch state to the second switch state, or from the second switch state to the first switch state).
US08502509B2 Power conversion system and power control method for reducing cross regulation effect
A power conversion system and power control method for reducing cross regulation effect uses a voltage feedback adjustment circuit to modulate an error signal fed back from an output voltage so as to predict the energy of an output corresponding to its load states. While the energy delivered to an output terminal with its load remaining the same does not change, the energy delivered to an output terminal with its load changing is adjusted accordingly. The power conversion system thus effectively reduces the cross regulation effect and obtains excellent steady system output and transient response.
US08502508B2 Switching regulator circuit configured to perform step up and step down operations and operation method therefor
A switching regulator circuit for achieving stepping-up or stepping-down, including a basic circuit and an inductor connected to the basic circuit. The basic circuit includes a switching circuit to perform switching, a control circuit to control the switching circuit, a first terminal connected to one end of the inductor and the switching circuit, and second and third terminals connected to the switching circuit. When the input voltage is stepped up, the control circuit causes the switching circuit to charge the inductor via the first terminal and the third terminal and to discharge the inductor via the first terminal and the second terminal. When the input voltage is stepped down, the control circuit causes the switching circuit to charge the inductor via the first terminal and the second terminal and to discharge the inductor via the first terminal and the third terminal.
US08502503B2 Circuits and methods for protection of battery modules
A circuit includes multiple battery modules and protection circuits respectively coupled to the battery modules. Each protection circuit includes a controller and a shunt circuit. The controller is coupled to one of the battery modules and detects a fault associated with the battery module. The shunt circuit is coupled to the battery module and the controller, and shunts a current around the battery module if the fault associated with the battery module is detected by the controller.
US08502502B2 Electricity storing device and electronic device
An electricity storing device includes a high-voltage terminal, a low-voltage terminal, a plurality of rechargeable battery modules, a plurality of first switches each coupled between one rechargeable battery module and the high-voltage terminal, a plurality of second switches each coupled between one rechargeable battery module and the low-voltage terminal, a plurality of third switches each coupled between two of the rechargeable battery modules, and a control module for outputting a control command to control couplings of the plurality of first switches, the plurality of second switches and the plurality of third switches.
US08502501B2 Battery measuring clamp
A battery measuring clamp, comprising a battery pole clamp 2, a measuring resistor 12 electrically connected to the battery pole clamp 2, and an evaluation circuit which evaluates at least the voltage across the measuring resistor 12, wherein the evaluation circuit is electrically connected to the measuring resistor 12 via at least two measuring contacts 18 and at least two data lines 24 are arranged on the evaluation circuit. A flexible use of such a battery measuring clamp is ensured by the fact that the data lines are arranged in a connection means 26, that a data connector 32 is monolithically connected to a coupling means 28 corresponding to the connection means 26, and that the coupling means 28 and the connection means 26 are plugged together in order to electrically contact the data connector 32 to the data lines 24.
US08502499B2 Charging device for electric drivable vehicle
A charging device for an electrically-drivable vehicle comprises a power-supply connector (100), a power-receiving connector (200), a safety-charging-signal-generating unit provided in the charging device, a CAN control module receiving a safety-charging signal generated by the safety-charging-signal-generating unit. The charging device may be configured to be chargeable to the electrically-drivable vehicle when the charging terminal and the charging-terminal-accommodating chamber are connected to each other. The power-supply connector and the power-receiving connector are engaged with the CAN module detecting the safety-charging signal. The personal safety during maintenance or other unexpected accidents is enhanced.
US08502498B2 Localized charging of electric vehicles
The described method and system provide for managing the charging of individual electric vehicles with respect to local substations or grids to lower the load on a given substation or grid. When the load on a substation or grid reaches a warning threshold, a call center may facilitate the implementation of a charging plan to reduce the load. The call center may locate and identify vehicles that are being charged in the relevant area and may further manage the charging of the located vehicles to reduce the load through a charging plan. The plan may be based on the current state of charge of each vehicle, the historical use and projected use of each vehicle, vehicle charging patterns, and the severity of the load on the substation or grid.
US08502491B2 Rotation direction control method for a cooling fan and rotation direction control circuit thereof
A rotation direction control method of a cooling fan is disclosed. The rotation direction control method includes a detection step, a determination step and a driving step. The detection step receives a temperature control signal from a temperature detection unit by a rotation direction control unit when a predetermined dust-expelling time period begins. The determination step determines whether a detected temperature is higher than a predetermined value based on the temperature control signal by the rotation direction control unit. The driving step controls the rotation direction control unit to keep outputting a cooling signal so as to drive a motor of the cooling fan for a cooling operation when the determination of the determination step is positive.
US08502490B2 Method and apparatus for increasing the run time of an electric cart
A method and apparatus for improving the run duration of an electric motor powered by a battery pack is provided. The apparatus includes an electric motor having a rated motor voltage, a battery pack having an output voltage exceeding the rated motor voltage, and a motor controller which converts the output voltage to supply electrical power to the electric motor at a second voltage lower than the output voltage.
US08502488B2 Position sensorless motor control
A control system is provided for an AC electric motor which comprises a rotor and a stator and a plurality of phase windings connected in a star formation, each winding having one end connected to a common neutral point and another end arranged to have a terminal voltage applied to it. The control system comprises switching means arranged to control the terminal voltages applied to the windings and control means arranged to control the switching means so as to switch it between a plurality of states in each of a sequence of PWM periods. The control means is further arranged to measure the voltage at the neutral point at sample times within the PWM periods and to generate from the measured voltages an estimation of the rotational position of the rotor.
US08502487B2 Motor energy recycling device
A motor energy recycling device is connected to a motor, a voltage regulating power capacitor, and a switch unit, for storing energy released by the motor. The motor energy recycling device include a switching device having first to third ends for being switched to connect the third end with the first end or second end; a first diode unit; a first capacitor connected to the motor and the first diode unit for using energy released by the motor to charge the first capacitor; a first inductor; a second capacitor; a second diode unit; and a second inductor connected between the second end and the second diode and between the voltage regulating power capacitor and the second capacitor for charging the voltage regulating power capacitor via the second inductor to accomplish an energy recycling.
US08502486B2 DC brushless motor system and the method thereof
A DC brushless motor system is disclosed. When a rotor of the DC brushless motor is close to an aligned position, there will be current spike in the coil and voltage spike in an input capacitor. By decreasing the peak current limit of the current in the coil when the rotor is close to the aligned position, the current spike and the voltage spike are reduced.
US08502485B2 Motor drive circuitry
A motor drive circuit includes a positive and a negative supply rail for connection to a battery (104), a motor drive circuit including a plurality of motor drive subcircuits which each selectively permit current to flow into or out of a respective phase of a multi-phase motor (101) in response to control signals from a motor control circuit, and a switching means including at least one switch which is in series with a respective phase of the motor which is normally closed to permit the flow of current to and from the subcircuit to the respective motor phase. A fault signal detecting means (160) detects at least one fault condition and, in the event of a fault condition being detected, causes the at least one switch to open. A snubber circuit (150) is associated with the motor and is arranged so that following the opening of the switch, energy stored in the motor windings is diverted away from the switching means through the snubber circuit to the battery.
US08502484B2 Power stage for driving an electric machine
A power stage for driving an electric machine comprising at least two semiconductor switches designed as semiconductor chips, which are connected by at least one bridge conductor to form a half bridge. The semiconductor switches area contact with each one of their contact surfaces an electric conductor track. The conductor tracks and the at least one bridge conductor are connected to the electric connection terminals for the machine and/or the power supply. The at least one bridge conductor is designed as conductor element which is arranged in at least one plane which is partially disposed approximately parallel to the extension plane of at least one of the conductor tracks. The at least one bridge conductor area contacts the semiconductor switches at a second contact surface which is disposed opposite the first contact surface which is connected to one of the conductor tracks.
US08502483B2 Model train remote control system having realistic speed and special effects control
The model train control system includes a remote control device that receives user input with respect to various train functions such as desired speed and effects, and that generates commands based on that input in order to cause the model train to perform in a desired manner. In an embodiment of the invention, the model train controller comprises control input devices that permit user control over corresponding control features of the model train. A touch screen display may be coupled to the housing and adapted to receive user selections regarding the control feature. A processor is operatively coupled to the control input devices and the touch screen display. The processor is adapted to generate at least one model train command to be transmitted to the model train based at least in part on a user input received from either one of the control input devices or the touch screen display.
US08502479B2 Current regulating circuit and light emitting diode device having the same
A current regulating circuit is for connection in series between a light emitting diode (LED) and a power source, and includes: a first resistive unit having a first resistance that is proportional to an operation temperature of the LED when the operation temperature is above a predetermined threshold temperature; and a second resistive unit connected in series with said first resistive unit, and having a second resistance that is inversely proportional to the operation temperature of the LED when the operation temperature is above the predetermined threshold temperature. When the operation temperature of the LED is above the predetermined threshold temperature, an effective resistance of said current regulating circuit attributed to said first and second resistive units is proportional to the operation temperature of the LED, and absolute value of a rate of change of the first resistance is larger than that of the second resistance.
US08502477B2 Dimmable power supply
Various embodiments of a dimmable power supply are disclosed herein. For example, some embodiments provide a dimmable power supply including an output driver, a variable pulse generator and a load current detector. The output driver has a power input, a control input and a load path. The variable pulse generator includes a control input and a pulse output, with the pulse output connected to the output driver control input. The variable pulse generator is adapted to vary a pulse width at the pulse output based on a signal at the control input. The load current detector has an input connected to the output driver load path and an output connected to the variable pulse generator control input. The load current detector has a time constant adapted to substantially filter out a change in a load current at a frequency of pulses at the variable pulse generator pulse output.
US08502473B2 System and method for illuminating a component of an electronic device
The disclosure describes a system and method for controlling a light for a component of an electronic device. An embodiment uses brightness evaluation zones and progresses through one or more of the zones to determine whether and when to activate the light for given conditions of ambient light. In doing so, the embodiment sets a current brightness evaluation zone for the device and sets an activation status of the light level to an activation value associated with the current brightness evaluation zone. The embodiment compares an ambient light level for the device to the current brightness evaluation zone. Evaluation loops are provided to test and change the current brightness evaluation zone against the detected ambient light. The light may be a backlight.
US08502458B2 Operating device and method for the combined operation of gas discharge lamps and semiconductor light sources
In various embodiments, a dimmable operating device for the combined operation of a gas discharge lamp and a semiconductor light source is provided. The dimmable operating device may be configured such that only the semiconductor light source is operated in the lower dimming range and only the gas discharge lamp is operated in the upper dimming range, and at the changeover points at which one sort of light source out of the semiconductor light source and the gas discharge lamp is switched off or on, at the same time a jump in power is applied to the other light source out of the semiconductor light source and the gas discharge lamp, with the result that the human eye cannot perceive, or can only perceive with difficulty, the changeover point.
US08502455B2 Atmospheric inductively coupled plasma generator
In an atmospheric inductively coupled plasma generating apparatus, impedance matching between a coil for plasma generation and an RF power source is effected at a high speed. A control method and/or condition for the output frequency of an oscillator which supplies a power to the coil for plasma generation or a control method and a control condition for the output power of the oscillator are changed appropriately in accordance with a generation state of a plasma. When a plasma is not generated, the output frequency is controlled according to a first condition and, when a plasma is generated, the output frequency is controlled according to a second condition different from the first condition. When a plasma is not generated, the output power is controlled according to a third condition and, when a plasma is generated, the output power is controlled according to a fourth condition different from the third condition.
US08502451B2 Collector and electron tube
A collector included in an electron tube is covered with a carbon nanotube layer over a required area on the surface thereof.
US08502448B2 Display apparatus comprising a composite member of a resin matrix and carbon fibers
A display apparatus having an improved function for encapsulating a display unit, and comprising a substrate, wherein the display unit is disposed on the substrate; an encapsulation unit facing the display unit, the encapsulation unit comprising: a metal layer; and a composite member; and a sealing unit disposed between the substrate and the encapsulation unit and separated from the display unit so as to adhere the substrate to the encapsulation unit, wherein the composite member comprises a resin matrix and carbon fibers, and wherein the metal layer is disposed between the substrate and the composite member.
US08502445B2 RGBW OLED display for extended lifetime and reduced power consumption
A first device is provided that includes a first light source that has at least one organic light emitting device that may emit near white light having a correlated color temperature (CCT) that is less than 6504K. The first device may also have a plurality of pixels comprising a first sub-pixel having a color filter in optical communication with the first light source that passes light having a peak wavelength between 400 and 500 nm. A second sub-pixel having a color filter in optical communication with the first light source that passes light having a peak wavelength between 500 and 580 nm. A third sub-pixel having a color filter in optical communication with the first light source that passes light having a peak wavelength between 580 and 700 nm. A fourth sub-pixel that emits near white light that may have a CCT that is less than 6504 K.
US08502442B2 Light emitting device with translucent ceramic plate
A light emitting device comprising a light emitting component that emits light with a first peak wavelength, and at least one sintered ceramic plate over the light emitting component is described. The at least one sintered ceramic plate is capable of absorbing at least a portion of the light emitted from said light emitting component and emitting light of a second peak wavelength, and has a total light transmittance at the second peak wavelength of greater than about 40%. A method for improving the luminance intensity of a light emitting device comprising providing a light emitting component and positioning at least one translucent sintered ceramic plate described above over the light emitting component is also disclosed.
US08502441B2 Light emitting device having a coated nano-crystalline phosphor and method for producing the same
A light emitting device includes a light emitting element that emits primary light and a wavelength conversion unit that absorbs part of the primary light and emits secondary light. In the light emitting device, the wavelength conversion unit includes a plurality of types of phosphors that emit secondary light having wavelengths different from each other, and at least one of the phosphors is a covered phosphor covered with a surface film that reflects secondary light emitted from a phosphor other than the covered phosphor.
US08502437B2 Light-emitting module with cooling function
A light-emitting module with a cooling function includes a heat sink, a light-emitting element and a fitting member. The heat sink has a coupling face and at least one first assembling portion. The light-emitting element is coupled with the coupling face of the heat sink. The fitting member includes at least one positioning portion having at least one second assembling portion. The at least one second assembling portion is coupled with the at least one first assembling portion of the heat sink to position the light-emitting element between the at least one positioning portion and the heat sink.
US08502436B2 Electric motor having an end frame
An electro-dynamic machine including a rotor shaft extending along an axis and a bearing rotatably supporting the rotor shaft for rotation about the axis. An inner housing has an outer surface and defines a bearing bore. The bearing bore receives and supports the bearing. An outer housing surrounds the inner housing. A plurality of non-radial ribs extends from the outer housing to the inner housing. The non-radial ribs are coupled to the inner housing substantially tangential to the outer surface.
US08502433B2 Grip member with haptic feed-back
A grip member is equipped with a plurality of modules for generating haptic feed-back distributed along the grip member and activatable according to a pre-set sequence.
US08502431B2 Coil structure for a coreless motor
A coil structure for a coreless motor includes a plurality of first conductive traces and a plurality of second conductive traces. The first conductive traces are disposed in succession relative to one another, and are each arranged into a planar spiral configuration having a substantially polygonal shape. At least one adjacent pair of the first conductive traces cooperate to define a space therebetween. Each of the second conductive traces is disposed in the space defined by a corresponding adjacent pair of the first conductive traces, and is arranged into a planar spiral configuration that has one of a substantially triangular shape and a substantially rhombic shape so as to substantially fill the space.
US08502426B2 Rotary single-phase electromagnetic servo actuator comprising an actuator and a position sensor
A single phase electromagnetic servo-actuator that includes a rotary actuator which moves a mobile member along a limited travel including a 2N ferromagnetic pole stator structure and at least one excitation coil, the stator structure being made of a material with high magnetic permeability and a rotor having ferromagnetic yoke and a thin magnetized portion of 2N pairs of axially magnetized poles, in alternate directions, and a rotor angular position sensor, the thin magnetized portion being a separate element from the ferromagnetic yoke.
US08502425B2 Totally enclosed motor
A totally enclosed motor which includes a rotor disposed inside a housing and a heat of the rotor is transferred to the housing, a stator disposed inside the housing and a heat of the stator is transferred to the housing, and an inner fin which is disposed in the rotor and agitates air inside the housing. The totally enclosed motor is cooled by a forced convection by an outer fan disposed outside the housing, or by a natural convention in the vicinity of an outer surface of the housing, and a shape of the rotor is different between one end side and the other end side of the rotor in an extending direction of a rotary shaft of the rotor.
US08502422B2 Sorting system with linear synchronous motor drive
The present invention relates to a sorting system including a conveyor comprising a plurality of carts for carrying articles, in particular for sorting articles such as parcels and baggage. The conveyor has a linear synchronous motor drive system with stators arranged along a track which the carts follow. Reaction elements are mounted on each of the carts. The reaction elements each comprise an even or an uneven number of permanent magnets arranged on a plate-like carrier. The magnets on reaction elements of adjacent carts are arranged to form arrow of magnets with alternating polarity, said row having two neighboring magnets. At least one of the two neighboring magnets has a reduced dimension in the transport direction, and the two neighboring magnets are situated at a transition between adjacent carts.
US08502420B1 Power supply architecture for controlling and monitoring isolated output modules
A modular power supply and power control system includes a digital controller coupled to each of a plurality of output modules via a single wire serial data bus having a default high logic state. A plurality of isolation transformers are each coupled on a primary side to receive an intermediate bus voltage, and further coupled on a secondary side to one of the output modules. Galvanic isolation circuits provide galvanic isolation on the serial data bus between each of the output modules and the digital controller. The digital controller further includes circuitry effective to pull a bus logic state from high to low for generating data transmission to the plurality of isolated modules. Each of the plurality of isolated modules further include circuitry effective to independently pull the bus logic state from high to low for generating data transmission to the digital controller.
US08502409B2 Power supply control apparatus
A power supply control apparatus for controlling a power supply unit including a battery and a load is provided. The power supply control apparatus includes a main relay and a ground relay, a pre-charge relay, an inrush current limiting resistor, a first relay control section, and a time measurement section. The main relay and the ground relay are connected between the battery and the load. The pre-charge relay is connected in parallel with one of the main relay and the ground relay. The inrush current limiting resistor is connected in series with the pre-charge relay, and limits an inrush current from the battery to the load. The first relay control section temporarily turns ON the pre-charge relay and turns ON the main relay and the ground relay upon receiving a power supply connection request from the outside, and turns OFF the main relay and the ground relay upon receiving a power supply interruption request from the outside. The time measurement section chooses a time point in the period from when the pre-charge relay is turned ON to when it is turned OFF, and measures the elapsed time from the chosen time point. Before the elapsed time measured by the time measurement section reaches a predetermined reference period, the first relay control section does not turn OFF the main relay and the ground relay, but maintains the relays ON, even when receiving the power supply interruption request.
US08502406B2 Variable-speed power generator and method of controlling the same
A variable-speed power generator includes a prime mover that generates motive power by using natural energy; a wound-rotor induction generator that includes a stator having a primary winding and a rotor having a secondary winding, which are connected to a power grid, the generator generating electric power based on the motive power generated by the prime mover; a power converter connected to the stator and the rotor; and a controller controlling wound-rotor induction generator. The controller responds to instructions, sent by the power grid, for supplying reactive power to the power grid. The response of the controller to an instruction for supplying reactive power to the power grid may include imposing limitations on the reactive power supplied by the power converter to the power grid and causing the wound-rotor induction generator to operate at a rotation speed set higher than or equal to a synchronous speed.
US08502400B2 Methods and apparatuses to stiffen integrated circuit package
A dam stiffener for a package substrate is presented. In an embodiment, the dam stiffener comprises a thermally curable polymer, and is simultaneously cured with the underfill material to act as stiffener to the substrate. In another embodiment, a curable reservoir material can be dispensed to fill the space between the integrated circuit die and the dam stiffener, forming a thick reservoir layer, acting as an additional stiffener for the package substrate.
US08502399B2 Resin composition for encapsulating semiconductor and semiconductor device
Disclosed is a resin composition for encapsulating a semiconductor containing a curing agent, an epoxy resin (B) and an inorganic filler (C), wherein the curing agent is a phenol resin (A) having a predetermined structure. Also disclosed is a semiconductor device obtained by encapsulating a semiconductor element with a cured product of the resin composition for encapsulating a semiconductor.
US08502398B2 Wiring board, semiconductor apparatus and method of manufacturing them
There are provided steps of providing a dielectric layer and a wiring layer on a surface of a support to form an intermediate body, removing the support from the intermediate body to obtain a wiring board, and carrying out a roughening treatment over a surface of the support before the intermediate body forming step.
US08502397B2 Heat-resistant adhesive sheet for semiconductor device fabrication, adhesive used for the sheet, and method for fabricating semiconductor device using the sheet
The present invention provides a heat-resistant adhesive sheet for semiconductor device fabrication that is attached to a substrateless semiconductor chip when the chip is encapsulated with resin. The adhesive sheet includes a base material layer and an adhesive layer. The adhesive layer contains a rubber component and an epoxy resin component. The proportion of the rubber component in an organic substance in the adhesive is in the range of 20 to 60 wt %.
US08502396B2 Embedded package security tamper mesh
Systems and methods for embedded tamper mesh protection are provided. The embedded tamper mesh includes a series of protection bond wires surrounding bond wires carrying sensitive signals. The protection bond wires are positioned to be vertically higher than the signal bond wires. The protection wires may be bonded to outer contacts on the substrate while the signal bond wires are bonded to inner contacts, thereby creating a bond wire cage around the signal wires. Methods and systems for providing package level protection are also provided. An exemplary secure package includes a substrate having multiple contacts surrounding a die disposed on an upper surface of the substrate. A mesh die including a series of mesh die pads is coupled to the upper surface of the die. Bond wires are coupled from the mesh die pads to contacts on the substrate thereby creating a bond wire cage surrounding the die.
US08502395B2 Semiconductor device and a method of manufacturing the same
A semiconductor device featuring a substrate having a first surface defined by a first edge and an opposing second edge, electrode pads formed on the first surface, a first semiconductor chip mounted over the first surface between the first edge and the electrode pads and including first pads each electrically connected to a corresponding electrode pad, a second semiconductor chip stacked over the first semiconductor chip and including second pads each electrically connected to a corresponding electrode pad, a third semiconductor chip mounted over the first surface of the substrate between the second edge and the electrode pads and including third pads each electrically connected to a corresponding electrode pad, in which one electrode pad is electrically connected to one first pad, one second pad and one third pad and another electrode pad is electrically connected to a first pad and a second pad corresponding thereto, via separate bonding wires.
US08502394B2 Multi-stacked semiconductor dice scale package structure and method of manufacturing same
A multi-stack semiconductor dice assembly has enhanced board-level reliability and integrated electrical functionalities over a common package foot-print. The multi-stack semiconductor dice assembly includes a bottom die having a stepped upper surface. The stepped upper surface includes a base region and a stepped region, which is raised relative to the base region. The base region includes a plurality of attachment structures that are sized and shaped to receive electrically conductive balls. An upper die is stacked above the bottom die. The upper die includes a plurality of attachment structures that are sized and shaped to receive electrically conductive balls and are arranged to align with the attachment structures of the bottom die. Electrically conductive balls are attached to the attachment structures of the bottom die and the attachment structures of the upper die.
US08502391B2 Semiconductor device and method of making single layer substrate with asymmetrical fibers and reduced warpage
A semiconductor device includes a first carrier having a first resin disposed over the first carrier. A fabric is disposed over the first resin. A second resin is formed over the first resin and around the fabric to form an asymmetrical pre-impregnated (PPG) substrate. The first carrier is removed. A second carrier is provided and a first conductive layer is formed over the second carrier. A portion of the first conductive layer is removed. The first conductive layer is transferred from the second carrier to the first resin. The first conductive layer is oriented asymmetrically such that the first conductive layer is offset with respect to the fabric to minimize warpage. The second carrier is removed. A via is formed through the second resin and fabric to expose the first conductive layer. A second conductive layer formed in the via over the first conductive layer.
US08502389B2 CMOS image sensor and method for forming the same
An integrated circuit structure includes an interconnect structure that includes a plurality of metal layers, wherein the interconnect structure is under a semiconductor substrate. A metal pad is formed in one of the plurality of metal layers. A dielectric pad extends from a bottom surface of the semiconductor substrate up into the semiconductor substrate. An opening extends from a top surface of the semiconductor substrate down to penetrate through the semiconductor substrate and the dielectric pad. An edge of the semiconductor substrate in the opening is vertically aligned to an edge of the dielectric pad in the opening. The opening stops on a top surface of the metal pad. A dielectric spacer is disposed in the opening, wherein the dielectric spacer is formed on the edge of the semiconductor substrate and the edge of the dielectric pad.
US08502388B2 Semiconductor device and method for fabricating the same
A semiconductor device has an insulating film, serving as low-porosity regions low in porosity, formed on a substrate and high-porosity regions higher in porosity than the low-porosity regions, and also includes copper interconnects formed to fill interconnect grooves in the insulating film. The insulating film is present under the interconnect grooves, and present in portions neighboring the sidewalls of the interconnect grooves.
US08502386B2 Vertically tapered transmission line for optimal signal transition in high-speed multi-layer ball grid array packages
Broadly speaking, the embodiments of the present invention fill the need for methods of designing vertical transmission lines for optimal signal transition in multi-layer BGA packages. By controlling the impedance and geometry continuity of micro vias in each micro via layer in the package to follow smooth impedance and geometry curves from layer to layer, the return loss and insertion loss of the transmission line can be reduced or controlled to within acceptable ranges.
US08502382B2 MEMS and protection structure thereof
A protection structure of a pad is provided. The pad is disposed in a dielectric layer on a semiconductor substrate and the pad includes a connection region and a peripheral region which encompasses the connection region. The protection structure includes at least a barrier, an insulation layer and a mask layer. The barrier is disposed in the dielectric layer in the peripheral region. The insulation layer is disposed on the dielectric layer. The mask layer is disposed on the dielectric layer and covers the insulation layer and the mask layer includes an opening to expose the connection region of the pad.
US08502378B2 Package unit and stacking structure thereof
A package unit and a stacking structure thereof are provided. The package unit includes a substrate, a first patterned circuit layer, a first conductive pillar, a semiconductor element, an insulation layer, a second conductive pillar, a third conductive pillar, a second patterned circuit layer and a conductive bump. The first patterned circuit layer is disposed on a surface of the substrate. The first conductive pillar is deposited through the substrate. The semiconductor element is disposed on the substrate. The insulation layer covers the semiconductor element and the substrate. The second conductive pillar is deposited through the insulation layer. The third conductive pillar is deposited through the insulation layer. The second patterned circuit layer is disposed on the insulation layer. The conductive bump is disposed on the second patterned metal layer.
US08502372B2 Low-cost 3D face-to-face out assembly
An electronic device includes first and second electronic device dice. The first electronic device die is embedded within a resin layer. A dielectric layer is located over the device die and the resin layer. First interconnects within the dielectric layer connect a first subset of electrical contacts on the first electronic device to corresponding terminals at a surface of the dielectric that are located over the first electronic device. Second interconnects within the dielectric layer connect a second subset of electrical contacts on the first electronic device to corresponding bump pads at a surface of the dielectric that are located over the resin layer.
US08502371B2 Integrated circuit package system with extended corner leads
An integrated circuit package system including: forming a die pad, wherein the die pad has a tiebar at a corner; forming a lead wherein the lead is connected to the tiebar; connecting an integrated circuit die to the die pad; and forming an encapsulation, having an edge, over the integrated circuit die with the lead extending from and beyond the edge.
US08502368B2 Multi-chip package with offset die stacking
A semiconductor device has a plurality of stacked semiconductor dice mounted on a substrate. Each die has similar dimensions. Each die has a first plurality of bonding pads arranged along a bonding edge of the die. A first group of the dice are mounted to the substrate with the bonding edge oriented in a first direction. A second group of the dice are mounted to the substrate with the bonding edge oriented in a second direction opposite the first direction. Each die is laterally offset in the second direction relative to the remaining dice by a respective lateral offset distance such that the bonding pads of each die are not disposed between the substrate and any portion of the remaining dice in a direction perpendicular to the substrate. A plurality of bonding wires connects the bonding pads to the substrate. A method of manufacturing a semiconductor device is also disclosed.
US08502367B2 Wafer-level packaging method using composite material as a base
An electronic package that includes a composite material base. In one embodiment the electronic package is an expanded wafer-level package. The composite material base is composed of woven strands and polymer material. In one embodiment the composite material base is composed of woven fiberglass strands and an epoxy material. In various embodiments the package includes an electronic circuitry layer on one or another face of the composite material base. In other embodiments conductive vias connect the circuitry layers, including a redistribution layer. In yet another embodiment an electronic package is mounted on the composite material base and electrically couples to the circuit of the expanded wafer-level package. The package having the composite material base is mechanically stronger and can be made thinner than a package that relies on an encapsulant material for structure, and resists cracking.
US08502366B2 Semiconductor package
A semiconductor package includes a body having a first surface and a second surface facing away from the first surface, and formed with a groove in the first surface. First connection parts may electrically connect a portion of the first surface to a portion of the second surface of the body. Second connection parts may electrically connect a portion of a bottom portion of the groove to a portion of the second surface of the body. A lower device may be disposed in the groove of the body, and have third connection parts that are electrically connected with the second connection parts. An upper device may be disposed on the body and the lower device, and have fourth connection parts that are electrically connected with the first connection parts and the third connection parts.
US08502363B2 Semiconductor device packages with solder joint enhancement element and related methods
A semiconductor device package including a substrate, first and second solder joints, a die pad, leads and enhancement elements surrounding the die pad, a chip electrically connected to the leads, and a package body encapsulating the chip, portions of the leads, and portions of the enhancement elements, but leaving exposed at least a side surface of each enhancement element. Side surfaces of the enhancement elements and the package body are coplanar. The substrate includes first pads corresponding to the leads and second pads corresponding to the enhancement elements. The first solder joints are disposed between the first pads and the leads. The second solder joints are disposed between the second pads and the enhancement elements. The second solder joints contact side surfaces of the enhancement elements. The surface area of the second pads is greater than the surface area of the corresponding enhancement elements.
US08502361B1 Concentrated photovoltaic receiver package with stacked internal support features
In accordance with the present invention, there is provided a CPV package which comprises a leadframe assembly, such leadframe assembly including multiple frames stacked on top of each other. A top frame of the leadframe assembly provides the electrical interconnect between the top or front surface of the receiver die and the bypass diode required to complete the circuit. The top frame also provides hook up wire interconnect pads for the completed CPV package. An exposed bottom surface of a bottom frame of the leadframe assembly defines a heat spreader which assists in thermal management. The fabrication of the CPV package to include multiple frames stacked on top of each other provides high thermal dissipation and high voltage isolation, while at the same providing a high level of reliability with a comparatively low manufacturing cost.
US08502360B2 Resin sealing type semiconductor device and method of manufacturing the same, and resin sealing type electronic device
The invention provides a resin sealing type electronic device having high reliability by eliminating a solder burr formed when a tie bar is cut. The invention also prevents a welding failure between a lead of the resin sealing type electronic device and an external electrode, and provides a large area for bonding an electronic component to the lead to prevent a connection failure. In the method of manufacturing the resin sealing type semiconductor device of the invention, in a case that a tie bar is cut after a semiconductor die and so on are mounted on a lead frame and these are resin-sealed, the cutting of the tie bar is performed from the side of the lead frame where a lead burr is formed by presswork. Furthermore, in the resin sealing type electronic device of the invention, a die capacitor is bonded to burr formation surfaces of a lead and an island using conductive paste. Since the burr formation surface has a larger surface area than a rounded surface, a large bonding area is obtained. A welding surface of the lead to a control electrode is the rounded surface that is opposite to the burr formation surface.
US08502359B2 Semiconductor device
The semiconductor device according to the present invention includes a semiconductor chip, an island having an upper surface to which the semiconductor chip is bonded, a lead arranged around the island, a bonding wire extended between the surface of the semiconductor chip and the upper surface of the lead, and a resin package collectively sealing the semiconductor chip, the island, the lead and the bonding wire, while the lower surface of the island and the lower surface of the lead are exposed on the rear surface of the resin package, and the lead is provided with a recess concaved from the lower surface side and opened on a side surface thereof.
US08502357B2 Integrated circuit packaging system with shaped lead and method of manufacture thereof
A method of manufacture of an integrated circuit packaging system includes: forming a package lead having a retention structure around a perimeter of the package lead with a first concave surface, a ridge, and a second concave surface; forming a die attach paddle adjacent the package lead and having an another retention structure around a perimeter of the die attach paddle with an another first concave surface, an another ridge, and an another second concave surface; attaching an integrated circuit die to the die attach paddle; connecting a conductive connector to the integrated circuit die and the package lead; and applying an encapsulation over the integrated circuit die, the encapsulation conformed to the retention structure and exposing a portion of the package lead.
US08502354B2 Break pattern of silicon wafer, silicon wafer, and silicon substrate
A break pattern of a silicon wafer includes a line to be cut which is set in the silicon wafer assuming a surface as a (110) face in a surface direction of a first (111) face perpendicular to the (110) face; and through holes which are provided in a plurality of rows on the line to be cut, wherein each of the through holes has a first (111) face, a second (111) face which intersects the first (111) face, and a third (111) face which intersects the second (111) face and the first (111) face, an intersecting point with end edges of the second (111) face and the third (111) face is assumed as a point closest to the adjacent through holes.
US08502350B2 Stacked layers of nitride semiconductor and method for manufacturing the same
According to one embodiment, stacked layers of a nitride semiconductor include a substrate, a single crystal layer and a nitride semiconductor layer. The substrate does not include a nitride semiconductor and has a protrusion on a major surface. The single crystal layer is provided directly on the major surface of the substrate to cover the protrusion, and includes a crack therein. The nitride semiconductor layer is provided on the single crystal layer.
US08502348B2 Differential varactor device
The present invention provides a differential varactor device including a substrate having a first conductive type, a well having a second conductive type, five doped regions having the second conductive type, a first gate, a second gate, a third gate, and a fourth gate. The well is disposed in the substrate, and the doped regions are disposed in the well and arranged along a direction. The first gate, the second gate, the third gate and the fourth gate are respectively disposed on the well between any two of the adjacent doped regions, and are arranged sequentially along the direction.
US08502341B2 Trench-type capacitor, semiconductor device having the same, and semiconductor module having the semiconductor device
Provided is a trench-type capacitor. To form the capacitor, first and second active regions are disposed in a semiconductor substrate. Node patterns are disposed in the first active region. Each node pattern may have a conductive pattern and an insulating pattern, which are sequentially stacked. Impurity diffusion regions are disposed in the vicinity of the node patterns. Substrate connection patterns in electrical contact with the first and second active regions are disposed. Node connection patterns in electrical contact with the node patterns are disposed in the vicinity of the first and second active regions. In addition, a semiconductor device having the trench-type capacitor and a semiconductor module having the semiconductor device is provided.
US08502339B2 System-in-package having integrated passive devices and method therefor
A semiconductor device has a substrate, first passivation layer formed over the substrate, and integrated passive device formed over the substrate. The integrated passive device can include an inductor, capacitor, and resistor. A second passivation layer is formed over the integrated passive device. System components are mounted to the second passivation layer and electrically connect to the second conductive layer. A mold compound is formed over the integrated passive device. A coefficient of thermal expansion of the mold compound is approximately equal to a coefficient of thermal expansion of the system component. The substrate is removed. An opening is etched into the first passivation layer and solder bumps are deposited over the opening in the first passivation layer to electrically connect to the integrated passive device. A metal layer can be formed over the molding compound or first passivation layer for shielding.
US08502336B2 Semiconductor diode and method of manufacture
A diode (200) is disclosed having improved efficiency, smaller form factor, and reduced reverse biased leakage current. Schottky diodes (212) are formed on the sidewalls (210) of a mesa region (206). The mesa region (206) is a cathode of the Schottky diode (212). The current path through the mesa region (206) has a lateral and a vertical current path. The diode (200) further comprises a MOS structure (214), p-type regions (220), MOS structures (230), and p-type regions (232). MOS structure (214) with the p-type regions (220) pinch-off the lateral current path under reverse bias conditions. P-type regions (220), MOS structures (230), and p-type regions (232) each pinch-off the vertical current path under reverse bias conditions. MOS structure (214) and MOS structures (230) reduce resistance of the lateral and vertical current path under forward bias conditions. The mesa region (206) can have a uniform or non-uniform doping concentration.
US08502332B2 Magnetic sensor and magnetic head
A magnetic sensor 1 comprises a main channel layer 7a having first, second, and third regions 71, 72, 73 and extending in a first direction; a first ferromagnetic layer 12A mounted on the first region 71; a second ferromagnetic layer 12B mounted on the second region 72; a projection channel layer 7b projecting in a direction perpendicular to a thickness direction of the main channel layer 7a from a side face of the third region 73 between the first and second regions 71, 72 in the main channel layer 7a; and a magnetic shield S covering both sides in the thickness direction of the projection channel layer 7b and both sides in the first direction of the projection channel layer 7b and exposing an end face 7c in the projecting direction of the projection channel layer 7b.
US08502327B1 Systems and methods for conductive pillars
Systems and methods for conductive pillars are provided. In one embodiment, a system comprises an electrical board comprising an electrical device, and a packaged die, the packaged die bonded to the electrical board. The packaged die comprises a substrate layer, the substrate layer comprising a recessed area, a conductive trace, wherein a portion of the conductive trace is formed in the recessed area, and an epitaxial device layer bonded to the substrate layer. The device layer comprises a MEMS device, and an epitaxial conductive pillar, wherein a first side of the epitaxial conductive pillar is electrically connected to the conductive trace and the second side of the epitaxial conductive pillar is electrically connected to the electrical board, wherein the epitaxial conductive pillar extends through the epitaxial device layer to electrically couple the conductive trace to an interface surface on the epitaxial device layer.
US08502326B2 Gate dielectric formation for high-voltage MOS devices
An integrated circuit structure includes a semiconductor substrate and a high-voltage metal-oxide-semiconductor (HVMOS) device, which includes a first high-voltage well (HVW) region of a first conductivity type in the semiconductor substrate; a drain region of a second conductivity type opposite the first conductivity type in the semiconductor substrate and spaced apart from the first HVW region; a gate dielectric with at least a portion directly over the first HVW region; and a gate electrode over the gate dielectric. The gate dielectric includes a bottom gate oxide region; and a silicon nitride region over the bottom gate oxide region.
US08502324B2 Semiconductor wafer having scribe lane alignment marks for reducing crack propagation
A wafer including at least a first die and at least a second die, wherein the first die and the second die are separated from each other by an area located between the first die and the second die, is provided. The wafer further includes an alignment mark group used for aligning the wafer to a tool used for patterning the wafer. The alignment mark group is located entirely within the area between the first die and the second die and the alignment mark group includes a plurality of alignment lines, and wherein each line of the plurality of alignment lines is formed using a plurality of segments separated from each other by a plurality of gaps filled with an insulating material.
US08502309B2 Semiconductor device including field effect transistor for use as a high-speed switching device and a power device
A body layer of a first conductivity type is formed on a semiconductor substrate, and a source layer of a second conductivity type is formed in a surface region of the body layer. An offset layer of the second conductivity type is formed on the semiconductor substrate, and a drain layer of the second conductivity type is formed in a surface region of the offset layer. An insulating film is embedded in a trench formed in the surface region of the offset layer between the source layer and the drain layer. A gate insulating film is formed on the body layer and the offset layer between the source layer and the insulating film. A gate electrode is formed on the gate insulating film. A first peak of an impurity concentration profile in the offset layer is formed at a position deeper than the insulating film.
US08502308B2 Semiconductor device with a trench isolation and method of manufacturing trenches in a semiconductor body
A low cost integration method for a plurality of deep isolation trenches on the same chip is provided. The trenches have an additional n-type or p-type doped region surrounding the trench—silicon interface. Providing such variations of doping the trench interface is achieved by using implantation masking layers or doped glass films structured by a simple resist mask. By simple layout variation of the top dimension of the trench various trench depths at the same time can be ensured. Using this method, wider trenches will be deeper and smaller trenches will be shallower.
US08502307B2 Vertical power semiconductor carrier having laterally isolated circuit areas
An integrated circuit includes a semiconductor carrier including a first side and a second side opposite the first side. An FET is in a first area of the semiconductor carrier, and has a drain electrically coupled to a drain contact area at the first side and a source electrically coupled to a source contact area at the second side. First circuit elements are in a second area of the semiconductor carrier. The second area is electrically insulated from the semiconductor carrier surrounding the second area via a trench insulation extending through the semiconductor carrier from the first side to the second side. An interconnection level electrically interconnects the first circuit elements at the second side, and is electrically insulated from the source contact area in the entire second area via an insulating layer at the second side. A conductive pathway extends through the semiconductor carrier from the first side to the second side, and is electrically insulated from the semiconductor carrier surrounding the conductive pathway. At least one of the first circuit elements is electrically coupled to a contact area at the first side via the conductive pathway.
US08502305B2 Semiconductor device and method for manufacturing same
According to an embodiment, a semiconductor device includes a semiconductor layer of a first conductive type, a base region of a second conductive type provided on the semiconductor layer and a first contact region of a second conductive type provided on the base region. The device includes a gate electrode provided in a trench piercing through the first contact region and the base region, and an interlayer insulating film provided on the gate electrode and containing a first conductive type impurity element. The device further includes a source region of a first conductive type provided between the interlayer insulating film and the first contact region, the source region being in contact with a side face of the interlayer insulating film and extending in the base region.
US08502302B2 Integrating Schottky diode into power MOSFET
A semiconductor device includes a plurality of trenches including active gate trenches in an active area and gate runner/termination trenches and shield electrode pickup trenches in a termination area outside the active area. The gate runner/termination trenches include one or more trenches that define a mesa located outside an active area. A first conductive region is formed in the plurality of trenches. An intermediate dielectric region and termination protection region are formed in the trenches that define the mesa. A second conductive region is formed in the portion of the trenches that define the mesa. The second conductive region is electrically isolated from the first conductive region by the intermediate dielectric region. A first electrical contact is made to the second conductive regions and a second electrical contact to the first conductive region in the shield electrode pickup trenches. One or more Schottky diodes are formed within the mesa.
US08502301B2 Semiconductor device and method for fabricating the same
A semiconductor device includes an isolation region (11a) formed in a semiconductor substrate (10), an active region made of the semiconductor substrate (10) surrounded by the isolation region (11a) and having a trench portion, a MIS transistor of a first-conductivity type having a gate electrode (13) formed on the active region, a first sidewall (19) formed on a side surface of the gate electrode between the gate electrode (13) and the trench portion as viewed in the top, and a silicon mixed crystal layer (21) of the first-conductivity type, the trench portion being filled with the silicon mixed crystal layer (21) of the first-conductivity type, a substrate region provided between the trench portion and the isolation region (11a, 11b) and made of the semiconductor substrate (10), and an impurity region (22) of the first-conductivity type formed in the substrate region. The silicon mixed crystal layer (21) generates stress in a channel region of the active region.
US08502300B2 Non-volatile semiconductor memory device
An dielectric film is formed above the semiconductor substrate. A first conductive layer is formed in the dielectric film and extending in a first direction. The first conductive layer is connected to a first select transistor. A second conductive layer formed in the dielectric film and extending in the first direction. The second conductive layer is connected to a second select transistor. A semiconductor layer is connected to both the first and second conductive layers and functioning as a channel layer of a memory transistor. A gate-insulating film is formed on the semiconductor layer. The gate-insulating film includes a charge accumulation film as a portion thereof. A third conductive layer is surrounded by the gate-insulating film.
US08502296B1 Non-volatile memory cell with asymmetrical split gate and related system and method
A method includes forming at least one control gate over a semiconductor substrate. The method also includes depositing a layer of conductive material over the at least one control gate and the semiconductor substrate. The method further includes etching the layer of conductive material to form multiple spacers adjacent to the at least one control gate, where at least one of the spacers forms a floating gate in at least one memory cell. Two spacers could be formed adjacent to the at least one control gate, and one of the spacers could be etched so that a single memory cell includes the control gate and the remaining spacer. Also, two spacers could be formed adjacent to the at least one control gate, and the at least one control gate could be etched and separated to form multiple control gates associated with different memory cells.
US08502294B1 Semiconductor process and semiconductor structure for memory array with buried digit lines (BDL)
A semiconductor process for a memory array with buried digit lines is described. A first trench is formed in a semiconductor substrate. A liner layer is formed on the sidewall of the first trench. A second trench is formed in the substrate under the first trench. A mask layer is formed at the bottom of the second trench. An isotropic doping process is performed using the liner layer and the mask layer as a mask to form a digit-side junction only in the substrate at the sidewall of the second trench.
US08502282B2 Normally-off integrated JFET power switches in wide bandgap semiconductors and methods of making
Wide bandgap semiconductor devices including normally-off VJFET integrated power switches are described. The power switches can be implemented monolithically or hybridly, and may be integrated with a control circuit built in a single- or multi-chip wide bandgap power semiconductor module. The devices can be used in high-power, temperature-tolerant and radiation-resistant electronics components. Methods of making the devices are also described.
US08502281B2 Integrated circuit having vertical compensation component
An integrated circuit and component is disclosed. In one embodiment, the component is a compensation component, configuring the compensation regions in the drift zone in V-shaped fashion in order to achieve a convergence of the space charge zones from the upper to the lower end of the compensation regions is disclosed.
US08502279B2 Nano-electro-mechanical system (NEMS) structures with actuatable semiconductor fin on bulk substrates
Semiconductor devices are formed with a nano-electro-mechanical system (NEMS) logic or memory on a bulk substrate. Embodiments include forming source/drain regions directly on a bulk substrate, forming a fin connecting the source/drain regions, forming two gates, one on each side of the fin, the two gates being insulated from the bulk substrate, and forming a substrate gate in the bulk substrate. The fin is separated from each of the two gates and the substrate gate with an air gap.
US08502268B2 LDMOS structure
A LDMOS structure includes a gate, a source, a drain and a bulk. The gate includes a polycrystalline silicon layer, the source includes a P-implanted layer, the drain includes the P-implanted layer, a P-well layer, and a deep P-well layer. A bulk terminal is connected through the P-implanted layer, the P-well layer, the deep P-well layer, and a P-type buried layer to the bulk. The LDMOS structure is able to be produced without any extra masking step, and it has compact structure, low on-resistance, and is able to withstand high current and high voltage.
US08502265B2 Light emitting device having different multi-quantum well materials
A light emitting device includes: an active layer including a multi-quantum well having a well layer and a barrier layer, the active layer including a non-emitting region and an emitting region formed around the non-emitting region; a first cladding layer provided on a first major surface of the active layer; a pad electrode provided above the first cladding layer so that its center is located near a center of the non-emitting region as viewed in a direction perpendicular to the first major surface; and a second cladding layer provided below a second major surface of the active layer opposite to the first major surface. A bandgap of the well layer in the non-emitting region is wider than a bandgap of the well layer in the emitting region and narrower than a bandgap of the first cladding layer.
US08502261B2 Side mountable semiconductor light emitting device packages and panels
Side-mountable semiconductor light emitting device packages include an electrically insulating substrate having a front face and a back face and a side face extending therebetween. The side face is configured for mounting on an underlying surface. An electrically conductive contact is provided proximate an edge of the substrate on the back face of the substrate and/or on a recessed region on the side face of the substrate. The contact is positioned to be positioned proximate an electrical connection region of the underlying surface when the semiconductor light emitting device package is side mounted on the underlying surface. A conductive trace extends along the front face of the substrate and is electrically connected to the contact. A semiconductor light emitting device is mounted on the front face of the substrate and electrically connected to the conductive trace.
US08502255B2 Light emitting diode
An LED includes a seat and an LED chip. The seat includes a main body, a first electrode protruding upwardly from the main body, and a second electrode formed on the main body. The LED chip includes a substrate, a first semiconductor layer disposed on the substrate, a light-emitting layer disposed on the first semiconductor layer, a second semiconductor layer disposed on the light-emitting layer, and a third electrode fixed on the second semiconductor layer. The first electrode extends through the substrate and electrically connects with the first semiconductor layer, and the third electrode electrically connects with the second electrode via a wire.
US08502252B2 Optoelectronic component, and method for the production of an optoelectronic component
An optoelectronic component (1) is provided, having at least two connecters (2) for electrical contacting of the component (1), a housing body (3), in which the connecters (2) are embedded in places, a heat sink (4), which is connected to at least one connecter (2), wherein the housing body (3) is formed of a plastics material, the housing body (3) comprises an opening (30), in which the heat sink (4) is freely accessible in places, at least one optoelectronic semiconductor chip (5) is arranged in the opening (30) on the heat sink (4), and at least two of the connecters (2) each comprise a chip-end portion (2c), which faces the at least one optoelectronic semiconductor chip (5), wherein the chip-end portions (2c) of the at least two connecters (2) are arranged in a common plane.
US08502251B2 LED module comprising a dome-shaped color conversion layer
An LED module comprises at least one LED chip emitting monochromatic light having a first spectrum, a platform on which the LED chip is mounted, a reflecting wall that is separate from or integrated into the platform and surrounds the LED chip on all sides, and a dispensed layer applied above the LED chip. The dispensed layer extends in a dome-shaped manner beyond the reflecting wall such that the following equation is satisfied: 0.1*b≦h≦0.5*b where h is the height of the dome-shaped dispensed layer, measured from the topmost point of the reflecting wall to the apex of the dome, and b is the diameter of the depression formed by the reflecting wall, measured as the distance from the central axis of the wall.
US08502248B2 Light emitting device, having protrusions from a conductive support member, lighting emitting device package, and lighting system
Disclosed is a light emitting device. The light emitting device includes a light emitting structure layer including a first semiconductor layer, an active layer, and a second semiconductor layer, an electrode electrically connected to the first semiconductor layer, an electrode layer under the light emitting structure layer, and a conductive support member under the electrode layer. The conductive support member includes a protrusion projecting from at least one edge.
US08502244B2 Solid state lighting devices with current routing and associated methods of manufacturing
Solid state lighting (“SSL”) devices with improved contacts and associated methods of manufacturing are disclosed herein. In one embodiment, an SSL device includes a first semiconductor material, a second semiconductor material spaced apart from the first semiconductor material, and an active region between the first and second semiconductor materials. The SSL device also includes a first contact on the first semiconductor material and a second contact on the second semiconductor material. The second contact is opposite the first contact. The SSL device further includes an insulative material between the first contact and the first semiconductor material, the insulative material being generally aligned with the second contact.
US08502243B2 Display substrate, method of manufacturing the display substrate, and display device having the display substrate
A display substrate includes a base substrate, a first dielectric layer, a first lattice pattern, a second lattice pattern, and a second dielectric layer. The first lattice pattern is disposed on the first dielectric layer at a first color pixel region. The first lattice pattern includes a plurality of first nano metal wires. The second lattice pattern is disposed on the first dielectric layer at a second color pixel region. The second lattice pattern includes a plurality of second nano metal wires. The second nano metal wires have different dimensions from the first nano metal wires. The second dielectric layer covers the first nano metal wires and the second nano metal wires.
US08502233B2 Light emitting element, light emitting device and semiconductor device
It is an object of the present invention to provide a semiconductor device, in particular, a light emitting element which can be easily manufactured with a wet method. One feature of the invention is a light emitting device including a transistor and a light emitting element. In the light emitting element, an organic layer, a light emitting layer, and a second electrode are sequentially formed over a first electrode, and the transistor is electrically connected to the light emitting element through a wiring. Here, the wiring contains aluminum, carbon, and titanium. The organic layer is formed by a wet method. The first electrode which is in contact with the organic layer is formed from indium tin oxide containing titanium oxide.
US08502230B2 Organic light-emitting display
An organic light-emitting display is disclosed. In one embodiment, the display includes i) a substrate, ii) a thin film transistor formed on the substrate, and comprising i) a gate electrode, ii) an active layer electrically insulated from the gate electrode, and iii) source and drain electrodes that are electrically connected to the active layer and iii) a first electrode electrically connected to the thin film transistor. The display further includes an intermediate layer formed on the first electrode and comprising an organic emission layer and a second electrode formed on the intermediate layer, wherein the source electrode or the drain electrode has an optical blocking portion extending in the direction of substrate thickness.
US08502229B2 Array substrate for display device and method of fabricating the same
An array substrate including a substrate having a pixel region, a gate line and a gate electrode on the substrate, the gate electrode being connected to the gate line, a gate insulating layer on the gate line and the gate electrode, an oxide semiconductor layer on the gate insulating layer, an auxiliary pattern on the oxide semiconductor layer, and source and drain electrodes on the auxiliary pattern, the source and drain electrodes being disposed over the auxiliary pattern and spaced apart from each other to expose a portion of the auxiliary pattern, the exposed portion of the auxiliary pattern exposing a channel region and including a metal oxide over the channel region, wherein a data line crosses the gate line to define the pixel region and is connected to the source electrode, a passivation layer on the source and drain electrodes and the data line.
US08502223B2 Silicon wafer having testing pad(s) and method for testing the same
The present invention relates to a silicon wafer having testing pad(s) and a method for testing the same. The silicon wafer includes a silicon substrate, an insulation layer, at least one testing pad and a dielectric layer. The testing pad includes a first metal layer, a second metal layer and at least one first interconnection metal. The first metal layer is disposed on the insulation layer, and has a first area and a second area. The first area and the second area are electrically insulated with each other. The second metal layer is disposed above the first metal layer. The first interconnection metal connects the second area of the first metal layer and the second metal layer. Therefore, when a through hole and a seed layer are formed in the following processes, the through hole is estimated whether it is qualified by probing the testing pad to know whether the seed layer connects the second area of the first metal layer of the testing pad, thus the yield rate of the following processes is increased.
US08502222B2 Amorphous oxide semiconductor, semiconductor device, thin film transistor and display device
An amorphous oxide semiconductor contains at least one element selected from In, Ga, and Zn at an atomic ratio of InxGayZnz, wherein the density M of the amorphous oxide semiconductor is represented by the relational expression (1) below: M≧0.94×(7.121x+5.941y+5.675z)/(x+y+z)  (1) where 0≦x≦1, 0≦y≦1, 0≦z≦1, and x+y+z≠0.
US08502221B2 Semiconductor device with two metal oxide films and an oxide semiconductor film
An object is to stabilize electric characteristics of a semiconductor device including an oxide semiconductor to increase reliability. The semiconductor device includes an insulating film; a first metal oxide film on and in contact with the insulating film; an oxide semiconductor film partly in contact with the first metal oxide film; source and drain electrodes electrically connected to the oxide semiconductor film; a second metal oxide film partly in contact with the oxide semiconductor film; a gate insulating film on and in contact with the second metal oxide film; and a gate electrode over the gate insulating film.
US08502219B2 Method for growing zinc-oxide-based semiconductor device and method for manufacturing semiconductor light emitting device
A method which has a low-temperature growth step of growing a buffer layer of a ZnO-based single crystal on the substrate at a growth temperature in the range of 250° C. to 450° C. using a polar oxygen material and a metalorganic compound containing no oxygen; performing a heat treatment of the buffer layer to effect a transition of the buffer layer to a thermostable-state single crystal layer; and a high-temperature growth step of growing the ZnO-based single crystal layer on the thermostable-state single crystal layer at a growth temperature in the range of 600° C. to 900° C. using a polar oxygen material and a metalorganic compound containing no oxygen.
US08502217B2 Oxide semiconductor device including insulating layer and display apparatus using the same
Provided is an oxide semiconductor device including an oxide semiconductor layer and an insulating layer coming into contact with the oxide semiconductor layer in which the insulating layer includes: a first insulating layer coming into contact with an oxide semiconductor, having a thickness of 50 nm or more, and including an oxide containing Si and O; a second insulating layer coming into contact with the first insulating layer, having a thickness of 50 nm or more, and including a nitride containing Si and N; and a third insulating layer coming into contact with the second insulating layer, the first insulating layer and the second insulating layer having hydrogen contents of 4×1021 atoms/cm3 or less, and the third insulating layer having a hydrogen content of more than 4×1021 atoms/cm3.
US08502216B2 Semiconductor device
An object is to prevent an impurity such as moisture and oxygen from being mixed into an oxide semiconductor and suppress variation in semiconductor characteristics of a semiconductor device in which an oxide semiconductor is used. Another object is to provide a semiconductor device with high reliability. A gate insulating film provided over a substrate having an insulating surface, a source and a drain electrode which are provided over the gate insulating film, a first oxide semiconductor layer provided over the source electrode and the drain electrode, and a source and a drain region which are provided between the source electrode and the drain electrode and the first oxide semiconductor layer are provided. A barrier film is provided in contact with the first oxide semiconductor layer.
US08502211B2 Organic light emitting diode display and manufacturing method thereof
An organic light emitting diode display includes: a substrate having first and second regions; a first thin film transistor (TFT) including source and drain electrodes at the first region; a second TFT including source and drain electrodes at the second region; a protective layer on the first and second TFTs; a planarization layer pattern on the protective layer; a first pixel electrode electrically connected to the source electrode or the drain electrode of the first TFT through a first via contact hole through the protective layer; and a second pixel electrode electrically connected to the source electrode or the drain electrode of the second TFT through a second via contact hole formed through the protective layer and the planarization layer pattern, the planarization layer pattern corresponding to a shape of the second pixel electrode and located between the protective layer and the second pixel electrode.
US08502209B2 Polymer compound and organic transistor using the same
A polymer compound comprising a repeating unit represented by the formula (I): [wherein X1 represents an oxygen atom, a sulfur atom or N(RN)—, R1 to R4 and RN represent a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkoxy group, an arylalkylthio group, an arylalkenyl group, an arylalkynyl group, a mono-valent heterocyclic group or the like.].
US08502208B2 Organic light-emitting device
An organic light-emitting device cutting off ambient light while keeping emission intensity includes a pair of first and second electrodes opposed to each other; and a plurality of organic semiconductor layers layered and disposed between the first and second electrodes, wherein the organic semiconductor layers include an organic light-emitting layer, the organic semiconductor device further comprising a light-scattering layer layered and disposed between the organic light-emitting layer and at least one of the first and second electrodes. The light-scattering layer includes: organic materials having carrier injection and transport characteristics of transporting electrons and/or holes; and plural particles dispersed among the organic materials so that light emitted from the organic light-emitting layer is passed therethrough.
US08502206B2 Organic light emitting diode display device with different configurations of switching and driving transistors
An organic light emitting diode (OLED) display device and a method of fabricating the same are disclosed. The OLED display device includes a plurality of scan lines, a plurality of data lines, and a plurality of pixels disposed in a region in which the scan lines cross the data lines, where each pixel of the plurality of pixels includes: a switching transistor including a first gate electrode, a first semiconductor layer disposed over the first gate electrode, a first gate insulating layer interposed between the first gate electrode and the first semiconductor layer, a first source electrode and a first drain electrode, a driving transistor including a second semiconductor layer, a second gate electrode disposed over the second semiconductor layer, a second gate insulating layer interposed between the second gate electrode and the second semiconductor layer, a second source electrode and a second drain electrode, and an organic light emitting diode electrically connected with the second source and second drain electrodes of the driving transistor, where the first and second semiconductor layers are formed of the same material, and from the same processing.
US08502203B2 Laminated structure, method of manufacturing a laminated structure, electronic element, electronic element array, image displaying medium, and image displaying device
Disclosed is a laminated structure, including a substrate, a wettability changing layer on the substrate, the wettability changing layer including a material, a critical surface tension of the material being changed by providing energy thereto, and an electrically conductor layer on the substrate, the electrically conductor layer formed on a region of the wettability changing layer, the region being provided with the energy, wherein the material includes a structural unit including a side chain and a structural unit including no side chain.
US08502202B2 Light-emitting element, light-emitting device, electronic device, and lighting device
An object is to provide a light-emitting element capable of emitting light with a high luminance even at a low voltage, and having a long lifetime. The light-emitting element includes n EL layers between an anode and a cathode (n is a natural number of two or more), and also includes, between m-th EL layer from the anode and (m+1)-th EL layer (m is a natural number, 1≦m≦n−1), a first layer including a first donor material in contact with the m-th EL layer, a second layer including an electron-transport material and a second donor material in contact with the first layer, and a third layer including a hole-transport material and an acceptor material in contact with the second layer and the (m+1)-th EL layer.
US08502198B2 Switching device and methods for controlling electron tunneling therein
A switching device includes at least one bottom electrode and at least one top electrode. The top electrode crosses the bottom electrode at a non-zero angle, thereby forming a junction. A metal oxide layer is established on at least one of the bottom electrode or the top electrode. A molecular layer including a monolayer of organic molecules and a source of water molecules is established in the junction. Upon introduction of a forward bias, the molecular layer facilitates a redox reaction between the electrodes, thereby reducing a tunneling gap between the electrodes.
US08502195B2 Carbon nanotube hybrid photovoltaics
Systems, methods and devices for the efficient photocurrent generation in single- or multi-walled carbon nanotubes, which includes (SWNTs)/poly [3-hexylthiophene-2,5-diyl] (P3HT) hybrid photovoltaics, and exhibit the following features: photocurrent measurement at individual SWNT/P3HT heterojunctions indicate that both semiconducting (s-) and metallic (m-) SWNTs function as excellent hole acceptors; electrical transport and gate voltage dependent photocurrent indicate that P3HT p-dopes both s-SWNT and m-SWNT, and exciton dissociation is driven by a built-in voltage at the heterojunction. Some embodiments include a mm2 scale SWNT/P3HT bilayer hybrid photovoltaics using horizontally aligned SWNT arrays, which exhibit greater than 90% effective external quantum efficiency, among other things, which advantageously provide carbon nanomaterial based low cost and high efficiency hybrid photovoltaics.
US08502192B2 LED with uniform current spreading and method of fabrication
A lateral light emitting diode comprises a layer stack disposed on one side of a substrate, the layer stack including a p-type layer, n-type layer, and a p/n junction formed therebetween. The LED may further include a p-electrode disposed on a first side of the substrate and being in contact with the p-type layer on an exposed surface and an n-electrode disposed on the first side of the substrate and being in contact with an exposed surface of an n+ sub-layer of the n-type layer.
US08502190B2 Device of light-emitting diode
A LED device is provided. The LED device has a conductive carrier substrate, a light-emitting structure, a plurality of pillar structures, a dielectric layer, a first electrode and a second electrode. The light-emitting structure is located on the conductive carrier substrate. The pillar structures are located on the light-emitting structure. The dielectric layer is to cover a sidewall of the pillar structure. The first electrode is located over the pillar structure, and the second electrode is located on the conductive carrier substrate.
US08502187B2 Resistive switching memory element including doped silicon electrode
A resistive switching memory element including a doped silicon electrode is described, including a first electrode comprising doped silicon having a first work function, a second electrode having a second work function that is different from the first work function by between 0.1 and 1.0 electron volts (eV), a metal oxide layer between the first electrode and the second electrode, the metal oxide layer switches using bulk-mediated switching and has a bandgap of greater than 4 eV, and the memory element switches from a low resistance state to a high resistance state and vice versa.
US08502179B1 Amalgam of crushed hazardous radioactive waste, such as spent nuclear fuel rods, mixed with copious amounts of lead pellets, also granulated, to form a mixture in which lead granules overwhelm
A method, a product and an apparatus suited to transform radioactive waste by forming an amalgam of crushed hazardous radioactive waste, such as spent nuclear fuel rods, mixed with copious amounts of lead pellets, also granulated, to form a mixture in which lead granules overwhelm, and which is then further enclosed between solid lead slabs and compressed between rollers under high pressure to render the rolled end product a compacted amalgam radiation-free for integration into the environment.
US08502176B2 Imaging system
A charged particle multi-beamlet system for exposing a target (11) using a plurality of beamlets. The system comprises a charged particle source (1) for generating a charged particle beam (20), a beamlet aperture array (4D) for defining groups of beamlets (23) from the generated beam, a beamlet blanker array (6) comprising an array of blankers for controllably blanking the beamlets (23), a beam stop array (8) for blanking beamlets (23) deflected by the blankers, the beam stop array (8) comprising an array of apertures, each beam stop aperture corresponding to one or more of the blankers, and an array of projection lens systems (10) for projecting beamlets on to the surface of the target. The system images the source (1) onto a plane at the beam stop array (8), at the effective lens plane of the projection lens systems (10), or between the beam stop array (8) and the effective lens plane of the projection lens systems (10), and the system images the beamlet aperture array (4D) onto the target (11).
US08502173B2 System and method for ion implantation with improved productivity and uniformity
A method comprising introducing an injected gas (e.g., Argon, Xenon) into a beam line region comprising a magnetic scanner is provided herein. The injected gas improves beam current by enhancing (e.g., increasing, decreasing) charge neutralization of the magnetic ion beam (e.g., the ion beam at regions where the scanning magnetic field is non-zero) thereby reducing the current loss due to the zero field effect (ZFE). By reducing the current loss in regions having a magnetic field, the magnetic beam current is increased (e.g., the beam current is increased in regions where the magnetic field is non-zero) raising the overall beam current in a uniform manner over an entire scan path and thereby reducing the effect of the ZFE. In other words, the ZFE is removed by effectively minimizing it through an increase in the magnetized beam current.
US08502171B2 Mask manufacturing device
A pattern is formed on a mask substrate. Positional deviation information between an actual position of the pattern formed on the mask substrate and a design position decided at the time of designing the pattern is calculated. A heterogeneous layer of which a volume expands more greatly than that of surrounding mask substrate region is formed in a predetermined position within the mask substrate so that volume expansion of the heterogeneous layer according to the positional deviation information is achieved.
US08502170B2 Patterned radiation-sensing thermoplastic composite panels
A patterned scintillator panel including an extruded scintillator layer comprising a thermoplastic polyolefin and a scintillator material, wherein the scintillator layer comprises a pattern. Also disclosed is a method of making a patterned scintillator panel including forming a scintillator layer by melt extrusion, the scintillator layer comprising thermoplastic particles comprising a thermoplastic polyolefin and a scintillator material; and patterning the scintillator layer. Further disclosed is a method of making a patterned scintillator panel including forming a scintillator layer by injection molding, the scintillator layer comprising thermoplastic particles comprising a thermoplastic polyolefin and a scintillator material; and patterning the scintillator layer.
US08502167B2 Systems and methods for extending the useful life of optical sensors
The present invention provides a method for increasing the lifetime of an optical sensor. In one aspect, the method includes the step of configuring the optical sensor so that the duty cycle of sensor's radiant source is less than 100% over a continuous period amount of time when the sensor is periodically obtaining data regarding an analyte. By operating the sensor according to the above inventive method, the indicator molecules of the optical sensor are not excited during the entire continuous period of time during which the sensor is needed to provide data regarding the presence or concentration of a substance. Thus, the method increases the life of the indicator molecules.
US08502163B2 Charged particle beam device, vacuum valve therefor and operation thereof
A valve unit configured for a charged particle beam device having a beam path 2 is described. The valve unit includes a vacuum sealed valve housing 102 configured for a pressure difference between the inside of the valve housing and the outside of the valve housing, wherein the housing provides a beam path portion 103 for having a charged particle beam pass therethrough along the beam path, a valve positioning unit adapted for selectively providing a first movement of the valve housing such that the beam path portion is selectively moved into and out of the beam path, and at least one sealing element 122 configured for a second movement, wherein the second movement is different from the first movement.
US08502158B1 Distributed system for radiation detection utilizing multiple clustered detectors
A detection unit for detecting ionizing radiation including a crystal that interacts with incoming radiation; a processing module that analyzes the incoming radiation detected by the crystal; a positioning module that determines position of the detection unit; and a network interface module that receives and transmits time stamped radiation data and position information from/to a plurality of other detection units. The detection unit automatically identifies other detection units that are located close to form a cluster. The detection unit also includes radiation data integration logic that integrates the incoming radiation data from all detectors in cluster, the position of the detection unit, the received radiation data from other detection units and the received position information from other detection units in real time, and process it simultaneously, that allows significantly improve performance and reliability.
US08502157B2 Boron containing coating for neutron detection
A neutron detector includes an exterior shell bounding an interior volume. The neutron detector includes at least a wall portion serving as a cathode. In one example the wall portion has microfeatures. The neutron detector includes a central structure located within the interior volume and serving as an anode. The neutron detector includes a boron coating on the wall portion. In on example, the boron coating is applied by an electrostatic spray process. In one example, the boron coating conforms to the microfeatures on the wall portion. In one example, the wall portion has a thickness of between 2 to 5 microns. The neutron detector includes an electrical connector operatively connected to the central structure for transmission of a signal collected by the central structure. An associated method provides for depositing the boron coating.
US08502156B2 Detector material for a detector for use in CT systems, detector element and detector
A detector material for a detector is disclosed for use in CT systems, particularly in dual-energy CT systems, including a doped semiconductor. In at least one embodiment, the semiconductor is doped with a donator in a concentration, wherein the concentration of the donator corresponds to at least 50% of the maximum solubility thereof in the semiconductor material, and the donator produces flat imperfections having an excitation energy. The flat imperfections can be ionized and can provide additional freely moveable charge carriers. The freely moveable charge carriers can be captured by the spatially separated deep imperfections and thus reduce the number of the charged deep imperfections. In this way, pure time- and radiation-dependent effects, such as polarization, occur more often. The invention further more relates to the use of the detector material in a CT or dual-energy CT system for generating tomographic images of a test object.
US08502150B2 Pyroelectric detector, pyroelectric detection device, and electronic instrument
A pyroelectric detector includes a substrate, a support member, a spacer member, and a pyroelectric detecting element. The spacer member supports the support member over the substrate with a cavity part being formed therebetween. The pyroelectric detecting element includes a first electrode mounted on the support member, a second electrode, and a pyroelectric body between the first and second electrodes. The first electrode includes a first region on which the pyroelectric body is layered, and a second region protruding from the first region in plan view. The support member includes an insulating layer, a first wiring layer disposed on the second surface side of the insulating layer, and a first plug passing through the insulating layer at a position where the first wiring layer and the second region of the first electrode overlap in plan view to connect the first wiring layer with the first electrode.
US08502149B2 Thermal detector, thermal detection device, electronic instrument, and thermal detector manufacturing method
A thermal detector includes: a substrate; a support member supported so that a cavity is formed between the substrate and the support member; a heat-detecting element supported on the support member; a thermal transfer member disposed over the heat-detecting element, and including a thermal collecting portion made of a material having light-reflecting characteristics and having a pattern with which a portion of light incident to a region defined by the support member as seen in plan view enters towards the support member, and a connecting portion connecting the thermal collecting portion to the heat-detecting element; a first light-absorbing layer contacting the thermal transfer member between the thermal transfer member and the support member; and a second light-absorbing layer contacting the thermal transfer member and disposed on the thermal transfer member.
US08502146B2 Methods and apparatus for classification of defects using surface height attributes
One embodiment relates to a method of classifying a defect on a substrate surface. The method includes scanning a primary electron beam over a target region of the substrate surface causing secondary electrons to be emitted therefrom, wherein the target region includes the defect. The secondary electrons are detected from the target region using a plurality of at least two off-axis sensors so as to generate a plurality of image frames of the target region, each image frame of the target region including data from a different off-axis sensor. The plurality of image data frames are processed to generate a surface height map of the target region, and surface height attributes are determined for the defect. The surface height attributes for the defect are input into a defect classifier. Other embodiments, aspects and features are also disclosed.
US08502145B2 Electron microscope system and method for evaluating film thickness reduction of resist patterns
The invention provides a system for achieving detection and measurement of film thickness reduction of a resist pattern with high throughput which can be applied to part of in-line process management. By taking into consideration the fact that film thickness reduction of the resist pattern leads to some surface roughness of the upper surface of the resist, a film thickness reduction index value is calculated by quantifying the degree of roughness of the part corresponding to the upper surface of the resist on an electron microscope image of the resist pattern which has been used in the conventional line width measurement. The amount of film thickness reduction of the resist pattern is estimated by applying the calculated index value to a database previously made for relating a film thickness reduction index value to an amount of film thickness reduction of the resist pattern.
US08502139B2 Mass analysis device with wide angular acceptance including a reflectron
A mass analysis device with wide angular acceptance, notably of the mass spectrometer or atom probe microscope type, includes means for receiving a sample, means for extracting ions from the surface of the sample, and a reflectron producing a torroidal electrostatic field whose equipotential lines are defined by a first curvature in a first direction and a first center of curvature, and a second curvature in a second direction perpendicular to the first direction and a second center of curvature, the sample being positioned close to the first center of curvature.
US08502137B2 Mass spectrometry systems
Described herein are methods that may be used related to mass spectrometry, such as mass spectrometry analysis, mass spectrometry calibration, identification of proteins/peptides by mass spectrometry and/or mass spectrometry data collection strategies. In one embodiment, the subject matter discloses a phase-modeling analysis method for identification of proteins or peptides by mass spectrometry.
US08502136B2 Saliva assay technique for heavy metal
A method for determining heavy metal loading in a subject includes collecting a saliva sample from the subject containing a concentration of a heavy metal. The saliva sample is subjected to inductively coupled plasma mass spectrometry to yield a heavy metal loading measurement for the subject. The saliva sample is readily collected on a substrate absorbing a preselected amount of saliva such as filter paper. As the amount of saliva necessary to saturate a given volume of substrate is known, the volume of saliva within a substrate is also known. The resulting heavy metal loading measurement is readily correlated with a blood level for the heavy metal in the subject.
US08502135B2 Method for through-casing 3-phase saturation determination
A method for estimating a parameter of interest of an earth formation having a fluid contained in pores of the earth formation, the method includes: conveying a carrier through a borehole penetrating the earth formation; irradiating the earth formation with neutrons from a neutron source disposed at the carrier; measuring radiation emitted from the earth formation resulting from the irradiating using at least one detector; calculating or determining a mathematical parameter from radiation measured by the at least one detector; predicting values of the mathematical parameter over a range of values of an earth formation property; and comparing the mathematical parameter to the predicted values to estimate the parameter of interest.
US08502134B2 Radiation measurement instrument calibration facility capable of lowering scattered radiation and shielding background radiation
The present invention relates to a radiation measurement instrument calibration facility with the abilities of lowering scattered radiation and shielding background radiation and it is capable of providing a suitable environment for performing performance test, calibration and experiment upon a radiation measurement instrument. In an embodiment, the calibration facility comprises: a shielding device, a collimator, a multi-source irradiator, a radiation baffle, a carrier, an electric door unit and a control unit. With the design of the calibration facility of the present invention, the interference coming from the background radiation and scattered radiation in the laboratory during the radiation measurement instrument calibration can be effectively reduced to enhance the accuracy of measurement or calibration for the instrument, and also the instrument calibration and testing can be performed in radiation fields of low-, medium- and high-dose rate levels to meet the requirements of ISO 4037-1 (1996) Standard.
US08502133B2 Water phantom
The present invention is related to a water phantom for measuring and determining the dose distribution of radiation produced by a particle beam or photon radiation beam comprising: a water tank; means for varying the water level in said water tank; an acquisition detector positioned in a fixed position related to the water tank opposite to the beam, wherein said acquisition detector is a two dimensional detector comprising a plurality of sensors and capable of simultaneously measuring the dose in a plurality of points in an area. Subsequent measurements are performed varying each time the water level within the water tank, until the dose distribution in the entire volume of the water tank is obtained.
US08502132B2 Manipulation of objects in potential energy landscapes
A method for manipulating a plurality of objects. The method includes the steps of providing a shaping source, applying the shaping source to create a spatially symmetric potential energy landscape, applying the potential energy landscape to a plurality of objects, thereby trapping at least a portion of the plurality of objects in the,24 potential energy landscape, spatially moving the potential energy landscape to manipulate the plurality of objects; and extinguishing the potential energy landscape, thereby causing the plurality of objects to move freely when the potential energy landscape is extinguished.
US08502130B2 Light guide array for an image sensor
An image sensor pixel that includes a photoelectric conversion unit supported by a substrate and an insulator adjacent to the substrate. The pixel includes a cascaded light guide that is located within an opening of the insulator and extends above the insulator such that a portion of the cascaded light guide has an air interface. The air interface improves the internal reflection of the cascaded light guide. The cascaded light guide may include a self-aligned color filter having air-gaps between adjacent color filters. Air-gaps may be sealed from above by a transparent sealing film. The transparent sealing film may have a concave surface over the air-gap to diverge light that crosses the concave surface into the air-gap away from the air-gap into adjacent color filters. These characteristics of the light guide eliminate the need for a microlens. Additionally, a portion of a support wall between a pair of color filters may have a larger width above than below to form a necking to hold down the color filters for better retention.
US08502125B2 Microwave oven door with a waves chokes system
The present invention relates to an oven door with a wave chokes system for a microwave oven. The oven door includes at least one transparent door panel made of a dielectric material and a metallization enclosing at least partially the transparent door panel. The oven door includes further a plurality of lamellae arranged uniformly on one side of the metallization and at least one front shielding, which is arranged in the center portion on at least one side of the transparent door panel. The metallization and the lamellae are formed by a coating on the transparent door panel, wherein said coating is made of a conductive material and applied on the transparent door panel. Further, the present invention relates to a corresponding microwave oven. Additionally, the present invention relates to a method for manufacturing an oven door with a wave chokes system for a microwave oven.
US08502122B2 Induction heating system and induction heating method of metal plate
The invention provides an induction heating system and method of using it for heating a metal plate. The induction coil of the induction heating system includes sections each having conductors at front and back surfaces of the metal plate, which are arranged such that at least a one of the front or back surface conductor has a part slanted in the width direction of the metal plate, and vertical projections of the conductors onto the metal plate do not overlap at the center of the metal plate but overlap outside the edges of the metal plate. In addition, front conductors from adjacent sections are spaced differently as back conductors. The induction heating system allows for better control of the heating temperature distribution regardless of the metal plates thickness and magnetic properties, especially temperature distributions at the edges of the metal plate.
US08502120B2 Insulating blocks and methods for installation in insulated conductor heaters
An insulated conductor heater may include an electrical conductor that produces heat when an electrical current is provided to the electrical conductor. An electrical insulator at least partially surrounds the electrical conductor. The electrical insulator comprises a resistivity that remains substantially constant, or increases, over time when the electrical conductor produces heat. An outer electrical conductor at least partially surrounds the electrical insulator.
US08502119B2 Travel drive
A travel drive for a traversable or rotatable device. The drive includes at least one pin wheel engaging teeth of a gear ring. This abstract is not intended to define the invention disclosed in the specification, nor intended to limit the scope of the invention in any way.
US08502115B2 Engine driven welder-generator with chopper circuit
An engine driven welder-generator including a chopper circuit and being adapted to produce an AC weld output, a DC weld output, and an auxiliary output is provided. The engine driven welder-generator is capable of selectively running at a low engine speed or a high engine speed based on operator inputs and may produce both AC and DC power outputs while utilizing the chopper circuit. The engine driven welder-generator is also adapted to provide an auxiliary output during an AC welding process and a DC welding process.
US08502113B2 Apparatus and method for material processing using a transparent contact element
A method of preparing an apparatus for material processing by generating optical breakthroughs in an object. The apparatus includes a variable focus adjustment device. A contact element is mounted to the apparatus, the contact element has a curved contact surface having a previously known shape. The position of the contact surface is determined prior to processing the object, by focusing measurement laser radiation near or on the surface by the variable focus adjustment device, and the focus position is adjusted in a measurement surface intersecting the expected position of the contact surface. Radiation from the focus of the measurement laser radiation is confocally detected. The position of points of intersection between the measurement surface and the contact surface is determined from the confocally detected radiation to determine the position of the contact surface from the position of the points of intersection and the previously known shape of the contact surface.
US08502112B2 System and method for cutting using a variable astigmatic focal beam spot
A variable astigmatic focal beam spot is formed using lasers with an anamorphic beam delivery system. The variable astigmatic focal beam spot can be used for cutting applications, for example, to scribe semiconductor wafers such as light emitting diode (LED) wafers. The exemplary anamorphic beam delivery system comprises a series of optical components, which deliberately introduce astigmatism to produce focal points separated into two principal meridians, i.e. vertical and horizontal. The astigmatic focal points result in an asymmetric, yet sharply focused, beam spot that consists of sharpened leading and trailing edges. Adjusting the astigmatic focal points changes the aspect ratio of the compressed focal beam spot, allowing adjustment of energy density at the target without affecting laser output power. Scribing wafers with properly optimized energy and power density increases scribing speeds while minimizing excessive heating and collateral material damage.
US08502109B2 Method of monitoring the wear of at least one of the electrodes of a plasma torch
Method of controlling the wear of at least one of the electrodes of a plasma torch including two electrodes having the same main axis, and being separated by a chamber designed to receive a plasma-generating gas, and at least one element for generating a magnetic field placed locally to the at least one electrode for which the control of wear is sought, in which the arc root is made to sweep longitudinally over a portion of the surface of this electrode from an initial position until the arc root reaches a defined final position of the portion, the longitudinal progression of the arc root being defined by a function dependent on at least the time, f(t), which is fixed. At least the electrical energy consumed by the torch as a function of the time since the electrode was commissioned is measured, the measurements are recorded in a storage device and, from the temporal evolution of at least the electrical energy consumed over at least part of the measurements, an adjustment variable ξ(t) is defined for the function f(t) over a period of time τ determined by the state of wear of the electrode.
US08502108B2 Method and device for creating a micro plasma jet
A microhollow cathode discharge assembly capable of generating a low temperature, atmospheric pressure plasma micro jet is disclosed. The microhollow assembly has two electrodes: an anode and a cathode separated by a dielectric. A microhollow gas passage is disposed through the three layers. In some embodiments, the passage is tapered such that the area at the first electrode is larger than the area at the second electrode. When a potential is placed across the electrodes and a gas is directed through the gas passage, then a low temperature micro plasma jet can be created at atmospheric pressure or above.
US08502107B2 Method and apparatus for making products by sintering and/or melting
The invention relates to a method for making metallic and/or non-metallic products 2, in particular dental products, by freeform sintering and/or melting, in which the products 2 are fabricated layer by layer from a material 5 that is applied layer by layer by means of a computer-controlled high-energy beam 7, in particular a laser or electron beam. In order to reduce production times, beam 7 irradiates predetermined positions P1 to P6 of a layer of a material 5 a plurality of time, namely m times, where m is a whole integer greater than 1. Each of said positions P1 to P6 is initially heated during the first irradiation to a temperature below the melting point Tmelt of the material 5, and during the mth irradiation to a temperature above said melting point and is completely melted over the entire thickness of the layer in such a way that the material (5) fuses at said position to the layer thereunder. The invention also relates to an apparatus for performing said method.
US08502104B2 Method of building up an aluminum alloy part
A method of building up an aluminum alloy part by welding is disclosed. The method includes the steps of manually depositing a layer of aluminum alloy powder on the part in a build-up zone and welding the powder layer onto the part by laser welding. A mask having an opening of dimensions corresponding to the dimensions of the build-up zone is positioned on the part and the layer of powder is deposited on the part both in the build-up zone and overlaps onto the mask around the build-up zone. The height of the powder layer relative to the surface of the part is calibrated prior to the welding step.
US08502103B2 Submerged arc welding apparatus and method for submerged arc welding
A submerged arc welding apparatus of the present invention includes: a flux receiver for receiving and holding flux in an area formed by itself and a workpiece inside thereof when abutting against the workpiece on the open side; a flux feeder for supplying flux to the flux receiver; a welding torch for supplying a welding wire toward the workpiece with the tip disposed in the area where the flux is held; and a moving mechanism for moving the flux receiver and the welding torch along the direction of a welding line of the workpiece with the flux receiver abutting against the workpiece. A submerged arc welding method of the present invention includes: performing welding by opposing the welding torch to the workpiece and by moving the welding torch along the direction of the welding line with flux held in an area formed between the workpiece and the welding torch.
US08502102B2 DC switching device
A DC switching device including a plurality of arc-extinguishing chambers and a plurality of contacting units conductively connected in series to each other, each of the contacting units including a stationary contact and a movable contact movable between a rest position and a working position, an air gap is formed between the contacts when the movable contact is moved from the working position to the rest position and each of the chambers enclosing a contacting unit and including a splitter plate unit including one or more splitter plates arranged for splitting and cooling an arc occurring in the air gap between the contacts. The chambers include a permanent magnet for generating a magnetic field between the contacting unit and the splitter plate unit and the splitter plates are made of non-ferromagnetic material, and the splitter plates of the chambers are made of ferromagnetic material.
US08502101B2 Circuit breaker
An exemplary high voltage circuit breaker includes an interruption chamber that is filled with an extinguishing agent. The interruption chamber having at least two separable arcing contact pieces that are coaxially arranged and an arcing zone in which an electric arc is producible during an interruption process. The interruption chamber includes at least two inlets and at least one outlet located in between the two inlets. The inlets and the at least one outlet are connected with the arcing zone such that the electric arc is extinguishable in at least three arc interruption zones by means of extinguishing flows streaming out of the at least two inlets into the arcing zone upon pressurization and introduction of a portion of the extinguishing agent in the arcing zone, and leading an amount of the extinguishing flows through the outlet out of the arcing zone.
US08502097B2 Bridge style push-button with anchoring
The present technology provides a bridge-style push-button with anchoring, a device comprising same, and a method of assembly. The push-button comprises a first anchor portion for coupling to the device, a second anchor portion for coupling to the device, a resilient bridge portion suspended between the anchor portions, and an actuating portion mounted on the bridge portion. The first anchor portion is mounted along a differently oriented axis from the second anchor portion. The first and second anchor portions may be slideably mounted, rotatably mounted, or both. The device comprises anchor sites for mounting of the push-button. The method of assembly comprises coupling the first anchor portion to the device before the second anchor portion.
US08502096B2 Power adapter
A power adapter includes a shell, a power converter, a first power line, a second power line, a switch received in the shell, and a DC plug. The first power line connects the power rectifier to an external power source, and includes a first terminal and a second terminal. The second power line connects the power rectifier to the DC plug. The switch includes a fixed shaft fixed on the shell, a rotating plate rotatably positioned on the fixed shaft, a number of poles equidistantly disposed on the rotating plate, a number of conductive sheets for conducting the first and second terminal, and a stirring device connecting to the second power line. The conductive sheets are disposed on the rotating plate corresponding to the odd/even poles. When the second power line is pulled, the stirring device rotates the rotating plate to electrically connect or disconnect the first and second terminal.
US08502095B2 Switch actuation device
A switch actuation device for use in connection with electrical switch mechanism having an actuatable structure. The device includes an actuation mechanism in operable communication with the actuatable structure for use in urging the actuatable structure of the electrical switch mechanism from a first position to a second position. An actuatable electrical switch arrangement is also disclosed.
US08502094B2 Illuminated keyboard
An illuminated keyboard includes a transparent frame plate, a key, a light source and a membrane switch circuit module. The light beam emitted by the light source is transmissible through the transparent frame plate. Consequently, the light source may be disposed on the membrane switch circuit module, between the key and the transparent frame plate, or under the transparent frame plate.
US08502091B2 Two-Stage Switch for Surgical Device
A surgical device, comprising a control circuit operable to carry out at least two operational conditions of the surgical device, and a two-stage switch electrically connected to the control circuit, a first stage of the switch effecting a first of the at least two operational conditions and a second stage of the switch effecting a second of the at least two operational conditions that is different from the first operational condition, wherein the force required to sustain the first operational condition is less than the force required to enter the first operational condition and the force required to enter the second operational condition is greater than the force required to sustain the first operational condition.
US08502089B2 Method for contacting a rigid printed circuit board to a contact partner and arrangement of a rigid printed circuit board and contact partner
A method for producing an electrical connection between a rigid printed circuit board and a metallic contact partner, includes preparing the rigid printed circuit board having at least one copper layer and at least one prepreg layer, bringing the metallic contact partner and the printed circuit board together in such a way that the metallic contact partner is brought into contact with a contact pad on the copper layer of the printed circuit board, forming a cutout in the printed circuit board by removing the prepreg layer in at least one partial region of the contact pad, and irradiating with laser light to form a weld connection between the contact partner and the contact pad. A configuration of a rigid printed circuit board, a metallic contact partner and an electrical connection point, as well as a module having such a configuration, are also provided.
US08502086B2 Laminated wiring board and method for manufacturing the same
Wiring board bases 2 to 4 are provided with: insulating substrates 1a to 4a having conductive layers 1b to 4b provided on one surfaces thereof, respectively; through-holes 2e to 4e which are arranged on the insulating substrates and reach the conductive layers from the other surfaces; and conductive vias 2d to 4d connected to the conductive layers by filling the through-holes with a conductive paste. In a method for manufacturing a laminated wiring board, at least one of the wiring board bases is stacked. Before the through-hole is filled with the conductive paste, a surface portion, in the through-hole, of the conductive layer is smoothed and a smooth surface portion 2g is formed.
US08502079B2 Grommet
A grommet includes a wire passage supporting a wire harness, a pinch-grip, and a connector. The pinch-grip is fixable to a vehicle body panel by pinching a peripheral edge of the panel surrounding a through-hole. The connector has an annular shape having a curved portion recessed to an inner periphery, the recessed portion extending in a peripheral direction. One end of the connector is joined to the wire passage and the other end is joined to the pinch-grip.
US08502078B2 Flame-retardant composition, insulated electric wire, and wiring harness using the same
A flame-retardant composition and an insulated electric wire and a wiring harness using the flame-retardant composition. The flame-retardant composition includes a base resin that has a flexural modulus of 500 MPa or more and a Charpy impact strength at −20° C. of 1 KJ/m2 or more, and a flame retardant that is a pulverized natural mineral containing magnesium hydroxide as a main ingredient. The base resin preferably contains polypropylene as a main ingredient, and the content of the magnesium hydroxide is preferably 30 to 250 parts by mass with respect to 100 parts by mass of the base resin. The insulated electric wire includes a conductor and the flame-retardant composition that covers the conductor. The wiring harness includes the insulated electric wire.
US08502077B2 Electrical conductive element
A conductive element suitable for the transmission of an electrical operating signal to a detonator, which conductive element comprises a conductive filler homogeneously dispersed in a polymer matrix.
US08502076B2 Cold shrinkable secondary splice
An insulating system for splicing a pair of cables having at least partially exposed non-insulating portions joined with a metallic connector is disclosed. The insulating system includes an insulating tube constructed from a shape memory material having a central section having a substantially elliptical cross-section and a pair of end sections with substantially circular cross-sections. A pair of support cores is removably insertable in each of the end sections for holding the end sections in a stretched configuration. When the insulating system is placed about the cables and the connector and the support cores are removed from the end sections, the end sections return to a pre-stretched configuration, thereby completing a splice of the cables.
US08502073B2 Low impedance boosted high speed data cable
A high speed video cable carries signals according to the High-Definition Multimedia Interface (HDMI) or DisplayPort standards, and includes a raw cable and a boost device. The raw cable includes coaxial lines of a characteristic cable impedance lower than the impedance implied in the standards. The correct impedance is observed at the sending end by series resistors mounted in the first cable connector. The resultant loss of signal is made up with the boost device mounted in the connector at the other end of the cable.
US08502072B2 Spliced cable with overmolded water proof coating and method for making the same
A cable includes an outer jacket of polyethylene surrounding a plurality of conductive wires. Each one of the plurality of insulated conductive wires comprises a conductive core and an insulating layer surrounding the conductive core, the insulating layer being made of cross-linked polyethylene.
US08502057B2 Electronic musical instrument
By a musical performance guide which is in “waiting mode” with a “tempo-follow” enabled setting, an electronic musical instrument illuminates a guide lamp at a point in time which is earlier by a tone-generation start allowable period Ta than the note-on timing of a musical tone of a melody part of automatic musical performance data to start musical performance guide. The tone-generation start allowable period Ta is an allowable time #2 which is sufficiently longer than that of a case of a tempo-follow disabled setting. When a user has depressed a correct key within the tone-generation start allowable period Ta, the electronic musical instrument starts generating a melody tone to move the position of the automatic musical performance data which is to be reproduced forward.
US08502052B1 Guzmania hybrid named ‘freeze’
A new and distinct Guzmania hybrid named ‘FREEZE’ characterized by solid growth habit; funnel-form rosette plant, measuring about 46 cm to 50 cm in height (above the pot when flowering); numerous, green color foliage (measuring about 40 to 50 cm length and about 2.5 to 4 cm in width) Superior floral bract production; bracts are white in color (closest to RHS 158A); compound inflorescence, measuring about 15 cm in height when flowering, and about 18 cm in diameter; and long-lasting habit.
US08502051B2 Guzmania hybrid named ‘REMIX’
A new and distinct Guzmania hybrid named ‘REMIX’ characterized by solid growth habit; funnel-form rosette plant, measuring about 35 cm to 42 cm in height (above the pot when flowering); numerous, green color foliage, measuring about 40 cm to 46 cm in length and about 2.5 cm to 3.5 cm in width; superior floral bract production; bracts have a unique, red with yellow inflorescence which distinguishes this cultivar from typical Guzmania; compound inflorescence, measuring about 9 cm in height and about 16 cm in diameter; and long-lasting habit.
US08502047B1 Hybrid corn variety 980001
The invention provides seed and plants of the hybrid corn variety designated 980001. The invention thus relates to the plants, seeds and tissue cultures of the variety 980001, and to methods for producing a corn plant produced by crossing a corn plant of variety 980001 with itself or with another corn plant, such as a plant of another variety. The invention further relates to genetic complements of plants of variety 980001.
US08502046B2 Plants and seeds of hybrid corn variety CH131799
According to the invention, there is provided seed and plants of the hybrid corn variety designated CH131799. The invention thus relates to the plants, seeds and tissue cultures of the variety CH131799, and to methods for producing a corn plant produced by crossing a corn plant of variety CH131799 with itself or with another corn plant, such as a plant of another variety. The invention further relates to genetic complements of plants of variety CH131799.
US08502045B1 Maize variety inbred PH18MB
A novel maize variety designated PH18MB and seed, plants and plant parts thereof. Methods for producing a maize plant that comprise crossing maize variety PH18MB with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into PH18MB through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. Hybrid maize seed, plant or plant part produced by crossing the variety PH18MB or a locus conversion of PH18MB with another maize variety.
US08502044B1 Maize variety inbred PH1DHH
A novel maize variety designated PH1DHH and seed, plants and plant parts thereof. Methods for producing a maize plant that comprise crossing maize variety PH1DHH with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into PH1DHH through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. Hybrid maize seed, plant or plant part produced by crossing the variety PH1DHH or a locus conversion of PH1DHH with another maize variety.
US08502041B2 Plants and seeds of hybrid corn variety CH409461
According to the invention, there is provided seed and plants of the hybrid corn variety designated CH409461. The invention thus relates to the plants, seeds and tissue cultures of the variety CH409461, and to methods for producing a corn plant produced by crossing a corn plant of variety CH409461 with itself or with another corn plant, such as a plant of another variety. The invention further relates to genetic complements of plants of variety CH409461.
US08502039B2 Plants and seeds of hybrid corn variety CH595207
According to the invention, there is provided seed and plants of the hybrid corn variety designated CH595207. The invention thus relates to the plants, seeds and tissue cultures of the variety CH595207, and to methods for producing a corn plant produced by crossing a corn plant of variety CH595207 with itself or with another corn plant, such as a plant of another variety. The invention further relates to genetic complements of plants of variety CH595207.
US08502038B2 Tomato hybrid PS01059664
The invention provides seed and plants of tomato hybrid PS01059664 and the parent lines thereof. The invention thus relates to the plants, seeds and tissue cultures of tomato hybrid PS01059664 and the parent lines thereof, and to methods for producing a tomato plant produced by crossing such plants with themselves or with another tomato plant, such as a plant of another genotype. The invention further relates to seeds and plants produced by such crossing. The invention further relates to parts of such plants, including the fruit and gametes of such plants.
US08502037B2 Bean line FIVC6V0998
The invention provides seed and plants of the bean line designated FIVC6V0998. The invention thus relates to the plants, seeds and tissue cultures of bean line FIVC6V0998, and to methods for producing a bean plant produced by crossing a plant of bean line FIVC6V0998 with itself or with another bean plant, such as a plant of another line. The invention further relates to seeds and plants produced by such crossing. The invention further relates to parts of a plant of bean line FIVC6V0998, including the pods and gametes of such plants.
US08502036B1 Soybean cultivar 13203100
A soybean cultivar designated 13203100 is disclosed. The invention relates to the seeds of soybean cultivar 13203100, to the plants of soybean cultivar 13203100, to the plant parts of soybean cultivar 13203100, and to methods for producing progeny of soybean cultivar 13203100. The invention also relates to methods for producing a soybean plant containing in its genetic material one or more transgenes and to the transgenic soybean plants and plant parts produced by those methods. The invention also relates to soybean cultivars or breeding cultivars, and plant parts derived from soybean cultivar 13203100. The invention also relates to methods for producing other soybean cultivars, lines, or plant parts derived from soybean cultivar 13203100, and to the soybean plants, varieties, and their parts derived from use of those methods. The invention further relates to hybrid soybean seeds, plants, and plant parts produced by crossing cultivar 13203100 with another soybean cultivar.
US08502035B1 Soybean cultivar 16352100
A soybean cultivar designated 16352100 is disclosed. The invention relates to the seeds of soybean cultivar 16352100, to the plants of soybean cultivar 16352100, to the plant parts of soybean cultivar 16352100, and to methods for producing progeny of soybean cultivar 16352100. The invention also relates to methods for producing a soybean plant containing in its genetic material one or more transgenes and to the transgenic soybean plants and plant parts produced by those methods. The invention also relates to soybean cultivars or breeding cultivars, and plant parts derived from soybean cultivar 16352100. The invention also relates to methods for producing other soybean cultivars, lines, or plant parts derived from soybean cultivar 16352100, and to the soybean plants, varieties, and their parts derived from use of those methods. The invention further relates to hybrid soybean seeds, plants, and plant parts produced by crossing cultivar 16352100 with another soybean cultivar.
US08502034B1 Soybean cultivar 18172925
A soybean cultivar designated 18172925 is disclosed. The invention relates to the seeds of soybean cultivar 18172925, to the plants of soybean cultivar 18172925, to the plant parts of soybean cultivar 18172925, and to methods for producing progeny of soybean cultivar 18172925. The invention also relates to methods for producing a soybean plant containing in its genetic material one or more transgenes and to the transgenic soybean plants and plant parts produced by those methods. The invention also relates to soybean cultivars or breeding cultivars, and plant parts derived from soybean cultivar 18172925. The invention also relates to methods for producing other soybean cultivars, lines, or plant parts derived from soybean cultivar 18172925, and to the soybean plants, varieties, and their parts derived from use of those methods. The invention further relates to hybrid soybean seeds, plants, and plant parts produced by crossing cultivar 18172925 with another soybean cultivar.
US08502028B2 Soybean variety A1023487
The invention relates to the soybean variety designated A1023487. Provided by the invention are the seeds, plants and derivatives of the soybean variety A1023487. Also provided by the invention are tissue cultures of the soybean variety A1023487 and the plants regenerated therefrom. Still further provided by the invention are methods for producing soybean plants by crossing the soybean variety A1023487 with itself or another soybean variety and plants produced by such methods.
US08502027B2 Precise breeding—low acrylamide foods
The present invention relates to a new plant breeding process. The process improves the agronomic performance of crop plants by using genetic material that is also used in classical breeding. Instead of sexually recombining entire genomes at random, as is done in classical breeding, specific genetic elements are rearranged in vitro and inserted back into individual plant cells. Plants obtained through this new plant breeding process do not contain foreign nucleic acid but only contain nucleic acid from the plant species selected for transformation or plants that are sexually compatible with the selected plant species. Plants developed through this new plant breeding process are provided. In particular, potato plants displaying improved tuber storage and health characteristics are provided.
US08502024B2 Sweet corn hybrid SEY6RH1263 and parents thereof
The invention provides seed and plants of sweet corn hybrid SEY6RH1263 and the parent lines thereof. The invention thus relates to the plants, seeds and tissue cultures of sweet corn hybrid SEY6RH1263 and the parent lines thereof, and to methods for producing a sweet corn plant produced by crossing such plants with themselves or with another sweet corn plant, such as a plant of another genotype. The invention further relates to seeds and plants produced by such crossing. The invention further relates to parts of such plants, including the parts of such plants.
US08502022B2 Plants and seeds of hybrid corn variety CH533378
According to the invention, there is provided seed and plants of the hybrid corn variety designated CH533378. The invention thus relates to the plants, seeds and tissue cultures of the variety CH533378, and to methods for producing a corn plant produced by crossing a corn plant of variety CH533378 with itself or with another corn plant, such as a plant of another variety. The invention further relates to genetic complements of plants of variety CH533378.
US08502016B1 Genomic alpha synuclein transgenic animal
The invention provides transgenic animals having a transgene comprising a genomic human alpha synuclein segment including six exons, five introns and at least one mutation associated with synucleinopathic disease operably linked to a human alpha synuclein promoter. The transgenic animals have characteristics of synucleinopathic disease including elevated levels of alpha synuclein in the brain, formation of intracellular deposits of alpha synuclein that have at least one, and preferably all features of Lewy bodies, formation of alpha-synuclein fragments, or phosphorylated forms of alpha synuclein, loss of neuronal cells, glial cells or oligodentricytes, impairment of motor function and/or impairment of cognitive function.
US08502015B1 Method of inducing cancer
A method induces cancer, such as ovarian cancer, in primates for testing of therapeutic treatments and preclinical research and development. A nanoparticle delivers plasmid DNA encoding oncogenes and siRNAs for tumor suppressor genes. For example, a biocompatible polymer, chitosan, is complexed with three plasmids including one that carries the cDNA encoding RAS oncogene and two plasmids encoding siRNAs for two tumor supressor genes p53 and Rb. Laproscopic delivery of these nanoparticles to the ovaries of non-human primates causes ovarian carcinoma, which is detected one month after delivery of the nanoparticles.
US08502007B2 Char methanation catalyst and its use in gasification processes
The invention provides processes for generating a methane-enriched gas from a gas mixture comprising carbon monoxide and hydrogen such as gas streams generated by gasification of an alkali metal catalyst-loaded carbonaceous feedstock, and a char methanation catalyst useful in such processes.
US08502006B2 Dimerization process
A process for the dimerization of isoolefins is disclosed. The process may include: contacting an isoolefin with sulfurous acid in a reaction zone at conditions of temperature and pressure sufficient to dimerize at least a portion of the isoolefin.