专利类型 | 发明公开 | 法律事件 | 公开; 实质审查; |
专利有效性 | 实质审查 | 当前状态 | 实质审查 |
申请号 | CN201880073797.4 | 申请日 | 2018-09-18 |
公开(公告)号 | CN111356475A | 公开(公告)日 | 2020-06-30 |
申请人 | 波士顿大学董事会; | 申请人类型 | 学校 |
发明人 | 纳尔逊·鲁伊斯-奥帕索; 维多利亚·L.M.·埃雷拉; | 第一发明人 | 纳尔逊·鲁伊斯-奥帕索 |
权利人 | 波士顿大学董事会 | 权利人类型 | 学校 |
当前权利人 | 波士顿大学董事会 | 当前权利人类型 | 学校 |
省份 | 当前专利权人所在省份: | 城市 | 当前专利权人所在城市: |
具体地址 | 当前专利权人所在详细地址:美国马萨诸塞州 | 邮编 | 当前专利权人邮编: |
主IPC国际分类 | A61K39/00 | 所有IPC国际分类 | A61K39/00 ; A61P7/00 ; A61P29/00 ; A61P37/06 ; C07K16/18 ; C07K16/28 |
专利引用数量 | 5 | 专利被引用数量 | 0 |
专利权利要求数量 | 89 | 专利文献类型 | A |
专利代理机构 | 北京信慧永光知识产权代理有限责任公司 | 专利代理人 | 洪俊梅; 张淑珍; |
摘要 | 本文描述了方法和组合物,所述方法和组合物涉及借助DEspR 抑制剂 (例如抗DEspR 抗体 试剂 )抑制中性粒细胞(例如抑制NET释放或NETosis)的方法。在一些实施方式中,该方法可以涉及 治疗 疾病 ,例如癌症或这样的疾病:在该疾病中,中性粒细胞、NET、或NETosing或NETting中性粒细胞促成疾病的发病、慢性化或恶化。在一些实施方式中,DEspR抑制剂可以是双特异性试剂或抗体-药物缀合物。 | ||
权利要求 | 1.一种降低中性粒细胞存活和/或活性的方法,所述方法包括使所述中性粒细胞与DEspR抑制剂接触。 |
||
说明书全文 | 用于治疗NETosis和中性粒细胞激活的方法[0001] 相关申请的交叉引用 [0002] 根据35U.S.C.§119(e),本申请要求2017年9月18日递交的美国临时申请No.62/559,874以及2018年6月15日递交的美国临时申请No.62/685,377的优先权,以引用的方式将它们的内容整体并入本文。 [0003] 政府支持 [0004] 本发明是在由美国国立卫生研究院资助的基金No.T32EB006359的政府支持下完成的。美国政府对本发明拥有一定的权利。 技术领域[0005] 本文所述的技术涉及治疗NETosis和中性粒细胞相关病理的方法。 背景技术[0006] 最常见的血细胞类型—多形核中性粒细胞(polynuclear morphogenic neutrophil,PMN)寿命很短,通常在血流中仅持续数小时。在对损伤和/或感染的反应期间,这些PMN被激活以杀死细菌细胞,并且作为该激活过程的一部分,它们的寿命延长。同时,在对损伤的反应期间(其中,释放损伤相关分子模式(DAMP)),PMN也被激活以启动伤口愈合,并且寿命更长,从数小时到数天。但是,异常调节(dysregulated)的激活的PMN不仅对细菌具有致死性或伤害性,还可对宿主本身具有致死性或伤害性,导致中性粒细胞驱动的继发性(2°)组织损伤的恶性循环,称为中性粒细胞悖论。Weiss,S.J.1989.Tissue destruction by neutrophils.N.Engl.J.Med.320:365-376。当激活的PMN持续存在而不消退时,这尤为成问题,引起a)可能导致死亡的PMN激活和组织损伤的自放大循环,或引起b)促进或加重慢性病的交互作用(reciprocal interaction)或导致免疫逃逸。 [0007] 通常,激活的PMN能够在到达其靶位点(损伤位点或病原体位点)时自行关闭,并启动“主动消退(active resolution)”的过程。但是,当激活的PMN不自行关闭或变为异常调节时,这引起慢性病恶化或中性粒细胞驱动的继发性(2°)组织损伤的自维持恶性循环。如何关闭或中和中性粒细胞驱动的2°组织损伤而不引起进一步的损害或诱发新问题仍是重大挑战。在急性危机中或在慢性病或慢性病的加重发作中,还没有能够阻止中性粒细胞驱动的2°损伤的恶性循环的FDA批准的疗法。 [0008] 新出现的数据表明,除激活的PMN以外,中性粒细胞胞外诱捕网(neutrophil extracellular trap,NET)也是中性粒细胞驱动的继发性(2°)组织损伤的关键因素。NETosis(由PMN挤出(extruding)NET的过程)可以为PMN细胞死亡的形式,或可以作为其中PMN保持存活的活力NETosis(vital NETosis)而发生。由于NET的生物物理特性,它们可以诱发组织的直接损伤(例如血脑屏障破坏)以及恶化损伤(例如脑创伤)或病理(例如血管炎、动脉粥样硬化血栓形成),如血管阻塞和血栓形成。 [0009] 在治疗免疫系统被错误调节(misregulated)的多种病症(例如自身免疫疾病或癌症)中以及与激活的PMN损害(所述损害导致威胁生命的继发性组织损伤或慢性病恶化)特别相关的病症(例如COPD、镰状细胞危象、囊性纤维化、糖尿病、系统性红斑狼疮)中,消退问题性的激活的PMN的方法相当令人感兴趣。防止或避免NETosis或中和NET的方法也相当令人感兴趣。 [0010] 迄今为止,还没有疗法能够避免或停止激活的PMN驱动的组织损伤或系统性器官功能障碍或慢性病恶化或NET相关的组织损伤。尚未实现停止中性粒细胞和/或NET而不抑制或激活其它类型的白细胞或进一步激活中性粒细胞或激活补体系统或干扰凝血系统。 发明内容[0011] 如本文所述,本发明人已经发现可以特异性结合至DEspR的试剂可以阻断或逆转激活的PMN的延长的寿命。在一个实施方式中,本文称为抗DEspR抗体的人源化抗体能够阻断或逆转actPMN的延长的寿命。因此,本文所述的方法允许异常调节的激活的PMN的快速功能关闭和清除,并且可以减少或防止由异常调节的(例如过度的)PMN激活引起的有害副作用(例如组织损伤和/或器官功能障碍),同时对其它重要器官或重要功能没有有害副作用。 [0012] 在任何实施方式的一个方面,本文描述了降低中性粒细胞的存活和/或活性的方法,该方法包括使中性粒细胞与DEspR抑制剂接触。在任何实施方式的一个方面,本文描述了在有需要的受试者中防止或减少中性粒细胞胞外诱捕网(NET)释放或actPMN NETosis或活力NETosis的方法,该方法包括向受试者给予治疗有效量的DEspR抑制剂。 [0013] 在任何方面的一些实施方式中,中性粒细胞是激活的中性粒细胞(actPMN)。 [0014] 在任何实施方式的一个方面,本文描述了在有需要的受试者中防止或减少NET释放或actPMN NETosis或活力NETosis的方法,该方法包括给予缀合至抗中性粒细胞试剂或抗NET试剂的治疗有效量的抗DEspR抗体试剂。 [0015] 在任何方面的一些实施方式中,DEspR抑制剂是抗DEspR抗体试剂或其抗原结合片段。在任何方面的一些实施方式中,抗DEspR抗体试剂是单克隆抗体或其抗原结合片段。在任何方面的一些实施方式中,抗DEspR抗体试剂是能够特异性结合至i)DEspR和ii)PD1或PD-L1的双特异性试剂。 [0016] 在任何方面的一些实施方式中,抗体试剂具有选自如下的互补决定区:SEQ ID NO:1-SEQ ID NO:3、SEQ ID NO:9-SEQ ID NO:11、SEQ ID NO:17-SEQ ID NO:19、SEQ ID NO:5-SEQ ID NO:7、SEQ ID NO:13-SEQ ID NO:15、SEQ ID NO:21-SEQ ID NO:23、SEQ ID NO:25-SEQ ID NO:27、SEQ ID NO:29-SEQ ID NO:31以及SEQ ID NO:33-SEQ ID NO:35。 [0017] 在任何方面的一些实施方式中,受试者需要针对其中中性粒细胞促成疾病发病或恶化的病症或疾病的治疗。在任何方面的一些实施方式中,所述病症或疾病选自于由如下所组成的组:系统性炎症反应综合征(SIRS);急性肺损伤(ALI);急性呼吸窘迫综合征(ARDS);来自例如ARDS、出血性休克、手术、烧伤或败血症的多器官衰竭或多器官功能障碍综合征(MODS);败血症;败血症诱导的凝血病;创伤;多发性硬化;急性肾损伤(AKI);AKI相关的肾小管坏死和远处器官损伤(distant organ injury);创伤后手术;出血性休克;感染或由药物或任何试剂诱导的细胞因子风暴;缺血性或出血性卒中;卒中继发性脑损伤;心肌缺血/梗死;动脉粥样硬化易损斑块(atherosclerotic vulnerable plaques);动脉粥样硬化血栓形成;冠状动脉疾病;急性冠状动脉综合征;心脏衰竭;再灌注损伤;肾透析患者中的合并症(comorbidities)(例如血栓形成和内皮功能障碍);缺血或药物诱导的脑中出血性转化、出血性脑病、创伤性脑损伤;缺氧性(anoxic)脑损伤、慢性肾病;癌症;actPMN依赖性癌症;糖尿病;1型糖尿病;2型糖尿病;血管病(angiopathies);血管病变(vasculopathies);终末器官并发症(例如视网膜病变或糖尿病肾病);糖尿病溃疡伤口愈合不良;深静脉血栓形成;癌症;癌症转移;系统性微血栓形成;化学疗法诱导的微血栓形成;动脉粥样硬化血栓形成;系统性红斑狼疮(SLE);狼疮性肾炎;SLE加速的动脉粥样硬化; 类风湿性关节炎;COPD;囊性纤维化;肺病;阿尔茨海默氏病;镰状细胞病;炎症性肠病(IBD);克罗恩病;溃疡性结肠炎;以及未定型(indeterminate)结肠炎。 [0018] 在任何方面的一些实施方式中,受试者需要针对癌症的治疗并且具有PD-L1+/DespR+肿瘤。 [0019] 在任何方面的一些实施方式中,受试者需要针对癌症的治疗并且先前曾经通过肿瘤切除术进行治疗。在任何方面的一些实施方式中,向受试者进一步给予进一步的免疫疗法。在任何方面的一些实施方式中,先前曾经向受试者给予进一步的免疫疗法。在任何方面的一些实施方式中,受试者对利用进一步的免疫疗法进行的治疗耐受。在任何方面的一些实施方式中,受试者已经从利用进一步的免疫疗法进行的治疗中产生毒性。在任何方面的一些实施方式中,免疫疗法是PD1和/或PD-L1抑制剂疗法,或共刺激分子(co-stimulator)疗法。 [0021] 图1A-图1D描绘了通过抗DEspR鼠mAb 6g8(人源化抗DEspR mAb6g8-IgG4 humab的原型)检测到的人激活的中性粒细胞上的DEspR表达。图1A)用AF568荧光标记的6g8 mumab免疫染色的人激活的中性粒细胞的代表性图像;DAPI核染色。图1B)同型对照(Isotype control)为阴性表明抗DEspR免疫染色对DEspR表达的特异性。图1C)对经历NETosis的人中性粒细胞的抗DEspR 6g8 mumab免疫染色。DAPI将挤出的DNA染色。图1D)NET的高倍放大视图,以及NET的参考公开图像,其中DNA用SYTOX绿染色(插图)。 [0022] 图2A-图2B描绘了大鼠激活的中性粒细胞上的DEspR表达以及抗DEspR对激活的中性粒细胞存活的抑制。图2A)DEspR+(粗体椭圆)和DEspR[-](粗体圆圈)的CD11b激活的中性粒细胞的FACS分析。象限Q4中静止的(Quiescent)中性粒细胞为DEspR[-]和CD11B[-]。图2B描绘了靶向DEspR上的两个不同表位的两种不同的抗DEspR mAb对激活的中性粒细胞的延长的存活的抑制。 [0023] 图3A-图3F阐释了在非感染性过度激活的中性粒细胞介导的出血性脑病(HgeEnc)模型中抗DEspR mAb疗法的体内功效(efficacy)分析。图3A)进行PBS缓冲液灌注以清除血管内血液后的对照大鼠脑。图3B)在低剂量脂多糖(LPS)iv输注24小时后表现出全面的出血性脑炎的未处理大鼠脑。图3C)抗DespR处理的大鼠脑,具有最低限度的出血性脑炎或无出血性脑炎(LPS输注后立刻iv给予1mg/kg/剂)。图3D)脑膜蛋白的ELISA分析表明,与抗DEspR鼠mAb处理的大鼠脑(道2和道3,均显示鼠IgG水平)相反,来自两个对照组(道C,正常对照,即没有LPS诱导的脑病;以及道1,有LPS诱导的脑病的未处理对照)的脑中没有鼠IgG。值得注意的是,抗DEspR 6g8展示出高于抗DEspR 10a3的脑水平。图3E)脑中的中性粒细胞髓过氧化物酶(MPO)水平的ELISA分析(将正常(道C)、未处理的Hge-Enc脑(道1)以及靶向不同DEspR表位的两种鼠mAb的抗DEspR处理的应答(道2、道3)进行比较)显示脑中MPO水平降低,因此表明了抗DEspR抑制脑中激活的中性粒细胞浸润的功效。图3F)大鼠特异性白蛋白的ELISA分析表明,两种抗DEspR(10a3、6g8)mAb处理的大鼠中白蛋白水平均下降,这与以白蛋白流入减少为标志的脑水肿下降是一致的。 [0024] 图4描绘了在主要表现为出血性脑病的LPS诱导的多器官衰竭的大鼠模型中,抗DEspR处理的大鼠与未处理大鼠相比的存活曲线分析(表型在图3A-图3F中确证)。 [0025] 图5表明了在患有中度至重度慢性肾病~4期(4)和5期(5)的雌性大鼠中,抗DEspR mAb(hu-6g8)(3mg/kg iv剂量×1剂,在基线采样后给予)降低了白蛋白尿、尿白蛋白肌酐比率(UACR)。图例:hu-6g8,人源化抗DEspR单克隆抗体;HSD,通过自由饮用2%NaCl水诱导的高盐饮食;CKD,用高盐饮食(2%NaCl)诱导的患有慢性肾病的具有中度肾硬化(Raij评分~300)的Dahl盐敏感性高血压大鼠;对照,未处理的年龄和性别匹配的CKD大鼠。 [0026] 图6描绘了抗DEspR完全人源化6g8 mAb(6g8-humab)和原型鼠抗DEspR 6g8 mAb(6g8-mumab)的功能活性的图比较。在使用和不使用抗DEspR mAb处理的存活抑制的体外测定法中,与6g8 mumab(IC50>200nM或(>30μg/mL),剂量应答存活测定法中使用的最大剂量)相比,6g8-humab展示改善的IC50<8nM(7.7nM±2.0)。使用台盼蓝染料排斥测定法对活细胞进行计数。 [0027] 图7描绘了在过度和异常调节时变得适应不良(maladaptive)的激活的中性粒细胞的抗菌功能的图。标记了由不同疗法靶向的部位。 [0028] 图8描绘了促进肿瘤中免疫逃逸的T细胞抑制的中性粒细胞机制(#1-#3)的图,因此抗DEspR诱导的细胞凋亡或激活的中性粒细胞存活的降低消除了中性粒细胞介导的免疫逃逸。#1)T细胞凋亡的诱导;#2)通过中性粒细胞释放的精氨酸酶1来抑制T细胞增殖和T细胞受体ζ链表达,通过中性粒细胞释放的活性氧(ROS)氧化丝切蛋白(cofilin)来抑制T细胞免疫突触成熟和存活;以及#3)通过释放蛋白酶(组织蛋白酶G、弹性蛋白酶)来抑制T细胞激活,所述蛋白酶分解T细胞刺激性细胞因子(IL-2、IL-6)并诱导受体脱落(shedding)。该图阐释了肿瘤中激活的中性粒细胞如何促进肿瘤的免疫逃逸以及抗DEspR诱导的激活的中性粒细胞的程序性细胞死亡如何因此消除激活的中性粒细胞(X)还导致肿瘤中多种机制的中性粒细胞介导的免疫逃逸的消除。 [0029] 图9描绘了在多个实体瘤实验模型中测试的MoA体外和体内支持性数据的概况。所有体内测试均在代表胰腺癌、胶质母细胞瘤、乳腺癌的CSC衍生异种移植(CDX)模型中进行。Col1/3,胶原1/3;CSC,癌干细胞;EC,内皮细胞;TNFα,肿瘤坏死因子α;↓,…减少; 被抗DEspR mAb抑制。 [0030] 图10描绘了图。抗DEspR mAb打破了由适应不良的过度激活的中性粒细胞活性(其导致组织损伤和NET损害并共同促进ALI/ARDS和MOF)介导的恶性循环。抗DEspR靶向激活的中性粒细胞,诱导凋亡以随后进行胞葬作用(efferocytosis),引起ALI/ARDS中的损伤级联和恶性循环的消退。相比之下,其它方法则靶向下游事件或终点,但不靶向中心驱动因子—激活的中性粒细胞。 [0031] 图11描绘了这样的图:该图表明人源化抗DEspR mAb hu-6g8不会引起静止中性粒细胞数量减少,因为它们是DEspR(-),即没有中性粒细胞减少的副作用。与未处理对照相比,抗DEspR hu-6g8也不会导致血小板计数或红细胞计数降低。第21天(第14天(Panc1-CSC异种移植(CDX)肿瘤确立后14天)处理启动后1周)开始每周测量全血计数(CBC)。 [0032] 图12描绘了这样的图:该图表明在急性卒中发作中给予的单剂量的抗DEspR mumab增加卒中易发型(stroke prone)转基因高脂血症/高血压(spTg25)大鼠的存活。通过尾静脉i.v.静脉内(i.v.)给予抗DEspR,同型对照,鼠IgG1(具有不显著至不存在的抗体依赖性细胞介导的细胞毒性或ADCC以及补体依赖性细胞毒性或CDC)。记录卒中症状至少1小时以排除短暂性缺血。如临床上通过卒中神经学迹象(癫痫发作、轻瘫、瘫痪、去皮质体位(decorticate posturing)、手足徐动症样运动(athetoid movements))的存在所进行的,鉴定了卒中发作。监测大鼠的存活率(死亡或第二次卒中后进行安乐死)。Kaplan Meier存活曲线分析,对数秩Mantel-Cox P<0.0001,中位生存期:未处理为0.5天,抗DEspR处理为22天;未处理的卒中大鼠的死亡危险比为17.8,95%CI为4.2至75.5。 [0033] 图13表明了当在具有免疫能力(immune-competent)的自发性乳腺肿瘤模型中进行测试时,抗DEspR使肿瘤尺寸消退,而不损害溃疡性肿瘤的伤口愈合。在处理前记录3天为不愈合的溃疡性肿瘤在第7天(处理后4天)显示出显著改善。中心侵蚀性溃疡周围的红色硬结肿瘤区域归因于中性粒细胞炎性浸润。到第7天的快速消退与抗DEspR诱导激活的中性粒细胞凋亡以通过巨噬细胞吞噬以及炎性红肿的最终消退一致。 [0034] 图14表明了抗DEspR mAb不会在盐敏感性高血压大鼠中恶化高血压或诱导高血压危象。使用无线电遥测术进行血压(BP)测量,从而能够以无应激方式进行测量,24/7。基线记录3天后,通过尾静脉输注抗DEspR并获得BP测量值。 [0035] 图15表明了抗DEspR在施用后2小时内在Panc1肿瘤细胞中诱导凋亡。在指定时间点(1小时和2小时(hr))将Panc1 CSC铺板,在培养基中暴露于AF568标记的(*)抗DEspR 7c5*或同型IgG*,洗涤,固定并用DAPI封片。CSC,癌干细胞样细胞。DAPI,DNA核染色剂,以及AF568。参考图像取自:Malorni等,Archana等,2013。 [0036] 图16表明了在具有免疫能力的大鼠中自发性乳腺肿瘤模型的更大肿瘤消退。在具有免疫能力的大鼠中的自发性乳腺肿瘤模型中,抗DEspR诱导从基线肿瘤体积(体积从759mm3到23,856mm3)的更大肿瘤消退。这与如下报道相一致:与异种移植免疫功能受损模型相比具有免疫能力的模型中的更大肿瘤消退与完整免疫系统在具有免疫能力的肿瘤模型中的抗肿瘤作用相一致。与此观点一致,在抗DEspR在免疫功能受损裸大鼠中的异种移植肿瘤模型中显著降低了肿瘤生长速度的同时,抗DEspR在具有免疫能力的CSC衍生大鼠模型中明显地使肿瘤尺寸从基线肿瘤体积消退。这些观察结果表明,抗DEspR对中性粒细胞存活的抑制作用消除了中性粒细胞介导的肿瘤免疫逃逸,这从而促进了肿瘤消退—但仅在具有免疫能力的肿瘤模型中。抗DEspR mAb具有鼠IgG1/κFc区,其具有不显著的抗体依赖性细胞介导的细胞毒性(ADCC)或补体依赖性细胞毒性(CDC),因此ADCC和CDC无法解释肿瘤的消退。 [0037] 图17A-图17C描绘了抗DEspR-mab(hu6g8 mab)。图17A描绘了DEspR、鼠前体mab以及人源化IgG和IgG4 mab的图。Hu6g8被标记为针对表位2产生的6g8g7-hu-IgG4,跨越推定的结合结构域。图17B描绘了以一式三份进行的hu6g8结合至完整人细胞上的DEspR的图,hu-6g8的EC50为4.2nM;相比之下,鼠前体mu-6g8的EC50为178nM。图17C描绘了抑制中性粒细胞(PMN)存活的图:hu6g8 IC50 7.7nM;相比之下,mu-6g8 mab IC50>198nM。 [0038] 图18A-图18B描绘了(图18A)人激活的中性粒细胞和(图18B)NET的免疫荧光分析。图18C描绘了用hu6g8-mab探测的人肾(K)和人激活的中性粒细胞(act-Ns)的Western印迹分析。肾DEspR被糖基化~17.5kDa;激活的中性粒细胞中的DEspR未糖基化,显示出预期大小9.8kDa MW。 [0039] 图19A-图19J描绘了PDAC组织和细胞系中的DEspR表达。对于(图19A)IIB期PDAC、(图19B)IV期PDAC、(图19C)正常胰腺、(图19D)PDAC:肝METS,描绘了人PDAC组织的荧光标记。图19E描绘了PDAC样品的肿瘤比例评分(n=133);图19F描绘了在肿瘤样品的侵袭边缘中DEspR[+]细胞的分数的图(n=77)。PDAC细胞上的DEspR表达:(图19G)Panc1非CSC;(图19H)Panc1 CSC;(图19I)MIA PaCa2非CSC;(图19J)MIA PaCa2 CSC。 [0040] 图20A-图20F。描绘了在(图20A)基础和(图20B)低pH下进行抗DEspR疗法的Panc1细胞活力。DEspR-humabAF-568的内吞作用显示1小时时的核共定位(图20C);1小时时的溶酶体共定位(图20D);以及1小时时的坏死(箭头)(图20E)和凋亡(箭头)(图20F)的形态。 [0041] 图21描绘了Panc1异种移植模型的存活图,显示用DEspR-humab处理后存活提高。 [0042] 图22描绘了在Panc1异种移植小鼠中DEspR-humab的PK研究;15mg/kg i.v.(n=3);半衰期=1.70天。图23A-图23B描绘了对人应激激活的中性粒细胞的免疫荧光分析,显示了具有经典多叶核的激活的中性粒细胞(图23A)和经历NETosis的中性粒细胞(图23B)中的DEspR+表达。描绘的是来自正常人志愿者的人应激激活的中性粒细胞的免疫细胞染色的合并图像。图23A描述了激活的中性粒细胞(actNs)DEspR+免疫染色。1]无NETS的actNs的高mag;2]具有表明非常早的NETosis的DNA边缘化的actNs的高mag。图23B描绘了具有完整细胞膜的经历活力NETosis的actNs。1)早期;2)中期;3)DNA完全挤出,限定了中性粒细胞胞外诱捕网(NET)。 [0043] 图24描绘了人应激激活的中性粒细胞的免疫细胞染色检测到中性粒细胞和NETosing中性粒细胞中的DEspR+表达。值得注意的是,并非所有中性粒细胞都是DEspR阳性。 [0044] 图25描绘了使用ABTM-468抗体检测人组织中DEspR的Western印迹分析。HK,人肾;N1,来自正常人志愿者的应激激活的中性粒细胞;N2,来自正常人志愿者的LPS激活的中性粒细胞。分子量标志物单位为kDa(千道尔顿)。 [0045] 图26描绘了DEspR中的丝氨酸和/或苏氨酸磷酸化位点的计算机分析的表,其检测到多个磷酸化位点,比最小截止值(cut-off values)高3.7至4.3倍的分数示于方框中。DEspR S72和T76、77、84。 [0046] 图27描绘了DEspR蛋白中的推定O-糖基化位点。[NetOGlyc 4.0服务器]。DEspR丝氨酸残基S16、S28、S31和苏氨酸残基T18、T24被预测为O-糖基化位点,以其得分>阈值0.5进行预测[Steentoft C等,2013;在万维网上在cbs.dtu.dk可得]。氨基酸残基:C,半胱氨酸;I,异亮氨酸;G,甘氨酸;L,亮氨酸;M,甲硫氨酸;Q,谷氨酰胺;S,丝氨酸;以及T,苏氨酸。 [0047] 图28描绘了从诊断起96小时时ARDS A04全血的FACS分析。A04在通气日幸存(surivied off vent day)(d)-4,在第6天出院。Hu6g8(DEspR-AF568),CD11b-FITC。来自ARDS患者的新鲜全血样品中的中性粒细胞、单核细胞和淋巴细胞中的DEspR表达的离体分析:刺激患者循环微环境。按尺寸(FSC)和粒度进行门控,以区分WBC亚型。抗DEspR hu-6g8 IgG4S228P mAb(同型对照hu-IgG4)。抗CD11b mAb(同型对照mu-IgG2b)。 [0048] 图29表明了与非幸存者相比,ARDS患者幸存者的DEspR+/CD11b+中性粒细胞水平较低。对照,AF-568荧光标记的人IgG4和AF-488标记的鼠IgG2b分别作为抗DEspR和抗CD11b mAb的同型对照。DEspR hu-6g8,用AF-568荧光标记的抗DEspR人源化IgG4 mAb。CD11b,用AF488荧光标记的抗CD11b鼠mAb。 [0049] 图30描绘了指示的细胞类型中的DEspR表达水平的图。 [0050] 图31描绘了这样的图:该图表明与其它参数相比,ARDS幸存者相对于ARDS非幸存者而言DEspR+/CD11b+中性粒细胞的数量要少得多。ARDS患者幸存者:A01、A04、A05、A06。ARDS非幸存者:A02。 [0051] 图32描绘了这样的图:该图表明DEspR+/CD11b+中性粒细胞与ARDS死亡率的关联指出了在导致ARDS患者多器官衰竭的系统性组织损伤中的关键作用。ARDS患者幸存者:A01、A04、A05、A06。ARDS非幸存者:A02。 [0052] 图33描绘了这样的图:该图表明10μg/mL的ABTM-468(hu-6g8)离体降低ARDS患者血液中活中性粒细胞的数量。通过FSC(尺寸)和SSC(粒度)门控对中性粒细胞的独特尺寸/粒度特性进行门控。在A02中检测到显著降低。在具有低DEspR+/CD11b+中性粒细胞的患者(A04、A05、A06)中未观察到影响。FSC,前向散射。SSC,侧向散射。N=4-5次重复;平均值±SD。对于A02和A03,全血在37℃孵育24小时(reg恒温箱,旋转,HEPES缓冲液中)。对于A04、A05和A06,在37℃孵育6小时。10μg/mL ABTM-468(cho)。*,P=0.0286Mann-Whitney秩和检验。ARDS患者幸存者:A01、A04、A05、A06。ARDS非幸存者:A02。 [0053] 图34描绘了人胰腺腹膜转移的异种移植大鼠模型(Panc1-癌干细胞CSC衍生的异种移植或Panc1-cdx模型)中的中性粒细胞-淋巴细胞比率的分析的图。ABTM-468,人源化抗DEspR mAb 6g8-IgG4S228P。 [0054] 图35A-图35B描绘了吉西他滨标准护理以及抗DEspR mAb诱导人胰腺癌细胞(Panc1)凋亡的浓度依赖性协同作用的体外测试的图。 [0055] 图36描绘了相比于单独的吉西他滨以及模拟(mock)处理的盐水对照,用抗DEspR mAb和吉西他滨的组合进行肿瘤处理的大鼠的代表性图像。GEM tx:吉西他滨处理(100mg/kg/剂iv×2)。Hu-6g8或ABTM-468:人源化抗DEspR mAb处理1mg/kg/剂iv×1/周×2。Combo-tx:组合疗法。盐水模拟Tx:模拟。 [0056] 图37A-图37D描绘了原发性胰腺癌(PDAC)的DEspR+免疫组织荧光的代表性显微术图像。来自两个不同患者的肿瘤切片。图37A描绘了来自第一患者的切片。图37B是没有说明性标签的同一图像。图37C描绘了来自第二患者的切片。图37D是没有说明性标签的同一图像。invTCs,侵袭性肿瘤细胞;actNs,激活的中性粒细胞。相比浸润炎性细胞,肿瘤细胞特征性地更大并具有更大的核。由于DEspR在淋巴细胞或单核细胞中不表达,因此DEspR+炎性细胞是NET易发型(NET-prone)激活的中性粒细胞和NETting中性粒细胞。 [0057] 图38A-图38B描绘了胰腺腹膜转移性肿瘤切片的肿瘤间质(tumor stroma)中的DEspR+中性粒细胞的代表性免疫组织荧光显微照片。肿瘤切片来自患者C:图38A是带有说明性标签的子图;图38B是用于无障碍视觉检查的无标签的对应的相同子图。invTCs,侵袭性肿瘤细胞;actNs,激活的中性粒细胞;黄色括号{}框出具有DEspR+侵袭性肿瘤细胞和浸润性中性粒细胞的肿瘤间质;白色箭头指向DEspR+肿瘤微血管。 [0058] 图39描绘了对照未处理肿瘤大鼠(左侧子图)和ABTM-468处理的大鼠(右侧子图)的代表性图像。对照大鼠因窘迫而被安乐死,对经处理的大鼠进行安乐死以获得年龄和肿瘤持续时间匹配的肿瘤。异种移植肿瘤模型由处理开始前3周注射到腹膜间隙中的Panc1癌干细胞发展而来。T,肿瘤;GB,胆囊。 [0059] 图40描绘了这样的图像:该图像表明,类似于向IV期PDAC发展的趋势增加的转移性肿瘤,在所有阶段的胰腺癌(PDAC)的肿瘤间质中均检测到DEspR+炎性细胞(NETosis易发型激活的中性粒细胞)。棒=20微米。 [0060] 图41A-图41C描绘了这样的图:该图表明ABTM-468抗DEspR处理改善了患有mod严重慢性肾病的高血压Dahl S大鼠中的肾功能。图41A是通过对肾硬化的Raij评分的定量分析来进行的慢性肾病的事后证明(post-hoc demonstration)。图41B表明了在没有抗高血压疗法的情况下,抗DEspR mAb处理ABTM-468在1×处理后7天使得白蛋白尿减少以及尿白蛋白肌酐比率(UACR)降低(图41C)。 [0061] 图42描绘了免疫荧光染色和共聚焦显微术数字显微照片。Hoechst:核DNA染色剂;抗Adar1抗体;抗DEspR hu-IgGS228P mAb(ABTM-468或hu-6g8);相位对比(phase contrast)以及相应的合并图像。 具体实施方式[0062] 如本文所述,已经发现抗DEspR试剂在功能上关闭异常调节的DEspR+actPMN。这种异常调节可导致组织损伤而非消退。因此,本文所述的抗DEspR试剂可以抑制驱动中性粒细胞介导的继发性组织损伤的DEspR+“劣种(rogue)”或过度激活的PMN(actPMN)的过度损伤性功能,例如通过抑制此类actPMN的延长的寿命。这种抑制减少了actPMN活性的过度损伤性水平和/或在受试者中存在给定水平的劣种DEspR+actPMN活性的持续时间。因此,此类抗DEspR试剂可用于治疗以DEspR+actPMN为特征和/或由DEspR+actPMN引起的多种病症。不希望被理论所束缚,本文中考虑了抗DEspR试剂可通过结合存在于actPMN表面上的DEspR而起作用。或者,抗DEspR试剂可以通过另一机制起作用,例如通过结合至与DEspR共享一个或多个表位的分子。 [0063] 在任何实施方式的一个方面,本文描述了降低激活的中性粒细胞的存活和/或活性的方法,该方法包括使中性粒细胞与DEspR抑制剂接触。在任何实施方式的一个方面,本文描述了在有需要的受试者中防止或减少中性粒细胞胞外诱捕网(NET)释放或actPMN NETosis的方法,该方法包括向受试者给予治疗有效量的DEspR抑制剂。 [0064] 本文所使用的“actPMN”、“激活的PMN”或“激活的中性粒细胞”是指已通过例如趋化信号、细胞因子、补体和/或LPS的存在而被激活的中性粒细胞(例如多形核细胞)。激活的中性粒细胞可表现出例如NET产生/释放、细胞表面整合素(例如CD11b/CD18)水平升高、ROS产生和释放以及脱粒(degranulation)。这些标志物和活性的水平容易通过本领域已知的以及在本文实施例中描述的测定法进行测量。actPMN的特征进一步在于增加的存活,例如超过未激活的中性粒细胞的正常寿命(例如数小时,或者在某些报道中为1-2天)。在任何方面的一些实施方式中,actPMN可以是DEspR+中性粒细胞。在任何方面的一些实施方式中,actPMN可以是CD11b+中性粒细胞。 [0065] 本文所使用的术语“NET”或“中性粒细胞胞外诱捕网”是指核小体和蛋白质(例如具有抗微生物活性的蛋白质)的细胞外复合物。激活后,中性粒细胞和其它细胞经历称为“NETosis”的细胞死亡程序,并以与具有抗微生物活性的各种蛋白质复合的核小体的形式释放核DNA的一部分(即NET)。NET从中性粒细胞的释放与败血症和非感染性疾病期间的炎症和微血栓形成有关,并被证明有助于本文所述的各种疾病的病理。活力NETosis是指NET释放而不伴随中性粒细胞的细胞死亡。 [0066] 本文所使用的“DEspR”或“双重内皮素/VEGF信号肽受体”是指在肿瘤细胞、微血管和非锚定依赖性癌干细胞(CSC)中表达的受体,其在细胞膜和核膜中以及细胞质中差异表达。与邻近的正常组织相比,人胰腺癌和胶质母细胞瘤中DEspR差异性增加。但是,尽管有这些数据,在NCBI数据库中DEspR仍被注释为非编码RNA或者ncRNA FBXW7反义RNA1。DEspR多肽以及核酸的序列是本领域已知的,例如人DEspR(NCBI基因ID:102191832)。例如,DEspR多肽可以是如由例如登录号EF212178.1、基因ID 102191832或Glorioso等(2007)所描述的MTMFKGSNEMKSRWNWGSITCIICFTCVGSQLSMSSSKASNFSGPLQLYQRELEIFIVLTDVPNYRLIKENSHLHTTIVDQGRTV(SEQ ID NO:37),连同其天然存在的等位基因、剪接变体及经加工形式。通常,本文所使用的DEspR是指SEQ ID NO:37的人DEspR。 [0067] 本文所使用的术语“抑制剂”是指能够将靶标的表达和/或活性降低例如至少10%或更多(例如10%或更多、50%或更多、70%或更多、80%或更多、90%或更多、95%或更多或98%或更多)的试剂。一种或多种靶标的抑制剂的功效(例如其降低靶标水平和/或活性的能力)可以通过例如测量靶标的活性和/或靶标的表达产物的水平来确定。测量给定mRNA和/或多肽水平的方法是本领域技术人员已知的,例如,用引物进行的RT-PCR可用于确定RNA水平,而用抗体进行的Western印迹可用于确定多肽水平。可以使用本领域已知的方法来确定例如DEspR的活性。在一些实施方式中,抑制剂可以是抑制性核酸;适体;抗体试剂;抗体;或小分子。 [0068] 在任何方面的一些实施方式中,DEspR抑制剂可以是抗DEspR抗体试剂、抗体或其抗原结合片段。本文所使用的术语“抗体试剂”是指这样的多肽:该多肽包含至少一个免疫球蛋白可变结构域或免疫球蛋白可变结构域序列,并特异性地结合给定抗原。抗体试剂可包括抗体或含有抗体的抗原结合结构域的多肽。在一些实施方式中,抗体试剂可包括单克隆抗体或含有单克隆抗体的抗原结合结构域的多肽。例如,抗体可包含重(H)链可变区(本文中缩写为VH)和轻(L)链可变区(本文中缩写为VL)。在另一实例中,抗体包含两个重(H)链可变区和两个轻(L)链可变区。术语“抗体试剂”涵盖了抗体的抗原结合片段(例如单链抗体、Fab片段和sFab片段、F(ab’)2、Fd片段、Fv片段、scFv和结构域抗体(dAb)片段)以及完整抗体。 [0069] 本文所使用的术语“抗体”是指免疫球蛋白分子和免疫球蛋白分子的免疫学活性部分,即包含免疫特异性地结合抗原的抗原结合位点的分子。该术语还指由两条免疫球蛋白重链和两条免疫球蛋白轻链组成的抗体以及包括全长抗体及其抗原结合部分在内的多种形式;包括例如免疫球蛋白分子、单克隆抗体、嵌合抗体、CDR移植抗体、人源化抗体、Fab、Fab’、F(ab’)2、Fv、二硫键连接的Fv、scFv、单结构域抗体(dAb)、双价抗体(diabody)、多特异性抗体、双重特异性抗体(dual specific antibody)、抗独特型抗体(anti-idiotypic antibody)、双特异性抗体(bispecific antibody)、它们的功能活性表位结合部分和/或双功能杂交抗体。 [0070] 每条重链由所述重链的可变区(在本文缩写为HCVR或VH)和所述重链的恒定区组成。重链恒定区由三个结构域CH1、CH2和CH3组成。每条轻链由所述轻链的可变区(在本文缩写为LCVR或VL)和所述轻链的恒定区组成。轻链恒定区由CL结构域组成。VH和VL区可以进一步分为被称为互补决定区(CDR)的高变区并散布有被称为框架区(FR)的保守区。因此,每个VH和VL区由三个CDR和四个FR组成,它们从N端到C端按以下顺序排布:FR1、CDR1、FR2、CDR2、FR3、CDR3、FR4。该结构是本领域技术人员所公知的。 [0071] 本文所使用的术语“CDR”是指抗体可变序列内的互补决定区。重链和轻链的各个可变区中有三个CDR,对于每个可变区将其指定为CDR1、CDR2和CDR3。这些CDR的确切边界根据不同系统而进行了不同界定。Kabat所描述的系统(Kabat等,Sequences of Proteins of Immunological Interest(National Institutes of Health,Bethesda,Md.(1987)and(1991))不仅提供了适用于任何抗体可变区的明确的残基编号系统,而且提供了界定三个CDR的精确残基边界。这些CDR可以称为Kabat CDR。界定与Kabat CDR重叠的CDR的其它边界已由Padlan(FASEB J.9:133-139(1995))和MacCallum(J Mol Biol 262(5):732-45(1996))和Chothia(J.Mol.Biol.196:901-917(1987)和Nature 342:877-883(1989))描述。其它CDR边界界定可能并不严格遵循上述系统之一,但仍会与Kabat CDR重叠,尽管根据“特定的残基或残基组或甚至整个CDR并不显著影响抗原结合”这样的预测或实验发现,它们可能会缩短或延长。本文使用的方法可以利用根据任何这些系统界定的CDR。 [0072] 术语抗体的“抗原结合部分”是指如本文所述的抗体的一个或多个部分,所述部分仍具有如上文所定义的结合亲和力。已经示出完整抗体的部分能够执行抗体的抗原结合功能。根据术语抗体的“抗原结合部分”,结合部分的实例包括:(i)Fab部分,即由VL、VH、CL和CH1结构域组成的单价部分;(ii)F(ab’)2部分,即包含通过二硫键在铰链区中彼此连接的两个Fab部分的二价部分;(iii)由VH和CH1结构域组成的Fd部分;(iv)由抗体的单臂的FL和VH结构域组成的Fv部分;以及(v)由VH结构域组成或由VH、CH1、CH2、CH3或VH、CH2、CH3组成的dAb部分(还示出了仅包含VL结构域的单结构域抗体或dAb特异性地结合至靶表位)。尽管Fv部分的两个结构域(即VL和VH)由分开的基因编码,但是它们可以进一步使用合成接头(例如多聚G4S氨基酸序列(作为SEQ ID NO:38公开的“G4S”))和重组方法彼此连接,使得可以将它们制备为单个蛋白链,其中VL和VH区结合以形成单价分子(称为单链Fv(ScFv))。术语抗体的“抗原结合部分”也旨在包括此类单链抗体。本文同样包括其它形式的单链抗体,如“双价抗体”。双价抗体是二价双特异性抗体,其中VH和VL结构域在单个多肽链上表达,但使用的接头太短以至于两个结构域无法在同一条链上结合,从而迫使所述结构域与不同链的互补结构域配对并形成两个抗原结合位点。免疫球蛋白恒定结构域是指重链或轻链恒定结构域。人IgG重链和轻链恒定结构域氨基酸序列是本领域已知的。 [0073] 抗体可具有IgA、IgG、IgE、IgD、IgM(以及其亚型及它们的组合)的结构特征。抗体可来自于任何来源,包括小鼠抗体、兔抗体、猪抗体、大鼠抗体和灵长类动物(人和非人灵长类动物)抗体以及灵长类动物源化(primatized)抗体。抗体还包括midibodies、人源化抗体、嵌合抗体等。 [0074] 此外,本文所述的抗体或抗体试剂可以是较大的免疫粘附分子的一部分,所述免疫粘附分子通过所述抗体或抗体部分与一种或多种其它蛋白质或肽的共价或非共价缔合而形成。与此类免疫粘附分子相关的是使用链霉亲和素核心区来制备四聚体scFv分子;以及使用半胱氨酸残基、标记肽和C端多聚组氨酸如六聚组氨酸标签(作为SEQ ID NO:39公开的“六聚组氨酸标签”)来产生二价和生物素化的scFv分子。 [0075] 在一些实施方式中,本文所述的抗体或抗体试剂可以是免疫球蛋白分子、单克隆抗体、嵌合抗体、CDR移植抗体、人源化抗体、Fab、Fab'、F(ab')2、Fv、二硫键连接的Fv、scFv、单结构域抗体、双价抗体、多特异性抗体、双重特异性抗体、抗独特型抗体、双特异性抗体以及它们的功能活性表位结合部分。 [0076] 在一些实施方式中,抗体或其抗原结合部分是完全人抗体。在一些实施方式中,抗体、其抗原结合部分是人源化抗体或抗体试剂。在一些实施方式中,抗体、其抗原结合部分是完全人源化抗体或抗体试剂。在一些实施方式中,抗体或其抗原结合部分是嵌合抗体或抗体试剂。在一些实施方式中,抗体、其抗原结合部分是重组多肽。 [0077] 术语“人抗体”是指其可变区和恒定区对应于或衍生自人种系的免疫球蛋白序列的抗体,如由例如Kabat等所描述的(参见Kabat等(1991)Sequences of Proteins of Immunological Interest,第5版,U.S.Department of Health and Human Services,NIH Publication No.91-3242)。然而,例如在CDR中、特别是在CDR3中,人抗体可以包含不由人种系免疫球蛋白序列编码的氨基酸残基(例如通过体外随机或位点特异性诱变或通过体内体细胞突变引入的突变)。本文所述的重组人抗体具有可变区,并且还可以包含衍生自人种系的免疫球蛋白序列的恒定区(参见Kabat,E.A.等(1991)Sequences of Proteins of Immunological Interest,第5版,U.S.Department of Health and Human Services,NIH Publication No.91-3242)。然而,根据具体实施方式,使此类重组人抗体接受体外诱变(或者,如果使用由于人Ig序列而为转基因的动物,则接受体细胞体内诱变),从而使该重组抗体的VH和VL区的氨基酸序列为这样的序列:该序列尽管与人种系的VH和VL序列有关或衍生自人种系的VH和VL序列,但在人抗体种系库中并不天然存在于体内。根据具体实施方式,这种重组抗体是选择诱变或回复突变或这两者的结果。优选地,比起亲本抗体的亲和力,诱变引起更大的对靶标的亲和力和/或更小的对非靶标结构的亲和力。可由本领域普通技术人员来实践根据本文提供的序列和信息产生人源化抗体而无需过度实验。在一种方式中,采用对单克隆抗体进行人源化的四个一般步骤,参见例如U.S.Pat No.5,585,089;No.6,835,823;No.6,824,989。这些步骤是:(1)确定起始抗体轻链可变结构域和重链可变结构域的核苷酸和预测氨基酸序列;(2)设计人源化抗体,即,决定在人源化过程中使用何种抗体框架区;(3)实际的人源化方法学/技术;以及(4)人源化抗体的转染和表达。 [0078] 通常,人源化抗体和人抗体变体中的CDR区实质上相同,并且更通常地,与作为它们来源的小鼠或人抗体中的相应CDR区相同。在一些实施方式中,进行CDR残基的一个或多个保守氨基酸置换而不明显影响所得人源化免疫球蛋白或人抗体变体的结合亲和力是可能的。在一些实施方式中,CDR区的置换可以增强结合亲和力。 [0079] 术语“嵌合抗体”是指包含来自一种物种的重链和轻链的可变区序列以及来自另一物种的恒定区序列的抗体,例如具有连接至人恒定区的鼠重链和轻链可变区的抗体。人源化抗体具有实质上来自人抗体(称为受体抗体)的可变区框架残基和实质上来自非人抗体(例如小鼠抗体)(称为供体免疫球蛋白)的互补决定区。如果存在的话,恒定区也实质上或完全来自人免疫球蛋白。人可变结构域通常选自这样的人抗体:该抗体的框架序列与作为CDR来源的(鼠)可变区结构域表现出高度的序列同一性。重链和轻链可变区框架残基可与相同或不同的人抗体序列的区域实质上相似。人抗体序列可以是天然存在的人抗体的序列,或者可以是多种人抗体的共有序列。 [0080] 此外,可以使用用于通过将如下进行剪接来生产“嵌合抗体”而开发的技术:来自小鼠或其它物种的基因、具有适当的抗原特异性的抗体分子以及来自具有适当的生物活性的人抗体分子的基因。嵌合抗体的可变区片段通常连接至免疫球蛋白恒定区(Fc)(通常是人免疫球蛋白的恒定区)的至少一部分。可以根据公知的程序从多种人类细胞(如永生化B细胞)中分离人恒定区DNA序列。抗体可包含轻链和重链恒定区二者。重链恒定区可包含CH1、铰链、CH2、CH3,并且有时还包含CH4区。为了治疗目的,可以删除或省略CH2结构域。 [0081] 另外,并且如本文所述,重组人源化抗体可以被进一步优化以降低潜在的免疫原性,同时保持功能活性,以用于人类治疗。在这方面,功能活性意味着多肽能够显示出与本文所述的重组抗体或抗体试剂有关的一种或多种已知的功能活性。此类功能活性包括结合至癌细胞和/或抗癌活性。此外,如在特定测定法(例如生物测定法)中所测量的,多肽具有功能活性意味着该多肽表现出与本文所述的参考抗体或抗体试剂(包括成熟形式)的活性类似但不必须相同的活性,具有或不具有剂量依赖性。在确实存在剂量依赖性的情况下,该剂量依赖性不需要与参考抗体或抗体试剂的剂量依赖性相同,而是在与本文所述的参考抗体或抗体试剂相比时,与给定活性中的剂量依赖性实质上相似(即,相对于本文所述的抗体或抗体试剂,候选多肽将显示出更高的活性,或不超过约少25倍、约少10倍或约少3倍的活性)。 [0082] 在一些实施方式中,本文所述的抗体试剂不是天然存在的生物分子。例如,在没有人为干预和操纵(例如由人进行的制造步骤)的情况下,针对人源抗原的鼠抗体不会自然产生。嵌合抗体也不是天然存在的生物分子,例如,因为它们包含从多个物种获得并组装成重组分子的序列。在某些具体实施方式中,本文所述的人抗体试剂不是天然存在的生物分子,例如,针对人抗原的完全人抗体在自然界中将接受负向选择而并不会天然地见于人体中。 [0083] 在一些实施方式中,抗体或抗体试剂是分离的多肽。在一些实施方式中,抗体或抗体试剂是纯化的多肽。在一些实施方式中,抗体或抗体试剂是工程化多肽。 [0084] 在任何实施方式的一个方面,本文描述了特异性地结合DEspR多肽的抗体、抗体试剂或它们的抗原结合片段。在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含选自于由如下CDR所组成的组中的至少一个重链互补决定区(CDR)或轻链互补决定区(CDR): [0085] (a)具有SEQ ID NO:9的氨基酸序列的轻链CDR1; [0086] (b)具有SEQ ID NO:10的氨基酸序列的轻链CDR2; [0087] (c)具有SEQ ID NO:11的氨基酸序列的轻链CDR3; [0088] (d)具有SEQ ID NO:1的氨基酸序列的重链CDR1; [0089] (e)具有SEQ ID NO:2的氨基酸序列的重链CDR2;以及 [0090] (f)具有SEQ ID NO:3的氨基酸序列的重链CDR3;或者 [0091] (a)-(f)中的一个或多个的保守置换变体。在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含选自于由如下CDR所组成的组中的至少一个重链互补决定区(CDR)或轻链互补决定区(CDR): [0092] (a)具有SEQ ID NO:9的氨基酸序列的轻链CDR1; [0093] (b)具有SEQ ID NO:10的氨基酸序列的轻链CDR2; [0094] (c)具有SEQ ID NO:11的氨基酸序列的轻链CDR3; [0095] (d)具有SEQ ID NO:1的氨基酸序列的重链CDR1; [0096] (e)具有SEQ ID NO:2的氨基酸序列的重链CDR2;以及 [0097] (f)具有SEQ ID NO:3的氨基酸序列的重链CDR3。 [0098] 在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合部分特异性结合至DEspR并与包含如下的抗体竞争结合: [0099] (a)具有SEQ ID NO:9的氨基酸序列的轻链CDR1; [0100] (b)具有SEQ ID NO:10的氨基酸序列的轻链CDR2; [0101] (c)具有SEQ ID NO:11的氨基酸序列的轻链CDR3; [0102] (d)具有SEQ ID NO:1的氨基酸序列的重链CDR1; [0103] (e)具有SEQ ID NO:2的氨基酸序列的重链CDR2;以及 [0104] (f)具有SEQ ID NO:3的氨基酸序列的重链CDR3。 [0105] 在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含具有SEQ ID NO:1-SEQ ID NO:3的氨基酸序列的重链CDR。在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含具有SEQ ID NO:1-SEQ ID NO:3的氨基酸序列或此类氨基酸序列的保守置换变体的重链CDR。在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含具有SEQ ID NO:9-SEQ ID NO:11的氨基酸序列的轻链CDR。在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含具有SEQ ID NO:9-SEQ ID NO:11的氨基酸序列或此类氨基酸序列的保守置换变体的轻链CDR。 [0106] 在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含如下重链互补决定区(CDR)或轻链互补决定区(CDR): [0107] (a)具有SEQ ID NO:9的氨基酸序列的轻链CDR1; [0108] (b)具有SEQ ID NO:10的氨基酸序列的轻链CDR2; [0109] (c)具有SEQ ID NO:11的氨基酸序列的轻链CDR3; [0110] (d)具有SEQ ID NO:1的氨基酸序列的重链CDR1; [0111] (e)具有SEQ ID NO:2的氨基酸序列的重链CDR2;以及 [0112] (f)具有SEQ ID NO:3的氨基酸序列的重链CDR3。 [0113] 在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含如下重链互补决定区(CDR)或轻链互补决定区(CDR): [0114] (a)具有SEQ ID NO:9的氨基酸序列的轻链CDR1; [0115] (b)具有SEQ ID NO:10的氨基酸序列的轻链CDR2; [0116] (c)具有SEQ ID NO:11的氨基酸序列的轻链CDR3; [0117] (d)具有SEQ ID NO:1的氨基酸序列的重链CDR1; [0118] (e)具有SEQ ID NO:2的氨基酸序列的重链CDR2;以及 [0119] (f)具有SEQ ID NO:3的氨基酸序列的重链CDR3;或者 [0120] (a)-(f)中的任一个的氨基酸序列的保守置换变体。 [0121] 在一些实施方式中,抗体、抗体试剂或它们的抗原结合部分可以包含具有选自SEQ ID NO:1-SEQ ID NO:3和SEQ ID NO:9-SEQ ID NO:11的CDR序列的一个或多个CDR(例如一个CDR、两个CDR、三个CDR、四个CDR、五个CDR或六个CDR)。在一些实施方式中,抗体、抗体试剂、它们的抗原结合部分或CAR可以包含具有SEQ ID NO:1-SEQ ID NO:3和SEQ ID NO:9-SEQ ID NO:11的CDR序列的CDR。 [0122] 在任何实施方式的一个方面,本文描述了特异性地结合DEspR多肽的抗体、抗体试剂或它们的抗原结合片段。在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含选自于由如下CDR所组成的组中的至少一个重链互补决定区(CDR)或轻链互补决定区(CDR): [0123] (a)具有SEQ ID NO:17的氨基酸序列的轻链CDR1; [0124] (b)具有SEQ ID NO:18的氨基酸序列的轻链CDR2; [0125] (c)具有SEQ ID NO:19的氨基酸序列的轻链CDR3; [0126] (d)具有SEQ ID NO:1的氨基酸序列的重链CDR1; [0127] (e)具有SEQ ID NO:2的氨基酸序列的重链CDR2;以及 [0128] (f)具有SEQ ID NO:3的氨基酸序列的重链CDR3;或者 [0129] (a)-(f)中的一个或多个的保守置换变体。在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含选自于由如下CDR所组成的组中的至少一个重链互补决定区(CDR)或轻链互补决定区(CDR): [0130] (a)具有SEQ ID NO:17的氨基酸序列的轻链CDR1; [0131] (b)具有SEQ ID NO:18的氨基酸序列的轻链CDR2; [0132] (c)具有SEQ ID NO:19的氨基酸序列的轻链CDR3; [0133] (d)具有SEQ ID NO:1的氨基酸序列的重链CDR1; [0134] (e)具有SEQ ID NO:2的氨基酸序列的重链CDR2;以及 [0135] (f)具有SEQ ID NO:3的氨基酸序列的重链CDR3。 [0136] 在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合部分特异性结合至DEspR并与包含如下的抗体竞争结合: [0137] (a)具有SEQ ID NO:17的氨基酸序列的轻链CDR1; [0138] (b)具有SEQ ID NO:18的氨基酸序列的轻链CDR2; [0139] (c)具有SEQ ID NO:19的氨基酸序列的轻链CDR3; [0140] (d)具有SEQ ID NO:1的氨基酸序列的重链CDR1; [0141] (e)具有SEQ ID NO:2的氨基酸序列的重链CDR2;以及 [0142] (f)具有SEQ ID NO:3的氨基酸序列的重链CDR3。 [0143] 在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含具有SEQ ID NO:1-SEQ ID NO:3的氨基酸序列的重链CDR。在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含具有SEQ ID NO:1-SEQ ID NO:3的氨基酸序列或此类氨基酸序列的保守置换变体的重链CDR。在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含具有SEQ ID NO:17-SEQ ID NO:19的氨基酸序列的轻链CDR。在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含具有SEQ ID NO:17-SEQ ID NO:19的氨基酸序列或此类氨基酸序列的保守置换变体的轻链CDR。 [0144] 在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含如下重链互补决定区(CDR)或轻链互补决定区(CDR): [0145] (a)具有SEQ ID NO:17的氨基酸序列的轻链CDR1; [0146] (b)具有SEQ ID NO:18的氨基酸序列的轻链CDR2; [0147] (c)具有SEQ ID NO:19的氨基酸序列的轻链CDR3; [0148] (d)具有SEQ ID NO:1的氨基酸序列的重链CDR1; [0149] (e)具有SEQ ID NO:2的氨基酸序列的重链CDR2;以及 [0150] (f)具有SEQ ID NO:3的氨基酸序列的重链CDR3。 [0151] 在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含如下重链互补决定区(CDR)或轻链互补决定区(CDR): [0152] (a)具有SEQ ID NO:17的氨基酸序列的轻链CDR1; [0153] (b)具有SEQ ID NO:18的氨基酸序列的轻链CDR2; [0154] (c)具有SEQ ID NO:19的氨基酸序列的轻链CDR3; [0155] (d)具有SEQ ID NO:1的氨基酸序列的重链CDR1; [0156] (e)具有SEQ ID NO:2的氨基酸序列的重链CDR2;以及 [0157] (f)具有SEQ ID NO:3的氨基酸序列的重链CDR3;或者 [0158] (a)-(f)中的任一个的氨基酸序列的保守置换变体。 [0159] 在一些实施方式中,抗体、抗体试剂或它们的抗原结合部分可以包含具有选自SEQ ID NO:1-SEQ ID NO:3和SEQ ID NO:17-SEQ ID NO:19的CDR序列的一个或多个CDR(例如一个CDR、两个CDR、三个CDR、四个CDR、五个CDR或六个CDR)。在一些实施方式中,抗体、抗体试剂、它们的抗原结合部分或CAR可以包含具有SEQ ID NO:1-SEQ ID NO:3和SEQ ID NO:17-SEQ ID NO:19的CDR序列的CDR。 [0160] 在任何实施方式的一个方面,本文描述了特异性地结合DEspR多肽的抗体、抗体试剂或它们的抗原结合片段。在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含选自于由如下CDR所组成的组中的至少一个重链互补决定区(CDR)或轻链互补决定区(CDR): [0161] (a)具有SEQ ID NO:13的氨基酸序列的轻链CDR1; [0162] (b)具有SEQ ID NO:14的氨基酸序列的轻链CDR2; [0163] (c)具有SEQ ID NO:15的氨基酸序列的轻链CDR3; [0164] (d)具有SEQ ID NO:5的氨基酸序列的重链CDR1; [0165] (e)具有SEQ ID NO:6的氨基酸序列的重链CDR2;以及 [0166] (f)具有SEQ ID NO:7的氨基酸序列的重链CDR3;或者 [0167] (a)-(f)中的一个或多个的保守置换变体。在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含选自于由如下CDR所组成的组中的至少一个重链互补决定区(CDR)或轻链互补决定区(CDR): [0168] (a)具有SEQ ID NO:13的氨基酸序列的轻链CDR1; [0169] (b)具有SEQ ID NO:14的氨基酸序列的轻链CDR2; [0170] (c)具有SEQ ID NO:15的氨基酸序列的轻链CDR3; [0171] (d)具有SEQ ID NO:5的氨基酸序列的重链CDR1; [0172] (e)具有SEQ ID NO:6的氨基酸序列的重链CDR2;以及 [0173] (f)具有SEQ ID NO:7的氨基酸序列的重链CDR3。 [0174] 在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合部分特异性结合至DEspR并与包含如下的抗体竞争结合: [0175] (a)具有SEQ ID NO:13的氨基酸序列的轻链CDR1; [0176] (b)具有SEQ ID NO:14的氨基酸序列的轻链CDR2; [0177] (c)具有SEQ ID NO:15的氨基酸序列的轻链CDR3; [0178] (d)具有SEQ ID NO:5的氨基酸序列的重链CDR1; [0179] (e)具有SEQ ID NO:6的氨基酸序列的重链CDR2;以及 [0180] (f)具有SEQ ID NO:7的氨基酸序列的重链CDR3。 [0181] 在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含具有SEQ ID NO:5-SEQ ID NO:7的氨基酸序列的重链CDR。在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含具有SEQ ID NO:5-SEQ ID NO:7的氨基酸序列或此类氨基酸序列的保守置换变体的重链CDR。在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含具有SEQ ID NO:13-SEQ ID NO:15的氨基酸序列的轻链CDR。在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含具有SEQ ID NO:13-SEQ ID NO:15的氨基酸序列或此类氨基酸序列的保守置换变体的轻链CDR。 [0182] 在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含如下重链互补决定区(CDR)或轻链互补决定区(CDR): [0183] (a)具有SEQ ID NO:13的氨基酸序列的轻链CDR1; [0184] (b)具有SEQ ID NO:14的氨基酸序列的轻链CDR2; [0185] (c)具有SEQ ID NO:15的氨基酸序列的轻链CDR3; [0186] (d)具有SEQ ID NO:5的氨基酸序列的重链CDR1; [0187] (e)具有SEQ ID NO:6的氨基酸序列的重链CDR2;以及 [0188] (f)具有SEQ ID NO:7的氨基酸序列的重链CDR3。 [0189] 在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含如下重链互补决定区(CDR)或轻链互补决定区(CDR): [0190] (a)具有SEQ ID NO:13的氨基酸序列的轻链CDR1; [0191] (b)具有SEQ ID NO:14的氨基酸序列的轻链CDR2; [0192] (c)具有SEQ ID NO:15的氨基酸序列的轻链CDR3; [0193] (d)具有SEQ ID NO:5的氨基酸序列的重链CDR1; [0194] (e)具有SEQ ID NO:6的氨基酸序列的重链CDR2;以及 [0195] (f)具有SEQ ID NO:7的氨基酸序列的重链CDR3;或者 [0196] (a)-(f)中的任一个的氨基酸序列的保守置换变体。 [0197] 在一些实施方式中,抗体、抗体试剂或它们的抗原结合部分可以包含具有选自SEQ ID NO:5-SEQ ID NO:7和SEQ ID NO:13-SEQ ID NO:15的CDR序列的一个或多个CDR(例如一个CDR、两个CDR、三个CDR、四个CDR、五个CDR或六个CDR)。在一些实施方式中,抗体、抗体试剂、它们的抗原结合部分或CAR可以包含具有SEQ ID NO:5-SEQ ID NO:7和SEQ ID NO:13-SEQ ID NO:15的CDR序列的CDR。 [0198] 在任何实施方式的一个方面,本文描述了特异性地结合DEspR多肽的抗体、抗体试剂或它们的抗原结合片段。在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含选自于由如下CDR所组成的组中的至少一个重链互补决定区(CDR)或轻链互补决定区(CDR): [0199] (a)具有SEQ ID NO:25的氨基酸序列的轻链CDR1; [0200] (b)具有SEQ ID NO:26的氨基酸序列的轻链CDR2; [0201] (c)具有SEQ ID NO:27的氨基酸序列的轻链CDR3; [0202] (d)具有SEQ ID NO:21的氨基酸序列的重链CDR1; [0203] (e)具有SEQ ID NO:22的氨基酸序列的重链CDR2;以及 [0204] (f)具有SEQ ID NO:23的氨基酸序列的重链CDR3;或者 [0205] (a)-(f)中的一个或多个的保守置换变体。在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含选自于由如下CDR所组成的组中的至少一个重链互补决定区(CDR)或轻链互补决定区(CDR): [0206] (a)具有SEQ ID NO:25的氨基酸序列的轻链CDR1; [0207] (b)具有SEQ ID NO:26的氨基酸序列的轻链CDR2; [0208] (c)具有SEQ ID NO:27的氨基酸序列的轻链CDR3; [0209] (d)具有SEQ ID NO:21的氨基酸序列的重链CDR1; [0210] (e)具有SEQ ID NO:22的氨基酸序列的重链CDR2;以及 [0211] (f)具有SEQ ID NO:23的氨基酸序列的重链CDR3。 [0212] 在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合部分特异性结合至DEspR并与包含如下的抗体竞争结合: [0213] (a)具有SEQ ID NO:25的氨基酸序列的轻链CDR1; [0214] (b)具有SEQ ID NO:26的氨基酸序列的轻链CDR2; [0215] (c)具有SEQ ID NO:27的氨基酸序列的轻链CDR3; [0216] (d)具有SEQ ID NO:21的氨基酸序列的重链CDR1; [0217] (e)具有SEQ ID NO:22的氨基酸序列的重链CDR2;以及 [0218] (f)具有SEQ ID NO:23的氨基酸序列的重链CDR3。 [0219] 在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含具有SEQ ID NO:21-SEQ ID NO:23的氨基酸序列的重链CDR。在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含具有SEQ ID NO:21-SEQ ID NO:23的氨基酸序列或此类氨基酸序列的保守置换变体的重链CDR。在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含具有SEQ ID NO:25-SEQ ID NO:27的氨基酸序列的轻链CDR。在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含具有SEQ ID NO:25-SEQ ID NO:27的氨基酸序列或此类氨基酸序列的保守置换变体的轻链CDR。 [0220] 在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含如下重链互补决定区(CDR)或轻链互补决定区(CDR): [0221] (a)具有SEQ ID NO:25的氨基酸序列的轻链CDR1; [0222] (b)具有SEQ ID NO:26的氨基酸序列的轻链CDR2; [0223] (c)具有SEQ ID NO:27的氨基酸序列的轻链CDR3; [0224] (d)具有SEQ ID NO:21的氨基酸序列的重链CDR1; [0225] (e)具有SEQ ID NO:22的氨基酸序列的重链CDR2;以及 [0226] (f)具有SEQ ID NO:23的氨基酸序列的重链CDR3。 [0227] 在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含如下重链互补决定区(CDR)或轻链互补决定区(CDR): [0228] (a)具有SEQ ID NO:25的氨基酸序列的轻链CDR1; [0229] (b)具有SEQ ID NO:26的氨基酸序列的轻链CDR2; [0230] (c)具有SEQ ID NO:27的氨基酸序列的轻链CDR3; [0231] (d)具有SEQ ID NO:21的氨基酸序列的重链CDR1; [0232] (e)具有SEQ ID NO:22的氨基酸序列的重链CDR2;以及 [0233] (f)具有SEQ ID NO:23的氨基酸序列的重链CDR3;或者 [0234] (a)-(f)中的任一个的氨基酸序列的保守置换变体。 [0235] 在一些实施方式中,抗体、抗体试剂或它们的抗原结合部分可以包含具有选自SEQ ID NO:21-SEQ ID NO:23和SEQ ID NO:25-SEQ ID NO:27的CDR序列的一个或多个CDR(例如一个CDR、两个CDR、三个CDR、四个CDR、五个CDR或六个CDR)。在一些实施方式中,抗体、抗体试剂、它们的抗原结合部分或CAR可以包含具有SEQ ID NO:21-SEQ ID NO:23和SEQ ID NO:25-SEQ ID NO:27的CDR序列的CDR。 [0236] 在任何实施方式的一个方面,本文描述了特异性地结合DEspR多肽的抗体、抗体试剂或它们的抗原结合片段。在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含选自于由如下CDR所组成的组中的至少一个重链互补决定区(CDR)或轻链互补决定区(CDR): [0237] (a)具有SEQ ID NO:33的氨基酸序列的轻链CDR1; [0238] (b)具有SEQ ID NO:34的氨基酸序列的轻链CDR2; [0239] (c)具有SEQ ID NO:35的氨基酸序列的轻链CDR3; [0240] (d)具有SEQ ID NO:29的氨基酸序列的重链CDR1; [0241] (e)具有SEQ ID NO:30的氨基酸序列的重链CDR2;以及 [0242] (f)具有SEQ ID NO:31的氨基酸序列的重链CDR3;或者 [0243] (a)-(f)中的一个或多个的保守置换变体。在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含选自于由如下CDR所组成的组中的至少一个重链互补决定区(CDR)或轻链互补决定区(CDR): [0244] (a)具有SEQ ID NO:33的氨基酸序列的轻链CDR1; [0245] (b)具有SEQ ID NO:34的氨基酸序列的轻链CDR2; [0246] (c)具有SEQ ID NO:35的氨基酸序列的轻链CDR3; [0247] (d)具有SEQ ID NO:29的氨基酸序列的重链CDR1; [0248] (e)具有SEQ ID NO:30的氨基酸序列的重链CDR2;以及 [0249] (f)具有SEQ ID NO:31的氨基酸序列的重链CDR3。 [0250] 在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合部分特异性结合至DEspR并与包含如下的抗体竞争结合: [0251] (a)具有SEQ ID NO:33的氨基酸序列的轻链CDR1; [0252] (b)具有SEQ ID NO:34的氨基酸序列的轻链CDR2; [0253] (c)具有SEQ ID NO:35的氨基酸序列的轻链CDR3; [0254] (d)具有SEQ ID NO:29的氨基酸序列的重链CDR1; [0255] (e)具有SEQ ID NO:30的氨基酸序列的重链CDR2;以及 [0256] (f)具有SEQ ID NO:31的氨基酸序列的重链CDR3。 [0257] 在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含具有SEQ ID NO:29-SEQ ID NO:31的氨基酸序列的重链CDR。在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含具有SEQ ID NO:29-SEQ ID NO:31的氨基酸序列或此类氨基酸序列的保守置换变体的重链CDR。在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含具有SEQ ID NO:33-SEQ ID NO:35的氨基酸序列的轻链CDR。在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含具有SEQ ID NO:33-SEQ ID NO:35的氨基酸序列或此类氨基酸序列的保守置换变体的轻链CDR。 [0258] 在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含如下重链互补决定区(CDR)或轻链互补决定区(CDR): [0259] (a)具有SEQ ID NO:33的氨基酸序列的轻链CDR1; [0260] (b)具有SEQ ID NO:34的氨基酸序列的轻链CDR2; [0261] (c)具有SEQ ID NO:35的氨基酸序列的轻链CDR3; [0262] (d)具有SEQ ID NO:29的氨基酸序列的重链CDR1; [0263] (e)具有SEQ ID NO:30的氨基酸序列的重链CDR2;以及 [0264] (f)具有SEQ ID NO:31的氨基酸序列的重链CDR3。 [0265] 在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合片段包含如下重链互补决定区(CDR)或轻链互补决定区(CDR): [0266] (a)具有SEQ ID NO:33的氨基酸序列的轻链CDR1; [0267] (b)具有SEQ ID NO:34的氨基酸序列的轻链CDR2; [0268] (c)具有SEQ ID NO:35的氨基酸序列的轻链CDR3; [0269] (d)具有SEQ ID NO:29的氨基酸序列的重链CDR1; [0270] (e)具有SEQ ID NO:30的氨基酸序列的重链CDR2;以及 [0271] (f)具有SEQ ID NO:31的氨基酸序列的重链CDR3;或者 [0272] (a)-(f)中的任一个的氨基酸序列的保守置换变体。 [0273] 在一些实施方式中,抗体、抗体试剂或它们的抗原结合部分可以包含具有选自SEQ ID NO:29-SEQ ID NO:31和SEQ ID NO:33-SEQ ID NO:35的CDR序列的一个或多个CDR(例如一个CDR、两个CDR、三个CDR、四个CDR、五个CDR或六个CDR)。在一些实施方式中,抗体、抗体试剂、它们的抗原结合部分或CAR可以包含具有SEQ ID NO:29-SEQ ID NO:31和SEQ ID NO:33-SEQ ID NO:35的CDR序列的CDR。 [0274] 在一些实施方式中,抗体、抗体试剂或它们的抗原结合部分可包含与表3抗体的CDR具有至少90%的同源性、至少95%的同源性、至少97%的同源性、至少98%的同源性或更高同源性的CDR。如本领域技术人员将理解的,存在各种可用的算法,所述算法允许对序列进行比较以确定其同源程度,包括通过在考虑不同序列中哪些残基彼此“对应”时,允许一个序列中相对于另一序列的指定长度的空位。用于获得抗体突变体(例如CDR突变体)的一种方法是“丙氨酸扫描诱变”(Cunningham&Wells,Science 244:1081-1085(1989);以及Cunningham&Wells,Proc Nat Acad Sci USA 84:6434-6437(1991))。高变区残基中的一个或多个被丙氨酸或多聚丙氨酸残基所替代。然后通过在置换位点处或针对置换位点引入进一步的或其它突变来细化那些对置换表现出功能敏感性的高变区残基。因此,虽然预先确定了用于引入氨基酸序列变异的位点,但是突变本身的性质无需预先确定。根据所扫描残基的期望的性质,可以尝试用其它氨基酸进行类似的置换。用于鉴别待修饰的氨基酸残基的更系统的方法包括鉴别参与结合DEspR的高变区残基和那些几乎不参与或不参与DEspR结合的高变区残基。进行非结合高变区残基的丙氨酸扫描,就增强与DEspR的结合而言对每个ala突变体进行测试。在另一实施方式中,选择显著参与结合DEspR的那些残基进行修饰。修饰可涉及残基的删除或与感兴趣的残基相邻的一个或多个残基的插入。但是,通常修饰涉及残基被另一氨基酸置换。保守置换可以是第一置换。如果此类置换引起生物活性(例如结合亲和力)的改变,则可以进行另一保守置换以确定是否获得了更实质性的改变。通过选择在性质上与通常驻留在某位点处的氨基酸具有更实质性的差异的氨基酸,可以实现抗体范围和生物学特性表现的甚至更实质性的修饰。因此,可以在保持以下方面的同时进行此类置换:(a)置换区域中的多肽骨架的结构,例如作为折叠或螺旋构象;(b)靶位点处的分子的电荷或疏水性;或(c)侧链的体积(bulk)。 [0275] 结合DEspR的示例性抗体和抗体试剂描述于美国专利公开2017/0058036和2016/0108124中,通过引用将它们各自整体并入本文。表3:根据Kabat系统的示例性抗DEspR抗体试剂序列 [0276] [0277] [0278] 在一些实施方式中,本文所述的抗体或抗体试剂可以是本文所述序列的变体,例如抗体多肽的保守置换变体。在一些实施方式中,变体是保守修饰的变体。保守置换变体可以通过例如天然核苷酸序列的突变获得。如本文提及的“变体”是这样的多肽:该多肽与天然或参考多肽实质上同源,但是由于一个或多个缺失、插入或置换而具有与天然或参考多肽的氨基酸序列不同的氨基酸序列。编码变体多肽的DNA序列涵盖这样的序列:在与天然或参考DNA序列相比时,该序列包含核苷酸的一个或多个添加、缺失或置换,但是编码保留活性(例如对相关靶多肽(如DEspR)的抗原特异性结合活性)的变体蛋白或其部分。多种基于PCR的位点特异性诱变方法在本领域中也是已知的,并且可以被普通技术人员施用。 [0279] 本领域技术人员将认识到,改变所编码序列中的单个氨基酸或少部分氨基酸的对核酸、肽、多肽或蛋白质序列进行的各个置换、删除或添加是“保守修饰的变体”,其中该改变引起用化学上相似的氨基酸进行的氨基酸置换并保留特异性地结合靶抗原(例如DEspR)的能力。此类保守修饰的变体是对与本公开内容一致的多态变体、种间同源物和等位基因的补充,并且不排除所述多态变体、种间同源物和等位基因。 [0280] 置换变体的实例包括氨基酸(例如在VH或VL结构域中)的保守置换,该置换不改变CDR的序列。不被CDR包含的序列中的保守置换可以是相对于野生型或天然存在的序列(例如抗体序列的人或鼠的框架区和/或恒定区)的置换。在一些实施方式中,抗体试剂的保守修饰的变体可包含CDR以外的改变,例如,抗体、抗体试剂或它们的抗原结合部分的保守修饰的变体可包含具有SEQ ID NO:1-SEQ ID NO:3、SEQ ID NO:9-SEQ ID NO:11、SEQ ID NO:17-SEQ ID NO:19、SEQ ID NO:5-SEQ ID NO:7、SEQ ID NO:13-SEQ ID NO:15、SEQ ID NO: 21-SEQ ID NO:23、SEQ ID NO:25-SEQ ID NO:27、SEQ ID NO:29-SEQ ID NO:31以及SEQ ID NO:33-SEQ ID NO:35中的一个或多个的序列的CDR。在一些实施方式中,抗体、抗体试剂或它们的抗原结合部分的保守修饰的变体可包含具有SEQ ID NO:1-SEQ ID NO:3、SEQ ID NO:9-SEQ ID NO:11、SEQ ID NO:17-SEQ ID NO:19、SEQ ID NO:5-SEQ ID NO:7、SEQ ID NO:13-SEQ ID NO:15、SEQ ID NO:21-SEQ ID NO:23、SEQ ID NO:25-SEQ ID NO:27、SEQ ID NO:29-SEQ ID NO:31以及SEQ ID NO:33-SEQ ID NO:35的序列的CDR。 [0281] 给定氨基酸可以被具有相似理化特性的残基替代,例如,将一个脂肪族残基置换为另一脂肪族残基(例如用Ile、Val、Leu或Ala互相置换),或将一个极性残基置换为另一极性残基(例如Lys和Arg之间;Glu和Asp之间;或Gln和Asn之间)。其它这样的保守置换(例如置换具有类似疏水性特征的整个区域)是公知的。可以通过本文所述的任何一种测定法对包含保守氨基酸置换的多肽进行测试,以确认保留了期望活性(例如天然或参考多肽的抗原结合活性和特异性)。 [0282] 氨基酸可以根据其侧链性质的相似性进行分组(在A.L.Lehninger,Biochemistry,第二版,pp.73-75,Worth Publishers,New York(1975)中):(1)非极性:Ala(A)、Val(V)、Leu(L)、Ile(I)、Pro(P)、Phe(F)、Trp(W)、Met(M);(2)不带电的极性:Gly(G)、Ser(S)、Thr(T)、Cys(C)、Tyr(Y)、Asn(N)、Gln(Q);(3)酸性:Asp(D)、Glu(E);(4)碱性:Lys(K)、Arg(R)、His(H)。或者,可基于共同的侧链特性将天然存在的残基分为如下的组:(1)疏水的:正亮氨酸、Met、Ala、Val、Leu、Ile;(2)中性亲水的:Cys、Ser、Thr、Asn、Gln;(3)酸性的:Asp、Glu;(4)碱性的:His、Lys、Arg;(5)影响链取向的残基:Gly、Pro;(6)芳香的:Trp、Tyr、Phe。非保守置换牵涉到将这些类别之一的成员更换为另一类别。具体的保守置换包括例如;将Ala置换为Gly或置换为Ser;将Arg置换为Lys;将Asn置换为Gln或置换为His;将Asp置换为Glu;将Cys置换为Ser;将Gln置换为Asn;将Glu置换为Asp;将Gly置换为Ala或置换为Pro;将His置换为Asn或置换为Gln;将Ile置换为Leu或置换为Val;将Leu置换为Ile或置换为Val;将Lys置换为Arg、置换为Gln或置换为Glu;将Met置换为Leu、置换为Tyr或置换为Ile;将Phe置换为Met、置换为Leu或置换为Tyr;将Ser置换为Thr;将Thr置换为Ser;将Trp置换为Tyr;将Tyr置换为Trp;和/或将Phe置换为Val、置换为Ile或置换为Leu。 [0283] 变体氨基酸或DNA序列优选与天然或参考序列具有至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%或更高的同一性。天然序列和突变序列之间的同源性程度(同一性百分比)可以通过例如使用万维网上通常用于此目的的免费可用的计算机程序(例如具有默认设置的BLASTp或BLASTn)对两个序列进行比较来确定。 [0284] 天然氨基酸序列的改变可通过本领域技术人员已知的多种技术的任一种来完成。例如,可通过合成含有突变序列的寡核苷酸(其侧翼具有允许与天然序列的片段连接的限制性位点)而在特定基因座处引入突变。连接后,所得到的重构序列编码具有期望的氨基酸插入、置换或缺失的类似物。或者,可使用寡核苷酸指导的位点特异性诱变方法来提供具有根据所需的置换、缺失或插入而改变的特定密码子的改变的核苷酸序列。 [0285] 通常,还可用丝氨酸对不参与维持多肽的适当构象的任何半胱氨酸残基进行置换,以改进分子的氧化稳定性并防止异常交联。相反,可将半胱氨酸键添加至多肽,以改进多肽的稳定性或促进寡聚化。 [0286] 在具体实施方式中,其中,本文所述的抗体或抗体试剂包含与SEQ ID NO:1-SEQ ID NO:3、SEQ ID NO:9-SEQ ID NO:11、SEQ ID NO:17-SEQ ID NO:19、SEQ ID NO:5-SEQ ID NO:7、SEQ ID NO:13-SEQ ID NO:15、SEQ ID NO:21-SEQ ID NO:23、SEQ ID NO:25-SEQ ID NO:27、SEQ ID NO:29-SEQ ID NO:31以及SEQ ID NO:33-SEQ ID NO:35的序列不同的至少一个CDR,该至少一个CDR的氨基酸序列可以通过本领域技术人员公知的方法选择。例如,Fujii,2004,Methods in Molecular Biology:Antibody Engineering 248:345-349中的“Antibody affinity maturation by random mutagenesis”(通过引用将其整体并入本文)特别是在图2和第3.3节中描述了产生任何感兴趣的CDR的文库的方法。这使得本领域普通技术人员可以鉴定备选CDR(包括本文所述的特定CDR序列的保守置换变体),当所述备选CDR存在于本文所述的抗体或其抗原结合部分中时,将产生结合癌细胞表面抗原的抗体或其抗原结合部分。Fujii等描述的方法还使本领域普通技术人员能够筛选轻链序列,所述轻链序列在与已知的重链片段结合时将给出期望的结合行为;反之亦然。 [0287] 在任何方面的一些实施方式中,本文所述的DEspR抑制剂可以是双特异性试剂,例如双特异性抗体或抗体试剂。双特异性试剂包括能够同时物理接触并抑制两种不同分子的分子。在任何方面的一些实施方式中,双特异性试剂是双特异性单克隆抗体试剂,例如bsAb。在任何方面的一些实施方式中,双特异性试剂包括能够同时物理接触并抑制i)DEspR和ii)PD1或PD-L1的分子。本文所使用的术语“双特异性”抗体或抗体试剂是指包含第一结构域和第二结构域的抗体或抗体试剂,所述第一结构域具有对第一靶标有结合特异性的结合位点,所述第二结构域具有对第二靶标有结合特异性的结合位点,即该试剂对两种靶标(例如i)DEspR和ii)PD1或PD-L1)具有特异性。第一靶标和第二靶标不相同(即,是不同靶标(例如蛋白质))。在一些实施方式中,不同靶标可以在同一细胞上共表达。在一些实施方式中,双特异性试剂可以结合存在于单个细胞上的靶标(顺式嗜异性结合(heterophilic binding))和/或结合一个细胞上的一个靶标和另一细胞上的另一靶标(反式嗜异性结合)。因此,本文所述的双特异性试剂可以选择性地和特异性地结合至表达第一靶标和第二靶标的细胞。双特异性试剂的非限制性实例是双特异性抗体构建体。包含对两种不同抗原具有特异性的抗体的抗原结合部分的双特异性抗体构建体可以由本领域技术人员容易地构建。 通常,编码第一抗体的抗原结合结构域的序列可以直接与编码第二抗体的抗原结合结构域的序列连接或通过本领域技术人员已知的多种接头中的任何接头与编码第二抗体的抗原结合结构域的序列连接,所述第一抗体特征在于并且已知与一种抗原上的期望表位结合,所述第二抗体特征在于并且已知与第二抗原上的期望表位结合。可以通过本领域普通技术人员已知的方法将此类序列插入合适的载体中并引入细胞中以产生双特异性抗体多肽。 PD-1和/或PD-L1抑制剂(例如抗PD1和/或抗PD-L1抗体)是本领域已知的。 [0288] 在任何方面的一些实施方式中,双特异性抗体试剂可以特异性结合至并抑制i)DEspR以及ii)调节(例如抑制)免疫细胞活性和/或存活的靶标。与调节免疫细胞活性的靶标结合的目的可包括模拟或抑制免疫细胞活性(例如增强T细胞对肿瘤监视的活性),或结合至免疫细胞以使两种细胞(例如DEspR+中性粒细胞和CD14+巨噬细胞)接近(使之聚集在一起)。靶标可以是例如细胞表面受体、配体或细胞外蛋白或细胞内蛋白。先前已经证明,抗DEspR抗体在结合至DEspR后被内化(参见例如Herrera等,PLoS One 2014 9:e112335;通过引用将其整体并入本文),从而允许使用结合至DEspR和细胞内靶标二者的双特异性抗体。合适的细胞表面受体的非限制性实例是PD1;CTLA-4(例如NCBI基因ID:1493);TLR-2(例如NCBI基因ID:7097);TLR-4(例如NCBI基因ID:7099);CD14(例如NCBI基因ID:929);或CD168(例如NCBI基因ID:3161)。合适的配体或细胞外蛋白的非限制性实例是PD-L1;CD80(例如NCBI基因ID:941):CD86(例如NCBI基因ID:942);髓过氧化物酶(MPO)(例如NCBI基因ID 4353);组织蛋白酶G(例如NCBI基因ID:1511);中性粒细胞弹性蛋白酶(NE)(例如NCBI基因ID:1991)、精氨酸酶1(例如NCBI基因ID:383)、G-CSF(例如CSF3或NCBI基因ID:1441)以及GM-CSF(例如CSF2或NCBI基因ID:1439)。合适的细胞内蛋白的非限制性实例包括Mcl-1(例如NCBI基因ID:4170);cIAP2(例如NCBI基因ID:330);STAT3(例如NCBI基因ID:6774);ERK1/ 2(例如NCBI基因ID:5595和5594);肽酰基精氨酸脱氨酶(petptidylarginine deaminase)(PAD4)(例如NCBI基因ID:23569);半乳糖凝集素1(例如NCBI基因ID:3956)、半乳糖凝集素3(例如NCBI基因ID:3958)或RNA腺苷脱氨酶1(ADAR-1)(例如NCBI基因ID:103)。对此类靶标具有特异性的抗体是本领域已知的,例如示于表6中。 [0289] 表6: [0290] [0291] [0292] PD1(或CD279)是288个氨基酸的I型跨膜蛋白,由一个免疫球蛋白(Ig)超家族结构域、20个氨基酸的茎(stalk)、跨膜结构域和约95个残基的细胞内结构域组成,其包含免疫受体酪氨酸抑制基序(ITIM)以及免疫受体酪氨酸转换基序(ITSM)。PD1分别由小鼠1号染色体和人2号染色体上的Pdcd1和PDCD1基因编码。在这两个物种中,Pdcd1由5个外显子编码。外显子1编码短信号序列,而外显子2编码Ig结构域。茎和跨膜结构域组成外显子3,外显子4编码标志着细胞质结构域开始的12个氨基酸的短序列。外显子5包含C末端细胞内残基和长 3’UTR(Keir ME等,2008.Annu Rev Immunol.26:677-704)。PD1是B7受体家族的成员。对于多种物种,PD-1的序列是已知的,例如人PD-1(NCBI基因ID:5133)。术语“PD-1”是指任何天然存在的等位基因、剪接变体和/或其加工形式。 [0293] PD1具有两个已知配体PD-L1和PD-L2,它们也是B7家族的成员。PD1与PD-L1的结合界面是通过其IgV样结构域(即PD1(42-136))。对于PD1结合至其配体而言重要的残基包括残基64、66、68、73、74、75、76、78、90、122、124、126、128、130、131、132、134和136。PD-L1/CD274已显示在小鼠T细胞和B细胞、DC、巨噬细胞、间充质干细胞和骨髓衍生肥大细胞上组成性表达。CD274/PD-L1表达也在大范围的非造血细胞中发现,并在激活后在多种细胞类型中上调。经IFN-γ处理后,PD-L1在几乎所有鼠肿瘤细胞系中表达,包括PA1骨髓瘤、P815肥大细胞瘤和B16黑色素瘤。对于结合至PD1而言重要的PD-L1残基包括PD-L1(67)、PD-L1(121)、PD-L1(122)、PD-L1(123)、PD-L1(123)、PD-L1(124)和PD-L1(126)。对于多种物种,PD-L1的序列是已知的,例如人PD-1(NCBI基因ID:29126)。术语“PD-L1”是指任何天然存在的等位基因、剪接变体和/或其加工形式。 [0294] PD-1抑制可通过多种机制完成,包括结合PD-1或其配体PD-L1的抗体。PD-1和PD-L1阻断剂的实例描述于美国专利号7,488,802、7,943,743、8,008,449、8,168,757、8,217,149及PCT公开专利申请号WO03042402、WO2008156712、WO2010089411、WO2010036959、WO2011066342、WO2011159877、WO2011082400和WO2011161699中;通过引用将它们整体并入本文。在某些实施方式中,PD-1抑制剂包括抗PD-L1抑制剂,例如抗体。在某些其它实施方式中,PD-1抑制剂包括抗PD-1抗体和类似的结合蛋白,例如:可与PD-1结合并阻断PD-1被其配体PD-L1和PD-L2激活的完整人IgG4抗体nivolumab(MDX 1106,BMS 936558,ONO 4538);针对PD-1的人源化单克隆IgG4抗体lambrolizumab(MK-3475或SCH 900475);结合PD-1的人源化抗体CT-011;B7-DC的融合蛋白AMP-224;抗体Fc部分;用于PD-L1(B7-H1)阻断的BMS- 936559(MDX-1105-01)。本文还具体考虑了破坏或阻断PD-1和PD-L1之间相互作用的试剂,例如高亲和力PD-L1拮抗剂。PD-1抑制剂的非限制性实例可包括:pembrolizumab(Merck); nivolumab(Bristol Meyers Squibb);pidilizumab(Medivation);以及AUNP12 (Aurigene)。 [0295] PD-L1抑制剂的非限制性实例可包括阿特珠单抗(atezolizumab,Genentech);MPDL3280A(Roche);MEDI4736(AstraZeneca);MSB0010718C(EMD Serono);avelumab(Merck);以及durvalumab(Medimmune)。 [0296] CTLA-4抑制剂的非限制性实例可包括阿巴西普(abatacept)、伊匹单抗(ipilimumab)和tremelimumab。 [0297] 使用本文所述或本领域已知的任何靶特异性抗体的CDR,可以容易地制备针对DEspR和本文所述的任何靶标的双特异性抗体试剂。 [0298] 本文所述的抗体试剂可以被进一步修饰以改善例如免疫原性或半衰期。例如,本文所述的抗体试剂可以是IgG4抗体试剂和/或铰链稳定化IgG4抗体试剂。在任何方面的一些实施方式中,相对于野生型IgG4序列,铰链稳定化可包含S228P突变(例如,如本文实施例中所述)。 [0299] 可以通过给予包含和/或表达抗体试剂的细胞来向受试者给予本文所述的抗体试剂。例如,细胞可以是T细胞、CAR-T细胞或过继转移T细胞。在任何方面的一些实施方式中,抗体试剂是嵌合抗原受体(CAR)。在任何方面的一些实施方式中,本文所述的抗体试剂不是CAR,并且细胞除CAR外还包含本文所述的抗体试剂。CAR-T细胞和相关疗法涉及表达特异性地结合至靶细胞类型(例如癌细胞)的CAR的免疫细胞(例如T细胞)的过继细胞转移以治疗受试者。在任何方面的一些实施方式中,作为疗法的一部分给予的细胞对受试者而言可以是自体的。在任何方面的一些实施方式中,作为疗法的一部分给予的细胞对受试者而言不是自体的。在任何方面的一些实施方式中,将细胞进行工程化和/或基因修饰以表达本文所述的抗体试剂和/或CAR。CAR、CAR-T和其它过继细胞转移技术是本领域所公知的。CAR-T疗法的进一步讨论例如可以见于如下文献中:Maus等,Blood 2014,123,2624-35;Reardon等,Neuro-Oncology2014,16,1441-1458;Hoyos等,Haematologica 2012,97:1622;Byrd等,J Clin Oncol 2014,32:3039-47;Maher等,Cancer Res 2009,69:4559-4562;以及Tamada等,Clin Cancer Res 2012,18:6436-6445;通过引用将它们各自整体并入本文。 [0300] 在任何方面的一些实施方式中,本文所述的DEspR抑制剂或抗DEspR抗体试剂或双特异性抗体试剂是抗体-药物缀合物。抗体-药物缀合物可以包含至少一种抗DEspR抗体试剂和与该抗体试剂缀合的至少一种药物。 [0301] 在具体实施方式中,抗体-药物缀合物包含本文所述的抗体、抗体试剂或它们的抗原结合部分。药物可以是例如本文其它地方所述的化疗分子。在任何方面的一些实施方式中,抗体-药物缀合物包含直接缀合和/或结合至抗体或其抗原结合部分的化疗剂。在任何方面的一些实施方式中,结合可为非共价的,例如通过氢键、静电或范德华相互作用;然而,结合也可为共价的。“缀合”意味着至少两个分子的共价连接。在任何方面的一些实施方式中,组合物可为抗体-药物缀合物。 [0302] 在任何方面的一些实施方式中,抗体、抗体试剂或它们的抗原结合部分可结合至和/或缀合至多个化疗分子。在任何方面的一些实施方式中,抗体-药物缀合物可结合至和/或缀合至多个化疗分子。在任何方面的一些实施方式中,给定化疗分子与抗体或其抗原结合部分的比例可为约1:1至约1,000:1,例如单个抗体试剂分子可例如连接至、缀合至约1至约1,000个单独的化疗分子。 [0303] 在任何方面的一些实施方式中,抗体或其抗原结合部分和化疗剂可存在于支架材料中。适用于治疗组合物中的支架材料为本领域所知晓,可包括但不限于纳米颗粒、基质、水凝胶、生物材料、生物相容和/或可生物降解的支架材料。本文使用的术语“纳米颗粒”指的是约10-9或十亿分之一至数十亿分之一米量级的颗粒。术语“纳米颗粒”包括纳米球、纳米棒、纳米壳以及纳米棱柱;这些纳米颗粒可以是纳米网络的一部分。 [0304] 术语“纳米颗粒”还涵盖了具有纳米颗粒尺寸的脂质体和脂质颗粒。本文使用的术语“基质”指的是包含本文所述的组合物组分(例如抗体或其抗原结合部分)的3维结构。基质结构的非限制性实例包括泡沫、水凝胶、静电纺丝纤维、凝胶、纤维垫(fiber mats)、海绵、3维支架、无纺布垫、编织材料(woven materials)、针织材料(knit materials)、纤维束、纤维和其它材料形式(参见例如Rockwood等,Nature Protocols 20116:1612-1631及US专利公开2011/0167602;2011/0009960;2012/0296352和U.S.专利号8,172,901,各自以引用的方式将它们整体并入本文)。本领域技术人员可根据组合物的期望应用对基质的结构进行选择,例如静电纺丝基质可具有比泡沫更大的表面积。 [0305] 在任何方面的一些实施方式中,支架是水凝胶。本文使用的术语“水凝胶”指的是在水中不可溶、但能够吸收并保持大量水从而形成稳定、通常柔软和柔韧的结构的三维聚合物结构。在任何方面的一些实施方式中,水可渗透入聚合物网络的聚合物链之间,随后引起水凝胶的溶胀和形成。一般而言,水凝胶为超强吸收性的。水凝胶具有用于生物医疗应用的多种期望性质。例如,它们可被制成无毒并与组织相容的,并且它们对于水、离子和小分子是高度透过的。水凝胶为超强吸收性的(它们可含有超过99%的水),并可由天然(例如丝)或合成聚合物(例如PEG)组成。 [0306] 本文使用的“生物材料”指的是生物相容且可生物降解的材料。本文使用的术语“生物相容”指的是对细胞无毒的物质。在任何方面的一些实施方式中,如果在体外将物质加入至细胞造成小于或等于约20%的细胞死亡,则认为该物质是“生物相容”的。在任何方面的一些实施方式中,如果在体内将物质加入至细胞并不引发体内的炎症和/或其它副作用,则认为该物质是“生物相容”的。本文使用的术语“可生物降解”指的是在生理条件下被降解的物质。在任何方面的一些实施方式中,可生物降解物质为被细胞器(cellular machinery)分解的物质。在任何方面的一些实施方式中,可生物降解物质为被化学过程分解的物质。 [0307] 用于抗体-药物缀合物的示例性药物可以包括溶栓剂、化学治疗剂、纳米颗粒、多肽、成像剂、荧光团、小分子、酶、核酸分子或化学品。化学治疗剂的非限制性实例包括mertansine、emtansine、吉西他滨、替莫唑胺、紫杉醇或顺铂/奥沙利铂。纳米颗粒的非限制性实例包括氧化铁-纳米颗粒(IONP)、聚合物纳米颗粒或金纳米颗粒或嵌合纳米颗粒。酶的非限制性实例包括DNaseI(例如人DNaseI)、DNAseI、基质金属蛋白酶1(MMP1)、基质金属蛋白酶2(MMP2)、基质金属蛋白酶3(MMP3)、金属蛋白酶组织抑制剂(TIMP)、蛋白酶、重组酶或纤溶酶原激活物。多肽的非限制性实例包括糜蛋白酶抑制素(chymostatin)、血管生成素1/2和SDF-1。化学品的非限制性实例包括4-氨基苯甲酰肼或NX-059硝酮。在本文所述方法的一些实施方式中,受试者可以是例如在相同组合物中或在分开的组合物中例如顺序或同时进一步给予PD1和/或PD-L1抑制剂疗法的受试者。核酸分子的非限制性实例可包括RNA抑制剂(siRNA、miRNA)或RNA调节剂(miRNA)或转录因子诱饵(DNA诱饵)。 [0308] PD-1和/或PD-L1抑制剂疗法可包含结合至PD-1和/或PD-L1并因此抑制其活性和/或增加表达PD-1和/或PD-L1的细胞的凋亡或吞噬作用的抗体、抗体试剂、CAR-T或其它分子。 [0309] 在本文所述方法的一些实施方式中,受试者可以是先前给予了PD1和/或PD-L1抑制剂疗法的受试者。在本文所述方法的一些实施方式中,受试者可以对利用PD1和/或PD-L1抑制剂疗法进行的治疗耐受。耐受可以是先天性的(例如,肿瘤对PD1和/或PD-L1抑制剂疗法从不具有应答性),或者耐受可以在利用PD1和/或PD-L1抑制剂疗法进行治疗的过程中发展。在本文所述方法的一些实施方式中,受试者可以是具有来自利用PD1和/或PD-L1抑制剂疗法进行的治疗的毒性的受试者,例如,给予PD1和/或PD-L1抑制剂疗法引起不期望的副作用(例如使得需要停止PD1和/或PD-L1抑制剂疗法的副作用)。 [0310] 在本文所述方法的一些实施方式中,受试者可以是先前给予了进一步的免疫疗法的受试者。在本文所述方法的一些实施方式中,受试者可以对利用进一步的免疫疗法进行的治疗耐受。耐受可以是先天性的(例如,肿瘤对进一步的免疫疗法从不具有应答性),或者耐受可以在利用免疫疗法进行治疗的过程中发展。在本文所述方法的一些实施方式中,受试者可以是具有来自利用进一步的免疫疗法进行的治疗的毒性的受试者,例如,给予免疫疗法引起不期望的副作用(例如使得需要停止免疫疗法的副作用)。在任何方面的一些实施方式中,进一步的免疫疗法可以是PD1和/或PD-L1抑制剂疗法。 [0311] 本文所使用的“免疫疗法”是指设计用于诱导患者自身的免疫系统来对抗疾病(例如癌症或肿瘤)的多组治疗策略。免疫疗法的非限制性实例可包括:用于浅表膀胱癌的膀胱内BCG免疫疗法;产生特异性免疫应答的疫苗(例如用于恶性黑色素瘤和肾细胞癌);使用Sipuleucel-T用于前列腺癌(其中,将来自患者的树突状细胞用前列腺酸性磷酸酶肽进行装载,以诱导针对前列腺衍生细胞的特异性免疫应答);给予细胞因子、生长因子和/或信号传导分子(其刺激一种或多种免疫细胞类型)(例如白介素);在重新引入患者之前离体扩增和/或刺激对肿瘤抗原具有特异性的淋巴细胞和/或树突状细胞;咪喹莫特;过继细胞转移;和/或在例如国际专利公开WO 2003/063792和美国专利号8,329,660中描述的方法。在一些实施方式中,免疫疗法刺激NK应答。在一些实施方式中,免疫疗法是过继细胞转移方法,即过继免疫疗法。在一些实施方式中,本文所述的方法可以进一步包括向受试者给予额外的抗体、抗体试剂、它们的抗原结合部分或包含CAR的T细胞。在一些实施方式中,本文所述的方法可以进一步包括向受试者给予一种或多种细胞因子。基于抗体和细胞因子的疗法在本领域中是已知的,作为非限制性实例可以包括阿仑单抗;贝伐单抗;本妥昔单抗;西妥昔单抗;吉妥珠单抗;替伊莫单抗;伊匹单抗;奥法木单抗;帕尼单抗(pantibumumab);利妥昔单抗;托西莫单抗;曲妥珠单抗;白介素-2;以及干扰素-α。 [0312] 在任何实施方式的一个方面,本文描述了如本文任何方面或实施方式中所述的DEspR抑制剂、抗DEspR抗体试剂、抗体-药物缀合物和/或双特异性试剂。 [0313] 在任何实施方式的一个方面,本文描述了在有需要的受试者中治疗病症或疾病的方法,在所述病症或疾病中,中性粒细胞促成疾病的发病或恶化,该方法包括向受试者给予治疗有效量的DEspR抑制剂。 [0314] 在任何实施方式的一个方面,本文描述了在有需要的受试者中治疗病症或疾病的方法,在所述病症或疾病中,中性粒细胞、NET、或NETosing或NETting中性粒细胞促成疾病的发病、慢性化或恶化,该方法包括向受试者给予治疗有效量的DEspR抑制剂。 [0315] 在任何实施方式的一个方面,本文描述了在有需要的受试者中防止或减少NET释放或actPMN NETosis的方法,该方法包括给予治疗有效量的缀合至另一抗中性粒细胞或抗NET试剂(例如缀合至第二抗中性粒细胞或抗NET试剂)的抗DEspR抗体试剂。 [0316] 中性粒细胞促成疾病的发病或恶化的病症或疾病是其中中性粒细胞(例如激活的中性粒细胞)的活性和/或水平促成该病症的病理(例如促成该疾病的发展或原因)而不是作为该疾病本身的症状或反应的任何疾病。此类病症在本领域中是已知的,作为非限制性实例可以包括:系统性炎症反应综合征(SIRS);急性肺损伤(ALI);急性呼吸窘迫综合征(ARDS);来自例如ARDS、出血性休克、手术、烧伤或败血症的多器官衰竭或多器官功能障碍综合征(MOS);败血症;败血症诱导的凝血病;创伤;多发性硬化;急性肾损伤(AKI);AKI相关的肾小管坏死和远处器官损伤;创伤后手术;出血性休克;感染或由药物或任何试剂诱导的细胞因子风暴;缺血性或出血性卒中;卒中继发性脑损伤;心肌缺血/梗死;动脉粥样硬化易损斑块;动脉粥样硬化血栓形成;冠状动脉疾病;急性冠状动脉综合征;心脏衰竭;再灌注损伤;肾透析患者中的合并症(例如血栓形成和内皮功能障碍);缺血或药物诱导的脑中出血性转化、出血性脑病、创伤性脑损伤;缺氧性脑损伤、慢性肾病;癌症;actPMN依赖性癌症;糖尿病;1型糖尿病;2型糖尿病;血管病;血管病变;终末器官并发症(例如视网膜病变或糖尿病肾病);糖尿病溃疡伤口愈合不良;深静脉血栓形成;癌症;癌症转移;系统性微血栓形成;化学疗法诱导的微血栓形成;动脉粥样硬化血栓形成;系统性红斑狼疮(SLE);狼疮性肾炎; SLE加速的动脉粥样硬化;类风湿性关节炎;COPD;囊性纤维化;肺病;阿尔茨海默氏病;镰状细胞病;炎症性肠病(IBD);克罗恩病;溃疡性结肠炎;以及未定型结肠炎。 [0317] 在任何方面的一些实施方式中,根据本文所述方法治疗的受试者可以是患有或被诊断为患有如下病症或疾病的受试者:系统性炎症反应综合征(SIRS);急性肺损伤(ALI);急性呼吸窘迫综合征(ARDS);来自例如ARDS、出血性休克、手术、烧伤或败血症的多器官衰竭或多器官功能障碍综合征(MOS);败血症;败血症诱导的凝血病;创伤;多发性硬化;急性肾损伤(AKI);AKI相关的肾小管坏死和远处器官损伤;创伤后手术;出血性休克;感染或由药物或任何试剂诱导的细胞因子风暴;缺血性或出血性卒中;卒中继发性脑损伤;心肌缺血/梗死;动脉粥样硬化易损斑块;动脉粥样硬化血栓形成;冠状动脉疾病;急性冠状动脉综合征;心脏衰竭;再灌注损伤;肾透析患者中的合并症(例如血栓形成和内皮功能障碍);缺血或药物诱导的脑中出血性转化、出血性脑病、创伤性脑损伤;缺氧性脑损伤、慢性肾病;癌症;actPMN依赖性癌症;糖尿病;1型糖尿病;2型糖尿病;血管病;血管病变;终末器官并发症(例如视网膜病变或糖尿病肾病);糖尿病溃疡伤口愈合不良;深静脉血栓形成;癌症;癌症转移;系统性微血栓形成;化学疗法诱导的微血栓形成;动脉粥样硬化血栓形成;系统性红斑狼疮(SLE);狼疮性肾炎;SLE加速的动脉粥样硬化;类风湿性关节炎;COPD;囊性纤维化; 肺病;阿尔茨海默氏病;镰状细胞病;炎症性肠病(IBD);克罗恩病;溃疡性结肠炎;以及未定型结肠炎。 [0318] 中性粒细胞与多发性硬化的加重发作(exacerbation bouts)有关。因此,本文所述的方法可以涉及多发性硬化的治疗。中性粒细胞与迄今为止尚无治疗方法的急性肾损伤有关。因此,本文所述的方法可以涉及急性肾损伤的治疗。免疫逃逸与癌前病变向恶性病变的发展或微转移病变向大转移(macro-metastases)的发展有关。中性粒细胞通过释放抑制T细胞在免疫监视中的作用的物质而促成免疫逃逸,因此,DEspR+中性粒细胞中DEspR介导的存活提高促成癌前向恶性(precancer-to-malignancy)转换。因此,本文所述的方法可以涉及癌前病变的治疗。值得注意的是,多种癌症与先前的感染和/或中性粒细胞增多(neutrophilia)有关:胰腺炎是胰腺癌的风险因素,中性粒细胞增多由吸烟引起,其与肺癌有关。 [0319] 在任何方面的一些实施方式中,根据本文所述方法治疗的受试者可以患有或被诊断为患有癌症,并且具有PD-L1+/DEspR+肿瘤和/或癌细胞。对特定标志物或多肽呈“阳性”的细胞或肿瘤是表达升高水平的该标志物或多肽的细胞或肿瘤,例如,与相同类型的健康细胞或在相同类型的健康细胞中发现的该标志物或多肽的平均水平相比。在一些实施方式中,标志物或多肽的升高的水平可以是至少为见于参考中的水平的1.5倍,例如,参考水平的1.5倍、2倍、3倍、4倍、5倍或更高。 [0320] 在任何方面的一些实施方式中,根据本文所述方法治疗的受试者可以患有癌症或被诊断为患有癌症,并且先前曾经通过肿瘤切除术进行治疗。在任何方面的一些实施方式中,癌症是胰腺导管腺癌、胶质母细胞瘤、肺癌、乳腺癌、三阴乳腺癌、黑色素瘤或结直肠癌。 [0321] 在一些实施方式中,根据本文所述方法治疗的受试者可以是具有或被确定为具有:PD-L1+/DespR+肿瘤;升高的循环DEspR+中性粒细胞水平;升高的DEspR+激活的中性粒细胞水平;升高的NET水平;升高的血浆中性粒细胞弹性蛋白酶(NE)水平;升高的血浆中性粒细胞髓过氧化物酶(MPO)水平;或肿瘤的受试者,所述肿瘤包含以下中的一种或多种:DEspR+中性粒细胞;DEspR+NETosing中性粒细胞;NET;升高的中性粒细胞释放的免疫抑制剂水平;升高的瓜氨酸化组蛋白3水平;以及升高的中性粒细胞刺激剂水平。非限制性中性粒细胞释放的免疫抑制剂包括精氨酸酶1;PD-L1;髓过氧化物酶(MPO);中性粒细胞弹性蛋白酶(NE);或组织蛋白酶G。非限制性中性粒细胞刺激剂包括G-CSF、ET1、Hif1a或DAMP。在任何方面的一些实施方式中,某一水平可以相对于参考水平增加,例如相对于较早时间点的受试者、未患癌症的受试者或患有不涉及NET、NETosis或激活的中性粒细胞的癌症的受试者。 [0322] 本文所使用的“抗NET”化合物或试剂是指降解NET的任何组分或靶向NET的任何组分以进行降解从而清除NET和/或防止NET形成的任何化合物或试剂。还包括在内的是其它抑制NET组分活性的化合物。抗NET化合物可以是核酸(DNA或RNA)、小分子、脂质、碳水化合物、蛋白、肽、抗体或抗体片段。在一些实施方式中,抗NET化合物可以是酶,例如切割和/或降解例如核酸、蛋白质、多肽或碳水化合物的酶。抗NET化合物的实例描述于美国专利公开US 2014-0199329中;通过引用将其整体并入本文。抗NET试剂的非限制性实例可包括DNase;RNAse;组蛋白降解酶;染色质解凝(decondensation)抑制剂;针对NET组分的抗体;弹性蛋白酶抑制剂;PAD抑制剂;以及PAD4抑制剂。 [0323] 本文所使用的“抗中性粒细胞”化合物或试剂是指对中性粒细胞有毒性、促进凋亡和/或抑制actPMN的一种或多种活性的任何化合物或试剂,例如抑制中性粒细胞粘附或游出(transmigration)(例如抗ICAM1)、抑制中性粒细胞激活(例如抗CD11b)或使骨髓中的中性粒细胞前体耗竭(depletion)(例如化学疗法)。 [0324] 可向患有或被诊断为患有本文所述的疾病或病症的受试者给予本文所述的组合物和方法。在一些实施方式中,本文所述的方法包括向受试者给予有效量的本文所述的组合物(例如试剂,例如DEspR抑制剂)以减轻疾病或病症的症状。本文所使用的“减轻症状”是改善与疾病或病症相关的任何病症或症状。与等同的未处理对照相比,如通过任何标准技术所测量的,这种降低为至少5%、10%、20%、40%、50%、60%、80%、90%、95%、99%或者更多。在一个实施方式中,本文所述的方法包括给予有效量的本文称为抗DEspR抗体的人或人源化抗体。本领域技术人员已知将本文所述的组合物给予受试者的各种方法。这些方法可以包括但不限于口服给予、肠胃外给予、静脉内给予、肌内给予、皮下给予、透皮给予、呼吸道(气雾剂)给予、肺部给予、皮肤给予、局部给予、注射给予或瘤内给予。给予可以是局部的或全身的。 [0325] 本文所使用的术语“有效量”是指减轻疾病或病症的至少一种或多种症状所需的试剂(例如DEspR抑制剂)的量,并且涉及足以提供期望效果的药理学组合物的量。因此,术语“治疗有效量”是指当给予典型受试者时足以提供特定效果的试剂(例如DEspR抑制剂)的量。在各种情况下,本文所使用的有效量还将包括足以延迟疾病症状的发展、改变疾病症状的进程(例如但不限于减缓疾病症状的进展)或逆转疾病症状的量。因此,指定确切的“有效量”通常是不实际的。然而,对于任何给定的情况,本领域普通技术人员可以仅使用常规实验来确定合适的“有效量”。 [0326] 有效量、毒性和治疗效果可以通过细胞培养或实验动物中的标准药学程序来确定,例如用于确定LD50(对群体的50%而言致死的剂量)和ED50(在群体的50%中治疗有效的剂量)的程序。剂量可以根据使用的剂型和使用的给予途径而变化。毒性和治疗效果之间的剂量比是治疗指数,并且可以表示为比值LD50/ED50。表现出高治疗指数的组合物和方法是优选的。治疗有效剂量可以从细胞培养测定法开始估算。另外,可以在动物模型中制定剂量以达到包括在细胞培养中或合适的动物模型中确定的IC50(即活性成分的浓度,其达到症状的半最大抑制)在内的循环血浆浓度范围。例如,可以通过高效液相色谱测量血浆中的水平。任何特定剂量的效果可以通过合适的生物测定法来监测,例如针对actPMN和/或NET的测定法等。该剂量可以由医生确定,并可根据需要进行调整以适应观察到的治疗效果。 [0327] 在一些实施方式中,本文所述的技术涉及药物组合物,所述药物组合物包含本文所述的试剂(例如DEspR抑制剂)和任选的药学上可接受的载体。在一些实施方式中,药物组合物的活性成分包含本文所述的试剂(例如DEspR抑制剂)。在一些实施方式中,药物组合物的活性成分基本上由本文所述的试剂(例如DEspR抑制剂)组成。在一些实施方式中,药物组合物的活性成分由本文所述的试剂(例如DEspR抑制剂)组成。药学上可接受的载体和稀释剂包括盐水、水性缓冲液、溶剂和/或分散介质。此类载体和稀释剂的使用是本领域所公知的。可以充当药学上可接受的载体的材料的一些非限制性实例包括:(1)糖,例如乳糖、葡萄糖和蔗糖;(2)淀粉,例如玉米淀粉和马铃薯淀粉;(3)纤维素及其衍生物,例如羧甲基纤维素钠、甲基纤维素、乙基纤维素、微晶纤维素和醋酸纤维素;(4)西黄蓍胶粉;(5)麦芽;(6)明胶;(7)润滑剂,如硬脂酸镁、十二烷基硫酸钠和滑石粉;(8)赋形剂,例如可可脂和栓剂蜡;(9)油,例如花生油、棉籽油、红花油、芝麻油、橄榄油、玉米油和大豆油;(10)二醇,例如丙二醇;(11)多元醇,例如甘油、山梨糖醇、甘露糖醇和聚乙二醇(PEG);(12)酯,例如油酸乙酯和月桂酸乙酯;(13)琼脂;(14)缓冲剂,例如氢氧化镁和氢氧化铝;(15)海藻酸;(16)无热原水;(17)等渗盐水;(18)林格氏液;(19)乙醇;(20)pH缓冲溶液;(21)聚酯、聚碳酸酯和/或聚酐;(22)膨松剂(bulking agents),例如多肽和氨基酸;(23)血清成分,例如血清白蛋白、HDL和LDL;(22)C2-C12醇,例如乙醇;以及(23)药物制剂中使用的其它无毒相容性物质。制剂中也可以存在润湿剂、着色剂、脱模剂、包衣剂、甜味剂、调味剂、加香剂、防腐剂和抗氧化剂。诸如“赋形剂”、“载体”、“药学上可接受的载体”等的术语在本文中可互换使用。在一些实施方式中,载体抑制本文所述的活性剂(例如试剂,例如DEspR抑制剂)的降解。 [0328] 在一些实施方式中,包含本文所述的试剂(例如DEspR抑制剂)的药物组合物可以是肠胃外剂型。由于肠胃外剂型的给予通常绕过患者对抗污染物的天然防御,肠胃外剂型优选是无菌的或能够在给予患者之前进行灭菌。肠胃外剂型的实例包括但不限于准备好用于注射的溶液;准备好被溶解或悬浮于药学上可接受的媒介中以用于注射的干燥产品;准备好用于注射的悬浮液;及乳剂。另外,可以制备用于给予患者的控释肠胃外剂型,包括但不限于 型剂型和剂量倾卸(dose-dumping)。 [0329] 可用于提供本文所公开的试剂(例如DEspR抑制剂)的肠胃外剂型的合适媒介对本领域技术人员是众所周知的。实例包括但不限于:无菌水;注射用水USP;盐水溶液;葡萄糖溶液;水性媒介,例如但不限于氯化钠注射液、林格氏注射液、右旋糖注射液、右旋糖和氯化钠注射液以及乳酸盐林格氏注射液;与水混溶的媒介,例如但不限于乙醇、聚乙二醇和丙二醇;以及非水性媒介,例如但不限于玉米油、棉籽油、花生油、芝麻油、油酸乙酯、肉豆蔻酸异丙酯以及苯甲酸苄酯。改变或修改本文所公开的药学上可接受的盐的溶解度的化合物也可以被掺入本公开的肠胃外剂型(包括常规的和控释的肠胃外剂型)中。 [0330] 包含本文所述试剂(例如DEspR抑制剂)的药物组合物也可以配制成适合于口服给予,例如作为离散(discrete)剂型,例如但不限于片剂(包括但不限于刻痕片剂和包衣片剂)、丸剂、囊片剂(caplets)、胶囊剂、咀嚼片剂、粉末包装、扁囊剂(cachets)、锭剂(troches)、薄片剂(wafers)、气雾剂;或液体,例如但不限于糖浆剂、酏剂、水性液体中的溶液或悬浮液、非水性液体、水包油乳液或油包水乳液。此类组合物包含预定量的公开化合物的药学上可接受的盐,并可通过本领域技术人员所公知的药学方法进行制备。通常参见Remington:The Science and Practice of Pharmacy,第21版,Lippincott,Williams和Wilkins,Philadelphia PA.(2005)。 [0331] 常规剂型通常提供药物从制剂中的快速或立即释放。取决于药物的药理学和药代动力学,常规剂型的使用可引起患者血液和其它组织中药物浓度的广泛波动。这些波动可影响多种参数,例如剂量频率、起效、功效持续时间、治疗剂血液水平的维持、毒性、副作用等。有利地,控释制剂可用于控制药物的起效、作用持续时间、治疗窗内的血浆水平以及峰值血液水平。具体而言,控释或缓释剂型或制剂可用于确保实现药物的最大功效,同时将潜在的不良影响和安全隐患最小化,这既可能由于药物剂量不足(例如低于最低治疗水平)也可能由于超过药物的毒性水平而引发。在一些实施方式中,可通过持续释放制剂的形式给予组合物。 [0332] 相比于它们的非控释对应物所达到的目标,控释药物产品具有改善药物疗法的共同目标。理想地,在医学治疗中使用最佳设计的控释制剂的特征在于在最短的时间内使用最少的药物来治愈或控制病症。控释制剂的优点包括:1)延长药物活性;2)降低剂量频率;3)增加患者依从性;4)使用较少的总药物;5)减少局部或系统性副作用;6)最小化药物积累;7)降低血液水平波动;8)改善治疗效果;9)减少药物活性的强化或损失;以及10)提高控制疾病或病症的速度。Kim,Cherng-ju,Controlled Release Dosage Form Design,2(Technomic Publishing,Lancaster,Pa.:2000)。 [0333] 大多数控释制剂被设计成最初释放立即产生期望治疗效果的一定量的药物(活性成分),并逐渐和持续释放其它量的药物,以在延长的时间段内维持该水平的治疗效果或预防效果。为了维持药物在体内的这种恒定水平,必须以这样的速率从剂型中释放药物:该速率将替代被代谢和从体内排出的药物的量。活性成分的控释可以通过多种条件刺激,包括但不限于pH、离子强度、渗透压、温度、酶、水和其它生理条件或化合物。 [0334] 多种已知的控释或缓释剂型、制剂和装置可适用于与本公开的组合物和盐一起使用。实例包括但不限于美国专利号3,845,770;3,916,899;3,536,809;3,598,123;4,008,719;5674,533;5,059,595;5,591,767;5,120,548;5,073,543;5,639,476;5,354,556;5, 733,566;以及6,365,185B1中所描述的;每一个均通过引用并入本文。这些剂型可用于提供一种或多种活性成分的缓释或控释,例如使用羟丙基甲基纤维素、其它聚合物基质、凝胶、渗透膜、渗透系统(例如 (Alza Corporation,Mountain View,Calif.USA))或它们的组合,以提供不同比例的期望的释放曲线。 [0335] 在任何方面的一些实施方式中,本文所述的试剂(例如DEspR抑制剂)作为单一疗法给予,例如,不向受试者给予用于疾病或病症的另一治疗。 [0336] 在任何方面的一些实施方式中,本文所述的方法可以进一步包括向受试者给予第二试剂和/或治疗,例如作为组合疗法的一部分。第二试剂(包括示例性化学疗法)和/或治疗的非限制性实例可包括放射疗法、手术、吉西他滨、顺铂、紫杉醇、卡铂、硼替佐米、AMG479、伏立诺他、利妥昔单抗、替莫唑胺、雷帕霉素、ABT-737、PI-103;烷化剂,例如噻替哌和 环磷酰胺;烷基磺酸酯,例如白消安、英丙舒凡和哌泊舒凡;氮丙啶,例如benzodopa、卡波醌、meturedopa和uredopa;乙撑亚胺和甲基蜜胺(methylamelamines),包括六甲蜜胺、三乙撑蜜胺、三乙撑磷酰胺、三乙撑硫代磷酰胺和三羟甲基蜜胺;多聚乙酰(acetogenins)(特别是布拉它辛(bullatacin)和布拉它辛酮(bullatacinone));喜树碱(包括合成类似物拓扑替康);苔藓虫素(bryostatin);callystatin;CC-1065(包括其阿多来新、卡折来新和比折来新合成类似物);念珠藻素(cryptophycins)(特别是念珠藻素1和念珠藻素8);海兔毒素(dolastatin);倍癌霉素(duocarmycin)(包括合成类似物KW-2189和CB1-TM1);eleutherobin;水鬼蕉碱(pancratistatin);sarcodictyin;spongistatin;氮芥,例如苯丁酸氮芥、萘氮芥、氯代磷酰胺(cholophosphamide)、雌氮芥、异环磷酰胺、二氯甲基二乙胺(mechlorethamine)、二氯甲基二乙胺氧化物盐酸盐、美法仑、novembichin、苯芥胆甾醇(phenesterine)、泼尼氮芥、曲磷胺、尿嘧啶氮芥;亚硝基脲(nitrosureas),例如卡莫司汀、氯脲菌素、福莫司汀、洛莫司汀、尼莫司汀和ranimnustine;抗生素,例如烯二炔抗生素(例如卡奇霉素,特别是卡奇霉素γlI和卡奇霉素ωIl(参见例如Agnew, Chem.Intl.Ed.Engl.,33:183-186(1994));dynemicin,包括dynemicin A;双膦酸盐类,例如氯膦酸盐;埃斯培拉霉素(esperamicin);以及新制癌菌素发色团和相关的色蛋白烯二炔抗生素发色团、aclacinomysins、放线菌素、authramycin、重氮丝氨酸、博来霉素、放线菌素C、carabicin、caminomycin、嗜癌素(carzinophilin)、色霉素(chromomycinis)、放线菌素D、柔红霉素、地托比星、6-重氮-5-氧代-L-正亮氨酸、 阿霉素(包括吗啉代 阿霉素、氰基吗啉代阿霉素、2-吡咯啉-阿霉素和去氧阿霉素)、表柔比星、依索比星、去甲氧基柔红霉素、麻西罗霉素、丝裂霉素(例如丝裂霉素C)、霉酚酸、诺加霉素、橄榄霉素、培洛霉素、泊非霉素、嘌呤霉素、quelamycin、罗多比星、链黑菌素、链脲佐菌素、杀结核菌素、乌苯美司、净司他丁、佐柔比星;抗代谢物,例如氨甲蝶呤和5-氟尿嘧啶(5-FU);叶酸类似物,例如二甲叶酸、氨甲蝶呤、蝶罗呤、曲美沙特;嘌呤类似物,例如氟达拉滨、6-巯基嘌呤、硫咪嘌呤、硫鸟嘌呤;嘧啶类似物,例如安西他滨、阿扎胞苷、6-氮尿苷、卡莫氟、阿糖胞苷、二脱氧尿苷、去氧氟尿苷、依诺他滨、氟尿苷;雄激素,例如卡普睾酮、丙酸屈他雄酮、环硫雄醇、美雄烷、睾内酯;抗肾上腺,例如氨鲁米特、米托坦、曲洛司坦;叶酸补充剂,例如亚叶酸(frolinic acid);乙酰葡醛内酯;醛磷酰胺糖苷;氨基乙酰丙酸;恩尿嘧啶(eniluracil); 安吖啶;bestrabucil;比生群;edatraxate;defofamine;地美可辛;亚胺醌(diaziquone); 依氟鸟氨酸(elformithine);依利醋铵;埃博霉素;依托格鲁;硝酸镓;羟基脲;香菇多糖;氯尼达明(lonidainine);美登素类化合物(maytansinoids),例如美登素和安丝菌素;米托胍腙;米托蒽醌;莫哌达醇(mopidanmol);nitraerine;喷司他丁;phenamet;吡柔比星;洛索蒽醌;鬼臼酸乙肼;甲基苄肼; 多糖复合物(JHS Natural Products,Eugene,Oreg.);雷佐生;根霉素;西佐喃(sizofuran);螺旋锗;细交链孢菌酮酸(tenuazonic acid);三亚胺醌;2,2’,2”-三氯三乙胺;单端孢霉烯(特别是T-2毒素、疣孢菌素A(verracurin A)、杆孢菌素A和anguidine);氨基甲酸酯;长春地辛;达卡巴嗪;甘露醇氮芥;二溴甘露醇;二溴卫矛醇;哌泊溴烷;gacytosine;阿糖胞苷(“Ara-C”);环磷酰胺;噻替哌;紫杉烷类化合物(taxoids),例如 紫杉醇(Bristol-Myers Squibb Oncology,Princeton,N.J.)、紫杉醇的无Cremophor的白蛋白工程化纳米颗粒制剂(American Pharmaceutical Partners,Schaumberg,I11.)和 doxetaxel(Rhone- Poulenc Rorer,Antony,法国);苯丁酸氮芥(chloranbucil); 吉西他滨;6-硫代鸟嘌呤;巯基嘌呤;氨甲蝶呤;铂类似物,例如顺铂、奥沙利铂和卡铂;长春碱;铂;依托泊苷(VP-16);异环磷酰胺;米托蒽醌;长春新碱;NAVELBINE长春瑞滨;盐酸米托蒽醌;替尼泊苷;依达曲沙;道诺霉素;氨基蝶呤;希罗达;伊班膦酸盐;伊立替康(Camptosar,CPT-11)(包括伊立替康与5-FU和甲酰四氢叶酸的治疗方案);拓扑异构酶抑制剂RFS 2000;二氟甲基鸟氨酸(DMFO);类视黄醇,例如视黄酸;卡培他滨;combretastatin;甲酰四氢叶酸(LV);奥沙利铂,包括奥沙利铂治疗方案(FOLFOX);拉帕替尼(TYKERB);减少细胞增殖的PKC-α、Raf、H-Ras、EGFR(例如厄洛替尼 )和VEGF-A的抑制剂,以及上述任一者的药学上可 接受的盐、酸或者衍生物。 [0337] 此外,治疗方法可以进一步包括使用放射或放射疗法。此外,治疗方法可以进一步包括使用手术治疗。 [0338] 在任何方面的一些实施方式中,向受试者进一步给予进一步的免疫疗法和/或化学疗法。在任何方面的一些实施方式中,先前曾经向受试者给予进一步的免疫疗法和/或化学疗法。在任何方面的一些实施方式中,受试者对利用进一步的免疫疗法和/或化学疗法进行的治疗耐受。在任何方面的一些实施方式中,化学疗法(例如,与DEspR抑制剂一起给予或作为抗体-药物缀合物的一部分给予)可以是吉西他滨、紫杉醇、替莫唑胺、伊立替康、abraxane、铂基化学疗法、顺铂、oxiloplatin或它们的组合,例如FOLFIRINOX。 [0339] 本文所使用的“免疫疗法”是指设计用于诱导患者自身的免疫系统来对抗肿瘤的多组治疗策略,包括但不限于:用于浅表膀胱癌的膀胱内BCG免疫疗法;产生特异性免疫应答的疫苗(例如用于恶性黑色素瘤和肾细胞癌);使用Sipuleucel-T用于前列腺癌(其中,将来自患者的树突状细胞用前列腺酸性磷酸酶肽进行装载,以诱导针对前列腺衍生细胞的特异性免疫应答);给予细胞因子、生长因子和/或信号传导分子(其刺激一种或多种免疫细胞类型)(例如白介素);在重新引入患者之前离体扩增和/或刺激对肿瘤抗原具有特异性的淋巴细胞和/或树突状细胞;咪喹莫特;过继细胞转移;和/或在例如国际专利公开WO 2003/063792和美国专利号8,329,660中描述的方法。在任何方面的一些实施方式中,免疫疗法刺激NK应答。在任何方面的一些实施方式中,免疫疗法是过继细胞转移方法,即过继免疫疗法。示例性免疫疗法可包括免疫检查点蛋白免疫疗法(例如PD1和/或PD-L1抑制剂疗法、T细胞共刺激剂;或CAR-T疗法)。 [0340] 在某些实施方式中,可以向患者给予一次有效剂量的组合物,所述组合物包含本文所述的试剂(例如DEspR抑制剂)。在某些实施方式中,可以重复向患者给予有效剂量的组合物,所述组合物包含本文所述的试剂(例如DEspR抑制剂)。对于系统性给予,可以向受试者给予治疗量的组合物,例如0.1mg/kg、0.5mg/kg、1.0mg/kg、2.0mg/kg、2.5mg/kg、5mg/kg、10mg/kg、15mg/kg、20mg/kg、25mg/kg、30mg/kg、40mg/kg、50mg/kg或更多,所述组合物包含本文所述的试剂(例如DEspR抑制剂)。 [0341] 在一些实施方式中,在初始治疗方案(initial treatment regimen)之后,可以基于较低频率给予治疗。例如,每两周治疗进行三个月后,可以每月重复一次治疗,持续六个月或一年或更长时间。根据本文所述方法的治疗可以使病症的症状或标志物的水平降低例如至少10%、至少15%、至少20%、至少25%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%或至少90%或更多。 [0342] 本文所述组合物的剂量可以由医师确定,并可根据需要进行调整以适合所观察到的治疗效果。关于治疗的持续时间和频率,熟练的临床医生通常会监测受试者,以确定治疗何时提供治疗益处,并确定是否增加或减少剂量、增加或减少给药频率、中止治疗、恢复治疗或对治疗方案进行其它更改。取决于许多临床因素(例如受试者对活性成分的敏感性),给药时间表(dosing schedule)可以从一周一次到每天一次。期望的激活的剂量或量可以一次给予,或分为亚剂量(例如2-4个亚剂量)并在一段时间内(例如以一天中的适当间隔或其它合适的时间表)给予。在一些实施方式中,给予可以是长期的,例如在数周或数月的时间内每天给予一次或多次剂量和/或治疗。给药和/或治疗时间表的实例是在1周、2周、3周、4周、1个月、2个月、3个月、4个月、5个月或6个月或更长的时间段内每天、每天两次、每天三次或每天四次或更多次给予。可以在一段时间内(例如在5分钟、10分钟、15分钟、20分钟或 25分钟的时间段内)给予包含本文所述的试剂(例如DEspR抑制剂)的组合物。 [0343] 根据本文所述的方法,本文所述试剂(例如DEspR抑制剂)的给药剂量范围取决于例如本文所述试剂(例如DEspR抑制剂)的形式、其效力以及期望将本文所述病症的症状、标志物或指标减少的程度(例如就actPMN和/或NET而言的期望的减少百分比)。剂量不应太大以致引起不良副作用。通常,剂量将随患者的年龄、状况和性别而变化,并且可以由本领域技术人员确定。在发生任何并发症的情况下,剂量也可以由个体医生进行调整。 [0344] 熟练的临床医生可以确定本文所述试剂(例如DEspR抑制剂)在例如治疗本文所述病症或诱导本文所述应答(例如增加的PMN细胞死亡)中的功效。然而,如果在根据本文所述方法的治疗后,本文所述病症的一种或多种症状或迹象(signs)以有益的方式改变、其它临床上可接受的症状改善或甚至缓解、或诱导了期望的应答(例如至少10%),则如本文所使用的术语,该治疗被视为“有效治疗”。可以例如通过测量根据本文所述方法治疗的病症的发生率、标志物、指标和/或症状或任何其它合适的可测量参数(例如actPMN和/或NET水平)来评估功效。通过住院治疗或需要医学干预评估的个体恶化的失败(即疾病进展停止),也可以测量功效。测量这些指标的方法是本领域技术人员已知的和/或在本文中描述。治疗包括对个体或动物(一些非限制性实例包括人或动物)的疾病的任何治疗,并且包括:(1)抑制疾病,例如防止症状(例如疼痛或炎症)恶化;或(2)减轻疾病的严重程度,例如引起症状消退。对于疾病治疗而言的有效量是指当给予有需要的受试者时足以产生对该疾病而言的如本文所定义的术语的有效治疗的量。可以通过评估期望的应答或病症的物理指标来确定试剂的功效。通过测量这些参数中的任何一个或参数的任何组合来监测给药和/或治疗的功效完全在本领域技术人员的能力范围内。可以在本文所述病症的动物模型中评估功效,例如癌症或NETosis的治疗。当使用实验动物模型时,当观察到标志物(例如actPMN和/或NET水平)的统计学显著变化时,治疗的功效得以证明。 [0345] 本文提供了体外和动物模型测定法,使得能够评价本文所述试剂(例如DEspR抑制剂)的给定剂量。作为非限制性实例,可以通过测量actPMN水平、actPMN存活、actPMN活性(例如髓过氧化物酶水平、中性粒细胞弹性蛋白酶水平)、中性粒细胞-淋巴细胞比率和/或NET水平来评价本文所述试剂(例如DEspR抑制剂)的剂量的效果。 [0346] 在任何方面的一些实施方式中,给予了本文所述治疗的受试者可以是确定具有DEspR+中性粒细胞和/或DEspR+中性粒细胞水平升高或提升的受试者。 [0347] 在任何实施方式的一个方面,本文描述了鉴别处于中性粒细胞胞外诱捕网(NET)释放、活力NETosis或actPMN NETosis的风险中的受试者的方法,该方法包括检测获取自受试者的样品中的DEspR+中性粒细胞水平,其中,相对于参考而言DEspR+中性粒细胞的水平升高表明受试者处于中性粒细胞胞外诱捕网(NET)释放、活力NETosis或actPMN NETosis的增加的风险中。在任何实施方式的一个方面,本文描述了鉴别处于中性粒细胞胞外诱捕网(NET)释放、活力NETosis或actPMN NETosis的风险中的受试者的方法,该方法包括检测获取自受试者的中性粒细胞中的DEspR水平,其中,相对于参考而言中性粒细胞中DEspR+的水平升高表明受试者处于中性粒细胞胞外诱捕网(NET)释放、活力NETosis或actPMN NETosis的增加的风险中。 [0348] 在任何方面的一些实施方式中,例如DEspR的表达水平可以通过确定DEspR基因的表达产物(例如DEspR RNA转录物或DEspR多肽)的水平来测量。此类分子可以从生物样品(如生物流体)中分离、衍生或扩增而来。在任何方面的一些实施方式中,当存在DEspR分子时,通过抗体或其抗原结合部分产生可检测信号。在任何方面的一些实施方式中,抗体或其抗原结合部分被可检测地标记或能够产生可检测信号。在任何方面的一些实施方式中,利用选自于由如下方法所组成的组中的方法对例如DEspR分子的水平进行确定:Western印迹;免疫沉淀;酶联免疫吸附测定法(ELISA);放射性免疫测定法(RIA);夹心测定法;荧光原位杂交(FISH);免疫组织学染色;放射性免疫分析(radioimmunometric)测定法;免疫荧光测定法;质谱法;FACS;以及免疫电泳测定法。在任何方面的一些实施方式中,抗体或其抗原结合部分被可检测地标记或产生可检测信号。在任何方面的一些实施方式中,相对于一种或多种参考基因或参考蛋白的表达水平,对例如DEspR的表达水平进行归一化。在任何方面的一些实施方式中,DEspR的参考水平是获取自受试者的先前的样品中DEspR的表达水平。 [0349] 在任何方面的一些实施方式中,例如DEspR的水平可以是DEspR多肽的水平。多肽的检测可以根据本领域已知的任何方法。根据现有技术来检测特定多肽的免疫学方法包括但不限于抗体技术,例如免疫组织化学、免疫细胞化学、流式细胞术、荧光激活细胞分选(FACS)、免疫印迹、放射性免疫测定法、Western印迹、免疫沉淀、酶联免疫吸附测定法(ELISA)以及使用本文所述抗体试剂的衍生技术。 [0350] 免疫化学方法需要使用对靶分子(例如抗原,或本文所述的实施方式中为例如DEspR多肽)具有特异性的抗体试剂。在任何方面的一些实施方式中,本文所述的测定法、方法和/或系统可以包括抗DEspR抗体试剂。在任何方面的一些实施方式中,抗体试剂可以被可检测地标记。在任何方面的一些实施方式中,抗体试剂可以被连接至固体支持物(例如结合至固体支持物)。在任何方面的一些实施方式中,固体支持物可以包含颗粒(包括但不限于琼脂糖或胶乳珠或颗粒或磁性颗粒)、珠、纳米颗粒、聚合物、基质、载玻片、盖玻片、板、平皿、孔、膜和/或格栅(grating)。固体支持物可以包含许多不同的材料,包括但不限于聚合物、塑料、树脂、多糖、硅或二氧化硅基材料、碳、金属、无机玻璃和膜。 [0351] 在一个实施方式中,本文所述的测定法、方法和/或系统可以包括ELISA。在示例性实施方式中,可以将第一抗体试剂固定在固体支持物(通常是聚苯乙烯微滴定板)上。可将固体支持物与获取自受试者的样品接触,并且抗体试剂将结合(“捕获”)抗原(例如DEspR),所述抗体试剂对所述抗原具有特异性。然后可以将固体支持物与经标记的第二抗体试剂(例如检测抗体试剂)接触。检测抗体试剂可以例如包含可检测信号、可与酶共价连接、或者可以通过经由生物缀合连接到酶的二抗来检测抗体自身。信号的存在表明第二“检测”抗体试剂和固定在支持物上的第一抗体试剂均已结合至抗原,即,信号的存在表明靶分子的存在。在各步骤之间,通常用温和的洗涤剂溶液洗涤板,以移除未特异性地结合的任何蛋白或抗体。在最后的洗涤步骤之后,通过添加酶底物对板进行显色以产生可见信号,这表明样品中靶多肽的量。过去的ELISA利用发色底物,然而较新的测定法采用具有高得多的灵敏度的荧光底物。本领域技术人员公知的是,存在其它不同形式的ELISA。 [0352] 在一个实施方式中,本文所述的测定法、系统和方法可以包括侧流免疫测定法测试(LFIA)(也被称为免疫层析测定法)或试纸条测试来测量或确定样品中的例如DEspR多肽的水平。LFIA是旨在检测样品中靶标存在(或不存在)的简单装置。目前存在用于医疗诊断的许多LFIA测试,该医疗诊断为了家庭测试、即时检验或实验室应用。LFIA测试是免疫测定法的一种形式,其中,测试样品借助毛细作用沿固体基底流动。在将样品施加至试纸条之后,样品遇见着色的抗体试剂,该试剂与样品混合,并且如果结合至样品的部分,则运送至用第二抗体试剂预处理的基底相遇线或区带。根据存在于样品中的靶标水平,着色的抗体试剂可以在测试线或区带处结合。LFIA实质上是适合于沿单轴操作以适应试纸条形式或浸量条带(dipstick)形式的免疫测定法。试纸条测试是极其多用途的,并且可以由本领域技术人员容易地进行修改以用于测定来自流体样品(如尿液、血液、水样品等)的大范围的抗原。试纸条测试也被称为浸量条带测试,其名称来自于将试纸条“浸渍”入待测试的流体样品的字面作用。LFIA试纸条测试易于使用,需要非常少的培训,并且可以容易地被包括作为待用于现场实地的即时检验(POCT)诊断的组成部分。LFIA测试可作为竞争性或夹心测定法进行操作。夹心LFIA类似于夹心ELISA。样品首先遇到用对靶标具有特异性的抗体试剂(例如DEspR特异性抗体试剂)标记的着色颗粒。测试线还将含有抗体试剂(例如DEspR特异性抗体试剂)。在阳性样品中,测试线将显示为着色带。在任何方面的一些实施方式中,侧流免疫测定法可以是双抗体夹心测定法、竞争性测定法、定量测定法或它们的变型。存在侧流技术的大量变型。也可以利用多个捕获区以产生多重测试。 [0353] 典型的试纸条由以下组成部分构成:(1)包含吸收垫(即基质或材料)的样品施加区域,向该吸收垫上施加测试样品;(2)缀合物或试剂垫-这包含对靶标具有特异性的抗体试剂,其可以与着色颗粒(通常是胶体金颗粒或胶乳微球)缀合;(3)包含反应膜的测试结果区域-通常为疏水性硝化纤维素或醋酸纤维素膜,在该反应膜上抗体试剂被固定在横跨膜的线中,该线作为捕获区或测试线(也可以存在对照区,其包含对缀合至颗粒或微球的抗体试剂具有特异性的抗体);以及(4)任选的吸液芯(wick)或废液储存器(waste reservoir)-另外的吸收垫,其被设计用于通过毛细作用吸引样品跨过反应膜并收集样品。试纸条的组成部分通常被固定至惰性衬底材料,并且能够以简单的浸量条带形式存在,也可以存在于带有样品端口以及显示捕获和对照区域的反应窗的塑料壳体中。尽管不是绝对必要的,但大多数测试都将并入第二线,该线包含捡取游离的胶乳/金的抗体,以确认测试已正确进行。 [0354] “浸量条带”或LFIA试纸条和其它固体支持物的使用已在本领域中在针对大量抗原生物标志物的免疫测定法的情况下描述。美国专利号4,943,522、6,485,982、6,187,598、5,770,460、5,622,871、6,565,808;美国专利申请系列号10/278,676、美国专利申请系列号 09/579,673和美国专利申请系列号10/717,082(以引用的方式将它们整体并入本文)是此类侧流测试装置的非限制性实例。三个美国专利(美国专利号4,444,880,授予H.Tom;美国专利号4,305,924,授予R.N.Piasio;以及美国专利号4,135,884,授予J.T.Shen)描述了使用“浸量条带”技术通过免疫化学测定法来检测可溶性抗原。这三项专利的设备和方法大体上描述了:在测定条带上的成分-抗原复合物之前,将第一成分固定至“浸量条带”上的固体表面,所述“浸量条带”暴露至含有可溶性抗原的溶液,所述可溶性抗原结合至固定在“浸量条带”上的成分。必要时对这些“浸量条带”技术的教导进行修饰以用于测定例如DEspR多肽在本领域技术人员的技能范围之内。在任何方面的一些实施方式中,浸量条带(或LFIA)可适用于尿样。在任何方面的一些实施方式中,浸量条带可适用于血样。 [0355] 免疫化学是基于特异性抗体的使用的技术家族,其中,抗体被用于特异性地靶向细胞内的分子或细胞表面上的分子。在任何方面的一些实施方式中,可以使用免疫组织化学(“IHC”)和免疫细胞化学(“ICC”)技术来检测或测量例如DEspR多肽的水平。IHC是将免疫化学应用于组织切片;而ICC是将免疫化学应用于经历过特定细胞学制剂(例如基于液体的制剂)处理之后的细胞或组织印记。在一些情况下,信号放大可以被整合到特定方案中,其中,在应用对血小板或白细胞具有特异性的抗体试剂之后应用包含标记的第二抗体。通常,对于免疫组织化学,将获取自受试者并用合适固定剂(例如醇、丙酮和多聚甲醛)固定的组织进行切片并与抗体反应。免疫组织化学的常规方法描述于Buchwalow和Bocker(编)“Immunohistochemistry:Basics and Methods”Springer(2010);Lin和Prichard“Handbook of Practical Immunohistochemistry”Springer(2011);以引用的方式将它们整体并入本文。在任何方面的一些实施方式中,通常,在将获取自受试者的组织或细胞(抗体与其反应)通过合适固定剂(例如醇、丙酮和多聚甲醛)进行固定的情况中,可以利用免疫细胞化学。人样品的免疫细胞学染色方法是本领域技术人员已知的,并且描述于例如Burry“Immunocytochemistry:A Practical Guide for Biomedical Research”Springer(2009)中,以引用的方式将其整体并入本文。 [0356] 在任何方面的一些实施方式中,本文所述的一种或多种抗体试剂可包含可检测的标记和/或包括产生可检测信号的能力(例如,通过催化将化合物转化为可检测产物的反应)。可检测标记可以包括例如:吸光染料、荧光染料或放射性标记。可检测标记、检测可检测标记的方法以及将可检测标记纳入抗体试剂中的方法在本领域中是公知的。 [0357] 在任何方面的一些实施方式中,可检测标记可以包括可通过如下方式检测的标记:光谱手段;光化学手段;生物化学手段;免疫化学手段;电磁手段;放射化学手段;或化学手段,例如荧光手段、化学荧光手段或化学发光手段;或任何其它适当的手段。本文所述方法中使用的可检测标记可以是一级标记(其中,标记包含可被直接检测的部分或产生可被直接检测部分的部分)或二级标记(其中,可检测标记结合至另一部分以产生可检测信号,例如,如同在免疫标记中使用二抗和三抗一样常见)。可检测标记可通过共价或非共价手段连接至抗体试剂。或者,可检测标记可以例如通过直接标记这样的分子而得以连接:该分子通过配体-受体结合对布置(arrangement)或其它此类特异性识别分子来实现与抗体试剂结合。可检测标记可以包括但不限于:放射性同位素、生物发光化合物、发色团、抗体、化学发光化合物、荧光化合物、金属螯合物和酶。 [0358] 在其它实施方式中,将检测抗体用荧光化合物进行标记。当荧光标记的抗体暴露至具有适当波长的光时,由于荧光,荧光标记抗体的存在可以被检测。在任何方面的一些实施方式中,可检测标记可以是荧光染料分子或荧光团,包括但不限于:荧光素、藻红蛋白、藻蓝蛋白、邻苯二醛、荧光胺、Cy3TM、Cy5TM、别藻蓝蛋白(allophycocyanine)、德克萨斯红、peridenin chlorophyll、青色素、串联缀合物如藻红蛋白-Cy5TM、绿色荧光蛋白、罗丹明、异硫氰酸荧光素(FITC)和Oregon GreenTM、罗丹明及衍生物(例如德克萨斯红和四罗丹明异硫氰酸酯(tetrarhodimine isothiocynate,TRITC))、生物素、藻红蛋白、AMCA、CyDyesTM、6-羧基荧光素(6-carboxyfhiorescein;通常以缩写FAM和F被知晓)、6-羧基-2’,4’,7’,4,7-六氯荧光素(6-carboxy-2’,4’,7’,4,7-hexachlorofiuorescein,HEX)、6-羧基-4’,5’-二氯-2’,7’-二甲氧基荧光素(JOE或J)、N,N,N’,N’-四甲基-6羧基罗丹明(TAMRA或T)、6-羧基-X-罗丹明(ROX或R)、5-羧基罗丹明-6G(R6G5或G5)、6-羧基罗丹明-6G(R6G6或G6)和罗丹明 110;青色素染料,例如Cy3、Cy5和Cy7染料;香豆素,例如伞形酮;苯甲亚胺染料,例如Hoechst 33258;菲啶染料,例如德克萨斯红;乙锭染料;吖啶染料;咔唑染料;吩噁嗪染料; 卟啉染料;聚甲炔染料,例如青色素染料如Cy3、Cy5等;BODIPY染料和喹啉染料。 [0359] 在任何方面的一些实施方式中,可检测标记可以是放射性标记,包括但不限于:3H、125I、35S、14C、32P和33P。 [0360] 在任何方面的一些实施方式中,可检测标记可以是酶,包括但不限于:辣根过氧化物酶和碱性磷酸酶。酶标记可以产生例如化学发光信号、有色信号或荧光信号。考虑用于可检测地标记抗体试剂的酶包括但不限于:苹果酸脱氢酶、葡萄球菌核酸酶、δ-V-类固醇异构酶、酵母醇脱氢酶、α-磷酸甘油脱氢酶、磷酸丙糖异构酶、辣根过氧化物酶、碱性磷酸酶、天冬酰胺酶、葡萄糖氧化酶、β-半乳糖苷酶、核糖核酸酶、脲酶、过氧化氢酶、葡萄糖-VI-磷酸脱氢酶、葡萄糖淀粉酶和乙酰胆碱酯酶。 [0361] 在任何方面的一些实施方式中,可检测标记是化学发光标记,包括但不限于:光泽精、鲁米诺、萤光素、异鲁米诺、芳香吖啶酯(theromatic acridinium ester)、咪唑、吖啶盐和草酸酯。 [0362] 在任何方面的一些实施方式中,可检测标记可以是光谱比色标记,包括但不限于:胶体金或着色玻璃或塑料(例如聚苯乙烯、聚丙烯和胶乳)珠。 [0363] 在任何方面的一些实施方式中,抗体还可用可检测标签(例如c-Myc、HA、VSV-G、HSV、FLAG、V5、HIS或生物素)进行标记。还可使用其它检测系统,例如生物素-链霉亲和素系统。在这一系统中,与感兴趣的生物标志物具有免疫反应性(即具有特异性)的抗体是生物素化的。使用链霉亲和素-过氧化物酶缀合物和显色底物对结合至生物标志物的生物素化抗体的量进行确定。此类链霉亲和素过氧化物酶检测试剂盒是可商购得到的,例如来自DAKO,Carpinteria,CA。 [0364] 抗体试剂还可以使用荧光发射金属(例如152Eu或镧系的其它金属)可检测地标记。可以使用金属螯合基团将这些金属连接至抗体试剂,所述金属螯合基团如二乙烯三胺五乙酸(DTPA)或乙二胺四乙酸(EDTA)。 [0365] 本文所述的方法可以涉及确定受试者相对于参考水平是否具有例如升高水平的DEspR。在任何方面的一些实施方式中,标志物(例如DEspR)的参考水平可以是未患有或没有诊断为患有例如癌症的健康受试者中的标志物水平。在任何方面的一些实施方式中,参考水平可以是与待用于确定靶标水平的样品/受试者具有相似细胞类型、样品类型、样品处理的样品和/或获取自具有相似年龄、性别和其它人口统计学参数的受试者的样品中的水平。在任何方面的一些实施方式中,测试样品和对照参考样品是相同类型,即,获取自相同生物来源并且包含相同组成(例如相同数量和类型的细胞和/或样品材料的类型)。因此,在任何方面的一些实施方式中,增加的靶标水平可以随着人口统计学因素(例如年龄、性别、基因型、环境因素和个体病史)的变化而变化。在任何方面的一些实施方式中,参考水平可以包括从不表现出例如癌症的任何迹象或症状的受试者中采集的相同类型的样品中的靶标(例如DEspR或DEspR+中性粒细胞)的水平。在任何方面的一些实施方式中,标志物的参考表达水平可以是获取自受试者的先前样品中标志物的表达水平。这使得能够直接分析该个体中的任何水平变化。 [0366] 在任何方面的一些实施方式中,如果标志物的水平是参考水平的至少1.25倍(例如参考水平的至少1.25倍、至少1.5倍、至少2倍、至少3倍、至少4倍、至少5倍、至少6倍或更高),标志物的水平相对于参考水平可以是增加的。在任何方面的一些实施方式中,可以相对于一种或多种参考基因或参考蛋白的表达水平将标志物的表达水平归一化。在任何方面的一些实施方式中,可以相对于参考值将标志物的表达水平归一化。 [0367] 在任何方面的一些实施方式中,确定不超过20个其它基因的表达水平。在任何方面的一些实施方式中,确定不超过10个其它基因的表达水平。 [0368] 本文所使用的术语“样品”或“测试样品”是指从生物体获取或分离的样品,例如来自受试者的尿样。示例性的生物样品包括但不限于:生物流体样品、血清、血浆、尿液、唾液和/或肿瘤样品等。该术语还包括上述样品的混合物。术语“测试样品”还包括未经处理或经预处理的(或经预加工的)生物样品。在任何方面的一些实施方式中,测试样品可以包含来自受试者的细胞。本文所使用的术语“生物流体”是指从生物来源获得的任何流体,并且包括但不限于血液、尿液和机体排泄物。 [0369] 测试样品可通过从受试者中移除样品而获得,但也可以通过使用先前分离的样品(例如,在之前的时间点分离以及由同一人或另一人分离)来完成。此外,测试样品可以是新鲜采集或以前采集的样品。 [0370] 在任何方面的一些实施方式中,测试样品可以是未经处理的测试样品。本文所使用的短语“未经处理的测试样品”是指这样的测试样品:该测试样品除了稀释和/或悬浮在溶液中外没有进行任何预先的样品前处理。用于处理测试样品的示例性方法包括但不限于:离心、过滤、超声、匀浆、加热、冷冻和解冻以及它们的组合。在任何方面的一些实施方式中,测试样品可以是冷冻测试样品,例如冷冻组织。在采用本文所述的方法、测定法和系统之前,可将冷冻样品解冻。解冻后,冷冻样品可被离心,然后使其接受本文所述的方法、测定法和系统。在任何方面的一些实施方式中,测试样品是澄清测试样品,例如,通过离心和采集包含澄清测试样品的上清液而制备。在任何方面的一些实施方式中,测试样品可以是预加工的测试样品,例如,从选自于由如下处理所组成的组中的处理产生的上清液或滤液:离心、过滤、解冻、纯化以及它们的任意组合。在任何方面的一些实施方式中,测试样品可以用化学和/或生物试剂处理。化学和/或生物试剂可用于在加工过程中保护和/或保持样品并包括样品中的生物分子(例如核酸和蛋白)的稳定性。一种示例性试剂是蛋白酶抑制剂,通常用于在加工过程中保护或保持蛋白的稳定性。本领域技术人员熟知适合对用于确定本文所述标志物的水平所需要的生物学样品进行预加工的方法和过程。 [0371] 在任何方面的一些实施方式中,本文所述的方法、测定法和系统可以进一步包括从受试者获得测试样品的步骤。在任何方面的一些实施方式中,受试者可以是人类受试者。 [0372] 在任何方面的一些实施方式中,本文所述的方法、测定法和系统可包括基于标志物的水平来创建报告。在任何方面的一些实施方式中,报告表示测试样品中标志物的原始值(任选地加上参考样品中标志物的水平);或指示标志物与参考水平相比的百分比或倍数增加;和/或提供表明受试者处于患有癌症的风险中或未患癌症的信号。 [0373] 本文所使用的“处于患有…的风险中”是指与不具有升高和/或增加的标志物水平的受试者相比,患有特定病症的可能性高至少2倍,例如2倍、或2.5倍、或3倍、或4倍或更高的风险。 [0374] 为了方便起见,以下提供说明书、实施例和所附权利要求中使用的一些术语和短语的含义。除非另有说明或上下文有所暗示,否则以下术语和短语包含下面提供的含义。提供这些定义是为了帮助描述具体实施方式,并不旨在限制要求保护的发明,因为本发明的范围仅由权利要求限制。除非另外定义,否则本文使用的所有技术术语和科学术语具有与本发明所属领域的普通技术人员通常理解的含义相同的含义。如果本领域某一术语的使用与其在本文中提供的定义之间存在明显差异,应当以说明书中提供的定义为准。 [0375] 为了方便起见,在此收集本文在说明书、实施例和所附权利要求中使用的某些术语。 [0376] 术语“减少”、“降低”、“下降”或“抑制”在本文中全部用于意指统计学上显著的量的减少。在一些实施方式中,“降低”、“下降”或“减少”或“抑制”通常表示与参考水平(例如不存在给定治疗或试剂)相比减少至少10%,并且可以包括例如减少至少约10%、至少约20%、至少约25%、至少约30%、至少约35%、至少约40%、至少约45%、至少约50%、至少约 55%、至少约60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约85%、至少约 90%、至少约95%、至少约98%、至少约99%或更多。本文所使用的“下降”或“抑制”不包括与参考水平相比完全抑制或下降。“完全抑制”是与参考水平相比的100%抑制。减少可以优选降低至在对没有给定紊乱的个体而言正常的范围内的可接受水平。 [0377] 术语“增加的”、“增加”、“增强”或“激活”在本文中全部用于意指统计学上显著的量的增加。在一些实施方式中,术语“增加的”、“增加”、“增强”或“激活”可以表示与参考水平相比增加至少10%,例如与参考水平相比增加至少约20%、或至少约30%、或至少约40%、或至少约50%、或至少约60%、或至少约70%、或至少约80%、或至少约90%或直到并包括100%的增加或在10%至100%之间的任何增加,或者与参考水平相比至少约2倍、或至少约3倍、或至少约4倍、或至少约5倍、或至少约10倍的增加或在2倍至10倍或更多倍之间的任何增加。在标志物或症状的背景中,“增加”是这种水平的统计学上显著的增加。 [0378] 本文所使用的“受试者”是指人或动物。通常动物是脊椎动物,如灵长类动物、啮齿动物、家畜或狩猎动物。灵长类动物包括黑猩猩、食蟹猴(cynomologous monkeys)、蜘蛛猴和猕猴,例如恒河猴。啮齿动物包括小鼠、大鼠、土拨鼠、雪貂、兔子和仓鼠。家畜和狩猎动物包括奶牛、马、猪、鹿、野牛、水牛;猫科动物,例如家猫;犬科动物,例如狗、狐狸、狼;禽类,例如鸡、鸸鹋、鸵鸟;以及鱼类,例如鳟鱼、鲶鱼和鲑鱼。在一些实施方式中,受试者是哺乳动物,例如灵长类动物(例如人)。术语“个体”、“患者”和“受试者”在本文中可互换使用。 [0379] 优选地,受试者是哺乳动物。哺乳动物可以是人类、非人灵长类动物、小鼠、大鼠、狗、猫、马或奶牛,但不限于这些实例。除人以外的哺乳动物可以有利地用作代表本文所述疾病或病症(例如癌症)的动物模型的受试者。受试者可以是雄性或雌性。 [0380] 在任何方面的一些实施方式中,受试者或患者可以是人。在任何方面的一些实施方式中,受试者或患者可以是哺乳动物。因此,在一个实施方式中,哺乳动物可以包括猫、狗、猪、马、奶牛、绵羊和山羊以及人。本文所述的方法适用于兽医学方法和治疗。例如,在马的蹄叶炎由actPMN引起的情况下,在一些实施方式中,受试者是非人哺乳动物。 [0381] 受试者可以是这样的受试者:该受试者先前曾经被诊断为患有或被鉴别为正在遭受或患有需要治疗的病症或者一种或多种与这种病症相关的并发症,并且任选曾经接受疾病或病症或者与疾病或病症相关的一种或多种并发症的治疗。或者,受试者也可以是先前未被诊断为患有疾病或病症或者与疾病或病症相关的一种或多种并发症的受试者。例如,受试者可以是显示出疾病或病症或者与疾病或病症相关的一种或多种并发症的一种或多种风险因素的受试者,或不表现出风险因素的受试者。 [0382] 就特定病症而言“需要治疗的受试者”可以是患有该病症的受试者、被诊断为患有该病症的受试者或处于发展出该病症的风险中的受试者。 [0383] 本文所使用的术语“蛋白/蛋白质”和“多肽”在本文中可互换使用,用来指定通过相邻残基的α-氨基基团和羧基基团之间的肽键彼此连接的一系列氨基酸残基。术语“蛋白/蛋白质”和“多肽”是指氨基酸(包括修饰的氨基酸(例如磷酸化、糖化、糖基化等)和氨基酸类似物)的聚合物,而不考虑其大小或功能。“蛋白/蛋白质”和“多肽”通常用来指相对较大的多肽,而术语“肽”通常用于指代小的多肽,但是这些术语在本领域中的使用是重叠的。当提及基因产物及其片段时,术语“蛋白/蛋白质”和“多肽”在本文中可互换使用。因此,示例性的多肽或蛋白包括基因产物、天然存在的蛋白质、同源物、直系同源物、旁系同源物、片段,以及上述物质的其它等同物、变体、片段和类似物。 [0384] 在本文所述的多种实施方式中,在进一步考虑之列的是涵盖所描述的任何具体多肽的变体(天然存在的或其它的变体)、等位基因、同源物、保守修饰变体和/或保守置换变体。对于氨基酸序列,本领域技术人员将认识到,当改变引起将氨基酸置换为化学上类似的氨基酸并保留了多肽的期望活性时,对经编码的序列中的单个氨基酸或少部分氨基酸进行改变的核酸、肽、多肽或蛋白序列的各个置换、缺失或添加是“保守修饰变体”。此类保守修饰变体在与本公开相一致的多态变体、种间同源物和等位基因的基础之上另外存在,并且不排除与本公开相一致的多态变体、种间同源物和等位基因。 [0385] 在一些实施方式中,本文所述的多肽(或编码此类多肽的核酸)可以是本文所述的氨基酸序列之一的功能片段。本文所使用的“功能片段”是根据本文在下文所述的测定法保留了至少50%的野生型参考多肽的活性的肽的片段或节段。功能片段可包含本文公开的序列的保守置换。 [0386] 在一些实施方式中,本文所述的多肽可以是本文所述的序列的变体。在一些实施方式中,变体是保守修饰变体。保守置换变体可以通过例如天然核苷酸序列的突变获得。本文所指的“变体”是与天然多肽或参考多肽实质上同源的多肽,但是该多肽由于一个或多个缺失、插入或置换而具有与天然多肽或参考多肽的氨基酸序列不同的氨基酸序列。编码变体多肽的DNA序列涵盖这样的序列:当与天然DNA序列或参考DNA序列相比时,所述序列包含一个或多个核苷酸的添加、缺失或置换,但是编码保留活性的变体蛋白或其片段。多种基于PCR的位点特异性诱变方法在本领域中是已知的,并且可以被普通技术人员应用。 [0387] 变体氨基酸或DNA序列可以与天然或参考序列具有至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%或更高的同一性。天然序列和突变序列之间的同源性程度(同一性百分比)可以通过例如使用万维网上通常用于此目的的免费可用的计算机程序(例如具有默认设置的BLASTp或BLASTn)对两个序列进行比较来确定。 [0388] 天然氨基酸序列的改变可通过本领域技术人员已知的多种技术的任一种来完成。例如,可通过合成含有突变序列的寡核苷酸(其侧翼具有允许与天然序列的片段连接的限制性位点)而在特定基因座处引入突变。连接后,所得到的重构序列编码具有期望的氨基酸插入、置换或缺失的类似物。或者,可使用寡核苷酸指导的位点特异性诱变方法来提供具有根据所需的置换、缺失或插入而改变的特定密码子的改变的核苷酸序列。用于进行此类改变的技术已经充分建立,并包括例如由Walder等(Gene42:133,1986);Bauer等(Gene 37: 73,1985);Craik(BioTechniques,1985年1月,12-19);Smith等(Genetic Engineering: Principles and Methods,Plenum Press,1981);以及美国专利号4,518,584和4,737,462所公开的技术,通过引用将它们整体并入本文。通常,还可用丝氨酸对不参与维持多肽的适当构象的任何半胱氨酸残基进行置换,以改进分子的氧化稳定性并防止异常交联。相反,可将半胱氨酸键添加至多肽,以改进多肽的稳定性或促进寡聚化。 [0389] 本文所使用的术语“核酸”或“核酸序列”是指掺入核糖核酸、脱氧核糖核酸或它们的类似物的单元的任何分子,优选聚合物分子。核酸可为单链或双链的。单链核酸可为变性双链DNA的一条核酸链。或者,单链核酸可为不源自任何双链DNA的单链核酸。在一方面,核酸可为DNA。在另一方面,核酸可为RNA。合适的DNA可包括例如基因组DNA或cDNA。合适的RNA可包括例如mRNA。 [0390] 在任何方面的一些实施方式中,可对本文所述的多肽、核酸或细胞进行工程化。本文所使用的“工程化的”是指已进行人为操作的方面。例如,当多肽的至少一个方面(例如其序列)已进行人为操作以使该方面与天然存在的方面不同时,认为该多肽为“工程化的”。作为通常实践并且本领域技术人员理解的是,即使实际操作是在先前的实体上进行,工程化细胞的后代通常仍称为“工程化的”。 [0391] 在一些实施方式中,编码本文所述的多肽(如抗体或抗体试剂)的核酸由载体包含。在本文所述的一些方面中,将编码本文所述的指定多肽或其任意模块的核酸序列可操作地连接至载体。本文所使用的术语“载体”是指被设计用于递送至宿主细胞或用于在不同宿主细胞之间转移的核酸构建体。本文所使用的载体可以是病毒的或非病毒的。术语“载体”涵盖了当与合适的控制元件相关联时能够复制并且可将基因序列转移至细胞的任何遗传元件。载体可包括但不限于克隆载体、表达载体、质粒、噬菌体、转座子、粘粒、染色体、病毒、病毒粒子等。 [0392] 本文所使用的术语“表达载体”是指对来自连接至载体上的转录调控序列的序列的RNA或多肽的表达进行指导的载体。所表达的序列通常对于细胞而言是异源的但不是必须如此。表达载体可包含额外元件,例如表达载体可具有两种复制系统,从而允许其保持在两种生物体中,例如在人细胞中用于表达并在原核宿主中用于克隆和扩增。术语“表达”是指参与产生RNA和蛋白质以及适当时分泌蛋白质的细胞过程,包括(如果适用的话)但不限于例如转录、转录物加工、翻译和蛋白质折叠、修饰和加工。“表达产物”包括由基因转录而来的RNA以及通过由基因转录而来的mRNA的翻译而获得的多肽。术语“基因”意为当可操作地连接至合适的调控序列时,在体外或在体内转录(DNA)成RNA的核酸序列。基因可以包括或可以不包括编码区之前和之后的区域,例如5’非翻译(5’UTR)序列或“前导”序列以及3’UTR序列或“尾随”序列、以及各个编码区段(外显子)之间的间插(intervening)序列(内含子)。 [0393] 本文所使用的术语“病毒载体”是指包含病毒来源的至少一种元件并且具有被包装到病毒载体颗粒中的能力的核酸载体构建体。病毒载体可包含编码本文所述的多肽的核酸来代替非必需的病毒基因。可出于在体外或体内将任何核酸转移到细胞中的目的来使用载体和/或颗粒。许多形式的病毒载体是本领域已知的。 [0394] “重组载体”意为包含能够在体内表达的“转基因”或异源核酸序列的载体。应当理解的是,在一些实施方式中,本文所述的载体可与其它合适的组合物和疗法组合。在一些实施方式中,载体是附加型的。合适的附加型载体的使用提供了将感兴趣的核苷酸在受试者中维持为高拷贝数染色体外DNA的手段,从而消除了染色体整合的潜在影响。 [0395] 本文所使用的术语“治疗”、“疗法”、“处理”或“改善”是指治疗性的处理,其中目的是逆转、缓解、改善、抑制、减缓或停止与疾病或紊乱有关的病症的进展或严重程度。术语“治疗”包括减轻或缓解本文所述的病症、疾病或紊乱的至少一种不利作用或症状。如果一种或多种症状或临床标志物减少,治疗通常是“有效的”。或者,如果疾病的进展减缓或停止,则治疗是“有效的”。也就是说,“治疗”不仅包括症状或标志物的改善,还包括与没有治疗时预期的情况相比,停止或至少减缓症状的进展或恶化。有益或期望的临床结果包括但不限于减轻一种或多种症状、减少疾病的程度、稳定(即不恶化)疾病状态、延迟或减缓疾病进展、改善或缓和疾病状态、缓解(不论部分或全部)和/或降低死亡率,无论是可检测的或不可检测的。术语疾病的“治疗”还包括缓解疾病的症状或副作用(包括姑息治疗)。 [0396] 本文所使用的术语“小分子”可以指“天然产物样”化合物,然而,术语“小分子”不限于“天然产物样”化合物。不如说小分子的典型特征在于它包含若干碳-碳键,并且分子量大于约50但小于约5000道尔顿(5kD)。优选地,小分子的分子量小于3kD,更优选小于2kD,最优选小于1kD。在一些情况下,优选小分子的分子量等于或小于700道尔顿。 [0397] 本文所使用的术语“血栓溶解剂”是指任何能够通过溶解、移走(dislodging)或其它使凝块解体的方式(例如通过溶解纤维蛋白-血小板凝块或抑制此类凝块形成)诱导再灌注的试剂。再灌注在凝块溶解及血液流动恢复时发生。示例性血栓溶解剂包括但不限于:组织纤溶酶原激活物(t-PA)、链激酶(streptokinase,SK)、尿激酶原(prourokinase)、尿激酶(urokinase,uPA)、阿替普酶(alteplase,又名 Genentech,Inc.)、瑞替普酶(reteplase,又名r-PA或 Centocor,Inc.)、替奈普酶(tenecteplase,又名TNKTM,Genentech,Inc.)、 (AstraZeneca,LP)、拉诺替普酶(lanoteplase)(Bristol- Myers Squibb Company)、孟替普酶(monteplase)(Eisai Company,Ltd.)、沙芦普酶TM (saruplase,又名r-scu-PA和rescupase ,Grunenthal GmbH,Corp.)、葡激酶 (staphylokinase)以及茴香酰化(anisoylated)纤溶酶原-链激酶激活物复合物(又名APSAC、Anistreplase和 SmithKline Beecham Corp.)。血栓溶解剂还包括其它 基因工程化的纤溶酶原激活物。本发明可另外使用上述血栓溶解剂的混合物、生理活性片段或突变形式。本文所使用的术语“组织纤溶酶原激活物”旨在包括这类混合物、片段和突变体;以及天然来源和重组来源的组织纤溶酶原激活物二者。 [0398] 本文所使用的术语“药物组合物”是指活性剂与药学上可接受的载体(例如药学工业中常用的载体)联合。短语“药学上可接受的”在本文中用于指在合理的医学判断范围内,适用于与人类和动物的组织接触而没有过多的毒性、刺激性、过敏反应或其它问题或并发症,与合理的利益/风险比相称的那些化合物、材料、组合物和/或剂型。在任何方面的一些实施方式中,药学上可接受的载体可以是水以外的载体。在任何方面的一些实施方式中,药学上可接受的载体可以是乳膏(cream)、乳液、凝胶、脂质体、纳米颗粒和/或软膏(ointment)。在任何方面的一些实施方式中,药学上可接受的载体可以是人工载体或工程化载体,例如,不会发现活性成分天然存在的载体。 [0399] 本文所使用的术语“给予”是指通过一定的方法或途径向受试者中放置本文所公开的化合物,使得将试剂至少部分递送至期望部位。含有本文所公开的化合物的药物组合物可以通过任何适当的途径给予,从而在受试者中产生有效治疗。 [0400] 术语“统计学上显著”或“显著地”是指统计显著性,并且通常是指2个标准差(2SD)或更大的差异。 [0401] 除了在操作实施例中或另有指示以外,本文所使用的表示成分的量或反应条件的所有数字均应理解为在所有情况下均由术语“约”加以修饰。术语“约”在与百分比连接使用时可以表示±1%。 [0402] 本文所使用的术语“包含/包括/含有(comprising)”表示除了所存在的限定的要素之外,其它要素也可存在。“包含/包括/含有”的使用表明包括而非限制。 [0403] 术语“由……组成”是指本文所述的组合物、方法及它们各自的组成部分,排除了在实施方式的描述中未列举的任何要素。 [0404] 本文所使用的术语“基本上由……组成”是指对于给定实施方式而言所需的要素。该术语允许存在不会实质性地影响本发明实施方式的基本和新颖的或功能性的特性的额外要素。 [0405] 本文所使用的“表位”可在多肽上从邻接氨基酸形成,或可从通过蛋白三级折叠而并置的非邻接氨基酸形成。在暴露至变性溶剂时,从邻接氨基酸形成的表位通常得以保留;而在用变性溶剂处理时,通过三级折叠形成的表位通常会丢失。表位通常包含至少3个、并更经常地包含至少5个、约9个或约8个-10个处于独特空间构象的氨基酸。“表位”包含由免疫球蛋白VH/VL对常规结合的结构单元。表位定义了抗体的最小结合位点,因而代表了抗体的特异性靶点。在单结构域抗体的情况中,表位代表由单独的可变结构域结合的结构单元。 术语“抗原决定簇”和“表位”还可在本文中互换使用。在某些实施方式中,表位决定簇包括分子的化学活性表面基团,例如氨基酸、糖侧链、磷酰基或磺酰基,并且在某些实施方式中可以具有特定的三维结构特征和/或特定的电荷特征。 [0406] “亲合力(Avidity)”是对抗原结合分子(例如本文所述的抗体或其抗原结合部分)与相关抗原之间的结合强度的衡量。亲合力与以下二者均有关:抗原决定簇与其在抗原结合分子上的抗原结合位点之间的亲和力;以及存在于抗原结合分子上的相关结合位点的数量。通常,抗原结合蛋白(例如本文所述的抗体或抗体的部分)将以一定的解离常数(KD为10-5~10-12摩尔/升或更小,例如10-7~10-12摩尔/升或更小、或10-8~10-12摩尔/升;即,结合常数(KA)为105~1012升/摩尔或更大,例如107~1012升/摩尔或108~1012升/摩尔)结合至它们的同源(cognate)抗原或特异性抗原。通常,认为大于10-4摩尔/升的任何KD值(或者低于 104M-1的任何KA值)表明非特异性结合。被认为有意义的(例如特异性的)生物相互作用的KD范围通常为10-10M(0.1nM)至10-5M(10,000nM)。相互作用越强,其KD越低。例如,本文所述的抗体或其部分上的结合位点将以小于500nM(例如小于200nM)或小于10nM(例如小于500pM)的亲和力结合至期望抗原。抗原结合蛋白与抗原或者抗原决定簇的特异性结合可通过本身已知的任何合适方式(包括例如Scatchard分析和/或竞争性结合测定法,例如放射性免疫测定法(RIA)、酶免疫测定法(EIA)和夹心竞争性测定法)以及本领域中的本身已知的上述方式的不同变型;以及本文提到的其它技术进行确定。 [0407] 因此,本文所使用的“选择性地结合”或“特异性地结合”是指本文所述的肽(例如抗体或其部分)以10-5M(10000nM)或更小(例如10-6M、10-7M、10-8M、10-9M、10-10M、10-11M、10-12M或更小)的KD结合至靶标(例如DEspR)的能力。特异性结合可受到例如多肽试剂的亲和力和亲合力以及多肽试剂的浓度的影响。本领域普通技术人员可以使用任何合适的方法(例如在合适的细胞结合测定法中的多肽试剂的滴定)来确定合适的条件,在该条件下本文所述的多肽试剂选择性地结合靶标。特异性地结合至靶标的多肽不被非相似的竞争物替代。 在某些实施方式中,当抗体试剂在蛋白质和/或大分子的复杂混合物中优先识别其靶抗原时,该抗体试剂被称为与抗原特异性结合。 [0408] 在一些实施方式中,本文所述的抗体试剂以10-5M(10000nM)或更小(例如10-6M、10-7 -8 -9 -10 -11 -12M、10 M、10 M、10 M、10 M、10 M或更小)的解离常数(KD)结合至DEspR。在一些实施方式中,本文所述的抗体试剂以约10-5M至10-6M的解离常数(KD)结合至DEspR。在一些实施方式中,本文所述的抗体试剂以约10-6M至10-7M的解离常数(KD)结合至DEspR。在一些实施方式中,本文所述的抗体试剂以约10-7M至10-8M的解离常数(KD)结合至DEspR。在一些实施方式中,本文所述的抗体试剂以约10-8M至10-9M的解离常数(KD)结合至DEspR。在一些实施方式中,本文所述的抗体试剂以约10-9M至10-10M的解离常数(KD)结合至DEspR。在一些实施方式中,本文所述的抗体试剂以约10-10M至10-11M的解离常数(KD)结合至DEspR。在一些实施方式中,本文所述的抗体试剂以约10-11M至10-12M的解离常数(KD)结合至DEspR。在一些实施方式中,本文所述的抗体试剂以小于10-12M的解离常数(KD)结合至DEspR。 [0409] 本文所使用的术语“特异性结合”是指两个分子、化合物、细胞和/或颗粒之间的化学相互作用,其中,与第一实体结合至非靶标的第三实体相比,第一实体以更高的特异性和亲和力与第二靶实体结合。在一些实施方式中,特异性结合可以指第一实体针对第二靶实体的亲和力是第一实体针对第三非靶实体的亲和力的至少10倍、至少50倍、至少100倍、至少500倍、至少1000倍或更大。对于给定靶标具有特异性的试剂是在所使用的测定法的条件下对该靶标表现出特异性结合的试剂。 [0410] 在任何方面的一些实施方式中,抑制DEspR的试剂是抑制性核酸。在任何方面的一些实施方式中,给定基因的表达的抑制剂可以是抑制性核酸。本文所使用的“抑制性核酸”是指可以抑制靶标的表达的核酸分子,例如双链RNA(dsRNA)、抑制性RNA(iRNA)等。 [0411] 双链RNA分子(dsRNA)已显示出通过称为RNA干扰(RNAi)的高度保守的调控机制阻断基因表达。本文所述的抑制性核酸可以包括具有长度为30个或更少的核苷酸(即,长度为15-30个核苷酸、长度通常为19-24个核苷酸)的区域的RNA链(反义链),该区域与靶RNA转录物的至少一部分实质上互补。使用这些iRNA使得可以靶向降解mRNA转录物,引起靶标的表达和/或活性降低。 [0412] 本文所使用的术语“iRNA”是指含有RNA(或本文在下文中所述的修饰核酸)并通过RNA诱导的沉默复合物(RISC)途径介导RNA转录物的靶向切割的试剂。在任何方面的一些实施方式中,本文所述的iRNA引起靶标(例如DEspR)的表达和/或翻译和/或活性的抑制。在任何方面的一些实施方式中,用抑制剂(例如iRNA)接触细胞使得细胞中的靶mRNA水平降低在不存在iRNA的细胞中发现的靶mRNA水平的至少约5%、约10%、约20%、约30%、约40%、约50%、约60%、约70%、约80%、约90%、约95%、约99%、上至并包括100%。在任何方面的一些实施方式中,向受试者给予抑制剂(例如iRNA)导致受试者中的靶mRNA水平降低在不存在iRNA的受试者中发现的靶mRNA水平的至少约5%、约10%、约20%、约30%、约40%、约50%、约60%、约70%、约80%、约90%、约95%、约99%、上至并包括100%。 [0413] 在任何方面的一些实施方式中,iRNA可为dsRNA。dsRNA包含两条充分互补的RNA链,以在待使用dsRNA的条件下杂交形成双链体结构。dsRNA的一条链(反义链)包含互补区域,该区域与靶序列基本上互补、且通常完全互补。靶序列可以衍生自在靶标表达过程中形成的mRNA的序列,例如它可以跨越一个或多个内含子边界。另一条链(正义链)包含与反义链互补的区域,从而使得当在适当条件下结合时,两条链杂交并形成双链体结构。通常,双链体结构的长度介于15至30个碱基对之间,包括端值;更通常长度介于18至25个碱基对之间,包括端值;更通常长度介于19至24个碱基对之间,包括端值;并且最通常长度介于19至21个碱基对之间,包括端值。类似地,与靶序列互补的区域的长度介于15至30个碱基对之间,包括端值;更通常长度介于18至25个碱基对之间,包括端值;更通常长度介于19至24个碱基对之间,包括端值;并且最通常长度介于19至21个碱基对之间,包括端值。在任何方面的一些实施方式中,dsRNA的长度介于15至20个核苷酸之间,包括端值;在其它实施方式中,dsRNA的长度介于25至30个核苷酸之间,包括端值。正如普通技术人员会认识到的,被靶向以被切割的RNA的靶向区域最通常是较大的RNA分子(通常是mRNA分子)的一部分。相关地,mRNA靶标的“一部分”是具有足以成为用于RNAi指导的切割(即,通过RISC通路切割)的底物的长度的mRNA靶标的连续序列。在一些情况下,具有短至9个碱基对的双链体的dsRNA可以介导RNAi指导的RNA切割。最常见地,靶标的长度将是至少15个核苷酸、优选长度是15-30个核苷酸。 [0414] 抑制性核酸的类型的示例性实施方式可以包括例如本领域所公知的siRNA、shRNA、miRNA和/或amiRNA。 [0415] 在任何方面的一些实施方式中,iRNA(例如dsRNA)的RNA经化学修饰以增强稳定性或其它有益特性。本文所述的核酸可以通过本领域良好建立的方法修饰和/或合成,例如描述于“Current protocols in nucleic acid chemistry”,Beaucage,S.L.等(编),John Wiley&Sons,Inc.,New York,NY,USA中的方法,以引用的方式将其并入本文。修饰包括例如:(a)端修饰,例如5’端修饰(磷酸化、缀合、反向连接等)、3’端修饰(缀合、DNA核苷酸、反向连接等);(b)碱基修饰,例如用稳定碱基、不稳定碱基或与扩大谱系的伴侣配对的碱基进行置换,移除碱基(脱碱基核苷酸),或缀合碱基;(c)糖修饰(例如在2’位或4’位)或糖置换;以及(d)骨架修饰,包括磷酸二酯键的修饰或置换。用于本文所述实施方式中的RNA化合物的具体实例包括但不限于含有修饰骨架或非天然核苷间连接的RNA。其中,具有修饰骨架的RNA包括在骨架中不具有磷原子的RNA。为了本说明书的目的,并且如本领域有时所引用的,在其核苷间的骨架中不具有磷原子的修饰RNA也可以被认为是寡核苷酸。在任何方面的一些实施方式中,修饰RNA将会在其核苷间的骨架中具有磷原子。 [0416] 修饰RNA骨架可以包括例如:具有正常3’-5’连接的硫代磷酸酯、手性硫代磷酸酯、二硫代磷酸酯、磷酸三酯、氨基烷基磷酸三酯、甲基和其它烷基膦酸酯(包括3’-亚烷基膦酸酯和手性膦酸酯)、亚膦酸酯、氨基磷酸酯(包括3’-氨基氨基磷酸酯和氨基烷基氨基磷酸酯)、硫羰氨基磷酸酯、硫羰烷基膦酸酯和硫羰烷基磷酸三酯和硼烷磷酸酯,它们的2’-5’连接的类似物;以及具有反极性的物质(其中,相邻的核苷单元对以3’-5’至5’-3’或2’-5’至5’-2’连接)。各种盐、混合盐和游离酸形式也包括在内。在其中不包含磷原子的修饰RNA骨架具有由如下形成的骨架:短链烷基或环烷基核苷间连接、混合的杂原子和烷基或环烷基核苷间连接、或者一个或多个短链杂原子或杂环核苷间连接。这些骨架包括:具有吗啉代连接(部分由核苷的糖部分形成)的骨架;硅氧烷骨架;硫化物骨架、亚砜骨架和砜骨架; formacetyl骨架和thioformacetyl骨架;methylene formacetyl骨架和methylene thioformacetyl骨架;含烯烃骨架;氨基磺酸酯骨架;亚甲基亚氨基骨架和亚甲基肼基骨架;磺酸酯骨架和磺胺骨架;酰胺骨架;其它具有混合的N、O、S和CH2组成部分的骨架,以及具有杂原子骨架的寡核苷,特别是--CH2--NH--CH2--、--CH2--N(CH3)--O--CH2--[称为亚甲基(甲基亚氨基)骨架或MMI骨架]、--CH2--O--N(CH3)--CH2--、--CH2--N(CH3)--N(CH3)--CH2--和--N(CH3)--CH2--CH2--[其中,天然磷酸二酯骨架被表示为--O--P--O--CH2--]。 [0417] 在适于或考虑用于iRNA中的其它RNA模拟物中,核苷酸单元的糖和核苷间连接(即骨架)均被新基团替代。碱基单元被维持以用于与适当的核酸靶化合物杂交。一种此类寡聚化合物(已显示具有出色杂交性质的RNA模拟物)被称为肽核酸(PNA)。在PNA化合物中,RNA的糖骨架被含酰胺骨架(特别是氨基乙基甘氨酸骨架)替代。核碱基被保留并直接或间接地结合至骨架的酰胺部分的氮杂氮(aza nitrogen)原子。 [0418] iRNA的RNA也可以被修饰成包含一个或多个锁核酸(LNA)。锁核酸是具有修饰核糖部分的核苷酸,其中,所述核糖部分包含连接2’和4’碳的另外的桥。这一结构有效地将核糖“锁定”在3’-内向(3'-endo)结构构象中。已经表明将锁核酸添加至siRNA增加了血清中的siRNA稳定性,并降低了脱靶效应(Elmen,J.等,(2005)Nucleic Acids Research 33(1):439-447;Mook,OR.等,(2007)Mol Canc Ther 6(3):833-843;Grunweller,A.等,(2003)Nucleic Acids Research 31(12):3185-3193)。 [0419] 修饰核酸还可以包含一个或多个取代的糖部分。本文所述的iRNA(例如dsRNA)在2’位置可以包含如下中的一种:OH;F;O-烷基、S-烷基或N-烷基;O-烯基、S-烯基或N-烯基; O-炔基、S-炔基或N-炔基;或者O-烷基-O-烷基,其中,烷基、烯基和炔基可以是取代或未取代的C1-C10烷基或C2-C10烯基或C2-C10炔基。示例性的适当修饰包括:O[(CH2)nO]mCH3、O(CH2)nOCH3、O(CH2)nNH2、O(CH2)nCH3、O(CH2)nONH2和O(CH2)nON[(CH2)nCH3)]2,其中,n和m为从1至约 10。在任何方面的一些实施方式中,dsRNA在2’位置包含如下中的一种:C1-C10低级烷基;取代的低级烷基、烷芳基、芳烷基、O-烷芳基或O-芳烷基;SH、SCH3、OCN、Cl、Br、CN、CF3、OCF3、SOCH3、SO2CH3、ONO2、NO2、N3、NH2;杂环烷基、杂环烷芳基、氨基烷基氨基、聚烷基氨基、取代的甲硅烷基、RNA切割基团、报告子基团、嵌入剂(intercalator);用于改善iRNA的药代动力学性质的基团或用于改善iRNA的药效动力学性质的基团以及具有类似性质的其它取代基。在任何方面的一些实施方式中,修饰包括2’甲氧基乙氧基(2’-O--CH2CH2OCH3,也称为2’-O-(2-甲氧基乙基)或2’-MOE)(Martin等,Helv.Chim.Acta,1995,78:486-504),即烷氧基-烷氧基基团。另一示例性修饰是如下文的实施例所述的2’-二甲基氨基氧基乙氧基,即O(CH2) 2ON(CH3)2基团,又称为2’-DMAOE;以及如下文的实施例所述的2’-二甲基氨基乙氧基乙氧基(在本领域也称为2’-O-二甲基氨基乙氧基乙基或2’-DMAEOE),即2’-O--CH2--O--CH2--N(CH2)2。 [0420] 其它修饰包括2’-甲氧基(2’-OCH3)、2’-氨基丙氧基(2’-OCH2CH2CH2NH2)和2’-氟(2’-F)。类似修饰也可以在iRNA的RNA上的其它位置进行,特别是3’末端核苷酸上的糖的3’位置或在2’-5’连接的dsRNA中及5’末端核苷酸的5’位置。iRNA也可以具有糖模拟物,例如取代戊呋喃糖(pentofuranosyl sugar)的环丁基部分。 [0421] 抑制性核酸还可包含核碱基(在本领域通常简称为“碱基”)修饰或置换。本文所使用的“未修饰的”或“天然的”核碱基包括:嘌呤碱基腺嘌呤(A)和鸟嘌呤(G);以及嘧啶碱基胸腺嘧啶(T)、胞嘧啶(C)和尿嘧啶(U)。修饰核碱基包括其它合成和天然的核碱基,例如:5-甲基胞嘧啶(5-me-C);5-羟甲基胞嘧啶;黄嘌呤;次黄嘌呤;2-氨基腺嘌呤;腺嘌呤和鸟嘌呤的6-甲基衍生物和其它烷基衍生物;腺嘌呤和鸟嘌呤的2-丙基衍生物和其它烷基衍生物;2-硫尿嘧啶、2-硫胸腺嘧啶和2-硫胞嘧啶;5-卤素尿嘧啶和5-卤素胞嘧啶;5-丙炔基尿嘧啶和5-丙炔基胞嘧啶;6-偶氮尿嘧啶、6-偶氮胞嘧啶和6-偶氮胸腺嘧啶;5-尿嘧啶(假尿嘧啶);4-硫尿嘧啶;8-卤素、8-氨基、8-硫醇、8-硫代烷基、8-羟基和其它8-取代的腺嘌呤和鸟嘌呤;5-卤素(特别是5-溴)、5-三氟甲基和其它5-取代的尿嘧啶和胞嘧啶;7-甲基鸟嘌呤和 7-甲基腺嘌呤;8-氮杂鸟嘌呤和8-氮杂腺嘌呤;7-脱氮鸟嘌呤和7-脱氮腺嘌呤以及3-脱氮鸟嘌呤和3-脱氮腺嘌呤。这些核碱基的一些对于增高本发明中的特征抑制性核酸的结合亲和力特别有用。这些核碱基包括:5-取代的嘧啶;6-氮杂嘧啶;以及N-2、N-6和O-6取代的嘌呤,包括2-氨基丙基腺嘌呤、5-丙炔基尿嘧啶和5-丙炔基胞嘧啶。已示出5-甲基胞嘧啶置换将核酸双链体稳定性提高0.6-1.2℃(Sanghvi,Y.S.,Crooke,S.T.和Lebleu,B.编,dsRNA Research and Applications,CRC Press,Boca Raton,1993,276-278页),并且是示例性的碱基置换,甚至更特别是当与2'-O-甲氧基乙基糖修饰组合时。 [0422] 上述修饰核酸、骨架和核碱基的制备是本领域所公知的。 [0423] 本发明中的特征抑制性核酸的另一修饰涉及将一个或多个配体、部分或缀合物化学连接至抑制性核酸,所述配体、部分或缀合物增强iRNA的细胞摄取、活性、细胞分布或药代动力学性质。此类部分包括但不限于:脂质部分,如胆固醇部分(Letsinger等,Proc.Natl.Acid.Sci.USA,1989,86:6553-6556);胆酸(Manoharan等,Biorg.Med.Chem.Let.,1994,4:1053-1060);硫醚,例如beryl-S-三苯甲基硫醇(Manoharan等,Ann.N.Y.Acad.Sci.,1992,660:306-309;Manoharan等,Biorg.Med.Chem.Let.,1993,3: 2765-2770);硫代胆固醇(Oberhauser等,Nucl.Acids Res.,1992,20:533-538);脂肪链,例如十二烷二醇或十一烷基残基(Saison-Behmoaras等,EMBO J,1991,10:1111-1118; Kabanov等,FEBS Lett.,1990,259:327-330;Svinarchuk等,Biochimie,1993,75:49-54); 磷脂,例如二-十六烷基-消旋-甘油或三乙基铵1,2-二-O-十六烷基-消旋-甘油-3-磷酸酯(Manoharan等,Tetrahedron Lett.,1995,36:3651-3654;Shea等,Nucl.Acids Res.,1990, 18:3777-3783);聚胺或聚乙二醇链(Manoharan等,Nucleosides&Nucleotides,1995,14: 969-973);或金刚烷乙酸(Manoharan等,Tetrahedron Lett.,1995,36:3651-3654);棕榈酰部分(Mishra等,Biochim.Biophys.Acta,1995,1264:229-237);或十八胺或己基氨基-羰基氧基胆固醇部分(Crooke等,J.Pharmacol.Exp.Ther.,1996,277:923-937)。 [0424] 除非上下文另外明确指出,否则单数术语“一”、“一个/一种”和“该/所述”包括复数指代物。类似地,除非上下文另外明确指出,词语“或”旨在包括“和”。尽管可以在本公开的实践或测试中使用与本文所述的方法和材料类似或等同的方法和材料,但是下面描述了合适的方法和材料。缩写“e.g.”源自拉丁文exempli gratia,并在本文中用于表示非限制性实例。因此,缩写“e.g.”与术语“例如(for example)”同义。 [0425] 本文所公开的本发明的替代性要素或实施方式的分组不应解释为限制。各组成员可单独地提及和请求保护或者与该组其它成员或本文出现的其它要素任意组合地来提及和请求保护。出于方便和/或专利性的原因,组的一个或多个成员可被包含在组中或从组中删除。当任何此类包含或删除发生时,本文认为本申请文件包含经修饰的组,从而满足所附权利要求中使用的所有马库什组的书面描述。 [0426] 除非本文另有明确定义,与本申请相关使用的科学术语和技术术语应具有本公开所属领域的普通技术人员所通常理解的含义。应理解的是,本发明不限于本文所述的特定方法学、方案和试剂等,并且这些可能会变化。本文所使用的术语仅用于描述具体实施方式的目的,并不打算限制本发明的范围,本发明的范围仅由权利要求书所定义。免疫学和分子生物学中的常用术语的定义可以参见The Merck Manual of Diagnosis and Therapy,第19版,Merck Sharp&Dohme Corp.出版,2011(ISBN978-0-911910-19-3);Robert S.Porter等(编),The Encyclopedia of Molecular Cell Biology and Molecular Medicine,Blackwell Science Ltd.出版,1999-2012(ISBN 9783527600908);以及Robert A.Meyers(编),Molecular Biology and Biotechnology:a Comprehensive Desk Reference,VCH Publishers,Inc.出版,1995(ISBN 1-56081-569-8);Immunology by Werner Luttmann,Elsevier出版,2006;Janeway's Immunobiology,Kenneth Murphy,Allan Mowat,Casey Weaver(编),Taylor&Francis Limited,2014(ISBN 0815345305,9780815345305);Lewin's Genes XI,Jones&Bartlett Publishers出版,2014(ISBN-1449659055);Michael Richard Green和Joseph Sambrook,Molecular Cloning:A Laboratory Manual,第4版,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.,USA(2012)(ISBN 1936113414);Davis等,Basic Methods in Molecular Biology,Elsevier Science Publishing Inc.,New York,USA(2012)(ISBN 044460149X);Laboratory Methods in Enzymology:DNA,Jon Lorsch(编),Elsevier,2013(ISBN 0124199542);Current Protocols in Molecular Biology(CPMB),Frederick M.Ausubel(编),John Wiley and Sons,2014(ISBN 047150338X,9780471503385);Current Protocols in Protein Science(CPPS),John E.Coligan(编),John Wiley and Sons,Inc.,2005;以及Current Protocols in Immunology(CPI)(John E.Coligan,ADA M Kruisbeek,David H Margulies,Ethan M Shevach,Warren Strobe(编),John Wiley and Sons,Inc.,2003(ISBN 0471142735, 9780471142737),以引用的方式将它们的内容全部整体并入本文。 [0427] 本领域技术人员可以容易地鉴别使用的化疗剂(例如参见Physicians'Cancer Chemotherapy Drug Manual 2014,Edward Chu,Vincent T.DeVita Jr.,Jones&Bartlett Learning;Principles of Cancer Therapy,Chapter 85in Harrison's Principles of Internal Medicine,第18版;Therapeutic Targeting of Cancer Cells:Era of Molecularly Targeted Agents and Cancer Pharmacology,Chs.28-29in Abeloff’s Clinical Oncology,2013Elsevier;以及Fischer D S(编):The Cancer Chemotherapy Handbook,第4版,St.Louis,Mosby-Year Book,2003)。 [0428] 在任何方面的一些实施方式中,本文所述的公开内容并不牵涉用于克隆人的方法、用于改变人生殖系遗传同一性的方法、人胚胎的工业或商业目的应用;或者可能导致动物痛苦而对人或动物没有任何实质性医疗益处的用于改变动物遗传同一性的方法;以及由这些方法产生的动物。 [0429] 本文在本发明的各个方面的描述内定义了其它术语。 [0430] 出于描述和公开的目的,将本申请全文中引用的所有专利和其它出版物,包括参考文献、授权专利、公开的专利申请以及共同未决的专利申请以引用的方式明确地并入本文,例如,在此类出版物中描述的可与本文所述技术关联使用的方法学。这些出版物仅由于它们的公开早于本申请的申请日而提供。在这一方面没有任何内容应被视作承认本发明人没有资格借助于先前的发明或因为任何其它原因而将此类公开提前。所有关于这些文件的日期的声明或关于这些文件的内容的表述是基于申请人可获得的信息,并不构成关于这些文件的日期或内容的正确性的任何承认。 [0431] 本公开的实施方式的描述并非旨在穷举或将本公开限制为所公开的精确形式。虽然本文中出于说明目的描述了本公开的具体实施方式和实例,但是相关领域的技术人员将认识到,在本公开的范围内的各种等同修改是可能的。例如,虽然方法步骤或功能以给定顺序呈现,但替代实施方式可以以不同顺序执行功能,或者可以基本上同时执行功能。本文提供的公开的教导可适当地应用于其它程序或方法。可以将本文所述的各种实施方式组合以提供进一步的实施方式。根据需要,可以修改本公开的各方面以使用上述参考文献和申请的组合物、功能和概念来提供本公开进一步的实施方式。此外,出于生物功能等同性的考虑,可以对蛋白质结构进行一些改变而不在种类或量方面影响生物或化学作用。可以根据具体描述对本公开做出这些改变以及其它改变。所有这些修改均旨在被包括在所附权利要求的范围内。 [0432] 可以将任何前述实施方式的特定元素与其它实施方式中的元素结合或替换为其它实施方式中的元素。此外,尽管已经在某些实施方式的上下文中描述了与本公开的这些实施方式相关的益处,其它实施方式也可以表现出这样的益处,并且并非所有的实施方式都需要必须展现出这样的益处以落入本公开的范围内。 [0433] 通过以下实施例进一步说明本文所述的技术,所述实施例绝不应被解释为进行了进一步的限制。 [0434] 本文所述技术的一些实施方式可以根据以下编号段落中的任一者定义: [0435] 1.一种降低中性粒细胞存活和/或活性的方法,所述方法包括使所述中性粒细胞与DEspR抑制剂接触。 [0436] 2.一种在有需要的受试者中防止或减少中性粒细胞胞外诱捕网(NET)释放或actPMN NETosis的方法,所述方法包括向所述受试者给予治疗有效量的DEspR抑制剂。 [0437] 3.如段落1-2中任一段所述的方法,其中,所述中性粒细胞是激活的中性粒细胞(actPMN)。 [0438] 4.如段落1-3中任一段所述的方法,其中,所述DEspR抑制剂是抗DEspR抗体试剂或其抗原结合片段。 [0439] 5.如段落4所述的方法,其中,所述抗DEspR抗体试剂是能够特异性结合至i)DEspR和ii)PD1或PD-L1的双特异性试剂。 [0440] 6.一种在有需要的受试者中防止或减少NET释放或actPMN NETosis的方法,所述方法包括向所述受试者给予缀合至抗中性粒细胞或抗NET试剂的治疗有效量的抗DEspR抗体试剂。 [0441] 7.如段落1-6中任一段所述的方法,其中,所述抗DEspR抗体试剂是单克隆抗体或其抗原结合片段。 [0442] 8.如段落7所述的方法,其中,所述抗DEspR抗体试剂是能够特异性结合至i)DEspR和ii)PD1或PD-L1的双特异性试剂。 [0443] 9.如段落1-8中任一段所述的方法,其中,所述抗体试剂具有选自于SEQ ID NO:1-SEQ ID NO:3、SEQ ID NO:9-SEQ ID NO:11、SEQ ID NO:17-SEQ ID NO:19、SEQ ID NO:5-SEQ ID NO:7、SEQ ID NO:13-SEQ ID NO:15、SEQ ID NO:21-SEQ ID NO:23、SEQ ID NO:25-SEQ ID NO:27、SEQ ID NO:29-SEQ ID NO:31和SEQ ID NO:33-SEQ ID NO:35的互补决定区。 [0444] 10.如段落1-9中任一段所述的方法,其中,所述受试者需要针对病症或疾病的治疗,其中,中性粒细胞促成疾病的发病或恶化。 [0445] 11.如段落10所述的方法,其中,所述病症或疾病选自于由如下病症或疾病所组成的组: [0446] 系统性炎症反应综合征;急性肺损伤(ALI);急性呼吸窘迫综合征(ARDS);来自ARDS的多器官衰竭或多器官功能障碍综合征、败血症、感染、或由药物或任何试剂诱导的细胞因子风暴;缺血性或出血性卒中;缺血或药物诱导的脑中出血性转化、出血性脑病、创伤性脑损伤;缺氧性脑损伤、慢性肾病;癌症;actPMN依赖性癌症;糖尿病;深静脉血栓形成;癌症、癌症转移、系统性微血栓形成;动脉粥样硬化血栓形成;系统性红斑狼疮(SLE);类风湿性关节炎;COPD;囊性纤维化;肺病;以及阿尔茨海默氏病。 [0447] 12.如段落1-11中任一段所述的方法,其中,所述受试者需要针对癌症的治疗并且具有PD-L1+/DespR+肿瘤。 [0448] 13.如段落1-12中任一段所述的方法,其中,所述受试者需要针对癌症的治疗并且先前曾经通过肿瘤切除术进行治疗。 [0449] 14.根据段落1-13中任一段所述的方法,其中,向所述受试者进一步给予进一步的免疫疗法。 [0450] 15.如段落1-13中任一段所述的方法,其中,先前曾经向所述受试者给予进一步的免疫疗法。 [0451] 16.如段落1-13中任一段所述的方法,其中,所述受试者对利用进一步的免疫疗法进行的治疗耐受。 [0452] 17.如段落1-13中任一段所述的方法,其中,所述受试者已经从利用进一步的免疫疗法进行的治疗中产生毒性。 [0453] 18.如段落14-17中任一段所述的方法,其中,所述免疫疗法为PD1和/或PD-L1抑制剂疗法。 [0454] 19.如段落1-18中任一段所述的方法,其中,所述受试者为哺乳动物。 [0455] 20.如段落1-19中任一段所述的方法,其中,所述受试者为人。 [0456] 21.DEspR抑制剂降低中性粒细胞存活和/或活性的用途,所述用途包括使所述中性粒细胞与所述DEspR抑制剂接触。 [0457] 22.DEspR抑制剂在有需要的受试者中防止或减少中性粒细胞胞外诱捕网(NET)释放或actPMN NETosis的用途,所述用途包括向所述受试者给予治疗有效量的所述DEspR抑制剂。 [0458] 23.如段落21-22中任一段所述的用途,其中,所述中性粒细胞是激活的中性粒细胞(actPMN)。 [0459] 24.如段落21-23中任一段所述的用途,其中,所述DEspR抑制剂是抗DEspR抗体试剂或其抗原结合片段。 [0460] 25.如段落44所述的用途,其中,所述抗DEspR抗体试剂是能够特异性结合至i)DEspR和ii)PD1或PD-L1的双特异性试剂。 [0461] 26.缀合至抗中性粒细胞或抗NET试剂的抗DEspR抗体试剂在有需要的受试者中防止或减少NET释放或actPMN NETosis的用途,所述用途包括向所述受试者给予缀合至抗中性粒细胞或抗NET试剂的治疗有效量的所述抗DEspR抗体试剂。 [0462] 27.如段落21-26中任一段所述的用途,其中,所述抗DEspR抗体试剂是单克隆抗体或其抗原结合片段。 [0463] 28.如段落27所述的用途,其中,所述抗DEspR抗体试剂是能够特异性结合至i)DEspR和ii)PD1或PD-L1的双特异性试剂。 [0464] 29.如段落21-28中任一段所述的用途,其中,所述抗体试剂具有选自于SEQ ID NO:1-SEQ ID NO:3、SEQ ID NO:9-SEQ ID NO:11、SEQ ID NO:17-SEQ ID NO:19、SEQ ID NO:5-SEQ ID NO:7、SEQ ID NO:13-SEQ ID NO:15、SEQ ID NO:21-SEQ ID NO:23、SEQ ID NO:25-SEQ ID NO:27、SEQ ID NO:29-SEQ ID NO:31和SEQ ID NO:33-SEQ ID NO:35的互补决定区。 [0465] 30.如段落21-29中任一段所述的用途,其中,所述受试者需要针对病症或疾病的治疗,其中,中性粒细胞促成疾病的发病或恶化。 [0466] 31.如段落30所述的用途,其中,所述病症或疾病选自于由如下病症或疾病所组成的组: [0467] 系统性炎症反应综合征;急性肺损伤(ALI);急性呼吸窘迫综合征(ARDS);来自ARDS的多器官衰竭或多器官功能障碍综合征、败血症、感染、或由药物或任何试剂诱导的细胞因子风暴;缺血性或出血性卒中;缺血或药物诱导的脑中出血性转化、出血性脑病、创伤性脑损伤;缺氧性脑损伤、慢性肾病;癌症;actPMN依赖性癌症;糖尿病;深静脉血栓形成;癌症、癌症转移、系统性微血栓形成;动脉粥样硬化血栓形成;系统性红斑狼疮(SLE);类风湿性关节炎;COPD;囊性纤维化;肺病;以及阿尔茨海默氏病。 [0468] 32.如段落21-31中任一段所述的用途,其中,所述受试者需要针对癌症的治疗并且具有PD-L1+/DespR+肿瘤。 [0469] 33.如段落21-32中任一段所述的用途,其中,所述受试者需要针对癌症的治疗并且先前曾经通过肿瘤切除术进行治疗。 [0470] 34.根据段落21-33中任一段所述的用途,其中,向所述受试者进一步给予进一步的免疫疗法。 [0471] 35.如段落21-33中任一段所述的用途,其中,先前曾经向所述受试者给予进一步的免疫疗法。 [0472] 36.如段落21-33中任一段所述的用途,其中,所述受试者对利用进一步的免疫疗法进行的治疗耐受。 [0473] 37.如段落21-33中任一段所述的用途,其中,所述受试者已经从利用进一步的免疫疗法进行的治疗中产生毒性。 [0474] 38.如段落34-37中任一段所述的用途,其中,所述免疫疗法为PD1和/或PD-L1抑制剂疗法。 [0475] 39.如段落21-38中任一段所述的用途,其中,所述受试者为哺乳动物。 [0476] 40.如段落21-39中任一段所述的用途,其中,所述受试者为人。 [0477] 本文所述技术的一些实施方式可以根据以下编号段落中的任一者定义: [0478] 1.一种降低中性粒细胞存活和/或活性的方法,所述方法包括使所述中性粒细胞与DEspR抑制剂接触。 [0479] 2.一种在有需要的受试者中防止或减少中性粒细胞胞外诱捕网(NET)释放或actPMN NETosis或活力NETosis的方法,所述方法包括向所述受试者给予治疗有效量的DEspR抑制剂。 [0480] 3.如段落1-2中任一段所述的方法,其中,所述中性粒细胞是激活的中性粒细胞(actPMN)或CD11b+中性粒细胞。 [0481] 4.如段落1-3中任一段所述的方法,其中,所述中性粒细胞或NET是DEspR+。 [0482] 5.如段落1-3中任一段所述的方法,其中,所述DEspR抑制剂是抗DEspR抗体试剂或其抗原结合片段。 [0483] 6.如段落4所述的方法,其中,所述抗DEspR抗体试剂是能够特异性结合至i)DEspR和ii)PD1或PD-L1的双特异性试剂。 [0484] 7.一种在有需要的受试者中防止或减少NET释放、活力NETosis或actPMN NETosis的方法,所述方法包括向所述受试者给予缀合至抗中性粒细胞或抗NET试剂的治疗有效量的抗DEspR抗体试剂。 [0485] 8.如段落1-7中任一段所述的方法,其中,所述抗DEspR抗体试剂是抗DEspR抗体试剂、单克隆抗体或其抗原结合片段。 [0486] 9.如段落8所述的方法,其中,所述抗DEspR抗体试剂是能够特异性结合至并抑制i)DEspR以及ii)调节免疫细胞活性和/或存活的靶标的双特异性抗体试剂,所述靶标选自于: [0487] a.细胞表面受体; [0488] b.配体或细胞外蛋白; [0489] c.细胞内蛋白。 [0490] 10.如段落9所述的方法,其中,所述细胞表面受体为PD1;CTLA-4;TLR-2;TLR-4;CD14;或CD168。 [0491] 11.如段落9所述的方法,其中,所述配体或细胞外蛋白为PD-L1;CD80:CD86;G-CSF;GM-CSF;髓过氧化物酶;组织蛋白酶G;中性粒细胞弹性蛋白酶;或精氨酸酶1。 [0492] 12.如段落9所述的方法,其中,所述细胞内蛋白为Mcl-1;cIAP2;STAT3;ERK1/2;肽酰基精氨酸脱氨酶(PAD4);半乳糖凝集素-1/3;或RNA腺苷脱氨酶1(ADAR-1)。 [0493] 13.如段落1-12中任一段所述的方法,其中,所述抗DEspR抗体试剂或双特异性抗体试剂包含选自于SEQ ID NO:1-SEQ ID NO:3、SEQ ID NO:9-SEQ ID NO:11、SEQ ID NO:17-SEQ ID NO:19、SEQ ID NO:5-SEQ ID NO:7、SEQ ID NO:13-SEQ ID NO:15、SEQ ID NO: 21-SEQ ID NO:23、SEQ ID NO:25-SEQ ID NO:27、SEQ ID NO:29-SEQ ID NO:31和SEQ ID NO:33-SEQ ID NO:35的互补决定区。 [0494] 14.如段落1-13中任一段所述的方法,其中,所述抗DEspR抗体试剂或双特异性抗体试剂为铰链稳定化IgG4抗体试剂。 [0495] 15.如段落14所述的方法,其中,相对于野生型IgG4序列,所述铰链稳定化IgG4抗体试剂包含S228P突变。 [0496] 16.如段落1-15中任一段所述的方法,其中,表达所述抗DEspR抗体试剂或双特异性抗体试剂的细胞包含接触步骤中给予或提供的抗体试剂。 [0497] 17.如段落16所述的方法,其中,所述细胞为T细胞、CAR-T细胞或过继转移T细胞。 [0498] 18.如段落17所述的方法,其中,所述抗DEspR抗体试剂或双特异性抗体试剂为CAR。 [0499] 19.如段落1-18中任一段所述的方法,其中,所述DEspR抑制剂、抗DEspR抗体试剂或双特异性抗体试剂是包含至少一种抗DEspR抗体试剂和缀合至所述抗体试剂的至少一种药物的抗体-药物缀合物。 [0500] 20.如段落19所述的方法,其中,所述药物选自于由如下药物所组成的组: [0501] 溶栓剂、化学治疗剂、纳米颗粒、多肽、成像剂、荧光团、小分子、酶、核酸分子或化学品。 [0502] 21.如段落20所述的方法,其中,所述化学治疗剂为mertansine、emtansine、吉西他滨、替莫唑胺、紫杉醇或顺铂/奥沙利铂。 [0503] 22.如段落20所述的方法,其中,所述纳米颗粒为氧化铁-纳米颗粒(IONP)、聚合物纳米颗粒或金纳米颗粒或嵌合纳米颗粒。 [0504] 23.如段落20所述的方法,其中,所述酶为DNAseI、基质金属蛋白酶1(MMP1)、基质金属蛋白酶2(MMP2)、基质金属蛋白酶3(MMP3)、金属蛋白酶组织抑制剂(TIMP)、蛋白酶、重组酶或纤溶酶原激活物。 [0505] 24.如段落20所述的方法,其中,所述化学品为4-氨基苯甲酰肼或NX-059硝酮。 [0506] 25.如段落20所述的方法,其中,所述多肽为糜蛋白酶抑制素、血管生成素1/2、SDF-1。 [0507] 26.如段落1-25中任一段所述的方法,其中,所述受试者需要针对病症或疾病的治疗,其中,中性粒细胞、NET、或NETosing或NETting中性粒细胞促成疾病的发病、慢性化或恶化。 [0508] 27.如段落26所述的方法,其中,所述病症或疾病选自于由如下病症或疾病所组成的组: [0509] 系统性炎症反应综合征(SIRS);急性肺损伤(ALI);急性呼吸窘迫综合征(ARDS);来自例如ARDS、出血性休克、手术、烧伤或败血症的多器官衰竭或多器官功能障碍综合征(MODS);败血症;败血症诱导的凝血病;创伤;多发性硬化;急性肾损伤(AKI);AKI相关的肾小管坏死和远处器官损伤;创伤后手术;出血性休克;感染或由药物或任何试剂诱导的细胞因子风暴;缺血性或出血性卒中;卒中继发性脑损伤;心肌缺血/梗死;动脉粥样硬化易损斑块;动脉粥样硬化血栓形成;冠状动脉疾病;急性冠状动脉综合征;心脏衰竭;再灌注损伤; 肾透析患者中的合并症(例如血栓形成和内皮功能障碍);缺血或药物诱导的脑中出血性转化、出血性脑病、创伤性脑损伤;缺氧性脑损伤、慢性肾病;癌症;actPMN依赖性癌症;糖尿病;1型糖尿病;2型糖尿病;血管病;血管病变;终末器官并发症(例如视网膜病变或糖尿病肾病);糖尿病溃疡伤口愈合不良;深静脉血栓形成;癌症转移;系统性微血栓形成;化学疗法诱导的微血栓形成;动脉粥样硬化血栓形成;系统性红斑狼疮(SLE);狼疮性肾炎;SLE加速的动脉粥样硬化;类风湿性关节炎;COPD;囊性纤维化;肺病;阿尔茨海默氏病;镰状细胞病;炎症性肠病(IBD);克罗恩病;溃疡性结肠炎;以及未定型结肠炎。 [0510] 28.如段落1-27中任一段所述的方法,其中,所述受试者需要针对癌症的治疗。 [0511] 29.如段落28所述的方法,其中,所述受试者具有:PD-L1+/DespR+肿瘤;升高的循环DEspR+中性粒细胞或肿瘤DEspR+中性粒细胞水平;升高的DEspR+激活的中性粒细胞水平;升高的NET水平;升高的血浆中性粒细胞弹性蛋白酶(NE)水平;升高的血浆中性粒细胞髓过氧化物酶(MPO)水平;或肿瘤,所述肿瘤包含以下中的一种或多种: [0512] DEspR+中性粒细胞;DEspR+NETosing中性粒细胞;NET;升高的中性粒细胞释放的免疫抑制剂水平;升高的瓜氨酸化组蛋白3水平;以及升高的中性粒细胞刺激剂水平。 [0513] 30.如段落29所述的方法,其中,所述中性粒细胞释放的免疫抑制剂为精氨酸酶1;PD-L1;髓过氧化物酶(MPO);或中性粒细胞弹性蛋白酶(NE);或组织蛋白酶G(CG)。 [0514] 31.如段落30所述的方法,其中,所述中性粒细胞刺激剂为G-CSF、ET1、Hif1a或DAMP。 [0515] 32.如段落1-31中任一段所述的方法,其中,所述癌症是胰腺导管腺癌;胶质母细胞瘤;肺癌;三阴乳腺癌;黑色素瘤;结直肠癌、胃癌或卵巢癌。 [0516] 33.如段落1-32中任一段所述的方法,其中,所述受试者需要针对癌症的治疗并且先前曾经通过肿瘤切除术进行治疗。 [0517] 34.根据段落1-33中任一段所述的方法,其中,向所述受试者进一步给予进一步的免疫疗法或化学疗法。 [0518] 35.如段落1-34中任一段所述的方法,其中,先前曾经向所述受试者给予进一步的免疫疗法或化学疗法。 [0519] 36.如段落1-35中任一段所述的方法,其中,所述受试者对利用进一步的免疫疗法或化学疗法进行的治疗耐受。 [0520] 37.如段落1-36中任一段所述的方法,其中,所述受试者已经从利用进一步的免疫疗法或化学疗法进行的治疗中产生毒性。 [0521] 38.如段落1-37中任一段所述的方法,其中,所述免疫疗法为免疫检查点蛋白免疫疗法、T细胞共刺激剂;或CAR-T疗法。 [0522] 39.如段落1-38中任一段所述的方法,其中,所述免疫疗法为PD1和/或PD-L1抑制剂疗法。 [0523] 40.如段落1-39中任一段所述的方法,其中,所述化学疗法为吉西他滨、紫杉醇、替莫唑胺、伊立替康、abraxane、铂基化学疗法、顺铂、oxiloplatin或它们的组合。 [0524] 41.如段落1-40中任一段所述的方法,其中,所述受试者为哺乳动物。 [0525] 42.如段落1-41中任一段所述的方法,其中,所述受试者为人。 [0526] 43.如段落1-42中任一段所述的方法,其中,所述受试者具有或已经被确定为具有DEspR+中性粒细胞。 [0527] 44.一种鉴别处于中性粒细胞胞外诱捕网(NET)释放、活力NETosis或actPMN NETosis的风险中的受试者的方法,所述方法包括检测获取自所述受试者的样品中的DEspR+中性粒细胞水平,其中,相对于参考而言DEspR+中性粒细胞的水平升高表明所述受试者处于中性粒细胞胞外诱捕网(NET)释放、活力NETosis或actPMN NETosis的增加的风险中。 [0528] 45.一种鉴别处于中性粒细胞胞外诱捕网(NET)释放、活力NETosis或actPMN NETosis的风险中的受试者的方法,所述方法包括检测获取自所述受试者的中性粒细胞中的DEspR水平,其中,相对于参考而言中性粒细胞中DEspR+的水平升高表明所述受试者处于中性粒细胞胞外诱捕网(NET)释放、活力NETosis或actPMN NETosis的增加的风险中。 [0529] 46.如段落44或45所述的方法,其中,处于NET释放、活力NETosis或actPMN NETosis的增加的风险中的所述受试者处于导致器官功能障碍或多器官功能障碍的威胁生命的中性粒细胞驱动的继发性组织损伤的增加的风险中;或处于中性粒细胞驱动的慢性病、血管疾病、感染、血栓形成加重的增加的风险中。 [0530] 47.用于降低中性粒细胞存活和/或活性的方法中的DEspR抑制剂。 [0531] 48.用于在有需要的受试者中防止或减少中性粒细胞胞外诱捕网(NET)释放或actPMN NETosis或活力NETosis的方法中的DEspR抑制剂,所述方法包括向所述受试者给予治疗有效量的所述DEspR抑制剂。 [0532] 49.如段落47-48中任一段所述的抑制剂,其中,所述中性粒细胞是激活的中性粒细胞(actPMN)或CD11b+中性粒细胞。 [0533] 50.如段落47-49中任一段所述的抑制剂,其中,所述中性粒细胞或NET为DEspR+。 [0534] 51.如段落47-50中任一段所述的抑制剂,其中,所述DEspR抑制剂是抗DEspR抗体试剂或其抗原结合片段。 [0535] 52.如段落51所述的抑制剂,其中,所述抗DEspR抗体试剂是能够特异性结合至i)DEspR和ii)PD1或PD-L1的双特异性试剂。 [0536] 53.用于在有需要的受试者中防止或减少NET释放、活力NETosis或actPMN NETosis的方法中的缀合至抗中性粒细胞或抗NET试剂的抗DEspR抗体试剂。 [0537] 54.如段落47-53中任一段所述的抑制剂或试剂,其中,所述抗DEspR抗体试剂是抗DEspR抗体试剂、单克隆抗体或其抗原结合片段。 [0538] 55.如段落54所述的抑制剂或试剂,其中,所述抗DEspR抗体试剂是能够特异性结合至并抑制i)DEspR以及ii)调节免疫细胞活性和/或存活的靶标的双特异性抗体试剂,所述靶标选自于: [0539] a.细胞表面受体; [0540] b.配体或细胞外蛋白; [0541] c.细胞内蛋白。 [0542] 56.如段落55所述的抑制剂或试剂,其中,所述细胞表面受体为PD1;CTLA-4;TLR-2;TLR-4;CD14;或CD168。 [0543] 57.如段落55所述的抑制剂或试剂,其中,所述配体或细胞外蛋白为PD-L1;CD80:CD86;G-CSF;GM-CSF;髓过氧化物酶;组织蛋白酶G;中性粒细胞弹性蛋白酶;或精氨酸酶1。 [0544] 58.如段落55所述的抑制剂或试剂,其中,所述细胞内蛋白为Mcl-1;cIAP2;STAT3;ERK1/2;肽酰基精氨酸脱氨酶(PAD4);半乳糖凝集素-1/3;或RNA腺苷脱氨酶1(ADAR-1)。 [0545] 59.如段落47-58中任一段所述的抑制剂或试剂,其中,所述抗DEspR抗体试剂或双特异性抗体试剂包含选自于SEQ ID NO:1-SEQ ID NO:3、SEQ ID NO:9-SEQ ID NO:11、SEQ ID NO:17-SEQ ID NO:19、SEQ ID NO:5-SEQ ID NO:7、SEQ ID NO:13-SEQ ID NO:15、SEQ ID NO:21-SEQ ID NO:23、SEQ ID NO:25-SEQ ID NO:27、SEQ ID NO:29-SEQ ID NO:31和SEQ ID NO:33-SEQ ID NO:35的互补决定区。 [0546] 60.如段落47-59中任一段所述的抑制剂或试剂,其中,所述抗DEspR抗体试剂或双特异性抗体试剂为铰链稳定化IgG4抗体试剂。 [0547] 61.如段落47-60中任一段所述的抑制剂或试剂,其中,相对于野生型IgG4序列,所述铰链稳定化IgG4抗体试剂包含S228P突变。 [0548] 62.如段落47-61中任一段所述的抑制剂或试剂,其中,表达所述抗DEspR抗体试剂或双特异性抗体试剂的细胞包含接触步骤中给予或提供的抗体试剂。 [0549] 63.如段落62所述的抑制剂或试剂,其中,所述细胞为T细胞、CAR-T细胞或过继转移T细胞。 [0550] 64.如段落63所述的抑制剂或试剂,其中,所述抗DEspR抗体试剂或双特异性抗体试剂为CAR。 [0551] 65.如段落47-64中任一段所述的抑制剂或试剂,其中,所述DEspR抑制剂、抗DEspR抗体试剂或双特异性抗体试剂是包含至少一种抗DEspR抗体试剂和缀合至所述抗体试剂的至少一种药物的抗体-药物缀合物。 [0552] 66.如段落65所述的抑制剂或试剂,其中,所述药物选自于由如下药物所组成的组: [0553] 溶栓剂、化学治疗剂、纳米颗粒、多肽、成像剂、荧光团、小分子、酶、核酸分子或化学品。 [0554] 67.如段落66所述的抑制剂或试剂,其中,所述化学治疗剂为mertansine、emtansine、吉西他滨、替莫唑胺、紫杉醇或顺铂/奥沙利铂。 [0555] 68.如段落66所述的抑制剂或试剂,其中,所述纳米颗粒为氧化铁-纳米颗粒(IONP)、聚合物纳米颗粒或金纳米颗粒或嵌合纳米颗粒。 [0556] 69.如段落66所述的抑制剂或试剂,其中,所述酶为DNAseI、基质金属蛋白酶1(MMP1)、基质金属蛋白酶2(MMP2)、基质金属蛋白酶3(MMP3)、金属蛋白酶组织抑制剂(TIMP)、蛋白酶、重组酶或纤溶酶原激活物。 [0557] 70.如段落66所述的抑制剂或试剂,其中,所述化学品为4-氨基苯甲酰肼或NX-059硝酮。 [0558] 71.如段落66所述的抑制剂或试剂,其中,所述多肽为糜蛋白酶抑制素、血管生成素1/2、SDF-1。 [0559] 72.如段落47-71中任一段所述的抑制剂或试剂,其中,所述受试者需要针对病症或疾病的治疗,其中,中性粒细胞、NET、或NETosing或NETting中性粒细胞促成疾病的发病、慢性化或恶化。 [0560] 73.如段落72所述的抑制剂或试剂,其中,所述病症或疾病选自于由如下病症或疾病所组成的组: [0561] 系统性炎症反应综合征(SIRS);急性肺损伤(ALI);急性呼吸窘迫综合征(ARDS);来自例如ARDS、出血性休克、手术、烧伤或败血症的多器官衰竭或多器官功能障碍综合征(MODS);败血症;败血症诱导的凝血病;创伤;多发性硬化;急性肾损伤(AKI);AKI相关的肾小管坏死和远处器官损伤;创伤后手术;出血性休克;感染或由药物或任何试剂诱导的细胞因子风暴;缺血性或出血性卒中;卒中继发性脑损伤;心肌缺血/梗死;动脉粥样硬化易损斑块;动脉粥样硬化血栓形成;冠状动脉疾病;急性冠状动脉综合征;心脏衰竭;再灌注损伤; 肾透析患者中的合并症(例如血栓形成和内皮功能障碍);缺血或药物诱导的脑中出血性转化、出血性脑病、创伤性脑损伤;缺氧性脑损伤、慢性肾病;癌症;actPMN依赖性癌症;糖尿病;1型糖尿病;2型糖尿病;血管病;血管病变;终末器官并发症(例如视网膜病变或糖尿病肾病);糖尿病溃疡伤口愈合不良;深静脉血栓形成;癌症转移;系统性微血栓形成;化学疗法诱导的微血栓形成;动脉粥样硬化血栓形成;系统性红斑狼疮(SLE);狼疮性肾炎;SLE加速的动脉粥样硬化;类风湿性关节炎;COPD;囊性纤维化;肺病;阿尔茨海默氏病;镰状细胞病;炎症性肠病(IBD);克罗恩病;溃疡性结肠炎;以及未定型结肠炎。 [0562] 74.如段落47-73中任一段所述的抑制剂或试剂,其中,所述受试者需要针对癌症的治疗。 [0563] 75.如段落74所述的抑制剂或试剂,其中,所述受试者具有:PD-L1+/DespR+肿瘤;升高的循环DEspR+中性粒细胞或肿瘤DEspR+中性粒细胞水平;升高的DEspR+激活的中性粒细胞水平;升高的NET水平;升高的血浆中性粒细胞弹性蛋白酶(NE)水平;升高的血浆中性粒细胞髓过氧化物酶(MPO)水平;或肿瘤,所述肿瘤包含以下中的一种或多种: [0564] DEspR+中性粒细胞;DEspR+NETosing中性粒细胞;NET;升高的中性粒细胞释放的免疫抑制剂水平;升高的瓜氨酸化组蛋白3水平;以及升高的中性粒细胞刺激剂水平。 [0565] 76.如段落75所述的抑制剂或试剂,其中,所述中性粒细胞释放的免疫抑制剂为精氨酸酶1;PD-L1;髓过氧化物酶(MPO);或中性粒细胞弹性蛋白酶(NE);或组织蛋白酶G(CG)。 [0566] 77.如段落76所述的抑制剂或试剂,其中,所述中性粒细胞刺激剂为G-CSF、ET1、Hif1a或DAMP。 [0567] 78.如段落47-77中任一段所述的抑制剂或试剂,其中,所述癌症为胰腺导管腺癌;胶质母细胞瘤;肺癌;三阴乳腺癌;黑色素瘤;结直肠癌、胃癌或卵巢癌。 [0568] 79.如段落47-78中任一段所述的抑制剂或试剂,其中,所述受试者需要针对癌症的治疗并且先前曾经通过肿瘤切除术进行治疗。 [0569] 80.如段落47-79中任一段所述的抑制剂或试剂,其中,向所述受试者进一步给予进一步的免疫疗法或化学疗法。 [0570] 81.如段落47-80中任一段所述的抑制剂或试剂,其中,先前曾经向所述受试者给予进一步的免疫疗法或化学疗法。 [0571] 82.如段落47-81中任一段所述的抑制剂或试剂,其中,所述受试者对利用进一步的免疫疗法或化学疗法进行的治疗耐受。 [0572] 83.如段落47-82中任一段所述的抑制剂或试剂,其中,所述受试者已经从利用进一步的免疫疗法或化学疗法进行的治疗中产生毒性。 [0573] 84.如段落47-83中任一段所述的抑制剂或试剂,其中,所述免疫疗法为免疫检查点蛋白免疫疗法、T细胞共刺激剂;或CAR-T疗法。 [0574] 85.如段落47-84中任一段所述的抑制剂或试剂,其中,所述免疫疗法为PD1和/或PD-L1抑制剂疗法。 [0575] 86.如段落47-85中任一段所述的抑制剂或试剂,其中,所述化学疗法为吉西他滨、紫杉醇、替莫唑胺、伊立替康、abraxane、铂基化学疗法、顺铂、oxiloplatin或它们的组合。 [0576] 87.如段落47-86中任一段所述的抑制剂或试剂,其中,所述受试者为哺乳动物。 [0577] 88.如段落47-87中任一段所述的抑制剂或试剂,其中,所述受试者为人。 [0578] 89.如段落47-88中任一段所述的抑制剂或试剂,其中,所述受试者具有或已经被确定为具有DEspR+中性粒细胞。 [0579] 实施例 [0580] 实施例1:适应不良的中性粒细胞过度介导的病理中的抗DEspR疗法 [0581] 本发明涉及抗DEspR技术,所述技术抑制或废除(abrogate)激活的中性粒细胞中延长的存活机制(IC50<8nM),从而抑制所有激活的中性粒细胞活性,该活性驱动其它细胞参与者并与之交互作用以趋向于适应不良的致病性级联。actPMN驱动的致病性级联导致快速前馈(feed-forward)交互作用,从而趋向于疾病进展以及其后的致衰弱后遗症或死亡。 [0582] 本发明进一步涉及包含DEspR抑制性化合物的组合物以及使用这些DEspR抑制性化合物用于治疗病症或疾病的方法,所述病症或疾病涉及由激活的中性粒细胞(actPMN)和/或由NETosis诱导、驱动和/或传播(propagated)的致病性级联。 [0583] 中性粒细胞是在其核中具有2-5叶(lobe)的多形核细胞(PMC),并且是人中最丰富的白细胞类型。在生理条件下,中性粒细胞组成型凋亡,具有6-8小时的短循环半衰期。在如炎症中发生的激活后,中性粒细胞具有延长的存活或延迟的凋亡(超过1-2天),以履行其在防御宿主抵抗病原体入侵方面的重要作用。中性粒细胞是天然免疫中的第一应答者,并在数分钟内定位至损伤或感染位点。它们是炎症的标志,能够1)通过释放自由基氧、蛋白酶、髓过氧化物酶、弹性蛋白酶杀死细菌;并能够2)在中性粒细胞胞外诱捕网(NET)—“由直径15-17nm的解凝染色质纤维、组蛋白和DNA构成的含抗菌酶的网状结构”中物理捕获细菌并将其杀死。 [0584] 然而,完全相同的细菌杀伤机制可导致直接引起组织损伤(类似于杀灭细菌)的适应不良的致病性级联—中性粒细胞悖论。此外,激活的中性粒细胞的适应不良作用由通过介导因子(如细胞因子)进行的激活的中性粒细胞与其它细胞(淋巴细胞、抗原呈递细胞、内皮细胞、癌细胞)之间的串扰(crosstalk)而扩大,建立前馈交互作用。完全相同的NET可以引起血栓形成—如在深静脉血栓形成中和在癌症微血栓形成中以及在动脉粥样硬化血栓形成中所见的那样。 [0585] 激活的中性粒细胞介导的组织损伤机制可以驱动不同器官系统疾病中的致病性级联,例如如下实例(并非全部包括在内)。 [0586] 急性肺损伤(ALI)和急性呼吸窘迫综合征(ARDS)中的肺 [0587] 卒中出血性转化中 [0588] 慢性肾病中 [0589] 侵袭性癌症和转移中[参考文献13-25] [0590] 高中性粒细胞计数(中性粒细胞与淋巴细胞之比高,NLR)与多种人类癌症类型中的临床结果不良有关:胰腺导管腺癌、肝细胞癌、结直肠癌、肾癌、非小细胞肺癌、黑色素瘤、胃癌、胶质母细胞瘤以及头颈部癌。 [0591] 如胰腺导管腺癌、乳腺癌和结直肠癌中所见,中性粒细胞是肿瘤进展中的活跃参与者并促进侵袭性肿瘤生长,伴有上皮至间质转化以及增加的转移潜能。 [0592] 通过NETosis的血栓形成 [0593] NET通过为血小板和RBC的粘附和聚集提供支架并增强凝血来促进血栓形成。如在动脉粥样硬化血栓形成、深静脉血栓形成和癌症中的血栓性微血管病中所报道的,NETosis相关的血栓和NETosis标志物与血栓性疾病活动相关。 [0594] 在糖尿病伤口愈合不良中 [0595] 在严重肺病中: [0596] 过度NET释放的不利影响对于肺病尤为重要,因为NET在肺泡中更容易扩张,导致肺损伤。此外,NET及其相关分子能够直接诱导上皮和内皮细胞死亡。在这方面,已报道在多种肺病中形成大量NET,包括哮喘、慢性阻塞性肺病、囊性纤维化、呼吸道合胞病毒细支气管炎、流行性感冒、细菌性肺炎和肺结核等。因此,必须严格调节NET形成,以避免NET介导的组织损害。 [0597] 在阿尔茨海默氏病中 [0598] 在多种疾病中过度和不受控制的中性粒细胞功能活性和过度的NETosis[参考文献8-35]促成难以停止的“摄食疯狂样(feeding-frenzy-like)”致病性级联。需要新疗法。迄今为止,如在急性肺损伤和急性呼吸窘迫综合征中所见,潜在的新疗法未能证明疗效。 [0599] 由于激活的中性粒细胞驱动的致病性级联快速进行,需要例如通过本文所述的抗DEspR humab疗法提供的快速应答疗法。就像抗DEspR降低CSC存活一样,抗DEspR废除激活的中性粒细胞的延长存活,从而防止适应不良的过度的中性粒细胞介导的组织损伤和NET介导的致病性级联。 [0600] 抗DEspR通过阻断STAT3介导的Mcl1上调来重新参与中性粒细胞凋亡机制并引起Mcl1降低。Mcl1涉及激活的中性粒细胞(其在静止状态下组成型凋亡)的延长存活。通过诱导激活的中性粒细胞凋亡(其被巨噬细胞吞噬),抗DEspR防止中性粒细胞介导的组织损伤的致病性级联(通过蛋白酶、组织蛋白酶G、蛋白酶3、髓过氧化物酶)。防止激活的中性粒细胞发展为NETosis,从而防止非感染性疾病中NET介导的致病性级联。抗DEspR还可用作纳米缀合物或药物缀合物的靶向部分,其靶向循环中或组织(如肺、关节、肌肉、心脏等)中或病变(如血栓、肿瘤、溃疡、伤口)中的激活的中性粒细胞浸润物、循环中性粒细胞和NET。 [0601] 用于过度的中性粒细胞介导的摄食疯狂样致病性级联的抗DEspR mAb疗法。 [0602] 与同型对照(图1B)不同,DEspR在激活的人中性粒细胞(图1A)和经历NETosis的中性粒细胞(图1C-图1D)中表达。抗DEspR mAb在LPS激活的大鼠中性粒细胞上检测到DEspR表达(图2A)。值得注意的是,与未激活或静止的中性粒细胞(Q4)相比,如CD11b(Mac1)诱导所标记的,低剂量(1-2mg/kg/剂而不是通常的15-20mg/kg/剂)脂多糖激活中性粒细胞。与CD11b+但DEspR(-)(黄色圆圈)的激活的中性粒细胞相比,大多数CD11b激活的中性粒细胞为DEspR+(红色粗体圆圈)(图2A)。与作为对照的未处理激活的中性粒细胞相比,离体抗DEspR mab[抗大鼠DEspR 10a3第2道和泛物种(pan-species)反应性抗人/大鼠/猴DEspR mAb,6g8]对激活的中性粒细胞的处理降低它们的存活(单因素ANOVA,Tukey事后多重比较,P<0.0001)(图2B)。 [0603] 体内功效:抗DEspR mAb在患有中度-重度慢性肾病的雌性(表1)和雄性(表2)高血压大鼠中均降低白蛋白尿/蛋白尿。 [0604] 如图3A-图3F所示,与对照正常大鼠脑(图3A)相比,在卒中易发型大鼠中低剂量LPS(1.8mg/kg/剂)在24小时内诱导了严重的出血性脑炎(图3B)。重要的是,用抗DEspR mAb(1mg/kg/剂iv)进行的一次性治疗减弱了威胁生命的出血性脑炎的进程(图3C)。作为抗DEspR的靶向作用的证实,与没有LPS诱导的出血性脑炎的对照正常脑以及作为对照的未处理的LPS诱导的出血性脑炎大鼠脑(图3D)相比,我们通过在经处理大鼠的脑中检测到抗DEspR鼠IgG(图3D)而表明了靶向参与作用。一致地,与作为对照的未处理的LPS诱导的出血性脑炎大鼠脑相比,在经处理大鼠脑中伴随降低的髓过氧化物酶水平检测到激活的中性粒细胞功能活性降低(图3E)。被激活的中性粒细胞释放后,脑髓过氧化物酶水平升高,因此,所观察到的下降表明脑中激活的中性粒细胞减少。 [0605] 为了进一步证实在废除中性粒细胞中的体内功效,我们分析并检测了脑白蛋白含量的降低,这表明脑水肿减小(图3F)。脑水肿减小表明通过抗DEspR介导的激活的中性粒细胞介导的出血性脑病的减弱,血脑屏障得以稳定。中性粒细胞介导的组织损伤牵涉血脑屏障破坏或损伤。 [0606] 为了证明抗DEspR对临床相关结果的影响,我们确定了抗DEspR是否可以增加患有急性发作的LPS诱导的出血性脑病的大鼠的存活。如图4所示,抗DEspR mAb处理增加了5/8的经处理大鼠的存活,其中50%(4/8)的经处理大鼠达到完全应答并中止死亡风险,存活分析p=0.0007。 [0607] 体内功效:抗DEspR mAb在患有中度-重度慢性肾病的雌性(表1)和雄性(表2)高血压大鼠中均降低白蛋白尿/蛋白尿(图5)。 [0608] 在患有慢性肾病的雌性大鼠中的发现的总结。 [0609] 表1:hu-6g8在饲喂HSD的Dahl S雌性大鼠中对CKD的影响。 [0610] [0611] 表2:hu-6g8在饲喂HSD的Tg25+雄性大鼠中对CKD的影响。 [0612] [0613] 与对应的抗DEspR 6g8-鼠mAb相比,完全人源化抗DEspR 6g8-IgG4humab hu-6g8以改善的IC50抑制激活的中性粒细胞存活(图6)。 [0614] 图7中提供了用于废除NET介导的致病性级联的潜在疗法的示意性概述。抗DEspR mAb疗法旨在使激活的中性粒细胞的延长的存活回复为凋亡,从而阻止由过度的中性粒细胞释放蛋白水解酶[脱粒]和NETosis而引起的组织损伤。 [0615] 参考文献 [0616] Summers C,et al.2010.Neutrophil kinetics in health and disease.Trends Immuno 31:318-324. [0617] Yang H et al.2016.New insights into neutrophil extracelualr traps:mechanisms of formation and role in inflammation.Frontiers in Immunol 7: Article 302. [0618] Cohen S,2002.Cohen,Stephen;Burns,Richard C.(2002).Pathways of the Pulp(8th ed.).St.Louis:Mosby.p.465 [0619] Brinkmann V et al.2004.Neutrophil exrcelular traps kill bacteria.Science 303:12-15. [0620] Yang H et al 2016. [0621] Leliefeld PHC,Koenderma L,Pillay J.2015.How neutrophils shape adaptive immune responses. [0622] Frontiers in Immunology.14 September 2015,6:Article 471. [0623] Fuchs TA,et al.2010.Proc Natl Acad Sci.Sep 7;107(36):15880-15885.[0624] Martinod K,Wagner DD.2014.Thrombosis:tangeld up in NETs.Blood 123:2768-2776. [0625] Grommes J,Soehnlein O.2011.Contributio of neutrophils to acute lung injury.Mo Med 17:293-307. [0626] Abraham E.2003.Neutrophils and acute lung injury.Crit Care Med 31:5195-5199. [0627] Jickling GC et al.Targeting neutrophils in ischemic stroke:translational insights from experimental studies.J Cerb Blood Flow Metab 35: 888-901. [0628] Kato S,et al.2015.Neutrophil/lymphocyte ratio:a promising prognostic marker in patients with chronic kidney disease.Inflammation Cell Signaling 2015,2:e683. [0629] Perez-de-Puig I.,et al.Neutrophil recruitmeut to the brain in mouse and human ischemic stroke.Acta Neuropathol 2015Feb;129(2):239-57 [0630] Dumitru CA,Lang S,Brandau S.2013.Modulation of neutrophil granulocytes in the tumor microenvironment:mechanisms and consequences for tumor progression. [0631] Steele CW,et al.2016.CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma.Cancer Cell 29:832-845. [0632] He G,et al.2015.Peritumoral neutrophils negatively regulate adaptive immunity via the PD-L1/PD-1 signaling pathway in hepatocellular carcinoma.J Exp Clin Cancer Research 34:141. [0633] Rao HL,et al.2012.Increased intratumoral neutrophil in colorectal carcinomas correlates closely with malignant phenotype and predicts patients’adverse prognosis.PLoS One 2012:7:e30806. [0634] Li YW,et al.2011.Intratumoral neutrophils:a poor prognostic factor for hepatocellular carcinoma following resection J Hepatol 54:948-955.[0635] Jensen HK,et al.2009.Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma.J Clin Oncol 27:4709-4717. [0636] Ilie M et al.2011.Predictive clinicl outcome of the intratumoral CD66b-positive neutrophil-to-CD8+T-cell ratio in patients with resectable non-small cell lung cancer.Cancer 118:1726-1737,Jensen TO,et al.,2012.Intratumoral neutrophils and plasmacytoide dendritic cells indicate poor prognosis and are associated with pSTAT3 expression in JCC stage I/II melanoma.Cancer 118:2476-2485. [0637] Zhao JJ,et al.2012.The prognostic value of tumor-infiltrating neutrophils in gastric adenocarcinoma after resection.PLoS One 2012:7:e33655.[0638] Fossati G,et l.1999.Neutrophil infiltration into human gliomas.Act Neuropathologica 98:349-354. [0639] Dumitru CA,et al.2011.Tumor-derived macrophage migration inhibitory factor modulates the biology of head and neck cancer cells via neutrophil activation.Int J Cancer 129:859-869. [0640] Felix K,Gaida MM.2016.Neutrophil-derived proteases in the microenvironment of pancreatic cancer-active players in tumor progression.Int J Biol Sci 12:302-313. [0641] TenKate M,et al.2007.Polymorphonuclear leukocytes increase the adhesion of circulating tumor cels to microvascular endothelium.Anticancer Res 27:17-22. [0642] Demers M,Wagner DD.2014,NETosis:a new factor in tumor progression and cancer-associated thrombosis.40:277-283. [0643] Fuchs et al 2010. [0644] Massberg S,et al.2010.Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases Nat Med 16:887-896. [0645] DemersM 2014. [0646] Diaz JA,et a.2013.Plasm DNA is elevated in patients with deep vein thrombosis.J Vasc Surg Venous Lymphat Disord 1:341-348. [0647] vanMontfoort ML,et l.circulating nucleosomes and neutrophil activation as risk factors for deep vein thrombsosi.Arterioscler Thromb Vasc Biol 33:147-151. [0648] BorissoffJI.et l.2013.Elevated levels of circuating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state.Arterioscler Thromb Vasc Biol 33:2032-2040. [0649] Wong SL et al.2015.Diabetes primes neutrophils to undergo NETosis,which impairs wound healing.Nature Med 21:815-819. [0650] Fadini GP,et al.2016.NETosis delays diabetic wound healing in mice and humans.Diabetees65:1061-1071. [0651] Porto BN,Stein RT.2016.Neutrophil extracellular traps in pulmonary diseases:too much of a good thing?Fron Immunol 2016Aug 15:7:311. [0652] Zenaro E et al.2015.Neutrophils promote Alzheimer’s disease-likek pathology and cognitive decine via LFA-1 integrin.Nat Med 21:880-886. [0653] Yamashita CM,Lewis JF.2012.Emerging therapies for treatment of acute lung injury and acute respiratory distress syndrome. [0654] Liu H,et al.2003.Serine phosphorylation of STT3 is essential for Mcl-1 expression and macrophage survival.Blood 102:344-352. [0655] Michael J.Hickey&Paul Kubes.2009.Nature Reviews Immunology 9,364-375.[0656] Williams AE,Chambers RC.2014.The mercurial nature of neutrophils:still an enigma in ARDS?Am J Physiol Lung Cell Mol Physiol 308:L217-L230.[0657] Iba T et al.2013.Neutrophil extracelular traps,damage-associated molecular patterns,and cell death during sepsis.Acute Med Surg doi:10/1002/ams2.10. [0658] 实施例2:抗DEspR mAb疗法[hu-6g8]:功效-安全性优势 [0659] 稳定的S228P IgG4骨架:功效基于受体阻断而非基于ADCC或CDC [0660] 抗DEspR与免疫疗法组合的基本原理和作用模式的概述: [0661] 补充作用模式:抗DEspR(hu-6g8或ABT-468)对CSC存活/自我更新、肿瘤细胞侵袭性、血管新生(angiogenesis)的抑制共同引起转移散播(dissemination)和进展循环的下降,这补充了用以消除肿瘤细胞的免疫疗法免疫监视。这可以见于如下方面:与异种移植胰腺肿瘤和胶质母细胞瘤中肿瘤生长速率受到抑制而不消退相比,在具有免疫能力的大鼠中,抗DEspR对自发性乳腺肿瘤的肿瘤消退作用更强健(图16)74。 [0662] 抗DEspR对激活的中性粒细胞(肿瘤相关中性粒细胞或TAN和循环中性粒细胞)的消除去除了中性粒细胞介导的对T细胞激活和增殖的抑制,这即使在存在PD1/PD-L1抑制剂的情况下仍持续,因此是免疫疗法耐受的关键机制。此外,激活的中性粒细胞还表达PD-L1,因此能够在延长其自身存活的同时诱导T细胞凋亡。 [0663] CSC的诱导和肿瘤细胞凋亡增强了T细胞免疫监视的功效。Hu-6g8减少促存活蛋白(Mcl1、BIRC3)并增加促凋亡基因,从而诱导激活的中性粒细胞凋亡,这然后通过消除中性粒细胞介导的T细胞抑制来增强T细胞免疫监视的功效。 [0664] 肿瘤血管系统(VASCULATURE)的稳定有助于将免疫疗法递送至肿瘤以及将转移性肿瘤细胞的外渗(extravasation)最小化。 [0665] 数据验证了以下治疗假说。 [0666] 治疗假说:Hu-6g8是晚期IV期癌症中PD1/PD-L1抑制剂(或化学疗法)组合疗法的潜在伴侣,因为抗DEspR带来了新靶向功效和安全性优势,可以增强存活结果并潜在降低免疫疗法所需的剂量,以减少后者的副作用。预计的患者分层:PD-L1+肿瘤/DEspR+肿瘤相关中性粒细胞(TAN)、肿瘤细胞、CSC(癌干细胞或转移起始细胞)和/或肿瘤微血管。 [0667] [0668] 治疗假说。Hu-6g8是手术切除原发肿瘤后的潜在新辅助单一疗法(潜在适应症:PDAC、GBM、NSCL、TNBC);或与批准用于辅助疗法的PD1/PD-L1抑制剂一起作为组合疗法。 [0669] [0670] 在不同临床前模型中抗DEspR mAb的累积安全性概况:安全性优势 [0671] [0672] 体内和体外数据的粘性框架(cohesive framework)描述了抗DEspR的多方面MoA-抑制1]癌症干样细胞(CSC);2]血管新生;以及3]激活的中性粒细胞及对关键癌症转移标志的各自影响:肿瘤散播、播种或起始、微肿瘤外生长/扩张、肿瘤进展和侵袭性(图9)。 [0673] 参考文献 [0674] Vanneman M,DranoffG.2012.Conventional cytotoxic therapies in conjunction with immunotherapies.Nat Rev Cancer 12:237-251. [0675] Leliefeld PHC,Koenderman L,Pillay J.2015.Frontiers Immunology 14Sept 2015.How neutrophils change adaptive immune responses. [0676] Safa AR,2016.Resistance to cell death and its modulation in cancer stem cells.Crit Rev Oncog21:203-219. [0677] Park J,et al.2016.Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps.Science Transl Mod 8:361ral 38.19Oct 2016.[0678] 实施例3 [0679] 本文证明了DEspR在人激活的中性粒细胞(actPMN)上及已经历NETosis的actPMN上表达。抗DEspR mAb降低人actPMN的存活,并通过降低actPMN存活防止actPMN NETosis,从而防止或废除NET释放。 [0680] 正常或静止或未激活的PMN组成型凋亡,仅存活2-8小时(时间范围的报道有所不同),但是已经证实未激活的PMN在循环中仅存活数小时。激活的中性粒细胞能够延迟这种“组成型凋亡”一因此具有提高的存活,从而能够发挥其功能-通过蛋白酶、ROS、髓过氧化物酶(MPO)和NET(中性粒细胞胞外诱捕网)“杀死细菌”。然而,激活的中性粒细胞功能(蛋白酶、弹性蛋白酶、MPO、NET的释放)可能变得适应不良-“中性粒细胞悖论”-即,杀死细菌的方式也会引起组织损伤,尤其是随着NET涉及多种疾病的发现增加:例如卒中的BBB破坏;癌症中的转移促进和基质降解;糖尿病中的伤口愈合延迟;以及癌症、败血症、卒中、系统性红斑狼疮(SLE)、急性呼吸窘迫综合征(ARDS)、深静脉血栓形成中的微血栓-仅举几例。 [0681] 本文中考虑将抗DEspR mAb疗法用于这样的疾病:该疾病中,激活的中性粒细胞和NET是致病事件的基础或使其恶化。例如,需要针对如下方面的疗法,并且抗DEspR可以提供阻止或减慢actPMN介导的或NET介导的致病事件的“突破性”疗法。例如,抗DEspR具有成为一流生物治疗剂的潜力,从而用于: [0682] a.改善糖尿病中的伤口愈合; [0683] b.减少中性粒细胞相关的血栓形成和微血栓形成以及随后发生的多器官衰竭(如在败血症、癌症、ARDS以及卒中和急性冠状动脉综合征中所见的); [0684] c.减少ARDS中肺部的浸润性中性粒细胞负担,从而使得呼吸支持干预以及由此的ARDS死亡率能够取得更大成功; [0685] d.降低中性粒细胞介导的血脑屏障破坏引起的卒中(所有类型)死亡率,血脑屏障破坏引起微出血和大出血以及脑水肿(如在创伤性脑损伤中所见的,而不仅见于卒中); [0686] e.减少循环中性粒细胞和肿瘤相关中性粒细胞对免疫抑制以及由此的肿瘤免疫逃逸的贡献。 [0687] 抗DEspR mAb可用作用以检测NET+微血栓的诊断的靶向部分。 [0688] 本文所述的方法可以在没有有效疗法的情况下提供疗法,或者提供对当前疗法的改善: [0689] 1.改善被NET延迟的糖尿病中的伤口愈合; [0690] 2.减少创伤性脑损伤、卒中、缺氧性脑损伤、脑肿瘤中的BBB破坏以及由此的脑水肿和微出血; [0691] 3.减轻急性肺损伤或ARDS及其向多器官衰竭的进展; [0692] 4.减轻败血症、终末期癌症患者(死于多器官衰竭而非肿瘤块本身)的系统性微血栓以及随后发生的多器官衰竭; [0693] 5.充当NET的靶向部分,以递送带有DNAse或组蛋白抑制剂(发现其消除由挤出的DNA和组蛋白组成的NET)的纳米颗粒; [0694] 6.减少类风湿性关节炎中由中性粒细胞介导的组织损伤,减少NET [0695] 作为NET中瓜氨酸化组蛋白新表位的自身抗原来源。 [0696] 抗DEspR疗法可以减少适应不良的激活的中性粒细胞介导的和/或NET介导的对中性粒细胞长期牵涉的不同疾病的致病性作用。与当前疗法相比的优势可以包括: [0697] 1.更安全:减少激活的中性粒细胞的存活而不去除(ablating)或消耗(depleting)正常的静止中性粒细胞或不影响其它白细胞,可以提供更安全的治疗概况。 [0698] 2.更有效: [0699] a.抗DEspR将降低循环中actPMN的存活以及组织中的浸润PMN,而不是阻断中性粒细胞的粘附(例如抗ICAM mAb),这对已经游出(transmigrated)的中性粒细胞没有影响,并且还进一步激活中性粒细胞。经由血管内皮或上皮(肺中)的游出激活中性粒细胞。 [0700] b.鉴于NET的新兴崛起牵涉到不同疾病中的多种致病事件而没有有效疗法,最好是降低actPMN的存活(这样它们就不会形成NET),而不是试图拆除NET(这可能是“太迟”的方法和/或由于NET形成和组成很复杂而变得困难的方法)。 [0701] c.抗DEspR会阻断内皮素-1(ET1)的作用,ET1在卒中、癌症、心脏衰竭中增加并与其中的不良预后相关-鉴于经典的ET1 a型和b型受体拮抗剂在癌症、卒中、心脏衰竭的临床试验中均失败。 [0702] 3.作为多管齐下的癌症疗法的抗DEspR mAb的开发还将在癌症中靶向作为疗法耐受性基础的中性粒细胞介导的免疫逃逸和T细胞抑制;促进肿瘤局部侵袭和转移的中性粒细胞介导的基质降解;以及中性粒细胞介导的血栓形成—从而实现提高的总存活,这不仅是通过以比目前的化学治疗剂更安全的方式使转移减弱,而且减少了终末期癌症中导致多器官衰竭的癌症相关血栓形成和系统性微血栓。实际上,如在胰腺腹膜转移中所观察到的,微血栓可能促进与某些癌症、肠缺血相关的严重疼痛。 [0703] 激活的中性粒细胞以及现在还有NET越来越多地牵涉到不同致病事件中,其中,发生组织损伤和多器官微血栓。ActPMN和NET的参与采用了相当“暴发性(fulminant)”的过程,即一旦启动似乎没有东西能够阻挡或减弱。抗粘附mAb疗法未能有效发挥作用—追溯起来其可能是“太少,太迟”的情况。在动物模型中,中性粒细胞耗竭研究证明了中性粒细胞的作用。如本文所述,我们发现DEspR在激活的中性粒细胞上表达,并且将其抑制降低了激活的中性粒细胞的存活,已知与正常的静止中性粒细胞(DEspR阴性并且组成型凋亡,寿命为数小时)相比,激活的中性粒细胞具有延迟的凋亡(从而提高存活)。特别地,本文证明了IgG4/κFc区域上的抗DEspR完全人源化抗体结合至激活的中性粒细胞并抑制其存活,从而防止了中性粒细胞介导的组织损伤的形成、血脑屏障(BBB)破坏、血管新生和NET形成。 [0704] 实施例4 [0705] 急性肺损伤(ALI)及其向急性呼吸窘迫综合征(ARDS)和多器官衰竭(MOF)的进展发生在全球5-10%的ICU住院患者中1,其中每年在美国约200,000例3,在欧盟约175,000例。4 2,5 无论潜在原因 ,尽管有重症监护医学的所有干预措施,死亡率仍然高达~40% 。ARDS幸存者(甚至在年轻幸存者中也)患有慢性后遗症和残疾2,6。尽管进行了广泛的研究和多次临床试验7,尚无新疗法通过ALI/ARDS/MOF的3期试验,重申了对能够提高存活和/或减少后遗症的新治疗的高度未满足的需求2,8。 [0706] 来自ARDS临床试验中的失败或模棱两可的结果的教训教导了他汀类药物(瑞舒伐他汀(rosuvastatin)9、辛伐他汀10)的多效性内皮作用、β-激动剂(沙丁胺醇)的支气管舒张作用11、一氧化氮的肺血管扩张和改善的氧合作用12、糖皮质激素的非特异性炎症基因表达抑制作用13,14作为ALI/ARDS疗法没有有效功效/安全性。从机理上讲,无论潜在原因如何,激活的中性粒细胞都是ALI/ARDS发病和进展为MOF的关键15。实际上,中性粒细胞减少症患者中的ARDS也是中性粒细胞驱动的,因为在所述中性粒细胞减少症患者中,ALI/ARDS与中性粒细胞恢复16有关或与粒细胞-集落刺激因子(G-CSF)诱导中性粒细胞恢复17有关。已知ALI/ARDS/MOF的治疗功效需要直接抑制ALI/ARDS中19,20,21自我扩张的适应不良的中性粒细胞介导的组织损伤18但具有不会使危重患者中的潜在败血症或多器官功能障碍恶化的安全性。以中性粒细胞为中心的方法得到了总中性粒细胞耗竭在降低动物模型中ALI/ARDS的临22 床前功效的支持 ,并且由于激活的中性粒细胞通过中性粒细胞介导的微血管内皮损伤、毛细血管通透性25和中性粒细胞胞外诱捕网(NET)相关微血栓26,27、内皮和肺上皮损伤而在MOF中24起着关键作用,因此可以预期该方法还会减弱向MOF(ARDS中死亡的主要原因)23的进展。不意外的是,抑制中性粒细胞弹性蛋白酶是无效的28,或至多是有争议的29,这表明消除ARDS中所有中性粒细胞作用的重要性,而不仅是消除一种具体的蛋白酶。另一方面,整体抗炎方法也不是有效的,因为如表明了抗MCP1 mAb对巨噬细胞募集的抑制31以及巨噬细胞耗竭32使ARDS恶化的体内临床前研究所支持的,功能性巨噬细胞是趋向于ARDS中的高炎症状态消退的凋亡细胞的胞葬作用所需的30。 [0707] 如本文所述,我们发现抗DEspR离体抑制LPS激活的中性粒细胞的存活并增加大鼠中LPS诱导的出血性脑病的存活。我们还发现DEspR在人激活的中性粒细胞和NETosing激活的中性粒细胞上表达。这些数据支持如下治疗假说:抗DEspR提供中性粒细胞耗竭的可转化等同物(translatable equivalent),从而废除ALI/ARDS/MOF中的中心致病驱动因子。 [0708] 为了在ARDS患者中转化“中性粒细胞耗竭”的治疗范例(therapeutic paradigm)而没有来自中性粒细胞减少的安全问题,本文描述了一种新靶标特异性生物治疗剂—具有铰链稳定化S228P IgG4骨架的人源化/去免疫抗DEspR单克隆抗体(mAb)hu-6g8,它将: [0709] 1]废除作为ALI-ARDS-MOF进展的驱动因子的DEspR(+)激活的中性粒细胞和NET,从而打破中性粒细胞介导的损伤级联的恶性循环,但是将 [0710] 2]使DEspR(-)静止中性粒细胞、单核细胞、内皮细胞和肺上皮细胞幸免,从而获得最佳安全性:一旦DEspR+激活的中性粒细胞被抑制,就使平衡倾向于ALI/ARDS中的高炎症状态消退和胞葬作用(图10)。 [0711] 估计每年在美国有200,000例ARDS37,38,而在欧盟有约175,000例。ALI/ARDS发生在多种疾病实体中:败血症、肺炎、创伤、直接肺损伤以及呼吸机诱发的损伤。在一项5个洲的50个中心的研究中,ARDS的2014年期间患病率是ICU入院10.4%;其中医院死亡率为34.9%(轻度)、40.3%(中度)和46.1%(重度ARDS)39。 [0712] 本文所述的疗法可用于治疗例如: [0713] 1.ICU中的ALI/ARDS患者。 [0714] 2.中性粒细胞加重的肺病:a)慢性阻塞性肺病(COPD)40以及b)囊性纤维化41,其中激活的中性粒细胞和NET直接参与加重发作42。 [0715] 3.中性粒细胞介导的损伤级联:a)缺血性卒中后继发性损伤;b)败血症;c)创伤性脑损伤中的血脑屏障(BBB)破坏以及随后发生的血管性水肿和出血并发症。 [0716] 4.在患有以下癌症的癌症患者中促进转移、疗法耐受和免疫逃逸的中性粒细胞-细胞串扰:a)胰腺导管腺癌;b)胶质母细胞瘤;c)三阴乳腺癌;d)非小细胞肺癌;e)结直肠癌;f)黑色素瘤。临床前研究支持hu-6g8作为潜在的新辅助剂或新辅助疗法,以防止转移和微肿瘤外生长和/或减缓肿瘤进展。 [0717] 抗DEspR mAb疗法vs当前和预测的标准护理。ALI/ARDS的当前标准护理仅限于肺保护性通气和保守流体策略以及潜在原因的治疗,但没有可用的有效药物治疗方法43。除了肺保护性通气策略和支持性护理以外,没有针对ALI/ARDS的疗法。“尽管先前有令人鼓舞的临床前证据,但3期试验并未支持使用外源性表面活性剂、吸入性一氧化氮、静脉内前列腺素E1、糖皮质激素、酮康唑、lisofylline、N-乙酰半胱氨酸和激活的蛋白C作为ALI的治疗方52 法。”最近,瑞舒伐他汀疗法也没有改善患有败血症相关ARDS的患者的临床结果,并且可能促进肝和肾器官功能障碍53。此外,在ARDS幸存者的1年随访中,瑞舒伐他汀对来自ARDS/ALI的慢性后遗症没有效果54。类似地,β-阻断剂并没有减弱ARDS,而是可能促进更坏的结果55。 这些累积的失败强调了对新疗法的需求。 [0718] 患有ALI或ARDS的患者需要重症监护、机械通气并且处于MOF和死亡的高风险中。他们付出大量医疗费用,而幸存的那些则有持续的严重残疾45以及较低的健康相关的生活质量46。没有ALI/ARDS的有效疗法,也没有由中性粒细胞驱动的继发性组织损伤所加重的其它疾病(卒中、创伤性脑损伤、急性肾损伤等)的有效疗法。 [0719] 在一个实施方式中,本文描述了一种泛物种反应性人源化去免疫的抗DEspR IgG4 mAb,hu-6g8,其显示出重症监护设置药物疗法所需的平衡的功效-安全性-时间活性曲线。图10说明了hu-6g8作用模式:它通过诱导凋亡来消除激活的中性粒细胞以进行随后的胞葬作用和消退。这种MoA降低了ARDS/多器官衰竭(MOF)或多器官功能障碍综合征中由中性粒细胞介导的组织损伤的多种机制:中性粒细胞释放破坏内皮和肺泡细胞膜的蛋白酶;以及NETosis介导的肺泡和内皮损害;以及在ARDS进展至MOF时可见的微血栓-血管病。 [0720] 简而言之,以下概括的实验数据支持这种抗DEspR方法: [0721] 1.验证DEspR作为靶标。DEspR在激活的人中性粒细胞上表达(图1A、图1C、图1D)。抗DEspR免疫染色特异性通过同型对照中性粒细胞中无信号而显示(图1B)。经历NETosis的大多数人中性粒细胞是DEspR+(图1C-图1D)。NET(中性粒细胞胞外诱捕网)与MOF中的器官微血栓有关,并直接诱导内皮和上皮细胞死亡56,所有这些均为ARDS中的致病事件。 [0722] 2.与主要是DEspR(-)的CD11b(-)中性粒细胞相比,在非幸存ARDS患者以及在LPS诱导的人中性粒细胞中,大多数CD11b+激活的中性粒细胞是DEspR+(图2A)。与对照未处理人和大鼠中性粒细胞相比,用两种抗DEspR mab[抗大鼠DEspR-10a3和泛物种反应性抗DEspR人/大鼠/猴mAb 6g8]进行的处理降低LPS激活的中性粒细胞的存活(P<0.0001)(图2B)。 [0723] 这些数据支持从多个独立实验系统(中性粒细胞、肾和内皮细胞、癌干细胞)推理出的作用机制。静止中性粒细胞(多数为DEspR阴性)组成型凋亡,循环寿命短(例如4-8小时)。激活的中性粒细胞(多数为DEspR阳性)具有延长的寿命—或提高的存活和延迟的凋亡。已浸润组织或肿瘤的中性粒细胞是激活的;中性粒细胞从血管游入组织激活中性粒细胞。大部分(98%)CD11b(-)静止中性粒细胞(图2A,Q4)是DEspR(-),表明抗DEspR处理不会引起中性粒细胞减少。这在肿瘤模型中的多剂量处理中(图11)以及在单剂量处理的卒中模型中体内显示。 [0724] 在LPS诱导的出血性脑病大鼠模型(作为ARDS和败血症中的多器官衰竭(MOF)的范例)中研究鼠前体抗DEspR抗体6g8-mumab(图3A-图3F)。与正常大鼠脑(图3A)或未经6g8-mumab处理的LPS处理的脑(图3B)相比,单剂抗DEspR mAb(1mg/kg/剂iv)减弱了向威胁生命的出血性脑病的进展(图3C)。通过在经处理的大鼠脑中检测到抗DEspR鼠IgG显示出靶向参与作用(target engagement)(图3D)。 [0725] 一致地,激活的中性粒细胞的功能活性降低由6g8 mumab处理的大鼠脑中髓过氧化物酶水平降低所示出(图3E)。为了进一步证实废除中性粒细胞的体内功效,分析并检测到表明脑水肿降低的脑白蛋白含量降低(图3F),表明通过抗DEspR处理稳定了血脑屏障。尽管血管-组织屏障在解剖学上不同,但在中性粒细胞介导的血脑屏障和肺泡-毛细血管屏障的损伤中的共同点(即二者均表现水肿、组织损伤、出血)表明中性粒细胞在“血管-组织屏障损伤”中的关键驱动作用,无论器官和原因如何。 [0726] 还确定了在LPS诱导的出血性脑病MOF大鼠模型中抗DEspR是否能够提高大鼠的存活。简而言之,抗DEspR mAb处理增加5/8的经处理大鼠的存活,其中50%(4/8)的经处理大鼠在研究结束时恢复正常活动和健康(中位数>30天;研究在第33天停止;相比而言,未处理为16小时),存活分析p=0.0007(图4)。 [0727] 此外,体内卒中模型数据巩固了这些观察结果,该数据显示在急性卒中阶段输注的单剂抗DEspR mAb增加急性卒中死亡中的存活并解决神经功能缺损(癫痫发作、轻瘫、意识丧失),最可能归因于减少了缺血后中性粒细胞介导的血脑屏障(BBB)破坏、血管性水肿和出血并发症(图12)。鉴于中性粒细胞介导的BBB破坏、水肿和出血并发症在ALI/ARDS中与中性粒细胞介导的肺泡-毛细血管屏障破坏、水肿和出血并行63,抗DEspR mAb在缺血性卒中后时期减少中性粒细胞介导的损伤中的功效支持了抗DEspR疗法在中性粒细胞介导的ALI/ARDS中的有效性。 [0728] 本文描述了具有S228P铰链稳定化IgG4/κFC区的完全人源化抗DEspR mAb(本文将其命名为hu-6g8或ABT-468)的开发、表征和验证。hu-6g8被设计用于对DEspR+人细胞具有高结合亲和力以及抑制激活的中性粒细胞存活。hu-6g8在所有物种中均具有反应性,在人、灵长类动物和啮齿动物中具有相同表位,这有助于使用治疗性先导(therapeutic lead)进行临床前和临床研究。与其鼠前体6g8-mumab相比,体外分析显示hu-6g8具有更大的结合亲和力[EC50<5nM]以及对中性粒细胞存活的剂量依赖性抑制[IC50<8nM](图6)。通过重组DNA技术,借由如下方面设计了具有最佳生物物理特性的hu-6g8:a)避免T细胞表位以实现低免疫原性—“去免疫”;b)优化重链和轻链相互作用以实现可变结构域的稳定性;以及c)排除不稳定的翻译后修饰位点[脱酰胺、氧化、酸不稳定、不适当的N-糖基化、异构化和焦谷氨酸盐形成]。 [0729] 尽管没有FDA批准的ALI/ARDS/MOF药物治疗,但与在3期中失败的疗法或当前处于3期的疗法(FP-1201)相比,hu-6g8具有固有优势。 [0730] 1]功效优势: [0731] a)与3期中的FP-1201以及在3期试验中失败的过去的候选药物相比,hu-6g8通过如下方面来靶向ALI/ARDS/MOF的中心驱动因子(激活的中性粒细胞):双重地降低激活的中性粒细胞的存活并提高其凋亡,但不抑制DEspR(-)单核细胞/巨噬细胞,这些细胞是在不释放有害的中性粒细胞蛋白酶的情况下对凋亡中性粒细胞进行胞葬作用(或清除)所需的。抗DEspR hu-6g8转化了中性粒细胞耗竭(其防止ARDS)的治疗范例,并遵守巨噬细胞耗竭(其使ARDS恶化)所教导的教训。 [0732] b)此外,与FP-1201和失败的候选药物相比,先验地(a priori),hu6g8将激活的中性粒细胞消除能够减少NET(因为NET来自于actPMN),这随后减弱ARDS中NET介导的肺泡和毛细血管损伤以及与ARDS-MOF直接相关的微血栓形成。 [0733] 2]安全性优势:在重症监护设置中,安全性与功效同等重要。根据对具有不同异种移植或自发性肿瘤的>65只大鼠以及>20只卒中易发型高血压大鼠的观察,以下表明抗DEspR疗法的有希望的安全性。 [0734] a)与增加感染风险68并削弱伤口愈合的糖皮质激素相反,抗DEspRmAb疗法在所用剂量下不增加感染风险或削弱伤口愈合(图13)。 [0735] b)抗DEspR不引起中性粒细胞减少、贫血或血小板减少(图11)。 [0736] c)抗DEspR不会加剧肾功能受损(图5)或加重高血压(图14)。 [0737] 本文描述了hu-6g8降低来自ALI和ARDS患者的DEspR阳性(+)激活的中性粒细胞的存活并增加其凋亡,并且由于大多数NET+中性粒细胞为DEspR+,因此DEspR+中性粒细胞的消除显著降低了NETosis。 [0738] 由于缺乏总体上重演(recapitulate)人ARDS并具有向MOF的进展的ARDS的“金标准”动物模型,并且由于尽管II期早期有成功的指标但在III期试验中失败,本文描述的是抗DEspR处理对获得自ARDS患者血液样品的人中性粒细胞的影响的离体分析,其与和ARDS进展或严重程度相关的患者特异性生物标志物水平挂钩。 [0739] 通过ARDS生物标志物和DEspR机制相关生物标志物对患者样品应答者进行的表征为用于临床试验的ALI/ARDS患者的最佳分层提供了关键见解。此外,由于ALI/ARDS/MOF的快速进展过程以及患者采样时可能的不同进展阶段,可以对由如下方面组成的采样点处的基线(baseline)患者特征进行表征:ARDS严重程度的临床参数(PaO2/FiO2或O2饱和度)、调节中性粒细胞的关键ARDS生物标志物(IL-6)、NET介导的MOF的潜在生物标志物(citH3)以及DEspR机制相关生物标志物(中性粒细胞-淋巴细胞比率或NLR,DEspR+/CD11b+中性粒细胞)。 [0740] 离体测定法的优化可以将如下的多重测试最大化:a)患者样品中的离体hu-6g8功效;b)与hu-6g8应答者相关的ARDS生物标志物;以及c)有ARDS临床结果的激活的中性粒细胞上的DEspR表达。优化测试了:1)用于抑制激活的中性粒细胞存活的hu-6g8剂量,3×或10×IC50;以及2)治疗持续时间—6小时(在大鼠中性粒细胞测定法中验证(图2B))或3小时(基于2小时时hu-6g8对Panc1肿瘤细胞的效果(图15))。 [0741] 可以通过在全血中以高剂量10μg/ml LPS处理30分钟来激活正常人志愿者中性粒细胞,然后用hu-6g8(对于中性粒细胞存活抑制,3×或10×IC50)或载体在二氧化碳培养箱中37℃处理3hr或6hr。可以通过活/死细胞和NETosis的FACS参数来完成对功效的分析。潜在毒性-溶血的研究将通过分析血浆游离Hgb进行评价。 [0742] 可以通过三重染色FACS分析来测量%凋亡(膜联蛋白V-FITC)和%死亡(碘化丙啶)的CD11b+激活的中性粒细胞。将hu-6g8功效定义为与未处理的NHV CD11b+中性粒细胞相比,CD11b+激活的中性粒细胞中凋亡和/或死亡的中性粒细胞百分比更高。 [0743] 经hu-6g8处理的LPS激活的NHV中性粒细胞中NETosis的降低百分比与经载体处理的人匹配对照的对比可以通过如所述的在全血中对NET的经验证的FACS测量进行:DAPI对挤出的DNA进行检测,citH3对挤出的瓜氨酸化组蛋白3进行染色,以及CD11b对激活的中性粒细胞进行标记。最佳测定法条件可以定义为在hu-6g8功效的两个参数[存活%,NET+%]中均给出最大差异百分比的条件。 [0744] 在30名ALI/ARDS患者的试点组中,可以确定具有DEspR+/CD11b+中性粒细胞的ALI/ARDS患者的队列规模以及DEspR+/CD11b+中性粒细胞对ARDS严重程度定量测量值(低氧血症、NETosis程度、呼吸机天数以及存活(以天计))的临床意义(长至28天)。在ARDS中靶向DEspR的临床影响可以反映在具有DEspR+激活的中性粒细胞的ALI/ARDS患者的百分比以及DEspR+表达与ARDS严重程度测量值的相关性中。 [0745] 可以根据Berlin ARDS算法来鉴别24-30例ARDS患者,获得新鲜血液样品[两支管中7ml(第一支2ml+第二支5ml)、EDTA-抗凝剂],并收集贴切的临床人口统计资料和病程(course)3a-1:用于鉴别ARDS患者的标准:a)急性疾病;b)以PEEP=5cm H2O或更高进行机械通气;c)胸片上有双侧浸润;d)如果确定动脉血气(ABG),PaO2/FiO2<300或如果无ABG,并且O2饱和度<97%,则饱和%/FiO2<315;e)无心脏衰竭;f)年龄>18岁。排除标准可以包括[与正在进行的FP-1201或重组人IFNβ1a的III期试验相匹配]: [0746] a)需要BL-3或BL-4生物安全水平的感染;b)先前有肝衰竭、肾衰竭、心脏衰竭的患者;c)其中患者将可能无法脱离呼吸机的潜在疾病(运动神经元疾病、肌肉营养不良等);d)长期家庭氧气或呼吸机疗法的COPD;e)孕妇;f)患者是另一药物疗法方案的一部分。 [0747] 可以评价与DEspR+/CD11b+中性粒细胞%相关的ALI/ARDS患者的患者特征。获得的临床信息可以包括:a)诊断时和采血当天(从诊断起<48小时)的PaO2/FiO2或氧饱和度;b)呼吸机天数;c)基本诊断;d)年龄;e)性别;f)诊断时和采血当天的CBC;g)从ALI/ARDS诊断起28天内的存活。获得的生物标志物信息可以包括:a)中性粒细胞-淋巴细胞比率(来自CBC);b)DEspR+激活的CD11b+中性粒细胞%、DEspR(-)CD14单核细胞%(FACS分析:DEspR、CD11b、CD14);c)ARDS生物标志物IL-6和NETosis生物标志物citH3的血浆水平。 [0748] 可通过确定如下方面来评估DEspR在ALI/ARDS中的临床意义分析: [0749] 有多少ALI/ARDS患者具有升高的DEspR+激活的中性粒细胞?DEspR+激活的中性粒细胞%是否与ARDS患者的基线NETosis标志物citH3水平和/或ARDS严重程度生物标志物IL-6和/或NLR相关?DEspR+/CD11b+中性粒细胞%是否与以低氧血(PaO2/FiO2)水平、严重程度(从采血起的存活天数和呼吸机天数)测量的ARDS临床严重程度相关? [0750] 可进行Spearman等级相关性(n=30)以将DEspR+CD11b+中性粒细胞%与和较差的预后相关的不同生物标志物(IL-6、NET citH3、NLR)进行比较、以及与在采样当天获得的ARDS患者特征(PaO2/FiO2;呼吸机天数和存活天数)进行比较。对30位患者进行研究为Spearman相关系数r=0.5提供了足够的功效(power)0.8,显著性为0.05。相关系数0.5表示效果大,0.3表示中,0.1表示小。 [0751] hu-6g8在降低激活的中性粒细胞存活和NET形成中的离体功效可以使用本文上述的最佳测试剂量和处理持续时间进行测试,同时还表征了溶血的风险以及ARDS生物标志物和严重程度的临床特征的hu-6g8应答者。对10个ARDS患者样品的hu-6g8降低DEspR+/CD11b+中性粒细胞存活的功效的测试可证实在大鼠模型实验中观察到的抗DEspR功效。 [0752] 减少存活的功效:可以进行三重免疫染色FACS分析(CD11b标记激活的中性粒细胞,膜联蛋白V标记凋亡,碘化丙啶标记死细胞)以评价hu-6g8是否降低CD11b+中性粒细胞的存活并诱导凋亡(膜联蛋白V)或程序性坏死(碘化丙啶)。减少NETosis的功效:可以进行三重染色FACS分析以通过经三重染色的NET成分来检测NET+中性粒细胞:结合有瓜氨酸化组蛋白3(citH3)的挤出的DNA(DAPI)和中性粒细胞髓过氧化物酶(MPO)。中性粒细胞可以通过前向散射或FSC(尺寸)和侧向散射或SSC(粒度)进行门控,将它们与单核细胞区分开,从而使得能够对循环单核细胞进行共存分析(concomitant analysis)。可以通过双尾t检验来检验经处理和未处理的样品(n=10/组)之间的CD11b+中性粒细胞活/死细胞计数和NET水平的差异是否显著以进行功效分析,P<0.05。功效计算得出足够的功效0.85,α=0.05,n=10/组,平均值-1为20,平均值-2为40,~共同sd为15。NETosis的差异而不仅是激活的中性粒细胞存活降低的差异表明hu-6g8作为ARDS疗法和防止MOF的功效。 [0753] 鉴于ARDS中的高炎症状态,为了排除hu-6g8离体诱导的增加的中性粒细胞凋亡的潜在溶血副作用,可以通过确定是否由于凋亡细胞增加触发补体激活而无意中发生任何溶血来评价ARDS高炎症状态情况下的潜在毒性。中性粒细胞凋亡触发补体激活而不裂解,并且这显著提高趋向于炎症消退的巨噬细胞对凋亡中性粒细胞的胞葬作用的效率。溶血分析可通过对通常不存在于血浆中的血浆游离血红蛋白(PFHgb)的ELISA检测定量进行,如所描述和验证的,PFHgb>50μg/dl。 [0754] hu-6g8应答者概况分析-除DESpR+/cd11b+中性粒细胞之外。hu-6g8的潜在临床影响可以由在获得自进展为MOF和/或死亡的ARDS患者的中性粒细胞中的hu-6g8功效且不溶血的离体证明来支持。还可以测试是否存在潜在的DEspR应答性的抑制剂。这将通过DEspR应答%(存活或NETosis)和DEspR+cd11b+中性粒细胞%的Spearman等级相关性进行检验。强相关性表明没有应答的混杂因子(confounders)-即,如果DEspR+,则期望与DEspR表达%相称的应答。非相关性表明尽管有DEspR+cd11b+中性粒细胞,血液中存在抑制hu-6g8功效的潜在混杂因子。 [0755] 为了加强ALI/ARDS/MOF中的抗DEspR疗法的原理,可以测试hu-6g8降低BAL液中激活的中性粒细胞存活的功效,例如,在用于测试雾化递送hu-6g8的功效的制品中,这可以提高效力和/或扩展潜在应用。这些研究还可以阐明最佳给药途径或双重给药途径(静脉内和雾化)的基础。此外,使用患者作为他/她自己的对照在ALI/ARDS的不同阶段对hu-6g8进行测试可以增强ARDS中hu-6g8疗法的原理,并为治疗窗口提供见解。 [0756] 可以确定hu-6g8是否内化入中性粒细胞(如其在癌细胞中所为)并诱导凋亡,以及确定结合有hu-6g8的循环中性粒细胞不会引起内皮损伤或肺泡上皮细胞损伤。此外,为了证实这一假设,可以通过比较经处理的和未处理的中性粒细胞来测试hu-6g8处理对激活的中性粒细胞的促存活蛋白(例如Mcl1、BIRC3)水平和促凋亡蛋白(例如Apaf1)水平的影响。抗DEspR在胰腺癌干细胞中降低Mcl1、BIRC3并提高Apaf174。 [0757] 参考文献 [0758] 1 Bellani G,et al.2016.Epidemiology,patterns of care,and mortality for patients with acute respiratory distress syndrome in intensive care units in 50countries.JAMA 315:788-800. [0759] 2 Walkey AJ,et al.,2012.Acute respiratory distress syndrome:epidemiology and management approaches. [0760] 3 Johnson ER,Matthay MA.2010.Acute lung injury:epidemiology,pathogenesis,and treatment.J Aerosol Med Pulm Drug Delivery 23:243-252.[0761] 4 Ware LB.2006.Pathophysiology of acute lung injury and the acute respiratory distress syndrome.Semin Respir Crit Care Med 27:337-349. [0762] 5 Ware LB,Matthay MA.2000.The acute respiratory distress syndrome.N Engl J Med 342:1334-1349. [0763] 6 Walkey AJ,et al.,2012.Acute respiratory distress syndrome:epidemiology and management approaches. [0764] 7 Johnson ER,Matthay MA.2010.J Aerosol Med Pulm Drug Delivery 23:243-252. [0765] 8 Gattinoni L,et al.2010.Ventilator-induced lung injury:the anatomical and physiological framework.Crit Care Med 38:S539-548. [0766] 9 NHLBI ARDS clinical trials network,et al.2014.Rosuvastatin for sepsis-ssociated acute respiratory distress syndrome.N Engl J Med 370:2191-2200. [0767] 10 McAuley DE,et al.2014.Simvastatin in the acute respiratory distress syndrome.N Engl J Med371:1695-1703. [0768] 11 Gates S,et al.2013.Beta-agonist lung injury trial-2(PALtI-2):a multicenter,randomized,double-blind,placebo-controlled trial and economic evaluation of intravenous infusion of salbutamol versus placebo in patients with acute respiratory distress syndrome.Health Technol Assess 17:v-vi,1-87.[0769] 12 Taylor RW,et al.2004.Low-dose inhaled nitric oxide inpatients with acute lung injury:a randomized controlled trial.JAMA 291:1603-1609. [0770] 13 Steinberg KP,ct al 2006.Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome.N Engl J Med 354:1671-1684.[0771] 14 Tongyoo S,et al 2016.Hydrocortisone treatment in early sepsis-associated acute respiratory distress syndrome:results of a randomized controlled trial.Crit Care 20:329. [0772] 15 Grommes J,Soehnlein O.2011.Contribution of neutrophils to acute lung injury.Mol Med 17:293-307. [0773] 16 Azoula E,Darmon M.2010.Acute respiratory distress syndrome during neutropenia recovery.Crit Care 14:114. [0774] 17 Karlin L et a.2005.Respiratory status deterioration during G-CSF-induced neutropenia recovery.Bone Marrow Transplant 36:245-250. [0775] 18 Gompertz,S.,and R.A.Stockley.2000.Inflammation-role of the neutrophil and the eosinophil.Semin.Respir.Infect.15:14-23. [0776] 19 Grommes J,Soehnlein O.2011.Contribution of neutrophils to acute lung injury.Mol Med 17:293-307. [0777] 20 Cheng OZ,Paaniyar N.2013.NET balancing:a problem in inflammatory lung diseases.Front Immunol 4:1. [0778] 21 Mitsios A et al.2017.NETopathies?Unrveling the dark side of old ideas through neutrophils.Front Immunol 7:Article 678. [0779] 22 Abraham E,et al.Neutrophils as early immunologic effectors in hemorrhage-or endotoxemia-induced acute lung injury.Am J Physiol Lung Cell Mol Physiol.2000 Dec:279(6):L1137-45. [0780] 23 Del Sorbo L,Slutsky AS.2011.ARDS and multi-organ failure.Curt Opin Crit Care 17:1-6. [0781] 24 Brown KA,et al.2006.Neutrophils in development of multiple organ failure in sepsis.Lancet368:157-169. [0782] 25 Opal SM.2011.Immunologic alterations and the pathogenesis of organ failure in the ICU.Semin Resp Crit Care Med 32:569-580. [0783] 26 Xu J et al.2009.Extracellular histones are major mediators of death in sepsis.Nat Med 15:1318-1321. [0784] 27 Yang H,et al.2016.New insights into neutrophil extracellular traps:mechanisms of formation and role in inflammation.Front Immunol 7:302.[0785] 28 Zeiher BG,et al.2004.Neutrophil elastase inhibition in acute lung injury:results of the STRIVE study.Crit Care Med 32:1696-1702. [0786] 29 Iwata K,et al.2010.Effect of neutrophil elastase inhibitor(sivelestat sodium)in the treatment of acute lung injury(ALI)and acute respiratory distress syndrome(ARDS):a systematic review and meta- analysis.Intem Med.2010;49(22):2423-32. [0787] 30 El Kebir,Filep JG.2013.Targeting neutrophil apoptosis for enhancing the resolution of inflammation.Cells 3:330-348. [0788] 31 Nasaraju T,et al.2010.MCP-1 antibody treatment enhances damage and impedes repair of the alveolar epithelium in influenza.Am J Respir Mol Biol 42:732-743. [0789] 32 Nasaraju T,et al.2011.Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury in influenza pneumonitis.Am J Pathol 179:199-210. [0790] 33 Ruiz-Opazo N,et al.1998.Molecular characterization of a dual Endothelin-1/Angiotensin II Receptor.Molecular Medicine 4:96-108. [0791] 34 Herrera VL,et al.2005.Embryonic legality in Dear gene deficient mice:new player in angiogenesis.Physiol Genomics 23:257-268.15 [0792] 35 Herrera VL,et al.2014.DEspR roles in tumor vasculo-angiogenesis,invasiveness,CSC-survival and anoikis resistance:a‘common receptor coordinator’paradigm.PLoS ONE 9(1):e85821. [0793] 36 Herrera VL,et al.2016.Confirmation of translatability functionality certifies the dual endothelinl/VEGFsp receptor(DEspR) proteiu.BMC Molecular Biology 201617:15.DOI:10.1186/s12867-016-0066-8.[0794] 37 Johnson ER,Matthay MA.2010.Acute lung injury:epidemiology,pathogenesis,and treatment.J Aerosol Med Pulm Drug Delivery 23:243-252.[0795] 38 Rubenfeld GD et al.2005.Incidence and outcomes of acute lung injury.N Engl J Med 20:1685-1690. [0796] 39 Bellani G,et al.2016.Epidemiology,patterns of care,and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries.JAMA 315:788-800. [0797] 40 Hoenderdos K,Condliffe A.2013.The neutrophil in chronic obstructive pulmonary disease.Am J Respir Cell Mol Biol 48:531-539. [0798] 41 Mitsios A,et al.2017.NETopathies?Unrveling the dark side of old ideas through neutrophils.Front Immunol 7:Article 678. [0799] 41 Abraham E,et al.Neutrophils as early immunologic effectors in hemorrhage-or endotoxemia-induced acute lung injury.Am J Physiol Lung Cell Mol Physiol.2000Dec;279(6):L1137-45. [0800] 42 Yang H,et al.2016.New insights into neutrophil extracellular traps:mechanisms of formation and role in inflammation.Front Immunol 7:302.[0801] 43 Yamashita CM,Lewis JF.2012.Emerging therapies for treatment of acute lung injury and acute respiratory distress syndrome.Expert Opin Emerging Drugs 2012:17(1). [0802] 44 Bellingan G,et al.2014.The effect of intravenous interferon beta la(FP-1201)on lung CD73expression and on acute respiratory distress syndrome mortality:an open-label study.The Lancet2:98-107. [0803] 45 Unroe M,et al.2010.One year trajectories of care and resource utilization for recipients of prolonged mechanical ventilation:a cohort study.Ann Intern Med 153:167-175. [0804] 46 Gattinoni L,et al.2010.Ventilator-induced lung injury:the anatomical and physiologica lframework.Crit Care Med 38:S539-548. [0805] 47 Gattinoni L,et al.2010.Ibid. [0806] 48 Michaud G,Cardinal P.2003.Mechanisms of ventilator-induced lung injury:the clinician’s perspective.Critical Care 7:209-210. [0807] 49 Yamashita CM,Lewis JF.2012. [0808] 50 Gattinoni L,et al.2010.Ventilator-induced lung injury:the anatomical and physiological framework.Crit Care Med 38:S539-548. [0809] 51 Unroe M,et al.2010.One year trajectories of care and resource utilization for recipients of prolonged mechanical ventilation:a cohort study.Ann Intern Med 153:167-175. [0810] 52 Johnson ER,Matthay MA.2010.Acute lung injury:epidemiology,pathogenesis,and treatment.J Aerosol Med Pulm Drug Delivery 23:243-252.[0811] 53 ClinicalTrials.gov number,NCT00979121. [0812] 54 ClinicalTrials.gov number NCT00979121 and NCT00719446. [0813] 55 Coppola S,et al.,2015.β-blockers in critically ill patients:from physiology to clinical evidence.Crit Care 19(1):119. [0814] 56 Saffarzadeh,M.,Juenemann,C.,Queisser,M.A.,Lochnit,G.,Barreto,G.,Galuska,S.P.,et al.(2012).Neutrophil extracellular traps directly induce epithelial and endothelial cell death:a predominant role of histones.PLoS ONE 7:e32366. [0815] 57 Michael J.Hickey&Paul Kubes.2009.Nature Reviews Immunology 9,364-375. [0816] 58 Herrera et al.2014.DEspR roles in tumor vasculo-angiogenesis,invasiveness,CSC-survival and anoikis resistance:a‘common receptor coordinator’paradigm.PLoS ONE 9(1):e85821. [0817] 59 Thomas LW,et al.2010.Mcl-1:the molecular regulation of protein function.FEBS Letters584:2981-2989. [0818] 60 Herrera VL,et al.2010. [0819] 61 Edwards SW,et al.2004.Regulation of neutrophil apoptosis by Mcl-1.Biochem Soc Trans32:489-492. [0820] 62 El Kebir D,Filep JG.2013. [0821] 63 Boyle AJ,Sweeney RM,McAuley DF.2013.Pharmacological treatments in ARDS:a state of the art update.BMC Medicine 11:166. [0822] 64 Erwig LP,Henson PM.2008.Clearance of apoptotic cells by phagocytes.Cell Death and Differentiation 15:243-250. [0823] 65 Mevorach D,et al.1998.Complement-dependent clearance of apoptotic cells by human macropbages.J Exp Med 188:2313-2320. [0824] 66 Nasaraju T,et al.2011.Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury in influenza pneumonitis.Am J Pathol 179:199-210. [0825] 67 Nasaraju T,et al.2011.Ibid. [0826] 68 Cutolo M,et al.2008.Use of glucocorticoids and risk of infections.Autoimmun Rev 8:153-155. [0827] 69 Slminski AT,Smijewski MA.2017.Glucocorticoids inhibit wound healing:novel mechanism of action.J Invest Dermatol 137:1012-1014, [0828] 70 Douda,D.N.,Jackson.R.,Grasemann,H,and Palaniyar.N(2011).Innate immune collectin surfactant protein D simultaneously binds both neutrophil extracellular traps and carbohydrate ligands and promotes bacterial trapping.J.Immunol.187,1856-1865. [0829] 71 Gavillet M,et 1.2015.Flow cytometric assay for direct quantification of neutrophil extracellular traps(NETS)in blood samples.Am J Hematol 90:1155-1158. [0830] 72 Mevorach D,et al.1998.Complement-dependent clearance of apoptotic cells by human macrophages.J Exp Med 188:2313-2320. [0831] 73 Gaggar A,Patel RP.2016.There is blood in the water:hemolysis,hemoglobin,and heme in acutelung injury.Am J Phvsio Lung Cell Mol Physiol 311:L714-718. [0832] 74 Herrera VL,et al.2014.DEspR roles in tumor vasculo-angiogenesis,invasiveness,CSC-survival and anoikis resistance:a‘common receptor coordinator’paradigm.PLoS ONE 9(1):e85821. [0833] 75 Donahoe M.2011.Acute respiratory distress syndrome:a clinical review.Pulm Circ 1:192-211. [0834] 76 Donahoe M.2011.Ibid. [0835] 77 Donahoe M.2011.ibid [0836] 实施例5 [0837] 正如激活的PMN一样,NET的抗菌杀伤特性会适得其反以及导致直接的组织损伤,并且由于NET附着在损伤部位上而在所述损伤部位停留。累积研究表明,NET导致许多主要疾病中的继发性组织损伤一急性呼吸窘迫综合征(ARDS)、急性冠状动脉综合征(ACS)、ARDS中的多器官衰竭(MOF)、糖尿病、COPD危象、镰状细胞危象、急性肾损伤、创伤性脑损伤和败血症一尽管进行了大量研究,但所有这些均为仍未满足的需求,由此提示靶向抑制NETosing PMN和NET的重要性。 [0838] 本文描述了通过人源化抗DEspR IgG4S228P抗体(抗DEspR humab)对激活的PMN存活的成功中和,由此先验地在ARDS患者血液样品中防止进展至NETosis;以及对人NETosing中性粒细胞的成功抗DEspR mAb靶向,这然后促进凋亡并由此促进NETosing中性粒细胞的清除,这与诱导actPMN凋亡来进行巨噬细胞清除或胞葬作用并行。 [0839] 本文描述了具有预先验证的成分的靶向抗体-酶缀合物(AEC)的复合设计,以达到克服捕获细菌、血小板以及附着至内皮造成损害的NET的生物物理“网状支架(mesh-scaffold)”所需的靶特异性功效。由于没有FDA批准的抗NET疗法,因此抗DEspR-DNAse-1 AEC提供了如下组成的新生物缀合物:1)NET靶向部分和抑制剂:高度特异性的人源化铰链稳定化S228P IgG4抗DEspR抗体NET和NETosing中性粒细胞;以及2)NET结构中和剂和预处理剂:例如DNase1。由于单独的DNAse-I不能在体内和体外完全降解NET(Farrera C,Fadeel B.2013.Macrophage clearance of neutrophil extracellular traps is a silent process.J Immunol191:2647-2656),将抗DEspR抗体与DNAse-I缀合使DNAse-I靶向NET,从而对NET进行DNAse-1预处理,并因此在治疗上增强了单核细胞衍生的巨噬细胞对NET的清除。这将提供对NET的靶向抑制和生物物理中和及清除。正如中性粒细胞的裂解可能有毒性一样,NET的降解并不足够,而需要针对NET的靶向抑制和预处理以达到清除和消退。 [0840] 本文描述了具有三种组分的抗DEspR-humab-DNase1治疗原型(therapeutic prototype)的制备:抗体靶向部分、连接件部分和有效载荷部分(payload moiety)。通过重组DNA技术产生在Fc区C端带有接头的抗DEspR-humab。合适的接头(例如可裂解接头)是本领域已知的,例如可被人中性粒细胞弹性蛋白酶(HNE)裂解的肽接头。尽管这三种组分均为通过既定方法学建立的组分,但组合AEC原型是独特的。值得注意的是,中性粒细胞弹性蛋白酶是NET上的活性组分,因此通过在NET上AEC的抗DEspR靶向结合释放DNAse1。释放DNAse1然后将消化NET中的DNA,这已经证明是不充分的,但是可以获得“经加工”的NET,这然后促进巨噬细胞清除(Farrera C,Fadeel B.2013.Macrophage clearance of neutrophil extracellular traps is a silent process.J Immunol 191:2647-2656)。 [0841] 需要抗DEspR靶向的AEC。无论何种疾病,“NET是各种各样的病原学方面迥然不同的疾病中的共同罪魁祸首”这一事实证明了靶向NET的重要性和高价值优先性。由于尚无FDA批准的可以在ARDS、出血性卒中等中有效中和NET驱动的组织损伤并降低死亡率的药物,因此需要AEC治疗剂。研究表明,脱氧核糖核酸酶I(DNase1)可以拆除NET,但是“仅DNase1”疗法不足以解决患者5,6和动物模型7,8中NET介导的病理或组织损伤,表明需要AEC。尽管PAD4抑制剂或缺乏防止NETosis7,但它们不能阻断已经处于进行中的活跃的NET驱动的组织损伤。 [0842] 本文描述了抗DEspR-mab靶向的AEC的开发,其可以促进NET的巨噬细胞清除—从而打破了ARDS中NET诱导的内皮损伤-NETosis的恶性循环,并为ACS的治疗应用打开了大门,以及在败血症、创伤和ARDS的多器官衰竭中防止了NET介导的血栓形成。不同器官系统中多种疾病的累积数据揭示了疾病进展中以及如下疾病中威胁生命的终末期发病机制的前馈机制中的中性粒细胞胞外诱捕网(NET):ARDS、败血症、癌症、创伤中的多器官衰竭(MOF),急性呼吸窘迫综合征(ARDS),急性冠状动脉综合征(ACS)1-3。尽管进行了大量临床前研究8,10,11和临床试验5,12,13,尚无FDA批准的用于NET驱动的病理学或组织损伤的治愈意图的治疗剂(curative-intent therapeutic)。 [0843] 本文描述了抗DEspR mAb靶向的AEC的优势。双重内皮素1/信号肽受体9DEspR是人激活的中性粒细胞和NET上的经验证的靶标。Hu6g8结合人激活的中性粒细胞(图18A)和NET(图18B),如通过对人肾(K)以及激活的中性粒细胞样品act-Ns中DEspR蛋白的Western印迹分析所证实的(图18C)。人源化抗DEspR-mab(hu6g8 mab)是理想的靶向部分。Hu6g8是多物种人/NH灵长类/大鼠反应性人源化去免疫抗DEspR-mab,具有铰链稳定化IgG4 S228P/kappa Fc区(图17A),以避免ADCC(抗体依赖性细胞介导的细胞毒性)、CDC(补体依赖性细胞毒性)并消除天然IgG4同型典型的Fab臂交换造成的靶向损失。与其鼠前体mab相比,选自多种候选物中的hu6g8在完整细胞上展现对DEspR改善的结合亲和力(图17B),以及离体处理6小时后在靶向激活的中性粒细胞中的功能改善,伴有存活率下降(图17C)。通过重组DNA技术,抗体设计合并了:a)避免T细胞表位以实现低免疫原性;b)优化重链和轻链相互作用以实现可变结构域的稳定性;以及c)排除不稳定的翻译后修饰位点[例如脱酰胺、氧化]。通过抗DEspR mAb靶向DEspR+NET而回避DEspR(-)静止中性粒细胞也是新颖的。DNAse1(30.1kDa)的使用是有利的,因为它是血浆中的循环蛋白因而不会引起异物应答、被FDA批 17 准用于囊性纤维化 、并且已证明可在多位点缀合荧光团而不丧失酶活性。使用可被人中性粒细胞弹性蛋白酶裂解的接头是有利的,因为该连接件-肽可以通过重组技术添加以及HNE在NET上富集并且实际上是NET有害性质的原因。HNE对于局部治疗剂递送而言是期望的[Owen CA,Campbell EJ.J Leukocyte Biol 1999,65(2)137-150],HNE对不带电荷的小氨基酸具有特异性,特别是丙氨酸(A)和缬氨酸(V)[Meers P.Adv Drug Delivery Rev.2001.53(3)265-272]。已显示合成肽Ala-Ala-Pro-Val是HNE特异的[Wiesner O,Litwiller RD,Hummel AM,Viss MA,McDonald CJ,Jenne DE,Fass DN,Specks U.FEBS Lett 2005,579(24)5305-5312],并成功地进行了药物递送[Pak CC,Erukulla RK,Ah1 PL,JanoffAS eers P.Biochim Biophys Acta 1999,1419(2)111-126]。AEC中全部三者的优势新颖且强健,因为在NET上靶向递送和释放DNAse1可以达到如体外所示的体内功效:在DNAse1消化NET DNA后诱导巨噬细胞摄取和清除NET。 [0844] 总而言之,靶向血管内NET位点。选择具有铰链稳定化IgG4/κFc区的人源化抗DEspR-mab以避免体内Fab臂交换和随后的靶向丧失。此外,这避免了会恶化内皮损伤的IgG1 mAb的免疫效应物功能(ADCC、CDC)。重要的是,该抗体结合至激活的中性粒细胞和NET(图18A-图18C)并抑制激活的中性粒细胞的延长的存活。因此,除了靶向部分功能之外,还实现了对激活的中性粒细胞的抑制以预先制止NETosis。DNAse将消化核小体之间的“裸露”DNA(DNase1高度敏感位点)以及在DARNS(核小体稳定性的DNase1注释区)位点处的核小体中包裹组蛋白的DNA16。 [0845] 参考文献 [0846] 1.Papayannopoulos,V.Neutrophil extracellular traps in immunity and disease.Nat.Rev.Immunol.(2017).doi:10.1038/nri.2017.105 [0847] 2.Mitsios,A.,Arampatzioglou,A.,Arelaki,S.,Mitroulis,I.&Ritis,K.NETopathies?Unraveling the Dark Side of Old Diseases through Neutrophils.Front.Immunol.7,678(2016). [0848] 3.Jorch,S.K.&Kubes,P.An emerging role for neutrophil extracellular traps in noninfectious disease.Nat.Med.23,279-287(2017). [0849] 4.Brinkmann,V.et al.Neutrophil Extracellular Traps Kill Bacteria.Science(80-.).303,1532-1535(2004). [0850] 5.Davis,J.C.et al.Recombinant human Dnase I(rhDNase)in patients with lupus nephritis.Lupus 8,68-76(1999). [0851] 6.Shah,P.L.et al.In vivo effects of recombinant human DNase I on sputum in patients with cystic fibrosis.Thorax 51.119-25(1996). [0852] 7.Kolaczkowska,E.et al.Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature.Nat.Commun.6,6673(2015). [0853] 8.Verthelyi,D.,Dybdal,N.,Elias,K.A.&Klinman,D.M.DNAse treatment does not improve the survival of lupus prone(NZB6NZW)F1 mice.Lupus 7,223-230(1998). [0854] 9.Herrera,V.L.M.et al.Confirmation of translatability and functionality certifies the dual endothelinl/VEGFsp receptor(DEspR) protein.BMC Mol.Biol.17,15(2016). [0855] 10.Macanovic,M.et al.The treatment of systemic lupus erythematosus(SLE)in NZB/WF1hybrid mice;studies with recombinant murine DNase and with dexamethasone.Clin.Exp.Immunol.106,243-52(1996). [0856] 11.Knight,J.S.et al.Peptidylarginine deiminase inhibition disrupts NET formation and protects against kidney,skin and vascular disease in lupus-prone MRL/lpr mice.Ann.Rheum.Dis.74,2199-2206(2015). [0857] 12.van Bijnen,S.,Wouters,D.,van Mierlo,G.J.&Muus,P.Neutrophil Extracellular Trap Formation In PNH Patients With and Without a History Of Thrombosis-Effects Of Eculizumab.Blood 122,(2013). [0858] 13.Patel,S.et al.Nitric oxide donors release extracellular traps from human neutrophils by augmenting free radical generation.Nitric Oxide 22,226-234(2010). [0859] 14.Harbury,P.B.,Zhang,T.,Kim,P.S.&Alber,T.A switch between two-,three-,and four-stranded coiled coils in GCN4 leucine zipper mutants.Science 262,1401-7(1993). [0860] 15.Hu,J.C.,O’Shea.E.K.,Kim.P.S.&Sauer,R.T.Sequence requirements for coiled-coils:analysis with lambda repressor-GCN4 leucine zipper fusions.Science 250,1400-3(1990). [0861] 16.Winter,D.R.,Song,L.,Mukherjee,S.,Furey,T.S.&Crawford,G.E.DNase-seq predicts regions of rotational nucleosome stability across diverse human cell types.Genome Res.23,1118-1129(2013). [0862] 17.Shah,P.L.,Scott,S.F.,Geddes,D.M.&Hodson,M.E.Two years experience with recombinant Human DNase I in the treatment of pulmonary disease in cystic fibrosis.Respir.Med.89,499-502(1995). [0863] 18.Price,P.A.,Stein,W.H.&Moore,S.Effect of divalent cations on the reduction and re-formation of the disulfide bonds of deoxyribonuclease.J.Biol.Chem.244,929-32(1969). [0864] 19.Ragaller,M.&Richter,T.Acute lung injury and acute respiratory distress syndrome.J.Emerg.Trauma.Shock 3,43-51(2010). [0865] 20 .Liang,J .&Liu,B .ROS-responsive drug delivery systems.Bioeng.Transl.Med.1,239-251(2016). [0866] 21.Liao,T.H.,Ting,R.S.&Yeung,J.E.Reactivity of tyrosine in bovine pancreatic deoxyribonuclease with p-nitrobenzenesulfonyl fluoride.J.Biol.Chem.257,5637-44(1982). [0867] 22.Owen,C.A.,Campbell,M.A.,Sannes,P.L.,Boukedes,S.S.&Campbell,E.J.Cell surface-bound elastase and cathepsin G on human neutrophils:a novel,non-oxidative mechanism by which neutrophils focus and preserve catalytic activity of serine proteinases.J.Cell Biol.131,775-89(1995). [0868] 实施例6 [0869] DEspR+CD11b+“劣种”中性粒细胞或NETosis易发型中性粒细胞 [0870] 对具有特征性多叶核的人应激激活的中性粒细胞的免疫细胞染色检测到以不同程度的DNA边缘化至随后的挤出为标志的中性粒细胞胞外诱捕网(NET)形成(NETosis)不同阶段的DEspR+表达(图21A-图21B)。 [0871] DEspR在激活的中性粒细胞上和早期活力NETosis(即完整细胞膜)中的存在支持抗DEspR阻断抗体作为靶向疗法,以抑制DEspR+激活的中性粒细胞和经历活力NETosis的激活的中性粒细胞。 [0872] 在一些但并非全部CD11b+中性粒细胞中对DEspR+/CD11b+中性粒细胞和早期活力NETosis中DEspR+/CD11b+中性粒细胞的检测鉴别了作为NETosis易发型或早期NETosing中性粒细胞的CD11b+激活的中性粒细胞的亚群。由于NET也牵涉中性粒细胞驱动的继发性组织损伤,因此中性粒细胞中DEspR+表达的增加为NET和NETosing中性粒细胞提供了生物标志物,并为通过抗DEspR mAb阻断激活的中性粒细胞和NETosis的靶向疗法提供了可接近的膜受体靶标。通过DEspR降低Mcl1(中性粒细胞存活所需的一种紧密调节的存活蛋白)的下游作用来抑制激活的中性粒细胞存活导致中性粒细胞凋亡,这是有效关闭中性粒细胞功能而不释放有害蛋白酶和活性氧(ROS)的内源性机制。凋亡的诱导还通过单核细胞/巨噬细胞胞葬作用促进清除,从而促进高炎症状态的主动消退。 [0873] 值得注意的是,并非所有激活的中性粒细胞均为DEspR+(图24)。这阐明了抗DEspR疗法的安全性机制—即,并非所有CD11b+激活的中性粒细胞都被抑制,从而使正常调节的中性粒细胞功能得以进行。 [0874] 通过人中性粒细胞的Western印迹分析证实了DEspR在人激活的应激激活的中性粒细胞和细菌脂多糖(LPS)激活的中性粒细胞上的存在。人肾组织用作阳性对照(图25)。与糖基化DEspR(~17kDa)相比,中性粒细胞样品N1和N2中较小的DEspR大小与非糖基化DEspR(~9.5kDa)一致。中性粒细胞中的非糖基化DEspR反映了对磷酸化位点的“开放访问(open-access)”,因为细胞内O-糖基化是调节(如果不妨碍)磷酸化位点的机制。检测到糖基化和非糖基化DEspR蛋白表明了一种DEspR磷酸化的调节机制,因为O-糖基化与磷酸化调节相关,而N-糖基化允许与半乳糖凝集素1和半乳糖凝集素3发生细胞内相互作用,这两者均可作为观察到的DEspR核转运的穿梭(shuttling)机制。 [0875] 计算机分析表明,DEspR具有多个丝氨酸和苏氨酸磷酸化位点(图30),映射到DEspR S72和T76、77、84,其预测得分比截止值高3.7-4.3倍。中性粒细胞中的DEspR磷酸化、内化和DEspR核定位将促进DEspR在缺氧或细胞毒性微环境中促进和维持中性粒细胞存活,从而证明借助抗DEspR mAb结合来抑制DEspR如何降低中性粒细胞存活。这些丝氨酸和苏氨酸磷酸化位点与激活的信号转导磷蛋白(phosphoproteins)的检测一致,所述激活的信号转导磷蛋白来自永久性Cos1 DEspR转染子中经转染的人DEspR的配体特异性激活(Herrera等,2014)。 [0876] 计算机分析检测到多个假定的丝氨酸(S)和苏氨酸(T)假定O-糖基化基序或“O-序列子”(图27)。这些与由Western印迹分析检测到被PNGase-F不完全消化的糖基化DEspR下拉蛋白一致,因此证明非N-糖基化和O-糖基化[Herrera等,2016]。当DEspR在配体或抗体结合上内化后,主要在跨膜结构域中的DEspR O-糖基化位点暴露于细胞内O-糖基化。 [0877] 对来自患有急性呼吸窘迫综合征(ARDS)的患者的患者血液样品的FACS分析检测到作为CD11b+激活的中性粒细胞的亚群的DEspR+/CD11b+激活的中性粒细胞,该亚群在ARDS患者幸存者中低(图27),但在ARDS患者非幸存者中升高(图28和图29)。与在ARDS幸存者中检测到低水平的DEspR+/CD11b+激活的中性粒细胞相反,在ARDS患者非幸存者中检测到高水平的DEspR+/CD11b+激活的中性粒细胞(图29)。观察到这种差异水平表明激活的中性粒细胞的DEspR+CD11b+亚群可能涉及ARDS向多器官衰竭(MOF)的进展、死亡原因以及由ARDS而来的长期后遗症。 [0878] 此外,还在非存活的ARDS患者中检测到DEspR+/CD11b+单核细胞(图27),从而鉴别了与DEspR+/CD11b+中性粒细胞串扰的单核细胞亚群,以传播中性粒细胞驱动的{组织损伤-中性粒细胞应答-组织损伤}的恶性循环。中性粒细胞和单核细胞二者均牵涉ARDS的发病。 [0879] 激活的中性粒细胞的新亚群DEspR+/CD11b+与ARDS死亡率相关。与年龄、性别、采样时间匹配的ARDS患者幸存者相比,如A02-ARDS患者非幸存者中所见,除了DEspR+/CD11b+中性粒细胞数量增加外,这些DEspR+中性粒细胞还表现出每个中性粒细胞增加的DEspR受体表达(强度)(图30)。这确证了中性粒细胞的DEspR+/CD11b+亚群与ARDS中较差的结果(outcome)相关,表明DEspR+/CD11b+“劣种”中性粒细胞是增加了死亡率的ARDS进展和中性粒细胞介导的致病机制的基础。因此,抑制该亚群是减弱ARDS、脑创伤和卒中继发性水肿扩大以及停止中性粒细胞介导的免疫逃逸以增强癌症中的检查点抑制剂的关键。使用抗DEspR mAb处理检测到对该亚群的抑制。 [0880] 与其它已知的ARDS临床参数(PaO2/FiO2、血清肌酐、中性粒细胞淋巴细胞比率)相比,DEspR+/CD11b+中性粒细胞水平与非存活结果更好地相关(图31)。这表明DEspR+/CD11b+表达鉴别出一种“劣种”激活的中性粒细胞的异常调节亚群,相比<20%的低水平以及CD11b+但DEspR(-)的中性粒细胞,当该亚群升高为>50%时,导致中性粒细胞驱动的损伤的恶性循环。DEspR免疫表型分型为在ARDS以及其它病理(其中激活的中性粒细胞也过多且异常调节,例如卒中继发性脑损伤、缺氧性和创伤性脑损伤、创伤或感染引起的多器官衰竭等)中的肺中或系统性的中性粒细胞驱动的继发性损伤的即将发生的进展提供了生物标志物。 [0881] 与当前的临床参数(PaO2/FiO2比率、血清肌酐以及中性粒细胞淋巴细胞比率)相比而言DEspR+/CD11b+与ARDS患者中恶化的结果更好的相关性还在所述临床参数的趋势分析中观察到(图32)。抗DEspR人源化IgG4S228P抗体处理在升高时降低了DEspR+/CD11b+中性粒细胞的存活(如在DEspR+/CD11b+中性粒细胞平均为59%的患者A02中所见);与之相比,当DEspR+表达在cd11b+中性粒细胞中最低程度升高时则无作用(如在患者A04 1%、A05 3%中所见)(图33)。DEspR+/CD11+中性粒细胞水平约为16%时观察到一些功效,但变化不定(如在A06中所见)。这些观察结果表明抗DEspR mAb疗法可以阻止作为组织损伤发病机理基础的DEspR+/CD11b+激活的中性粒细胞。这些数据总结于表4中。 [0882] [0883] ARDS患者中DEspR+/CD11b+中性粒细胞数目增加和强度增加与非存活性的关联表明DEspR+/CD11b+中性粒细胞是异常调节的“劣种”中性粒细胞,导致中性粒细胞细菌杀伤功能过度。当正常激活-消退机制解偶联(uncoupled)时,异常调节的过度就会发生,从而驱动组织损伤而不是发挥正常的中性粒细胞应答作用,该正常的中性粒细胞应答作用保护宿主抵抗细菌或促进伤口愈合,在激活后固有地触发主动消退。 [0884] 为了进一步测试抗DEspR处理对DEspR+/CD11b+激活的中性粒细胞的影响,在通过将Panc1-癌干细胞(CSC)注射入腹膜间隙建立的胰腺癌腹膜转移的裸大鼠异种移植肿瘤模型(Panc1-CDX PPM大鼠模型)中追踪中性粒细胞-淋巴细胞比率。中性粒细胞还促进包括胰腺癌在内的癌症的侵袭性,而NLR升高与结果恶化和对治疗应答不良有关。该比率在未处理的晚期Panc1-CDX PPM中升高(图34)。一致地,从第21天开始的抗DEspR处理使得NLR不升高,这也引起肿瘤+大鼠的总存活提高。 [0885] 为了证实DEspR在应激条件下降低存活和在中性粒细胞中增加凋亡的作用,测试了DEspR在肿瘤细胞中调节存活和凋亡的作用。已知在肿瘤细胞中诱导凋亡增强化学疗法的功效。因此,测试了抗DEspR mAb处理与吉西他滨(胰腺癌的标准护理)的组合(图35A-图35B)。利用组合疗法对胰腺肿瘤细胞(2个细胞系,Panc1和MiaPaCa2)进行体外处理,吉西他滨标准护理和hu-6g8抗DEspR mAb(ABTM-468)产生了协同作用,即,更高的化学疗法功效。 [0886] 抗DEspR/吉西他滨协同作用的观察结果支持抗DEspR mAb疗法成为用于与检查点抑制剂进行组合的引人注目的伴侣的潜力。值得注意的是,吉西他滨的其它组合疗法和靶向疗法在胰腺癌患者中尚没有引人注目的临床益处(例如胰腺癌中的GEM+厄洛替尼或GEM+Avastin或GEM+检查点抑制剂)。在体内进一步测试独特的组合协同作用的范例。如图36所示,用低剂量(1mg/kg i.v.)抗DEspR人源化IgG4S228P和吉西他滨进行的大鼠体内处理显示出比单独的吉西他滨更高的功效。[抗DEspR+吉西他滨]组合疗法使胰腺腹膜转移性肿瘤消退,因为在疗法开始时记载有肿瘤负荷后的以组合疗法进行处理(ComboTx)的一些肿瘤+大鼠没有肿瘤。而且,ComboTx大鼠中没有腹水。肠功能障碍引起的肠扩张在盐水模拟处理(Tx)的对照中也很明显(图36)。 [0887] 对肿瘤负荷进行的定量显示,与模拟处理的对照(盐水)和吉西他滨(GEM)标准护理处理的大鼠相比,comboTx大鼠在大网膜和小网膜围裙(apron)中也显示出较少的肿瘤负荷(表5)。重要的是,向肝和腹膜后间隙的转移以及腹水均被ComboTx防止/抑制。 [0888] 表5 [0889] [0890] 肿瘤消退与在具有免疫能力的大鼠宿主中的大鼠自发性乳腺肿瘤模型中的观察结果一致。免疫功能受损和具有免疫能力的异种移植肿瘤宿主二者中的肿瘤消退显示中性粒细胞在肿瘤进展、转移侵袭性、疗法耐受中的作用—所有这些均促成宿主总存活降低。这些观察结果共同支持hu-6g8作为用于与化学疗法或检查点抑制剂一起的新组合疗法的新治疗剂,其中,中性粒细胞分别牵涉疗法耐受—固有的和获得性的。 [0891] 在胰腺癌间质(图37A-图37D)中以及DEspR+肿瘤细胞、肿瘤血管(图19A-图19F)中检测到NET易发型中性粒细胞中的DEspR+表达,这在体外通过两种胰腺细胞系的体外组织培养研究(图20A-图20F)和FACS分析(图19G-图19J)得到确证。这种生态位共定位(niche-colocalization)为中性粒细胞在促进肿瘤侵袭、转移、疗法耐受和免疫逃逸中的作用提供了串扰机制。这得到体内研究的支持,该体内研究显示了DEspR抑制的功效(图21)并记录了大量推注(bolus infusion)后血流中抗DEspR抗体的存在(图22)。 [0892] 在胰腺腹膜转移或癌扩散中的转移性PDAC肿瘤中也检测到DEspR+激活的中性粒细胞和/或激活的活力NETosis易发型中性粒细胞(图38A-图38B)。转移性胰腺癌患者肿瘤的肿瘤间质中DEspR+NET易发型激活的中性粒细胞和/或NET的存在以及与间质中的侵袭性肿瘤细胞的直接细胞-细胞接触(图38A-图38B)表明DEspR+中性粒细胞包括一种促肿瘤发生的中性粒细胞亚群,该亚群促进微肿瘤从微观至宏观的转换,就超过1-2mm的微肿瘤而言,这一转换跨越血管新生转换和免疫逃逸转换—两者都必须发生才能成功转移或成功将癌前病变转化为癌症。值得注意的是,并非所有休眠的转移性肿瘤都成为转移性癌症;并行地,并非所有癌前病变都进展为癌症,因为一些癌前病变确实会消退。 [0893] 在裸大鼠中的CSC衍生的胰腺癌扩散异种移植肿瘤模型中,抗DEspR mAb ABTM-468处理减少肠缺血、浆液性或出血性腹水、肠扩张(distendedgut)和缺血性-出血性肠(黑肠)和肠功能障碍(图39)。这些数据表明,抗DEspR处理降低了癌症合并症中DEspR+NET易发型中性粒细胞和/或NET介导的作用。 [0894] 在胰腺腹膜癌扩散中,中性粒细胞介导的或NET介导的组织损伤、血管闭塞和/或微血栓形成诱导合并症并发症(comorbid complications),例如:a)如ARDS、卒中中所见,激活的中性粒细胞和NET驱动的继发性组织损伤引起的肠出血和微血栓形成(“黑肠”);b)出血性腹水;c)微血栓形成或微出血引起的肠梗阻或功能障碍(扩张性功能障碍的肠)。通过体内抗DEspR mAb处理(使用人源化抗DEspR mAb或ABTM-468)在体内降低了这些合并症并发症表明抗DEspR mAb疗法能够在胰腺癌中停止激活的NETosis易发型中性粒细胞和NET诱导的合并症并发症。 [0895] 类似于向IV期PDAC发展的趋势增加的转移性肿瘤,在所有阶段的胰腺癌(PDAC)的肿瘤间质中均检测到DEspR+炎性细胞(NETosis易发型激活的中性粒细胞)(图40)。DEspR+“劣种”中性粒细胞在包括转移性肿瘤在内的所有阶段中的存在表明中性粒细胞-肿瘤细胞相互作用对肿瘤进展至最高阶段的重要性以及在PDAC连续体(continuum)另一端的癌前病变向恶性肿瘤进展中的重要性。抗DEspR mAb疗法对NETosis易发型中性粒细胞的抑制是避免癌前病变进展为恶性肿瘤的新方法。 [0896] 抗DEspR mAb处理在患有中度严重肾小球肾硬化的高血压慢性肾病大鼠模型中减少了白蛋白尿(图41A-图41C)。由于在1周内观察到了应答,因此数据表明基于通过由ABTM-468处理来抑制DEspR+NET易发型激活的中性粒细胞以消除中性粒细胞介导的继发性组织损伤的改善的快速周转机制。这些数据证明了ABTM-468在抑制慢性肾病中的激活的中性粒细胞和NETosis易发型中性粒细胞方面的功效,引起表现为白蛋白尿和UACR降低的肾功能改善。 [0897] 抗DEspR有效地降低人激活的CD11b+中性粒细胞的关键亚群的存活,该亚群与如在ARDS患者中性粒细胞中特别看到的并且适用于所有其它具有中性粒细胞介导的组织损伤的疾病的中性粒细胞驱动的继发性组织损伤相关。ARDS代表了中性粒细胞驱动的继发性组织损伤的最坏极端情况之一。 [0898] 抗DEspR疗法通过消除源自DEspR+激活的中性粒细胞和肿瘤相关中性粒细胞以及源自DEspR+疗法耐受、失巢凋亡耐受的肿瘤细胞的疗法耐受机制来提高对吉西他滨的敏感性。抗DEspR+化学疗法的组合在裸大鼠异种移植肿瘤模型中的更大功效表明中性粒细胞驱动的机制被抑制,该机制促进对抗癌细胞毒性疗法和检查点抑制剂的固有或获得性疗法耐受,因此支持与化学疗法和/或检查点抑制剂的组合疗法。 [0899] 人血样品中DEspR+/CD11b+中性粒细胞和NET的检测包括由如下事实增强的强健的诊断或预后指标:DEspR抑制是对抗由中性粒细胞驱动的继发性组织损伤加重的复杂的威胁生命的疾病的致病机制的有效疗法。 [0900] 实施例7 [0901] DEspR蛋白在胰腺肿瘤细胞的细胞核中与作用于RNA的腺苷脱氨酶-1[ADAR-1]共定位。因为已知即使是新鲜分离的中性粒细胞在培养时也改变表型,所以按照下文所述的标准方法在胰腺肿瘤细胞Panc1中进行DEspR和ADAR-1的共定位。免疫荧光染色的共聚焦显微术分析表明,DEspR和ADAR1存在于核中,并在核的一些区域(而非全部区域)中共定位(图42)。这些数据支持双特异性抗DEspR/抗ADAR1双抗体。 [0902] 透化:将1mL PBS中的0.5%Triton X-100添加至平板,并在室温下孵育15分钟。去除Triton X-100,并用PBS洗涤平板3次(添加至平板侧面,从侧面移除,以免干扰盖玻片)。 [0903] 封闭:添加2mL PBS溶液中的5%BSA,将平板在4℃下封闭2小时。 [0904] 染色(一级):去除封闭介质后,在1%BSA中将ADAR1(0.73μg/mL)和抗DEspR AF568(HEK)抗体(10μg/mL)在4℃下孵育4小时。去除一级染色溶液,并用1mL PBS中的1%BSA洗涤3次。 [0905] 染色(二级):在1%BSA中将二级抗兔IgG AF-488(0.5μg/mL)在4℃下孵育2小时。去除一级染色溶液,并用1mL PBS中的1%BSA洗涤3次;维持在1ml PBS中。使用Leica SP5共聚焦显微镜进行成像。 |