专利类型 | 发明公开 | 法律事件 | 公开; 实质审查; 授权; |
专利有效性 | 有效专利 | 当前状态 | 授权 |
申请号 | CN202210943707.0 | 申请日 | 2022-08-08 |
公开(公告)号 | CN115314110A | 公开(公告)日 | 2022-11-08 |
申请人 | 北京邮电大学; | 申请人类型 | 学校 |
发明人 | 田凤; 忻向军; 吴语嫣; 张琦; 姚海鹏; 高然; 田清华; 王拥军; 王珏; 王富; 张文全; 武瑞德; 黄鑫; | 第一发明人 | 田凤 |
权利人 | 北京邮电大学 | 权利人类型 | 学校 |
当前权利人 | 北京邮电大学 | 当前权利人类型 | 学校 |
省份 | 当前专利权人所在省份:北京市 | 城市 | 当前专利权人所在城市:北京市海淀区 |
具体地址 | 当前专利权人所在详细地址:北京市海淀区西土城路10号 | 邮编 | 当前专利权人邮编:100089 |
主IPC国际分类 | H04B10/2537 | 所有IPC国际分类 | H04B10/2537 ; H04B10/291 ; H04B10/293 ; H04B10/564 |
专利引用数量 | 9 | 专利被引用数量 | 0 |
专利权利要求数量 | 10 | 专利文献类型 | A |
专利代理机构 | 北京东方盛凡知识产权代理有限公司 | 专利代理人 | 李哲; |
摘要 | 本 发明 涉及一种基于分区 粒子群优化 算法 补偿功率倾斜的方法及装置,方法包括:在单模传输光纤的输入端输入 信号 光,并接收所述单模传输光纤中输出端的 输出信号 ;将所述输出信号进行优化,并将优化后的输出信号输入至拉曼 放大器 ,获取预测参数组,对所述预测参数组进行计算,得到全局最优解和个体最优解;其中,所述预测参数组包括拉曼放大器的 泵 浦功率及泵浦 波长 。本发明通过增加一个拉曼放大器来提供增益倾斜,增强种群的多样性,提高算法的局部搜索能 力 ,增加粒子发现最优值的概率。 | ||
权利要求 | 1.一种基于分区粒子群优化算法补偿功率倾斜的方法,其特征在于,包括: |
||
说明书全文 | 一种基于分区粒子群优化算法补偿功率倾斜的方法及装置技术领域背景技术[0002] 近年来,伴随着当今社会的不断进步,物联网、虚拟现实技术、云计算等新兴技术的高速发展,人们对于互联网流量的需求也日益加速,对于光信号的传输速度、传输带宽也提出了更高的要求。为了应对光网络需求的增长,波分复用技术被广泛用于光纤传输系统,通过增加系统中复用波长的数量、改善各波段的信息频率等方式来充分利用光纤的带宽资源,大幅度提高系统传输容量,具有传输容量大、网络扩容简单方便等优点,是传输带宽瓶颈问题的主要解决方法之一。光信号在波分复用系统中主要受到的传输损伤可以分为线性损伤和非线性损伤,线性损伤包括光纤衰减损耗、放大器的自发辐射噪声、光纤色散、偏振模色散等,非线性效应包括受激拉曼散射、四波混频、自发相位调制和受激相位调制等,这些损伤均会对信号产生影响,使信号产生畸变,从而影响信号的接收与恢复。随着信道数的增加,受激拉曼散射等光纤非线性效应对系统传输质量的影响也会进一步加剧,信道质量会进一步劣化,因此找到一种方法对受激拉曼散射进行补偿,对于保障高速光纤通信系统的正常稳定运行具有重要意义。 [0003] 受激拉曼散射是由光子和光纤中热振动分子之间的非弹性碰撞而产生的,是光通过介质时由于入射光和分子运动相互运动而引起的频率发生变化的散射,会导致低波长的信号功率向更长的波长分量转移,造成信号功率谱的倾斜。这种功率倾斜会在波分复用系统中每个信道之间产生,短波长信道与长波长信道通过受激拉曼散射进行交互。 [0004] 为了补偿受激拉曼散射带来的功率谱倾斜,考虑使用放大器来进行补偿,实现信号功率谱的平坦化。拉曼放大器的增益波长完全由泵浦光波长决定,理论上只要泵浦源的波长合适,就可以放大任意波长的信号光,在传输光纤后加入拉曼放大器进行辅助放大,通过控制拉曼放大器的泵浦波长和泵浦功率来对信号功率较低的短波长信号进行放大,在一定程度上改善信号功率的平坦度,同时也可以大大提高输出功率和噪声特性。 发明内容[0005] 本发明的目的是提供一种基于分区粒子群优化算法补偿功率倾斜的方法及装置,通过使用分区粒子群优化算法来调节拉曼放大器的泵浦波长和泵浦功率,改变拉曼放大器的放大增益,从而补偿光纤传输系统中受激拉曼散射导致的信号功率倾斜,通过控制拉曼放大器的输出增益,实现输出信号功率谱的平坦化。 [0006] 为实现上述目的,本发明提供了如下方案: [0007] 一种用于补偿功率倾斜的分区粒子群优化方法,包括: [0008] 在单模传输光纤的输入端输入信号光,并接收所述单模传输光纤中输出端的输出信号; [0009] 将所述输出信号进行优化,并将优化后的输出信号输入至拉曼放大器,获取优化参数组,对所述优化参数组进行计算,得到全局最优解和个体最优解;其中,所述优化参数组包括拉曼放大器的泵浦功率及泵浦波长。 [0010] 优选地,将所述输出信号进行优化包括: [0011] S1.设定粒子参数值,并初始化粒子的初始位置、初始速度,其中,所述粒子参数值包括:粒子数目、最大迭代次数、粒子速度范围、粒子位置范围、学习因子、阈值、最大连续次数,所述初始化粒子包括:泵浦功率和泵浦波长; [0012] S2.将所述初始化粒子的泵浦功率和所述初始化粒子的泵浦波长,输入到所述拉曼放大器,获取第一优化参数组,对所述第一优化参数组进行计算,得到第一全局最优解和第一个体最优解; [0013] S3.对所述第一全局最优解和上一次的迭代结果进行判断,并根据判断结果,对所述第一优化参数组的泵浦功率和所述第一优化参数组的泵浦波长进行更新,并基于所述第一优化参数组的泵浦功率和所述第一优化参数组的泵浦波长进行更新的次数判断是否满足所述最大迭代次数,若满足,将更新后的所述泵浦功率和更新后的所述泵浦波长输入到所述拉曼放大器,获取第二预测参数组,对所述第二预测参数组进行计算,输出第二全局最优解和第二个体最优解;若不满足,则将所述初始化粒子的泵浦功率和所述初始化粒子的泵浦波,替换成所述第二预测参数组的泵浦功率和所述第二预测参数组的泵浦波长,重复S2。 [0014] 优选地,对所述优化参数组进行计算包括: [0015] 对所述优化参数组进行测量,得到输出功率,将所述输出功率进行计算,得到适应度值,通过对所述输出功率的标准差的大小进行判断,得到全局最优解和个体最优解; [0016] 所述输出功率进行计算的方法为: [0017] [0018] 其中,σ表示输出功率谱中所有信号功率的标准差,n表示输出功率谱中共有n个信号光,xi表示第i个信号的输出功率,表示所有信号功率的平均值。 [0019] 优选地,对所述第一全局最优解和上一次的迭代结果进行判断包括: [0020] 判断所述第一全局最优解与其上一次的迭代结果之差是否小于预设阈值,若小于所述预设阈值,则总数count加1处理,并判断所述总数count是否小于连续次数N,若所述总数count不小于所述最大连续次数,则采用高斯扰动的方式对所述第一优化参数组的泵浦功率和所述第一优化参数组的泵浦波长进行更新,输出所述第二全局最优解和所述第二个体最优解,若所述总数count小于所述最大连续次数,则根据适应度将所述粒子分为优选区和疏离区,所述优选区使用柯西公式对所述第一优化参数组的泵浦功率和所述第一优化参数组的泵浦波长进行更新,所述疏离区采用传统PSO算法对所述第一优化参数组的泵浦功率和所述第一优化参数组的泵浦波长进行更新; [0021] 其中,所述总数count为所述第一全局最优解与上一次的迭代结果之差小于设定阈值的连续次数。 [0022] 优选地,所述高斯扰动的方法如下式: [0023] [0024] Gaussian(1,1)表示均值为1,方差为1的高斯函数随机值,f(Xi+1)为粒子在第i+1代的适应度值,f(Xi)为粒子在第i代的适应度值。 [0025] 优选地,通过计算所述输出功率,得到粒子的第一适应度值,并通过所述高斯扰动的方法对所述第一优化参数组的泵浦功率和所述第一优化参数组的泵浦波长进行更新,得到第二优化参数组与第二适应度值,并判断所述第二适应度值是否小于所述第一适应度值,若是,则采用所述第二优化参数组的泵浦功率和所述第二优化参数组的泵浦波长进行下一次计算,若否,则采用所述第一优化参数组的泵浦功率和所述第一优化参数组的泵浦波长进行下一次计算。 [0026] 优选地,根据适应度将所述粒子分为优选区和疏离区方法为: [0027] 对所述第一适应度值进行计算,得到所述第一适应度值的平均值,将所述第一适应度值小于所述平均值的区域作为优选区,将所述第一适应度值大于所述平均值的区域作为疏离区。 [0028] 优选地,所述优选区中通过使用柯西公式对所述泵浦波长和所述泵浦功率进行更新方法为: [0029] [0030] 其中,C(0,1)是由柯西分布函数产生的随机数,xi表示优选区粒子在第i代的位置,tmax为最大迭代次数,t为当前迭代次数。 [0031] 优选地,所述疏离区采用传统PSO算法对所述泵浦波长和所述泵浦功率进行更新方法为: [0032] Vi+1=c1Vi+c2·rand()·(pbesti‑Vi)+c3·rand()·(gbesti‑Vi) [0033] Xi+1=Xi+Vi+1 [0034] 其中,c1、c2和c3为学习因子,rand()表示0~1中的随机值,Xi表示疏离区粒子在第i代的位置,Vi表示疏离区粒子在第i代的更新速度,pbesti表示正在更新的粒子在第i代的个体最优解,gbesti表示所有粒子在第i代的全局最优解,Vi+1为疏离区粒子在第i+1代的更新速度。 [0035] 为实现上述目的,本发明提供了一种基于分区粒子群优化算法补偿功率倾斜的装置,包括: [0036] 单模传输光纤、拉曼放大器和信号处理单元; [0037] 所述单模传输光纤用于接收信号光并输出信号; [0038] 所述信号处理单元用于对所述输出信号进行优化处理; [0039] 所述拉曼放大器用于对优化处理后的输出信号进行放大处理,得到优化参数组; [0041] 所述功率检测模块用于检测单模传输光纤输出信号的功率谱,所述优化控制模块用于控制所述拉曼放大器的泵浦波长和泵浦功率,实现输出信号功率谱的平坦化。 [0042] 本发明的有益效果为: [0043] 本发明采用分区粒子群优化算法作为最优解搜索算法对拉曼放大器的泵浦功率和泵浦波长进行优化估测。该算法将根据是否陷入局部最优和种群中粒子的适应度值对粒子的优化方案进行分类讨论,并为每种情况设计不同的进化机制,这样分组可以增强种群的多样性,提高算法的局部搜索能力,增加粒子发现最优值的概率。附图说明 [0044] 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。 [0045] 图1为本发明实施例一种用于补偿功率倾斜的分区粒子群优化方法工作流程图; [0046] 图2为本发明实施分区粒子群优化算法优化前后的信号功率谱示意图。 具体实施方式[0047] 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。 [0048] 为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。 [0049] 本发明提供了一种用于功率倾斜的分区粒子群优化算法,通过使用分区粒子群优化算法来调节拉曼放大器的泵浦波长和泵浦功率,改变拉曼放大器的放大增益,从而补偿光纤传输系统中受激拉曼散射导致的信号功率倾斜,该装置包含单模传输光纤、拉曼放大器和信号处理单元,单模传输光纤与拉曼放大器处于连接状态,单模传输光纤的输出端与拉曼放大器的输入端相连接,所述信号处理单元包括功率检测模块和优化控制模块,功率检测模块用于检测单模传输光纤输出信号的功率谱,优化控制模块用于控制拉曼放大器的泵浦波长和泵浦功率,通过控制拉曼放大器的输出增益,实现输出信号功率谱的平坦化。 [0050] 拉曼放大器的功率耦合方程为: [0051] [0052] 其中,Vi、Vj分别表示信号光和泵浦光的信号频率;Pi、Pj分别表示信号光和泵浦光的光功率,αi表示信号光的光纤损耗系数,Keff表示极化因子,Aeff表示光纤在不同频率处的有效芯径,gij表示光纤中频率为Vi的信号光对频率为Vj的泵浦光的拉曼增益系数,gji表示光纤中频率为Vj的泵浦光对频率为Vi的信号光的拉曼增益系数,z表示沿光纤轴向的位置坐标,范围是0到拉曼增益光纤总长度L; [0053] 由以上公式可以得知,通过控制拉曼放大器的泵浦波长和泵浦功率,可以控制信号在通过拉曼放大器后的输出功率,进而实现输出信号功率谱的平坦化。 [0054] 本发明提供了如下方案: [0055] 步骤1:在单模传输光纤的输入端输入一组输入功率相同的信号光,接收光纤输出端上的输出信号,由于受激拉曼散射的影响,输出功率谱会呈现一个低波长处低,高波长处高的倾斜。 [0056] 步骤2:将光纤输出端上各个波长的信号功率输入至分区粒子群优化算法中,经过该算法优化,得到一组让输出功率谱达到最佳平坦度的预测参数组,该参数组包括拉曼放大器的泵浦功率及泵浦波长,将预测得到的拉曼放大器泵浦波参数应用至实际的系统作为最终输出。 [0057] 根据图1所示,该分区粒子群优化算法的主要流程如下: [0058] 本发明将一组波长范围为190THz~200THz,波长间隔为500GHz,发射功率均为5mW的20个信号光输入至50km的单模传输光纤中。在传输光纤的输出端接收信号,测量各个波长的输出信号对应的输出功率,作为输入参数输入到拉曼放大器中,开始优化。 [0059] 步骤101:分区粒子群优化算法的目标优化参数为拉曼放大器的泵浦功率和泵浦波长,首先设定分区粒子群优化算法需要使用的参数值,将粒子群总数目设为30、最大迭代次数设为20、粒子速度的最大值设为5,最小值设为‑5,泵浦功率的最大值设为25mW,最小值设为1mW、泵浦波长的最大值设为250THz,最小值设为200THz,学习因子c1=0.3、c2=1.5和c3=1.5,全局最优解差值的阈值δ=0.1,全局最优解相同的最大连续次数N。 [0060] 步骤102:随机生成30个粒子,每个粒子的初始位置、初始速度均是规定范围内随机生成的; [0061] 步骤103:将每个粒子中对应的泵浦波长和泵浦功率数值输入拉曼放大器中进行放大,得到的输出信号功率谱的标准差作为各个粒子的适应度值,对各个粒子的适应度值的平坦度进行判断,得到每个粒子的个体最优解和所有粒子的全局最优解,如果全局最优解和上次迭代的结果之差小于阈值δ=0.1,则让全局最优解相同的连续次数count=count+1,若count>=最大连续次数N,认为优化陷入局部最优解,则采用更新策略一对粒子进行更新,若count<最大连续次数N,则采用更新策略二对粒子进行更新。 [0062] 步骤104:若采用策略一对粒子进行更新,采用增加高斯扰动的方式对所有粒子的泵浦波长和泵浦功率进行更新,更新公式如下: [0063] [0064] Gaussian(1,1)表示均值为1,方差为1的高斯函数随机值。若经过高斯函数更新后的参数组得到的适应度小于原参数组的适应度,则对该组参数进行更新,如果更新后的参数组得到的适应度大于或等于原参数组的适应度,则不对参数组做出改变,仍然使用原参数组。 [0065] 步骤105:若采用策略二对粒子进行更新,分别计算所有粒子适应度值的平均值,将适应度值小于这个平均值的粒子作为优选区粒子,将适应度值大于这个平均值的粒子作为疏离区粒子。优选区粒子和疏离区粒子采用不同的方式进行泵浦波长和泵浦功率的更新。 [0066] 对于优选区粒子,使用柯西公式对泵浦波长和泵浦功率分别进行更新,以产生更多优选区内的粒子,增强粒子的全局探索能力,公式如下: [0067] [0068] 其中,C(0,1)是由柯西分布函数产生的随机数,xi表示优选区粒子的位置。tmax为最大迭代次数,t为当前迭代次数。 [0069] 疏离区粒子距离种群最优位置较远,为了加快向可能的全局最优解逼近的速度,该区域粒子主要是向优选区粒子进行学习,疏离区粒子的泵浦波长和泵浦功率更新公式为: [0070] Vi+1=c1Vi+c2·rand()·(pbesti‑Vi)+c3·rand()·(gbesti‑Vi) [0071] Xi+1=Xi+Vi+1 [0072] 其中,c1、c2和c3为学习因子,rand()表示0~1中的随机值,Xi表示疏离区粒子的参数,包括泵浦波长和泵浦功率,Vi表示疏离区粒子的更新速度,pbesti表示正在更新的粒子的个体最优解,gbesti表示所有粒子的全局最优解。 [0073] 对粒子的速率和参数更新范围进行限制,如果更新的时候计算发现粒子的速率或参数范围超过了步骤101中设定的速度和参数的允许范围,则把允许范围的边界值作为更新的新值; [0074] 步骤106:把30个粒子全部进行更新后,如果迭代次数<最大迭代次数,跳转到步骤103进行下一次迭代,如果迭代次数=最大迭代次数,则终止优化运算,输出粒子的最优位置和全局最优解; [0075] 其中,输出粒子的最优位置和全局最优解的方法: [0076] 将所述输出功率进行计算,得到适应度值,通过对所述输出功率的标准差的大小进行判断,得到全局最优解和个体最优解; [0077] 所述输出功率进行计算的方法为: [0078] [0079] 以此方案进行优化前后的信号功率谱示意图如图2所示,可以看出该方案可以达到信号功率谱平坦的效果。 |