专利类型 | 发明授权 | 法律事件 | 公开; 实质审查; 授权; |
专利有效性 | 有效专利 | 当前状态 | 授权 |
申请号 | CN202110669848.3 | 申请日 | 2021-06-17 |
公开(公告)号 | CN115494579B | 公开(公告)日 | 2024-12-03 |
申请人 | 南开大学; | 申请人类型 | 学校 |
发明人 | 岳洋; 赵文谦; 韩旭; 王志; 刘艳格; | 第一发明人 | 岳洋 |
权利人 | 南开大学 | 权利人类型 | 学校 |
当前权利人 | 南开大学 | 当前权利人类型 | 学校 |
省份 | 当前专利权人所在省份:天津市 | 城市 | 当前专利权人所在城市:天津市南开区 |
具体地址 | 当前专利权人所在详细地址:天津市南开区卫津路94号 | 邮编 | 当前专利权人邮编:300071 |
主IPC国际分类 | G02B6/02 | 所有IPC国际分类 | G02B6/02 ; G02B6/036 |
专利引用数量 | 3 | 专利被引用数量 | 0 |
专利权利要求数量 | 2 | 专利文献类型 | B |
专利代理机构 | 专利代理人 | ||
摘要 | 本 发明 涉及一种涡旋光宽带色散补偿光纤,应用于光纤通信和光学 信号 处理技术领域。波分复用系统中,色散引起的走离效应不断累积,限制了涡旋光的长距离有效传输。本发明提供一种可用于补偿适量正色散的光纤技术方案:这种光纤,它的包层包含三层高折射率圆环,涡旋光被束缚在中间一环内传播,通过改变环形区域和包层的材料改变折射率 对比度 ,可以改变光纤的色散性质,上述横截面结构沿光纤的长度方向不变。本发明的有益效果:该光纤在光纤通信的C波段(1530‑1565nm)内有适量负色散,通过调 节圆 环 位置 、环宽度和光纤材料可以实现涡旋光负色散大小和色散变化斜率的调整,实现对涡旋光非零色散位移光纤色散的有效补偿。 | ||
权利要求 | 1.一种涡旋光宽带色散补偿光纤,其特征在于:所述光纤存在三个同心环形区域: |
||
说明书全文 | 一种涡旋光宽带色散补偿光纤技术领域背景技术[0002] 涡旋光具有独特的场分布,其中心位置存在相位奇点,并且奇点处光强为零,光波相位在垂直于传播方向上呈螺旋分布,具备轨道角动量。涡旋光分为偏振涡旋光和相位涡旋光,偏振涡旋光由径向矢量光束TM01和角向矢量光束TE01两种模式组成,相位涡旋光又称轨道角动量(OAM)涡旋光,OAM模式可以表示为OAMl,m,其中l(l=±1,±2,±3…)是拓扑电荷,m是对应于模式在径向方向上的强度分布的径向顺序。在光纤中传输的OAM模式与矢量本征模的组成关系如说明书附图的图6所示。 [0003] 当光在光纤中传输时,光纤的色散效应是限制其传输质量的一大障碍。在抑制非线性效应前提下,波分复用系统中所使用的非零色散位移光纤在1550nm处保留了尽可能小的色散,但在通信C波段(1530nm‑1565nm)内,其色散并不为零。随着传播距离的增加,通信光纤链路中的色散效应不断累积,引起的信号走离效应越发严重,严重限制了波分复用光纤通信系统的信号传播能力。要想使色散引发的走离效应最小化,提升光纤性能,需要使用匹配的负色散补偿光纤对通信光纤链路中累积的正色散效应进行补偿。目前没有适用于涡旋光的宽带色散补偿光纤设计。 发明内容[0004] 鉴于上述情况,本发明提供一种涡旋光宽带色散补偿光纤,旨在为涡旋光传输提供可行的色散补偿的光纤结构。 [0005] 本发明采用的技术方案具体为: [0006] 这种具有负色散的涡旋光宽带色散补偿光纤,包括纤芯和套于所述纤芯外的光纤包层,所述光纤包层包括三重同心环形区域和外光纤包层。所述三重同心环形区域设于所述纤芯和所述外光纤包层之间;其中:所述纤芯、三重同心环形区域、环外光纤包层的折射率n1、n2、n3之间满足n1、n3的值小于n2的值,即三重同心环形区域折射率大于其它区域;所述光纤材料在满足上述折射率分布情况下可为二氧化硅、掺锗二氧化硅、掺氟二氧化硅等材料的组合。 [0007] 在这种结构中,在三重同心环形区域折射率高于包层区域的基础上,模式被限制在环形区域中间一层内传输,通过三重同心环形区域的相互作用,从而实现涡旋光的负色散属性。在一定折射率对比度和结构参数下,光纤的波导色散特性和材料色散特性可以为OAM模式提供负色散以实现对光纤通信链路中的累积的正色散的补偿。 [0008] 本发明的有益效果:通过选择三重同心环形区域和纤芯包层的材料、适当调节三重同心环宽度或三重同心环形区域位置,可以实现OAM模式在C波段(1530nm‑1565nm)内色散大小和C波段(1530nm‑1565nm)内色散变化斜率的调整。数值计算结果表明通过适当调整上述条件,可以令本发明所述具有负色散的涡旋光宽带色散补偿光纤的OAM模式色散特性符合所需补偿的正色散光纤通信链路的需求。 附图说明[0009] 图1是本发明的光纤基本横截面结构及折射率分布示意图。图1左侧为光纤横截面示意图,其各个部分的折射率由图1右侧梯形折线图给出。深色区域对应二氧化锗掺杂的高折射率材料,浅色部分对应纯的二氧化硅材料。 [0010] 图2是本发明光纤结构变体之一的横截面结构及折射率分布示意图。图2左侧为光纤横截面示意图。深色区域对应二氧化锗掺杂于二氧化硅的高折射率材料,其颜色深浅代表不同二氧化锗掺杂浓度下不同折射率的掺锗材料,浅色部分对应纯的二氧化硅材料。该光纤结构变体的折射分布由图2左侧曲线图给出。 [0011] 图3是本发明光纤结构变体之二的横截面结构及折射率分布示意图。图3左侧为光纤横截面示意图。深色区域对应二氧化锗掺杂于二氧化硅的高折射率材料,其颜色深浅代表不同二氧化锗掺杂浓度下不同折射率的掺锗材料,浅色部分对应纯的二氧化硅材料。该光纤结构变体的折射率分布由图3左侧曲线图给出。 [0012] 图4是本发明光纤的基本结构中,以3.9mol%浓度为最高浓度二氧化锗掺杂、以0.6mol%浓度为次高浓度二氧化锗掺杂、以二氧化硅作为纤芯时,r1=5μm,r2=7.88μm,r3=8.18μm,r4=10.98μm、r5=11.28μm,r6=14.16μm,r7=62.5μm参数以及r1=5.5μm,r2= 8.6μm,r3=8.9μm,r4=11.4μm、r5=11.7μm,r6=14.8μm,r7=62.5μm参数对应OAM1,1模式的负色散随波长变化曲线,分别对应图4中色散补偿光纤1(DCF 1)点线和色散补偿光纤2(DCF 2)划线。图4中实线对应适用于涡旋光的非零色散位移光纤(NZDSRF)色散随波长变化特性。 [0013] 图5是本发明光纤的基本结构中,以3.9mol%浓度最高浓度二氧化锗掺杂、以0.6mol%浓度次高浓度二氧化锗掺杂、以二氧化硅作为纤芯时,r1=5μm,r2=7.88μm,r3= 8.18μm,r4=10.98μm、r5=11.28μm,r6=14.16μm,r7=62.5μm参数以及r1=5.5μm,r2=8.6μm,r3=8.9μm,r4=11.4μm,r5=11.7μm,r6=14.8μm,r7=62.5μm参数对应OAM1,1模式的不同波长下色散随波长变化的斜率值,分别对应图4中的色散补偿光纤1(DCF 1)点线和色散补偿光纤2(DCF 2)划线。图5中实线对应适用于涡旋光的非零色散位移光纤(NZDSRF)不同波长下色散随波长变化的斜率值。 [0014] 图6是本发明所涉及的光纤中传输的OAM模式与矢量本征模的组成关系。 [0015] 图中:r1.纤芯半径;r2‑r6.三重同心环形区域半径;r7.外光纤包层半径。 具体实施方式[0016] 下面结合附图对本发明的具体实施方式做进一步说明: [0017] 实施例1: [0018] 本发明具有负色散的涡旋光宽带色散补偿光纤如图1所示,包括由内而外的纤芯、三重同心环形区域、外光纤包层,折射率分别为n1、n2、n3,所述三重同心环形区域为高折射率圆环,折射率大于其它区域,折射率分布满足n1≤n3 [0019] 图4中点线所代表的色散补偿光纤1(DCF 1)为r1=5μm,r2=7.88μm,r3=8.18μm,r4=10.98μm,r5=11.28μm,r6=14.16μm,r7=62.5μm参数对应OAM1,1模式的不同波长下色散随波长变化的斜率值。由图4所示,在C波段(1530nm‑1565nm)内,色散补偿光纤1(DCF 1)的色散绝对值达到适用于涡旋光的非零色散位移光纤(NZDSRF)色散绝对值的5倍以上。色散补偿光纤1(DCF 1)的色散曲线斜率为负数,适用于涡旋光的非零色散位移光纤(NZDSRF)色散曲线斜率为正数,两色散曲线数值匹配。由色散补偿光纤1(DCF 1)带来的负色散效应可有效抵消非零色散位移光纤(NZDSRF)的正色散效应。 [0020] 图5中点线所代表的色散补偿光纤1(DCF 1)为r1=5μm,r2=7.88μm,r3=8.18μm,r4=10.98μm,r5=11.28μm,r6=14.16μm,r7=62.5μm参数对应OAM1,1模式的色散随波长变化曲线。由图5所示,在C波段(1530nm‑1565nm)内,色散补偿光纤1(DCF 1)的色散斜率绝对值与适用于涡旋光的非零色散位移光纤(NZDSRF)色散斜率绝对值相近,两色散曲线色散斜率数值匹配。由色散补偿光纤1(DCF 1)带来的负色散效应可有效抵消非零色散位移光纤(NZDSRF)的正色散效应。 [0021] 实施例2: [0022] 本发明具有负色散的涡旋光宽带色散补偿光纤如图1所示,包括由内而外的纤芯、三重同心环形区域、外光纤包层,折射率分别为n1、n2、n3,所述三重同心环形区域为高折射率圆环,折射率大于其它区域,折射率分布满足n1≤n3 [0023] 图4中划线所代表的色散补偿光纤2(DCF 2)为r1=5.5μm,r2=8.6μm,r3=8.9μm,r4=11.4μm,r5=11.7μm,r6=14.8μm,r7=62.5μm参数对应OAM1,1模式的不同波长下色散随波长变化的斜率值。由图4所示,在C波段(1530nm‑1565nm)内,色散补偿光纤2(DCF 2)的色散绝对值达到适用于涡旋光的非零色散位移光纤(NZDSRF)色散绝对值的5倍以上。色散补偿光纤2(DCF 2)的色散曲线斜率为负数,适用于涡旋光的非零色散位移光纤(NZDSRF)色散曲线斜率为正数,两色散曲线数值匹配。由色散补偿光纤2(DCF 2)带来的负色散效应可有效抵消非零色散位移光纤(NZDSRF)的正色散效应。 [0024] 图5中划线所代表的色散补偿光纤2(DCF 2)为r1=5.5μm,r2=8.6μm,r3=8.9μm,r4=11.4μm,r5=11.7μm,r6=14.8μm,r7=62.5μm参数对应OAM1,1模式的色散随波长变化曲线。由图5所示,在C波段(1530nm‑1565nm)内,色散补偿光纤2(DCF 2)的色散斜率绝对值与适用于涡旋光的非零色散位移光纤(NZDSRF)色散斜率绝对值相近,两色散曲线色散斜率数值匹配。由色散补偿光纤2(DCF 2)带来的负色散效应可有效抵消非零色散位移光纤(NZDSRF)的正色散效应。 [0025] 由附图1、附图2、附图3所示,该发明能够实现涡旋光宽带负色散补偿特性的光纤材料有很多选择及组合方式,如改变高折射率区域的掺杂浓度或在原有三重同心环形区域基础上添加同心低折射率环形区域等,涡旋光宽带负色散补偿特性亦可拓展到其它通信波段,因此任何包含本发明的进一步扩展也属于本发明的保护范围。 |