专利类型 | 发明公开 | 法律事件 | 公开; 实质审查; 授权; |
专利有效性 | 有效专利 | 当前状态 | 授权 |
申请号 | CN201480066133.7 | 申请日 | 2014-11-10 |
公开(公告)号 | CN105793677A | 公开(公告)日 | 2016-07-20 |
申请人 | 霍尼韦尔国际公司; | 申请人类型 | 企业 |
发明人 | B.赛; | 第一发明人 | B.赛 |
权利人 | 霍尼韦尔国际公司 | 权利人类型 | 企业 |
当前权利人 | 霍尼韦尔国际公司 | 当前权利人类型 | 企业 |
省份 | 当前专利权人所在省份: | 城市 | 当前专利权人所在城市: |
具体地址 | 当前专利权人所在详细地址:美国新泽西州 | 邮编 | 当前专利权人邮编: |
主IPC国际分类 | G01F23/28 | 所有IPC国际分类 | G01F23/28 ; G01S13/10 ; G01S13/88 |
专利引用数量 | 6 | 专利被引用数量 | 5 |
专利权利要求数量 | 12 | 专利文献类型 | A |
专利代理机构 | 中国专利代理(香港)有限公司 | 专利代理人 | 孙鹏; 陈岚; |
摘要 | 一种感测或测量储罐中的产品材料的脉冲雷达方法。基于功率限制而自动地选择多个 波形 类型。脉冲雷达 信号 被可编程发射器(190)发射到产品材料,其中,脉冲雷达信号被产品材料反射或散射以提供包括目标信号的时间间隔期间的雷达信号。针对可编程接收器(150)而自动地设置初始增益或衰减。可编程接收器在所述时间间隔期间接收包括目标信号的雷达信号,并且使用与初始增益或衰减相比较低的衰减设置来对目标信号进行 信号处理 以确定与产品材料相关联的至少一个参数。还可以根据测量SNR来调整发射和接收雷达信号。 | ||
权利要求 | 1.一种感测或测量储罐中的产品材料的自适应脉冲雷达方法,包括: |
||
说明书全文 | 具有多个波形的自适应雷达系统技术领域背景技术[0002] 将大型金属储罐用于存储诸如饮料和石油产品之类的多种液体是标准操作规程。常规大型储罐通常由不锈钢板制成,并且在石油产品的情况下储罐一般地由被焊接在一起的1/4英寸(0.63 cm)至1/2英寸(1.27 cm)厚的钢板制成。常规大型储罐的尺寸通常在高度为数百英尺(100英尺30.5米)和直径为数百英尺中变动。 [0003] 当其它感测方法在提供可靠和/或准确的信息中有困难时,可以使用无接触电磁检测和感测来确定对象的存在或特征(对象分类或形状)或者到产品材料的表面的距离或水平。例如,在石油和天然气工业中,不准确或不可靠的罐水平测量可招致罐水平计量应用中的利益性/收入的显著损失。大储罐(直径为40—80米)中的水平测量的1毫米(mm)的误差可以对应于几立方米的体积误差。因为原油价格一般地每桶至少$100(1桶=42美加仑;159公升),所以1mm误差可以导致针对在贸易和石油转移中涉及到的一方或多方的数千美元损失。 [0004] 无线电检测和测距(雷达)已被用作一个类型的无接触产品水准仪达几十年。雷达系统包括被耦合到位于产品(例如,液体或固体)之上以用于向产品发射雷达信号的雷达天线的发射器和被耦合到天线(或另一天线)以用于接收从产品表面反射的雷达信号的接收器,以及用于基于发射雷达信号和反射雷达信号来确定产品水平的信号处理器。根据此方法,被发射电路驱动的天线发射雷达信号,其撞击对象或表面,例如液面。该对象或表面将发射雷达信号/波的一部分在天线方向上反射回来,其被接收并被耦合到接收电路,该接收电路包括处理反射雷达信号/波的处理器。 [0005] 然而,雷达测量可以受到储罐内部的多次反射的影响,诸如由于罐壁、罐底、罐顶和罐障碍物,包括搅拌器、梯子和加热线圈。此外,每个罐一般地不得不对石油储存和转移使用最大容量。因此,重要的是在产品的水平接近储罐的底部或顶部时测量是恒定地可靠的。 [0006] 另外,欧盟(EU)章程已经由于对其它设备和/或系统的频谱干扰而对在户外和塑料储罐中使用高雷达功率强加限制,并且美国联邦通信委员会(FCC)可能设计与EU的类似的新规则。已知低发射功率将使脉冲雷达的性能恶化。某些提议的解决方案包括所谓的自适应功率控制(APC),其当在安装的雷达水准仪系统附近存在其它设备时降低发射功率。但是仅使用降低功率意味着减小测量距离和/或信噪比(SNR)。因此,测量准确度退化,因此增加了测量不确定性和误差。 [0007] 为了改善测量准确度,已经提议了亚纳秒范围内的超短雷达脉冲。然而,脉冲越短,其功率越低,并且因此测量距离越短。给定指定的SNR和测量准确度,一方面必须减小最大测量距离。另一方面,测量准确度在较长距离处退化,即脉冲雷达系统的可靠性随着产品(例如,介电常数<1.4)到雷达波的距离和透明度而降低。发明内容 [0009] 公开的实施例包括自适应多波形雷达系统,其具有可以生成多个波形的可编程发射器(Tx)和具有可编程衰减或增益的可编程接收器(Rx)两者。从基于用于雷达系统的功率限制(诸如基于所提供电流或电压供应的持续时间和/或振幅)中自适应地且自动地选择可用的多个波形类型中的第一个。处理器可以在雷达操作期间动态地调整雷达系统的功率预算,使得可以以在约25 dB以上的信噪比(SNR)来检测相对强的信号和相对弱的信号两者,其确保良好的测量范围和水平准确度。 附图说明[0011] 图1B是根据示例性实施例的包括可编程增益网络(PGN)块的示例性可编程Rx的一部分的框图描绘。 [0012] 图2A—2D示出了根据示例性实施例的分别地包括可以被生成且被公开的可编程Tx自动地且自适应地切换到的脉冲连续波(CW)波形、脉冲线性调频(LFM)波形、脉冲步进频率CW(脉冲SFCW)波形以及脉冲调频CW(FMCW)波形的示例性波形。 [0013] 图3示出了响应于入射在其中具有液体产品的储罐中以用于作为示出三(3)个时区的时间的函数的雷达检测过程的脉冲雷达信号的接收和采样雷达信号(没有信号处理)的相对振幅。 [0014] 图4提供了根据示例性实施例的示出所公开自适应脉冲多波形雷达系统的数据,该系统具有可编程Rx和可编程Tx,其通过使发射脉冲雷达信号的功率被调整成与接收器增益和SNR一致而证明在约100m的从发射天线到产品材料的距离处的具有1.3的介电常数的储罐中的产品材料的高SNR检测。 具体实施方式[0015] 参考附图来描述公开的实施例,其中,遍及各图使用相似的参考数字来指定类似或等价元件。图形并未按比例绘制,并且其仅仅是为了说明某些公开方面而被提供的。下面参考用于说明的示例性应用来描述几个公开的方面。应该理解的是为了提供公开实施例的全面理解而阐述了许多特定细节、关系以及方法。 [0016] 然而,相关领域的普通技术人员将容易地认识到可以在没有特定细节中的一个或多个的情况下或者用其它方法来实施本文中公开的主题。在其它实例中,并未详细地示出公知的结构或操作以避免使某些方面含糊难懂。本公开并未受到动作或事件的所示顺序的限制,因为某些动作可按照不同顺序和/或与其它动作或事件同时地发生。此外,并非所有示出的动作或事件都是实现根据本文公开的实施例的方法所要求的。 [0017] 公开的自适应多波形脉冲雷达系统被设计成使得在长距离内(相对长的距离,例如,>50m)的雷达准确度将本质上保持相同而不损害两个同时的冲突参数,那些为(i)准确度对比距离,具有高脉冲振幅(针对距离)对比短脉冲宽度(针对准确度),以及(ii)罐中的产品材料的高介电常数(针对高SNR)对比低介电常数(针对低SNR)。公开的自适应多波形脉冲雷达系统包括可以生成多个波形的可编程Tx和包括PGN块的可编程接收器,其中处理器(例如,数字信号处理器(DSP)或微控制器单元(MCU))自动地且自适应地选择波形类型,并基于功率条件来调整接收衰减或增益。雷达系统还可以可选地基于预定SNR水平而在系统操作期间调整Tx脉冲功率。 [0018] Tx电路被配置成基于功率条件(例如,电流供应和/或电压供应的持续时间和振幅)或其它功率限制(例如,由特定应用提出的政府规章限制)而针对不同的应用提供多个波形类型,包括例如脉冲CW波形、脉冲LFM波形、脉冲SFCW波形和脉冲FMCW波形。例如,如果特定应用中的用于公开的多波形脉冲雷达系统的电源是非常有限的,诸如4—20 mA环路功率,则自适应地选择的波形可以是在脉冲内部具有CW波形的相对短的脉冲。CW雷达脉冲的脉冲宽度可以是亚纳秒,通常从数十至数百皮秒变动,对应于至少2 GHz的3-dB带宽。脉冲CW被公认为非常适合于低功率操作,因为用于CW波形的载频是固定的而不是扫描的。脉冲宽度可以是短的(例如,亚纳秒),其意味着向信号发生器和PA的能量供应需要较少的时间。另一方面,诸如LFW、FMCW和SFCW之类的可变载频波形需要较长的时间(与CW相比)来完成定义频带的扫描(即,载频以连续方式或以离散方式从一个频率变化到另一个)。 [0019] 如果电源持续时间被较少限制,诸如由于规章所允许的更强大的电源并且还有用于允许较长脉冲时间的应用所允许的相同电流或电压供应(例如,针对较长时间的20毫安(mA)对比针对较短时间的4 mA)的较长时间,可以选择在脉冲内部具有LFM波形的较宽脉冲。在这个情况下,脉冲宽度可以大到几毫秒,对应于>1,000,000的脉冲压缩因数,<1ns的等价脉冲宽度。LFM波形被公认为具有能够使用FM技术来获得高测量分辨率以及较长距离处的高SNR数据的优点。当允许<10 ms的Tx接通时间时,可以相比于FMCW或SFCW来选择LFM。 [0020] 对于应对缓慢移动目标(例如,产品液体界面的移动速度<1mm/秒)的应用而言,当提供相对强大的电源(通常被密封在防爆壳中)且存在最少的政府章程时,可以选择脉冲FMCW或脉冲SFCW波形。在此情况下,脉冲宽度可以约为数百毫秒。在这种情况下的雷达系统可以被从基于时域的信号处理切换至基于频域的信号处理,其中可以使用由处理器140实现的离散傅立叶变换(DFT)和基于频谱的检测来准确地识别目标位置。可以使用脉冲FMCW或脉冲SFCW波形(通常>2 GHz)来获得发射信号的大的带宽。这些波形的优点是高动态范围和SNR。 [0021] 可以使用目前的条件来在FMCW和SFCW之间进行选择。例如,SFCW包括锁相回路(PLL)来将每个频率锁定,其花费较长时间来完全通过整个频带,而优点是每个频率信号是相干的(coherent)且是已知的。SFCW的另一优点是其可以实现具有高线性的非常大的频带(例如,>4 GHz)。FMCW一般地比FSCW更快,其中每个单独频率并未经由PLL被锁定,更确切地说扫频的频率-时间斜率被控制或锁定。 [0022] 公开的系统可以使用各种各样的脉冲频率进行操作。一个实施例利用处于K波段的载频(18 GHz至27 GHz),但是载频还可以处于其它波段。雷达脉冲可包括超宽带(UWB)雷达脉冲。如本文所使用的“UWB”指的是至少0.5千兆赫(GHz)或中心频率(其是基于美国国防高级研究项目管理局的(DARPA的)UWB定义)的至少25%的分数带宽的脉冲带宽,而频谱中的UWB范围可以是在100 MHz与300 GHz之间的任何地方。 [0023] 关于性能,如在示例小节中更全面地描述的(参见示例4),通过使得发射脉冲雷达信号的功率被调整为与接收器增益和SNR一致,估计的液位准确度在发射天线与储罐中的液体之间的100m的距离处可以好于2mm,其中罐中的液体具有1.3的介电常数。 [0024] 图1A是根据示例性实施例的包括具有多个波形能力的可编程发射器(Tx)190和可编程接收器(Rx)150的示例性自适应脉冲多波形雷达系统(雷达系统)100的框图。Rx 150响应于从在储罐中的产品材料之上的天线175(或另一天线)发出的发射雷达信号而经由天线175来接收从储罐中的产品材料(液体或固体(例如,粉末))的表面反射或散射的雷达信号。 雷达系统100针对包括但不限于距离、水平以及特征确定的应用使用相应的波形来提供基于时域和频域的雷达感测和测量。可以作为集成电路(IC)或使用分立部件来实现公开雷达系统的相应的块。 [0025] 为Tx 190和Rx 150两者所共用的雷达系统100中的设备包括处理器140(例如,DSP或MCU)以及多通道数模转换器(DAC)143。处理器140被示为耦合到复杂可编程逻辑器件(CPLD)计时/控制算法块148。CPLD计时/控制算法块148提供包括自动地选择(或切换)波形类型(例如,脉冲FMCW模式操作或脉冲CW模式操作)以及可选地调整发射脉冲雷达信号的脉冲振幅(经由多通道DAC 143)和脉冲宽度(经由触发信号Tx 111)的功能。 [0026] Tx 190包括触发信号Tx发生器111以及触发信号Tx振荡器112,其在活动时Tx 190提供来自DAC 113的固定输出的脉冲CW波形。DAC 113还提供可变输出,并且使用该可变输出可以分别地生成脉冲LFM、脉冲FMCW或脉冲SFCW信号。 [0027] 脉冲持续时间由触发信号振荡器112控制,并且波形由DAC 113控制。载频发生器120从触发信号Tx振荡器112和DAC 113接收输入,并且其输出被耦合到可编程功率放大器(PA)125。载频发生器120可以包括本地电压控制振荡器(VCO)。基于CPLD计时/控制算法块 148控制,当DAC 113的输出借助于控制算法改变时,Tx 190发射脉冲LFW、脉冲FMCW或脉冲SFCW信号,而当DAC 113的输出是恒定的时,Tx 190通过CW载波发射脉冲CW信号或脉冲。 [0028] 多通道DAC 143的输出和触发信号Tx发生器111的输出被耦合到PA 125的相应的输入。触发信号Tx发生器111控制被PA 125放大的脉冲的持续时间,并且由来自多通道DAC 143的控制信息来控制脉冲振幅,其控制由PA 125提供的生成的信号功率。PA 125的输出被连接到耦合器160,其被连接到天线175。虽然针对雷达系统100示出了被Tx 190和Rx 150两者利用的单个天线175,但是Tx 190和Rx 150可以包括单独的天线,其允许去除耦合器160。 [0029] Rx 150响应于经由天线175发射到耦合器160的脉冲雷达信号而接收从储罐中的产品材料的表面反射或散射的信号。耦合器160被连接到PGN块135(针对关于PGN块135和相关设备的更多细节,参见下面描述的图1B)。 [0030] PGN块135的输出被示为被耦合到采样单元146的混频器(mixer)185,其中,采样单元146包括采样和保持(S&H)电路170、可选偏移/增益控制块180和模数转换器(ADC)145。混频器185将来自PGN块135的信号与来自载频发生器120(其充当本地振荡器)的信号混合。触发信号Rx 155用来选择性地控制混频器185的打开和关闭。 [0031] S&H电路170和ADC 145由CPLD计时/控制148以协调方式控制以使由混频器185生成的输出信号数字化。混频器185的数字化输出被耦合到处理器140,其对接收到的信号执行相关处理任务。可选偏移/增益控制块180从同步的S&H 170接收输出信号,并基于由CPLD计时/控制算法块148(其被处理器140控制)提供的控制信号来施加偏移和/或增益控制。偏移/增益控制块180的输出被耦合到ADC 145的输入,其输出被耦合到处理器140。 [0032] 图1B是包括PGN块135连同采样单元146的示例性可编程Rx的一部分的框图描绘。还示出了处理器140、CPLD 148和多通道DAC 143,其中,多通道DAC 143被示为被耦合成控制可编程衰减器115的衰减。PGN块135包括前端调节器,其包括可编程衰减器115和至少一个快速作用的功率限制器110(前端调节器是组合115 / 110)。被置于LNA 105的输入节点与用于雷达系统的接地节点之间的功率限制器110用来保护LNA 105免受大量值串扰信号(参见图3区1,下面描述)和来自罐或容器中的障碍物的反射。 [0033] 还可以在LNA 105的输入节点与系统正电源(V+)或其它电压之间添加可选第二功率限制器110,使得到LNA 105的输入信号可以被钳位到预定电压值,如图1B中所示。应注意的是在设计中一般地使用功率限制器110来将到LAN 105的输入信号的功率限制到约-10dBm(70mV)。直接地在到LNA 105的输入与系统接地线之间放置功率限制器110一般地是可接受的。针对到LNA 105的其它输入偏置情况,可以放置可选第二功率限制器以还对到LNA 105的最大输入的电压进行钳位,其值可以是逐个设计而可变化的。 [0034] 如本文所使用的“LNA”指的是在通信系统中使用的特殊类型的电子放大器,其将由天线捕捉的非常弱的信号放大。当使用LNA时,电路被配置成使得噪声系数被放大器通过增益减小,而放大器的噪声被直接地注入到接收信号中。 [0035] 关于前端调节器115/110的设计,在由被Tx电路通过耦合器160驱动的天线175发射脉冲之后,Rx电路将开始被暴露到来自Tx 190的串扰信号,后面是被天线175(或用于单独Rx和TX天线系统实施例的其它天线)接收的输入信号,其通常包括交叉耦合信号,然后接收来自目标表面反射的目标信号。 [0036] 只有当此节点处的信号电压的量值在一定水平之上时,被放置在LNA 105的输入节点与系统接地节点之间的功率限制器110才可以将接收信号中的功率分流掉(shunt away)。功率限制器110因此可以对LNA 105的输入节点处的功率水平进行钳位。具有图1B中所示的第一和第二功率限制器110两者可以为LNA 105提供双向保护的选项。限制器110电路被选择成作为快速分流(shunt fast)起作用,足够快速地作用以保护LNA 105的电路免受损坏和/或深度饱和以及针对需要快速反应的某些应用(诸如当目标相对地接近天线时)。 [0037] 可能还需要短的恢复时间以便获得没有失真的目标信号。例如,如果短脉冲具有1ns单循环脉冲的等价持续时间,则限制器110的恢复时间一般地应小于等价脉冲持续时间,诸如至多0.5 ns(≤1/2的等价脉冲持续时间)。还可以将功率限制器110选择成对强(高功率)接收信号进行钳位,并且所提供的钳位水平一般地应小于LNA 105的最大线性输入。 [0038] 可以从多个设备中选择功率限制器110,包括当被定向为正向偏置时提供超高速开关的肖特基双势垒二极管。取决于信号极性,可以在LNA 105的输入节点与系统接地之间放置一个功率限制器110以提供单向保护,并且为了双向保护,可以在LNA 105的输入节点与正电源(V+)或其它电压之间添加第二功率限制器,使得可以将到LNA 105的输入信号钳位到预定|最大|电压值上;以为具有另一极性的信号提供保护从而能够实现双向保护。功率限制器110一般地是无源设备,其只有当信号电压超过功率限制器110的电压阈值时才变得活动。 [0039] 为此目的而提供了由PGN块135提供的可调整增益(或衰减)。处理器140/CPLD 148/多通道DAC 143引起PGN块135当接收雷达信号在预定信号水平以上(例如,交叉耦合信号)时在低增益或衰减水平中操作,并且当接收雷达信号在预定信号水平以下时在较高增益水平下操作。(例如,从电介质材料和/或从更远处反射的目标信号)。具有公开的PGN的公开雷达系统因此与常规固定接收器增益布置相比能够实现使用短脉冲来同时地以较高准确度测量较长距离。 [0040] 图2A-2D示出了根据示例实施例的示例性波形,其分别地包括可以被生成并被公开的可编程Tx自动地且自适应地切换到的脉冲CW波形、脉冲LFM波形、脉冲SFCW波形以及脉冲FMCW波形。图2A中的脉冲CW波形证明恒定频率对比时间下的连续正弦波,其有利之处在于诸如K波段载波之类的较高频率载波花费相对短的时间来发射短脉冲。CW雷达脉冲的脉冲宽度可以是数十或数百皮秒,对应于至少2 GHz的3-dB带宽。用于脉冲CW操作的雷达系统信号处理是时域处理。 [0041] 如果电源持续时间被较少限制(例如,较长时间),则可以选择在脉冲内部具有LFM波形的较宽脉冲(与用于脉冲CW波形的数十或数百皮秒相比)。在这种情况下,脉冲宽度可以大到几毫秒,对应于>1,000,000的脉冲压缩因数,等价于脉冲宽度<1ns。波形具有在较长距离处使用调频技术来获得高分辨率、高SNR数据的优点。用于脉冲LFM操作的雷达系统信号处理是时域相关处理。 [0042] 针对处理缓慢移动目标的应用,可以选择脉冲SFCW(参见图2C)或脉冲FMCW(参见图2D)波形。在缓慢移动情况下,脉冲宽度可以约为数百毫秒。用于脉冲SFCW或脉冲FMCW操作的雷达系统信号处理是基于频域的处理。可以获得大的带宽发射信号,典型的>2 GHz。 [0043] 脉冲SFCW和脉冲FMCW波形的优点是高动态范围和SNR。相反地,关于图2A中所示的脉冲CW波形,如果用于雷达的电源是非常有限的,诸如4-20 mA回路功率,则波形将是在脉冲内部具有CW波形的较短脉冲。在这种情况下,雷达脉冲的脉冲宽度可以从数十变动至数百皮秒,对应于至少2 GHz的3-dB带宽。针对脉冲SFCW波形,在离散频率(例如,使用锁相回路(PLL)来控制)中实现的是针对每个离散频率需要用以建立稳定且相干的输出信号的时间和测量信号返回(例如,反射)的时间。SFCW和相关跳频因此提供每个单独频率的知识,其相比于FMCW改善了系统性能,但是一般地与FMCW相比要花费更多的时间穿过带宽。 [0044] 图3示出了响应于入射在其中具有液体产品的储罐中以用于作为时间的函数的雷达检测过程的脉冲雷达信号的接收和采样雷达信号(没有信号处理)的相对振幅,其中,用于雷达检测过程的时间窗被划分成三个区。第一区包含相对高振幅(高功率)交叉耦合信号。第二时间窗包括来自发射装置(launcher)和/或馈通的反射。第三时区包括对象(目标)反射的返回。通过可以基于雷达系统100中的内部硬件的校准的适当配置或者通过用于雷达系统的设计规范,可以对由处理器140提供的信号处理进行适当调整。在下面的段落中描述更多配置细节。图3中所示的每个区可以被配置成具有时间分隔,并且因此被用不同的系统设置来处理。PGN块135一般地将能够使得图3中所示的三个区适合于采样单元146的动态范围,其可以为约60至80 dB以获取亚纳秒信号。 [0045] 在雷达检测过程开始时,对应于图3中的第一区,可以由处理器140将用于可编程衰减器115的初始衰减设置设定成最大值。到应该显示所获取波形时(通常由于初始衰减设置的大衰减而没有东西将出现在显示器上),可以以预定义步骤将用于可编程衰减器115的衰减设置调整到较低值,以使用在第一区中提供已知(固定)时间延迟的内部耦合信号来收集信号,诸如用于校准的目的。可以在约60-dB动态范围下获取时间窗的此部分中的小波。此后,可以将用于可编程衰减器115的衰减器设置变成新的较低衰减值以便获取第二区中的信号。 [0046] 应注意的是在具有用于可编程衰减器115的新的较低衰减值的第二区的时间期间,第一区内的信号的功率可能已经大到足以使得LNA 105变得饱和或损坏。然而,饱和或损坏将不会发生,因为功率限制器110一般地将足够快速地激活并将足够的功率分流掉(shunt away)以防止LNA 105饱和及损坏。当与相邻区之间的时间间隔相比时,功率限制器110的恢复时间一般地将足够短。同样地,可编程衰减器115可以被处理器140和控制单元 148和多通道DAC 143切换到另一较低衰减值以让弱的目标信号被从获取起来有点儿远的目标反射或散射。每个数据样本(例如,每时间间隔/区一个)因此可以在数据简档中包括量子化振幅和相应衰减器设置或增益设置。 [0047] 取决于出现的情况,可以将时间窗划分成多于图3中所示的三个区。用于功率限制器110的显著特征是其恢复时间应小于相邻区之间的时间间隔。可编程衰减器115可能需要更长的时间以用于在两个值之间切换。然而,在此设计中,这一般地不是问题,因为例如短脉冲发生器的PRF(脉冲重复频率)是 。每个区对应于采样窗。每个区(采样窗)中的采样点的数目被假设为Ni。可用于可编程衰减器115进行切换的时间(Ti)由下式给定:。 [0048] 为了降低热噪声水平,可以通过多个(Ag)所获取的值来对每个采样位置处的值求平均。给定 =10、 =2 MHz、Ni=2000(其是普通/典型值),Ti是10ms。10ms一般地长到足以使大多数可编程衰减器被针对另一区或采样窗设定成另一值。 [0049] 公开的调节设备组合115/110所需的计时取决于从能量被从发射天线(图1中的175)辐射所处的时刻到散射/反射电磁能被接收孔径(其也是如图1中所示的175)捕捉所处的时刻的传播时间。一旦完成了天线175的配置,则一般地将确定首先的两个区中的最大信号水平。可以用此信息来适当地设定用于可编程衰减器115的衰减设置。因此,在测量开始时将可编程衰减器115的衰减设置成最大值可能是不必要的。为了针对其它区获得用于可编程衰减器115的衰减器设置,可以使用实验和经验。用以解决不同应用情形的调节设备组合115/110的功能可以包括以下各项: 1.可以设定最大限制钳位水平,使得接收信号水平小于LNA 105的1-dB压缩点(即,P1)的水平。 [0050] 2.当正在接收大振幅有用信号时,由功率限制器110对其进行钳位防止LNA 105饱和/损坏。可以将用于功率限制器110的设备选择成基于通常在其规范数据表上提供其P1值的LNA 105的选择而对所有功率进行钳位而不是分流。如果人们期望线性无失真未钳位信号,则可以用较高衰减水平来调谐可编程衰减器115以降低信号振幅,使得功率限制器110可以被自动地停用。如上所述的功率限制器110一般地是具有快速恢复时间<0.5 ns的无源设备。当信号水平变得在功率限制器的电压以下时,则功率限制器110将被快速地恢复并变成“不活动的”。 [0051] 3.当正在接收小信号(例如,目标信号)时,功率限制器110未被激活。可以将用于可编程衰减器115的衰减设置成“0”(直通模式),并且LNA 105的增益处于最大值。LNA 105的增益一般地是可调整的,或者是固定增益。应注意的是可以用单个或用多个串联放大级来构造LNA 105。 [0052] 4.当正在接收大的串扰信号等时,可以将功率限制器110自动地激活以对大信号进行钳位以防止LNA 105的饱和(或损坏)。当为了校准目的也想要大的串扰(交叉耦合)信号时,可以调整PGN块135以在将功率限制器110停用的同时通过使用来自可编程衰减器115的衰减而使信号衰减,使得大的信号变得在本质上没有失真的情况下可用于校准。 [0053] 图4是根据示例实施例的示出了具有可编程Tx和可编程Rx的所公开自适应雷达系统的数据。本示例示出了发射脉冲雷达信号的功率被调整为与由PGN块135提供的接收器增益和灵敏度控制(RGSC)一致。x轴是以dBm为单位的Tx功率和脉冲CW雷达(参见图2A)。y轴的单位被表示为用于接收信号的dBm以及用于SNR的dB。本示例证明了用于液体产品材料的最少25 dB的SNR检测,诸如在离发射天线100m的距离处具有1.3的介电常数的储罐中的石油化工产品。为了在大的动态范围内获得至少25 dB SNR,在所谓的“自适应范围”(作为图4中的示例被示为是20至30 dBm)内自适应地调谐Tx功率。 [0054] 在系统操作中,在每个Tx功率水平下,可以自动地调整PGN块135的增益,使得最小可检测信号具有至少25 dB的SNR以确保在2mm内的水平测量的所需准确度。如在图4中看到的,针对达到30 dBm的Tx功率,用具有增益=0的PGN块135,SNR远低于25 dB。为了获得2mm的良好水平准确度,一般地需要至少约25dB SNR。 [0055] 然而,可以用各种限制(诸如政府规章)来限制Tx功率,因而可以限制Tx功率,诸如到30dBm。使用具有有效增益=10dB的PGN块135,可以看到与具有增益=0的PGN块135相比,SNR(针对固定Tx功率)被增加至约10 dB,并且可以看到SNR针对20dBm TX功率变成25dB(并且针对30 dBm TX功率为35dBm)。针对具有CW载波的短脉冲,改善的SNR对于应对接收信号的高动态范围而言是重要的。虽然在脉冲LFW、FMCW或SFCW雷达中,与脉冲CW相比脉冲信号的持续时间较长,上述适应仍然适用。 [0056] 虽然上文已经描述了各种公开的实施例,但是应理解的是其已仅作为示例被提出并且并不是限制。在不脱离本公开的精神或范围的情况下,可以根据本公开对本文公开的主题进行许多改变。另外,虽然可能已经关于多个实施方式中的仅一个公开了特定特征,但是如对于任何给定或特定应用而言可能期望且有利的那样,可以将此类特征与其它实施方式的一个或多个其它特征组合。 |