太阳能热电厂生成蒸汽热交换器

申请号 CN201080028310.4 申请日 2010-06-24 公开(公告)号 CN102483227A 公开(公告)日 2012-05-30
申请人 巴尔克有限公司; 发明人 J·施塔尔胡特; 沃夫冈·黑格纳; 德克·班德;
摘要 本 发明 涉及一种用于为 太阳能 热电厂生成 蒸汽 流的 热交换器 ,所述热交换器包括:容纳 外壳 侧 流体 的外壳,在所述外壳内延伸的、容纳管道侧流体的管道,其中,热通过所述管道从所述管道侧流体传递到所述外壳侧流体。所述外壳侧流体为 水 ,所述管道侧流体为热油或盐。本发明可提高启动梯度和负荷变换梯度,因此,提高了电厂的利用率,而且,可实现更高的操作安全性。
权利要求

1.一种用于为太阳能热电厂生成蒸汽流的具有外壳热交换器,其中,在所述外壳外面,在独立的汽包中,蒸气与液相分离。
2.根据权利要求1所述的热交换器,其特征在于,所述外壳配置为容纳外壳侧流体,用于容纳管道侧流体的管道设置在所述外壳内,其中,热量通过所述管道从所述管道侧流体传递至所述外壳侧流体,其中,所述外壳侧流体为水,所述管道侧流体为热油或盐。
3.根据前述任一项权利要求所述的热交换器,其特征在于,所述热交换器包括进流管,所述进流管连接到外壳侧流体的入口,并且所述进流管包围至少一部分所述管道,其方式使得所述进流管配置为用于所述外壳侧流体进入所述外壳的预热器和/或流量指示器。
4.根据权利要求3所述的热交换器,其特征在于,所述进流管大约包围所述管道表面的1/8。
5.根据前述任一项权利要求所述的热交换器,其特征在于,所述热交换器包括出流管,所述出流管设置在外壳侧流体的出口区域内,其方式使得所述出流管配置为用于使所述外壳侧流体从所述外壳流出的流量指示器和/或水分离器。
6.根据前述任一项权利要求所述的热交换器,其特征在于,通过U形管道束或迂回管道束,以及剖面管道构件或集管,管道侧流体与外壳侧流体彼此分离。
7.根据前述任一项权利要求所述的热交换器,其特征在于,所述汽包设置在所述热交换器上方,并且通过升流管和落水管与所述热交换器连接。
8.根据前述任一项权利要求所述的热交换器,其特征在于,所述汽包具有清水入口。

说明书全文

太阳能热电厂生成蒸汽热交换器

技术领域

[0001] 本发明涉及一种为太阳能热电厂生成蒸汽流的热交换器。

背景技术

[0002] 例如,对于环境、增加的成本以及逐渐稀缺的化石燃料的增强的经济和政治意识等因素引起了发电领域的再思考。新技术已经使再生能和太阳能得到了更多的使用。尤其是,同时,已经在大型工业应用中设置了带有抛物线状有槽收集器的太阳能热设备,所以在美国和欧洲,所述太阳能热设备已经投入运行,且在不久的将来将进一步增加大型设备。
[0003] 在带有抛物线状有槽收集器的太阳能热电厂中,通过吸收管上的抛物线型反射器聚集阳光,以便将设置在吸收管内的热油加热到大约400℃的温度。借助于热交换器,从热油中抽取热能,并将热能传递至用于蒸发,使由此生成的蒸汽以常规的方式驱动涡轮机,以在与之连接的蒸汽发电厂内发电。带有U形管道束的热交换器通常用于蒸汽的生成,在该热交换器内,气态水在管道束上方的外壳区域内与液相分离,从结构上来看,这是通过扩大外壳直径来实现的。
[0004] 已经证明通过扩大外壳直径在外壳内分离蒸汽,在太阳能热电厂和这些电厂特有的循环操作模式中是不利的。扩大的外壳直径需要增加外壳的壁厚,这对热交换器的热弹性有不利的影响,这就意味着在电厂的启动操作和负荷变换操作过程中减小了最大允许的温度梯度。因此,电厂的利用率降低,同时材料疲劳的风险增大。

发明内容

[0005] 因此,本发明的目的在于提供一种为太阳能热电厂生成蒸汽的热交换器,所述热交换器减少或克服了现有技术中的上述缺陷
[0006] 独立权利要求1的主题实现了所述目的,从属权利要求是针对本发明有利实施例的。
[0007] 为太阳能热电厂生成蒸汽流的根据本发明的热交换器包括:外壳,用于容纳外壳侧流体;以及,在所述外壳内延伸的、用于容纳管道侧流体的管道。通过所述管道将热从所述管道侧流体传递到所述外壳侧流体,其中,所述管道侧流体为热油或盐,所述外壳侧流体为水。
[0008] 借助于根据本发明的热交换器可大幅减小所述外壳的直径。使用集管代替剖面管道构件,甚至进一步减小了机械上所需要的壁厚。因此,可大幅增大在启动操作和负荷变换操作过程中允许的最大温度梯度,这就使得电厂的热弹性和利用率更高。因为材料疲劳和热裂纹的风险大幅降低,所以提高的热弹性进一步提高了操作的可靠性。
[0009] 优选地,所述热交换器包括进流管,所述进流管连接到外壳侧流体的进入口且包围至少一部分所述管道,其方式使得所述进流管设置为用于外壳侧流体进入所述外壳的预热器和/或流量指示器。根据本发明的实施例,进入所述热交换器外壳的冷水与在热交换器内已经被加热的水或水蒸气混合物混合之前,首先流经所述进流管。这样,形成了整合的预热器部分,从热动学和流体学的度来看,这被证明是有利的。此外,所述进流管用作流量指示器。
[0010] 在本发明另一实施例中,所述进流管大约包围所述管道表面的1/8。优选地,所述进流管为盒状并且包围一部分发热管道表面。所述进流管也可配置为圆柱形。由所述进流管包围的管道表面占所述热交换器内的整个管道表面的比例为1/8。可根据各个应用调整这个值。
[0011] 优选地,所述热交换器进一步包括出流管,所述出流管设置在外壳侧流体的出口区域内,其方式使得所述出流管设置为用于所述外壳侧流体从所述外壳流出的流体指示器和/或水分离器。这就确保了蒸汽按指示从所述热交换器中流出。而且,所述出流管可包括用于更好地分离水或水滴的构件。
[0012] 优选地,所述热交换器外壳内的管道配置为U形管道束。这样,以紧凑的方式为传输热量或生成蒸汽提供大的表面区域,并且使发热的热油在热交换器内的滞留时间尽可能最长。这些管道还可用迂回的方式延伸。因此,可以以适用于各个应用的最佳方式来设置所述管束的尺寸和排布。
[0013] 在优选实施例中,根据本发明的热交换器包括汽包,所述汽包设置在所述热交换器的上方,并且通过升流管和落水管与所述热交换器连接。所述热交换器内生成的蒸汽通过升流管到达所述汽包;从所述汽包内去除所述蒸汽,以用于进一步使用或者进行过热处理。可通过所述落水管从所述汽包内带走冷凝水并且将其引导回热交换器内。所述热交换器上方汽包的设置实现了自然循环。根据应用,也可以通过提供强制循环。
[0014] 优选地,所述汽包包括清水入口,这样,可省去所述热交换器侧的外壳侧流体(水)的单独入口。根据该实施例,要被加热的水通过所述清水入口到达所述汽包,并进一步通过所述落水管到达所述热交换器。附图说明
[0015] 下面参照附图更详细地说明本发明,其中:
[0016] 图1示出了本发明第一实施例的侧视图;
[0017] 图2示出了图1的第一实施例的前视图;
[0018] 图3示出了图1沿着线A-A的剖视图;
[0019] 图4示出了本发明第二实施例的侧视图;
[0020] 图5示出了图4的第二实施例的前视图;
[0021] 图6示出了图4沿着线B-B的剖视图;
[0022] 图7示出了本发明第三实施例的侧视图;以及
[0023] 图8示出了图7的第三实施例的前视图。

具体实施方式

[0024] 图1到图3示出了根据本发明热交换器1的第一实施例。这里,水平放置的热交换器1包括容纳外壳侧流体(水)的外壳10并且垂直设置在支撑结构11上。管道20设置在外壳10内,通过虚线显示管道20的对称轴。管道束包括以迂回的方式弯曲的管道20。热的发热流体热油通过进油嘴21以大约400℃的温度和大约20巴的压力进入热交换器1,并且由分配器23引入管道束的各个管道20内。流经管道18后,热油通过集管24以及通过出油嘴22以大约300℃的温度和大约16巴的压力离开热交换器1,并且重新供应到抛物线状有槽收集器(未显示)的吸收管中。
[0025] 要加热的水以大约300℃的温度和大约110巴的压力流经进水嘴12进入或进入到热交换器1中。冷水首先通过入口13流入进流管14,这里,进流管14设置成有棱角的盒子形状,并且所述进流管14包括矩形开口14′,使水进入后必定被引导入箭头15的方向,且水穿过开口14′后,仅仅与已经加热的水或水蒸气混合物接触。因此,进流管14用于引导冷水流动并且对冷水预加热。进流管14包围管道20的一部分,所述管道20引导发热的热油,以在进流管14内生成强制对流。已证明由进流管14包围的管道20的表面面积占热交换器1内的管道20的整个表面面积的理想比例大约为1/8。
[0026] 通过将热从热油中传递到水中,在热交换器1内形成蒸汽,使那里存在水和蒸汽的混合物,由于密度差的原因蒸汽向汽包30的方向上升,在热交换器1的底面区域中水为主导。蒸汽通过开口32进入升流管31,并且进一步进入汽包30内,所述开口32优选地位于热交换器1的纵向的上部区域。通过连接35将蒸汽从汽包中去除并进一步使用所述蒸汽。优选地,用于使所述蒸汽过热的其它热交换器(未示出)与之连接。汽包30内的冷凝水通过落水管33和开口34再次提供给热交换器1。从汽包30内抽取的蒸汽平均来说具有大约为380℃的温度,及大约为108巴的压力。
[0027] 图4到图6示出了本发明的第二实施例,该实施例与上述第一实施例的基本区别在于热交换器1不包括单独的进水嘴。而是,通过落水管33和开口34为热交换器1供应清水。为此,汽包30包括清水入口36。因此,因为不再需要单独的水连接,所以可降低成产成本。另外,因为冷水已经在单独预热器内进行了预热,所以省去进流管14也是可行的。
[0028] 图7和图8示出了本发明的第三实施例,该实施例与第一实施例(图1至图3)大体上相似,基本区别在于管道20′配置为U形管道束。因此,热油通过横向进油嘴21,沿箭头25方向通过剖面管道构件27进入管道20′,释放热量给水,并且沿箭头26的方向通过出油嘴22离开热交换器1。要被蒸发的水通过进水嘴12进入热交换器外壳10并且流经进流管14,其中,与第一实施例相比,改变了进水嘴12的位置并由此还改变了进流管14的位置。优选地,进流管14设置在热油的出口区域。
[0029] 所述热交换器内流体的温度和压力可根据电厂的位置或规模而变化。
QQ群二维码
意见反馈