专利类型 | 发明授权 | 法律事件 | 公开; 实质审查; 授权; |
专利有效性 | 有效专利 | 当前状态 | 授权 |
申请号 | CN202011539696.7 | 申请日 | 2016-06-09 |
公开(公告)号 | CN112848322B | 公开(公告)日 | 2023-06-16 |
申请人 | 多种材料焊接股份公司; | 申请人类型 | 企业 |
发明人 | J·迈尔; J·奎斯特; M·莱曼; P·博世内尔; | 第一发明人 | J·迈尔 |
权利人 | 多种材料焊接股份公司 | 权利人类型 | 企业 |
当前权利人 | 多种材料焊接股份公司 | 当前权利人类型 | 企业 |
省份 | 当前专利权人所在省份: | 城市 | 当前专利权人所在城市: |
具体地址 | 当前专利权人所在详细地址:瑞士比尔市 | 邮编 | 当前专利权人邮编: |
主IPC国际分类 | B29C65/08 | 所有IPC国际分类 | B29C65/08 ; B29C65/60 ; B29C65/64 ; B29C65/74 ; F16B5/01 ; F16B5/08 |
专利引用数量 | 1 | 专利被引用数量 | 0 |
专利权利要求数量 | 25 | 专利文献类型 | B |
专利代理机构 | 北京泛华伟业知识产权代理有限公司 | 专利代理人 | 胡强; |
摘要 | 提供一种将连接器锚固在异质的第一物体中的方法,该第一物体包括第一结构层和在第一结构层的远侧的 内衬 层。该内衬层的 密度 显著低于第一结构层的密度和/或抵抗连接器的插入的机械阻 力 显著低于第一结构层的相应的机械阻力。该方法包括:提供第一物体;提供连接器,该连接器包括固态的热塑性材料并在近端和远端之间延伸;使连接器与第一结构层物理 接触 ;对连接器施加第一机械按压力,直到第一结构层被连接器刺穿并且连接器的远端部分到达内衬层;对连接器施加第二机械按压力和机械振动,直到热塑性材料的流动部分可流动并穿透第一物体的结构,头部的面向远侧的抵接面在邻近开口的区域中紧靠金属 型材 ;使热塑性材料重新 固化 以在连接器和 夹层板 之间产生形状配合连接。 | ||
权利要求 | 1.一种将连接器锚固在异质的第一物体中的方法,该异质的第一物体包括第一结构层和在所述第一结构层的远侧的内衬层,其中所述内衬层包括带充气空间的结构并且密度显著低于所述第一结构层的密度和/或所述内衬层的机械稳定性显著低于所述第一结构层的机械稳定性,所述方法包括以下步骤: |
||
说明书全文 | 在轻型结构元件中锚固技术领域背景技术[0003] 在汽车、航空、家具和其它行业中,已经倾向于弃用钢结构而使用轻型结构部件。这些元件的一个例子是包括两个外部的相当薄的结构层以及布置在结构层之间的中间层(内衬层)的轻型建筑元件,该结构层例如由纤维复合材料(比如玻璃纤维复合材料或碳纤维复合材料)、钣金、或者根据行业由纤维板制成,该中间层(内衬层)例如是纸板蜂窝结构或轻型金属泡沫。这种轻型结构元件可以称为“夹层板”,并且有时被称为“空心芯板(HCB)”,它们机械稳定并且看起来很舒适,而且具有相对低的重量。 [0005] 为了应对这些挑战,汽车、航空和其它行业已经开始大量使用粘合剂结合。粘合剂结合可以轻而坚固,但是存在不能长期控制可靠性的缺点,因为几乎不可能在没有完全破坏该结合的情况下检测到例如由于脆化的粘合剂而导致的弱化的粘合剂结合。此外,粘合剂结合可能导致制造成本的上升,这是由于材料成本以及由于缓慢的硬化过程而导致的制造过程中的延迟,特别是如果彼此待连接的表面具有一定的粗糙度,并且由此导致不能使用快速硬化的薄层粘合剂。 发明内容[0006] 本发明的目的是提供一种将连接器锚固在第一物体中特别是锚固在夹层板中的方法,该夹层板具有夹在第一和第二结构层之间的相对较弱的内衬层,其中该内衬层可以不具有足够的稳定性以用作连接器的唯一的锚固材料。另一个目的是提供一种将第二物体固定至第一物体的方法。这些方法应克服现有技术方法的缺点。 [0007] 一种将连接器锚固在异质的第一物体中的方法,该异质的第一物体包括第一结构层和在该第一结构层的远侧的内衬层,其中该内衬层的密度显著低于第一结构层的密度和/或抵抗连接器的插入的机械阻力显著低于第一结构层的相应的机械阻力,该方法包括以下步骤: [0008] ‑提供该第一物体; [0009] ‑提供连接器,该连接器包括固态的热塑性材料并在近端和远端之间延伸; [0010] ‑使该连接器与该第一结构层物理接触; [0011] ‑对该连接器施加第一机械按压力,直到该第一结构层被该连接器穿刺并且该连接器的远端部分进入该内衬层; [0012] ‑对该连接器施加第二机械按压力和机械振动,直到热塑性材料的流动部分可流动并且穿透该第一物体的结构,头部的面向远侧的抵接面在邻近开口的区域中紧靠金属型材;和 [0013] ‑使热塑性材料重新固化以在连接器和夹层板之间产生形状配合连接。 [0014] 在此,如果没有施加附加的能量,则机械阻力可以例如是使连接器前进进入相应材料的材料一定距离(如1毫米)所需的力。 [0015] 第一机械按压力和第二机械按压力的大小可以相同,或者尤其可以在大小上彼此不同。特别地,第一按压力可以大于第二按压力。 [0016] 第二按压力和/或可能的第一按压力可以符合按压力曲线,即可以根据连接器相对于第一物体的时间和位置而变化。可以根据位置、遇到的阻力和/或时间控制该按压力。 [0017] 第二按压力以及在许多实施例中的第一按压力可以通过按压连接器的超声波发生器来施加,并且在施加机械振动的步骤期间(即当施加第二按压力时)超声波发生器受到机械振动,该机械振动通过超声波发生器的面向远侧的耦合输出面被耦合到连接器中。在许多实施例中,在此的超声波发生器将与连接器物理接触,但是在超声波发生器和连接器之间也可能存在中间元件。 [0018] 在许多实施例中,当施加第一机械按压力穿刺第一结构层时,将没有机械振动被耦合到连接器中。在一些实施例中,穿刺第一结构层的连接器的远端包括热塑性材料,这尤其是有利的。如果在穿刺期间没有振动起作用,则不会发生远端的软化。但是可选地,可以振动辅助地刺穿第一结构层,即在实施例中,在施加第一按压力的步骤期间机械振动也起作用。这样的机械振动可以可选地在幅度和/或频率上不同于在后续施加第二机械按压力的步骤期间起作用的振动。 [0019] 在施加第一按压力的步骤以及此后,在许多实施例中,第一结构层将仅被穿刺并保持连贯连续的层。围绕穿刺位置的第一结构层的部分可以例如被变形,例如向远侧弯曲。 [0020] 在进一步插入连接器时,围绕穿刺位置的第一结构层可以集成在锚固设置中,例如通过围绕其流动的流动部分以及围绕锚固位置的第一结构层的嵌入部分,和/或通过引导连接器和例如甚至在其上施加有弹性的横向力从而导致一些夹紧。因此,这些部分可能有助于锚固的稳定性。 [0021] 对于施加第二机械按压力的步骤,可以从一开始(即一旦第一结构层被刺穿)或仅在连接器的远端已经前进进入内衬层材料一定的最小距离之后引起振动。 [0022] 在施加第二机械按压力的步骤期间,连接器的至少面向近侧的耦合面将进一步朝远端方向前进,即至少一部分连接器将进一步前进入第一物体,其中第二按压力和振动可以借助所述耦合面被耦合入连接器中。 [0023] 第一物体尤其可以是夹层板,还包括位于内衬层的远端的第二结构层,该第二结构层的密度和/或机械稳定性(尤其是抵抗插入连接器的阻力)基本上高于内衬层的密度/稳定性。 [0024] 例如,第二结构层可以具有与第一结构层相同的组分。第二结构层的厚度可以可选地与第一结构层的厚度相同。 [0025] 通常,第一物体可以是夹层板,其中内衬层具有带例如规则布置的充气空间的结构。在实施例中,该充气空间可以在第一结构层和第二结构层之间竖向延伸。另外或作为替代,充气空间可占据层间体积的大部分,例如至少50%或至少65%。内衬层的平均密度例如至多是第一和/或第二结构层的密度的1/5,在实施例中至多是1/10、甚至1/15。 [0026] 这种具有优化厚度比(例如结构层厚度为总板厚度的1‑2%)的夹层板可以示出为具有类似于重量超过五倍的结构层材料的整体板的弯曲刚度。因此,具有足够低的内衬层厚度的夹层板可以在给定一定机械刚度要求时实现总体重量的显著减小。 [0027] 然而,如果连接器(或其它装置)在这种夹层板中被驱动到物体中,一旦第一结构层被穿透并且连接器被驱动到内衬层中,则机械阻力显著下降。另外,该阻力下降并非完全可预测的,其取决于连接器的远端是否在中空空间中前进。因此,在被驱动穿过第一结构层之后,连接器可能预期会撞穿内衬层并且也撞穿第二结构层。然而,这将导致连接器的锚固不足,并且通常第二结构层应保持完整。 [0028] 本发明意识到,然而有利的是驱动连接器通过第一结构层且同时以如此方式控制按压力,使得连接器以受控方式前进穿过内衬层和/或在破坏第二结构层前停止。 [0029] 特别地,在实施例中,施加第二机械按压力,直到连接器的远端与第二结构层充分接触以使机械阻力再次增加,即施加按压力直到连接器到达第二结构层而第二结构层没有被穿透。 [0030] 例如,可以控制过程中的按压力,使得在穿透第一结构层的步骤期间其达到第一水平,然后在运动通过内衬层期间立即下降以遵循第二曲线,并且当前进运动被第二结构层阻碍时达到第三水平。在此,第一水平和第三水平高于第二曲线中的平均压力值,例如高于遵循第二曲线时达到的任何压力值。换句话说,直到第一结构层被刺穿之前按压力是很高的,然后强烈地减小,以便连接器进入和穿过内衬层,然后当连接器与第二结构层(或属于第二结构层的粘合剂层)接触时再次升高。 [0031] 在一组特殊的实施例中,除了热塑性部分之外,连接器还包括不可液化材料的部分,该不可液化部分最初形成远端穿刺结构,但是一旦热塑性材料由于振动能量的冲击而变得足够软,则该部分通过(第二)按压力的作用朝向近端方向相对于热塑性材料移位。 [0032] 在本文中,术语“连接器”通常是指广义上的连接器,包括用于机械连接另一物体或连接部分的机械连接器,即连接器可以与待连接的物体成一体或构成待连接的物体。此外,连接器可以直接带有或具有集成的这样的第二物体(例如如果第二物体比连接器本身小,例如如果第二物体是传感器、电缆等)。 [0033] 在一组实施例中,该方法包括通过连接器将第二物体固定到第一物体的其它步骤。例如: [0034] ‑连接器可以包括头部,并且第二物体被夹持在第一物体的面向近侧的表面部分和头部之间。 [0036] ‑在将连接器从远端锚固之后,例如通过基本上完整的面向远侧的表面,第二物体可以被组装到第一物体上,例如通过被驱动入第一物体和连接器的组件的材料中。 [0037] 通常,在使向第一物体施加机械振动能量的步骤之前,在该步骤期间/通过该步骤,和/或在该步骤之后,连接器可以附接至第二物体。 [0038] 在实施例中,第二物体包括型材,例如金属型材。如果适用,金属型材可以保持脚部。 [0039] 该方法可以包括实施以下步骤:例如使用单个超声波发生器,对多个锚固在同一第一物体的连接器同时地实施使连接器与第一物体接触的步骤和实施在物体和连接器彼此压靠时向连接器施加机械振动能的步骤。在此,至少在物体和连接器彼此压靠时向第一物体施加机械振动能的步骤期间,通过同一第二物体保持多个连接器。 [0041] ‑提供夹层板和连接器, [0042] ‑提供具有开口的金属型材, [0043] ‑使连接器与夹层板接触,此时金属型材在夹层板的近侧,连接器的轴杆部延伸穿过开口; [0044] ‑对连接器施加机械按压力和机械振动,直到连接器的轴杆部穿过近侧的结构层和内衬层,连接器的远端被压靠在远侧的结构层的内表面上,热塑性材料的流动部分是可流动的并穿透夹层板的结构,并且头部的面向远侧的抵接面在与邻近开口的区域中紧靠金属型材,和 [0045] ‑使热塑性材料重新固化以在连接器和夹层板之间产生形状配合连接。 [0046] 根据第二方面的方法可以尤其根据第一方面实施,即通过连接器穿刺第一(近侧)结构层的步骤。第一方面的上述可选特征和实施例中的任何一个也可以作为选项适用。 [0047] 通常在以下两个方面适用。 [0048] 由流动部分穿透的第一物体的结构可以是可穿透材料的结构,特别是孔。 [0049] 至少在根据本发明的方法的条件下,适于此的可穿透材料是固体的。它进一步包括(实际的或潜在的)空间,液化后的材料可以流动或被压入其中用于锚固。例如,它可以是纤维或多孔或包括例如通过适当的加工或涂层(实际的穿透空间)制造的可穿透表面结构。或者,可穿透材料能够在液化后的热塑性材料的静水压力下形成这种空间,这意味着当在环境条件下它可能不可穿透或仅到达非常小的程度。该性能(具有潜在的穿透空间)意味着例如在机械阻力方面的不均匀。具有该性能的材料的例子是多孔材料,其孔可由被迫离开孔的材料、软材料和硬材料的复合材料或异质材料所填充,异质材料中组分之间的界面粘附比由穿透的液化后的材料施加的力小。因此,通常可穿透材料在结构方面(“空的”空间,比如孔、空腔等)或材料组分(可移动材料或可分离材料)方面包含不均匀性。 [0050] 在具有玻璃纤维复合结构层以及位于它们之间的内衬层的夹层板的例子中,可穿透材料可以例如包括在结构层与内衬层之间的发泡粘合剂,例如PU粘合剂,和/或内衬层其本身可以包括空间/孔。另外或作为替代,结构层或结构层之一可以在上述意义上是可穿透的。 [0051] 第一个物体可以具有大致平坦的分部(并且可以例如通常是平坦的或板状的),其具有两个相对的宽表面和窄侧面、对应于该宽表面的远侧和近侧。 [0052] 如上所述,第一物体可以是夹层板,即是包括两个外部的相当薄的结构层以及布置在该结构层之间的内衬层的建筑元件,该结构层例如由纤维复合材料(例如玻璃纤维复合材料或碳纤维复合材料)、钣金还有纤维板制成。合适的内衬层材料例如是包括蜂窝结构。 [0053] 除了机械稳定的复合材料或金属片材之外,结构层还可以包括至少一种其它材料,例如塑料材料层(一个例子是PET纤维垫)、阻隔膜(PP阻隔膜为例子)等;另外或作为替代可选地,在结构层和内衬层之间可以存在粘合剂层。 [0054] 用于形成(例如蜂窝结构)内衬层的合适材料,包括PP(聚丙烯)、PE(聚乙烯)、PS(聚苯乙烯)、PET(聚对苯二甲酸乙二醇酯)、PA(聚酰胺)、PC(聚碳酸酯)、ABS(丙烯腈‑丁二烯‑苯乙烯)、PPS(聚苯硫醚)、PEI(聚醚酰亚胺)以及其它基于聚合物的材料和纸板。还可以使用轻量的金属泡沫或聚合物泡沫或陶瓷泡沫等,或具有分隔设置的保持器的结构。 [0055] 连接器包括热塑性材料。在实施例中,连接器由热塑性材料组成。 [0056] 在其它实施例中,除热塑性材料之外,连接器包括不可液化材料的主体。 [0057] 通常,连接器可以基本上是销形或螺栓形(即具有轴杆部),具有所提到的可选的头部或脚部和/或可能的附加台阶或锥部。然后,使连接器的轴线大致垂直于片材部和附接面延伸。然而,连接器不一定具有圆形横截面。而是,它可以具有不同的形状,例如细长形、多边形、T形、H形、U形等。 [0058] 施加的能量是机械振动能。在此,流动部分的液化主要是由于振动的连接器与第一物体的表面之间的摩擦引起的,该摩擦表面地加热连接器。 [0059] 在一组实施例中,连接器和/或连接器压靠的第一物体的一部分在按压和振动期间与第一物体直接接触的表面上包括用作能量导向器的结构例如刃或尖端,该能量导向器例如在超声波焊接中或在例如WO98/42988或WO00/79137或WO2008/080238中描述的“Woodwelding”工艺中是已知的。 [0060] 第一物体和(如果适用的话)第二物体是广义意义上的建筑构件(建筑元件),即在机械工程和制造的任何领域例如汽车工程、飞行器制造、造船、建筑施工、机械制造、玩具制造等中使用的元件。通常,第一物体和连接器以及(如果适用的话)第二物体都将是人造的人工物体。因此,不排除在第一和/或第二物体中使用天然材料如木质材料。特别地,第二物体可以是“纵梁”或其它机械加强第一物体的加强件(或反之亦然)。 [0061] 热塑性材料的流动部分是热塑性材料的部分,该部分在该过程中由于机械振动的影响而被液化并流动。流动部分不必是一件式的,而是可以包括例如在连接器的近端处和更远端的位置处彼此分离的部分。 [0062] 在本文中,表述“能够例如通过机械振动使其流动的热塑性材料”或简称“可液化的热塑性材料”或“可液化的材料”或“热塑性材料”用于描述包括至少一种热塑性组分的材料,当加热时,特别是当通过摩擦加热时,即当布置在彼此接触并且相对于彼此振动地运动的一对表面(接触面)中的一个表面上时,该材料变成液体(可流动的),其中振动的频率具有如上文讨论的性能。在某些情况下,例如,如果第一物体本身必须带有大量的负载,那么如果材料的弹性系数大于0.5GPa可能是有利的。在其它实施例中,由于第一物体热塑性材料的振动传导性能在该过程中不起作用,所以弹性系数可能低于该值。 [0063] 热塑性材料在汽车和航空工业中是众所周知的。为了根据本发明的方法,可以使用特别适用于这些工业中的已知的热塑性材料。 [0064] 适用于根据本发明方法的热塑性材料在室温下(或在该方法实施的温度下)是固态的。它优选包括聚合相(特别是基于C、P、S或Si链),其在临界温度范围以上(例如通过熔融)从固体转变成液体或可流动,并且当再次冷却到临界温度范围以下(例如通过结晶)时重新转变成固体,借此固相的粘度比液相的粘度高几个数量级(至少三个数量级)。热塑性材料通常将包含不是共价交联或交联的聚合物组分,交联键在加热至或高于熔融温度范围时可逆地打开。聚合物材料还可以包含填料,例如纤维或颗粒材料,其不具有热塑性或具有包括明显高于基础聚合物的熔融温度范围的熔融温度范围的热塑性。 [0065] 在本文中,通常“不可液化的”材料是在工艺过程中达到的温度、因此特别是在连接器的热塑性材料液化的温度下不会液化的材料。这不排除不可液化的材料在过程中未达到的温度下能够液化的可能性,通常该未达到的温度远高于热塑性材料的液化温度或者在过程中热塑性材料被液化的温度(例如至少80℃)。液化温度是结晶聚合物的熔融温度。对于非晶态热塑性塑料,液化温度(本文中也称为“熔融温度”)是高于玻璃化转变温度的温度,在此温度热塑性材料变成充分可流动的,有时称为“流动温度”(有时定义为可能挤出的4 最低温度),例如热塑性材料的粘度在此温度降至低于10Pa*s(在实施例中,特别是基本上 3 不含纤维增强的聚合物,低于10Pa*s)。 [0066] 热塑性材料的具体实施例是:聚醚酮(PEEK),聚酯例如聚对苯二甲酸丁二醇酯(PBT)或聚对苯二甲酸乙二醇酯(PET),聚醚酰亚胺,聚酰胺例如聚酰胺12、聚酰胺11、聚酰胺6或聚酰胺66,聚甲基丙烯酸甲酯(PMMA),聚甲醛或聚碳酸酯聚氨酯,聚碳酸酯或聚酯碳酸酯,或丙烯腈丁二烯苯乙烯(ABS),丙烯酸酯‑苯乙烯‑丙烯腈(ASA),苯乙烯‑丙烯腈,聚氯乙烯,聚乙烯,聚丙烯和聚苯乙烯,或这些的共聚物或混合物。 [0067] 除了热塑性聚合物之外,热塑性材料还可以包括合适的填料,例如增强纤维,例如玻璃纤维和/或碳纤维。纤维可以是短纤维。长纤维或连续纤维可以特别用于在该过程中未液化的第一和/或第二物体的部分。 [0069] 不具有纤维形状的其它填料也是可能的,例如粉末颗粒。 [0070] 适用于根据本发明方法的实施例的机械振动或振荡优选地具有在2和200kHz之间的频率(甚至更优选地在10和100kHz之间,或者在20和40kHz之间),和在0.2到20W每平方毫米活性表面的振动能。振动工具(例如超声波)例如被设计成使得其接触面主要在工具轴线(纵向振动)的方向上振荡,并且振幅在1至100微米之间,优选地在30至60微米的范围内。这种优选的振动例如由在超声波焊接中已知的超声波装置产生。 [0071] 在本文中,术语“近侧”和“远侧”用于表示方向和位置,即“近侧”是指操作者或机器施加机械振动的结合侧,而“远侧”是相对侧。本文中近侧上的连接器的加宽部称为“头部”,而远侧的加宽部称为“脚部”。附图说明 [0072] 以下,参照附图描述实施本发明的方式和实施例。附图是示意图。在附图中,相同的附图标记表示相同或类似的元件。附图示出: [0073] ‑图1是用于实施根据本发明的第一和/或第二方面的方法的设置; [0074] ‑图2是在通过连接器将第二物体固定到第一物体的过程的三个不同阶段期间的第一物体、第二物体和连接器的另一种构造,其中第二物体是金属框架; [0075] ‑图3a和3b是将连接器锚固在夹层板中的过程的不同阶段; [0076] ‑图4是过程曲线图; [0077] ‑图5是机械阻力与远端部分的深度的关系图; [0078] ‑图6a和6b分别是替代连接器和在锚固之前及处于锚定状态中的连接器; [0079] ‑图7是图6a的连接器的变型。 [0080] ‑图8a和8b又一个连接器;和 [0081] ‑图9a至9d是通过集成第一结构层的围绕穿刺位置的部分来辅助锚固的原理。 具体实施方式[0082] 用于实施本文所述方法的设置如图1所示。第一物体1是具有第一结构层11、第二结构层12和内衬层13(例如具有蜂窝结构)的夹层板。 [0083] 连接器3具有头部31和结束于远侧尖端的轴杆部32。连接器可以如下面更详细描述地通过穿刺第一结构层11的远侧尖端或在引入连接器前在夹层板上钻出的孔被引入到夹层板中,该孔至少延伸穿过第一结构层并且最多还穿过内衬层。 [0084] 对于紧固过程,超声波发生器6作用在连接器3的头部31上并将其压靠在抵靠非振动支撑件(图1中未示出)的第二结构层的内表面上。在过程结束时,头部31和第一结构层11夹持第二物体2以将其固定到第一物体上。 [0085] 这也在图2中示出。图2还示出了附加的台阶特征34,其除了在远端处的流动部分部件(其在包括可能的粘合剂等的第二结构层12中以及还在内衬层中锚固连接器3,并且还可以形成一种脚部),还围绕第一结构层11的开口形成近端流动部分35。 [0086] 第二物体被示出为包括围绕第一结构层11中的开口形成片材部21的金属型材。该过程结束时,片材部21被夹在已锚固的连接器的头部31和第一结构层之间。 [0087] 为了穿透第一物体,连接器3、第二物体2和第一物体相对于彼此如此布置,使得连接器3的远端穿过第二物体的贯穿开口并与第一结构层11物理接触(左图)。然后,通过施加第一按压力将连接器推入第一结构层11。这可以通过振动辅助或没有任何振动地来完成(如图2的左图示意性所示)。一旦连接器的远侧尖端刺穿了第一结构层,则按压力大大降低,并且连接器3移动穿过内衬层13。然后,与第二结构层12接触,开始导致热塑性材料的流动部分35液化的上述过程。非振动支撑件7可以局部地(如示意性示出的)或大范围地被保持抵靠第二结构层12的远侧表面。 [0088] 图3a示出了与图2的左图中的一个相似的设置(没有示出第二物体,但是在该过程之后固定到第一物体上的第二物体当然可以存在或被安装)。当第一物体1的远侧抵靠固定支撑件(未示出)时,通过驱动机构42将超声波发生器6压靠在连接器3的近侧耦合输入面上,并且根据该过程阶段,振动产生装置41(例如包括压电换能器)将其设置成振动运动。 [0089] 控制单元40控制振动产生和按压力/向前运动。 [0090] 通常,在本文的上下文中,控制单元是功能意义上的单元,并且不一定是物理意义上的单元,即构成控制单元的不同元件可以在物理上彼此分离,并且例如属于不同的部件/不同的实体,该不同的实体可选地可以包括其它的元件并且起到其它的功能。 [0091] 该装置还可以包括用于直接或间接感测超声波发生器6和/或连接器的位置的第一感测装置(直接感测装置可以例如包括光学位置测量台;间接感测装置例如可以使用驱动机构的控制和/或反馈信号)和/或用于直接或间接感测由工具施加在连接器上的力的第二感测装置(直接感测装置可以是与振动产生装置串联的力/压力测量装置;间接感测装置可以使用驱动机构和/或振动产生装置的控制和/或反馈信号)。第一感测装置和/或第二感测装置可以是分离的装置或可选地集成在控制单元中,即感测装置可以是文字上功能意义的感测装置,并且它们不必是物理上分离的实体。 [0092] 该装置可以例如被配备和编程以根据以下标准之一来控制施加的力和/或振动产生: [0093] ‑根据选择,可以限定用于超声波发生器向前运动的预定速度分布(例如恒定速度或当连接器的远端与任一结构层接触时减小的速度)。然后所需的力可以用作反馈信号。 [0094] o例如,可以限定(在工具上的)触发力。一旦力超过触发力,振动开始。 [0095] o在一个变型中,振动的开始条件是达到触发力并且连接器的位置在一定的窗口中。这第二个条件适用于第一物体是夹层板的设置,这是因为在穿刺第一结构层期间,施加在连接器上的力通常高于触发力,并且如果在该穿透期间不希望机械振动能被系统吸收(例如因为它会导致连接器和/或第一结构层的部分产生不期望的热)。 [0096] ‑根据另一个选择,可以根据位置来控制力和/或振动,即限定作为位置分布函数的力/振动。 [0097] ‑根据更进一步的选择,如果第一物体的性能被充分精确地限定和已知,则力和/或振动可以遵循时间依赖的曲线。 [0098] ‑其它选择或组合(例如,如果装置被编程为针对不同类型的连接器或者基于用户选择的设置应用不同的选项)也是可能的。 [0099] 图3b描绘了在锚固过程结束之后的情况,流动部分35穿透内衬层的结构,并且还可能穿透第二结构层和/或连接这两个层的粘合剂层。 [0100] 图4示出了过程曲线图的例子。当穿透第一结构层时,施加的力51出现第一峰51.1。然后,在穿透内衬层期间,力降低(51.2),然后随着连接器的远端接近第二结构层,力再次升高(第二峰51.3)。当连接器压靠第二结构层时,振动52将至少在该阶段中起作用。可选地,其还可以在穿透第一结构层期间(第一峰,虚线)起作用或者从穿透第一结构层开始连续地起作用。 [0101] 如图4所示,可能有利的是在振动停止(保持力)之后维持按压力直到流动部分至少已经重新固化到一定程度。 [0102] 在图4中,第二力峰51.3被示出为低于第一峰51.1。然而,也不必要这样。由于热塑性材料的部分液化(参见下文例如图8)而在连接器的远端处的局部变形和/或由于支撑表面的支撑,第二结构层12在一些实施例中甚至可以承受比刺穿第一结构层所需的力更高的按压力,在实施例中即使它具有相同的组分和厚度。 [0103] 图5示出了力F(抵抗连接器插入的机械阻力,61),其不是作为过程时间的函数而是作为“竖向”位置z的函数。第一峰61的延伸程度大致对应于第一结构层的厚度t。在连接器前进穿过内衬层的中间区域61.2中,力可以基本上是恒定的,或者可以遵循取决于内衬层结构的一些曲线(虚线)。当远端到达第二结构层时,力如图5所示的例如相当陡峭地再次上升(61.3)。但是,如果在中间区域(阶段61.2)的过渡期间,连接器仅缓慢前进并且机械振动起作用,液化或至少软化热塑性材料的远端部分已经在该阶段期间开始,并且可以观察到更平稳地过渡到更高的阻力。 [0104] 该效果可以用来有针对性地控制软化分布。为此,还可以使用以下事实:一旦材料高于其玻璃化转变温度,与低于该温度相比,由振动引起的内部摩擦会高得多,从而能量吸收不再需要任何外部摩擦(例如压靠第一物体的物体)以达到相同的程度。如果人们使用具有可控位置的系统(例如伺服控制系统和/或具有同步电动机或具有精确控制向前运动的其它电动机的系统),则情况尤其如此。 [0105] 在实施例中,特别是如果(例如如图4所示)连接器吸收能量并在刺穿第一结构层期间已经变软。具体地,在一些实施例中,甚至可以观察到,在穿刺步骤期间,远端处的连接器完全变软。然而,可能发生吸收(并因此发热)。 [0106] 图6a示出了具有热塑性部分71和不可液化(例如金属)部分72的连接器。不可液化部分可以是特别硬的材料,并且在远端处具有明显的穿刺尖端。在穿刺第一结构层的阶段期间,由于此,不可液化部分可以用作穿刺辅助。 [0107] 当处于后期阶段时,吸收的振动能导致热塑性材料软化,并最终导致热塑性材料变得可流动,不可液化部分72可以相对于热塑性部分移位,使得即使连接器压靠第二结构层12,它不会穿刺第二结构层。为此,在所示实施例中,不可液化部分的近端也是尖的,以便提供较少的已软化的热塑性材料关于沿近端方向的位移的阻力。图6b显示了最终的构造。 [0108] 在类似于图6a的实施例中,在穿刺阶段期间,连接器可能不受振动能的输入或足够低的输入的影响,该足够低的输入基本不使热塑性材料在不可液化部分的近端处软化。然而,在穿过内衬层的缓慢前进期间,连接器可能受到振动能输入的影响,使得材料可以软化,直到连接器的远端到达第二结构层。 [0109] 在图7中示出了图6a的构造的变型。在该变型中,热塑性部分71被切割并形成使得不可液化部分72在向远侧移位时加宽狭缝(在热塑性材料已经软化之后,引起附加的侧向膨胀,如图7中的箭头所示)。 [0110] 在图6a的实施例和图7的实施例中,不可液化部分72可以形成远侧尖端或远侧刀片(垂直于绘图平面延伸)。类似地,在本文中描述的其它实施例中,所描述的尖端通常可以由相应的刀片代替,从而产生在一个面内方向上有一定延伸的穿孔。 [0111] 图8a和8b(图8b示出了沿着图8a中的平面B‑B的截面)示出了具有横截面减小的尖端区域的连接器的例子,在所示例子中具有大致十字形的横截面。这样的减小的横截面面积的区域可以辅助穿刺第一结构层的步骤,并且确保在振动能输入刚开始时远端迅速开始液化,以免去第二结构层也被刺穿的风险。 [0112] 图9a和9b示出了连接器3的远端,其具有与第一物体的第一结构层11接触的穿刺尖端,图9b示出了在锚固过程之后,第一物体的相同细节。连接器3的穿刺将导致第一结构层被刺穿,然而,第一结构层11保持连贯,穿刺位置周围的部分变形以向远侧弯曲(在图9a和9b的方向上向下)。这些变形部分提供抵抗连接器3的插入运动的一定的机械阻力,并且与机械振动能一起将导致局部发热。该过程可能由于这一点而被特别地实行,使得流动部分35包括与第一结构层接触的部分。还例如在图3b和图6b所示,在流动部分中的第一结构层的变形部分处,至少部分嵌入可能导致围绕穿刺位置产生锚固效果。 [0113] 可以独立地使用这种第一结构层对锚固的效果和贡献,无论是否存在关于第二结构层12的附加锚固,如图2所示(中间和右侧)。 [0114] 类似于图2所示,连接器可以包括用于实现或加强这种效果的目标结构,例如台阶特征34、或锥形特征、或位于轴向位置处的能量导向器36的轴环,其中第一结构层将在该位置在向连接器施加第二机械按压力和机械振动的末期发生液化。图9c和9d示出了连接器3的例子,其具有位于锥形部分处的能量导向器36的轴环。图9d示出了沿着图9c中的平面d‑d的截面。 |