一种涤纶基防透湿阻燃复合材料的制备方法

申请号 CN202210543641.6 申请日 2022-05-19 公开(公告)号 CN114654841B 公开(公告)日 2022-09-02
申请人 南通大学; 发明人 瞿建刚; 李瑶; 曹力文; 沈孟茹; 凌嘉祺;
摘要 本 发明 公开了一种涤纶基防 水 透湿阻燃 复合材料 的制备方法,包括如下步骤:步骤一、聚 磷酸 铵改性 氧 化 石墨 烯粉末的制备;步骤二、聚 氨 酯纺丝液的制备;步骤三、涤纶基防水透湿阻燃聚氨酯 纳米 纤维 膜的制备;步骤四、热熔胶网膜的制备;步骤五、涤纶基防水透湿阻燃复合材料的制备。本发明同时解决了聚氨酯疏水性和热 稳定性 较差的问题,制备出了防水透湿、阻燃效果及 力 学性能均较优的涤纶基防水透湿阻燃复合材料。本发明用聚磷酸铵改性氧化 石墨烯 ,得到纳米阻燃剂,同时经聚磷酸铵改性后,氧化石墨烯能更好地分散在纺丝液中,使得制备的纳米纤维膜 阻燃性 能和力学性能均大大提升。
权利要求

1.一种涤纶基防透湿阻燃复合材料的制备方法,其特征在于:包括如下步骤:
步骤一、聚磷酸铵改性石墨烯粉末的制备:通过改进的Hummers法制备小片径氧化石墨烯,配制1~5mg/mL氧化石墨烯水分散体;将聚磷酸铵和水合肼依次加入氧化石墨烯水分散体中反应;反应结束后,用去离子水多次清洗反应产物,直至得到无色透明残液;最后,将产物超声分散均匀,进行真空冷冻干燥,得到聚磷酸铵改性氧化石墨烯粉末;
所述的改进的Hummers法为在浴条件下,向含有500mL浓硫酸的烧杯中加入6g石墨,在磁搅拌下缓慢加入30g高锰酸,冰浴搅拌6h后,在常温下继续搅拌1天;接着在冰浴条件下缓慢加入500mL去离子水,搅拌1天后再加入50mL双氧水;当反应液变为亮黄色时,加入
50mL 5%的盐酸溶液,最后用去离子水多次洗涤,直到悬浮液pH值为中性后,再冷冻干燥;
所述的小片径氧化石墨烯的直径尺寸<5μm;
步骤二、聚酯纺丝液的制备:将聚磷酸铵改性氧化石墨烯粉末加入四氢呋喃和N,N‑二甲基甲酰胺的混合溶液中,超声直至聚磷酸铵改性氧化石墨烯粉末在混合溶液中均匀分散;接着将氯化锂、二氧化和聚氨酯颗粒分别加入混合溶液中搅拌,得到均匀的聚氨酯纺丝液;
步骤三、涤纶基防水透湿阻燃聚氨酯纳米纤维膜的制备:将涤纶织物固定在静电纺丝接收辊上,接着通过静电纺丝的方法制备出涤纶基防水透湿阻燃聚氨酯纳米纤维膜;
步骤四、热熔胶网膜的制备:将热熔胶粉末溶于N,N‑二甲基甲酰胺中,配置成纺丝液,再通过静电纺丝方法的方法制备出热熔胶网膜;
步骤五、涤纶基防水透湿阻燃复合材料的制备:将步骤四制备的热熔胶网膜与步骤三制备的涤纶基防水透湿阻燃聚氨酯纳米纤维膜进行热压复合,通过热压的方式制备出涤纶基防水透湿阻燃复合材料。
2.根据权利要求1所述的涤纶基防水透湿阻燃复合材料的制备方法,其特征在于:所述的步骤一中,聚磷酸铵的聚合度为低聚、中聚和高聚。
3.根据权利要求1所述的涤纶基防水透湿阻燃复合材料的制备方法,其特征在于:所述的步骤一中,氧化石墨烯、聚磷酸铵与水合肼的质量比为(5~8):(5~42):(0.9~1.2)。
4.根据权利要求1所述的涤纶基防水透湿阻燃复合材料的制备方法,其特征在于:所述的步骤一中,反应条件温度为80~100℃,时间为5~15h。
5.根据权利要求1所述的涤纶基防水透湿阻燃复合材料的制备方法,其特征在于:所述的步骤二中,聚氨酯纺丝液中聚磷酸铵改性氧化石墨烯粉末的质量分数为0.01~1%,氯化锂的质量分数为0.001~0.01%,二氧化硅的质量分数为0.001~0.01%,聚氨酯颗粒的质量分数为14~24%;四氢呋喃和N,N‑二甲基甲酰胺的质量比为2~4:1;搅拌的条件为温度
20~60℃,时间1~10h。
6.根据权利要求1所述的涤纶基防水透湿阻燃复合材料的制备方法,其特征在于:所述的步骤三中,涤纶基防水透湿阻燃聚氨酯纳米纤维膜静电纺丝的参数为纺丝电压15~25kV ,喷头到接收辊的距离12~19cm,注射速度2~6mL/h,辊筒转速100~150rpm,滑台的运行速度100~200mm/min,纺丝温度24~26℃,纺丝湿度30~50%。
7.根据权利要求1所述的涤纶基防水透湿阻燃复合材料的制备方法,其特征在于:所述的步骤四中,热熔胶粉末的质量分数为18~22%;热熔胶网膜静电纺丝的参数为纺丝电压
15~25kV ,喷头到接收辊的距离12~19cm,注射速度2~6mL/h,辊筒转速100~150rpm,滑台的运行速度100~200mm/min,纺丝温度24~26℃,纺丝湿度30~50%。
8.根据权利要求1所述的涤纶基防水透湿阻燃复合材料的制备方法,其特征在于:所述的步骤五中,热压复合的温度为100~130℃,热压速度为20‑30m/min。

说明书全文

一种涤纶基防透湿阻燃复合材料的制备方法

技术领域

[0001] 本发明属于静电纺丝功能材料领域,尤其涉及一种防水透湿阻燃材料的制备方法,特别是指改性石墨烯聚酯防水透湿阻燃复合材料及其制备方法。

背景技术

[0002] 聚氨酯是一种绿色环保材料,具有良好透气透湿性、耐磨性和可塑性等特点,在防水透湿材料领域有广泛的应用。但由于聚氨酯的疏水性和热稳定性较差,因此提高其防水透湿和阻燃性能成为研究重点。
[0003] 许多研究者采用静电纺丝的方法制备聚氨酯纳米纤维膜,纤维通过在接收装置上不断沉积堆叠,从而产生三维网状结构。此类结构通常具有孔径小,孔隙率高等特点,使得制备的纳米纤维膜具有较好的防水透湿性。专利202010878917.7通过静电纺丝制备了一种聚氨酯石墨烯防水透湿膜,在纳米纤维膜制备的过程中还添加了抗紫外线剂,使得所制备的聚氨酯石墨烯防水透湿膜具有防水透湿性和耐光性。为进一步提高聚氨酯纳米纤维膜的防水透湿性能,有研究者提出在聚氨酯结构中引入氟基团,此方法能够保留聚氨酯优异的机械性能,同时使其疏水性能得到改善。专利202010025937.X公开了一种含有氟化石墨烯的防水透湿复合织物及其制备方法,制备得到含有氟化石墨烯防水透湿复合膜后,接着通过热压复合的方式制备出含有氟化石墨烯的防水透湿复合织物。但是,研究发现含氟物质对环境和人体有潜在危害,所以制备无氟防水透湿膜成为目前的研究热点。
[0004] 但通过静电纺丝制备出的聚氨酯纳米纤维膜仍具有防水透湿性能不佳和阻燃性能较差等问题。为解决聚氨酯纳米纤维膜防水透湿性能较差的问题,在纺丝液中添加氯化锂和二氧化,提高纺丝液导电性,纺丝均匀稳定,获得的纳米纤维膜更加柔韧。为解决聚氨酯纳米纤维膜阻燃性能较差的问题,在纺丝液中添加聚磷酸铵改性氧化石墨烯纳米阻燃剂,聚磷酸铵不仅有优异的阻燃效果,在燃烧过程中也不会产生有毒有害气体,是目前应用较为广泛的磷系阻燃剂,同时氧化石墨烯的添加会使得纳米纤维的平均直径增大,透湿性能和学性能提高。

发明内容

[0005] 发明目的:本发明的目的是克服现有技术的不足,提供一种制备防水透湿阻燃材料的方法,该方法工艺简单,所制备的涤纶基防水透湿阻燃复合材料不但具有防水透湿性能,同时也能获得较好的阻燃性能和力学性能。
[0006] 技术方案:一种涤纶基防水透湿阻燃复合材料的制备方法,包括如下步骤:
[0007] 步骤一、聚磷酸铵改性氧化石墨烯粉末的制备:通过改进的Hummers法制备小片径氧化石墨烯,配制1~5mg/mL氧化石墨烯水分散体;将聚磷酸铵和水合肼依次加入氧化石墨烯水分散体中反应;反应结束后,用去离子水多次清洗反应产物,直至得到无色透明残液;最后,将产物超声分散均匀,进行真空冷冻干燥,得到聚磷酸铵改性氧化石墨烯粉末;
[0008] 步骤二、聚氨酯纺丝液的制备:将聚磷酸铵改性氧化石墨烯粉末加入四氢呋喃和N,N‑二甲基甲酰胺的混合溶液中,超声直至聚磷酸铵改性氧化石墨烯粉末在混合溶液中均匀分散;接着将氯化锂、二氧化硅和聚氨酯颗粒分别加入混合溶液中搅拌,得到均匀的聚氨酯纺丝液;
[0009] 步骤三、涤纶基防水透湿阻燃聚氨酯纳米纤维膜的制备:将涤纶织物固定在静电纺丝接收辊上,接着通过静电纺丝的方法制备出涤纶基防水透湿阻燃聚氨酯纳米纤维膜;
[0010] 步骤四、热熔胶网膜的制备:将热熔胶粉末溶于N,N‑二甲基甲酰胺中,配置成纺丝液,再通过静电纺丝方法的方法制备出热熔胶网膜;
[0011] 步骤五、涤纶基防水透湿阻燃复合材料的制备:将步骤四制备出热熔胶网膜与步骤三制备的涤纶基防水透湿阻燃聚氨酯纳米纤维膜进行热压复合,通过热压的方式制备出涤纶基防水透湿阻燃复合材料。
[0012] 进一步的,所述的步骤一中,改进的Hummers法为在浴条件下,向含有500mL浓硫酸的烧杯中加入6g石墨,在磁力搅拌下缓慢加入30g高锰酸,冰浴搅拌6h后,在常温下继续搅拌1天;接着在冰浴条件下缓慢加入500mL去离子水,搅拌1天后再加入50mL双氧水;当反应液变为亮黄色时,加入50mL 5%的盐酸溶液,最后用去离子水多次洗涤,直到悬浮液pH值为中性后,再冷冻干燥。
[0013] 进一步的,所述的步骤一中,小片径氧化石墨烯的直径尺寸<5μm。
[0014] 进一步的,所述的步骤一中,聚磷酸铵的聚合度为低聚、中聚和高聚。
[0015] 进一步的,所述的步骤一中,氧化石墨烯、聚磷酸铵与水合肼的质量比为(5~8):(5~42):(0.9~1.2)。
[0016] 进一步的,所述的步骤一中,反应条件温度为80~100℃,时间为5~15h。
[0017] 进一步的,所述的步骤二中,聚氨酯纺丝液中聚磷酸铵改性氧化石墨烯粉末的质量分数为0.01~1%,氯化锂的质量分数为0.001~0.01%,二氧化硅的质量分数为0.001~0.01%,聚氨酯颗粒的质量分数为14~24%;四氢呋喃和N,N‑二甲基甲酰胺的质量比为2~4:
1;搅拌的条件为温度20~60℃,时间1~10h。
[0018] 进一步的,所述的步骤三中,涤纶基防水透湿阻燃聚氨酯纳米纤维膜静电纺丝的参数为纺丝电压15~25KV,喷头到接收辊的距离12~19cm,注射速度2~6mL/h,辊筒转速100~150rpm,滑台的运行速度100~200mm/min,纺丝温度24~26℃,纺丝湿度30~50%。
[0019] 进一步的,所述的步骤四中,热熔胶粉末的质量分数为18~22%。热熔胶网膜静电纺丝的参数为纺丝电压15~25KV,喷头到接收辊的距离12~19cm,注射速度2~6mL/h,辊筒转速100~150rpm,滑台的运行速度100~200mm/min,纺丝温度24~26℃,纺丝湿度30~50%。
[0020] 进一步的,所述的步骤五中,热压复合的温度为100~130℃,热压速度为20‑30m/min。
[0021] 有益效果:本发明的具体优势如下:
[0022] (1)本发明同时解决了聚氨酯疏水性和热稳定性较差的问题,制备出了防水透湿、阻燃效果及力学性能均较优的涤纶基防水透湿阻燃复合材料。
[0023] (2)本发明在纺丝液中同时添加氯化锂和二氧化硅,提高纺丝液导电性,纺丝均匀稳定,能够有效提升纳米纤维膜的防水透湿性能。
[0024] (3)本发明用聚磷酸铵改性氧化石墨烯,得到纳米阻燃剂,同时经聚磷酸铵改性后,氧化石墨烯能更好地分散在纺丝液中,使得制备的纳米纤维膜阻燃性能和力学性能均大大提升。

具体实施方式

[0025] 下面将对本发明实施例中的技术方案进行清楚、完整地描述,以使本领域的技术人员能够更好的理解本发明的优点和特征,从而对本发明的保护范围做出更为清楚的界定。本发明所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0026] 实施例1
[0027] 聚磷酸铵改性氧化石墨烯粉末的制备:通过改进的Hummers法制备小片径氧化石墨烯,配制1mg/mL氧化石墨烯水分散体。将0.2g聚磷酸铵和20µL水合肼依次加入100mL氧化石墨烯水分散体中在95℃条件下反应12h。反应结束后,用去离子水多次清洗反应产物,直至得到无色透明残液。最后,将产物超声分散均匀,进行真空冷冻干燥,得到聚磷酸铵改性氧化石墨烯粉末;
[0028] 聚氨酯纺丝液的制备:将0.009g聚磷酸铵改性氧化石墨烯粉末加入24.6g四氢呋喃和8.2g N,N‑二甲基甲酰胺的混合溶液中,超声直至聚磷酸铵改性氧化石墨烯粉末在混合溶液中均匀分散。接着将0.001g氯化锂、0.001g二氧化硅和7.2g聚氨酯颗粒分别加入混合溶液中并在50℃条件下搅拌6h,得到均匀的聚氨酯纺丝液。
[0029] 涤纶基防水透湿阻燃聚氨酯纳米纤维膜的制备:将涤纶织物固定在静电纺丝接收辊上,接着在纺丝电压15KV,喷头到接收辊的距离为15cm,注射速度为2mL/h,辊筒转速为120rpm,滑台的运行速度为100mm/min,纺丝温度为25℃,纺丝湿度为40%的条件下通过静电纺丝的方法制备出涤纶基防水透湿阻燃聚氨酯纳米纤维膜。
[0030] 热熔胶网膜的制备:将8g热熔胶粉末溶于32gN,N‑二甲基甲酰胺中,配置成纺丝液,在纺丝电压为15KV,喷头到接收辊的距离为15cm,注射速度为2mL/h,辊筒转速为120rpm,滑台的运行速度为100mm/min,纺丝温度为25℃以及纺丝湿度为40%的条件下通过静电纺丝的方法制备出热熔胶网膜。
[0031] 涤纶基防水透湿阻燃复合材料的制备:将热熔胶网膜与涤纶基防水透湿阻燃聚氨酯纳米纤维膜在温度为120℃,热压速度为25m/min的条件下进行热压复合,通过热压的方式制备出涤纶基防水透湿阻燃复合材料。
[0032] 实施例2
[0033] 聚磷酸铵改性氧化石墨烯粉末的制备:通过改进的Hummers法制备小片径氧化石墨烯,配制1mg/mL氧化石墨烯水分散体。将0.2g聚磷酸铵和20µL水合肼依次加入100mL氧化石墨烯水分散体中在95℃条件下反应12h。反应结束后,用去离子水多次清洗反应产物,直至得到无色透明残液。最后,将产物超声分散均匀,进行真空冷冻干燥,得到聚磷酸铵改性氧化石墨烯粉末;
[0034] 聚氨酯纺丝液的制备:将0.05g聚磷酸铵改性氧化石墨烯粉末加入24.6g四氢呋喃和8.2g N,N‑二甲基甲酰胺的混合溶液中,超声直至聚磷酸铵改性氧化石墨烯粉末在混合溶液中均匀分散。接着将0.001g氯化锂、0.001g二氧化硅和7.2g聚氨酯颗粒分别加入混合溶液中并在55℃条件下搅拌5h,得到均匀的聚氨酯纺丝液。
[0035] 涤纶基防水透湿阻燃聚氨酯纳米纤维膜的制备:将涤纶织物固定在静电纺丝接收辊上,接着在纺丝电压为15KV,喷头到接收辊的距离为15cm,注射速度为2mL/h,辊筒转速为120rpm,滑台的运行速度为100mm/min,纺丝温度为25℃,纺丝湿度为40%的条件下通过静电纺丝的方法制备出涤纶基防水透湿阻燃聚氨酯纳米纤维膜。
[0036] 热熔胶网膜的制备:将8g热熔胶粉末溶于32gN,N‑二甲基甲酰胺中,配置成纺丝液,在纺丝电压为15KV,喷头到接收辊的距离为15cm,注射速度为2mL/h,辊筒转速为120rpm,滑台的运行速度为100mm/min,纺丝温度为25℃,纺丝湿度为40%的条件下通过静电纺丝的方法制备出热熔胶网膜。
[0037] 涤纶基防水透湿阻燃复合材料的制备:将热熔胶网膜与涤纶基防水透湿阻燃聚氨酯纳米纤维膜在温度为120℃,热压速度为25m/min的条件下进行热压复合,通过热压的方式制备出涤纶基防水透湿阻燃复合材料。
[0038] 实施例3
[0039] 聚磷酸铵改性氧化石墨烯粉末的制备:通过改进的Hummers法制备小片径氧化石墨烯,配制1mg/mL氧化石墨烯水分散体。将0.2g聚磷酸铵和20µL水合肼依次加入100mL氧化石墨烯水分散体中在95℃条件下反应12h。反应结束后,用去离子水多次清洗反应产物,直至得到无色透明残液。最后,将产物超声分散均匀,进行真空冷冻干燥,得到聚磷酸铵改性氧化石墨烯粉末;
[0040] 聚氨酯纺丝液的制备:将0.05g聚磷酸铵改性氧化石墨烯粉末加入24.6g四氢呋喃和8.2g N,N‑二甲基甲酰胺的混合溶液中,超声直至聚磷酸铵改性氧化石墨烯粉末在混合溶液中均匀分散。接着将0.004g氯化锂、0.004g二氧化硅和7.2g聚氨酯颗粒分别加入混合溶液中并在50℃条件下搅拌6h,得到均匀的聚氨酯纺丝液。
[0041] 涤纶基防水透湿阻燃聚氨酯纳米纤维膜的制备:将涤纶织物固定在静电纺丝接收辊上,接着在纺丝电压为15KV,喷头到接收辊的距离为15cm,注射速度为2mL/h,辊筒转速为120rpm,滑台的运行速度为100mm/min,纺丝温度为25℃,纺丝湿度为40%的条件下通过静电纺丝的方法制备出涤纶基防水透湿阻燃聚氨酯纳米纤维膜。
[0042] 热熔胶网膜的制备:将8g热熔胶粉末溶于32gN,N‑二甲基甲酰胺中,配置成纺丝液,在纺丝电压15KV,喷头到接收辊的距离为15cm,注射速度为2mL/h,辊筒转速为120rpm,滑台的运行速度为100mm/min,纺丝温度为25℃,纺丝湿度为40%的条件下通过静电纺丝的方法制备出热熔胶网膜。
[0043] 涤纶基防水透湿阻燃复合材料的制备:将步热熔胶网膜与涤纶基防水透湿阻燃聚氨酯纳米纤维膜在温度为120℃,热压速度为25m/min的条件下进行热压复合,通过热压的方式制备出涤纶基防水透湿阻燃复合材料。
[0044] 对比例
[0045] 涤纶基聚氨酯纳米纤维膜的制备:将7.2g聚氨酯颗粒加入24.6g四氢呋喃和8.2gN,N‑二甲基甲酰胺的混合溶液中,在50℃条件下搅拌6h,得到均匀的聚氨酯纺丝液。接着将涤纶织物固定在静电纺丝接收辊上,在纺丝电压为15KV,喷头到接收辊的距离为15cm,注射速度为2mL/h,辊筒转速为120rpm,滑台的运行速度为100mm/min,纺丝温度为25℃,纺丝湿度为40%的条件下通过静电纺丝的方法制备出涤纶基聚氨酯纳米纤维膜。
[0046] 热熔胶网膜的制备:将8g热熔胶粉末溶于32gN,N‑二甲基甲酰胺中,配置成纺丝液,在纺丝电压为15KV,喷头到接收辊的距离为15cm,注射速度为2mL/h,辊筒转速为120rpm,滑台的运行速度为100mm/min,纺丝温度为25℃,纺丝湿度为40%的条件下通过静电纺丝的方法制备出热熔胶网膜。
[0047] 涤纶基复合材料的制备:将热熔胶网膜与涤纶基聚氨酯纳米纤维膜在温度为120℃,热压速度为25m/min的条件下进行热压复合,通过热熔层压的方式制备出涤纶基复合材料。
[0048] 对涤纶基防水透湿阻燃复合材料进行指标测试,如下:透湿性能测试参照GB/T 12704‑2009《纺织品透湿性试验方法第1部分:吸湿法》;
[0049] 防水性能测试参照GB/T 4744‑2013《纺织品防水性能的检测和评价》;
[0050] 力学性能测试参照GB/T 3923.1‑2013《纺织品织物拉伸性能第1部分:断裂强力和断裂伸长率的测定条样法》;
[0051] 燃烧性能参照GBT 5454‑1997 《纺织品燃烧性能试验氧指数法》;
[0052] 表1涤纶基防水透湿阻燃复合材料透湿性能、防水性能、力学性能和燃烧性能测试表
[0053]
[0054] 由表1可知,本发明方法制备的涤纶基聚氨酯纳米纤维膜不仅有效提升涤纶基防水透湿阻燃复合材料的防水透湿性能,而且具有较高的极限氧指数,使其阻燃效果大大提升。从表1中还可以看出,纳米纤维膜添加改性氧化石墨烯后,涤纶基防水透湿阻燃复合材料的断裂强度和断裂伸长率极大提高。纳米纤维膜的力学性能与其单根纤维强力及纤维之间的粘结方式有着密切关系,所制备的改性氧化石墨烯能够包裹、粘附或重叠在纳米纤维的表面,其包裹在单纤维上使得单纤维本身强度得到提高;同时单纤维与单纤维之间会产生不同程度的黏附结构,使得纳米纤维膜在拉伸过程中不易断裂,因此有较高的断裂强度和断裂伸长率。因此,通过本专利制备得到的涤纶基防水透湿阻燃复合材料具有较好的防水透湿性能、力学性能以及阻燃性能。
QQ群二维码
意见反馈