用于制造纤维复合材料部件的方法

申请号 CN201810044173.1 申请日 2018-01-17 公开(公告)号 CN108357118B 公开(公告)日 2022-08-02
申请人 空中客车德国运营有限责任公司; 发明人 诺贝特·舍尔奇;
摘要 本 发明 公开了一种用于制造 纤维 复合材料 构件的方法,该方法包括以下步骤:通过将两个纤维网彼此相邻地且沿着圆形导引弧线沉积在平面中来产生纤维层,该纤维网被沉积到弯曲的沉积路径上,该弯曲的沉积路径以相同的预定 角 度与圆形导引弧线相交并且以圆形渐开线的部分的形式形成。
权利要求

1.一种用于制造纤维复合材料部件的方法,所述方法包括以下步骤:
通过将至少两个纤维网(4.1、…、4.i)彼此相邻地且沿着圆形导引弧线(6)沉积在一个平面中来产生纤维层(2),其中,所述纤维网(4.1、…、4.i)被沉积到弯曲的沉积路径(8.1、…、8.i)上,所述弯曲的沉积路径(8.1、…、8.i)以相同的预定度(A)与所述圆形导引弧线相交并且以一个或多个基圆的圆形渐开线(12)的部分(10)的形式被限定,所述一个或多个基圆与所述圆形导引弧线同心地布置并且具有比所述圆形导引弧线的半径小的半径,使得在相邻的纤维网之间没有出现间隙。
2.根据权利要求1所述的方法,其中,所述基圆具有相同半径。
3.根据权利要求2所述的方法,其中,所述一个或多个基圆包括同一个基圆(14)。
4.根据权利要求1至3中的一项所述的方法,其中,所述纤维网(4.1、…、4.i)沉积在位于内曲线(16)与外曲线(18)之间的沉积区域(B)中,其中,所述内曲线(16)在所述圆形导引弧线(6)内至少部分地径向展开,而所述外曲线(18)在所述圆形导引弧线(6)的外侧至少部分地展开,并且所述内曲线(16)和所述外曲线(18)彼此不相交。
5.根据权利要求4所述的方法,其中,所述内曲线(16)与所述圆形导引弧线(6)至少部分地同心。
6.根据权利要求4所述的方法,其中,所述外曲线(18)与所述圆形导引弧线(6)至少部分地同心。
7.根据权利要求4所述的方法,其中,所述内曲线(16)、所述外曲线(18)、所述圆形导引弧线(6)以及所述基圆(14)是彼此同心的。
8.根据权利要求4所述的方法,其中,所述内曲线(16)在径向上布置在所述圆形导引弧线(6)内。
9.根据权利要求4所述的方法,其中,所述外曲线(18)布置在所述圆形导引弧线(6)的径向外侧。
10.根据权利要求4所述的方法,其中,每个基圆(14)布置在所述沉积区域(B)的外侧,使得所述基圆不接触所述沉积区域(B)或仅接触所述沉积区域(B)的内曲线(16)。
11.根据权利要求4所述的方法,其中,所述沉积区域(B)像圆形环段那样限定,并且所述沉积区域(B)的侧边(20、22)朝向所述圆形导引弧线(6)的中心点径向地扩展。
12.根据权利要求1至3中的一项所述的方法,所述方法还包括以下步骤:
通过将至少两个纤维网沉积到所述纤维层(2)上而在所述纤维层(2)上产生至少另一平面纤维层,其中,所述纤维网以与所述预定角度不同的角度(A)沉积。
13.根据权利要求1至3中的一项所述的方法,其中,在沉积纤维的工艺中,通过沉积头来沉积所述纤维网(4.1、…、4.i),其中,所产生的纤维层(2)被沉积到阳极芯体上,并且随后被固化
14.根据权利要求13所述的方法,其中,沉积纤维的所述工艺为AFP工艺或DFP工艺。
15.一种纤维复合材料部件,所述复合材料部件具有至少一个包括彼此相邻地沉积在一个平面中的至少两个纤维网(4.1、…、4.i)的纤维层(2),所述至少两个纤维网(4.1、…、
4.i)被沉积到弯曲的沉积路径(8.1、…、8.i)上,所述弯曲的沉积路径以平行的圆形渐开线(12)的部分(10)的形式被限定,由此各个纤维网沉积成使得在相邻的纤维网之间没有出现间隙。
16.根据权利要求15所述的纤维复合材料部件,其中,所述纤维复合材料部件为飞行器框架

说明书全文

用于制造纤维复合材料部件的方法

技术领域

[0001] 本发明涉及用于制造纤维复合材料部件的方法,其中,各个纤维网并排地沉积以产生纤维层。

背景技术

[0002] 在飞行器建造中,使用了越来越多的纤维复合材料部件。例如,如今,机身框架实现为纤维复合材料部件。这种部件通常是弯曲的并且经受复杂的制造工艺以获得足够的抵抗。为了制造该部件,将各个纤维层置于彼此的顶部上,其中,又通过并排地沉积各个纤维网来制造各个纤维层。置于彼此的顶部上的多个纤维层可以形成纤维复合材料部件。
[0003] 但是,纤维网的沉积包含若干困难。因此为了获得尽可能高的抵抗力应当省略各个纤维网之间的间隙。

发明内容

[0004] 根据这种背景,本发明的目的是提供一种用于制造纤维复合材料部件的改进方法,利用该方法可以使前述缺点最小化。
[0005] 根据本发明的一个方面,提供了一种用于制造纤维复合材料部件的方法,该方法包括以下步骤:在该步骤中,通过将至少两个纤维网彼此相邻地且沿着圆形导引弧线沉积在一个平面中来产生纤维层,其中,纤维网被沉积到弯曲的沉积路径上,该弯曲的沉积路径以相同的预定度与圆形导引弧线相交并且以圆形渐开线的部分的形式被限定。
[0006] 通过根据本发明的方法,可以形成纤维层,其中,纤维网基本上以彼此无间隙地相邻的方式沉积。这使得部件具有高抵抗力。
[0007] 根据实施方式,圆形渐开线包括具有相同半径的基圆
[0008] 根据实施方式,圆形渐开线包括同一个基圆。
[0009] 根据实施方式,每个基圆与圆形导引弧线同心地限定。
[0010] 根据实施方式,纤维网沉积在位于内曲线与外曲线之间的沉积区域中,其中,内曲线在圆形导引弧线内至少部分地径向展开,而外曲线在圆形导引弧线的外侧至少部分地展开,并且内曲线与外曲线彼此不相交。在内曲线与外曲线之间可以根据需要设置圆形导引弧线。优选地,圆形导引弧线布置在基圆的径向外侧。例如,圆形导引弧线可以布置在内曲线与外曲线之间的大约一半的高度处。圆形导引弧线可以与内曲线重合。
[0011] 根据实施方式,内曲线与圆形导引弧线至少部分地同心。
[0012] 根据实施方式,外曲线与圆形导引弧线至少部分地同心。
[0013] 根据实施方式,内曲线、外曲线、圆形导引弧线以及基圆是彼此同心的。
[0014] 根据实施方式,内曲线在径向上布置在圆形导引弧线内。
[0015] 根据实施方式,外曲线布置在圆形导引弧线的径向外侧。
[0016] 根据实施方式,每个基圆布置在沉积区域的外侧,使得基圆不接触沉积区域或仅接触沉积区域的内曲线。基圆优选地总是在径向上定位在内曲线内,使得纤维网的起始点没有定位在沉积区域内。优选地,基圆不位于沉积区域内。但是基圆可能接触内曲线,然而不会与内曲线相交。这种特定情况对于90°层来讲可能是有效的。
[0017] 根据另一实施方式,沉积区域像圆形环段那样限定,并且优选地,沉积区域的侧边朝向圆形导引弧线的中心点径向地扩展。
[0018] 根据实施方式,该方法还包括以下步骤:通过根据该步骤、即通过优选地根据先前实施方式中所述的方法将至少两个纤维网沉积到纤维层上而在该纤维层上产生至少另一平面纤维层,其中,纤维网以与预定角度不同的角度沉积。
[0019] 根据另一实施方式,在沉积纤维的工艺、优选地为AFP工艺或DFP工艺中,通过沉积头来沉积纤维网,其中,根据示例,所产生的纤维层被沉积在例如C形轮廓的阳极芯体上,并且随后被固化。在另一示例中,由纤维网构成的纤维层沉积到平面工具上,该平面工具例如为板、即制板。将在彼此的顶部上黏附性地粘合在一起的、也称为预成形件的纤维层随后可以通过阳极芯体重新定形成弯曲的折弯支撑件,即定形成C形轮廓。
[0020] 根据本发明的另一方面,提供了一种纤维复合材料部件,优选地为飞行器的框框架,该复合材料部件具有至少一个包括至少两个纤维网的纤维层,其中,所述至少两个纤维网彼此相邻地沉积在一个平面中,并且所述至少两个纤维网沿着弯曲的沉积路径沉积,该弯曲的沉积路径以平行的圆形渐开线的部段的形式被限定。附图说明
[0021] 图1是用于描述根据本发明的实施方式的用于制造纤维复合材料部件的方法的示意图。

具体实施方式

[0022] 附图中的图示是示意性的并且是不成比例的。
[0023] 如果在以下实施方式的描述中,不同的附图中使用了相似的附图标记,则这些相似的附图标记表示相同或相似的元件。然而,相同或相似的元件可以由不同的附图标记表示。
[0024] 图1是用于描述根据实施方式的用于制造纤维复合材料部件的方法的示意图。在该方法中,纤维层2通过将多个纤维网4.1、...、4.i在方向R上沿着导引曲线6彼此相邻地沉积在平面中而在沉积区域B中产生。导引曲线6可以设置成使得制成的纤维复合材料部件的中性纤维与导引曲线6重合。因此,导引曲线6也可以表示为中性纤维。此处,还可以设想其它实施方式。
[0025] 该实施方式的沉积区域B是由外曲线18和内曲线16以及两条侧边20、22限定的环段状平面区域。在该实施方式中,外曲线18和内曲线16以彼此同心的方式限定。此处,还可以设想其它形式。外曲线18具有半径Ra,而内曲线16具有半径Ri。然而,情况不一定非得是这样。还可以使用不同形状的外曲线和/或不同形状的内曲线。沉积区域可以例如通过平面工具、即板和承载板相应地限定,所述板和承载板例如为钢制板或制板。换句话说,最下层的纤维网可以沉积在承载板上。在该承载板上,多个纤维层2可以以一个堆叠在另一个的顶部上的方式来限定纤维层堆。制成的纤维层堆随后可以从承载板移除以用于进一步处理。
[0026] 从图1中可以看出,纤维网4.1、...、4.i沿着圆形导引弧线6并排地沉积。在示出的实施方式中,圆形导引弧线6设置在内曲线16与外曲线18之间。圆形导引弧线6与内曲线16和外曲线18同心地布置。此外,圆形导引弧线6具有大于半径Ri且小于半径Ra的半径Rf。然而此处还可以设想不同的形式。
[0027] 从图1中还可以看出,纤维网4.1、...、4.i沿着沉积路径8.1、...、8.i并排地沉积。这些沉积路径8.1、...、8.i以相同的预定角度A与圆形导引弧线相交。在图1中,角度A示出为圆形导引弧线6上的切线T与沉积路径8.1、...、8.i上的切线F之间的在导引圆6与沉积路径8.1、...、8.i相交处的角度。在示出的实施方式中,角度A等于45°。因此,图1中示出的纤维层2也被称为45°层。然而此处还可以设想不同的角度A。例如,角度A可以等于90°。
[0028] 根据一个方面,沉积路径8.1、...、8.i是基圆14的圆形渐开线12的部分10。在该实施方式中,基圆14与圆形导引弧线6同心地布置并且具有小于半径Ra、Ri和Rf的半径Rb。在图1中,沉积路径的起始和终止由点S1和S2表示。这些点对应于圆形渐开线12与沉积区域B的内曲线16和外曲线18的交点。因此,该实施方式的各个沉积路径8.1、...、8.i是弯曲的,使得纤维网以弯曲的方式沉积。由于沉积路径对应于圆形渐开线12的部分10,因此各个纤维网可以沉积成使得在相邻的网之间没有出现间隙。因此,可以制造具有均匀强度的纤维复合材料部件。
[0029] 为了沉积,使用沉积纤维状网或同时沉积多个纤维网的计算机控制的沉积头(未示出)。该沉积头设置有上述几何数据,使得其可以确定沉积路径,并且随后使各个纤维网以与路线平行的方式沉积。因此,通过考虑纤维的宽度可以使沉积头能够并排无间隙地沉积纤维网。
[0030] 在本实施方式的情况下,基圆14布置在沉积区域B的径向内侧,使得基圆14不接触沉积区域B。因此,基圆位于内曲线16的径向内侧,因而基圆并不在沉积区域B中。然而,基圆也可以接触内曲线。该特定情况可以特别地存在于所谓的90°层中,其中,沉积路径以90°的角度与内曲线16相交。
[0031] 在下文中,提供了包括用于确定45°纤维层2的各个参数的数学公式的数值示例。在该示例中,圆形导引弧线6、内曲线16、外曲线18以及基圆14彼此同心地布置。
[0032] 角度(A)              A:=45°
[0033] 圆形导引弧线(Rf)     Rf:=2950mm
[0034] 内曲线(Ri)           Ri:=2850mm
[0035] 外曲线(Ra)           Ra:=3050mm
[0036] (6、16、18)中心点     xc_R:0.00000001mm
[0037]                      yc_R:=0mm
[0038] 与中性纤维相交处的正切角
[0039]  t_m=57.2960°
[0040] 位置矢量φ(t):=t‑atan(t)
[0041] φ(t_m)=12.296度
[0042] 基圆(Rb)  Rb=2.086m
[0043]
[0044] 内曲线(16)xi_r(t):=ri(t)·cosφ(t))
[0045] yi_r(t):=ri(t)·sinφ(t))
[0046]
[0047] 外曲线(18)xa_r(t):=ra(t)·cos(φ(t))
[0048] ya_r(t):=ra(t)·sin(φ(t))
[0049] 圆形导引弧线(6)xf(t):=Rf·cos(φ(t)‑φ(t_m))
[0050] yf(t):=Rf·sin(φ(t)‑φ(t_m))
[0051] 基圆(14)xb(t):=Rb·cos(φ(t)‑φ(t_m))
[0052] yb(t):=Rb·sin(φ(t)‑φ(t_m))
[0053] 渐开线部分(10)x(t):=Rb·(cos(t)+t·sin(t))
[0054] 圆形渐开线(12)y(t):=Rb·(sin(t)‑t·cos(t))
[0055] 与内曲线和外曲线相交的纤维角度
[0056]  A_内=47.047度
[0057]  A_外=43.151度
[0058] 与内曲线和外曲线相交的纤维角度偏离
[0059] dA_内=:A_内‑A dA_内=2.047度
[0060] dA_外=:A_外‑A dA_外=‑1.849度
[0061] 在下文中,提供了包括用于确定90°纤维层2的各个参数的数学公式的数值示例,其中,圆形导引弧线6、内曲线16、外曲线18以及基圆14也是彼此同心的。
[0062] 角度(A)               A:=90°
[0063] 圆形导引弧线(Rf)      Rf:=2850mm
[0064] 内曲线(Ri)            Ri:=2850mm
[0065] 外曲线(Ra)            Ra:=3050mm
[0066] (6、16、18)中心点      xc_R:0.00000001mm
[0067]                       yc_R:=0mm
[0068] 与中性纤维相交处的正切角
[0069]  t_m=0°
[0070] 位置矢量φ(t):=t‑atan(t)
[0071] φ(t_m)=0度
[0072] 基圆(Rb)  Rb=2.85m
[0073]
[0074] 内曲线(16)xi_r(t):=ri(t)·cosφ(t))
[0075] yi_r(t):=ri(t)·sinφ(t))
[0076]
[0077] 外曲线(18)xa_r(t):=ra(t)·cos(φ(t))
[0078] ya_r(t):=ra(t)·sin(φ(t))
[0079] 圆形导引弧线(6)xf(t):=Rf·cos(φ(t)‑φ(t_m))
[0080] yf(t):=Rf·sin(φ(t)‑φ(t_m))
[0081] 基圆(14)xb(t):=Rb·cos(φ(t)‑φ(t_m))
[0082] yb(t):=Rb·sin(φ(t)‑φ(t_m))
[0083] 渐开线部分(10)x(t):=Rb·(cos(t)+t·sin(t))
[0084] 圆形渐开线(12)y(t):=Rb·(sin(t)‑t·cos(t))
[0085] 与内曲线和外曲线相交的纤维角度
[0086]  A_内=90度
[0087]  A_外=69.136度
[0088] 与内曲线和外曲线相交的纤维角度偏离
[0089] dA_内=:A_内‑A       dA_内=0度
[0090] dA_外=:A_外‑A       dA_外=‑20.864度
[0091] 根据另一实施方式,具有半径Rf的圆形导引弧线6可以与内曲线16、外曲线18以及基圆14偏心地布置。在下文中,提供了包括用于确定具有偏心的圆形导引弧线6的45°纤维层的各个参数的数学公式的数值示例。
[0092] 角度(A)              A:=45°
[0093] 圆形导引弧线(Rf)     Rf:=2950mm
[0094] 内曲线(Ri)           Ri:=2850mm
[0095] 外曲线(Ra)           Ra:=3050mm
[0096] (6、16、18)中心点     xc_R:50mm
[0097]                      yc_R:=100mm
[0098] 与内曲线和外曲线相交的纤维角度
[0099]  A_内=45.635度
[0100]  A_外=41.889度
[0101] 与内曲线和外曲线相交的纤维角度偏离
[0102] dA_内=:A_内‑A dA_内=0.635度
[0103] dA_外=:A_外‑A dA_外=‑3.111度
[0104] 根据另一实施方式,具有半径Rf的圆形导引弧线6可以与内曲线16、外曲线18以及基圆14偏心地布置。在下文中,提供了包括用于确定具有偏心的圆形导引弧线6的90°纤维层的各个参数的数学公式的数值示例。
[0105] 角度(A)                A:=90°
[0106] 圆形导引弧线(Rf)       Rf:=2850mm
[0107] 内曲线(Ri)             Ri:=2850mm
[0108] 外曲线(Ra)             Ra:=3050mm
[0109] (6、16、18)中心点       xc_R:50mm
[0110]                        yc_R:=250mm
[0111] 与内曲线和外曲线相交的纤维角度
[0112]  A_内=80.527度
[0113]  A_外=67.024度
[0114] 与内曲线和外曲线相交的纤维角度偏离
[0115] dA_内=:A_内‑A dA_内=‑9.473度
[0116] dA_外=:A_外‑A dA_外=‑22.976度
[0117] 另外,应该注意的是,“包括”不排除其它元件或步骤,并且“一”或“一个”不排除多个。还应该理解的是,参照上述实施方式中的一个实施方式描述的特征或步骤也可以与上述其它实施方式的其它特征或步骤组合使用。
QQ群二维码
意见反馈