首页 / 专利分类库 / 编织;花边制作;针织;饰带;非织造布 / 制造纺织品,例如用纤维或长丝原料 / 一种亲疏水夹层结构复合光热纤维膜的批量制备方法

一种亲疏夹层结构复合光热纤维膜的批量制备方法

申请号 CN202210760381.8 申请日 2022-06-30 公开(公告)号 CN115161880B 公开(公告)日 2024-03-15
申请人 东华大学; 山东天风新材料有限公司; 发明人 覃小红; 代宏宇; 王黎明; 张弘楠; 崔宪峰; 李洪昌; 俞建勇;
摘要 本 发明 涉及一种亲疏 水 夹层结构复合光热 纤维 膜的批量制备方法。该制备方法包括:将掺杂 碳 基光热材料的聚丙烯腈混合纺丝液无针 静电纺丝 ,得到掺杂碳基光热材料的聚丙烯腈 纳米纤维 膜;取该纤维膜卷绕在单针头静电纺丝装置的滚筒上,在其上进行高流动射出型聚甲基 丙烯酸 甲酯纺丝液的单针头静电纺丝,得到双层亲‑疏水纤维膜;最后以疏水层在外侧的双层亲‑疏水纤维膜作为接受基底,将掺杂碳基光热材料的聚丙烯腈混合纺丝液无针静电纺丝。该方法能够实现光热转换材料的均匀分布,使蒸 发面 增加,有效促进 蒸发 时的 蒸汽 逸散,并能实现水的供应量调控,有效提升光热水蒸发速率。
权利要求

1.一种亲疏夹层结构复合光热纤维膜的批量制备方法,包括:
(1)将聚丙烯腈PAN和基光热材料溶于溶剂中,得到混合纺丝液,在无纺布上无针静电纺丝,得到掺杂碳基光热材料的聚丙烯腈纳米纤维膜;
(2)取步骤(1)中掺杂碳基光热材料的聚丙烯腈纳米纤维膜卷绕在单针头静电纺丝装置的滚筒上,将聚甲基丙烯酸甲酯PMMA纺丝液进行单针头静电纺丝形成蓬松透气疏水性微米纤维膜,得到双层亲‑疏水纤维膜;
(3)将聚丙烯腈(PAN)和碳基光热材料溶于溶剂中,得到混合纺丝液,以步骤(2)中双层亲疏水纤维膜作为接受基底,疏水层在外侧,无针静电纺丝,得到亲疏水夹层结构复合光热纤维膜。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)和(3)中溶剂为N,N‑二甲基甲酰胺DMF;混合纺丝液中聚丙烯腈质量分数为10‑12wt%,碳基光热材料占聚丙烯腈重量的3‑5wt%。
3.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)和(3)中混合纺丝液进行无针静电纺丝前需要间歇超声15‑25min;无针静电纺丝的工艺参数为:电压为65‑70kV,接收距离为16‑18cm,供液速度为18‑22mL/h,滚筒转速10‑14r,温度为22‑25℃,湿度为45‑
50%,纺丝时间为1‑1.5h。
4.根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中聚甲基丙烯酸甲酯PMMA纺丝液溶剂为DMF,聚甲基丙烯酸甲酯PMMA纺丝液的质量分数为30‑32wt%;聚甲基丙烯酸甲酯PMMA纺丝液配制过程中要在50‑55℃下加热搅拌2‑4h。
5.根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中单针头静电纺丝的工艺参数为:电压为10‑12kV,接收距离为11‑12cm,供液速度为2‑3mL/h,滚筒转速为280‑
300r,温度为22‑25℃,湿度为47‑50%,纺丝时间为4‑8h。
6.一种权利要求1所述方法制备的亲疏水夹层结构复合光热纤维膜,其特征在于,包括:依次连接的掺杂碳基光热材料的聚丙烯腈纳米纤维膜作为亲水蒸发顶层、蓬松透气的聚甲基丙烯酸甲酯PMMA微米纤维膜作为疏水中间层、掺杂碳基光热材料的聚丙烯腈纳米纤维膜作为吸水蒸发底层。
7.根据权利要求6所述的复合光热纤维膜,其特征在于,所述碳基光热材料为碳纳米管CNTs。
8.一种柔性光热水蒸发装置,其特征在于,包括权利要求6所述亲疏水夹层结构复合光热纤维膜。
9.根据权利要求8所述装置,其特征在于,所述装置包括:所述亲疏水夹层结构复合光热纤维膜包覆在聚苯乙烯圆形泡沫上,所述亲疏水夹层结构复合光热纤维膜未包覆部分的两个边缘为长方形条带。
10.一种如权利要求8所述的装置在海水淡化或废水处理中的应用。

说明书全文

一种亲疏夹层结构复合光热纤维膜的批量制备方法

技术领域

[0001] 本发明属于光热水蒸发技术领域,特别涉及一种亲疏水夹层结构复合光热纤维膜的批量制备方法。

背景技术

[0002] 地球上丰富的水资源中96.5%都分布在海洋,不能直接应用。淡水数量少和工农业废水排放引起的淡水资源短缺成为目前亟待解决的问题,急需高效的清洁水提取技术,海水淡化和废水处理再利用是目前解决该缺水问题最有效的途径。
[0003] 为解决淡水资源紧缺这一难题,热蒸馏、多效闪蒸、反式渗透、膜过滤电渗透和光催化等方式被用来生产清洁水,但以上技术都需要由不可再生且会污染环境的化石燃料提供能量,设备占地面积大、成本高。与上述技术相比,太阳能蒸馏海水技术具有不消耗化石能源、不受位置条件限制、无污染、安全可靠等优点。早期的太阳能水蒸发技术利用形式多样的太阳能集热器,通过增强光照提高蒸汽生成效率,但此类设备庞大,限制了它的大范围应用。新兴的太阳能界面光热转换系统,其可将热量全部用于水蒸发,改善了液体表面的热定位,在较低的太阳辐射下能实现约90%的蒸发效率。
[0004] 通过新型太阳能界面光热蒸汽转换技术的引入,光热水蒸发速率与蒸汽转换效率不断提升,太阳能水蒸发器件在海水淡化污水处理等方面展露出了非常好的应用前景,同时进一步推动了不同光热材料和基材组成的界面光热蒸发器件的发展。
[0005] 纺织纤维材料在光热转换材料结构设计、水分传输和热量分布管理等方面具有独特的优势。当将聚合物纤维直径从微米尺度降至亚微米尺度或纳米尺度时,会表现出大的比表面积,便于对其进行表面功能化;而微米级的纤维形成的缝隙和孔洞大,透气性优异,微米和纳米级纤维在光热水蒸发领域应用各有优势,除了材料的结构特征,其亲疏水性能对于水蒸发也至关重要,材料的亲水性过于优异会导致蒸发时水分累积,降低蒸发速率,亲水性能差不能及时供给蒸发所需的水分,因此合理配置亲疏水性能使水的蒸发和供给达到平衡,能进一步提高蒸发器的水蒸发性能。
[0006] 基光热材料如碳纳米管等具有全光谱吸收能和优异的热转换特性,合理地将其均匀分布固着在纳米纤维集合体表面有利于大幅提升材料的光热转换能力。而纳米纤维构建的毛细通道有利于蒸发时水分的纵向传输供给和横向扩散。
[0007] 现有的具备亲疏水复合层的界面光热蒸发器的制备方法复杂、仅限于实验室水平,不能批量制备应用,因此,开发碳基亲疏水夹层复合光热纤维膜的批量制备方法对推动光热器件的产业化应用具有重要意义。

发明内容

[0008] 本发明所要解决的技术问题是提供一种亲疏水夹层结构复合光热纤维膜的批量制备方法,以克服现有技术中光热水蒸发器件制备方法复杂、不能产业化应用、光热材料分布不均匀、蒸发器水分的传输和供给不能调控、光热水蒸发效率低下的缺陷,本发明实现亲疏水夹层结构复合光热纤维膜的批量化制备。
[0009] 本发明提供一种亲疏水夹层结构复合光热纤维膜,包括:依次连接的掺杂碳基光热材料的聚丙烯腈纳米纤维膜作为亲水蒸发顶层、蓬松透气的聚甲基丙烯酸甲酯微米纤维膜作为疏水中间层、掺杂碳基光热材料的聚丙烯腈纳米纤维膜作为吸水蒸发底层。
[0010] 优选地,所述碳基光热材料为碳纳米管(CNTs)。
[0011] 优选地,所述聚甲基丙烯酸甲酯为高流动射出型材料。
[0012] 本发明还提供一种亲疏水夹层结构复合光热纤维膜的批量制备方法,包括:
[0013] (1)将聚丙烯腈(PAN)和碳基光热材料溶于溶剂中,得到混合纺丝液,在基布上无针静电纺丝,得到掺杂碳基光热材料的聚丙烯腈纳米纤维膜;
[0014] (2)取步骤(1)中掺杂碳基光热材料的聚丙烯腈纳米纤维膜卷绕在单针头静电纺丝装置的滚筒上,将聚甲基丙烯酸甲酯PMMA纺丝液进行单针头静电纺丝形成蓬松透气疏水微米纤维膜,得到双层亲‑疏水纤维膜;
[0015] (3)将聚丙烯腈(PAN)和碳基光热材料溶于溶剂中,得到混合纺丝液,以步骤(2)中双层亲疏水纤维膜作为接受基底,疏水层在外侧,无针静电纺丝,得到亲疏水夹层结构复合光热纤维膜。
[0016] 优选地,所述步骤(1)和(3)中溶剂为N,N‑二甲基甲酰胺(DMF)。
[0017] 优选地,所述步骤(1)和(3)中混合纺丝液中PAN浓度为10‑12wt%,碳基光热材料占聚丙烯腈重量的3‑5wt%。
[0018] 优选地,所述步骤(1)和(3)中混合纺丝液进行无针静电纺丝前需要用超声细胞粉碎机间歇3次超声15‑25min,使碳纳米管均匀分散在PAN溶液中。
[0019] 优选地,所述步骤(1)和(3)中无针静电纺丝的工艺参数为:电压为65‑70kV,接收距离为16‑18cm,供液速度为18‑22mL/h,滚筒转速10‑14r,温度为22‑25℃,湿度为45‑50%,纺丝时间为1‑1.5h。
[0020] 优选地,所述步骤(1)和(3)中无针静电纺丝的装置包括:纺丝液供液装置、高压发生器、蝶形纺丝喷头、待纺液槽、供液、导液管和滚筒收集装置,所述蝶形纺丝喷头设置于待纺液槽中,所述待纺液槽通过导液管与纺丝液储液槽连通并通过供液泵向待纺液槽泵送纺丝液,所述蝶形纺丝喷头与高压发生器电连接,喷头产生的大量纺丝射流在滚筒收集装置上形成纤维膜。
[0021] 优选地,所述步骤(1)中无针静电纺丝保证掺杂碳基光热材料的聚丙烯腈纳米纤维膜润湿后不透光。
[0022] 优选地,所述步骤(3)中亲疏水夹层结构复合光热纤维膜进行干燥,去除表面多余的未挥发的残留溶剂。
[0023] 优选地,所述干燥为:50℃烘箱中干燥处理6h。
[0024] 优选地,所述步骤(2)中PMMA纺丝液溶剂为DMF,聚甲基丙烯酸甲酯PMMA纺丝液的质量分数为30‑32wt%。
[0025] 优选地,所述步骤(2)中聚甲基丙烯酸甲酯PMMA纺丝液配制过程中要在50‑55℃下加热搅拌2‑4h,使溶质PMMA加速溶解,避免因溶液浓度高使PMMA凝固在杯底,形成粘稠透明的高流动射出型纺丝液,利用接收滚筒转动形成的压带动微米级纤维的形成。
[0026] 优选地,所述步骤(2)中单针头静电纺丝的工艺参数为:电压为10‑12kV,接收距离为11‑12cm,供液速度为2‑3mL/h,滚筒转速为280‑300r,温度为22‑25℃,湿度为47‑50%,纺丝时间为4‑8h。保证蓬松透气PMMA微米纤维膜上的水滴不渗透到底层。
[0027] 优选地,所述步骤(2)中单针头静电纺丝装置包括:针筒(例如20mL针筒)、高压发生器、针头(例如18#针头)、供液泵和表面覆盖一层PAN@CNTs纳米纤维膜的接收滚筒。
[0028] 本发明还提供一种柔性光热水蒸发装置,包括上述亲疏水夹层结构复合光热纤维膜。
[0029] 优选地,所述装置包括:所述亲疏水夹层结构复合光热纤维膜包覆在聚苯乙烯圆形泡沫上,所述亲疏水夹层结构复合光热纤维膜未包覆部分的两个边缘为长方形条带。所述亲疏水夹层结构复合光热纤维膜裁剪为图5所示形状,保证中间圆形部分和聚苯乙烯圆柱形泡沫顶面同样大小,平铺在泡沫表面,所述亲疏水夹层结构复合光热纤维两个边缘的长方形条带搭在圆柱状泡沫的侧面并接触液态水。该条带吸收泡沫下方的液态水,通过控制条带宽度还可调控液态水的供应量,柔性水蒸发材料通过泡沫层与水间接接触,能够减少热损失。另外,通过不同厚度的PMMA形成的透气和阻水层,可调控蒸发时水供应的平衡状态,进而提高蒸发速率。
[0030] 本发明还提供一种柔性光热水蒸发装置在海水淡化或废水处理中的应用。
[0031] 有益效果
[0032] (1)本发明采用无针和单针头静电纺丝装置结合的方式,实现复合纤维膜的批量化制备,加工过程简单,可控性强。
[0033] (2)本发明中光热材料碳纳米管均匀分散在纺丝液中,能够使制备的光热纤维膜层中光热材料均匀分布在纤维膜的内外。
[0034] (3)本发明对比只有亲水层的光热纤维膜,其蒸发面只有上下两层,当微米级的蓬松疏水层插入到两层亲水层中间可增加蒸发面至四层,同时可避免下层亲水面吸收的液态水过多的渗透积累到上表面的蒸发层形成状水,另外微米级纤维形成的蓬松疏水层透气性强,还可有效促进蒸汽的逸散,进而同步提高蒸发速率。附图说明
[0035] 图1为本发明无针静电纺丝装置示意图。
[0036] 图2为本发明单针头静电纺丝装置示意图。
[0037] 图3为实施例1和实施例2中亲水和疏水纤维膜的SEM图。
[0038] 图4为实施例1和实施例2中亲水和疏水纤维层的水接触图片。
[0039] 图5为本发明亲疏水夹层结构复合纤维膜水蒸发装置示意图,其中1和3为PAN@CNTs纳米纤维膜,2为蓬松透气PMMA微米纤维膜,4为聚苯乙烯圆形泡沫。
[0040] 图6为实施例1和实施例2中有无疏水层的复合纤维膜在一个太阳光照下水蒸发质量损失图。

具体实施方式

[0041] 下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
[0042] 实施例涉及的无针静电纺丝装置如图1所示,包括纺丝液供液装置4、高压发生器2、蝶形纺丝喷头3、滚筒收集装置1。蝶形纺丝喷头3采用金属材料制成,能够同时产生大量的纺丝射流。蝶形纺丝喷头3与高压发生器2的正极电连接,高压发生器2的电压调节范围为
0‑100kV。
[0043] 单针头静电纺丝装置如图2所示,包括高压电源1、注射器2、喷丝头3、微量注射泵4、高速滚筒接收装置5。高压电源1的电压调节范围为0‑20kV,高速滚筒接收装置5的转速调节范围0‑1000r。
[0044] 实施例1
[0045] (1)将聚丙烯腈(PAN)、多壁碳纳米管(CNTs)与N,N‑二甲基甲酰胺(DMF)配制高聚物溶液,高聚物溶液中PAN的质量分数为12%,CNTs的质量分数为5%,用超声细胞粉碎机间歇超声20min,分散后的溶液放入如图1所示无针静电纺丝装置的纺丝液供液装置4中,蝶形纺丝喷头3边缘与滚筒收集装置1最低点接收距离为18cm,控制高压发生器2的电压70kV,供液装置4的供液速度为20mL/h,滚筒收集装置1的转速14r,纺丝时温度25℃,湿度48%,纺丝时间1.5h,喷头产生的大量纺丝射流在滚筒收集装置1形成PAN@CNTs纳米纤维膜,即亲水纳米纤维膜,该亲水纳米纤维膜平均直径约500nm。
[0046] (2)聚甲基丙烯酸甲酯(PMMA)与N,N‑二甲基甲酰胺(DMF)配制高流动射出型的PMMA溶液,溶液中PMMA的质量分数为32%,将PMMA溶液注入如图2所示单针头静电纺丝装置的注射器2中,然后将步骤(1)中形成的纳米纤维膜作为接收基底覆盖在高速滚筒接收装置5上,控制高压电源1的电压为10kV,喷丝头3距高速滚筒接收装置5的接收距离为11cm,微量注射泵4的供液速度3mL/h,高速滚筒接收装置5的转速300r,纺丝时温度25℃,湿度48%,纺丝时间6h制备疏水蓬松微米纤维膜,形成亲/疏双层纳微米纤维膜,疏水纤维平均直径约为
3.5um。
[0047] (3)以亲/疏双层纳微米纤维膜作为无针静电纺丝装置中滚筒收集装置1的基底,疏水层朝外,重复步骤(1)亲水纳米纤维膜相同的制备工艺,最终形成亲/疏/亲夹层结构复合光热纤维膜。
[0048] (4)将复合光热纤维膜裁剪成图5所示形状,复合光热纤维膜包覆在聚苯乙烯圆形泡沫4上,复合光热纤维未包覆部分的两个边缘为长方形条带,得到柔性光热水蒸发装置,中间疏水层将上下亲水层分开,形成了四个蒸发面(直接接触光照和直接接触液态水的外蒸发面各一个,间接接触光照和液态水的内蒸发面两个)。通过两侧2cm宽的条带进行水供‑2 ‑1应,该装置在一个太阳光照下的水蒸发速率根据图6所示斜率计算为1.56kg m h ,高于图
6中纯亲水纤维膜(PAN@CNTs)的水蒸发速率。
[0049] 测试方法及条件:样品的光热水蒸发测试采用氙灯模拟光源。实验室温度和湿度分别保持在23±0.5℃和55%。水蒸发性能测试时,样品通过泡沫自然漂浮在装有水的100ml烧杯上方,样品两边各留0.5cm伸入水面下作为供水通道。太阳辐射的能量密度为由辐照计测量。电子分析天平用于记录蒸发过程中水的重量损失。
[0050] 实施例2
[0051] (1)亲水纳米纤维膜的制备方法与实施例1步骤(1)相同。
[0052] (2)将实施例1中单针头静电纺丝时间修改为8h制备疏水蓬松微米纤维膜,形成亲/疏双层纳微米纤维膜,其余与实施例1步骤(2)相同,疏水纤维平均直径约为3.5um。
[0053] (3)亲/疏/亲夹层结构复合光热纤维膜的制备方法与实施例1步骤(3)相同。
[0054] (4)柔性光热水蒸发装置的制备方法与实施例1步骤(4)相同。通过两侧2cm宽的条‑带进行水供应,该装置在一个太阳光照下的水蒸发速率根据图6所示斜率计算为1.61kg m
2 ‑1
h ,高于图6中纯亲水纤维膜(PAN@CNTs)的水蒸发速率。
[0055] 图3表明:证明所纺的PAN纤维为纳米级别,PMMA纤维为微米级别。
[0056] 图4表明:证明PAN@CNTs纤维膜表面为亲水性,PMMA纤维膜表面未疏水性。
QQ群二维码
意见反馈