首页 / 专利分类库 / 服装 / 一种串珠结构微纳米纤维及其制备方法与应用

一种串珠结构微纳米纤维及其制备方法与应用

申请号 CN202310488660.8 申请日 2023-05-04 公开(公告)号 CN116695262B 公开(公告)日 2024-04-12
申请人 湖北民族大学; 发明人 谭林立; 王煜祺; 赵伟; 秦柳; 李英儒; 李时东; 钱威; 李家林;
摘要 本 发明 提供了一种串珠结构微 纳米 纤维 及其制备方法与应用,所述方法包括如下步骤:称取按重量份数计的如下组分:高流动性 聚合物 85~98.8份、发泡微球0.1~5份、驻极母粒1~5份及添加剂0.1~5份;将各组分混合,得到均匀的 复合体 系;将复合体系加入到熔体微分 静电纺丝 装置中进行熔体静电纺丝,得到所述串珠结构微纳米纤维。本发明所述的串珠结构微纳米纤维的制备方法采用熔体静电纺丝,不使用 溶剂 ,克服了溶液静电纺丝存在的纺丝效率低、纤维转化率低、对有毒有害 有机溶剂 存在依赖性的问题,实现纺丝效率、纤维转化率的提升,实现对串珠结构的可控制备,工艺简单环保、成本低。
权利要求

1.一种串珠结构微纳米纤维的制备方法,其特征在于,包括如下步骤:
S1、称取按重量份数计的如下组分:高流动性聚合物85~98.8份、发泡微球0.1~5份、驻极母粒1~5份及添加剂0.1~5份;所述发泡微球是由热塑性壳体包裹低沸点氢化合物形成的一种球体,当达到膨胀温度后,核内的低沸点液体碳氢化合物受热气化,在气压的作用下已经软化的热塑性壳体膨胀变大,从而变成一个中空球体;
S2、将各组分混合,得到均匀的复合体系;
S3、将复合体系加入到熔体微分静电纺丝装置中进行熔体静电纺丝,得到所述串珠结构微纳米纤维;所述串珠结构微纳米纤维表面有串珠结构,使得纤维蓬松,容程最高达
2
156.5 g/m,维持纤维高的过滤效率,降低纤维的阻
2.根据权利要求1所述的串珠结构微纳米纤维的制备方法,其特征在于:所述S1中,高流动性聚合物为聚对苯二甲酸乙二醇酯、尼龙、聚乳酸、聚丙烯、聚苯硫醚、聚氯乙烯、热塑性聚酯、聚碳酸酯中的一种或多种。
3.根据权利要求1所述的串珠结构微纳米纤维的制备方法,其特征在于:所述S1中,发泡微球的直径为2~60µm,起发温度为120~270℃。
4.根据权利要求1所述的串珠结构微纳米纤维的制备方法,其特征在于:所述S1中,驻极母粒为纳米SiO2、BaTiO3、勃姆石、氮化、电气石中的一种。
5.根据权利要求1所述的串珠结构微纳米纤维的制备方法,其特征在于:所述S1中,添加剂为硬酯酸锌、硬脂酸钠、硬脂酸、甘油、醋酸锌、硫酸铬中的一种或多种。
6.根据权利要求1所述的串珠结构微纳米纤维的制备方法,其特征在于:所述S2中,将各组分置于开炼机中,于120~200℃下混合,得到均匀的复合体系。
7.根据权利要求1到6任一项所述的串珠结构微纳米纤维的制备方法,其特征在于:所述S3中,熔体静电纺丝的控制条件为:熔体微分静电纺丝装置的挤出段三个温度设定区的温度为第一区120~180℃,第二区130~200℃,第三区140~310℃;熔体微分静电纺丝装置的分流板温度140~310℃;熔体微分静电纺丝装置的纺丝喷头温度140~350℃;纺丝电压
25~100 KV,纺丝距离2~50 cm,挤出速率2~50 r/min,气流速率2~400 m/s,收卷辊转速
1~100 r/min;获得的初生纤维经过正、负高压发生器电连接驻极装置驻极,充电电压5~
100 KV,充电距离2~50 cm。
8.一种采用权利要求1到7任一项所述的方法制备的串珠结构微纳米纤维。
9.如权利要求8所述的串珠结构微纳米纤维用途,其特征在于:所述串珠结构微纳米纤维在非织造布中的应用。
10.如权利要求8所述的串珠结构微纳米纤维用途,其特征在于:所述串珠结构微纳米纤维在医卫防护用品中的应用。

说明书全文

一种串珠结构微纳米纤维及其制备方法与应用

技术领域

[0001] 本发明属于微纳米纤维技术领域,尤其是涉及一种串珠结构微纳米纤维及其制备方法与应用。

背景技术

[0002] 串珠状珠状纳米纤维中串珠结构的存在改变了纳米纤维的堆积密度与孔隙结构,这些珠粒的存在增加了纤维之间的距离,使空气有更多的空间流过膜,从而在将低压降的同时又没有太大的改变过滤效率;另一方面,纳米纤维中的珠状结构为纤维提供了大的“存储”空间与停留位点,有利于纤维对物质进行包裹与存储,这就使得珠状纳米纤维在药物输送与释放方面的研究得到了科研工作者的关注。
[0003] 目前,串珠纤维均采用溶液静电纺丝获得,其存在如下缺点:1.在相对较低聚合物纺丝液浓度下,溶剂的快速蒸发易引起相分离;2.冷的静电纺丝射流使空气中的蒸气液化,并在其表面凝结成水珠(参考文献YANG Y J,et al.Sandwich structured polyamide‑6/polyacrylonitrile nanonets/bead‑on‑string composite membrane for effective air filtration[J].Separation and Purification Technology,2015,152:14‑22.);3.制备过程会用到有毒有害溶剂。如专利CN202010315708.1报道一种串珠状聚丙烯腈纤维过滤滤芯及其制备方法和应用中,提供浓度为5wt%~10wt%的聚丙烯腈溶液,作为静电纺丝液,推注速度为10‑30μL/min,纺丝直径为50nm~1000nm,此制备方法纺丝效率低,高分子转化率低,同时实验过程离不开有毒有害溶剂的使用,工艺不环保、难以大规模应用和推广。
采用类似的制备串珠结构纤维的专利还有CN105951210B,一种珠粒形貌的串珠纤维材料及其制备方法,CN106984201B,纳米蛛网/串珠纤维复合空气过滤膜及其制备方法,CN105239206B,一种聚己内酯/聚乙二醇复合串珠状纤维及其制备方法等。

发明内容

[0004] 有鉴于此,为解决上述问题,本发明提出了一种串珠结构微纳米纤维的制备方法、制备出的串珠结构微纳米纤维及串珠结构微纳米纤维的应用。所述制备方法不使用溶剂,直接采用熔体静电纺丝,解决了溶液静电纺丝存在的问题,实现纺丝效率、纤维转化率的提升,制备工艺简单环保、成本低、还可实现对串珠结构的可控制备;制备得到的串珠结构微纳米纤维可以有效解决常规非织造布透气性差,容程小的问题。
[0005] 为达到上述目的,本发明的技术方案是这样实现的:
[0006] 本发明一方面提供了一种串珠结构微纳米纤维的制备方法,包括如下步骤:
[0007] S1、称取按重量份数计的如下组分:高流动性聚合物85~98.8份、发泡微球0.1~5份、驻极母粒1~5份及添加剂0.1~5份;
[0008] S2、将各组分混合,得到均匀的复合体系;
[0009] S3、将复合体系加入到熔体微分静电纺丝装置中进行熔体静电纺丝,得到所述串珠结构微纳米纤维。
[0010] 在本发明的一些优选的制备方法的实施方式中,所述S1中,高流动性聚合物为聚对苯二甲酸乙二醇酯、尼龙、聚乳酸、聚丙烯、聚苯硫醚、聚氯乙烯、热塑性聚酯、聚酸酯中的一种或多种。
[0011] 在本发明的一些优选的制备方法的实施方式中,所述S1中,发泡微球的直径为2~60μm,起发温度为120~270℃。
[0012] 发泡微球是由热塑性壳体包裹低沸点碳氢化合物形成的一种球体,当达到膨胀温度后,核内的低沸点液体碳氢化合物受热气化,在气压的作用下已经软化的热塑性壳体膨胀变大,从而变成一个中空球体。一般地,以丙烯酸甲酯(MA)、丙烯腈(AN)、乙酸乙烯酯(VAc)、甲基丙烯酸甲酯(MMA)等为主要的单体,通过悬浮聚合法制备热膨胀微球。以MA、AN、MMA等聚合形成的聚丙烯酸类树脂外壳,异戊烷、正己烷、异辛烷等低沸点烷类作为芯材,即发泡剂。在发泡微球中,一般芯材占整个热膨胀微球的质量分数约为35%。
[0013] 在本发明的一些优选的制备方法的实施方式中,所述S1中,驻极母粒为纳米SiO2、BaTiO3、勃姆石、氮化、电气石中的一种。
[0014] 在本发明的一些优选的制备方法的实施方式中,所述S1中,添加剂为硬酯酸锌、硬脂酸酸钠、硬脂酸酸、甘油、醋酸锌、硫酸铬中的一种或多种。
[0015] 在本发明的一些优选的制备方法的实施方式中,所述S2中,将各组分置于开炼机中,于120~200℃下混合,得到均匀的复合体系。
[0016] 在本发明的一些优选的制备方法的实施方式中,所述S3中,熔体微分静电纺丝装置主要包括挤出段、分流板、喷丝头和静电驻极装置等部件,其结构为现有技术,此处不做赘述;熔体静电纺丝的控制条件为:熔体微分静电纺丝装置的挤出段三个温度设定区的温度为第一区120~180℃,第二区130~200℃,第三区140~310℃;熔体微分静电纺丝装置的分流板温度140~310℃;熔体微分静电纺丝装置的纺丝喷头温度140~350℃;纺丝电压25~100KV,纺丝距离2~50cm,挤出速率2~50r/min,气流速率2~400m/s,收卷辊转速1~100r/min;获得的初生纤维经过正、负高压发生器电连接驻极装置驻极,充电电压5~
100KV,充电距离2~50cm。
[0017] 本发明另一方面提供了一种采用所述的方法制备的串珠结构微纳米纤维。
[0018] 本发明另一方面提供了所述的串珠结构微纳米纤维在非织造布中的应用。
[0019] 本发明另一方面提供了所述的串珠结构微纳米纤维在医卫防护用品中的应用。
[0020] 在本发明的一些优选的应用的实施方式中,所述的串珠结构微纳米纤维在口罩中的应用。
[0021] 相对于现有技术,本发明所述的串珠结构微纳米纤维及其制备方法与应用具有以下优势:
[0022] (1)以安全、绿色、高效的熔体静电纺丝代替溶液静电纺丝,有效解决了串珠纤维制备过程中纺丝效率低、纤维转化率低、对有毒有害有机溶剂存在依赖性的问题;由于不使用溶剂,大幅度提升了纺丝效率和纤维转化率,纤维转化率可高达98%,同时避免熔喷过程中串珠尺寸受喷丝孔径的限制,保证纺丝过程的流畅性,制备工艺简单环保、成本低,适合规模化应用和推广;
[0023] (2)本发明所述的制备方法在原料中添加有发泡微球,通过温度的调节就可实现串珠结构的可控制备,既不会对产物带来污染,又省去了后处理工序,降低生产成本;
[0024] (3)本发明制备的串珠结构微纳米纤维,纤维内部独特的互穿网络结构和复杂的弯曲孔道,不仅可以增加纤维的有效表面积,提高颗粒与纤维之间的碰撞几率,进而提升过滤效率,而且串珠纤维结构可增加纤维之间的间距降低过滤阻,解决了非织造布透气性差,容程小的问题,可以大幅度改善相应医卫防护用品的舒适性能和佩戴时长。附图说明
[0025] 图1为本发明实施例3制备的串珠纤维的SEM图(X35);
[0026] 图2为本发明实施例3制备的串珠纤维的SEM图(X150)。

具体实施方式

[0027] 除有定义外,以下实施例中所用的技术术语具有与本发明所属领域技术人员普遍理解的相同含义。以下实施例中所用的试验试剂,如无特殊说明,均为常规生化试剂;所述实验方法,如无特殊说明,均为常规方法。
[0028] 下面结合实施例及附图来详细说明本发明。
[0029] 实施例1
[0030] S1、称取重量份数如下原料组分:PP 95份、发泡微球1份、纳米化硅3份、硬脂酸锌1份;
[0031] S2、将各组分置于开炼机中,于150℃下混合,得到均匀的复合体系;
[0032] S3、将复合体系加入到熔体微分静电纺丝装置中进行熔体静电纺丝,控制纺丝条件为:熔体微分静电纺丝装置的挤出段三个温度设定区的温度为第一区120℃,第二区140℃,第三区190℃;熔体微分静电纺丝装置的分流板温度200℃;熔体微分静电纺丝装置的纺丝喷头温度220℃;纺丝电压45KV,纺丝距离15cm,挤出速率10r/min,气流速率200m/s,收卷辊转速10r/min;获得的初生纤维经过正、负高压发生器电连接驻极装置驻极,充电电压25KV,充电距离5cm;得到所述串珠结构微纳米纤维。
[0033] 实施例2~6
[0034] 在实施例1的基础上,与实施例1不同的是原料中各组分的配比和工艺参数的不同,具体见表1所示。
[0035] 表1实施例1~6中各组分配比及工艺参数
[0036]
[0037] 由表1可知,通过配比和工艺参数的调整,可以调整串珠纤维的尺寸,实施例2和3中,喷丝口温度不同,在其他条件相同的情况下,串珠纤维的尺寸随着温度的升变化而变化。
[0038] 实施例7~11
[0039] 在实施例3的基础上,与实施例3不同的是原料中的成分不同,具体见表2所示。
[0040] 表2实施例7~11中各组分配比
[0041]
[0042] 性能测试
[0043] 1.对实施例1~11得到的串珠结构微纳米纤维进行电镜扫描,得到其微观结构,以实施例3为例,其微观结构见图1和2所示。以PP/硬脂酸锌/发泡微球/纳米SiO2(质量比:95:1:2:2)为原料,采用熔体静电纺丝工艺,控制纺丝电压45kv,喷丝口温度240℃,纺丝距离
10cm,驻极电压30kv,驻极距离5cm,所获得纤维直径0.68μm。与传统熔喷纤维方法制备的紧密堆积纤维相比,本实施例获得的产物,纤维表面有明显的串珠结构,串珠平均尺寸28.2μm,由于纤维上存在微球,纤维相对蓬松,纤维材料的容程和过滤效率会得到明显提高,过滤阻力会降低。
[0044] 2.对实施例1~11进行容程、过滤效率、过滤阻力的测试,测试结果见表3。
[0045] 表3实施例1~11的串珠结构微纳米纤维的容程、过滤效率、过滤阻力测试结果[0046]
[0047] 传统的熔喷方法制备的纤维材料,由于纤维间堆积紧密,容程一般都远低于50g/2
m ,而采用本方案,由于在纤维间构筑了串珠结构,使得纤维相对蓬松,容程最高可达
2
156.5g/m,同时维持了纤维高的过滤效率,降低了纤维的阻力。
[0048] 以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
QQ群二维码
意见反馈