首页 / 专利分类库 / 层状产品 / 经冷轧和热处理的钢板及其制造方法

冷轧热处理板及其制造方法

申请号 CN202180102654.3 申请日 2021-09-29 公开(公告)号 CN117980523A 公开(公告)日 2024-05-03
申请人 安赛乐米塔尔公司; 发明人 汤姆·沃特斯古特; 阿鲁尼姆·雷; 雷纳尔德·大卫;
摘要 一种经 冷轧 和 热处理 的 钢 板,其具有包含以下元素的组成:0.05%≤ 碳 ≤0.12%、1.0%≤锰≤2%、0.01%≤ 硅 ≤0.5%、0.01%≤ 铝 ≤0.1%、0.01%≤铌≤0.1%、0%≤磷≤0.09%、0%≤硫≤0.09%、0%≤氮≤0.09%、0.1%≤铬≤0.5%、0%<镍<3%、0%≤ 钛 <0.1%、0%≤ 钙 ≤0.005%、0%≤ 铜 ≤2%、0%≤钼≤0.5%、0%< 钒 <0.1%、0%≤ 硼 ≤0.003%、0%≤铈≤0.1%、0%≤镁≤0.010%、0%≤锆≤0.010%,剩余部分组成由 铁 和因加工产生的不可避免的杂质构成,所述钢板的显微组织以面积分数计包含:50%至90%的再结晶铁素体、10%至50%的非再结晶铁素体、0%至15%的 渗碳 体和0.5%至2%的铌碳化物,其中再结晶铁素体和非再结晶铁素体的累积量为至少85%。
权利要求

1.一种经冷轧热处理板,具有包含以下元素的组成,以重量百分比表示:
0.05%≤≤0.12%
1.0%≤锰≤2%
0.01%≤≤0.5%
0.01%≤≤0.1%
0.01%≤铌≤0.1%
0%≤磷≤0.09%
0%≤硫≤0.09%
0%≤氮≤0.09%
并且能够包含以下任选元素中的一者或更多者:
0.1%≤铬≤0.5%
0%≤镍≤3%
0%≤≤0.1%
0%≤≤0.005%
0%≤≤2%
0%≤钼≤0.5%
0%≤≤0.1%
0%≤≤0.003%
0%≤铈≤0.1%
0%≤镁≦0.010%
0%≤锆≦0.010%
剩余部分组成由和因加工产生的不可避免的杂质构成,所述钢板的显微组织以面积分数计包含:50%至90%的再结晶铁素体、10%至50%的非再结晶铁素体、0%至15%的渗碳体和0.5%至2%的铌碳化物,其中再结晶铁素体和非再结晶铁素体的累积量为至少
85%。
2.根据权利要求1所述的经冷轧和热处理的钢板,其中所述组成包含0.01%至0.4%的硅。
3.根据权利要求1或2所述的经冷轧和热处理的钢板,其中所述组成包含0.05%至
0.11%的碳。
4.根据权利要求1至3中任一项所述的经冷轧和热处理的钢板,其中所述组成包含
0.01%至0.09%的铝。
5.根据权利要求1至4中任一项所述的经冷轧和热处理的钢板,其中再结晶铁素体和非再结晶铁素体的累积量为至少90%。
6.根据权利要求1至5中任一项所述的经冷轧和热处理的钢板,其中再结晶铁素体的量为54%至85%。
7.根据权利要求1至6中任一项所述的经冷轧和热处理的钢板,其中所述非再结晶铁素体为20%至48%。
8.根据权利要求1至8中任一项所述的经冷轧和热处理的钢板,其中所述钢板具有
600MPa或更大的极限抗拉强度、以及14%或更大的总延伸率和等于或大于1.10的屈服强度与抗拉强度比率。
9.根据权利要求1至9中任一项所述的经冷轧和热处理的钢板,其中所述钢板的屈服强度为550MPa或更大。
10.一种生产经冷轧和热处理的钢板的方法,包括以下顺序步骤:
‑提供根据权利要求1至4中任一项所述的钢组成;
‑将所述半成品再加热至1000℃至1280℃的温度
‑在Ac3至Ac3+100℃的温度范围内对所述半成品进行轧制以获得经热轧的钢,其中热轧终轧温度应高于Ac3;
‑以高于20℃/秒的冷却速率将所述经热轧的钢冷却至450℃至650℃的卷取温度;以及将所述经热轧的钢卷取;
‑将所述经热轧的钢冷却至室温;
‑任选地对所述经热轧的钢板进行化皮去除过程;
‑任选地在400℃至750℃下对经热轧的钢板进行退火
‑任选地对所述经热轧的钢板进行氧化皮去除过程;
‑以35%至90%的压下率对所述经热轧的钢板进行冷轧以获得经冷轧的钢板;
‑以两步加热对所述经冷轧的钢板进行退火,其中:
o第一步以至少20℃/秒的加热速率HR1将所述钢板从室温开始加热至580℃至650℃的温度T1,
o第二步以2℃/秒或更大的加热速率HR2将所述钢板从T1开始进一步加热至700℃至
760℃的均热温度T2,HR2低于HR1,然后在T2下进行退火持续10秒至500秒,‑然后以至少10℃/秒的平均冷却速率将所述经冷轧的钢板从T2冷却至400℃至500℃的保持温度T3,
‑然后将所述经冷轧的钢板在T3下保持持续10秒至500秒,并且达到420℃至480℃的温度范围,
‑然后对经冷轧的板进行涂覆,以获得经冷轧和热处理的钢板。
11.根据权利要求11所述的方法,其中所述卷取温度为450℃至625℃。
12.根据权利要求11或12所述的方法,其中所述终轧温度高于850℃。
13.根据权利要求1至10中任一项所述的钢板或者根据权利要求11至13所述的方法生产的钢板用于制造结构钢的用途。
14.一种结构钢,包括根据权利要求14获得的部件。

说明书全文

冷轧热处理板及其制造方法

技术领域

[0001] 本发明涉及适合用作汽车用钢板的经冷轧和热处理的钢板。

背景技术

[0002] 结构钢需要满足两个矛盾的需求,即易于成形且具有强度,但近年来,考虑到全球环境问题,还给予这些结构钢在CO2消耗影响方面进行改善的第三个要求,这些结构钢旨在用于建造太阳能框架、垛架、储仓、屋顶、覆层和其他类似的目的。因此,现在的结构钢必须由具有高强度的材料制成,以符合耐久性和寿命的标准。
[0003] 因此,进行了大量的研究和开发努以通过增加材料的强度来减少汽车中使用的材料的量。相反地,钢板强度的增加使可成形性降低,并因此必须开发具有高强度和高可成形性二者的材料。
[0004] 高强度和高可成形性钢板领域中的早期研究和开发已经产生了数种用于生产高强度和高可成形性钢板的方法,本文中列举其中的一些方法以用于对本发明的明确理解:
[0005] US10920293为以质量%计包含以下的组成的钢板:C:0.07%至0.19%、Si:0.09%或更少、Mn:0.50%至1.60%、P:0.05%或更少、S:0.01%或更少、Al:0.01%至0.10%、N:0.010%或更少、以及余量的Fe和不可避免的杂质,并且所述钢板具有包含素体作为主相以及按体积计2%至12%的珠光体和3%或更少的氏体,并且其中剩余部分为低温发生相的显微组织,铁素体的平均晶粒直径为25μm或更小,珠光体的平均晶粒直径为5μm或更小,马氏体的平均晶粒直径为1.5μm或更小,以及珠光体的平均自由程为5.5μm或更大。然而,US10920293的钢不能达到600MPa或更大的抗拉强度

发明内容

[0006] 本发明的目的是通过使得可获得同时具有以下的经冷轧的钢板来解决这些问题:
[0007] ‑大于或等于1.10的TS/YS比率,
[0008] ‑大于或等于600MPa的极限抗拉强度,
[0009] ‑大于或等于14%的总延伸率并且优选地大于或等于15%的总延伸率。
[0010] 优选地,这样的钢具有大于或等于550MPa并且优选高于580MPa的屈服强度
[0011] 优选地,这样的钢还可以具有良好的对于成形(对于轧制)的适用性以及良好的可焊性、可弯曲性和可涂覆性。
[0012] 优选地,这样的钢还可以具有大于40%的扩孔率。
[0013] 本发明的另一个目的还在于使得可获得与常规工业应用相容同时对于制造参数变化稳健的用于制造这些板的方法。
[0014] 本发明的经冷轧和热处理的钢板涂覆有锌或锌合金,或者涂覆有铝合金以改善其耐蚀性。
[0015] 以0.05%至0.12%存在于钢中。碳是通过间隙强化以及经由形成微合金化析出物来提高钢板的强度所必需的元素。如果C低于0.05重量%,则难以同时实现所需的550MPa或更大的屈服强度和大于14%的总延伸率。每当碳含量高于0.12%,其就使可涂覆性劣化,并且在钢‑涂层界面处表现出差的粘附性。高于0.12%的碳含量由于在相对低的均热温度下可能形成第二相(如珠光体、贝氏体、马氏体)而降低Ac1温度,这会降低扩孔率以及增加弯曲期间的加工硬化,这不是推荐的。因此,本发明的钢的碳的优选范围为0.05%至0.11%并且更优选为0.07%至0.095%。
[0016] 本发明的钢的锰含量为1.0%至2%;添加锰的目的主要是通过固溶强化来赋予钢强度。如果Mn低于1%,则难以同时实现所需的550MPa或更大的屈服强度和高于14%的总延伸率。当Mn含量添加超过2%时,奥氏体向珠光体的转变受到抑制,并且形成马氏体和/或贝氏体,由于热影响区(HAZ)的硬度增加而导致可焊性差,并且在焊接期间可能发生表面开裂。本发明的优选含量可以保持在1.1%至1.9%,进一步更优选为1.2%至1.8%,以确保本发明的钢的良好可弯曲性。
[0017] 本发明的钢的含量为0.01%至0.5%。硅通过固溶强化增加了铁素体的强度,由于这种效果,扩孔率趋于增加并且还确保了良好的延性。然而,当以大于0.5%的量包含时,硅在退火期间以化物的形式富集在钢板表面处,使可涂覆性劣化并导致脆化。大于0.5%的过量硅含量还损害高温下的韧性,并经常在焊接时导致表面开裂。出于这个原因,将硅含量限制为0.5%或更少。优选地,硅含量为0.01%至0.4%,并且更优选为0.01%至0.3%。
[0018] 铝是必需元素并且以0.01%至0.1%存在于本发明的钢中。铝促进铁素体形成并且提高Ms温度,其允许本发明具有如本发明的钢所需的足够量的铁素体以赋予本发明的钢以延性以及强度。然而,当铝的存在大于0.1%时,Ac3温度提高,这使得在完全奥氏体区域中的退火和热轧终轧温度在经济上不合理。铝含量优选限制为0.01%至0.09%,并且更优选为0.01%至0.05%。
[0019] 铌是本发明的钢的必需元素,为0.01%至0.1%,并且适用于形成碳化物和碳氮化物以通过析出硬化赋予本发明的钢的强度。铌还将通过其作为碳化物析出以及通过阻碍在加热过程期间再结晶来影响显微组织组分的尺寸。因此,在最终产品中形成了更精细的显微组织,因此本发明的钢能够达到目标强度。然而,高于0.1%的铌含量在经济上没有吸引力,以及形成对钢的特性如扩孔率、延伸率有害的较粗的析出物,此外,当铌的含量为0.1%或更大时,铌还对钢热延性有害,从而在钢铸造和轧制期间产生困难。铌含量的优选限度为0.01%至0.09%,并且更优选为0.01%至0.05%。
[0020] 磷不是必需的元素,但可能作为杂质包含在钢中,从本发明的观点出发,磷含量优选地尽可能低,并且低于0.09%。磷特别是由于其在晶界处偏析或者与锰共偏析的倾向而使可点焊性和热延性降低。出于这些原因,其含量被限制为小于0.09%,优选地小于0.03%,并且更优选地小于0.014%。
[0021] 硫不是必需的元素,但可能作为杂质包含在钢中,从本发明的观点出发,硫含量优选地尽可能低,但从制造成本的观点出发,硫含量为0.09%或更小。此外,如果钢中存在较高的硫,则其尤其与锰结合以形成硫化物并且减少其对本发明的钢的有益影响。
[0022] 氮被限制为0.09%以避免材料老化并在凝固期间使对钢的机械特性不利的氮化物的析出最小化。
[0023] 铬是本发明的任选元素。可以存在于本发明的钢中的铬含量为0.1%至0.5%。铬为钢提供强度和硬化,但当使用高于0.5%时,其损害钢的表面光洁度。对于本发明而言铬的优选限度为0.1%至0.4%,并且更优选为0.2%至0.4%。
[0024] 镍可以作为任选元素以最高3%的量添加以增加钢的强度并改善其韧性。优选最少0.01%以产生这样的效果。然而,当其含量高于3%时,镍导致延性劣化。
[0025] 是任选元素,并且可以以最多0.1%添加至本发明的钢中。与铌一样,其参与碳氮化物形成,因此在本发明的钢的硬化方面起作用。此外,钛还形成在铸造产品的凝固期间出现的钛氮化物。因此将钛的量限制于0.1%以避免形成对可成形性不利的粗钛氮化物。在钛含量低于0.001%的情况下,其不对本发明的钢赋予任何效果。
[0026] 本发明的钢中的含量为最高0.005%。钙作为任选元素尤其是在夹杂物处理期间以优选0.001%的最小量添加至本发明的钢中。钙通过抑制球状形式的不利的硫内容物而有助于钢的精炼,从而阻止了硫的有害效果。
[0027] 可以作为任选元素以最高2%的量添加以增加钢的强度并改善其耐蚀性。优选最少0.01%的铜以获得这样的效果。然而,当其含量高于2%时,其可能使表面外观劣化。
[0028] 钼是构成本发明的钢的最高0.5%的任选元素;钼在决定淬透性和硬度方面起有效作用,延迟贝氏体的出现并避免贝氏体中的碳化物析出。然而,钼的过度添加使合金元素的添加成本增加,因此出于经济原因将其含量限制于0.5%。
[0029] 通过形成碳化物或碳氮化物而有效地提高钢的强度,并且由于经济原因,上限为0.1%。其他元素(例如铈、、镁或锆)可以按以下重量比例单独添加或组合添加:铈≦0.1%、硼≦0.003%、镁≦0.010%和锆≦0.010%。直至所示的最大含量平,这些元素使得可以使晶粒在凝固期间细化。钢的组成的剩余部分由铁和因加工产生的不可避免的杂质组成。
[0030] 现在将描述钢板的显微组织。
[0031] 按面积分数计,再结晶铁素体构成本发明的钢的显微组织的50%至90%,并且有利的是具有3.6微米或更小的平均晶粒尺寸并且优选地平均晶粒尺寸为2微米至3.6微米。该再结晶铁素体赋予本发明的钢以至少14%的总延伸率。然而,当在本发明的钢的基体中再结晶铁素体含量以高于90%存在时,不能实现550MPa的屈服强度。再结晶铁素体晶粒被定义为在冷轧之后的退火期间,在低于Ac1温度的加热和均热期间成核和生长的无位错等轴晶粒。因此,对本发明而言,按面积分数计,基体中再结晶铁素体存在的优选限度为54%至85%,并且更优选为54%至80%。
[0032] 按面积分数计,非再结晶铁素体构成本发明的钢的显微组织的10%至50%。非再结晶铁素体晶粒被定义为在冷轧之后的退火期间,在冷轧期间形成且在低于Ac1温度的加热和均热期间不发生再结晶的包含位错的细长铁素体晶粒。非再结晶铁素体有助于本发明的钢的高强度,并且为了确保550MPa或更大的屈服强度,必须具有至少10%的非再结晶铁素体。但是当在本发明的钢的基体中非再结晶铁素体含量以高于50%存在时,不能实现至少14%的总延伸率。因此,对于本发明而言,按面积分数计,非再结晶铁素体存在的优选限度为15%至50%,并且更优选为20%至48%。
[0033] 非再结晶铁素体和再结晶铁素体的累积存在可以为至少85%,并且优选至少90%,并且更优选至少98%或99.5%。用迪诺蚀刻剂(140ml蒸馏水、100ml H2O2、4g草酸
2ml H2SO4和1.5ml HF)进行非蚀刻,用于从光学显微照片中区分再结晶和非再结晶铁素体显微构成。根据ASTM E562测量每种成分的面积分数。
[0034] 碳化铌存在于本发明的钢中。根据本发明有利的是,碳化铌析出物的尺寸为2nm至200nm,并且更优选为2nm至20nm。本发明的碳化铌包括晶内碳化铌(即在铁素体晶粒内的析出物,所谓的晶内碳化铌)和晶间碳化铌(即在铁素体晶界上的析出物,所谓的晶间碳化铌)二者。碳化铌的均匀析出和共格析出增加钢的强度。碳化铌存在的限度按面积分数计为
0.5%至2%,并且更优选按面积分数计为0.5%至1.5%。
[0035] 渗碳体可以以0%至15%任选存在于本发明的钢中。渗碳体赋予本发明以强度,然而当渗碳体的存在高于15%时,达不到所述总延伸率。
[0036] 在不损害钢板的机械特性的情况下,除了上述显微组织之外,经冷轧和热处理的钢板的显微组织不含诸如珠光体、贝氏体和马氏体的显微组织组分。
[0037] 根据本发明的钢板可以通过任何合适的方法来生产。优选的方法包括提供具有根据本发明的化学组成的钢的半成品铸件。可以将铸件制成锭或者连续地制成薄板坯或薄带材的形式,即,厚度范围从对于板坯的约220mm直至对于薄带材的数十毫米。
[0038] 例如,具有上述化学组成的板坯通过连铸来制造,其中板坯在连铸过程期间任选地经历直接轻压下以避免中心偏析并确保局部碳与标称碳的比率保持低于1.10。通过连铸过程提供的板坯可以在连铸之后直接在高温下使用,或者可以首先冷却至室温然后再加热以进行热轧。
[0039] 经受热轧的板坯的温度为至少1000℃,并且必须低于1280℃。在板坯的温度低于1000℃的情况下,铌不发生完全溶解,因此在退火期间铌将不会形成足够的碳化物,并且此外,如果温度低于1000℃,则可能对轧机施加过大的负荷,此外,在精轧期间钢的温度可能降低至铁素体转变温度,由此钢将在组织中含有转变铁素体的状态下被轧制。因此,板坯的温度优选地足够高,使得可以在Ac3至Ac3+100℃的温度范围内完成热轧并且最终轧制温度必须保持高于Ac3。必须避免在高于1280℃的温度下的再加热,因为它们在工业上是昂贵的。
[0040] Ac3至Ac3+100℃的最终轧制温度范围是必须的,以具有有利于再结晶和轧制的组织。优选的是,最终轧制道次在高于850℃的温度下进行,因为低于该温度,钢板表现出可轧制性的显著下降。然后,以高于20℃/秒的冷却速率将以这种方式获得的经热轧的钢冷却至必须为450℃至650℃的卷取温度。将卷取温度保持在450℃至650℃的目的是将微合金元素例如铌保持在热带中的固溶体中,以使冷轧之后退火期间的析出最大化。优选地,冷却速率将小于或等于200℃/秒。
[0041] 然后将经热轧的钢在450℃至650℃的卷取温度下卷取以避免椭圆化,并且优选在450℃至625℃下卷取以避免氧化皮形成。对这样的卷取温度的更优选的范围为460℃至625℃。使经卷取的热轧钢冷却至室温,然后使其经受任选的热带退火(hot band annealing)。
[0042] 可以使经热轧的钢经受任选的氧化皮去除步骤以去除在任选的热带退火之前的热轧期间形成的氧化皮。然后可以使经热轧的板在例如400℃至750℃的温度下经历任选的热带退火至少12小时并且不超过96小时,将温度保持低于750℃以避免使热轧显微组织部分转变,并因此,失去显微组织均匀性。此后,该经热轧的钢的任选的氧化皮去除步骤可以通过例如这样的板的酸洗来进行。以35%至90%的厚度压下率使该经热轧的钢经受冷轧以获得经冷轧的钢板。然后使由冷轧过程获得的经冷轧的钢板经受退火以赋予本发明的钢以显微组织和机械特性。
[0043] 以两步加热对经冷轧的钢板进行退火,其中第一步以至少20℃/秒的加热速率HR1将钢板从室温开始加热至580℃至650℃的温度T1。将T1温度保持在低于再结晶起始温度是有利的,该再结晶起始温度是根据如Taylor和Francis在2013年12月6日在第765至773页发表的文章“Differential scanning calorimetry study of constrained groove pressed low carbon steel:recovery,recrystallisation and ferrite to austenite phase transformation”通过差示扫描量热法实验计算的。此后,第二步以至少2℃/秒的加热速率HR2将钢板从T1开始进一步加热至700℃至760℃的均热温度T2,HR2低于HR1,然后在T2下进行退火持续10秒至500秒。在一个优选实施方案中,对于第二步的加热速率,加热速率小于10℃/秒,并且更优选地小于8℃/秒。用于均热的优选温度T2为700℃至Ac1‑50℃。
[0044] 然后,以至少10℃/秒并且优选至少15℃/秒的平均冷却速率将经冷轧的钢从T2冷却至400℃至500℃,优选420℃至490℃的温度范围T3,其中冷却步骤可以包括以2℃/秒或更小的冷却速率并且优选1℃/秒或更小的冷却速率在T3温度范围内的任选的缓慢冷却的子步骤。将经冷轧的钢板在温度范围T3内保持10秒至500秒时间。
[0045] 然后,根据涂层的性质,然后可以使经冷轧的钢板达到420℃至480℃的涂覆浴的温度以促进经冷轧的钢板的热浸
[0046] 经冷轧的钢板还可以通过任何已知的工业过程例如电镀、JVD、PVD等进行涂覆,这些过程可能不需要在涂覆之前使钢板达到上述温度范围。
[0047] 然后,可以在150℃至300℃的温度下进行任选的后分批退火持续30分钟至120小时。
[0048] 此后,可以以1.3%或更大的最小光整冷轧压下率并且优选大于1.4%压下率或更大对经冷轧的钢板进行光整冷轧。

具体实施方式

[0049] 本文呈现的以下测试、实施例、图形示例和表本质上是非限制性的,并且必须仅出于举例说明的目的而被考虑,并且将显示本发明的有利特征。
[0050] 表1中汇总了由具有不同组成的钢制成的钢板,其中分别根据如表2记明的工艺参数生产钢板。此后,表3汇总了试验期间获得的钢板的显微组织,表4汇总了获得的特性的评估结果。
[0051] 表1
[0052]试验 C Mn Si Al Nb P S N Ti
I1 0.08 1.45 0.03 0.025 0.031 0.012 0.002 0.005 0
I2 0.08 1.45 0.03 0.025 0.025 0.012 0.002 0.005 0
I3 0.08 1.45 0.03 0.025 0.025 0.012 0.002 0.005 0
I4 0.08 1.45 0.03 0.025 0.031 0.012 0.002 0.005 0
R1 0.08 1.45 0.03 0.025 0.032 0.012 0.002 0.005 0
R2 0.07 0.9 0.03 0.035 0.06 0.014 0.007 0.005 0.042
R3 0.07 0.9 0.03 0.035 0.05 0.014 0.007 0.005 0.042
[0053] 带下划线的值:未根据本发明。
[0054] 表2
[0055] 表2汇总了对表1的钢实施的退火工艺参数。钢组成I1至I3和R1至R5用于制造根据本发明的板。表2还示出了Ac1和Ac3的列表。这些Ac1和Ac3是通过根据ASTM A1033‑04标准进行的膨胀法研究对发明钢和参照钢进行限定的。
[0056] 以下工艺参数对表1的所有钢是相同的。将表1的所有钢加热至1200℃的温度,然后进行热轧,并且它们在热浸镀锌之前最终处于460℃的温度。
[0057] 表2如下:
[0058] 表2
[0059]
[0060] 表3
[0061] 表3例示了在用于确定发明钢和参照钢二者的显微组织的不同显微镜例如扫描电子显微镜上根据标准进行的测试的结果。
[0062] 本文中记明了结果:
[0063]
[0064] I=根据本发明;R=参照;带下划线的值:未根据本发明
[0065] 表4
[0066] 表4例示了发明钢和参照钢二者的机械特性。为了确定抗拉强度、屈服强度和总延伸率,根据NBN EN ISO 6892‑1方法B对A80试样进行拉伸测试。
[0067] 汇总了根据标准进行的各种机械测试的结果。
[0068] 表4
[0069]
[0070] I=根据本发明;R=参照;带下划线的值:未根据本发明。
QQ群二维码
意见反馈