序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
81 Recipientes de material de construção de impressão 3d BR112018014972 2016-05-12 BR112018014972B1 2022-02-01 CHANCLON ISMAEL; COFELICE NICOLA; SARDA SANTIAGO; ALONSO XAVIER
existe um recipiente de material de construção de impressão 3d (1). o recipiente (1) compreende um reservatório (3) e uma estrutura de reforço (4). o reservatório deve conter material de construção. a estrutura de reforço é anexada ao reservatório em pelo menos um local selecionado. o reservatório e a estrutura de reforço são para permitir a reconfiguração do recipiente de uma configuração relativamente plana para uma configuração em utilização na qual o reservatório pode ser preenchido com material de construção.
82 fabricação aditiva BR112021003319 2019-07-19 BR112021003319A2 2021-05-11 STEWART WYNN WILLIAMS; WOJCIECH JERZY SUDER
fabricação aditiva. é fornecido um método de produção de um artigo 3d por fabricação aditiva. o método inclui as etapas de: formar uma poça de fusão em uma parte já existente do artigo e mover a poça de fusão em relação ao mesmo; alimentar uma matériaprima direcionada para a poça de fusão móvel para depositar e fundir uma camada de material na parte já existente; e repetir as etapas de formação e movimento e alimentação para acumular camadas sucessivas de material. na realização das etapas de formação e movimento: uma primeira fonte de energia colide com uma primeira região da parte já existente que se move com e conduz a poça de fusão, em que a primeira fonte de energia inicia a formação da poça de fusão; e uma segunda fonte de energia colide com uma segunda região na parte já existente que se move com e segue a primeira região, em que a segunda fonte de energia faz a largura lateral da poça de fusão crescer antes que a matéria-prima seja alimentada à mesma.
83 ADDITIVE MANUFACTURE SG11202101630R 2019-07-19 SG11202101630RA 2021-03-30 WILLIAMS STEWART WYNN; SUDER WOJCIECH JERZY
84 Additive manufacture AU2019325191 2019-07-19 AU2019325191A1 2021-03-11 WILLIAMS STEWART WYNN; SUDER WOJCIECH JERZY
A method of producing a 3D article by additive manufacture is provided. The method includes the steps of: forming a meltpool in an already-existing part of the article, and moving the meltpool relative thereto; feeding a directed feedstock into the moving meltpool to deposit and fuse a layer of material on the already-existing part; and repeating the forming and moving and feeding steps to build up successive layers of material. In performance of the forming and moving step: a first energy source impinges at a first region of the already-existing part which moves with and leads the meltpool, whereby the first energy source initiates the formation of the meltpool; and a second energy source impinges at a second region on the already-existing part which moves with and follows the first region, whereby the second energy source grows the lateral width of the meltpool before the feedstock is fed therein.
85 Sposób wytwarzania przedmiotów za pomocą techniki przyrostowej PL43050319 2019-07-05 PL430503A1 2021-01-11 KNOR MAREK; NOGALA WOJCIECH; STANIK KRZYSZTOF
Przedmiotem wynalazku jest sposób wytwarzania przedmiotów za pomocą techniki przyrostowej, w której prekursor materiału budulcowego stanowiącego wytwarzany przedmiot dostarczany jest z fazy gazowej i poddawany jest lokalnie wywołanej reakcji za pomocą skupionej wiązki promieniowania elektromagnetycznego (3). W sposobie tym reagent (1) obecny w fazie gazowej ulega reakcji, której produktem końcowym jest lita substancja stała stanowiąca materiał budulcowy wytwarzanego przedmiotu (4). Wiązka promieniowania elektromagnetycznego (3), przemieszczająca się względem wytwarzanego przedmiotu, skupiona jest w sposób kontrolowany, aby w/w reakcja zachodziła w ograniczonej objętości, umiejscowionej w wybranym miejscu przestrzeni trójwymiarowej powodując przyrost przedmiotu w tym miejscu. W jednym z wariantów sposobu, wykorzystywany jest również katalizator dostarczany do przestrzeni reakcyjnej bezpośrednio z fazy gazowej.
86 Устройство для сфероидизации композиционного металлсодержащего порошка для 3D-печати RU2020110800 2020-03-16 RU197530U1 2020-05-12
Полезнаямодельотноситсяк устройствудлясфероидизациикомпозиционногометаллсодержащегопорошкадля 3D-печати. Дваплазматронарасположенызеркальноотносительнопоперечногоцентрадиэлектрическогоизоляторас возможностьювращениявокругпоперечногоцентранаподставке. Каждыйизплазматроновсостоитизкольцевогоанодаи катода, расположенныхсооснос зазором, образующимразряднуюкамеру. Катодкаждогоплазматронаразмещенкоаксиальнов полойтрубкеи закрепленв нейоднимконцомс помощьюцанговогосоединения, трубкавторымконцомсоединенас кольцевыманодомплазматронаприпомощинакиднойгайки. Диэлектрическийизоляторразмещенв осевомотверстиизажатоймеждуторцамианодовплазматроновшайбы, выполненнойс радиальнымивырезамидляпересыпаниясквозьнихпорошкаприповоротеплазматроноввокругпоперечногоцентра. Постоянныекольцевыемагнитыплазматроновразмещеныс упоромв сердечник, выполненныйв видетелавращения, образованногот-образнымэлементомс внутреннимдиаметром, равнымвнешнемудиаметрушайбы. Внешнийторецмагнитакаждогоплазматронаи еговнешняяцилиндрическаяповерхностьзакрытыкрышкойс осевымотверстиемподанод, накоторойразмещенрадиатор, ак внешнейцилиндрическойповерхностирадиаторовпервогои второгоплазматроновс двухсторонприкрепленыконцыскоб, закрепленныхрезьбовымсоединениемнаподставке. Обеспечиваетсярасширениеарсеналатехническихсредствдлясфероидизациикомпозиционныхпорошковдля 3D-печати. 3 з.п. ф-лы, 4 ил.
87 THREE-DIMENSIONAL OBJECT STORAGE, CUSTOMIZATION, AND PROCUREMENT SYSTEM AU2017232190 2017-09-22 AU2017232190B2 2019-09-19 WEBB SUNNY; SHORT MATTHEW
A computer-implemented method for procuring one or more components, the method including receiving, from a user, via one or more web pages generated by one or more servers an order that specifies one or more components for procurement and constraints for procuring the one or more components, searching, by a processor, a database for 3D object data associated with the one or more components to determine 3D object data that defines one or more of the requested components, determining, by the processor, whether there are one or more sources capable of providing one or more of the components within the received constraints, wherein at least one of the sources corresponds to a 3D printing facility that prints components via a 3D printing process according to received 3D object data, suggesting, by the processor, one or more modifications of the received constraints within which one or more sources are capable of providing the one or more of the components, when one or more capable sources are not determined, presenting, in one or more reports to the user, via the one or more web pages, the suggested one or more modifications of the received constraints, receiving, from the user, via the one or more web pages, modified constraints that correspond with one or more of the suggested modifications of the received constraints, and communicating the 3D object data, to one or more 3D printers associated with the at least one of the sources that correspond with a 3D printing facility, for procuring the one or more components within the modified constraints from the determined one or more sources. cz '- 0 o 0 't U)) 1jl1 0 CC) 0) a)U _ U) CCUb U) co U) ) c99c 0)
88 VERFAHREN ZUM HERSTELLEN EINER MULTIMATERIAL-BAUTEILVERBINDUNG UND DIE MULTIMATERIAL-BAUTEILVERBINDUNG AT510162017 2017-12-06 AT520756A4 2019-07-15 MANUEL ERLACHER; BRUNO BUCHMAYR; ALEXANDER WALZL
Es wird ein Verfahren beschrieben zum Herstellen einer Multimaterial- Bauteilverbindung (130). Das Verfahren weist auf: i) additives Fertigen eines ersten Bauteils (110) aus einem ersten Material (150), wobei das erste Bauteil (110) eine Verbindungsstruktur (112) aufweist, ii) Bereitstellen eines zweiten Bauteils (120), welches einen Verbindungsabschnitt (121) aufweist, welcher ein zweites Material (160) aufweist, iii) Einbringen des Verbindungsabschnitts (121) in die Verbindungsstruktur (112), wobei das zweite Material (160) zumindest teilweise als viskose Phase vorliegt, und iv) Aushärten des zweiten Materials (160) derart, dass eine formschlüssige Verbindung (131) zwischen dem ersten Bauteil (110) und dem zweiten Bauteil (120) ausbildet wird.
89 A system and method of 3D print modelling GB201719403 2017-11-22 GB2568687A 2019-05-29 ANDREW JAMES BIGOS
Generating a model for 3D printing, by: selecting an object within a virtual environment; sampling the object to form a point cloud representing its outer surface and some of its internal features; voxelising the point cloud and rendering the voxels from multiple viewpoints; detecting which voxels or points were rendered over the multiple renders; forming a “surface-only” point cloud comprising those points that were rendered; generating a model for 3D printing from the surface-only point cloud. Data fields for each point may be provided in a point map that lists counters or flags. Flags may be true or false. The count may be incremented and a count histogram formed. Points with a count below a threshold may be re-rendered from a new viewpoint. Points with zero values surrounded by positive point values may be interpolated or filled to patch holes and occlusions and create a continuous surface. Sampling pitch (inter-sample distance) may match voxel size for printing. Viewpoints may be distributed over a lozenge-shaped surface comprising a cylindrical portion capped by opposing hemispheres. Virtual photogrammetry may involve stitching multiple renders together to create a shell. Physical models may be created from videogame elements.
90 METHOD OF ISOLATING NUCLEIC ACID CA3071176 2018-07-25 CA3071176A1 2019-01-31 WEE EUGENE J H; ANDERSON WILL; GREWAL YADVEER SINGH
Disclosed herein is a method of isolating nucleic acid from a sample containing nucleic acid, the method comprising (a) exposing the sample to a thermoplastic polymer substrate under conditions that allow nucleic acid in the sample to reversibly bind to the substrate; (b) washing the nucleic acid-bound substrate of (a) under conditions that preferentially remove non-nucleic acid impurities bound to the substrate; and (c) exposing the washed nucleic acid-bound substrate of (b) to an elution buffer, thereby recovering the nucleic acid from the substrate.
91 Magnetohydrodynamic deposition of metal in manufacturing AU2017228498 2017-03-03 AU2017228498A1 2018-09-20 SACHS EMANUEL MICHAEL; GIBSON MICHAEL ANDREW; HOISINGTON PAUL A; FONTANA RICHARD REMO; GIBSON MARK GARDNER
Devices, systems, and methods are directed to applying magnetohydrodynamic forces to liquid metal to eject liquid metal along a controlled pattern, such as a controlled three-dimensional pattern as part of additive manufacturing of an object. The magnetohydrodynamic force can be pulsed to eject droplets of the liquid metal to provide control over accuracy of the object being fabricated. The pulsations can be applied in fluid chambers having high resonance frequencies such that droplet ejection can be effectively controlled over a wide range of frequencies, including high frequencies suitable for liquid metal ejection at rates suitable for commercially viable three-dimensional fabrication.
92 Vorrichtung zur automatisierten und serienmäßigen additiven Fertigung von Teilen auf Substratstrukturen DE102016222959 2016-11-22 DE102016222959A1 2018-05-24 LOEBER LUKAS
Vorrichtung (1) zur automatisierten und serienmäßigen additiven Fertigung von Teilen (2) auf Substratstrukturen (3) zumindest aufweisend: eine Fertigungskammer (4) in welcher ein additiver Fertigungsprozess stattfinden kann, wenigstens eine Nebenkammer (5, 6), welche über eine jeweilige Schleuse (7, 8) mit der Fertigungskammer (4) verbindbar ist, einen Mechanismus (9, 16), welcher dazu eingerichtet ist, in einer der wenigstens einen Nebenkammern (5, 6) bevorratete Substratstrukturen (3) durch die jeweilige Schleuse (7, 8) in die Fertigungskammer (4) zu transportieren und/oder fertiggestellte Teile (2) aus der Fertigungskammer (4) durch die jeweilige Schleuse (7, 8) in eine der wenigstens einen Nebenkammern (5, 6) zu transportieren.
93 Inkjet type additive manufacturing GB201508289 2015-05-14 GB2538289B 2018-05-09 GEORGE BONATSOS; PETER CHOI
94 Verfahren und Vorrichtung zum Bearbeiten eines Werkstücks DE102016119147 2016-10-07 DE102016119147A1 2018-04-12 FLÖGEL RUPERT
Bei einem Verfahren zum Bearbeiten eines Werkstücks (1) wird das Werkstück (1) mit mindestens einem Verbindungselement (4) auf einem Trägerelement (2) festgelegt oder mit einem generativen Herstellungsverfahren erzeugt. In einem Einbettungsschritt wird das Werkstück (1) in eine das Werkstück (1) umgebende Vergussform (10) eingebracht und ein das Werkstück (1) umgebendes aushärtendes Trägermaterial (16) in die Vergussform (10) eingebracht, sodass das Werkstück (1) in dem Trägermaterial (16) eingebettet und fixiert ist. In einem Freilegungsschritt wird das Trägerelement (2) von dem Werkstück (1) abgetrennt und das Werkstück (1) von einer dem Trägerelement (2) zugewandten Seite (19) freigelegt, um in einem nachfolgenden zweiten Bearbeitungsschritt das teilweise in das Trägermaterial (16) eingebettete Werkstück (1) bearbeiten zu können. Das Werkstück (1) kann durch ein generatives Herstellungsverfahren auf dem Trägerelement (2) hergestellt werden, wobei mindestens ein das Werkstück (1) mit dem Trägerelement (2) verbindendes Verbindungselement (4) mit hergestellt wird. An dem Trägerelement (2) sind vorspringende Positionierungselemente (6) angeordnet, die bei dem Einbringen des Werkstücks (1) in die Vergussform (10) mit daran angepassten Ausnehmungen (11) in der Vergussform (10) in Eingriff treten, um eine Positionierung des Trägerelements (2) mit dem darauf festgelegten Werkstück (1) relativ zu der Vergussform (10) vorzugeben und eine nachfolgende Referenzierung des Werkstücks (1) zu ermöglichen.
95 Component manufacturing GB201608438 2016-05-13 GB2550345A 2017-11-22 KRZYSZTOF SKIRKOWSKI
Disclosed is a method of manufacturing a three dimensional component. An outer shell 400 is formed by an additive manufacturing process and the shell is filled with a core material. The method may include forming, by the additive manufacturing process, an internal member 402 extending across at least of portion of an internal space defined by the shell. The filling may include depositing the core material within the shell by a casting process, for example, an injection casting process, a vacuum casting process, and a vacuum pressure casting process. The additive manufacturing process may comprises one or more of: a laser melting process, an electron beam melting process, a direct metal laser sintering process, a blown powder process, and a wire extrusion process. The shell may be made from a metal material, for example titanium, aluminium, and/or steel. The core may be comprise the same or a different material as the shell. A finishing process may be included, for example a machining process, a peening process, a forging process, a drilling process, a filing process, a sanding process, a grinding process, an abrasive polishing process, and/or a hot isostatic pressure process. The component may be a vehicle component, such as an aircraft component.
96 PROCEDE DE TRAITEMENT DE SURFACE POUR OBJETS FR1654150 2016-05-10 FR3051127A1 2017-11-17 MOREAU CLEMENT; COMTE MYRTILLE
La présente invention se rapporte à un procédé de traitement de surface d'un objet, comportant les étapes suivantes : • Trempe dudit objet dans une solution comportant un acide concentré ou un mélange d'acides concentrés, et possédant un pH compris entre 0 et 2, afin d'imprégner la surface dudit objet ; • Retrait dudit objet de ladite solution acide ; • Chauffage dudit objet à une température comprise entre 140°C et 180°C, jusqu'à l'obtention de la fusion de la surface ; et • Refroidissement dudit objet. Le procédé selon la présente invention s'applique en particulier, mais de façon non exclusive, aux objets issus de techniques de fabrication additive.
97 A method and apparatus for infusing additive manufactured objects and the like GB201405435 2014-03-26 GB2514661B 2017-10-18 TIM WARWICK
98 Additive manufacturing GB201508289 2015-05-14 GB2538289A 2016-11-16 GEORGE BONATSOS; PETER CHOI
A deposition apparatus and method for additive manufacturing are disclosed. The deposition apparatus 100 comprises at least one reservoir 16 for storing a colloidal suspension of material and a liquid carrier and at least one print head 34 comprising a plurality of nozzles 12 in fluid communication with the reservoir, each nozzle configured to deposit a droplet 36 of the colloidal suspension onto a substrate. The deposition apparatus further comprises drying means 22 disposed adjacent the at least one print head, the drying means configured to selectively supply a first energy pulse to a deposited droplet in order to evaporate the liquid from the deposited droplet; and melting means 30 disposed adjacent the drying means, the melting means configured to selectively supply a second energy pulse for melting the material in a droplet dried by the drying means. An energy source 24 may be configured to emit energy in various forms. For example, the energy source may an ion beam source, electron beam source, or a source of electromagnetic radiation. The energy source 24 is used to dry the material in a deposited droplet 36 by evaporating the liquid carrier. For example, the energy sources 24 may be photon energy sources that are configured to generate and emit pulses of incoherent or coherent electromagnetic radiation. In the present embodiment the photon energy sources are high power infrared light emitting diodes (LEDs), and the energy emitting part 28 is a focussing lens configured to focus a pulse of electromagnetic radiation onto a deposited droplet. The melting means may include an energy source 32 configured to generate energy pulses having a higher intensity than the drying energy pulses.
99 THREE-DIMENSIONAL OBJECT STORAGE, CUSTOMIZATION, AND PROCUREMENT SYSTEM AU2016200186 2016-01-13 AU2016200186A1 2016-08-04 WEBB SUNNY; SHORT MATTHEW
A method for processing an order for components includes receiving, at a server, an order that specifies one or more components for procurement and constraints for procuring the one or more components. A processor determines one or more sources capable of providing one or more of the components within the received constraints. At least one of the sources corresponds to a 3D printing facility that prints components via a 3D printing process. The processor communicates one or more orders for procuring the one or more components to the determined one or more sources. Receive order for components Search database for 3D object data Determine object attributes 915 Identify printing facilities capable of printing component 920 Determine cost and lead-time for printing component Compare cost/ lead-time against other sources 930 Communicate order for components to most suitable source 935 + Receive feedback Fig. 9
100 Disposal of water soluble waste in additive manufacturing IL30978823 2023-12-27 IL309788B2 2025-02-01 MURIELLE SAYADA; JANKIEL KIMELBLAT
Method and kits for handling an aqueous waste solution or dispersion obtained upon removing a water-miscible support material from a three-dimensional object during additive manufacturing of the object, and additive manufacturing processes utilizing same are provided. The methods and kits utilize a super absorbent polymeric material to convert the liquid waste solution to a solid or semi-solid composition.
QQ群二维码
意见反馈