首页 / 专利库 / 物理 / 波动 / 无线电波 / 使用单扇面激光器来增强无线电定位系统的方法

使用单扇面激光器来增强无线电定位系统的方法

阅读:160发布:2022-06-29

专利汇可以提供使用单扇面激光器来增强无线电定位系统的方法专利检索,专利查询,专利分析的服务。并且一种通过使用固定扇面激光发射机(18)来增强移动无线电 定位 系统(Mobile_RADPS)(10)的方法。漫游器(12)包括与移动激光检测器(16)集成在一起的移动无线电定位系统(Mobile_RADPS)(14)。固定扇面激光发射机(18)与固定无线电定位系统(Stationary_RADPS)(20)集成在一起。该方法包括下列步骤:(A)由固定扇面激光发射机(18)产生一个单一倾斜的扇面波束(22);(B)通过使用移动激光检测器(16)来检测由固定扇面激光发射机(18)所产生的单一倾斜扇面波束(22);以及(C)确定触及漫游器 位置 的扇面 激光束 (22)的计时并使用触及漫游器位置的扇面激光束(22)的计时来改善在漫游器(12)位置坐标确定中的 精度 。,下面是使用单扇面激光器来增强无线电定位系统的方法专利的具体信息内容。

1.一种通过使用固定扇面激光发射机来增强移动无线电定位系统 (Mobile_RADPS)的方法,其中,漫游器包括与移动激光检测器集成在一起的所 述移动无线电定位系统(Mobile_RADPS);并且其中所述固定扇面激光发射机与 固定无线电定位系统(Stationary_RADPS)集成在一起;所述方法包括下列步骤:
(A)通过所述固定扇面激光发射机来产生单一倾斜扇面波束;
(B)通过使用所述移动激光检测器来检测由所述固定扇面激光发射机所产生 的所述单一倾斜扇面波束;以及,
(C)为所述扇面激光束触及所述漫游器的位置计时,并且使用所述扇面激光 束触及所述漫游器的位置的所述计时来提高在所述漫游器的位置坐标确定过程中 的精度
2.如权利要求1所述的方法,其特征在于,通过所述固定扇面激光发射机产 生单一倾斜扇面波束的所述步骤(A)还包括以下步骤:
(A1)提供定位在已知坐标位置中的所述固定扇面激光发射机;以及,
(A2)所述扇面激光发射机以基本恒定的速率围绕着它的垂直轴旋转。
3.如权利要求2所述的方法,其特征在于,提供定位在已知坐标位置中的所 述固定扇面激光发射机的所述步骤(A1)还包括步骤:
(A1,1)通过使用所述固定无线电定位系统(Stationary_RADPS)来自检测所 述固定扇面激光发射机以确定其位置坐标。
4.如权利要求3所述的方法,其特征在于,通过使用所述固定无线电定位系 统(Stationary_RADPS)来自检测所述固定扇面激光发射机以确定其位置坐标的所 述步骤(A1,1)还包括步骤:
(A1,1,1)通过使用所述固定无线电定位系统(Stationary_RADPS)来接收选 自于由GPS、GLONASS、GPS/GLONASS组合、GALILEO、全球导航卫星系统 (GNSS)定位系统和伪卫星发射机所构成的组中至少一种无线电信号源所广播的 第一种多个外部无线电信号
其中,所述固定无线电定位系统(Stationary_RADPS)被配置成使用所述第 一种多个外部无线电信号来获取所述固定扇面激光发射机的位置坐标。
5.如权利要求3所述的方法,其特征在于,通过使用所述固定无线电定位系 统(Stationary_RADPS)来自检测所述扇面激光发射机以确定其位置坐标的所述步 骤(A1,1)还包括以下步骤:
(A1,1,2)提供差动固定无线电定位系统(Stationary_RADPS);
(A1,1,3)通过使用所述差动固定无线电定位系统(Stationary_RADPS)来接 收选自由GPS、GLONASS、GPS/GLONASS组合、GALILEO、全球导航卫星系统 (GNSS)定位系统和伪卫星发射机所构成的组中至少一种无线电信号源所广播的 第一种多个外部无线电信号;以及,
(A1,1,4)通过使用所述差动固定无线电定位系统(Stationary_RADPS)来接 收选自于由基站、RTK基站、虚拟基站(VBS)和伪卫星发射机作构成的组中至 少一个信号源所广播的第一组差动校正数据;
其中,所述差动固定无线电定位系统(Stationary_RADPS)被配置成使用所 述第一种多个外部无线电信号和所述第一组差动校正数据来获取所述固定扇面激 光发射机的位置坐标。
6.如权利要求5所述的方法,其特征在于,还包括步骤:
(A1,1,5)提供无线通讯链路,所述无线通讯链路被配置成将所述差动固定无 线电定位系统(Stationary_RADPS)连接到所述差动校正数据源;
其中,所述无线通讯链路选自于由蜂窝链路、无线电、私密无线电频段、SiteNet 900私密无线电网路、无线互联网、卫星无线通讯链路和光无线链路所构成的组中。
7.如权利要求2所述的方法,其特征在于,所述扇面激光发射机围绕着它的 垂直轴旋转的步骤(A2)还包括步骤:
(A2,1)所述扇面激光发射机的头部以基本恒定的角速率围绕着它的垂直轴 机械地旋转。
8.如权利要求7所述的方法,其特征在于,所述扇面激光发射机的头部以基 本恒定的角速率围绕着它的垂直轴机械地旋转的步骤(A2,1)还包括步骤:
(A2,1,1)通过使用相位振荡器来控制所述扇面激光发射机的头部围绕着它的 垂直轴旋转的所述基本恒定的角速率。
9.如权利要求7所述的方法,其特征在于,所述扇面激光发射机的头部以基 本恒定的角速率围绕着它的垂直轴机械地旋转的步骤(A2,1)还包括步骤:
(A2,1,2)通过给予所述激光发射机的头部基本足够的质量来提高所述扇面激 光发射机的头部围绕着它的垂直轴旋转的所述基本恒定的角速率。
10.如权利要求2所述的方法,其特征在于,所述扇面激光发射机围绕着它 的垂直轴旋转的步骤(A2)还包括步骤:
(A2,2)所述扇面激光发射机以所述基本恒定的角速率围绕着它的垂直轴地 光学旋转。
11.如权利要求2所述的方法,其特征在于,还包括以下步骤:
(A3)每当所述激光束的已知位置通过所述激光发射机中的参考标记时,就 产生电子计时脉冲;
(A4)通过使用所述固定无线电定位系统(Stationary JRADPS)对各个电子 计时脉冲进行时间标记;
(A5)通过使用多个时间标记来产生所述激光束的角速率的评估值;其中, 各个所述时间标记用于表示参考标记与电子计时脉冲交叉的时间瞬间;以及,
(A6)通过无线通讯链路将所述激光束的角速率评估值和所述多个时间标记 发送至所述漫游器;
其中,所述无线通讯链路选自于由蜂窝链路、无线电、私密无线电波段、SiteNet 900私密无线电网络、无线互联网、卫星无线通讯链路以及光无线链路所构成的 组中。
12.如权利要求11所述的方法,其特征在于,通过使用多个时间标记来产生 所述激光束的角速率评估值的所述步骤(A5)还包括步骤:
(A5,1)通过使用所述多个时间标记来产生所述激光束的角速率的低通滤波 评估值,其中,各个所述时间标记表示所述参考标记与一个所述电子计时脉冲交 叉的时间瞬间。
13.如权利要求2所述的方法,其特征在于,还包括步骤:
(A7)除了主要参考标记之外,还包括至少一个附加参考标记;
(A8)每当所述激光束的已知位置通过所述激光发射机中的所述主要参考标 记和各个所述附加参考标记时,就产生一电子计时脉冲;
(A9)通过使用所述固定无线电定位系统(Stationary_RADPS),对各个所 述电子计时脉冲进行时间标记;
(A10)通过使用多个时间标记来产生所述激光束的角速率评估值,其中,各 个所述时间标记表示所述主要参考标记与一个所述电子计时脉冲交叉时或者各个 所述附加参考标记与一个所述电子计时脉冲交叉时的时间瞬间;以及,
(A11)通过所述无线通讯链路将所述激光束的所述角速率评估值和所述多个 时间标记发送至漫游器,其中,通过对所述激光束到各个所述附加参考标记进行 时间标记而形成的多个时间标记包括被配置成对所述激光束的旋转角速率的变化 进行补偿的激光校正数据。
14.如权利要求13所述的方法,其特征在于,通过使用多个时间标记来产生 激光束的角速度评估值的所述步骤(A10)还包括步骤:
(A10,1)通过使用所述多个时间标记来产生所述激光束的角速率的低通滤波 评估值,其中,各个所述时间标记表示所述主要参考标记与一个所述电子计时脉 冲交叉时的时间瞬间或者各个所述附加参考标记与一个所述电子计时脉冲交叉时 的时间瞬间。
15.如权利要求1所述的方法,其特征在于,所述通过使用移动激光检测器 来检测由所述固定扇面激光发射机所产生的单一倾斜扇面波束的步骤(B)还包括 下列步骤:
(B1)通过使用所述移动激光检测器来检测由所述激光发射机所产生的至少 一个光脉冲;其中,各个所述光脉冲对应于触及漫游器位置的一个所述单一倾斜 扇面激光束;以及,
(B2)由所述漫游器接收所述激光束的所述角速率评估值和所述多个时间标 记;其中,各个所述光脉的前沿和/或后沿都是由所述固定无线电定位系统 (Stationary_RADPS)进行时间标记的。
16.如权利要求15所述的方法,其特征在于,所述通过漫游器接收所述激光 束的角速率评估值和所述多个时间标记的步骤(B2)还包括步骤:
(B2,1)通过所述漫游器接收所述激光束的角速率的低通滤波评估值和所述多 个时间标记;其中,各个所述光脉冲的前沿和/或后沿都是通过固定无线电定位系 统(Stationary_RADPS)来进行时间标记的。
17.如权利要求16所述的方法,其特征在于,所述步骤(B2,1)还包括步骤:
(B2,1,1)使用所述无线通讯链路以通过所述漫游器来接收所述激光束的角速 率的低通滤波评估值和所述多个时间标记。
18.如权利要求1所述的方法,其特征在于,所述通过使用所述移动激光检 测器来检测由所述固定扇面激光发射机所产生的所述单一倾斜扇面波束的步骤 (B)还包括下列步骤:
(B3)通过使用所述移动激光检测器来检测由所述激光发射机所产生的至少 一个光脉冲,其中,各个所述光脉冲对应于触及所述漫游器位置的单一倾斜扇面 激光束;
(B4)通过所述漫游器接收所述激光束的角速率的评估值和所述多个时间标 记,其中,各个所述光脉冲的前沿和/或后沿都是由所述固定无线电定位系统 (Stationary_RADPS)进行时间标记的;以及,
(B5)接收激光校正数据,所述激光校正数据被配置成对所述激光束的所述 旋转角速度变化进行补偿,其中,所述激光校正数据包括多个时间标记,这些时 间标记是通过对所述激光束到各个附加参考标记进行时间标记而形成的。
19.如权利要求18所述的方法,其特征在于,通过所述漫游器接收所述激光 束的所述角速率的低通滤波评估值和所述多个时间标记的步骤(B4)还包括步骤:
(B4,1)通过所述漫游器接收所述激光束的所述角速率的低通滤波评估值和所 述多个时间标记,其中,各个所述光脉冲的前沿和/或后沿都是由所述固定无线电 定位系统(Stationary_RADPS)进行时间标记的。
20.如权利要求19所述的方法,其特征在于,所述步骤(B4,1)还包括步骤:
(B4,1,1)使用所述无线通讯链路以通过所述漫游器来接收所述激光束的所述 角速率的低通滤波评估值和所述多个时间标记。
21.如权利要求18所述的方法,其特征在于,所述步骤(B5)还包括步骤:
(B5,1)使用所述无线通讯链路以通过所述漫游器来接收所述激光校正数据。
22.如权利要求1所述的方法,其特征在于,为所述扇面激光束触及所述漫 游器的位置计时并使用所述扇面激光束触及所述漫游器的位置的所述计时来提高 在所述漫游器的位置坐标确定过程中的精度的步骤(C)还包括下列步骤:
(C1)测量在对应于所接收到的触及所述漫游器位置的单一倾斜扇面激光束 的所述光脉冲的时间瞬间和对应于所述激光束的已知位置通过在所述激光发射机 位置上的所述主要参考标记的时间瞬间的最后一个主要参考交叉时间之间的时间 差异;以及,
(C2)基于所述漫游器的位置坐标且基于在所述步骤(C1)所测量到的所述 时间差异,以改善的精度来计算所述漫游器的高度;其中,所述漫游器的位置坐 标是由在GPS时间点上激光器触及之前所产生的位置坐标和在GPS时间点上在所 述激光器触及之后所产生的位置坐标之间进行内插值的内插值位置坐标。
23.如权利要求22所述的方法,其特征在于,所述步骤(C2)还包括步骤:
(C2,1)提供差动移动无线电定位系统(Mobile_RADPS);
(C2,2)通过使用所述差动移动无线电定位系统(Mobile_RADPS)来接收选 自于GPS、GLONASS、GPS/GLONASS组合、GALILEO、全球导航卫星系统(GNSS) 和伪卫星发射机所构成的组中至少一个无线电信号源所广播的第二组外部无线电 信号;以及,
(C2,3)通过使用所述差动移动无线电定位系统(Mobile_RADPS)来接受选 自于基站、RTK基站、虚拟基站(VBS)和伪卫星发射机构成的组中至少一个信 号源所广播的第二组差动校正数据;其中,所述差动移动无线电定位系统 (Mobile_RADPS)构成利用所述第二组多个外部无线电信号和所述第二组差动校 正数据来获得所述漫游器的位置坐标。
24.如权利要求22所述的方法,其特征在于,还包括步骤:
(C3)优化所述漫游器的改善高度计算过程。
25.如权利要求24所述的方法,其特征在于,所述优化所述漫游器的改善高 度计算过程的步骤(C3)还包括步骤:
(C3,1)从由与激光束旋转频率有关的所述漫游器高度的偏导数、与漫游器偏 离激光发射机的平距离有关的所述漫游器高度的偏导数、与实际激光器触及时 间和期望激光器触及时间之间的时间差异有关的所述漫游器高度的偏导数、以及 与垂直角度有关的所述漫游器高度的偏导数所构成的组中计算一组所选择的灵敏 度参数。
26.如权利要求24所述的方法,其特征在于,所述优化所述漫游器的改善高 度计算的步骤(C3)还包括步骤:
(C3,2)通过使用对应于在所述激光发射机位置上激光束进行时间标记的所述 多个时间标记来计算所述可变的激光束的旋转频率。
27.如权利要求24所述的方法,其特征在于,还包括步骤:
(C4)计算影响多个所述扇面波束的平面误差的所述漫游器的改善高度计算。
28.如权利要求1所述的方法,其特征在于,所述漫游器包括一种器具,其 中,所述器具选自于由掘土机械上的刀刃或者叉头、农业器具、以及连接着设备 并且其位置可以控制的器具所构成的组中,所述方法还包括步骤:
(D)用改善精度确定器具位置坐标。
29.如权利要求28所述的方法,其特征在于,所述步骤(D)还包括步骤:
(D1)控制所述器具的移动。
30.一种通过使用固定扇面激光发射机来增强移动无线电定位系统 (Mobile_RADPS)的方法,其中漫游器包括与移动激光检测器集成在一起的所述 移动无线电定位系统(Mobile_RADPS),以及其中与固定无线电定位系统 (Stationary_RADPS)集成在一起的所述固定扇面激光发射机,所述方法包括步骤:
(A)通过使用所述移动激光检测器来检测由所述固定扇面激光发射机所产生 的单一倾斜扇面波束;以及,
(B)确定触及所述漫游器位置的所述扇面激光束的计时以及使用所述触及所 述漫游器位置的所述扇面激光束的所述计时来改善在所述漫游器的位置坐标的确 定中的精度。
31.一种基于无线电和光的移动的定位系统,包括:
(A)用于产生一个单一倾斜扇面波束的部件;
(B)用于检测在漫游器位置上的单一倾斜扇面波束的部件,所述漫游器包括 所述移动定位系统;
(C)用于确定所述激光束触及所述漫游器位置的计时的部件;以及,
(D)用于使用触及所述漫游器位置的所述扫描激光束的所述计时来改善在漫 游器位置坐标确定中的精度的部件。
32.如权利要求31所述的系统,其特征在于,所述漫游器包括一种器具,其 中,所述器具选自由掘土机械上的刀刃或者叉头、农业器具、以及连接着设备并 且其位置可以控制的器具所构成的组中,所述系统还包括:
(E)用于使用所述扇面激光束触及所述漫游器位置的计时来改善在所述器具 位置坐标确定中的精度的部件。
33.如权利要求32所述的系统,其特征在于,所述部件(E)还包括:
(E1)用于控制所述器具移动的部件。
34.一种基于无线电和光的移动定位系统,包括:
(A)用于检测在漫游器位置上的所述单一倾斜扇面波束的部件;所述漫游器 包括所述移动定位系统;
(B)用于确定触及所述漫游器位置的所述扇面激光束的计时的部件;以及,
(C)用于使用触及所述漫游器位置的所述扇面激光束的所述计时来改善所述 漫游器位置坐标确定中的精度的部件。
35.如权利要求30所述的系统,其特征在于,所述漫游器包括一个器具;其 中,所述器具选自于由掘土机械上的刀刃或者叉头、农业器具、以及连接着机械 并且其位置可以控制的设备所构成的组,所述系统还包括:
(D)用于使用触及所述漫游器位置的所述扇面激光束的计时来改善所述器具 位置坐标确定中的精度的部件。
36.如权利要求35所述的系统,其特征在于,所述部件(D)还包括:
(D1)用于控制所述器具运动的部件。

说明书全文

发明领域

本发明涉及定位跟踪和机器控制系统的领域,尤其涉及使用单扇面的激光器 来增强无线电定位系统。

背景技术

将最佳情况下能够提供厘米精度的基于无线电的定位系统(RTK GPS)和能 够提供毫米垂直坐标精度的基于激光的定位系统组合起来,旨在将组合的基于无 线电-光的定位系统的垂直精度提高到毫米的数量级。
然而,现有技术的系统采用能够产生至少两个激光束的扇面激光器来向基于 无线电的定位传感器提供信息。

发明内容

本发明披露了一种使用组合的基于无线电和光定位系统中的基于无线电的定 位元件的精确计时的简化技术方案。该方案允许使用精确计时的单扇面波束(而 不是双倾斜的激光扇面波束)来提高基于组合的无线电和光的定位系统的垂直精 度。
本发明的一个方面涉及一种通过使用固定的扇面激光发射机来增强移动无线 电定位系统(Mobile_RADPS)的方法。
在一个实施例中,本发明的方法包括下列步骤:(A)通过固定的扇面激光发 射机来产生一个单一倾斜的扇面波束;(B)通过使用移动激光检测器来检测出由 固定扇面激光发射机所产生的单一倾斜的扇面波束;以及(C)确定触及漫游器位 置的扇面激光束的时间以及使用触及漫游器位置的扇面激光束的时间来提高确定 漫游器位置坐标的精度。在本发明的这一实施例中,漫游器包括与移动激光检测 器集成在一起的移动无线电定位系统(Mobile_RADPS)。在本发明的这一实施例 中,固定扇面激光发射机是与固定的无线电定位系统集成在一起的 (Stationary_RADPS)。
在本发明的一个实施例中,通过固定扇面激光发射机产生单一倾斜扇面波束 的步骤(A)还包括下列步骤:(A1)为定位于某一位置中的固定扇面激光发射机 提供已知坐标;和(A2)使扇面激光发射机以基本恒定的速率围绕着它的垂直 轴旋转。
在本发明的一个实施例中,提供定位在已知坐标位置中的固定扇面激光发射 机的步骤(A1)还包括步骤(A1,1)即自检测固定扇面激光发射机,以便于通过 使用固定无线电定位系统(Stationary_RADPS)来确定它的位置坐标。
在本发明的一个实施例中,步骤(A1,1)还包括步骤(A1,1,1),通过使用固 定无线电定位系统(Stationary_RADPS)来接受选自于由GPS、GLONASS、 GPS/GLONASS组合、GALILEO、全球导航卫星系统(GNSS)定位系统、和伪卫 星发射机所构成的组中至少一种无线电信号源所广播的第一种多组外部无线电信 号。在本发明的这一实施例中,固定无线电定位系统(Stationary_RADPS)被配置 成使用第一种多个外部无线电信号来获取固定扇面激光发射机的位置坐标。
在本发明的一个实施例中,步骤(A1,1)还包括下列步骤:(A1,1,2)提供差 动固定无线电定位系统(Stationary_RADPS);(A1,1,3)通过使用差动固定无线 电定位系统(Stationary_RADPS)来接受选自于由GPS、GLONASS、GPS/GLONASS 组合、GALILEO、全球导航卫星系统(GNSS)定位系统、和伪卫星发射机所构成 的组中至少一种无线电信号源所广播的第一种多组外部无线电信号;和(A1,1,4) 通过使用差动固定无线电定位系统(Stationary_RADPS)来接受选自于由基站、 RTK基站、虚拟基站(VBS)和伪卫星发射机所构成的组中至少一个信号源所广 播的第一组差动坐标数据。在本发明的这一实施例中,差动无线电定位系统 (Stationary_RADPS)被配置成使用第一种多组外部无线电信号和第一组差动校正 数据来获取固定扇面激光发射机的位置坐标。
在本发明的一个实施例中,步骤(A1,1)还包括步骤(A1,1,5),即提供无线 通讯链路,构成差动固定无线电定位系统(Stationary_RADPS)与差动校正数据源 的连接。在本发明的这一实施例中,其中,无线通讯链路选自由蜂窝链路、无线 电、私密无线电频段、SiteNet 900私密无线电网路、无线互联网、卫星无线通讯 链路和光无线链路所构成的组中。
在本发明的一个实施例中,使扇面激光发射机围绕着它的垂直轴旋转的步骤 (A2)还包括步骤(A2,1)使扇面激光发射机的头部以基本恒定的角速率围绕着 它的垂直轴机械旋转。在本发明的这一实施例中,扇面激光发射机的头部围绕着 它垂直轴机械旋转的基本恒定角速率可以通过使用相位振荡器来控制的。在本发 明的这一实施例中,扇面激光发射机的头部围绕着它的垂直轴机械旋转的基本恒 定角速率可以通过为激光发射机的头部提供足够充分的质量来改善。
在本发明的一个实施例中,使扇面激光发射机围绕着它的垂直轴旋转的步骤 (A2)还包括步骤(A2,2)使用扇面激光发射机以基本恒定角速率围绕着它的垂 直轴光学旋转。
在本发明的一个实施例中,通过固定扇面激光发射机产生单一倾斜扇面波束 的步骤(A)还包括下列步骤:每当激光束的一已知位置通过在激光发射机中的一 个对照标记的时候,(A3)都产生一电子计时脉冲;(A4)通过使用固定无线电 定位系统(Stationary JRADPS)来对电子计时脉冲进行时间标记;(A5)通过使 用多个时间标记来产生激光束的角速率的评估;其中各个时间标记用于指出参考 标记与电子计时脉冲交叉的时间瞬间;和(A6)通过无线通讯链路将激光束的角 速率评估值和多个时间标记发送至漫游器。
在本发明的一个实施例中,无线讨论链路包括第一无线通讯链路。在本发明 的另一实施例中,无线通讯链路包括第二无线通讯链路。
在本发明的一个实施例中,通过使用多个时间标记来产生激光束的角速率评 估的步骤(A5),其中各个时间标记表示参考标记与电子计时脉冲交叉的时间瞬 间,还包括步骤(A5,1)通过使用多个时间标记来产生激光束的角速率的低通滤 波评估值,其中,各个时间标记表示参考标记与电子计时脉冲交叉的时间瞬间。
在本发明的一个实施例中,通过固定扇面激光发射机产生单一倾斜扇面波束 的步骤(A)还包括下列步骤:(A7)除了主要参考标记之外,还包括至少一个其 它参考标记;每当激光器波束的一已知位置通过主要参考标记及激光器发射机中 的每个参考标记时(A8)都产生电子计时脉冲;(A9)通过使用固定无线电定位 系统(Stationary_RADPS)来对各个电子计时脉冲进行时间标记;(A10)通过使 用多个时间标记来产生激光束的角速率评估,其中,各个时间标记表示主要参考 标记与电子计时脉冲交叉或者各个其它参考标记与电子计时脉冲交叉的时间瞬 间;以及(A11)通过无线通讯链路将激光束的角速率评估和多个时间标记发送至 漫游器,其中,通过对激光束进行时间标记形成各个其它参考标记所定义的多个 时间标记包括构成对激光束的旋转角速率的变化进行补偿的激光器校正数据。
在本发明的一个实施例中,通过使用多个时间标记来产生激光束的角速度评 估值的步骤(A10)还包括步骤(A10,1)通过多个时间标记来产生激光束的角速 率的低通滤波评估,其中,各个时间标记表示主要参考标记与电子计时脉冲交叉 的时间瞬间或者各个其它参考标记与电子计时脉冲交叉的时间瞬间。
在本发明的一个实施例中,通过使用移动激光检测器来检测固定扇面激光发 射机所产生的单一倾斜的扇面波束的步骤(B)还包括下列步骤:(B1)通过使用 移动激光检测器来检测由激光发射机所产生的至少一个光脉冲;以及(B2)由漫 游器接受激光束的角速率的评估值和多个时间标记值。在本发明的这一实施例中, 各个光脉冲对应于触及漫游器位置的单一倾斜扇面激光束。在本发明的这一实施 例中,各个光脉的前沿和/或后沿都是固定无线电定位系统(Stationary_RADPS) 进行时间标记的。
在本发明的一个实施例中,由漫游器接受激光束的角速率的评估值和多个时 间标记的步骤(B2)还包括步骤(B2,1),即由漫游器接受激光束的角速率的低 通滤波评估值和多个时间标记。
在本发明的一个实施例中,步骤(B2,1)还包括步骤(B2,1,1),即由漫游器 使用无线通讯链路来接受激光束的角速率的低通滤波评估和多个时间标记。
在本发明的一个实施例中,通过使用移动激光检测器来检测固定扇面激光发 射机所产生的单一倾斜扇面波束的步骤(B)还包括下列步骤:(B3)通过使用移 动激光检测器来检测由激光发射机所产生的至少一个光脉冲,其中,各个光脉冲 对应于触及漫游器位置的单一倾斜扇面激光束;(B4)由漫游器接受激光束的角 速率的评估值和多个时间标记,其中,各个光脉冲的前沿和/或后沿都是固定无线 电定位系统(Stationary_RADPS)进行时间标记的;以及(B5)接受激光器校正 数据,构成对激光束的旋转角速度变化的补偿,其中,激光器校正数据包括通过 将激光束时间标记使之成为各个其它参考标记来定义的多个时间标记。
在本发明的一个实施例中,步骤(B4)还包括步骤(B4,1)由漫游器接受激 光束的角速率的低通滤波评估和多个时间标记,其中,各个光脉冲的前沿/后沿都 是固定无线电定位系统(Stationary_RADPS)的时间标记。在本发明的这一实施例 中,无线通讯链路用于漫游器接受激光束的角速率的低通滤波评估值、接受多个 时间标记和接受激光器校正数据。
在本发明的一个实施例中,确定扇面激光束触及漫游器位置的计时和使用扇 面激光束触及漫游器位置的计时来改善漫游器的位置坐标确定中的精度的步骤 (C)还包括下列步骤:(C1)测量在对应于所接收到的触及漫游器位置的单一倾 斜扇面激光束的光脉冲的时间瞬间和对应于激光束的中心通过在激光发射机的位 置上的主要参考标记的时间瞬间的最后一个主要参考交叉时间之间的时间差异; 以及(C2)基于漫游器的位置坐标和基于在步骤(C1)所测量到的时间差异,以 改善的精度来计算漫游器的高度;其中,漫游器的位置坐标是由在GPS时间点上 立即进行所述激光器触及时所产生的位置坐标和在GPS时间点上在激光器触及之 后所产生的位置坐标之间进行内插值的内插值位置坐标。
在本发明的一个实施例中,步骤(C2)还包括下列步骤:(C2,1)提供差动 移动无线电定位系统(Mobile_RADPS);(C2,2)通过使用差动移动无线电定位 系统(Mobile_RADPS)来接受选自于GPS、GLONASS、GPS/GLONASS组合、 GALILEO、全球导航卫星系统(GNSS)和伪卫星发射机所构成的组中至少一个无 线电信号源所广播的第二组外部无线电信号;以及(C2,3)通过使用差动移动无线 电定位系统(Mobile_RADPS)来接受选自于基站、RTK基站、虚拟基站(VBS) 和伪卫星发射机)构成的组中至少一个信号源所广播的第二组差动校正数据。
在本发明的一个实施例中,步骤(C2)还包括步骤(C3)优化漫游器改善的 高度计算。
在本发明的一个实施例中,优化漫游器改善的高度计算的步骤(C3)还包括 步骤(C3,1)从由与激光束旋转频率有关的漫游器高度的偏导数、与漫游器偏离激 光发射机的平距离有关的漫游器高度的偏导数、与实际激光器触及时间和期望 激光器触及时间之间的时间差异有关的漫游器高度的偏导数、以及与垂直角度有 关的漫游器高度的偏导数所构成的组中计算一组灵敏度参数。
在本发明的一个实施例中,步骤(C3)还包括步骤(C3,2)通过使用对应于 在激光发射机位置上激光束作进行时间标记的各个其它参考标记的时间标记来计 算可变的激光束的旋转频率。
在本发明的一个实施例中,确定触及漫游器位置的扇面激光束的计时以及使 用触及漫游器位置的扇面激光束的计时来改善在漫游器位置坐标确定中的精度的 步骤(C)还包括步骤(C4)计算影响多个扇面波束的平面误差的漫游器的改善高 度计算。
在本发明的一个实施例中,通过使用固定扇面激光发射机来增强移动无线电 到位系统(Mobile_RADPS)的方法还包括步骤(D)确定器具的改善精度位置坐 标,其中器具选自于由掘土机械上的刀刃或者叉头、农业器具、以及连接着设备 并且其位置可以控制的器具所构成的组中的。
在本发明的一个实施例中,步骤(D)还包括步骤(D1)控制器具的移动。
本发明的另一方面是一种基于无线电和光的移动定位系统,该基于无线电和 光的移动定位系统包括:(A)用于产生单一倾斜扇面波束的部件;(B)用于检 测在漫游器位置上的单一倾斜扇面波束的部件,其中,漫游器包括移动定位系统; (C)用于确定激光束触及漫游器位置的计时的部件;以及(D)用于使用触及漫 游器位置的扇面激光束的计时来改善在漫游器位置坐标确定中的精度的部件。
在一个实施例中,本发明的系统还包括漫游器且该漫游器还包括器具。在这 一实施例中,本发明的系统还包括部件(E),用于确定扇面激光束触及漫游器位 置的计时,以便于改善在器具位置坐标确定中的精度。
在本发明的一个实施例中,部件(E)还包括部件(E1),用于控制器具的移 动。
附图的简要描述
以下结合附图所作的本发明较佳实施例的详细描述的结果将使本发明的上述 优点以及其它优点能够得到更加清晰的理解。
图1图示说明了本发明基于无线电和光的移动定位系统,该基于无线电和光 的移动定位系统包括与固定无线电定位系统(Stationary_RADPS)集成在一起的固 定扇面激光发射机以及还包括与移动激光检测器集成在一起的移动无线电定位系 统(Mobile_RADPS)的漫游器。
图2是计时图,它图示说明了适用于本发明的目的如何首先使用零交叉的时 间序列来产生激光发射机旋转速率的低通滤波的评估值。
图3图示说明了适用于本发明目的的激光束的几何形状和观察到的高度差异。
图4图示说明了适用于本发明目的的激光发射机-激光检测器的几何形状。
图5图示说明了适用于本发明目的的扇面波束的平面误差,这是由于在光学 元件制造中的少量不完善所引起的。

具体实施方式

下面将结合附图详细讨论本发明的较佳实施例。在结合较佳实施例讨论本发 明的同时,应该理解的是,并不是旨在将本发明限制于这些实施例。恰恰相反, 本发明旨在覆盖由所附权利要求书所定义的本发明的精神和范围之内的所有变 更、改进和等效。此外,在本发明的下列详细描述中,所阐述的众多特殊细节都 是为了提供对本发明的全面理解。然而,很显然,对于业内专业熟练的技术人员 而言,可以在没有这些特殊细节的条件下实现本发明。在其它情况下,没有详细 描述的所有已知的方法、流程、元件和电路不一定就不是本发明的显而易见的方 面。
本发明披露一个简化的技术方案,它使用了组合基于无线电和光定位系统的 基于无线电定位元件的精确计时。该技术方案允许使用精确计时的单一扇面波束 (而不是双倾斜倾斜的激光器扇面波束)来改善基于组合的无线电和光的定位系 统的垂直精度。
图1图示说明了本发明基于无线电和光的移动定位系统10,它包括:一漫游 器12,该漫游器还包括与移动激光检测器16集成在一起的移动无线电定位系统 (Mobile_RADPS)14,以及与固定无线电定位系统(Stationary_RADPS)20集成 在一起的固定扇面激光发射机18。在本发明的一个实施例中,激光发射机18被配 置成产生单一旋转激光束22。
与激光发射机18集成在一起的固定无线电定位系统(Stationary_RADPS)接 收机20为潜在的用户提供了优于机械组合激光器系统和RADPS接收机系统的众 多益处。实际上,与激光发射机18集成在一起的固定无线电定位系统 (Stationary_RADPS)接收机20具有比组合激光器和Stationary_RADPS系统的成 本更低的成本,因为集成的系统仅仅只需要一组封装,并且可以使用共享的计算 机存储器和可以使用一个共同的电源。在集成系统中,激光束和Stationary_RADPS 固定天线的电性能相位中心是由已知的和固定的距离“d”28分开,其中,在机械组 合的系统中,在激光束和Stationary_RADPS固定天线的电性能相位中心之间的距 离有可能形成误差,因为这一距离是由集成系统的操作者所引入的。
在本发明的一个实施例中,固定无线电定位系统(Stationary_RADPS)20定 位在具有已知坐标的位置上。在这一实施例中,激光发射机18的坐标是事先预知 的。
在本发明的一个实施例中,固定无线电定位系统(Stationary_RADPS)20被 配置成可进行自我检测,以便于获得它的位置坐标26以及激光发射机18的位置 坐标,因为在固定卫星天线30和激光发射机之间的距离“d”28是固定的和已知的。
根据已转让给本发明受让人的美国专利No.6,433,866、题为“高精度GPS/RTK 和激光器的机械控制(High precision GPS/RTK and laser machine control)”,激光 发射机18还包括平面激光发射机,它构成产生具有高精度垂直坐标的参考激光束 22。美国专利No.6,433,866通过引用全文合并与此。
更具体地说,根据‘866专利,激光发射机18包括旋转的激光器系统。在旋 转的激光器系统中,激光器源在水平面(或Z面)上旋转(机械或者光旋转)。 旋转的激光器发射出激光束,该波束提供具有毫米精度的高精度参考平面。为了 检测和获得旋转的激光束的益处,潜在的用户必须是定位在垂直的范围中以及必 须装备能够接受旋转激光束的激光检测器(或者激光接收机)16。敬请参阅下列 讨论。
在机械的实施例中,电动机使激光器18旋转,相应地,也使激光束22旋转。 在光学的实施例中,镜面棱镜旋转使得不旋转的激光器发射出旋转的激光束。
在本发明的一个实施例中,3D激光器站产生至少一个旋转扇面形状的激光束 22。在美国专利No.6,870,608和6,643,004中披露了产生至少一种旋转扇面形状的 激光束22的3D激光器站。美国专利No.6,870,608和6,643,004的全文援引在此。
仍请参考图1,固定无线电定位系统(Stationary_RADPS)接收机20可以选 自于由GPS接收机、GLONASS接收机、组合GPS/GLONASS接收机、GALILEO 接收机、全球导航卫星系统(GNSS接收机、以及虚拟接收机所构成的组中。
全球定位系统(GPS)是一种卫星信号发射机,它能够发射信号,从它可以确 定观察者的当前位置和/或观察时间,另一种基于卫星的导航系统称为全球轨道导 航系统(GLONASS),它可以作为另一种选择或者补充系统来使用。
GPS是由美国国防部(DOD)在它的NAVSTAR卫星项目下研发的。全部运 作的GPS包括多于24颗地球轨道卫星且以各自四颗卫星基本均匀分布围绕着六个 圆形轨道上,轨道以相对于赤道作55°角度倾斜并且相互间以60°经度分开。轨道 的半径为26,560公里并且为基本圆形的。轨道不是与地球位置相对不变的,而是 具有0.5恒星日(11.967小时)轨道时间间隔,使得卫星以相对于地球较慢的时间 运动。一般来说,从地球表面的大多数点上可以观察到四颗或者多颗GPS卫星, 从而可用于确定在地球表面上的任一观察者的位置。各个卫星都携带着铯或铷原 子钟,以便于提供适用于卫星发射信号的计时信息。为各个卫星时钟提供了内部 时钟校正。
各个GPS卫星持续发射两个频谱,L频段载波信号:具有频率f1=1575.42MHz (大约19厘米载波波长)的L1信号和具有频率f2=1227.6MHz(大约24厘米载 波波长)的L2信号。这两个频率都是基频f0=1.023MHz的整数倍f1=1,540f0和 f2=1,200f0。来自各个卫星的L1信号是采用两个90°相位差的虚拟随机噪声(PRN) 码调制的两进制相移键BPSK,被称为C/A码和P码。来自各个卫星的L2信号是 仅仅被P码调制的BPSK。这些PRN码的性质以及适用于产生C/A码和P码的公 认方法在文档ICD-GPS-200中有所叙述:GPS接口控制文档(参见GPS Interface Control Document,ARINC Research,1997,GPS Joint Program Office)中进行了阐 述,该文档通过援引合并在此。
GPS卫星的比特流包括有关发射GPS卫星星历表上的导航信息(这包括有关 在发射之后的几个小时内的发射卫星的轨道信息)以及所有GPS卫星的历书(这 包括有关所有卫星的较少的详细轨道信息)。发射卫星信息也包括提供对球形信 号传输延迟的校正的参数(适用于单频接收机)和适用于在卫星时钟时间和实际 GPS时间之间的偏离时间的校正的参数。导航信息采用50波特的速率来发射。
第二个基于卫星的导航系统是全球轨道导航卫星系统(GLONASS),它是由 前苏联放置在轨道上的并且现在由俄罗斯联邦在维护。GLONASS使用了24颗卫 星,大致均匀分布在三个轨道平面上,各个平面上有8颗卫星。各个轨道平面相 对于赤道法向具有64.8°的倾斜,并且三个轨道平面以120°经度的倍数相互分开。 GLONASS卫星具有大约25,510公里为半径的圆形轨道并且卫星旋转周期为8/17 恒星日(11.26小时)。GLONASS卫星和GPS卫星将分别环绕着地球每8天完成 17和16次旋转。GLONASS系统使用了两种载波信号L1和L2,其频率为f1= (1.602+9k/16)GHz和f2=(1.246+7k/16)GHz,其中k=(1,2,...24)是信道或卫 星数目。这些频率都在1.597-1.617GHz(L1)和1,240-1,260GHz(L2)的两个波 段内。L1信号是由C/A码(芯片的速率为0.511MHz)和P码(芯片的速率为5.11 MHz)来调制。L2信号目前只由P码来调制。GLONASS卫星也以50波特的速率 来发射导航数据。因为信道频率是相互可以区分的,但对于各个卫星来说,P码是 相同的以及C/A码是相同的。适用于接受和解调GLONASS信号的方法类似于适 用于GPS信号的方法。
正如欧洲委员会在“2010年欧洲交通政策的白皮书”中所披露的那样,欧盟将 开发独立自主的卫星导航系统,作为全球导航卫星基础(GNSS)中的一部分。
GALILEO(伽里略)系统是基于30颗人造卫星的星群和地面站,可以在许多 方面,例如,交通(车辆的位置、路线搜索、速度控制、引导系统,等等)、社 会服务(即,为残障人士或者老年人士提供服务)、司法系统和海关服务(嫌疑 犯的位置、边界的控制)、公共工作(地理信息系统)、搜寻和援助系统、或者 休闲(在海上或者在登山中发现方向,等),提供有关用户定位的信息。
GALILEO将提供几种服务等级,从开放访问到受限访问有各种不同的等级。
(A)开放的、免费的基本服务:主要包括适用于普通公众和一般兴趣服务的 应用。这种服务可与城市PGS所提供的服务相比,对于这些应用的成本是免费的, 但能够提高质量和可靠性。
(B)商用服务:推进专业应用的发展和提供较基础服务更好的性能,特别是 在服务保证方面。
(C)“关键性”服务(生命服务的安全性):对于诸如航空和海运等安全关键 的应用来说,具有非常高的质量和完整性。搜寻和援助服务将大大改善现有的救 济和援助服务。
(D)公共管制服务(PRS):加密和抵御人为干扰和打扰,主要用于负责城 市保护、国家安全和法律实施的管理当局,这需要具有高度的连贯性。这也将是 欧盟所要开发的安全应用,并且能够证明这将成为在改进欧盟抵御违法出口、非 法移民和恐怖活动所使用的仪器设备的一项特殊重要的工具。
本文中的无线电定位系统(RADPS)涉及为全球定位系统、全球轨道导航系 统、GALILEO系统以及其它相容的全球导航卫星系统(GNSS)基于卫星的系统, 通过这些系统能够提供用于确定观察者的位置和观察时间的信息、所有的这些系 统都能满足本发明的需求,以及诸如由一个或者多个伪卫星发射机所构成的基于 地面的无线电定位系统。
仍请参考图1,在本发明的一个实施例中,Stationary_RADPS接收机20采用 4颗卫星车辆SV140、SV242、SV344和SV446来确定它的位置坐标。
伪卫星包括基于地面的无线电定位系统,可以任何无线电频率进行工作,频 率包括但并不限制于GPS频率和ISM(工业科学医学)未经许可的工作波段,包 括900MHz、2.4GHz或5.8GHz波段、ISM波段,或者在诸如(9.5-10)GHz波段 的无线电定位波段中进行工作。伪卫星可以用于通过提供提高精度、完整性和使 用性来增强GPS。
在GPS波段中的伪卫星发射机的完整描述可以在“全球定位系统:理论和应用 (Global Positioning System:Theory and Applications;Volume II,edited by Bradford W.Parkinson and James J.Spilker Jr.)”中找到,以及在“航天和航空中的进展 (PROGRESS IN ASTRONAUTICS AND AERONAUTICS″,in Volume 164,by American Institute of Aeronautic and Astronautics,Inc.,in 1966)”第164集中找到。
在ISM波段中,包括900MHZ、2.4GHz或5.8GHz波段,用户可以拥有ISM 通讯系统的两个终端。ISM技术是由Trimble导航有限公司(Trimble Navigation Limited,Sunnyvale,Calif.Metricom,Los Gatos,Calif)和(Utilicom,Santa Barbara, California)所制造的。
作为无线电定位系统的伪卫星可以被配置成在ISM波段中工作。
在本发明的一个实施例中,伪卫星是通过使用在GPS波段中发射的基于地面 的发射机(例如,由Novariant设计的地面系统(Terralite系统))来实现的。Novariant 所设计的Terralite XPS系统为矿藏管理员提供了他们的定位系统的可靠性以直接 进行控制并有助于覆盖在GPS覆盖范围中的间隙。Terralite XPS系统是由发射站 (Terralites)和移动接收机的网络所组成的。Terralites广播XPS定位信号,遍及 至12个信道、3个频率的移动接收机(L1、L2和XPS)。241×173×61毫米的Terralite 接收机重4.5磅并且采用9至32伏DC(22瓦)。在XPS模式中,定位精度为水 平10厘米和垂直15厘米。Novarinat位于美国加州(Menlo Park,CA,United States)。
以下的讨论将集中于GPS接收机,但相同的方法可以用于GLONASS接收机、 GPS/GLONASS组合接收机、GALILEO接收机或者任何其它RADPS接收机。
仍请参考图1,在本发明的一个实施例中,Stationary_RADPS接收机20包括 差动GPS接收机。在差动位置确定中,在RADPS信号中的许多危及绝对定位确 定精度的错误,对接近的站其大小是类似的。因此,差动定位确定精度的这些误 差可以通过部分误差的抵消而明显减小。于是,差动定位方法比绝对定位方法具 有更好的精度,只要在这些站之间的距离明显小于从这些站到卫星的距离,而这 是一种惯例情况。差动定位用于提供位置坐标和距离,其精度的绝对值在几个厘 米之内。差动GPS接收机可以包括:(a)实时码差动GPS;(b)后处理差动GPS; (c)包括码和载波RTK差动GPS接收机的实时运动(RTK)差动GPS。
差动GPS接收机可以获得来自不同信号源的差动校正。
仍请参考图1,在本发明的一个实施例中,Stationary_RADPS(差动GPS)接 收机20可以获得来自基站32的差动校正。
设置在已知位置上的固定基站(BS)确定在各个所接收到的GPS信号中的量 程和量程率测量误差并且将这些测量误差作为局域用户所需要应用的校正来传 播。基站(BS)具有它自己的不精确的时钟且时钟偏差为CBBASE。其结果是,局 域用户能够获得相对于基站位置和基站时钟更加精确的导航结果。使用适当的设 备,在距离基站几百公里的范围内有可能获得5米的相对精度。
仍请参考图1,在本发明的另一实施例中,差动GPS接收机14能够通过使用 TRIMBLE Ag GPS-132接收机来实现,它能够通过使用无线通讯设备24和第一无 线通讯链路34从U.S.Cost Guard服务免费的300KHz波段广播中获得差动校正。 在这一实施例中,与差动GPS接收机20集成在一起的自检测激光发射机18应使 用放置在距离U.S.Cost Guard2至300英里的范围之内。这种差动GPS方法的精 度大约为50cm。
仍请参考图1,在本发明的一个实施例中,差动校正可以通过使用无线通讯设 备24和第一无线通讯链路34从广域增强系统(WAAS)中获得。
WAAS系统包括基站网络,它使用卫星(初期与地球的相对位置保持不变得 卫星-GEO)向GPS用户广播GPS的完整性和校正数据。WAAS提供增强GPS 的距离修正信号,即,WAAS距离修正信号设计成使得标准GPS接收机的硬件变 化最小化。WAAS距离修正信号采用GPS频率和GPS类型的调制,仅仅只包括粗 糙/采集(C/A)PRN码。另外,码的相位时间是与GPS时间同步的,从而提供距 离修正的能。为了获得位置的精度,WAAS卫星可以在卫星选择计算中使用任 何其它GPS卫星。WAAS向WAAS兼容的用户提供了免费的差动校正。这一方法 的精度好于1米。
仍请参考图1,在本发明的一个实施例中,实时运动(RTK)差动GPS接收 机20可以用于获得小于2cm精度的定位位置。RTK差动GPS接收机通过使用无 线通讯设备24和第一无线通讯链路34来接受设置在10至50公里之内已知位置 上的基站32的差动校正。对于高精度测量来说,在特殊GPS卫星和RTK GPS接 收机之间的整个周期载波相移的数量是可以解决的,因为在接收机上每一个周期 将是同样出现的。于是,RTK GPS接收机以实时的方式解决了“整数不确定的”问 题,即,确定在被观察的GPS卫星和RTK GPS接收机之间的载波卫星信号的整个 周期的数量。实际上,在一个载波周期L1(或者L2)中的误差可以将测量的结果 变化到19(或者24)厘米,这对于厘米级测量来说是不可接受的误差。
仍请参考图1,在本发明的一个实施例中,差动校正可以通过使用无线通讯设 备24和第一无线通讯链路34由Stationary_RADPS接收机20从虚拟基站(VBS) 32中获得。
实际上,虚拟基站(VBS)被配置成通过由单一蜂窝连接所组成的连接在一起 的通讯链路,以及无线电发射或者广播系统向多个漫游器发送网络创建的校正数 据。无线电发射系统的位置可以与作为局域虚拟参考站的位置的GPS基站一起定 位。这一GPS基站使用GPS确定它的位置,并且将它的位置通过在基于GPS基 站和VRS基站之间的蜂窝链路发送给VRS基站。这就确保了VRS基站能够产生 差动校正,只要这类差动校正事实上是在真实的GPS基站位置上产生的即可。这 些校正可以通过使用第一无线通讯链路34和无线通讯设备24发送至自检测激光 发射机18。
Ulrich Vollath,Alois Deking,Herbert Landau和Christian Pagels等人撰写的文 章“使用虚拟参考站的长距离RTK定位(Long-Range RTK Positioning Using Virtual Reference Stations,)”中更加详细地讨论了VRS,这篇文章援引在此作参考,还可 以下列URL进行访问:
http://trl.trimble.com/dscgi/ds.py/Get/File-93152/KIS2001-Paper-LongRange.pdf。
仍请参考图1,在本发明的一个实施例中,第一无线通讯链路34能够通过使 用多种不同的实施例来实现。
一般来说,第一无线通讯链路34(参见图1)能够通过使用无线电波频率波 段、红外频率波段或者微波频率波段来实现,在一个实施例中,无线通讯链路可 以包括ISM波段,包括900MHz、2.4GHz或5.8GHz波段,其中用户能够自己拥 有ISM通讯系统的两端。
在本发明的一个实施例中,第一通讯链路34(参见图1)能够通过使用Trimble SiteNetTM 900私密无线电网络来实现。Trimble SiteNetTM 900私密无线电网络是专 为建筑和采矿行业所设计的粗糙的、多网络、900MHz无线电调制和解调的网络。 它可用于为实时、高精度GPS应用建立具有鲁棒性的无线数据广播网络。
这种通用的Trimble无线电可以在902至928MHz的频率范围内工作,广播、 重复和接收Trimble GPS接收机所使用的实时数据。在最佳的条件下,SiteNet 900 无线电可以广播达到10公里(6.2英里)的数据,并且通过使用一个多中继器的 网络可以增加覆盖区域。使用SiteNet 900无线电作为中继器,能够使之在先前不 能达到或者有屏障的位置中提供覆盖。SiteNet 900无线电具有相当多的功能,能 够容易地改变它的工作模式,使之适应于任何网络架构。这就减小了成本和最大 化运行时间。另外,SiteNet 900在美国和加拿大是不需进行许可的,这使得它极 为便携。可以在不需要考虑许可和限制的条件下从一个项目移动到另一个项目。 SiteNet 900无线电设计成能够可靠地工作在许多其它产品和技术不能工作的苟求 RF环境中。对具有增加灵敏度和免于干扰的GPS进行优化,SiteNet 900无线电也 具有误差校正,以及高速数据速率,以便于确保最大化的性能。SiteNet 900无线 电特别适用于和Trimble′s Site VisionTM GPS等级控制系统一起使用,并且对于可 靠性最为重要的所有GPS机械控制应用是最为理想的。机械粗调单元已经完成了 设计并且为苟刻的建筑和矿上环境而特别构建。针对灰尘、多雨、飞溅和喷溅的 全密封,使得SiteNet 900无线电能够在各种气候条件下保持可靠性。无线电的粗 框性和可靠性使得停工期最小化,从而降低了业主的成本。Trimble的SiteNet 900 无线电可以与Trimble GPS接收机一起使用,包括MS750、MS850和5700接收机。
在本发明的一个实施例中,第一无线通讯链路34(参见图1)能够通过使用 支持个人通讯服务(PCS)的1.8GHz波段来实现。PCS使用国际标准DCS-1800。 同样,在另一实施例中,第一无线通讯链路34可以包括实时线路切换的无线通讯 链路。例如,采用实时线路切换无线通讯链路的无线通讯链路可以包括摩托罗拉 公司(Schaumburg,I11)所生产的铱卫星系统。
在另一实施例中,第一无线通讯链路34能够通过使用低地球轨道卫星(LEOS) 系统、中地球轨道卫星(MEOS)系统或固定地球轨道卫星(GEOS)系统来实现, 其中这些系统都能够用于存储和转发数字包数据。例如,在20至30GHz范围内的 LEOS系统是由蜂窝通讯公司(Cellular Communications,Redmond,Washington) 制造,以及在1.6至2.5GHz范围内的LEOS系统是由Loral/Qualcomm公司 (Loral/Qualcomm,San Diego,California)制造。
第一无线通讯链路34可以包括蜂窝电话通讯部件、寻呼信号接受部件、无线 信息服务、无线应用服务、无线WAN/LAN站、或者至少使用一个卫星作为中继 无线电波信号的地球-卫星-地球通讯模。第一无线通讯链路34也可以包括蜂窝 电话通讯部件,该部件可以包括具有调制解调器的先进移动电话系统(AMPS)。 该调制解调器可以包括在800MHz范围内的DSP(数字信号处理器)调制解调器, 或者在800MHz范围内的蜂窝数字包数据(CDPD)调制解调器。蜂窝数字通讯部 件包括通过无线电链路使用基于格式IS-54的时分多址(TDMA)系统、基于格式 IS-95的码分多址(CDMA)系统或者频分多址(FDMA)系统的数字数据调制的 部件。在欧洲使用的TDMA系统在法国被称为“分组类别的移动(GSM)”。
对于本发明的目的,蜂窝电话通讯部件可以用于获得对互联网的无线访问, 以便于例如以特殊的网址来广播自检测激光发射机18的实时坐标。
仍请参考图1,无线通讯设备24可以通过使用能够构成提供蜂窝链路、无线 电链路、私密无线电波段链路、SiteNet 900私密无线电网络链路、连接无线互联 网的链路以及卫星无线通讯链路的任何设备来实现。业内熟练的技术人士可以容 易地识别所有这些设备。敬请参见上述讨论。
在本发明的一个实施例中,无线通讯设备24被配置成能够响应来自移动设备 (未图示)通过第一无线通讯链路34所发送的特殊请求
仍请参考图1,在本发明的一个实施例中,激光发射机18包括扇面激光发射 机,它被配置成产生单一旋转的扇面形状的激光束22,激光束在一块地面中的已 知固定点上以均匀的速率围绕着垂直轴连续的旋转。在美国专利No.6,870,608和 6,643,004中披露了产生单一旋转的扇面形状激光束的3D激光站。
仍请参考图1,在一个实施例中,本发明的装置10还包括距离测量设备(未 图示),它与激光发射机18和Stationary_RADPS接收机20集成在一起。在这一 实施例中,距离测量设备(未图示)被配置成测量在固定无线电天线30的相位中 心和自检测激光发射机18定位的已知点或者参考面(未图示)之间的距离,从而 确定激光发射机18相对于已知点或者参考面(未图示)的位置坐标。
Trimble制造了新型的光谱精度激光器HD360,它是一种手持的距离测量工具, 它能够向建筑工人、工程师和其他建筑相关承包人员传递着速度、精度和安全。 它特别适用于测量危险的以及很难达到位置的距离。HD360是一种便于使用、易 于携带的建筑工具,它包括一个数据显示屏幕和一个6按钮键盘。使用激光技术, 它能够测量距离、面积和体积,无论是在室内还是在屋外。HD360的精度在直至 60米的范围内是±3mm,甚至于好于±3mm。HD360可以用于建筑物的校对和检测, 建筑物的定位、建筑物的维护、安装点的对准和分开、防火墙天花板的安装、 距离固定参考点的布局,以及面积和体积的计算。
Trimble还制造了HD150,它对于普通建筑和内部承包商、建筑商、工程师、 HVAC承包商和电气承包商的使用最为理想。它的精度以及其它提高质量的生产 力使得它成为众多应用中的时尚选择。即使在很难达到或危险位置中,例如,升 降机的轴或者户外楼梯,HD 150足以满足所有距离测量应用的要求。
以上提到的Trimble设备可以作为多种电子距离测量(EDM)工具实现距离测 量设备来使用。更加特别的是,特殊激光“枪”波束可以用于非常精确地测量激光束 从“枪”到反射器来回所用去的时间。使用这一时间,激光传输的已知速度(光的速 度)和空气温度和压力的校正,所确定的距离就能精确到每毫米分之一(例如, 在1公里的距离上的1mm精度。
仍请参考图1,在本发明的一个实施例中,漫游器12包括激光检测器16和移 动无线电定位系统(Mobile_RADPS)接收机14。Mobile_RADPS接收机14选自 于由GPS接收机、GLONASS接收机、组合GPS/GLONASS接收机、GALILEO接 收机、全球导航卫星系统(GNSS)接收机,以及虚拟接收机所构成的组中。
在本发明的一个实施例中,Mobile_RADPS接收机14构成能够使用由四个卫 星车辆SV140、SV242、SV344和SV446产生的至少四个无线电信号来确定它的 位置坐标。
在本发明的一个实施例中,Mobile_RADPS接收机14包括差动Mobile_RADPS 接收机14。在这一实施例中,第二无线通讯链路36可以用于基本连续地向差动 Mobile_RADPS接收机14发送激光发射机18的精确坐标测量值以及由差动 Stationary_RADPS接收机20所获得一组差动校正。在这一实施例中,差动 Mobile_RADPS接收机14可以使用差动校正来获得漫游器12和激光检测器14的 精确坐标测量值。
第二无线通讯链路36可以通过使用蜂窝链路、无线电链路、私密无线电波段 链路、SiteNet 900私密无线电网络链路、连接无线互联网的链路,以及卫星无线 通讯链路来实现。
仍请参考图1,激光检测器16包括多个光敏二极管。激光检测器16测量多个 光敏二极管上的信号强度,以便于确定激光束22的中心。Trimble制造了能够用 于本发明目的的机械安装的激光检测器LR21或者CR600。
仍请参考图1,在本发明的一个实施例中,激光发射机18包括一个单一的扇 面波束系统。波束以一个非常恒定的角速率4rad/s围绕着垂直轴。旋转的频率是 以f(Hz)给出的,而旋转的周期是T秒。在角参数之间存在着下列关系:
ω = 2 π T = 2 π × f , [ rad / s ] - - - ( 1 )
激光发射机18的头(未图示)在良好的轴承中旋转并且由相位振荡器定的 电机来驱动。此外,激光发射机的头具有足够的质量,以便于增加扇面波束的恒 定旋转速率。目前,旋转速率是40至50Hz。
每一次激光束22的中心经过激光发射机18中的零方向标记(未图示)时都 会产生一个电子计时脉冲。计时脉冲是在发射机18位置坐标(是由 Stationary_RADPS 20所确定)中所精确标定的时间(一般是在40纳秒之内)并且 标注为T。
激光的旋转速率一般是在50至60Hz。旋转速率的低通滤波评估值可以很容易 地由零方向交叉时间来产生。这一信息随后使用移动无线设备38通过第二无线数 据链路36发送给漫游器单元12,这也可以较佳地用作为RADPS差动角速率数据。
以下将显示在激光的旋转速率中的变化对漫游器12的高度评估精度的直接影 响。除了旋转激光头的小心制造,有可能包括在形成RADPS时间标记的每隔π/4 旋转弧度上的其它计时标记。在π/4、π/2、3π/4参考点上的观察到的和期望的时间 标记之间的差异为激光信号的用户提供了激光校正机构。
零方向交叉时间通过第二无线通讯链路36发送至漫游器12。如果需要的话, 也可以包括其它旋转速率变化的参数。
在本发明的一个实施例中,漫游器单元12安装在用于机械控制应用的杆48 上,或者安装在用于手持结构装置等或者机动车辆驾驶室内的便携式柱子48上。 正如以上所讨论的那样,漫游器12包括集成的激光检测器16和用于跟踪无线电 (或者卫星信号)的Mobile_RADPS接收机14。激光检测器16能够检测激光发射 机18所产生的光脉冲。脉冲的前沿和/或后沿都是使用Mobile_RADPS接收机14 所测定的时间,使之精度好于100纳秒,一般大约为40纳秒。
在本发明的一个实施例中,正如以上所讨论的,Mobile_RADPS接收机14包 括差动Mobile_RADPS接收机,用于接受来自任何其它差动校正码流源的差动校 正。
在本发明的一个实施例中,差动Mobile_RADPS接收机能够使用实时运动 (RTK)技术来计算它相对于激光发射机18的位置且使之在几个厘米的范围之内。 然而,相比于激光定位技术,采用RADPS技术使得漫游器的高度分量的精度稍微 差些。
在本发明的一个实施例中,根据下列流程,通过使用激光检测器16确定在漫 游器位置上的漫游器12的高度。
在第一步骤,正如图2中的时序图70所示,首先采用零交叉时间序列来产生 激光发射机18旋转速率的低通滤波评估值:τ(1)72、τ(2)76、τ(3)80、τ(4)84、τ(5)88,... τ(n)。时序图70也图示说明了在激光检测器位置上激光触及的时间tstrike(1)74、 tstrike(2)76、tstrike(3)82和tstrike(4)86。假设ffilt为低通滤波旋转频率以及Tfilt为对应的 旋转周期。
在下一步骤,激光检测器16构成用于测量在接收到激光脉冲(触及)和最后 零交叉时间之间的时间差异:
tdiff(i)=tstrike(i)-τ(i)    (2)
式中:tdiff(i)是在时间点(i)上的激光触及时间和对应于零交叉时间之间的差 异;τ(T)是在时间点i上零交叉的时间;tsrtrike(I)是在时间点i上激光触及的时间。
在实践中,激光触及可以在知道最后一个零交叉时间之前被接收到。这一延 迟主要是由于对零交叉时间的时间标记以及广播和接收它们所用去的时间。公式 (2)可以根据下式改进:
tdiff(i)=tstrike(i)-[τ(i-m)+Tfilt×m]    (3)
式中:τ(i-m)是零交叉时间m旋转之前,Tfilt是低通滤波旋转周期(秒),以 及m是旋转的整数。
在下一步骤,Mobile_RADPS接收机14确定相对于激光发射机18的水平和垂 直的漫游器位置且使之在几个厘米的范围之内。随后,从下式中求出漫游器单元 的方位:
α = tan - 1 ( E T - E R N T - N R ) - - - ( 4 )
在一个实际的系统中,可以允许激光发射机的方位是任意的,而参考方位可 以根据测量到的激光方位角度以及从固定到移动RADPS的GPS矢量来确定。
然而,在后续步骤中,假定激光发射机18是对准真正的北极,而激光18发 射机和漫游器12处于相同的高度,随后激光触及时间可由下式给出:
tα(i)=τ(i)+α(i)×ω    (5)
式中:tα(i)是在方位α上和与发射机的相同高度上的漫游器的期望激光触及时 间;α(i)是在时间点i上相对于发射机的漫游器的方位;ω是发射机头的旋转的角 速率,正如公式(1)所定义的那样。
在下一步骤,一般,假定漫游器12将处于在激光发射机18的高度上下。如 果这是一种情况,则实际的激光触及时间将不同于公式(5)所获得的时间。这时 间差异tobs能够精确地计算漫游器12的高度,其中,
tobs(i)=tstrike(i)-tα(i)    (6)
图3是时序图100,它图示说明了适用于本发明目的的激光束的几何形状以及 观察到的高度差异104。更具体地说,时序图100图示说明了从漫游器12(参见 图1)的外面来看激光发射机18(参见图1)的视图。扇面波束108倾斜一个角度 θ弧度102,如图所示。让点F 106是扇面波束108、在发射机110高度的水平平 面以及包含激光检测器(D)114的垂直平面的交叉点。点G112垂直于D114之 下并且相同于F106的平面。观察时间差异tobs,正如公式(6)所讨论的那样,可 以通过下式转换成对于激光发射机的等效角度:

图4图示说明了适用于本发明目的的发射机-检测器的几何形状120。从发射 机(T)124到检测器(G)126的水平距离(TG)22可以使用Mobile_RADPS 14 (参见图1)间接观察且使之在几个厘米之内。
在下一步骤,利用已知的TG 122,以及公式(7)所观察到的角度FTG 128、 就能够利用下式获得水平距离FG 130:
FG = 2 TG × sin ( φ 2 ) - - - ( 8 )
激光所确定的高度差异DG 132可以用下式来计算:
DG=FG ×tan(θ)    (9)
在下一步骤,通过将公式(7)和公式(8)的结果组合到公式(9)中,就能 够产生激光高度的一般表达式:
DG = 2 TG × sin ( ω t obs 2 ) × tan ( θ ) - - - ( 10 )
漫游器的位置坐标是插入在激光触及之前的GPS时间点上的位置坐标和激光 触及之后的GPS时间点上的位置坐标之间的内插位置坐标。
以上所讨论的高度确定处理过程受到下列公式(11)所示的一些参数的影响。 这对于分析各个参数中的不确定性对高度差异的影响十分有用。利用这一知识, 就有可能使得系统的设计最佳化。
一般来说,
DG=f(TG,ω,tobs,θ)    (11)
公式(11)的总的导数是由下式给出的:
ΔDG = df dTG ΔTG + df Δω + df d t obs Δ t obs + df Δθ - - - ( 12 )
以及下列偏导数:
df dTG = 2 × sin ( ω t obs 2 ) × tan ( θ ) - - - ( 13 )
df = TG × cos ( ω t obs 2 ) × tan ( θ ) × t obs - - - ( 14 )
df d t obs = TG × cos ( ω t obs 2 ) × tan ( θ ) × ω - - - ( 15 )
df = 2 TG × sin ( ω t obs 2 ) sec 2 ( θ ) - - - ( 16 )
以下的表格考虑了各个参数中的误差分布到总的误差对计算的高度差异DG 中的总的误差的影响。第二行提供了一些适用于距离发射机5米以及在它1.339米 上(下)工作的漫游器的实例参数。激光的旋转频率是50Hz以及波束倾斜45度。 各个参数的偏导数如第四行4所示。
  TG[m]   ω[rad/s]   tobs[s]   θ[rad]   5.0   314.16   0.000855   0.7854   df/dTG   df/dω   df/dtobs   df/dθ   0.2678   0.0042   1556.7   2.6780
表格1.短距离操作的灵敏度参数
RADPS位置可以容易获得且使之在几个厘米的水平范围之内,这里,TG= 0.02m。激光发射机的旋转速率也是可以很好控制的并因此应该具有小于0.5%(Δω =1.5708rad)的误差。籍助于RADPS的帮助,激光触及应该具有40纳秒的时间 误差(Δtobs=4.0e-8s)。
波束的角度倾斜应该是已知的,小于0.01度(Δθ=1.745e-4rad)。使用公式 (12)并且假定误差原和灵敏度取之于表格1,则高度的误差将为:
DG=0.0054+0.0066+0.0001+0.0005=0.014m
对于系统性能来说,具有恒定的旋转速率是非常重要的。在旋转速率中,仅 有0.5%的误差就会在5m范围内导致4.2mm的高度误差。
现在考虑下远离发射机且高度差异为15m的漫游器100m。
  TG[m]   ω[rad/s]   tobs[s]   θ[rad]   100.0   314.16   0.000478   0.7854   df/dTG   df/dω   df/dtobs   df/dθ   0.150   0.0477   31327.5   30.00
表格2.长距离操作的灵敏度参数
随着在发射机和漫游器之间的距离的增加,除了在基站和漫游器之间的位置 误差之外,系统就会对各种参数中的误差变得更加敏感,因为对固定的误差(例 如,+/-0.01m),角度误差随着范围的增加而减小。
假定采用短范围情况下所定义的误差源的相同等级,则长距离实例的总的高 度误差将为:
DG=0.0030+0.0749+0.0012+0.0052=0.0843m
在高度误差中的主要误差源是由于在激光旋转速率中的变化所引起的。为了 获得2mm的高度误差,激光的旋转速率必须是已知的且为0.04rad/s(=0.013%)。
已经提出了一些建议,使用所谓“在旋转中的8个定时点”来处理在旋转激 光头的旋转速率中的变化。更好的方法是,可以使用锁相旋转头的读取来采样几 十个校正点。随后,多项式拟合旋转速率采样并且在激光校正信息中发送给用户。
图5示出了时序图140,它说明了由于用于本发明目的的光学元件中存在着少 量制造中的不完善所引起的扇面波束平面的误差。
下面,本发明中披露了对该系统进行校正的技术。更具体地说,采用在测量 固定设备上的器具装置,通过系统中的整个垂直范围来增加检测器(如图5中的 黑点所示)。将RADPS/激光系统所确定的高度与已知校正高度进行比较。在两个 高度之间的差异提供了扇面波束平面误差的测量,假定所有其它系统误差的发生 都已经适当地计算和考虑了。
在本发明的一个实施例中,器具的位置坐标可以采用改进的精度来确定,正 如以上所讨论的那样。因此,器具的运动可以受到控制,这在一些应用中是十分 重要的。器具选自于由大型挖土机械的刀刃或叉刀、农业器具、以及连接着机械 的设备且这些设备的位置是可以控制的,等所构成的组中。
例如,为了检测漫游器在沿着变化的地形运动时的光平面,激光接收机可以 安装在电性能的天线杆上,它能够上下移动激光接收机使之保持在波束中。(例 如,由Trimble导航有限公司(Trimble Navigation Ltd.)现在提供的EM21和LR21 组合)。
为了说明和叙述的目的,已经阐述了本发明实施例的上述内容。它们并不试 图是全面完整的或者将本发明限制于所披露的精确形式,由于上述披露的内容很 显然许多改进和变化都有可能。所选择和讨论的实施例是为了更好的解释本发明 的原理以及它的实际应用,从而能够使得业内熟练技术人员更好的利用本发明以 及具有各种不同改进的各种实施例,使之满足所期望的实际使用。因此,本发明 的范围应由所附的权利要求书以其等效体所限定。
权利要求书(按照条约第19条的修改)
1.一种通过使用固定扇面激光发射机来增强移动无线电定位系统 (Mobile_RADPS)的方法;其中,漫游器包括与移动激光检测器集成在一起的所 述移动无线电定位系统(Mobile_RADPS);并且其中所述固定扇面激光发射机与 固定无线电定位系统(Stationary_RADPS)集成在一起;所述方法包括:
(A1,1)通过使用所述固定无线电定位系统(Stationary_RADPS),自检测所 述固定扇面激光发射机以确定它的位置坐标;
(A2)所述扇面激光发射机以基本恒定的角速率围绕着它的垂直轴旋转;
(A3)每当所述激光束的已知位置通过所述激光发射机中的参考标记时,就 产生电子计时脉冲;
(A4)通过使用所述固定无线电定位系统(Stationary_RADPS),对各个所 述电子计时脉冲进行时间标记;
(A5,1)通过使用所述多个时间标记来产生所述激光束的角速率的低通滤波 评估值,其中,各个所述时间标记表示所述参考标记与一个所述电子计时脉冲交 叉时的时间瞬间;
(A6)通过无线通讯链路,将所述激光束的角速率的评估值和所述多个时间 标记发送至所述漫游器;其中,所述无线通讯链路选自由蜂窝链路、无线电、私 密无线电波段、SiteNet 900私密无线电网络、无线互联网、卫星无线通讯链路以 及光无线链路所构成的组中;
(B)通过使用所述移动激光检测器来检测由所述固定扇面激光发射机所产生 的所述单一倾斜扇面波束;以及,
(C)为所述扇面激光束触及所述漫游器的位置计时并使用所述扇面激光束触 及所述漫游器的位置的所述计时来提高在所述漫游器的位置坐标确定过程中的精 度。
2.一种通过使用固定扇面激光发射机来增强移动无线电定位系统 (Mobile_RADPS)的方法;其中,漫游器包括与移动激光检测器集成在一起的所 述移动无线电定位系统(Mobile_RADPS);并且其中,所述固定扇面激光发射机 与固定无线电定位系统(Stationary_RADPS)集成在一起;所述方法包括:
(A1)提供定位在已知坐标位置中的所述固定扇面激光发射机;
(A2)所述扇面激光发射机以基本恒定的角速率围绕着它的垂直轴旋转;
(A7)除了主要参考标记之外,还包括至少一个附加参考标记;
(A8)每当所述激光束的已知位置通过所述激光发射机中的所述主要参考标 记和各个所述附加参考标记时就产生一个电子计时脉冲;
(A9)通过使用所述固定无线电定位系统(Stationary_RADPS)对各个所述 电子计时脉冲进行时间标记;
(A10)通过使用多个时间标记来产生所述激光束的角速率的评估值,其中, 各个所述时间标记表示所述主要参考标记与一个所述电子计时脉冲交叉时或者各 个所述附加参考标记与一个所述电子计时脉冲交叉时的时间瞬间;
(A11)通过所述无线通讯链路将所述激光束的角速率的评估值和所述多个时 间标记发送至漫游器,其中,通过对所述激光束到各个所述附加参考标记进行时 间标记而定义的多个时间标记包括被配置成对所述激光束的旋转角速度的变化进 行补偿的激光校正数据;
(B)通过使用所述移动激光检测器来检测由所述固定扇面激光发射机所产生 的所述单一倾斜扇面波束;以及,
(C)为所述扇面激光束触及所述漫游器的位置计时并使用所述扇面激光束触 及所述漫游器的位置的所述计时来提高在所述漫游器的位置坐标确定过程中的精 度。
3.(原始)如权利要求2所述的方法,其特征在于,所述通过使用多个时间 标记来产生所述激光束的角速度的评估值的步骤(A10)还包括步骤:
(A10,1)通过使用所述多个时间标记来产生所述激光束的角速率的低通滤波 评估值,其中,各个所述时间标记表示所述主要参考标记与一个所述电子计时脉 冲交叉时的时间瞬间或者各个所述附加参考标记与一个所述电子计时脉冲交叉时 的时间瞬间。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈