首页 / 专利库 / 物理 / 波动 / 等离子体波 / 一种紫外波段多波长探测器及其制备方法

一种紫外波段多波长探测器及其制备方法

阅读:185发布:2023-01-11

专利汇可以提供一种紫外波段多波长探测器及其制备方法专利检索,专利查询,专利分析的服务。并且本 发明 提供了紫外波段多 波长 探测器,包括依次 叠加 设置的衬底、ZnO导电层 薄膜 、MgxZn1-xO有源层和肖特基 接触 电极 ;所述MgxZn1-xO有源层中的x表示有源层中Mg的含量,x与厚度d呈函数关系。本 申请 提供的紫外波段多波长探测器利用宽带隙材料对紫外光吸收的特点,设置了非单一组分MgxZn1-xO有源层,实现了探测器不同区域对不同波长紫外光的吸收,进而通过肖特基接触的办法在表面区域建立 空间电荷区 ,通过外部 偏压 调节对不同区域载流子的收集效率。本发明提供的紫外波段多波长探测器结构简单, 肖特基结 器件避开了ZnO基材料p型掺杂的困难。,下面是一种紫外波段多波长探测器及其制备方法专利的具体信息内容。

1.一种紫外波段多波长探测器,包括依次叠加设置的衬底、ZnO导电层薄膜、MgxZn1-xO有源层和肖特基接触电极
所述MgxZn1-xO有源层中的x表示有源层中Mg的含量,x与所述MgxZn1-xO有源层的厚度d呈函数关系。
2.根据权利要求1所述的紫外波段多波长探测器,其特征在于,所述函数关系为线性函数关系或指数函数关系。
3.根据权利要求1所述的紫外波段多波长探测器,其特征在于,所述肖特基接触电极为Au电极。
4.根据权利要求1所述的紫外波段多波长探测器,其特征在于,所述ZnO导电层薄膜的厚度为50~200nm。
5.根据权利要求1所述的紫外波段多波长探测器,其特征在于,所述MgxZn1-xO有源层的厚度不大于1μm。
6.根据权利要求5所述的紫外波段多波长探测器,其特征在于,所述MgxZn1-xO有源层的厚度为50nm~200nm。
7.根据权利要求1所述的紫外波段多波长探测器,其特征在于,所述肖特基接触电极的厚度为10~20nm。
8.一种紫外波段多波长探测器的制备方法,包括以下步骤:
在衬底表面制备ZnO导电层薄膜;
在ZnO导电层薄膜表面生长MgxZn1-xO有源层;
在MgxZn1-xO有源层表面制备肖特基接触电极;
所述MgxZn1-xO有源层中的x表示有源层中Mg的含量,x与厚度d呈函数关系。
9.根据权利要求8的制备方法,其特征在于,所述MgxZn1-xO有源层的过程具体为:
同时开启Mg源、Zn源和O源,以250~290℃生长20~50min,再提高温度至330~360℃,生长50~80min,得到MgxZn1-xO有源层;
所述提高温度的方式为匀速升温或非匀速升温。
10.根据权利要求8所述的制备方法,其特征在于,所述ZnO导电层薄膜的制备方法为等离子体增强分子束外延法,所述肖特基接触电极的制备方法为离子溅射法,所述MgxZn1-xO有源层的制备方法为等离子体增强分子束外延法。

说明书全文

一种紫外波段多波长探测器及其制备方法

技术领域

[0001] 本发明涉及紫外探测技术领域,尤其涉及一种紫外波段多波长探测器及其制备方法。

背景技术

[0002] 紫外探测器是将一种形式的电磁辐射信号转换成另一种易被接收处理信号形式的传感器,光电探测器利用光电效应,把光学辐射转化成电学信号。近年来,紫外探测技术在火焰探测、导弹制导以及保密通信等军民领域展现出巨大应用潜
[0003] ZnO作为直接带隙宽禁带(3.37eV)半导体材料,通过Mg的掺入可实现禁带宽度从3.3eV到7.8eV可调,由此得到了ZnMgO合金。由于ZnMgO合金优异的光电性能,被认为是制备日盲以及可见盲紫外探测器最理想的材料之一。相对于通常的光探测器,通过一个光电二极管实现对光谱信号的探测,在光电信息技术等领域中有重大的应用。

发明内容

[0004] 本发明解决的技术问题在于提供一种紫外波段多波长探测器,该紫外波段多波长探测器可实现不同区域对不同紫外波长紫外光的吸收。
[0005] 有鉴于此,本申请提供了一种紫外波段多波长探测器,包括依次叠加设置的衬底、ZnO导电层薄膜、MgxZn1-xO有源层和肖特基接触电极
[0006] 所述MgxZn1-xO有源层中的x表示有源层中Mg的含量,x与所述MgxZn1-xO有源层的厚度d呈函数关系。
[0007] 优选的,所述函数关系为线性函数关系或指数函数关系。
[0008] 优选的,所述肖特基接触电极为Au电极。
[0009] 优选的,所述ZnO导电层薄膜的厚度为50~200nm。
[0010] 优选的,所述MgxZn1-xO有源层的厚度不大于1μm。
[0011] 优选的,所述MgxZn1-xO有源层的厚度为50nm~200nm。
[0012] 优选的,所述肖特基接触电极的厚度为10~20nm。
[0013] 本申请还提供了一种紫外波段多波长探测器的制备方法,包括以下步骤:
[0014] 在衬底表面制备ZnO导电层薄膜;
[0015] 在ZnO导电层薄膜表面生长MgxZn1-xO有源层;
[0016] 在MgxZn1-xO有源层表面制备肖特基接触电极;
[0017] 所述MgxZn1-xO有源层中的x表示有源层中Mg的含量,x与厚度d呈函数关系。
[0018] 优选的,所述MgxZn1-xO有源层的过程具体为:
[0019] 同时开启Mg源、Zn源和O源,以250~290℃生长20~50min,再提高温度至330~360℃,生长50~80min,得到MgxZn1-xO有源层;
[0020] 所述提高温度的方式为匀速升温或非匀速升温。
[0021] 优选的,所述ZnO导电层薄膜的制备方法为等离子体增强分子束外延法,所述肖特基接触电极的制备方法为离子溅射法,所述MgxZn1-xO有源层的制备方法为等离子体增强分子束外延法。
[0022] 本申请提供了一种紫外波段多波长探测器,包括依次叠加设置的衬底、ZnO导电层薄膜、MgxZn1-xO有源层和肖特基接触电极;本申请提供的紫外波段多波长探测器是一种ZnO基紫外波段多波长探测器,其工作原理为当光子能量大于ZnO基材料禁带宽度的紫外光(波长小于380nm)照射到器件上时,透过半透的肖特基接触电极在MgxZn1-xO有源层形成的组分渐变层中由光吸收产生电子空穴对;对于一种Mg含量由表面向下随厚度降低的结构,其有源层的禁带宽度由表面向下逐渐变窄,同时材料的吸收系数也存在波长越短吸收越强的情况,导致不同波长的紫外光在距离表面不同的位置有不同的吸收,即越短波长的光越靠近表面被吸收。
[0023] 此外,该探测器上部肖特基半接触电极形成的肖特结在表面一定区域内形成内建电场,在反向偏压下内建电场增强,由于内建电场靠近表面,探测器对表面区域产出的载流子有更好的收集作用,其响应峰值位于深紫外区段;正向偏压下,内建电场减弱,探测器对内部的载流子有更好的收集作用,响应峰值红移到可见盲紫外波段。因此,本申请可通过控制外加偏压的大小,精细调节内部电场改变器件对不同区域载流子的收集作用,可以在一定范围内连续调节器件的响应峰位。
[0024] 与现有技术相比,本器件可以实现单探测器光谱探测。本器件的设计利用宽带隙材料对紫外光吸收的特点,加上生长非单一Mg组分有源层的技术,首先得到了不同区域对不同波长紫外光的吸收;进而通过肖特基接触的办法在表面区域建立空间电荷区,通过外部偏压调节对不同区域载流子的收集效率。这种方法器件制备简单,肖特基结器件避开了ZnO基材料p型掺杂的困难。附图说明
[0025] 图1为本发明实施例制备的紫外波段多波长探测器的结构示意图;
[0026] 图2为本发明实施例1~3中有源层里Mg组分x1(d)、x2(d)、x3(d)随厚度d变化的关系曲线;
[0027] 图3为本发明实施例1制备得到的紫外波段多波长探测器在暗态下的电流-电压(I-V)特性曲线(暗电流)和270nm光照下器件的光电流;
[0028] 图4为本发明实施例1制备得到的紫外波段多波长探测器的光响应特性曲线;
[0029] 图5为本发明实施例2制备得到的紫外波段多波长探测器归一化光响应特性曲线;
[0030] 图6为本发明实施例3制备得到的紫外波段多波长探测器归一化光响应特性曲线。

具体实施方式

[0031] 为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
[0032] 现对于现有技术中的光探测器,本申请提供的紫外波段多波长探测器的光谱响应谱形(峰值响应波长、-3dB截止边)可以随着外加偏压的大小或极性发生改变;利用这种探测器,可以用过一个光电二极管实现对光谱信号的探测。具体的,本申请提供了一种紫外波长多波长探测器,其包括依次叠加设置的衬底、ZnO导电层薄膜、MgxZn1-xO有源层和肖特基接触电极;
[0033] 所述MgxZn1-xO有源层中的x表示有源层中Mg的含量,x与厚度d呈函数关系。
[0034] 本申请提供的紫外波段多波长探测器是一种ZnO基紫外波段多波长探测器,其底层为衬底,所述衬底为本领域技术人员熟知的衬底,在具体实施例中,所述衬底具体为c面蓝宝石。所述衬底表面设置有ZnO导电层薄膜,其厚度为50~200nm。
[0035] 所述ZnO导电层薄膜表面设置有MgxZn1-xO有源层,该MgxZn1-xO有源层为非单一Mg组分,其中组分Mg的含量随着薄膜厚度变化而缓慢变化,Mg组分与厚度d可以有多种关系,如线性正比关系、指数关系等。本申请提供的紫外波段多波长探测器主要是由于多能带宽度的MgxZn1-xO有源层的引入;随着厚度的降低Mg组分发生变化,其禁带宽度由表面向下逐渐变窄,由此使得不同波长的紫外光在距离表面不同的位置有不同的吸收,越短波长的光越靠近表面越易被吸收。所述MgxZn1-xO有源层的厚度不大于1μm,更具体的,所述MgxZn1-xO有源层的厚度为50nm~200nm。
[0036] 在本申请中,所述MgxZn1-xO有源层表面设置有肖特基接触电极,其可与上述有源层通过肖特基结在表面区域建立空间电荷区,通过外部偏压调节实现对不同于区域载流子的收集。所述肖特基接触电极在本申请中选自Au电极,其厚度为10~20nm;所述肖特基接触电极过厚会导致光透过率低降低响应度,太薄难以形成良好的肖特基结有源层的厚度也不宜过厚,由于肖特基空间电荷区比较薄,为实现对各能带区载流子收集的调控,以达到多波长的探测,需要在表面比较薄的区域实现陡峭的浓度变化,可采用例如指数函数的Mg组分与厚度的关系。
[0037] 本申请还提供了一种紫外波段多波长探测器的制备方法,包括以下步骤:
[0038] 在衬底表面制备ZnO导电层薄膜;
[0039] 在ZnO导电层薄膜表面生长MgxZn1-xO有源层;
[0040] 在MgxZn1-xO有源层表面制备肖特基接触电极;
[0041] 所述MgxZn1-xO有源层中的x表示有源层中Mg的含量,x与厚度d呈函数关系。
[0042] 在上述制备紫外波段多波长探测器的过程中,各层的制备方法按照本领域技术人员熟知的方法制备即可,例如:所述ZnO导电层薄膜的制备方法为等离子体增强分子束外延法,所述肖特基接触电极的制备方法为离子溅射法,所述MgxZn1-xO有源层的制备方法为等离子体增强分子束外延法。在制备上述有源层的过程中,为了实现渐变层结构,具体可按照下述方法制备:
[0043] 同时开启Mg源、Zn源和O源,以250~290℃生长20~50min,再提高温度至330~360℃,生长50~80min,得到MgxZn1-xO有源层;
[0044] 所述提高温度的方式为匀速升温或非匀速升温。
[0045] 在上述有源层制备过程中,升温与生长是同时进行的,不存在生长间断的情况。
[0046] 本申请提供的紫外波段多波长探测器利用宽带隙材料对紫外光吸收的特点,设置了非单一组分MgxZn1-xO有源层,实现了探测器不同区域对不同波长紫外光的吸收,进而通过肖特基接触的办法在表面区域建立空间电荷区,通过外部偏压调节对不同区域载流子的收集效率。
[0047] 为了进一步理解本发明,下面结合实施例对本发明提供的紫外波段多波长探测器及其制备方法进行详细说明,本发明的保护范围不受以下实施例的限制。
[0048] 实施例1
[0049] 采用等离子体辅助分子束外延(P-MBE)技术在c面蓝宝石衬底上制备了薄膜;最开始生长ZnO导电层,在此期间,Zn源温度被控制在225℃,衬底温度保持在400℃,射频固定在300W,O2流量为1.5sccm;生长40min后,打开Mg源,其温度为290℃,生长50min;将Mg源温度由290℃逐渐提高到350℃,其速率为0.1℃/s;10min后保持Mg源温度350℃,生长40min;有源层里Mg组分随厚度d变化的函数关系为:x=0.47,80nm>d>0nm;x=2.15-0.021×d,100nm>d>80nm;x=0.05,160nm>d>100nm,如图2中的曲线x1(d);
[0050] 采用离子溅射法,通过控制溅射电流为4mA和溅射时间为3min制备了半透明肖特基Au电极;然后通过匀胶、前烘(90℃,3分钟)、曝光、中烘(90℃,5分钟)。为了分离金电极和后续的欧姆接触Al电极,通过过度显影制备锥形光刻胶,然后使用混合蚀刻溶液(I:KI:H2O=4g:10g:100mL)去除暴露的金膜;随后,为了降低串联电阻,将样品浸泡在稀盐酸溶液(PH=3.5)中30s,以刻蚀ZnMgO薄膜;
[0051] 通过射频磁控溅射,控制功率100W和溅射时间3min制备了Al欧姆电极;最后采用丙作为剥离液超声剥离5min,然后去离子冲洗,氮气吹干,制备了结构器件,如图1所示;其中圆形金电极的直径约为
1.2mm,Au与Al电极的间隙约为2μm。
[0052] 实施例2
[0053] 实施例1中有源层部分为双层结构,保持器件制备工艺相同,生长了线性变化有源层,流程如下:
[0054] 采用等离子体辅助分子束外延(P-MBE)技术在c面蓝宝石衬底上制备了薄膜;最开始生长ZnO导电层,在此期间,Zn源温度被控制在225℃,衬底温度保持在400℃,射频固定在300W,O2流量为1.5sccm;生长40min后,打开Mg源,其温度为270℃,生长20min;将Mg源温度由270℃均匀缓慢提高到350℃,其速率为1℃/min,期间一直生长,80min后,Mg源炉到达350℃,结束生长;有源层里Mg组分随厚度d变化的函数关系为:x=-0.00275×d+0.47,160nm>d>0nm,如图2中的曲线x2(d)。
[0055] 实施例3
[0056] 保持器件制备工艺相同,生长了指数变化有源层,流程如下:
[0057] 采用等离子体辅助分子束外延(P-MBE)技术在c面蓝宝石衬底上制备了薄膜;最开始生长ZnO导电层,在此期间,Zn源温度被控制在225℃,衬底温度保持在400℃,射频固定在300W,O2流量为1.5sccm;生长40min后,打开Mg源,其温度为250℃,生长20min;之后,将Mg源温度由250℃非均匀提高到350℃,升温速率先慢后快,升温时间先长后短,0.5℃/min升温40min,1℃/min升温20min,2℃/min升温10min,4℃/min升温5min,8℃/min升温2.5min,整个升温过程中一直生长,大约80min后,升温结束,同时结束生长;有源层里Mg组分随厚度d变化的函数关系为:x=0.47×e-0.03×d,160nm>d>0nm,如图
2中的曲线x3(d)。
[0058] 实施例4
[0059] 采用本发明实施例1制备得到的紫外波段多波长探测器进行暗态下的I-V特性曲线测试(暗电流)和270nm光照下器件的光电流,具体测试方法为:
[0060] 利用Agilent B1500型半导体分析仪设备对实施例进行暗态和光态下的电压-电流性能测试;首先,用探针台将待测器件两电极与半导体分析仪连接,仪器与器件连接完毕后,将器件与整套系统暗态静置30分钟,然后进行测试;电压输出设定为-10V至+10V,取样间隔为200mV,得到数据即为器件暗态下的I-V特性图;之后利用一个中心波长270nm的深紫外LED照射到样品表面,在相同电压参数下再次进行测试得到器件光态下I-V特性图。
[0061] 检测结果如图3所示,图3为发明实施例制备得到的紫外波段多波长探测器在暗态下的电流-电压(I-V)特性曲线(暗电流)和270nm光照下器件的光电流(插图);由图3可以看出,本发明制备的器件具有较好的整流特性,在10V正负偏压下,整流比达到3个数量级,说明本实施例中的金半接触形成了良好的肖特基接触。
[0062] 实施例5
[0063] 对本发明实施例1、2、3制备得到的紫外波段多波长探测器进行光谱响应测试,具体的测试方法为:
[0064] 利用卓立汉光DSR100系列探测器光谱响应度标定系统进行实施例响应度测试;系统使用光源为紫外增强型氙灯,功率为200W,Omni-A型单色仪分辨率为0.4nm,斩波器频率为120Hz,外加偏压由Agilent B2900A系列精密型电源提供;测试时,将待测器件电极与测试样品架连接,放入上述响应度标定系统,调节合适光斑位置及大小使光照区域位于器件圆环金电极覆盖范围内,然后进行光谱响应度测试;对本实施例1探测器,外加偏压为±10V,积分时间为200ms,扫描间隔为2nm,得到数据即为器件光谱响应度特性图,对本实施例
2、3探测器测量了-2V、-4V、-6V下的光谱响应,为了更好的看清楚谱型变化,进一步进行了归一化处理。
[0065] 检测结果如图4、5、6所示;图4为发明实施例1制备得到的紫外波段多波长探测器的光谱响应特性曲线,从图4中可以看出,当探测器工作在10V反向偏压下时,其峰值响应度为21mA/W,峰位出现在对应于日盲区的264nm附近,-3dB截止波长为275nm,紫外/可见抑制比(R264nm/R400nm)约为三个数量级,在正向10V偏压下,响应峰值移动到292nm,-3dB截止波长为318nm,峰值响应度约为1mA/W,紫外/可见抑制比(R292nm/R400nm)超过一个数量级。
[0066] 图5为本发明实施例2制备得到的紫外波段多波长探测器归一化光响应特性曲线;随着反向偏压的加大,最大响应峰位发生了蓝移,同时日盲紫外部分的响应比例增加(R270nm/R350nm),但随着偏压进一步增大,谱型变化不大。
[0067] 图6为本发明实施例3制备得到的紫外波段多波长探测器归一化光响应特性曲线,可以看到Mg组分指数分布相对线性分布的样品,其器件归一化光响应特性曲线变化的规律类似,但其随偏压的变化,谱型变化更加明显,最大响应峰位明显蓝移,日盲紫外部分的响应比例持续增加。器件1在不同极性偏压下和器件2、3在不同强度反向偏压下都展现出了不同的光响应谱,实现了多波长探测的设计要求。
[0068] 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
[0069] 对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈