首页 / 专利库 / 太阳能 / 太阳能电池 / 晶体太阳能电池及其制备方法

晶体太阳能电池及其制备方法

阅读:20发布:2023-03-02

专利汇可以提供晶体太阳能电池及其制备方法专利检索,专利查询,专利分析的服务。并且本 发明 涉及一种制备具有p-掺杂的 硅 基材(12)和至少一个抗反射层(22)的晶体 太阳能 电池 (10)的方法,该基材前侧含有n-掺杂的区域(14)。为了使 太阳能电池 的并联 电阻 降低和因此的填充系数降低减少,提供了将含 磷酸 的溶液均匀地施加到太阳能电池的整个前侧表面,在太阳能电池的第一 热处理 步骤中形成磷 硅酸 盐玻璃,和在第一热处理步骤中或在随后的第二热处理步骤中,形成在表面附近的含硅的沉淀物,其中基材的前侧表面上的层(26)中均匀或基本均匀的表面 覆盖 率为5%-100%。,下面是晶体太阳能电池及其制备方法专利的具体信息内容。

1.一种制备具有p-掺杂的基材(12)和至少一个抗反射层(22)的晶体太阳能电池(10)的方法,该基材前侧含有n-掺杂的区域(14),其特征在于在基材(12)的n-掺杂的区域(14)中,以在5%-100%范围的均匀或基本均匀的表面覆盖率在前侧表面附近形成含硅的沉淀物,其中p-掺杂的硅基材(12)的整个前侧表面被亲化,然后将含磷酸的溶液均匀地施涂到整个前侧表面上,并接着在基材的第一热处理步骤中,形成磷硅酸盐玻璃,和在该第一热处理步骤中或在随后的第二热处理步骤中,形成在表面附近的含硅的沉淀物。
2.根据权利要求1的方法,其特征在于在全面地施加到p-掺杂的硅基材(12)之前,将优选小于1vol%的表面活性剂和/或优选大于5vol%的醇加入含磷溶液中。
3.根据权利要求1或2的方法,其特征在于前侧的Si基材表面在含H2O2或臭的溶液中进行湿化学亲水化。
4.根据至少权利要求1的方法,其特征在于Si基材表面在NaOH和H2O2的混合物中进行湿化学亲水化。
5.根据至少权利要求1的方法,其特征在于所述Si基体表面在热处理步骤中于高于
300℃的温度下在含氧的气氛中进行亲水化。
6.根据至少权利要求1的方法,其特征在于所述Si基体表面借助于含臭氧的气氛进行亲水化。
7.根据至少权利要求1的方法,其特征在于所述Si基材表面在含氧气氛下通过波长小于300 nm的UV光进行亲水化。
8.根据至少权利要求1的方法,其特征在于含磷的溶液通过浸渍法或通过超声喷雾施加。
9.根据至少权利要求1的方法,其特征在于溶液中的磷酸浓度为5%-35%。
10.根据至少权利要求1的方法,其特征在于用于制备磷硅酸盐玻璃的第一热处理步骤在800℃≤T1≤930℃的温度T1下在2分钟≤t1≤90分钟的时间t1内进行。
11.根据至少权利要求1的方法,其特征在于
用于制备磷化硅(SixPy,SixPyOz)沉淀物形式的沉淀物的第二热处理步骤在
800℃≤T2≤930℃的温度T2下在10分钟≤t2≤90分钟的时间t2内进行。
12.根据至少权利要求1的方法,其特征在于形成磷硅酸盐玻璃和结晶出沉淀物在一个共同的热处理步骤中在800℃≤T3≤930℃的温度T3下在10分钟≤t3≤120分钟的时间t3内进行。
13.根据至少权利要求1的方法,其特征在于用于制备磷硅酸盐玻璃的第一热处理步骤在含氧气氛下进行。
14.根据至少权利要求1的方法,其特征在于在第二热处理步骤之前除去磷硅酸盐玻璃。
15.根据至少权利要求1的方法,其特征在于形成厚度为10nm-100nm的磷硅酸盐玻璃层。
16.根据至少权利要求1的方法,其特征在于形成磷浓度大于10%的磷硅酸盐玻璃层。
17.根据至少权利要求1的方法,其特征在于将沉淀物以大于25原子%的磷浓度结晶出来。
18.根据至少权利要求1的方法,其特征在于将沉淀物均匀地结晶出来,其方式为每单位面积结晶出来的沉淀物在单位面积相互之间变化少于15%。
19.带有p-掺杂Si基材(12)的晶体太阳能电池(10),该基材前侧含有n-掺杂的区域(114),其特征在于太阳能电池的n-掺杂区域(14)的前侧表面以在5%-100%范围的均匀或基本均匀的表面覆盖率具有在表面附近的含硅的沉淀物。
20.根据至少权利要求19的晶体太阳能电池,其特征在于每单位面积沉淀出来的沉淀物在单位面积相互之间变化少于15%。
21.根据权利要求19或20的晶体太阳能电池,其特征在于在100%的表面覆盖率下在含有从SixPy或SixPyOz相结晶出来的沉淀物的前侧的n-掺杂区域中厚度达100nm的表面附近层的面积平均比电阻大约为5Ωcm。
22.根据至少权利要求19的晶体太阳能电池,其特征在于将沉淀物以大于25原子%的磷浓度结晶出来。
23.根据至少权利要求19的晶体太阳能电池,其制造中使用根据至少权利要求1的方法。

说明书全文

晶体太阳能电池及其制备方法

[0001] 本发明涉及一种具有p-掺杂的基材的晶体太阳能电池,该基材前侧含有n-掺杂的区域。本发明还涉及一种制备具有p-掺杂的硅基材和至少一个抗反射层的晶体太阳能电池的方法,该基材前侧含有n-掺杂的区域。
[0002] pn二极管中n-和p-掺杂的区域产生空间电荷区,其中电子从n层迁移到p层,而空穴从p层迁移到n层。如果对位于n-和p-掺杂层上的金属电极施加电压,那么当负极的电压为负的时候,有高电流流动。当极性反转,有显著较低的电流流动。
[0003] Si pn二极管的特殊设计是其中前侧的一部分带有至少部分透明的层的太阳能电池或光电探测器,所述部分透明的层通常具有降低反射的作用。光透过此层进入硅并且其中部分在此被吸收。过量的电子和空穴在此过程中被释放。过量的电子在空间电荷区的电场中从p-掺杂的区域迁移到n掺杂的区域并最终迁移到n-掺杂区域的上的金属接触点,过量的空穴从n掺杂的区域迁移进入p-掺杂的区域并最终迁移到p-掺杂区域上的金属接触点。如果在正负电极之间施加负荷,则电流流动。
[0004] 很多太阳能电池通常通过金属连接器串联连接并在由多个绝缘层组成的太阳能模层压以保护它们不受天气影响。问题是,由于太阳能电池的串联连接和多个模块的串联连接形成一个系统,经常出现几百伏的系统电压。这在太阳能电池和地电势之间产生强电场,该电场导致不希望的位移电流电流和漏泄电流。因此,电荷会永久性地沉积在太阳能电池表面并从而显著降低其效率。即使在照明或在黑暗中长期储存的情况下也会在表面上积累电荷。
[0005] 由于具有n型基础掺杂和p-掺杂前侧的两面接触的硅太阳能电池前侧的电荷,开路电压降低和较小程度的短路电流降低是已知的(J. Zhao, J. Schmidt, A. Wang, G. Zhang, B. S. Richards, and M. A. Green, “Performance instability in n-type PERT silicon solar cells,” Proceedings of the 3rd World Conference on Photovoltaic Solar Energy Conversion, 2003)。开路电压和短路电流在照明和在黑暗中长期储存的情况下强烈地降低。前侧上的氮化硅和/或化硅中的正电荷积累由于降低的原因得以识别。它们导致硅表面消耗并从而导致用于少数电荷载体的表面重组速率增加。因此,其特征在于并联电阻和因此的填充系数没有受到不利影响。
[0006] 在具有n型基础掺杂、n掺杂前侧和p-掺杂背侧的两面接触的硅太阳能电池的情况下也观察到了由于前侧上电荷的原因引起的开路电压和短路电流的降低(J. Zhao, aaQ)。在照明和在黑暗中长期储存的情况下由于前侧上的氮化硅和/或氧化硅中负电荷的积累,它们也会强烈地降低。在此情况下,负电荷导致n掺杂的硅表面消耗并因此再次导致表面重组速率增加。在此情况下其特征也在于并联电阻和因此的填充系数没有受到不利影响。
[0007] 对于含有在基材背侧上具有n型基础掺杂、n掺杂的前侧和局部p-和n-掺杂的区域的背侧接触的太阳能电池的模块来说,已知由于电荷缘故的降低(参见:R.Swanson,M. Cudzinovic, D. DeCeuster, V. Desai, J. Jürgens, N. Kaminar, W. Mulligan, L. Rodrigues-Barbosa, D. Rose, D. Smith, A. Terao, and K. Wilson, “The surface polarization effect in high-efficiency silicon solar cells,” Proceedings of ththe 15 International Photovoltaic Science & Engineering Conference, 第410页,
2005; WO A 2007/022955; Philippe Welter, “Zu gute Zellen” [Toward Good Cells], Photon, 第102页,2006年4月)。如果这些模块相对于地具有高的正电势,则负电荷迁移到太阳能电池的前侧上,在太阳能电池上没有附加任何接触点。因为模块总成的导电性低,所以即使在系统电压已经断开之后它们也可保持较长的时间。因此,前侧的表面重组速率增加和相应地开路电压和短路电流降低。有趣的是。也有报道填充因子降低。如果系统的正极接地,即如果事先只允许负的系统电压,则没有任何降低发生。因此,显然的是此类型的太阳能电池的前侧上的正电荷也不会导致任何降低。如果前侧上由于负电荷已经发生了降低,则通过在黑暗中或过夜使系统电压极性反转,即通过施加相对于地来说高的负电势,而将所述降低暂时反转(借助补偿电压再生)。在此方法中,负电荷从太阳能电池表面流逝。然而,第二天,由于高的正系统电压,所述降低又开始,使得每晚不得不重新进行再生。
[0008] 在R. Swanson(aaQ)等的文章中进一步建议为了防止电荷在太阳能电池前侧积累,在所述太阳能电池中所有pn过渡区(Uebergang)和金属接触点都位于基材的背侧,将导电涂层施加到前侧的抗反射层上和在背侧将此涂层与太阳能电池的正负极电连接。
[0009] 与上述类型的太阳能电池相比,带有p型基础掺杂和n掺杂的前侧的两面接触的硅太阳能电池对于前侧上的表面重组速率变化明显不太敏感。为此,发现在照明和在黑暗中长期储存的情况下开路电压仅有较小的降低(J. Zhao, aaQ)。
[0010] 在Ines Rutschmann, “Noch nicht ausgelernt”, Photon, 第122页, 2008年1月,和Ines Rutschmann, “Polarisation überwunden”, Photon, 第124页, 2008年
8月中,说明了在施加了高的负性系统电压后,含带有p型基础掺杂和n掺杂的前侧的两面接触的硅太阳能电池的模块显示了低的平行电阻和因此低的填充系数。这是发射体和基础之间相互作用的迹象,并从而根本不同于上述对表面重组速率的作用。通过在升高的温度和高湿度下处理,降低的模块部分地保留其效率。在高的正性系统电压下,没有发现降低和已经经历了降低的模块通过在黑暗中施加相对于地为高的正电势可以暂时再生;即通过补偿电压的再生在这样的情况下也是可能的,但极性是相反的,如在上述模块的情况下,所述模块含有在基材背侧上带有n型基础掺杂、n掺杂的前侧以及局部p-和n-掺杂的区域的背侧接触的太阳能电池。在高的负性系统电压下,降低重新开始,使得通过补偿电压的再生在此情况下也不得不定期重复。另外报道了在高的负性系统电压下模块的降低由所用的前侧金属喷方法、特殊的转印法(参见Rutschmann,aaQ)引起。
[0011] 从参考WO A 2010/068331获知一种方法,是用于在太阳能电池基材的前侧区域中产生具有不同掺杂浓度的区域,以制得选择性发射体。
[0012] DE A 10 2007 010 182的主题是用于精确加工基材的方法及该基材的用途。使用磷酸用于微结构化特别薄的层,磷酸可以加入以改变pH值、润湿行为或酸液(Saeure)或液(Laugen)的粘度表面活性剂或醇。
[0013] 使用含磷酸的气体(Gas)用于掺杂根据EP A 1 843 389的半导体材料。
[0014] DE A 101 50 040中描述了结合的蚀刻和掺杂介质,所述介质既适合用于蚀刻无机层又适合用于掺杂下面的层,其中主要应用领域是用于制备硅太阳能电池的p掺杂的硅。
[0015] 本发明基于这样的问题:进一步开发一种晶体太阳能电池和用于制备所述太阳能电池的方法,从而由于高的负性系统电压或前侧上的正电荷,使得并联电阻的降低和因此填充系数的降低变小,特别是对于带有p型基础掺杂、n掺杂的前侧和抗反射层的两面接触的硅太阳能电池。
[0016] 根据该方法,问题基本得以解决,是在p-掺杂的基材的n-掺杂的区域中,以在5%-100%范围的均匀或基本均匀的表面覆盖率在前侧表面附近形成含硅的沉淀物,其中使硅基材的整个前侧表面亲化,然后将含磷酸的溶液均匀地施涂到整个前侧表面上,并随后在基材的第一热处理步骤中,形成磷硅酸盐玻璃,和在该第一热处理步骤中或在随后的第二热处理步骤中,以均匀或基本均匀的表面覆盖形成在表面附近的含硅的沉淀物。
[0017] 亲水化确保了太阳能电池前侧的表面被通过热处理由SixPy和SixPyOz相结晶出的沉淀产生所希望的基本均匀的表面覆盖。
[0018] 已经令人惊奇地发现,当SiP沉淀物以大于5%的表面覆盖率在表面附近和均匀地在n掺杂的层中产生时,并联电阻的降低受到抑制或至少是强烈地减少。特别地,通过Si表面亲水化、带有磷酸的均匀涂层和随后的热处理制得沉淀物。亲水化是指在Si表面制备薄的氧化物,使得随后施加的磷酸大面积地润湿Si表面。
[0019] Si表面的亲水化可以通过将Si晶片浸入到含H2O2或臭氧的水溶液中进行。理想地使用NaOH、水和H2O2的混合物,以便同时除去在通常前面进行的酸性织构化中形成的多孔硅。或者,可以使用盐酸、水和H2O2的混合物或硫酸、水和H2O2的混合物,以同时从表面除去金属杂质。
[0020] 进一步可能在300℃以上的温度在含氧气氛下或借助含臭氧的气氛热处理使Si表面亲水化。在含氧气氛下使用波长小于300nm的UV光也是有利的。
[0021] 含磷酸的溶液有利地通过浸渍法或通过超声喷雾均匀地施加。为了以要求的表面覆盖率制备SixPy和SixPyOz沉淀物,溶液中磷的浓度范围是5%-35%。
[0022] 另外,可能在沉淀物结晶出来之前,例如通过HF溶液除去磷硅酸盐玻璃。
[0023] 实施方案提供了溶液另外地含有少量表面活性剂(优选地<1体积%)或大量的醇(优选地>5体积%)以便增加可润湿性。这可代替在施涂含磷酸的溶液之前进行的亲水化发生。
[0024] 因此,本发明特征在于将含醇和/或表面活性剂的含磷酸溶液施加到整个前侧表面。
[0025] 至少一个热处理步骤在800℃以上进行以产生沉淀物。理想地,在第一热处理步骤中在900℃以上大于2分钟在含氧气氛中,磷硅酸盐玻璃在Si晶片至少一侧上均匀地产生,接着在第二热处理步骤中在820℃以上大于15分钟,形成磷化硅沉淀物。磷硅酸盐玻璃层以10nm-100nm的厚度产生和应当具有大于10原子%的磷浓度。磷化硅(SixPy,SixPOz)沉积物中磷浓度大于25原子%。
[0026] 特别地,提供了用于制备磷硅酸盐玻璃的第一热处理步骤在800℃≤T1≤930℃的温度T1下在2分钟≤t1≤90分钟的时间t1内进行。
[0027] 在拓展方案中提供了,用于制备沉淀物,即磷化硅(SixPy,SixPyOz)沉淀物的第二热处理步骤在800℃≤T2≤930℃的温度T2下在10分钟≤t2≤90分钟的时间t2内进行。
[0028] 如果形成磷硅酸盐玻璃和沉淀物结晶出来在一个共同的热处理步骤中进行,本发明提供了热处理步骤在800℃≤T3≤930℃的温度T3下在10分钟≤t3≤120分钟的时间t3内进行.根据本发明,在p导电硅基材掺杂以形成n掺杂的前侧区域的过程中,在n掺杂区域的前侧区域中同时以均匀或基本均匀的表面覆盖形成沉淀物,其中表面覆盖率为n掺杂区域整个前侧表面的5%-100%。在此情况下均匀的表面覆盖是指沉淀物均匀地分布在基材表面,即其n掺杂的区域。
[0029] 本发明进一步的细节、优点和特征不仅由权利要求和由它们得到的特征本身和/或相互结合地,而且由下面优选的实施方案实施例附图的描述可以得出。
[0030] 其中:图1在高的负性系统电压下具有提高的稳定性的硅太阳能电池的实施方案,图2,3含硅沉淀物在Si表面上大于6%的均匀表面覆盖率的扫描电镜照片,图4:SixPy沉淀物在不均匀表面覆盖情况下的扫描电镜照片,和
图5在高的负性系统电压下具有正常稳定性和提高的稳定性的硅太阳能电池测量的并联电阻随施加正电荷的时间的变化。
[0031] 在下面优选的实施例的描述中,假定太阳能电池的结构和功能是充分已知的,特别是在p掺杂的晶体硅太阳能电池方面。
[0032] 另外应当注意的是,具体说明的尺寸基本上是指仅仅以举例的方式给出,而不是由此限制本发明的教导。
[0033] 图1中仅仅原理地图解说明了晶体硅太阳能电池10。所述太阳能电池具有例如呈+180µm厚的硅片形式的p掺杂的基材12,所述基材在前侧,即在整个前侧表面是n 掺杂的。
+
相应的区域标记为14。基材12在背侧上是p-扩散的(区域或层16)。另外,条形或点状的前面接触点18,20位于前侧。太阳能电池的前侧具有由氮化硅组成的抗反射层22,该反射层例如可以具有2.1的折射指数。整个表面的背面接触点24布置在背侧上。
[0034] 根据本发明,另一个称之为第二层的硅层26布置在前侧或第一氮化硅层22和+ +n-扩散的区域14之间,其中所述第二层由n 扩散的晶体硅和由SixPy或SixPyOz相结晶出来的沉淀物的混合物组成,该层被简称为磷化硅沉淀物。
[0035] 也称之为第二层的层26在p掺杂的基材12的掺杂过程中形成,其中,根据本发明,n掺杂所需要的含磷酸的溶液均匀地施加到基材12的整个前侧表面上,以便接着在第一热处理步骤中形成磷硅酸盐玻璃,和在第一热处理步骤中或在随后的第二热处理步骤中,形成在表面附近的含硅沉淀物,所述沉淀物均匀地分布和在基材12的前侧表面形成,其中取决于工艺参数均匀或基本均匀的表面覆盖率可能为5%-100%。均匀或基本均匀的表面覆盖的均匀分布通过使基材前侧的整个表面亲水化成为可能。这发生在含磷酸的溶液施涂之前。另外,如果需要,可向含磷酸的溶液中加入醇和/或表面活性剂以支持或提高含磷酸的溶液在基材12的整个前侧表面上的均匀润湿性。
[0036] 由于在抗反射层22和n+区域14之间形成中间层26,避免或强烈减少了向存在于层12和14之间的pn过渡区的并联电阻的降低。n+掺杂层制备过程中形成的中间层26,即n+掺杂层的表面区域,显示了比没有沉淀物的n+掺杂的硅层更低的导电性。
[0037] 如由图1可见,前面的接触点18、20不仅穿过抗反射层22,而且穿过n+层14的表面区域,即层26,其中已经在表面上形成了具有均匀的分布(即均一的分布)沉淀物。为此,例如通过丝网印刷将含玻璃的金属喷镀糊料施加到抗反射层22上,以便接着在随后的热处理(烧结)过程中在大于750℃的温度下烘焙3秒以上的时间。
[0038] 图2和3中的扫描电镜照片显示Si表面被针形磷化硅沉淀物以大于6%的面积百分比均匀覆盖。表面覆盖率是中间层26的电阻的重要量度。图4的扫描电镜照片说明了带有用磷化硅沉淀物不均匀覆盖Si表面的中间层。在很少或没有磷化硅沉淀物的地方,导电性增加和发生并联电阻的降低。
[0039] 必须避免并联电阻的降低,因为如果并联电阻降低太多,在pn过渡区发生有效短路,使得太阳能电池不再能适当地起作用。
[0040] 图5举例显示了两个太阳能电池的并联电阻随时间的变化,其中正电荷通过电晕放电被引入到表面上。两个太阳能电池表面上具有磷化硅沉淀物。然而,用磷化硅沉淀物表面覆盖的均匀性是变化的。由图5可以看出,具有均匀形成的中间层的太阳能电池的并联电阻明显更稳定,在研究的整个时间范围内具有大于100 ohm的值,而具有不均匀的沉淀物表面覆盖的太阳能电池的并联电阻甚至在10分钟后就降到了2 ohm以下。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈