首页 / 专利库 / 引擎 / 发动机 / 热机 / 内燃机 / 曲轴 / 曲柄销 / 用于曲轴的感应加热淬火装置及其使用方法

用于曲轴感应加热淬火装置及其使用方法

阅读:613发布:2021-11-09

专利汇可以提供用于曲轴感应加热淬火装置及其使用方法专利检索,专利查询,专利分析的服务。并且一种用于 感应加热 和淬硬 曲轴 (21)的感应淬火装置(20)包括一个具有类似结构的两个工位(33,36)的装置和一个把曲轴从第一工位运到第二工位的机械手设备(37)。该感应淬火装置被设计成具有一个单独的位于第一工位的感应线圈(48),用于顺序感应加热和淬硬曲轴的销。在第二工位,一个单独的感应线圈(63)用于曲轴的 轴承 面。本 发明 第一个特征是,感应线圈不与将要被感应加热和淬硬的曲轴的表面 接触 。曲轴尺寸和几何形状被编程进伺服驱动系统(49,51),其在X和Y方向上移动相应的线圈,以精确地 跟踪 每个销和每个轴承面的轨道或路径。本发明的另一个特征是使用一个偏移180度线圈(310),其提供比传统的90度线圈花费时间要少的改进的加热模式。,下面是用于曲轴感应加热淬火装置及其使用方法专利的具体信息内容。

1、一种用于感应加热和淬硬工件的感应淬火装置,所述感应淬火装 置包括:
用于在工件位置定位支撑所述工件的固定装置;
用于转动所述工件的旋转驱动装置;
一感应淬火台,其邻近所述工件位置并包括一个非接触感应线圈和 一个用于以预定的路径移动所述感应线圈的非接触定位系统;
控制装置,用于基于将要感应淬火的所述工件的一部分的几何形状 和尺寸产生线圈路径数据,所述控制装置有效地与所述定位系统相连; 以及
所述工件的所述部分在工件转动期间在一个轨道路径中移动,并且 由所述定位系统产生的所述预定路径跟踪所述轨道路径,由此使得在所 述工件转动期间所述感应线圈的内表面和所述工件部分之间的间距保持 均匀,移动所述感应线圈以便其不与所述工件部分接触。
2、如权利要求1所述的感应淬火装置,其特征在于,所述感应线 圈是一个偏移180度线圈。
3、如权利要求2所述的感应淬火装置,其特征在于,所述定位系 统包括彼此成直设置的X和Y驱动系统。
4、如权利要求3所述的感应淬火装置,其特征在于,所述固定装 置包括一对相对设置的顶尖支撑物,用于定位和支撑所述曲轴
5、如权利要求4所述的感应淬火装置,其特征在于,所述轨道路 径是圆形的。
6、如权利要求5所述的感应淬火装置,其特征在于,所述定位系 统还包括X和Y驱动系统的电子控制器
7、如权利要求6所述的感应淬火装置,其特征在于,其包括一个 具有90度线圈结构的第二感应线圈。
8、如权利要求7所述的感应淬火装置,其特征在于,所述180度 线圈有效地与第一变压器相连,所述90度线圈有效地与第二变压器相 连。
9、如权利要求8所述的感应淬火装置,其特征在于,所述工件是 一曲轴。
10、一种用于感应加热和淬硬工件的感应淬火装置,所述感应淬火 装置包括:
用于在工件位置处定位和支撑所述工件的固定装置;
用于转动所述工件的旋转驱动装置;
一感应淬火台,其邻近所述工件位置并包括一个感应线圈和一个用 于以预定的路径移动所述感应线圈的定位系统;
控制装置,用于基于将要感应淬火的所述工件的一部分的几何形状 和尺寸产生线圈路径数据;以及
所述工件的所述部分在工件转动期间在一个轨道路径中移动,并且 由所述定位系统产生的所述预定路径跟踪所述轨道路径,由此使得在所 述工件转动期间所述感应线圈的内表面和所述工件部分之间的间距基本 上保持均匀,移动所述感应线圈以便其不与所述工件部分接触。
11、如权利要求10所述的感应淬火装置,其特征在于,所述感应 线圈是一个偏移180度线圈。
12、如权利要求11所述的感应淬火装置,其特征在于,所述定位 系统包括彼此成直角设置的X和Y驱动系统。
13、如权利要求12所述的感应淬火装置,其特征在于,所述轨道 路径是圆形的。
14、如权利要求13所述的感应淬火装置,其特征在于,所述定位 系统还包括X和Y驱动系统的电子控制器。
15、如权利要求14所述的感应淬火装置,其特征在于,所述感应 线圈被构造和设计成具有淬火液体开口,用于把淬火液体引入到所述曲 轴的所述部分上。
16、如权利要求15所述的感应淬火装置,其特征在于,其包括一 个具有90度线圈结构的第二感应线圈。
17、如权利要求2所述的感应淬火装置,其特征在于其包括:
一限定一个通常半圆柱形开口的线圈主体,该半圆柱形开口围绕线 圈轴延伸大约180度;
一偏移轴沿所述线圈主体的一侧相连的支臂,使得所述半圆柱形开 口整个定位在所述支臂的一侧上,所述支臂在所述线圈主体和一个电流 源之间提供电连接。
18、如权利要求10所述的感应淬火装置,其特征在于所述的工件 为曲轴。
19、一种用于感应加热和淬硬工件的感应淬火装置,所述感应淬火 装置包括:
用于在工件位置处定位和支撑所述工件的固定装置;
用于在需要的路径中移动所述工件的驱动装置;
一感应淬火台,其邻近所述工件位置并包括一个感应线圈和一个用 于以预定的路径移动所述感应线圈的定位系统;
控制装置,用于基于将要感应淬火的所述工件的一部分的几何形状 和尺寸产生线圈路径数据,所述控制装置有效地与所述定位系统相连; 以及
所述工件的所述部分在工件转动期间在一个轨道路径中移动,并且 由所述定位系统产生的所述预定路径跟踪所述轨道路径,由此在所述感 应线圈的内表面和所述工件转动时的所述工件部分之间有一个间距,所 述间距在所述工件至少旋转一圈时具有变化的尺寸,移动所述感应线圈 以便其不与所述工件部分接触。
20、在一种组合中包括:
一曲轴,其包括多个基本上圆柱形的销和多个基本上圆柱形的轴承 面,该轴承面与所述圆柱形销交替接续;以及
一用于感应加热和淬硬所述曲轴的感应淬火装置,所述感应淬火装 置包括:
第一工位,用于感应淬火所述多个基本上圆柱形的销;
第二工位,用于感应淬火所述多个基本上圆柱形的轴承面;
一机械手设备,其被构造和设计成可把所述曲轴从所述第一工位移 动到所述第二工位;以及
所述第一工位包括用于在曲轴位置处定位和支撑曲轴的固定装置; 用于转动所述曲轴的旋转驱动装置;一可移动的感应线圈,其被构造和 安设成可在一次感应淬火一个销;用于基于将要被感应淬火的所述轴或 所述销的几何形状和尺寸产生线圈路径数据的控制装置;和一个用于以 预定的路径移动所述感应线圈的定位系统,其在所述曲轴转动时跟踪所 述一个销的路径,所述定位系统在曲轴转动期间使所述感应线圈的内表 面和所述一个销的外表面之间的间距基本上保持均匀,移动所述感应线 圈以便其不与所述销的外表面接触。
21、一种通过使用一个装置感应淬火曲轴的方法,该曲轴包括多个 销和多个轴承面,该装置包括用于在曲轴位置处定位和支撑曲轴的固定 装置;用于转动所述曲轴的旋转驱动装置;一感应线圈;一个用于以预 定的路径移动所述感应线圈的定位系统;和控制装置,所述方法包括下 述步骤:
a)、把曲轴装入所述固定装置,以便在顶尖之间竖直支撑所述曲轴;
b)、选择所述多个曲轴曲柄销中的一个用于感应淬火;
c)、把用于所述选择的销的几何形状和尺寸数据输入所述控制装置;
d)、启动所述定位系统以便使所述感应线圈靠近所述选择的销定位;
e)、向所述定位系统提供能量,同时向所述旋转驱动装置提供能量,从 而在销扫过其旋转轨道时,感应线圈跟踪该轨道并移动所述感应线圈以 便其不与所述曲轴部分接触;
f)、向所述感应线圈提供电能,以便感应加热所述选择的销;以及
g)、淬火所述选择的销。
22、如权利要求1所述的感应淬火装置,其特征在于所述的工件为 曲轴。
23、一种用于感应加热和淬硬曲轴的感应淬火装置,所述感应淬火 装置包括:
用于在曲轴位置处定位和支撑所述曲轴的固定装置;
用于移动所述曲轴的驱动装置;
一感应淬火台,其邻近所述曲轴位置并包括一个感应线圈和一个用 于以预定的路径移动所述感应线圈的定位系统,所述预定路径基于将要 被感应淬火的所述曲轴的一部分的几何形状和尺寸;
用于引出淬火液体的淬火装置;以及
所述曲轴的所述部分在曲轴转动期间在一个轨道路径中移动,并且 由所述定位系统产生的所述预定路径跟踪所述轨道路径,由此使得在所 述曲轴转动期间所述感应线圈的内表面和所述曲轴部分之间的间距尺寸 在所述曲轴至少转动一圈期间变化,所述感应线圈移动以便其不与所述 曲轴部分接触。
24、在一种组合中包括:
一曲轴,其包括多个基本上圆柱形的销和多个基本上圆柱形的轴承 面,该轴承面与所述圆柱形销交替接续;以及
一用于感应加热和淬硬所述曲轴的感应淬火装置,所述感应淬火装 置包括:
第一工位,用于感应淬火所述多个基本上圆柱形的销;
第二工位,用于感应淬火所述多个基本上圆柱形的轴承面;
一机械手设备,其被构造和设计成可把所述曲轴从所述第一工位移 动到所述第二工位;以及
所述第一工位包括用于在曲轴位置处定位和支撑曲轴的固定装置; 用于在需要的路径内移动所述曲轴的驱动装置;多个可移动的感应线圈, 所述多个感应线圈中的每个感应线圈被构造和安设成可感应淬火一个相 应的销;用于基于将要被感应淬火的所述轴或所述销的几何形状和尺寸 产生线圈路径数据的控制装置;和一个用于以预定的路径移动所述感应 线圈的定位系统,其在所述曲轴转动时跟踪所述相应的销的路径,所述 定位系统在曲轴转动期间使每个感应线圈的内表面和所述相应的销的外 表面之间的间距基本上保持均匀,移动所述感应线圈以便其不与所述销 的外表面接触。
25、如权利要求10所述的感应淬火装置,其特征在于所述定位系 统包括:
一个通过变压器和母线与所述感应线圈相连的X轴驱动系统;
一个与所述X轴驱动系统相连的Y轴驱动系统,从而对所述感应线 圈提供两自由度的移动;以及
取出装置,用于把感应线圈移动出所述感应加热位置,同时所述曲 轴继续转动。

说明书全文

发明通常涉及用于感应加热和淬硬曲轴的方法和装置。更具体地 说,本发明涉及感应加热和淬硬曲轴,该曲轴既可平放置又可竖直放 置,其中感应线圈部件(或组件)不与被感应加热淬火的曲轴的表面接触。 当曲轴以预定的RPM(每分钟转数)旋转时,使用计算机控制的伺服电机 与X和Y驱动系统来相对于曲轴的曲柄销部分定位和移动感应线圈组 件。感应线圈组件的运行基于数学公式和曲轴几何形状,包括曲轴尺寸 和将被感应淬火的曲柄销部分相对于曲轴的长轴的位置

汽车的曲轴由一系列曲柄销制成,在线形发动机中,每一个汽缸有 一个,或者在V型发动机中,每一对汽缸有一个。曲轴的功能是把活塞连杆的往复运动转换为旋转运动。曲轴的行程等于发动机的冲程。曲 轴需要完全平衡以便消除离心,因此,曲轴由与相应的曲柄销(或销) 相对放置的重物来平衡。每个销收容在相应的的连杆的一端中,该连杆 的另一端固定在一个活塞上。曲轴上还形成有支撑轴承面,可容纳主轴 承。六汽缸直线曲轴通常具有七个主轴承。

由于销和轴承面上的的负载和磨损,曲轴的这些部分的硬度很重要。 其中获得此种硬度的一种方法是感应加热,然后淬硬这些关键部分。传 统上,进行该方法时使曲轴处于水平位置,当曲轴由于感应加热温度升 高时,一个支撑件移进定位,以便支撑曲轴,使之不下陷。这种传统的 方法还涉及感应线圈和/或感应线圈组件的一部分,它们与将要感应加热 和淬硬的表面接触(实际上跨在这些表面上)。这种金属与金属之间的接 触加剧了线圈组件的磨损,需要定期更换线圈组件。需要定期更换感应 线圈组件不仅增加了成本而且降低了感应淬火设备的寿命。

通过使曲轴水平定位,当曲轴在顶尖之间旋转时,由于感应线圈组 件有利于“跨”在销和轴承面上,实际上,鼓励感应线圈组件与曲轴的 关键表面的接触。由于关键表面与线圈组件接触,这种传统的使感应线 圈组件的功能象一个随动机构的方法并不要求任何独立的用于感应线圈 组件的驱动系统。但是,看起来,线圈组件与将要感应淬火的曲轴的部 分的直接接触有一些缺点,不仅仅由于对感应线圈组件和水平安装的曲 轴的磨损,而且有下述的原因。

当感应线圈组件与销和/或轴承面接触时,很难鉴别线圈组件的磨损 状态。通过直接跨在曲轴表面上,可有效的使感应线圈组件的接触面不 被看见,由此很难估计线圈组件上的磨损水平或程度。这依次意味着感 应线圈组件可运行的更长,并达到其被击穿的点,这通常毁坏部件和损 坏线圈组件。线圈组件和曲轴之间的接触经常导致损坏或磨坏曲轴表面, 这要求额外的将在以后被切削掉的磨损余量,以便磨掉表面缺陷。然后, 要求一个延长的淬火后步骤。

如果能提供一个装置使得感应线圈组件不必与销和轴承面接触,这 将是一个对感应淬火曲轴的本方法和装置的改进。这样一种装置将大大 延长线圈组件的使用寿命。还应感到,使曲轴竖直定位将是有利的。当 现有技术不能设想出任何解决已经指出的问题的方案时,本发明提供了 一个在两方面都有所改进的改进的方法和装置。

根据本发明,即使本发明在曲轴水平定位的情况下工作的很好,但 将要感应淬火的曲轴可被竖直定位。此外,设置一个感应线圈组件用于 曲轴曲柄销,其在第一工位进行操作。设置一个单独的感应线圈组件或 一系列线圈组件用于轴承面,在第二工位进行操作。这些线圈组件被设 计成不与线圈组件将要感应淬火的曲轴表面接触。这改进了线圈组件的 使用寿命。根据本发明,使用曲轴的几何形状和尺寸来限定各个销的路 径或轨道,并且,计算用于各个感应线圈组件的跟踪路径,并编进合适 的控制线圈组件运行的驱动系统中。当轴承面也具有一个轨道时,这些 轨道与曲轴的旋转轴同心。因此,用于这些轴承面的线圈组件(或多个组 件)不必在一个相配的轨道中运行,而是静止不动。本发明的另一个实施 例提供了一种设计变型,考虑了平衡重的存在或可能影响与曲轴曲柄销 邻近的质量平衡(热平衡)的其它任何因素。

当其它设计建议工件的竖直定位时,这些其它设计限于凸轮轴,而 不是曲轴。在这两种类型的驱动元件之间也有很多不同,几种建议的涉 及凸轮轴的技术几乎不与本发明和由本发明提出和解决的方案相关联。

例如,凸轮轴的各个凸轮轴向安装,凸轮几何体的凸出部分的尺寸 相当小。这并不是简单的象对曲轴的销一样是对凸轮的偏转尺寸位移。 不管凸轮轨道是否存在,都会产生基本尺寸的运行销轨道。因此,随着 设计曲轴出现更大的挑战性,这使得设计合适的感应线圈跟踪装置有不 同的挑战性和问题。

关于曲轴和凸轮轴之间的比较,曲柄销的外形是对称的,要求均匀 的表面硬化深度。凸轮轴的凸轮不对称,不要求均匀的表面硬化深度。 因此,感应线圈组件不必随着凸轮而动,不必在一个相配合的轨道中移 动线圈组件便可感应淬火凸轮。不必位移感应线圈组件便可达到需要的 表面硬化深度图形。凸轮上的相对低负载意味着要求的硬化深度可小于 曲轴曲柄销的硬化深度,使得感应淬火的需要减少。而对凸轮轴使用本 发明,没有这样做的原因。

本发明提出的另一个特征是处理设备和相配的工位的布置。为了进 行高效的处理,本发明具有多个工位,用于以连续的动作进行工件的装 载、感应淬火和卸载。

一个工位被设计成用于曲轴曲柄销的感应淬火。另一个工位被设计 成用于轴承面的感应淬火。由于能以任何的顺序对销和轴承面进行感应 淬火,所以这两个工位可布置成任何顺序。由于轴承面与支承曲轴的顶 尖同轴,用于轴承面的感应线圈组件可在与旋转轴(曲轴的长轴)重合的 轨道中运行。相比较,接下来感应淬火的销(通常一次一个销)不在轴上, 并且一个销到下一个销相对于曲轴的位置具有不同的圆周位置。

尽管曲轴的感应淬火是已知的,曲轴的竖直定位是已知的,但本发 明仍具有新颖性和非显而易见性。本发明的结构特征的组合与现有技术 相比有很多优点,迄今为止,本发明的供不应求证实了其在本领域中的 新颖性和非显而易见的进步。

根据本发明的一个实施例,一种用于感应加热和淬硬工件的感应淬 火装置包括:一个用于在工件位置处定位和支撑工件的固定设备;一个 用于转动工件的旋转驱动器;一个感应淬火台,其邻近工件位置并包括 一个感应线圈组件和一个用于以预定的路径移动感应线圈组件的定位系 统;一个控制器,用于基于将要感应淬火的工件的一部分的几何形状和 尺寸产生线圈路径数据,该控制器有效地与定位系统和在工件转动时在 轨道路径中移动的工件的部分相连,其中由定位系统产生的预定路径跟 踪轨道路径,使得感应线圈组件和工件转动时的工件部分之间的间距保 持均匀,移动感应线圈组件以便其不与工件部分接触。

本发明的一个目的是提供一种改进的用于工件的感应淬火装置。

本发明相关的目的和优点将在下面的描述中变得更加清楚。

图1是根据本发明的一个典型实施例的一个用于曲轴的销的感应淬 火装置的侧视图。

图2是图1的感应淬火装置的俯视图。

图2A是根据本发明的另一个实施例的一个感应淬火装置的俯视图。

图3是图1的感应淬火装置的正视图。

图3A是图2A的感应淬火装置的正视图。

图4是图1的感应淬火装置的右侧视图。

图5是将要被图1的感应淬火装置感应淬火的曲轴的放大侧视图, 包括线圈驱动系统部分。

图6是在第一工位处的感应线圈的放大俯视图,包括图1的感应淬 火装置的一部分。

图6A是图6的感应线圈组件的正视图。

图7是曲轴旋转一圈时的曲轴曲柄销定向的示意图。

图7A是根据本发明的一个实施例的曲轴旋转一圈时的曲轴平衡重 定向的示意图。

图7B是根据本发明的一个实施例的曲轴旋转一圈时的曲轴平衡重 和感应线圈组件定向的示意图。

图8是根据本发明的一个典型实施例的一个用于曲轴的轴承面的感 应淬火装置的侧视图。

图9是图8的感应淬火装置的俯视图。

图10是图8的感应淬火装置的正视图。

图11是图8的感应淬火装置的右侧视图。

图12是将要被图8的感应淬火装置感应淬火的曲轴的放大侧视图。

图13是将要被图8的感应淬火装置感应淬火的曲轴的放大侧视图。

图14A是用于布置本发明的工位的一个选择的示意图。

图14B是用于布置本发明的工位的另一个选择的示意图。

图14C是用于布置本发明的工位的另一个选择的示意图。

图14D是用于布置本发明的工位的另一个选择的示意图。

图14E是用于布置本发明的工位的另一个选择的示意图。

图15是根据本发明另一实施例的感应淬火装置的示意俯视图。

图16是图15的感应淬火装置的示意正视图。

图17是图15的感应淬火装置的示意侧视图。

图18是适于本发明使用的一个90度感应淬火线圈的俯视图。

图18A是图18的感应淬火线圈的侧视图。

图19是图18的感应淬火线圈的正视图。

图20是根据本发明的一个偏转180度感应淬火线圈的示意俯视图。

图21是图20的线圈的示意侧视图。

图22是图20的线圈的示意正视图。

图23是基于使用的线圈的式样在工件中的最终加热图形的局部示意 图。

图24是基于使用的线圈的式样在工件中的最终加热图形的局部示意 图。

图25是基于使用的线圈的式样在工件中的最终加热图形的局部示意 图。

图26是具有一个“开口销”设计的车辆曲轴的两个相邻的销的局部 示意正视图。

图27是图26的两个相邻的销的之间的偏移区域的示意图。

图28是使用两个图20的线圈的包括变压器的两个感应淬火装置的 侧视图。

图29是使用两个图20的线圈的包括变压器的两个感应淬火装置的 侧视图。

图30是包括一个相配的变压器的用于工件的两个感应淬火装置的侧 视图,每一个装置都可使用图18的线圈和使用图20的线圈。

为了进一步理解本发明的原理,将参考附图和具体的语言来描述本 发明的最佳实施例。然而应当理解,这并不限定本发明的范围,同领域 技术人员进行的与本发明相关的这些变型和修改以及本发明的原理的进 一步应用都在本发明的范围之内。

参考图1、2、3、4、5、6和6A,说明用于感应加热和淬硬曲轴21的 感应淬火装置20的结构和布置。曲轴21定位在竖直方向并支撑在顶尖 22和23之间。说明的上部顶尖22应被认为仅仅是示意性的,目的在于 表示一个用于曲轴的真正的竖直定向。在实践中,当曲轴的销被感应淬 火时,需要使用一个正向(卡盘)。图5中示出了这一点。这种曲轴的 固定允许使用一个相配合的旋转驱动机构,以便绕轴在正向锁(卡盘)和 下部顶尖23之间可转动地旋转曲轴。尽管图1和图5中的曲轴1显示为 在竖直顶尖之间的竖直安装方向,但本发明也适于在水平顶尖之间的水 平方向上定位。

继续参考图5,显示了曲轴的细部。用于说明本发明的曲轴包括四 个汽缸(曲柄)销27a-27d和五个圆柱形轴承面28a-28e。如曲轴领域中普 通技术人员所知的,与每个销相配合设置平衡重,以便平衡销转动,并 且最好消除任何的净离心力。销27a-27d和轴承面28a-28e交替设置并代 表了需要硬化的关键磨损表面,最好的方法是通过感应加热来淬硬这些 曲轴的关键部位。这是装置20的任务,该装置20可被构造和安设为使 感应线圈组件顺序地靠近每个销27a-27d,并进行要求的热处理步骤。在 另一个工位上对轴承面28a-28d进行感应加热和淬硬,在一个实施例中 该工位包括装置20的另一部分。在本发明的一个实施例中(见图6A), 水淬火能力被组合进用于销和轴承面的感应线圈组件中,在另一个实施 例中,淬火步骤由一个独立的不包括线圈组件的淬火台进行。

根据本发明,实际上对装置20有三个主要的形式,对每个主要的形 式有一个次要的变化。在图1-4中的说明中,装置20包括两个实际上同 样的工位,这两个工位都设计成用于感应淬火销。这种形式允许两个曲 柄销被同时并排感应淬火。第二装置30(见图8-11)用于曲轴的轴承面的 感应淬火。该用于轴承面的装置30可在使用装置20之前使用或在使用 装置20之后使用。在销和轴承面之间的感应淬火的顺序并不关键。但是, 如果轴承面被同时感应淬火,也许需要一个后研磨操作,以便消除任何 微小的变形,使得曲轴回复到公差之内。装置30被构造和安设成具有两 个实际上同样的工位,象装置20一样,由此可并排同时处理两个曲轴。

本发明的第二个主要的形式包括一个用于装置20的设计,装置20 仅仅包括一个(1)工位,该工位用于感应淬火销。以类似的方式,装置30 被构造和安设成仅具有一个用于感应淬火轴承面的工位。可以以任何的 顺序使用这两个工位的装置,使用时的时间不必接近。另外,作为这第 二个主要形式的一个微小变化,可以设想,一个装置可安设有多个工位, 而另一个装置仅安设一个工位。

本发明的第三个主要的形式包括一个用于装置20的设计,其中装 置20包括两个工位,但其中一个工位用于曲轴的销,另一个工位用于曲 轴的轴承面。这种并排布置的两个工位(其中每一个工位专用于曲轴的不 同部分)对运转受到限制的小车间很有好处。

对本发明有几个装置和工位的组合,已经指出了一些组合,在图 14A-14E示出了另外的组合。作为前面的描述的一个部分简要说明,图 14A示出了两个装置20和30,每个装置分别具有两个工位33和36与46 和47。工位33和36被构造和安设成用于感应淬火曲轴的销,工位46 和47被构造和安设成用于感应淬火曲轴的轴承面。图14B示出了使用 两个实际上同样的装置200和300的情况。每个装置包括一个销工位33, 36和一个轴承面工位46,47。在图14C中,使用了一个单独的装置200, 因此,应当理解,可以改变装置的数目,也可以改变在每个装置中的工 位的数目,并且可以改变在每个装置中的特定形式的工位。

图14D示出了两个单独的装置201和301,每个装置包括一个单一 的工位,一个工位33用于销,另一个工位46用于轴承面。在图14E中 示出了装置120和130,在该装置中,工位133和136被构造和安设成 用于同时感应淬火两个(或更多个)曲轴的销,在图2A和3A中详细示出 了装置120,但此处指出是为了说明本发明的另一变型。也可以理解, 工位46和47可被构造和安设成用于同时感应淬火多个曲轴的轴承面, 通常是一次两个或一次三个,见图12和13。另外,也可以理解,多个 销工位133、136可被图14A-14D中的任何一个工位33和/或36分别替 代。

在图15、16和17中示出了本发明的特征的另一个组合,其中一个 单独的工位被构造和安设成用于感应淬火曲轴的销和轴承面。一个单独 的线圈组件用于销,并且两组线圈组件用于轴承面,类似于图12和13 中所揭示的。事实上,有一个单独的竖直定位系统和一个单独的通用于 所有的由X轴和Y轴定位机构定位的三套或三组线圈组件的主轴。

尽管本发明的一个实施例主要涉及感应线圈组件和使线圈组件精确 跟踪曲轴工件的每个销的轨道的驱动系统,但有其它重要的装置20的设 计特征,包括相关的设备、曲轴工件的定位、工位的设计和整个装置的 自动特性。本发明的另外的实施例提供了关于在一个单独的循环(即旋转 一圈)期间曲轴的旋转速度和线圈组件的运行速度的变型、关于电源输出 的变型、以及线圈组件的运行路径的形状。理解本发明的第一实施例最 重要的是,由于曲轴在下部顶尖上在竖直方向上转动,每个销和每个轴 承产生一个特定的运行轨道或路径。当线圈组件靠近一个用于感应加热 和淬硬的特定的销定位时,该线圈组件在X/Y方向上移动,以便跟踪或 追踪同样的轨道,且不与曲轴的任何部分接触。另外,根据本发明的相 关实施例,在每个循环期间,曲轴的旋转速度和跟踪线圈组件的运行速 度将改变、加速和/或减速,以便调节或调整平衡重引起的热损失。在本 发明的另一个实施例中,线圈组件的轨道或跟踪路径被设计成可改变线 圈组件的线圈部分和曲柄销之间的间距,以便调整由于平衡重的存在而 引起的热损失,并且由此达到均匀的表面硬化深度。对平衡重热损失的 调整也可以通过快速的改变电源的功率输出而实现。参照由平衡重引起 的热损失,不管影响邻近曲轴的销的质量平衡(热平衡)的原因是结构性 的或任何其它的原因,都可进行由另外的实施例表示的相应的调整。

此外,如果与曲轴的旋转长轴同轴的轴承面包括某些类型的吸热或 热变化,那么,可进行调整来补偿选择为感应淬火表面的任何热损失。 如果相应的感应线圈保持静止,可根据吸热或热损失元件或结构的位置 来进行对轴承面的热损失的调整,调整形式可包括通过加速或减速进行 的深度调整和通过改变线圈组件的输出功率的电源调整。在图7中示出 了对销的这两种调整的描述。当涉及轴承面而不是销时,线圈组件63定 位在相应的轴承面比如轴承面28a的周围。应当注意,线圈组件48是用 于销的,而线圈组件63是用于轴承面的。使线圈组件63如此定位,对 轴承面进行速度调整和电源调整,以同样的方式对销进行这些调整。

如果允许线圈组件63在Y轴方向(仅在此方向)上移动,那么,对销 所选择的线圈组件定位调整(见图7B)可用于轴承面。在此,线圈组件63 被定位在比如轴承面28a的轴承面周围,使得线圈组件(在Y方向上)移 进移出,以便改变线圈部分的内表面和轴承面之间的间距。内表面靠轴 承面越近,在轴承面中产生的热量越多。

继续参考第一实施例,通过把尺寸和位置数据精确地输入一个伺服 驱动系统,本发明在一个方向上移动感应线圈组件,以使线圈组件的内 表面和特定的销的外表面之间的间距基本上保持均匀。由于轴承面与竖 直顶尖同轴,每个轴承面的“轨道”在轴上,所有的轴承面轨道是同样 的。因此,本发明的感应线圈组件和线圈定位系统如所述的是“无接触 的”,这是因为它们不与将要感应淬火的曲轴的表面接触。

参考图1,2,3和4,图2是装置20的整个俯视图。为清楚起见, 其余的每一幅图具有去除的某部分。在图1中,为清楚起见,去除了控 制、支架和驱动主轴部分。在图3中,为清楚起见,去除了曲轴、系统 元件和机械手,而在图4中,去除了人/机接口(HMI)。因此,这四幅图 应当作为互相补充的一套东西放在一起来考虑。

根据这些附图的说明,感应淬火装置20包括一个位于外壳34中的 第一工位33,其具有前侧入口35;以及一个类似结构的第二工位36。 所示的这两个工位除示出支臂、顶尖、驱动器和轴承之外还示出了关闭 的门35。因此,图3应当被认为是关于关闭的门35后面的东西的示意 图。在第一工位,第一曲轴的销27a-27d被感应加热和淬硬。在使用一 个单独的线圈的实施例中,销被顺序感应加热。在一个相关的实施例中, 见图2A和3A,两个销能够被同时感应淬火。这要求使用两个线圈,并 且需要设计成销27a和27c被一起感应淬火,然后销27b和27d被一起(即 同时)感应淬火。

在第二工位36,第二曲轴的销被感应加热和淬硬。实际上,两个工 位33和36具有事实上相同的结构,并且被同时使用来感应淬火两个单 独的曲轴。为了图面清晰,在图3中未示出两个工位处的曲轴。通过机 械手37装卸在两个工位33处被感应淬火的两个曲轴。如果第二装置30 用于感应淬火两个曲轴的轴承面,那么,也通过诸如机械手37之类的机 械手机构来把曲轴移动到轴承面装置30。在该第二装置的位置处,轴承 面28a-28e被感应加热和淬硬。当完成时,机械手37把曲轴去除,并把 下一个曲轴装在第一装置的位置处。

继续参考图2和图3,将详细描述在工位33上的曲轴21的处理。 应当理解,当感应淬火第二曲轴的销时,工位36的结构事实上是相同的。 由机械手把曲轴21移动到装置20的工位33处的位置并保持在需要的竖 直方向上,直到第一工位33处的支臂40和41(第二工位36处的支臂42 和43)取代竖直定位并支撑曲轴21。根据可编程逻辑控制电路将每个支 臂40-43自动移动定位,该可编程逻辑控制电路用于对与各个支臂相关 的机械驱动系统和伺服系统进行编程。每个下支臂41和43上分别装配 有一个定中心主轴尖端41a和43a,用于插入装在相应的工位处的曲轴 端部的中心承窝内。每个上支臂40和42上分别装配有一个轴承箱40a 和42a,以及一个相配合的卡盘40b和42b,用于锁定曲轴的上端。此种 方式的曲轴的固定保持真正的竖直位置,并且在曲轴的长度中心线上提 供一个真正的用于转动曲轴的竖直轴,该长度中心线与每个圆柱形轴承 面28a-28e的几何中心线同心。

无论曲轴的尺寸和长度如何,在感应加热和淬硬的步骤中每个上支 臂40和42的轴向位置与每个曲轴相同,下支臂41和43是可移动的, 并且能以不同的“运行”位置轴向位移,以便容纳不同的曲轴长度。安 装在上支臂40端部的是电流主轴电机44,用于以预定的速度可旋转地 转动曲轴。一个类似的电流主轴电机45安装在上支臂42的端部,用于 第二工位处的旋转转动。不管哪部分是感应淬火的焦点,曲轴的旋转对 工件的均匀和平衡的加热图形是有益的。曲轴的旋转也有益于均匀的淬 火。由于作为本发明的一部分的每个装置的每个工位中使用的感应线圈 组件均匀一个开放的半圆柱形形状,为了完全均匀地加热曲轴的关键部 分,每个曲轴被转动是必要的。在第一装置20处,包括两个工位33和 36,这些关键部分是销27a-27d。在第二装置30处,包括两个工位46和 47,这些关键部分是轴承面28a-28e。

随后进行的关于第一工位33的描述事实上与第二工位36是相同的。 上支臂40与一个夹紧圆柱33a(工位36处为圆柱36a)相连,该夹紧圆柱 用于夹紧卡盘40b和定中心主轴尖端41a之间的相应的曲轴。被卡住和 定中心的曲轴的竖直运动涉及提供Z轴驱动器的竖直定位部分33b(工位 36中为36b)。该Z轴驱动器是一个滚珠丝杠伺服驱动器,用于在想要移 动曲轴时移动曲轴的竖直位置,以便将不同的销靠近相应的感应线圈组 件定位。

在本发明的一个实施例中,一个单独的感应线圈组件48位于第一工 位33处,并分别固定安装在一个Y轴驱动系统49上,该Y轴驱动系统 由合适的伺服电路基于从曲轴图导出的部件几何形状和尺寸或其它部件 规格进行控制。系统49可被构造和安设成可在箭头50的方向上移进移 出感应线圈组件48。线圈组件48也固定安装在X轴驱动系统51上,该 系统51由伺服驱动电路控制并以与Y轴驱动系统49中利用的类似的方 式进行编程。系统51被构造和安设成可在箭头52的方向上并排移动感 应线圈组件48。

X和Y轴驱动系统51和49中的每一个包括实际定位感应线圈组件 48的伺服滚珠丝杠表。这两个表彼此以可以理解的及X和Y轴驱动所 期望的九十(90)度或直的关系相机械连接。

如所描述的,曲轴21事实上安装在顶尖22和23上并可转动。在实 践中,上部顶尖22采用卡盘40b的形式。伺服电机(电流主轴电机)44用 于驱动曲轴并把旋转数据和销位置数据提供给一个计算机控制器,该控 制器有效地与X和Y轴驱动系统51和49相连。关于相应的将被感应加 热和淬硬的销27a的位置的位置数据被输入计算机控制器,该控制器利 用一个数据库程序来移动在一跟踪轨道中的感应线圈组件,该跟踪轨道 追随特定的销的特定轨道。该计算机控制程序控制X和Y轴驱动系统, 具体地说是控制定位线圈组件的相应的伺服滚珠丝杠表。

每个销具有特定的相对于曲轴21的长轴的圆周位置。这些销位置与 发动机的汽缸的点火顺序相重合。尽管每个销的轨道是圆形的且每个轨 道具有相同的尺寸,但在圆形轨道中的一个特定的销的实际瞬时位置随 着所考虑的销和相应的汽缸不同而不同。因此,当伺服电机44提供关于 曲轴的旋转状态的位置数据时,假设销的尺寸和角度可从曲轴部件技术 规格和/或曲轴蓝图或CAD图中得知,对于每个曲轴的销27a-27d可以 计算一个精确的和相应的销位置。用这个数据,可以产生感应线圈组件 48相对于每个销的跟踪轨道路径。

在本发明的第一实施例中,用于感应线圈组件的驱动系统被编程以 在精确地追踪或拷贝将要感应淬火的销的轨道路径的轨道或轨迹中移动 线圈组件。这种精确的线圈组件的跟踪可使线圈部分的半圆柱形内表面 相对于销的外径表面间隔固定的间距。

根据本发明,线圈组件48的感应线圈部分具有部分圆的半圆柱形形 状(见图6)。内表面57的形状是圆柱形,符合每个曲轴的形状。通过生 产一侧开口的线圈组件48,该线圈可以安装在每个曲轴的销的一部分周 围。由于特定的销随着曲轴转动,它的整个圆周面最终直接靠近内表面 57放置。图7中示出了这种定位关系。在圆柱形销58的表面上已经确 定了间隔九十((90)度的四个点A、B、C和D,以便可以显示这些点怎样 分别相对于由箭头52和50表示的用于感应线圈组件48的X和Y方向 位移。当第二工位被用于感应淬火销时,对装置20的第二工位36的描 述与对装置20的第一工位33的描述相同。

在使用平衡重并连接到销的情况下,当线圈组件面对最靠近平衡重 的销的部分时,有一个从销上吸热的吸热现象。可以理解,对此处描述 的类型的感应淬火装置,销或轴承面的加热部分是集中的,并且是最靠 近线圈部分的半圆柱形内表面的部分。因此,当线圈部分与平衡重相对 置时,没有需要进行一些形式的调整的显著的吸热损失。

在本发明的相关的实施例中,补偿热损失的调整形式有三种不同的 形式。在本发明的一个实施例(见图7)中,在每一转中的曲轴的旋转是变 化的(加速和/或减速),这样,当线圈部分靠近销的吸热部分(即平衡重58a) 时,旋转速度有一个很短的延缓。这种延缓产生更多的热,补偿由于平 衡重的质量把热从该区域中导出而失去的热。

在图7A中,平衡重58a相对于线圈组件48的位置在一个循环中处 于四个不同的位置(Z0-Z3),该一个循环相应于曲轴旋转的一圈。如上所 述,曲轴的旋转速度(SR)随着平衡重相对于线圈组件的线圈部分的位置(ZN) 的变化而变化。图中示出线圈组件48是一个半圆柱形线圈部分。在Z1 位置,当线圈部分实际上集中在平衡重58a上时,旋转速度(SR1)将是整 个循环的最小值。这使得线圈部分靠近销的这一部分保持更长的时间间 隔,以便更多的热输入到销上。当线圈部分和平衡重58a在销58的相对 两侧时,在Z3位置,旋转速度(SR3)是整个循环(即曲轴旋转一圈)的最大 值。这意味着加热时间间隔将更短,由于平衡重58a不从销上带走任何 大量的热量,所以这是合适的。在这两种速度极限之间,旋转速度加速 和减速。从Z1到Z3的加速线与从Z3到Z1的减速线重合。

在本发明的另一个实施例中(见图7B),线圈组件相对于销表面的间 距在每一个循环(即曲轴旋转的每一圈)期间是改变或变化的。当线圈组 件在销的平衡重的一侧时,其比当平衡重与线圈在销的相对两侧时更靠 近销。通过把线圈部分放置的更近,在更近的距离处,进入销中的由线 圈组件产生的热量更大。这种方法要求用于线圈组件的X和Y驱动系统 受到控制,以便扫过一个椭圆的路径而不是圆路径。

在图7B中,平衡重58a相对于线圈组件48的位置在一个循环中处 于四个不同的位置(Z0-Z3)。图7B的位置通常相应于图7A的位置。在Z1 位置,线圈部分最靠近销,产生最多的热量,以补偿由于吸热的平衡重 而失去的热量。在与Z1位置成180度的Z3位置,线圈部分的位置离销 最远。这是平衡重对由于其吸热而引起的热量减少影响最小的位置。

当曲轴转动且销58从位置Z1到Z3通过位置Z2移动时,线圈部分 的内表面57与销的外径表面之间的间距增加。然后,当从Z3到Z1通 过Z0位置返回时,间距减小。

如果在线圈部分上标记一个点(X),在一个循环中追踪其路径,可以 看到,该跟踪路径为椭圆而不是圆。

在本发明的另一个实施例中,线圈组件的线圈部分的路径是圆形, 旋转速度恒定,并且间距保持恒定。但是,用于线圈组件的电源的输出 功率(kW)随着曲轴的位置且相应的随着线圈部分相对于销的方向及平衡 重的位置定位的情况而变化。图7A图示了当输出功率变化时销和平衡 重的转动。在Z1位置,由于平衡重的位置而引起输出功率最大。在Z3 位置,由于平衡重的位置而引起的输出功率最小。输出功率从Z1到Z3 减小,然后从Z3到Z1增加。只要线圈靠近销的平衡重侧,输出功率增 加,以便产生更多的热量,由此补偿通过平衡重失去的热量。

理解这一点很重要,即用与装置20相连的同样基本的的机械和电子 结构可以完全实现通过这些实施例进行的各种调整。通过改变主轴电机 的速度编程及X和Y驱动系统的跟踪速度,或者通过改变X和Y行程 以改变间距,或者通过改变电源的输出功率可实现所有的调整。

本发明的一个重要的特征是感应线圈组件不与将被感应加热和淬硬 的曲轴曲柄销有任何直接的物理接触。感应线圈组件也不与任何其它的 沿轨道运行的部件有任何直接的物理接触。同样,在第二装置中,感应 线圈组件不与将被感应加热和淬硬的曲轴轴承面有任何直接的物理接 触。这种不接触包括不与安装在相应的销和轴承面的表面上的任何传感 器或位置指示器接触。以此方式,线圈组件不受到将显著降低或缩短线 圈使用寿命的磨损。通过设计一个在线圈组件的线圈部分和将要被感应 淬火的表面或部分之间不接触的装置,事实上消除了线圈部分的磨损, 显著提高了线圈部分的使用寿命。同样,由于感应线圈组件的所有其它 部分不与将要被感应淬火的曲轴部分有任何接触,对这些部分没有磨损, 不会缩短使用寿命。本发明成功的一些关键包括根据销轨道和线圈组件 的线圈部分的开口的半圆柱形设计对线圈的X和Y运动的精确编程。尽 管曲轴竖直定向最好,但本发明不限于竖直的曲轴。本发明同样适用于 水平支撑在顶尖之间的曲轴。

已经描述的第一工位33相对于线圈组件运行,并且曲轴曲柄销的感 应淬火具有一个事实上被第二工位模仿的设计。第二工位36包括一个事 实上同样的X驱动系统61、一个事实上同样的Y驱动系统62、彼此设 定为九十(90)度的相配合的伺服滚珠丝杠表、以及一个具有一个开口的 半圆柱形形状的事实上与线圈组件48相同的感应线圈组件63。伺服电 机45的功能事实上与电机44相同,并且控制相应的曲轴的旋转运动。 如上所述,装置20的两个工位33和36被构造和安设为事实上相同,使 得可同时处理两个曲轴,从而使生产率加倍。当两个工位33和36被设 计成用于曲轴曲柄销的感应淬火时,它们的结构事实上相同,使得可同 时处理两个曲轴。

第一装置20和第二装置30的主要不同之处是在每个装置所处位置 处被感应淬火的部分的不同。在第一装置20,曲轴曲柄销被感应淬火, 而在第二装置(见图8-11),轴承面被感应淬火。由于圆柱形轴承面彼此 同轴,具有相同的圆柱形尺寸,并且以曲轴的长轴为中心,在第二装置 30中,轴承面相对于感应线圈组件64a-64e的运动的控制不太复杂。前 述比较是在这两个装置包括一个、两个或某些其它数目的事实上相同的 工位的基础上进行的。

至于包括一部分曲轴65的轴承面28a-28e,如图所示,这些表面具 有基本上相同的外径和圆柱形形状。重要的是,这些圆柱形表面与曲轴 的长轴同心,并因此与在两支撑顶尖之间延伸的长轴同心。如图所示, 上部顶尖最好用一个正向锁(卡盘)代替。结果,因为实际上轴承面不具 有它们自己的唯一的轨道,一旦每个线圈组件最初设定在其相对于轴承 面的想要的靠近位置上,在第二装置30的工位处利用的感应线圈组件 64a-64e在曲轴旋转一圈期间具有固定的位置。仍然需要某种类型的X 和Y定位系统以最初使每个线圈组件靠近相应的轴承面定位。而且一旦 正确定位,用于相应的轴承面的感应线圈组件不必在特定的或相应的轨 道路径中被移动或追踪。这明显不同于销,这是由于销的轴位置相对于 曲轴中心线偏移。

某种程度上,如果一个以上的轴承面被同时感应加热,曲轴65可接 收产生的热量,可以在装置30的工位中使用多个线圈组件64a-64e。如 图8-11中所示,装置30的结构包括一系列五个感应线圈组件64a、64b、 64c、64d和64e。将要装在竖直顶尖66a和66b之间的位置中的曲轴65 包括五个轴承面,并且装置30的运转在一个运转循环中加热五个轴承面 中的三个,并在一个单独的运转循环中加热其余的两个轴承面(见图12 和图13)。如上所述,上部顶尖66a最好是一个卡盘40b形式的正向锁(卡 盘)。每个感应加热步骤紧接一个淬火步骤。与前面的描述相一致,淬火 液体是通过本发明的一个实施例的感应线圈引入的。在另一个实施例中, 淬火液体是通过一个单独的未利用感应线圈组件作为引入装置的淬火机 构引入的。

在图8中示出了五个线圈组件64a-64e,每个线圈组件相对于它们的 相应的曲轴65的轴承面定位。如果所有的五个轴承面被同时感应淬火, 将使用这种布置。但是,由于这将产生太多的热量,图12和图13说明 了首先怎样使用三个线圈组件,然后怎样使用两个线圈组件。顺序可以 颠倒,但要点是同时加热几个轴承面,产生较少的热量和较小的变形。 不管两个轴承面被在其它三个轴承面之前或之后感应加热和淬硬,与一 次处理一个轴承面相比较,多个轴承面的同时处理导致更快地完成循环。 包括在装置30中的部件是一个感应电源30a、一个Y轴驱动系统30b、 一个滑轨30c、一个变压器组件30d、母线30e和母线延伸部分30f。除 了母线延伸部分和代替装置20的X轴驱动系统51的滑轨外,装置30 实际上与装置20相同。

现在参考图15、16和17,说明了本发明的另一个实施例。装置220 包括三个水平定位系统221、222、和223,每个定位系统与一个相应的 用于销的线圈组件或多个用于轴承面的线圈组件相连。每个定位系统包 括彼此成90度角固定的X轴和Y轴定位系统。对轴承面(系统221和 222),X轴定位系统是一个手动滑动装置。还示出了一个单独的靠近每 个水平定位系统的加热平台变压器224、225和226。即使未示出,装置 220包括所有的标准系统元件。这些标准系统元件在其它的图中示出, 为清楚起见,并且由于图15-17的实施例的焦点在于组合成一个唯一的 用于销和轴承面的工位感应加热子系统的方式,此处未示出这些标准系 统元件。装置220还包括一个用于沿Z轴竖直运行的共用支持系统227、 一个上部卡盘228和一个下部竖直支撑顶尖229。

在图15所示的实施例中,事实上,如果使用所有的三个水平定位系 统221、222和223,需要把共用支持系统227(或设想的一个水平定位系 统)从其图示位置装上铰链以便把工件(即曲轴)装入位。另一部分是从顶 部(即头部)装入工件。另一部分仅用于三个水平定位系统中的两个,并 且,作为一个图示该选择的方式,在图15中用虚线框出了系统222。

尽管为了图面清晰可见,在一些图中去掉了一些元件和零件,但通 过下面的分析可获得装置220的完整的理解。通过注意到定位系统221 和变压器224基本上与图12中所示的控制三个线圈组件的相同,该三个 线圈组件用于同时感应淬火三个轴承面,这样可理解装置220的结构。 定位系统222和变压器225基本上与图13中所示的控制两个线圈组件的 相同,该两个线圈组件用于同时感应淬火两个轴承面。定位系统223和 变压器226基本上与图5中所示的控制一个线圈组件的相同,这个线圈 组件用于顺序感应淬火曲轴230的销。该线圈组件包括用于系统221的 组件221a、221b和221c,用于系统222的组件222a、222b,用于系统223 的组件223a。

在图16中,未示出轴承面线圈221a、221b、221c、222a和222b, 也未示出定位系统223。在图17中,示出了定位系统223,但为清楚起 见,省略了两个轴承面定位系统221和222。支臂231和232的结构与 支臂40-43相同,如与图15-17所示的相一致。在所有的方面,装置220 的操作与装置20和30的相应的部分相同。不同之处在于包括使用了一 个用于曲轴的唯一的竖直定位系统,其与水平(滑动)定位系统组合在一 起,该水平(滑动)定位系统在同样的唯一工位上用来定位用于销和轴承 面的线圈。

对装置20和具有多个感应线圈组件的工位33和36的结构,本发明 还有一个选择,每一个具有其本身的伺服系统、其本身的X和Y驱动系 统和控制电路。这允许同时处理一个曲轴的多个销。如果两个工位被构 造并利用为装置20的部件,那么每个工位可被构造为具有多个用于曲轴 曲柄销的感应线圈组件。

现在参考图2A和图3A,示出的装置120具有工位133和136。尽 管增加了第二线圈组件和相配合的驱动系统,但应考虑到装置120事实 上与装置20相同的事实。相应的标号已经被给出了数目100的前缀。因 此,工位133事实上与工位33相同,工位136事实上与工位36相同。

装置20和装置120的一个不同之处在于,竖直定位部分133b和 136b(对工位33和36为33b和36b)分别相对于两个工位133和136之间 的间距重新定位。这使得工位133的左侧和工位136的右侧开口,以便 可分别安装第二X和Y轴驱动系统151a和149a及161a和162a,如图 2A和3A所示。在工位133处的第二X-Y驱动装置事实上与X驱动系 统151和Y驱动系统149的结构相同。同样,在工位136处的第二X-Y 驱动装置事实上与X驱动系统161和Y驱动系统162的结构相同。关于 所示的四个X-Y驱动装置,每一个包括一个X轴驱动系统、一个Y轴 驱动系统、一个变压器和一个变压器外壳。为了说明这些所有的元件, 对图进行了调整,从两个位置去除了变压器,以便更好地示出X和Y驱 动系统。

象位于工位133处的第一X-Y驱动装置一样,第二X-Y驱动装置 通过一个母线181a和快速变换装置180a与一个感应线圈组件148a相连。 第一X-Y驱动装置通过母线181和快速变换装置180与线圈组件148相 连。通过在每个工位处把一个第二感应线圈组件148a提供给所有的相配 合的结构和驱动系统,两个销可被同时感应淬火。为了分配热量,销27a 和27c(第一和第三销)在第一循环中被感应淬火。其后,销27b和27d(第 二和第四销)在第二循环中被感应淬火。通过使感应线圈组件的数目加 倍,对曲轴的销的感应淬火循环时间可缩短一半。在循环中这可通过改 变功率实现。如果速度被改变,那么平衡重必须被按时间安排到两个线 圈的位置上。

在图2A和3A中示出的另外的元件和系统在图1、2、3、4、5、和 6中有相应的元件和系统,包括人/机接口175、感应线圈组件163和163a、 门135、外壳173、变压器172、变压器外壳172a和外壳134。

根据具体的曲轴设计和各种循环时间,在每个工位使用多个线圈组 件和使用多个工位可能对一些曲轴设计更有利。包括工位的数目的每个 装置的设计计划和每个工位的设计计划应当在理解运行的曲轴类型的基 础上进行,以便从装置到装置的曲轴的循环是足够的且成本合理。

考虑的另一个因素是保持的公差。如果多个轴承面被同时感应淬火, 有一些稍微的变形需要后续的研磨操作。当一次仅有一个销被感应淬火 时,没有变形涉及。为此,在最初对曲轴曲柄销的感应淬火之前,可能 想要完成所有的轴承面的感应淬火并使曲轴回复到公差范围之内。

继续参考图1、2、3、4、5和6,示出了与每个装置相关的一些标 准系统元件。用于第一工位33的感应淬火装置20包括一个300Kw/10kHz 感应电源67和一个分别提供了X和Y驱动系统51和49的复合精确水 平滑片68。为第二工位36提供了相同的设备,包括感应电源69和水平 滑片70。滑片70提供X和Y驱动系统61和62。每个工位33和36还 包括一个加热平台变压器72和变压器2外壳72a。设置外壳34和73以 围住每个工位处的曲轴和线圈。装置20包括与两个工位接界的特定的元 件和系统,包括人/机接口75、各种气动元件和控制器76、一个主控制 器外壳77、定位控制器外壳77a和一个液体系统78。还包括一个淬火过 滤器79、用于每个线圈组件的快速变换装置80和母线81。主控制器外 壳77包括计算机和PLC控制器、逻辑电路、运行控制器、断路器和用 于装置的输入/输出电路。外壳77a包括用于定位控制装置的电路。

具体参考图2,一个800加仑淬火水槽82与两个15HP淬火83和 84流动相连。泵83通过一个流路与第一工位33相连,而泵84与第二 工位36相连。回路85和86使在每个工位使用的淬火水返回并收集在淬 火水槽82中。蒸馏水槽87包含一个用于冷却电子元件的蒸馏水供给装 置。泵88用于把蒸馏水从槽87中抽出。泵89是一个仅用于冷却目的的 循环泵。在本发明的一个实施例中,每个感应线圈组件48和63被设计 成具有一系列定位在其内表面周围的流动开口,用于把淬火水快速引入 到曲轴的感应加热部分上,不管这些部分是否包括一个销或轴承面(见图 6A)。通过设计具有一定淬火能力的线圈组件,没必要移动感应线圈组件 和在淬火平台处的曲轴的位置或移动一个单独的淬火系统定位。在一个 单独的线圈组件中的感应加热和淬硬步骤是本发明的一个选择。另外, 由于优秀的淬火系统技术的应用,使用一个单独的淬火系统被考虑作为 本发明的一个很可行的部分。不管线圈组件设计将被简化或需要缩短循 环时间,使用一个单独的淬火系统是有益的。

如上所述,在本发明的一个实施例中,通过直接流入感应线圈组件 中的机加工液流孔具有淬火能力或功能。这些液流孔与流路相连,流路 与相应的淬火泵相连,见图2。在另一个实施例中,当使用一个单独的 淬火机构时,同样的流路与淬火机构相连。

实际的淬火步骤最好分阶段进行。第一阶段是,在销和轴承面已经 被升高到需要的温度后,曲轴仍然旋转。当进行辅助或补充淬火时,这 发生在不同的Z轴位置,并且要求曲轴竖直位移。当进行补充淬火时, 下一个销可相对于用于处理的感应线圈组件定位。这种不同功能的叠加 有助于减少曲轴的整个循环时间。

图9中所示的用于装置30的系统布置事实上与图2中所示的用于装 置20的系统布置相同。因此,为了鉴别在装置20和30中事实上相同的 元件和/或子系统,使用了相同的标号。装置20和30之间的主要不同是 X和Y驱动系统,这是由于通过装置20进行销的感应淬火,通过装置30 进行轴承面的感应淬火。

在每个工位使用一个单独的线圈组件,感应加热和淬硬步骤是连续 的,一次处理一个销或一组轴承面。一旦曲轴支撑在第一工位33的顶尖 之间,线圈组件48通常以相同的速率跟踪选择的销的轨道并感应加热 销。该加热步骤花大约10-20秒时间。一旦曲轴的销被加热到需要的温 度,需要进行淬火步骤。这可以在一个实施例中完成,即通过线圈组件 喷入淬火水并直接喷在已经被加热的销上(见图6A)。在本发明的另一个 实施例中,脱开线圈组件,曲轴继续旋转,同时操作一个单独的淬火平 台。曲轴继续旋转,同时不管实施例如何进行淬火步骤。一旦完成第一 个销的感应淬火,曲轴被竖直指向,同时线圈组件仍然保持固定,以便 对曲轴的下一个销进行定位。这个程序重复进行直到所有的曲轴的销被 感应加热并淬硬。用于线圈组件的驱动系统被编程以识别选择了哪一个 销,并且X和Y驱动系统被编程以跟踪特定的销的预先选择的轨道。由 于描述了各种实施例,必须决定是否需要对任何平衡重进行调整,如果 这样,将进行哪一种类型的调整。一旦确定了起始位置,对每个销,线 圈组件的X和Y行程仍然是相同的。每个销具有不同的相对于曲轴的旋 转位置的圆周位置,因此,线圈组件的起始位置随选择的销的不同而不 同。

在曲轴旋转之前,在第一工位33处的感应线圈组件48最初相对于 选择的销定位。相应的,用于销轨道的线圈组件的X-Y跟踪路径需要具 有与曲轴的速度同步的跟踪速度。线圈组件的速度和路径是很关键的, 必须精确地符合曲轴的速度和销的轨道。即使线圈组件和销之间的间距 改变,每个循环仍然有一个被跟踪的具体的跟踪轨道。这并不涉及轴承 面,这是由于它们的轨道同轴的特性。

如上所述,在轴承面感应淬火之前或所有的轴承面感应淬火之后, 可完成曲轴曲柄销的感应淬火。可在作为一个装置的一部分的两个不同 的工位处理销和轴承面,或者由两个单独的装置进行处理,一个装置专 用于处理销,另一个装置专用于处理轴承面。

如图5和6中所示,一个典型的包括一个加热元件(感应器)93、 一个内部冷却套94、一个悬浮塑料材料的场聚焦部分95、隔离片96、 和定位97。场聚焦部分用于操纵磁场。当线圈组件中加入淬火能力时, 内表面57上形成有多个致密均匀的孔。如图6A中所示。当一个单独的 淬火机构进行淬火功能时,淬火机构位于在定位机构(未示出)上的曲轴 的端部之间,如本领域技术人员所熟悉的。

下面讨论的对本发明的逻辑编程将用于曲轴的销的感应加热,而不 用于轴承面。这是由于销相对于曲轴的长轴的旋转轨道的类型,相比较, 轴承面相对于曲轴的轴是同心的或同轴的。将提供的第一项数据是用于 X和Y驱动系统的啮合位置,从而相应的感应线圈组件可相对于将被感 应加热和淬硬的相应的销正确定位。将编程进计算机控制器或逻辑电路 中的其它的数据是从特定的曲轴技术要求中导出的。这些数据涉及包括 销和任何的平衡重的曲轴的尺寸、形状和几何特征。可通过键盘(人工输 入)的方式输入这些要求的数据。一旦输入基本的技术要求数据,无论曲 轴的销是否被感应加热和淬硬,这将不再改变,并且是相同的。应当注 意,啮合位置可以改变,也可以不改变,这取决于特定的曲轴是否相对 于其设计尺寸和公差被制造的很好。操作者通过键盘输入本发明的逻辑 编程部分的其它数据和信息包括每个销的公差、转数、旋转时间、加热 时间、旋转速度和电源输出。在加热期间的旋转速度RPM(每分钟转数) 目前被设定为每个半球为2RPM。在一个半球中,轴以30RPM旋转, 在另一个半球中,以50RPM旋转。这可以被细分为四分之一或甚至更 小的部分。应当理解,旋转速度可以被分解为更小的增量,允许一个逐 渐的加速和/或逐渐的减速,如此所述。也应当注意,本发明必须基于想 怎样集中来自感应线圈组件的热量预先编程以跟随一个圆路径或一个椭 圆路径。根据本发明的各个实施例,在此讨论了这些各种各样的路径选 择。如所理解的,当由感应线圈组件跟踪一个圆路径时,X轴驱动系统 服从一个余弦波形,Y轴驱动系统服从一个正弦波形。

关于本发明的装置20的利用,通过机械手和/或操作者把曲轴放在 下部顶尖支撑上,然后在顶部夹紧或卡进,以便开始循环,从而开始处 理。如上所述,X和Y方向是水平的,这两个驱动系统彼此成90度连 接。简称为θ(r)的旋转运动定义驱动主轴/曲轴的运动。Z轴在竖直方向, 表示感应线圈组件的定位轴和竖直方向上的曲轴。

第一步需要做的是通过曲轴移进所选择的将要被感应加热的销放在 一个“已知”位置处的位置在Z轴方向上的运动,该“已知”位置被简 称为0度θ(r)。一旦曲轴的销移动到需要的竖直位置,曲轴旋转直到基 于来自光敏元件开关的输入而读出的θ(r)为0度。一旦确定了0度的θ (r)位置,该系统把曲轴沿Z轴(竖直)向下移入线圈位置,该位置是将要 感应加热特定的销的位置。一旦正确地设定了Z轴和θ(r)位置,那么X 轴驱动系统被啮合以便把感应线圈组件移动到其啮合点,该啮合点将与 相应的曲轴的销成一直线。接着,Y轴驱动系统别啮合以便把感应线圈 组件移进曲轴。如相应的图中所示的,当直接看机器的前面时(见图3), X轴方向是左右方向,Y轴方向是进出机器方向。因此,一旦建立了X 和Y位置且曲轴被设定在0度θ(r),该系统便开始旋转(在θ(r)方向), 进入一个逆时针方向。在θ(r)方向上开始旋转运动后,X和Y驱动系统 紧随,跟踪用于该销的特定轨道,形成一个相应的逆时针路径。尽管选 择了逆时针方向,应当注意,θ(r)方向既可以为顺时针方向也可以为逆 时针方向。

还应当注意,有一个脱开位置,该位置是θ(r)度数的位置,在该位 置可以安全地与X和Y驱动系统脱开,把感应线圈组件从与曲轴的相对 关系中抽出,且不“碰撞”机器。当曲轴逆时针方向,即θ(r)方向旋转 时,它将从0度位置读出所有的360度的位置。目前,脱开位置被编程 在240度。实际上所发生的是感应线圈组件旋转脱开,就象齿轮从彼此 啮合的关系旋转脱开一样。特定的脱开位置是基于零件技术要求,因此, 当零件改变时,脱开点也会改变。但是,脱开位置将通常在相应的曲轴 的销的圆路径的第三象限中。

一旦完成了感应加热循环,实际上,控制器(本发明中使用的是Allen Bradley Slick 500)将指出加热阶段已经结束。在该点处,X和Y驱动系 统控制感应线圈组件的脱开,此时为240度θ(r)。在进行该脱开时,最 初启动运动的Y轴方向,以便从其加热位置退回线圈。实际上,X轴将 仍啮合,以便紧随零件,从而不碰撞线圈的边。一旦Y行程到达大约在 编程的轴外面3英寸,可以与X轴驱动系统脱开,从而停止X轴移动。 在该点处,X和Y驱动系统返回到原始位置或装载位置,用于下一个销。 应当注意,线圈组件与曲轴脱开,同时曲轴继续旋转。这种特定的脱开 协议允许曲轴在淬火循环中旋转,同时线圈被脱开。这种特定的协议允 许更短的循环时间和均匀的淬火。事实上,所能做的是脱开线圈,在Z 轴方向上降低曲轴,并且继续在该点处进行补充淬火,同时对将要被感 应淬火的曲轴的下一个销定位。这使得下一个销放置在准备位置上,同 时继续用于前一个销的淬火循环。如上所述,这允许更短的循环时间, 同时不会对均匀淬火产生负面影响。

已经参考图1-17说明和描述了各种设备的设计和结构。在每种情况 下,由于有两个连接成90度路径或场的事实,所选择的代表性的感应线 圈组件是详细描述的一个90度线圈。在用于感应线圈组件的该种类型的 线圈的结构中,实际上通过线圈流动的电流通过中心连接的连接支臂的 方式流入或流出。在支臂的一侧上有一个往返90度电流路径,在该支臂 的相对一侧上有一个相连的90度电流路径。

参考图18、18A和19,示出了一个90度线圈组件300。线圈组件300 包括线圈300a和支臂300b。支臂300b上设置有一个电流流入部分301 和一个电流流出部分301a。这两个部分彼此电绝缘,并且事实上从顶部 到底部彼此错开,其端部与线圈300a相连。一个电绝缘材料的部分302 在铜导体材料的部分303周围和之间成为一层。来自相连的变压器的流 入的电流通过部分301运行到线圈300a。然后,电流从点A到部分303a 的上部在线圈301的暴露的表面304周围运行大约90度。返回路径是从 部分303a的下部到点B。返回路径也大约是90度。这90度路径是描述 线圈组件300作为一个90度线圈的基础。

如此处使用的,诸如下述的“90度线圈”、“90度感应线圈”和“90 度线圈结构”之类的表述各指的是具有一个通常的半圆柱形开口和一个 将电流引入线圈和从线圈引出的支臂的感应线圈。该支臂相对于半圆柱 形开口定位,使得它被有效地定在中心,并且有一个大约90度的线圈开 口部分从支臂的一侧在第一方向上延伸,且另一个大约90度的线圈开口 部分从支臂的另一侧(相对侧)在第二方向上延伸。图18中清晰地示出了 该结构,并且“90度”指的是电流从支臂到半圆柱形开口的一端或一边 的电流路径。

部分303b和303c与电绝缘材料的部分302a绝缘。包括点B的部 分303d的中心在支臂300b的中心线和线圈300a的中心线上。支臂300b 的中心线也与定位在部分301和301a之间的绝缘条305的中心线重合。

通过部分303d的电流是从下部的点B到上部的点C。在点C处, 开始下一个(第二个)90度电流路径。这个电流路径是沿暴露的表面304 从点C通过部分303e到部分303f。在该点处,电流路径通过部分303f 向下运行到部分303g。从部分303g出去的电流回到支臂300b的电流流 出部分301a。

如图18、18A和19中所示,通过在线圈300a的表面304中形成图 6A中所示的淬火孔,线圈组件300的结构可以具有水淬火能力。与这些 淬火孔相连的是相配合的在线圈300a的内部形成的通道。为了图面清晰 起见,在图19中未示出这些淬火孔,以便可以清晰地示出导体和非导体 部分及相应的电流路径。

图18、18A和19中所示的线圈组件300的类型适合于图1-17中所 示的实施例,并且适合于被这些所示的实施例处理的工件的感应淬火。 但是,人们已经了解到,线圈组件的另外一种类型(180度)最好用于特定 的比如曲轴之类的工件的所选择部分的感应淬火。

图20、21和22示出了线圈组件310的另一种类型(即“偏移型”)。 描述为180度以及称为“偏移”型的线圈组件310来自于下述事实,即 连接支臂311沿激励线圈310a的一侧定位,使得在电流向下运行到前表 面313且回转180度穿过下表面314回到支臂311之前,电流在一个大 约180度的路径内穿过线圈310a的顶表面312运行。箭头315示出了线 圈组件310的电流路径。可以理解,当在90度线圈类型和180度线圈类 型之间时,90度线圈组件类型更靠近本领域的状态或工业标准。因此, 应当理解,如此所述的180度偏移型线圈组件310是一个独一无二的和 全新的设计,脱离了工业标准。在描述线圈310a时称为“偏移”型是因 为支臂位置偏移中心。如图20、21和22所示,线圈组件310的详细结 构包括线圈310a和支臂311,下面将进行描述。线圈组件310的一些基 本的结构是遵照众所周知的用于感应淬火线圈的设计原理的。线圈组件 310的独一无二性和新颖性在于线圈310a的具体的结构,并且更重要的 在于包括在线圈周围运行的180度相应的电流路径,如上所述。

如此处使用的,诸如下述的“偏移180度线圈”、“偏移180度感应 线圈”和“180度偏移型线圈”之类的表述各指的是具有一个通常的半 圆柱形开口和一个将电流引入线圈和从线圈引出的支臂的感应线圈。该 支臂沿线圈的一侧连接到线圈,使得整个大约180度的半圆柱形线圈开 口从支臂延伸。以此方式,通过支臂流进流出线圈的电流从支臂到线圈 的相对端运行大约180度,然后回到支臂。这种类型的感应线圈被描述 为“偏移”,这是因为支臂并不相对于线圈定在中心处,而是实际上偏移 到整个线圈的一侧。图20中清晰地示出了该结构。

继续参考图20、21和22,支臂311具有两个导体部分318和319(一 个正极,一个负极),它们被分隔开并且由绝缘板320电绝缘(和隔离)。 连接块321被设计成可与一个电母线(未示出)机械连接和电连接,该母 线有效地与变压器(未示出)相连。连接块321与两个导体部分318和319 中的每一个机械和电连接。加热电流从变压器穿过一个导体部分318流 入,并通过另一个导体部分319流回变压器。设置在连接块321中的是 两个水通道324和325,每一个导体部分包括一个相应的和相连的通道326 和327。在导体部分318中的通道326与通道324连通。在导体部分319 中的通道327与通道325连通。

螺纹固件328用于把两个导体部分318和319连接在一起,并且 把绝缘板320机械地夹在并固定在两个导体部分之间。支臂311(即两个 导体部分318、319与绝缘板320的组件)的端部329与180度线圈310a 的一侧330相连。绝缘体331把支臂311与线圈310a的电连接限定在端 部329的集中区域中。块332用于固定和加强支臂311与线圈310a的连 接的支撑物。螺纹紧固件333用于把块332固定在线圈310a的后表面336 上和部分319的长边337上。

流入的电流穿过部分319运行,在端部329拐弯,并且穿过线圈310a 的顶表面312流动大约180度。然后,电流路径沿前表面313而行并流 到下表面314。在该点上,电流围绕线圈310a流动180度回到部分319, 并从此处沿部分319的下侧回到块321。这种偏移线圈组件310大约180 度的电流流动路径的加热动力学把动力导入顶部边缘,然后导入底部边 缘,最后是中部。穿过顶表面312的电流路径为至少180度的半圆形状。 该路径的曲率与线圈310a的内表面310b的弯曲圆柱形几何形状相一致。 内表面310b延伸至少180度,并且代表靠近将要被感应淬火的工件部分 的表面。

通过比较180度线圈组件和90度线圈组件之间的加热模式和加热处 理结果可以了解到,90度线圈组件在热量到达邻近或周围的角落之前在 工件的中心区域开始产生加热动力,尤其是比如曲轴的销之类的工件的 选择部分。在需要加热处理角落部分的特定条件下,在热量逐渐到达角 落之前,中心部分将变得太热。导致这种情况的原因是由于90度电流路 径,以及在任何一次(一个位置)仅加热四分之一的销,并且对于固定的 质量热量较少。相比较,180度线圈310a具有一个首先在角落部分开始 加热然后移到中心部分的电流路径。应当注意,在曲轴的销和内部主要 部分的设计中,在此讨论的内侧角落是与实际的销或主要部分相比较质 量更大的位置。通过首先加热质量较大的位置,可增加热量,且不过热 质量较小的部分。

在图23、24和25中,示出了对于90度线圈组件300和180度线圈 组件310的用于不同的元件部分的加热模式(热处理)结果。图23的加热 模式是用于外部主轴承338,外部边缘或角落339、340不是从高硬度和 高强度的观点考虑的关键区域。因此,线圈组件300或310的类型可被 用于外部主轴承。

当内部主轴承或销被感应淬火时,因为角落需要承受扭动负载,角 落强度很关键,所以热处理模式需要包括内角。用90度线圈组件300, 图25中示出了用于内部主轴承或销341的加热模式。如图所示,内角342 不能受到足够的热处理以达到需要的或必要的硬度和强度。相比较,图 24的加热模式可通过使用180度线圈组件310达到。在此,圆柱形内部 主轴承(或销)346的每一侧上的内角344、345被充分的热处理以获得需 要的硬度和强度。如所理解的,90度线圈组件300适用于外部主要部分 (No.1和No.5),而比如180度线圈组件310应当用于内部主要部分(No.2、 3和4)。通过使用180度线圈组件产生的淬火模式十分重要,而且与90 度线圈组件相比较,使用180度线圈组件还有其它的好处。以使用曲轴 曲柄销作为例子,测试结果显示出,对于使用90度线圈组件300的典型 的装置,它将花大约18秒来正常的把销加热到需要的热处理条件。在其 它事实上相同的条件下使用180度线圈组件310,它将花大约11秒来正 常的把销加热到需要的热处理条件。节约时间直接与下述事实相关,即 通过首先加热质量最大的位置而不是最后加热,可不必花费时间等待这 些位置升高到必要的温度。另外,使用180度线圈310a,有更大的通过 线圈进行水冷却的质量区域,该线圈允许更大的热容和更大的功率。180 度线圈的加热能力是90度线圈的加热能力的两倍。当要求复杂性较小时 或要求更大或更强的电场时,180度线圈要比90度线圈好。90度线圈产 生的功率小,使用的铜少,并且能够使流动冷却的液体较少。

图23-25所示的热处理模式是从已经被使用90度和180度线圈组件 感应淬火的实际部件的微小部分。如通过使用在此示出和描述的新颖的 和非显而易见的180度线圈组件310所达到的效果,图24的热处理描模 式是独一无二的和重要的。

主轴承、销和平衡重的布置在某种程度上随发动机类型的不同而改 变。例如,一种直线六(in-line six)发动机具有三对销,它们可被成对热 处理(即感应淬火),因为成对销相对于顶部静止中心位置的位置相同。 如所理解的,销3和4可被一起同时处理,销2和5可被一起同时处理, 销1和6可被一起同时处理。在一种V-6发动机中,六个销被分成三对, 以便正确地平衡V-6发动机。每对中的两个销彼此邻近,并且被称为“开 口销”(“split pins”)。从感应淬火的观点看,这可被认为是一个更独一 无二的情况,但用于V-6发动机的曲轴仍然是相对普通的结构。

在图26中示出了曲轴曲柄销的“开口销”对350和351。为了正确 地平衡V-6发动机,这些销能可转动地偏移30度。两个销350和351之 间的区域352具有固有的弱点,这是因为它是曲轴的最薄的区域或部分。 图27是示出区域352在横截面上看起来象什么的示意图,由于销350和 351的圆柱形特性和这两个圆柱形销彼此相对位移,使得它们的圆柱轴 并不重合。通过截面27-27的区域352的扇形形状352a因其几何形状被 称为一个“足球”或足球形。作为图26中所示的局部曲轴的部分的是平 衡重353和354。加热(即感应淬火)顺序从成圆角的内角355a和355b开 始。随后是轴颈(即销350和351)的加热(即感应淬火)。与对图24的内角 344和345的描述相一致,内角355a和355b是质量较大的区域。部分 是由于被首先加热,180度线圈设计在这个区域产生更多的热量。图26 中示出了最终的加热模式。

用于控制输入曲轴或其它工件的热量的另一种选择是随着当前靠近 线圈的物体质量不同改变曲轴的旋转速度。当感应淬火线圈靠近平衡重 的较窄部分时,旋转速度加块,因为要求输入的热量较少。当曲轴转动 且平衡重的大部分靠近线圈定位时,旋转速度变慢,以便输入更多的热 量。

根据本发明,用于感应淬火销350和351的最好的方法是同时使用 两个180度偏移线圈组件310(见图28)。由于有一个30度的偏移或位移, 两个线圈组件将在进入纸面或垂直纸面的方向上具有类似的偏移或位 移。通过使两个线圈组件与曲轴的两个销成一直线,过渡区352不被直 接加热。而是,考虑到这个区域的较薄的质量,对销的加热将对区域352 进行足够的加热,以便实现需要的感应淬火。由于有三对错开的销,对 销350和351的加热(感应淬火)基本上与对其它两对销的加热相同。如 图28中所示,每个180度偏移线圈组件310与相应的变压器357和358 电连接和机械连接。每个变压器安装在其本身的相应X、Y定位台359 和360上。

销350和351的邻近对感应淬火是一个挑战,这是因为一个销的加 热不与相邻的销的加热同时,使得相邻的销的边缘回火。两个销很靠近 时,可使得用于感应淬火一个销所产生的热量不能与相邻的销隔离,从 而导致回火。如果销350和351不被同时感应淬火,中间区域352,即 两个销之间的连接部分,仍然是一个没有足够硬度的软化区域。

图28示出了两个偏移线圈组件310的布置,用于作为V-6发动机 曲轴的部分的开口销350和351的感应淬火。图29示出了使用两个偏移 线圈组件310来对一个直线六曲轴进行感应淬火。图28和图29之间的 唯一的不同是被感应淬火的曲轴的样式和类型不同。

参考图30说明本发明的另一个特征。90度线圈组件300适用于曲 轴356的外部主要部分,而180度线圈组件310最好用于曲轴的内部主 要部分。在同样的比如曲轴的工件上使用两个不同类型的感应线圈组件 要求,在使用时,两种类型的线圈组件具有相同的轴中线,从而不必位 移或移动曲轴的轴。如此所述的,一旦线圈移动到用于非接触轨道跟踪 的位置,每个线圈组件300、310的每一个感应线圈300a、310a的轴与 曲轴356的旋转的竖直或长度轴重合。最好偏移或位移两个变压器357、 358,而不是必须位移曲轴356的竖直轴与对准另一线圈组件310的一个 线圈组件300对准。根据本发明,可以把一个90度线圈组件300连接到 第一变压器357上,把一个180度线圈组件310连接到第二变压器358 上。尽管可以混合使用90度线圈与180度线圈,当更可能的布置是使用 同样的线圈组件,如图28(V-6)和图29(直线六)中所示的。

两个变压器被彼此偏移或位移,但线圈被如此定位,即对于一个直 线六汽缸类型发动机,当线圈移动到位置时,线圈的轴中线彼此重合并 与曲轴356的旋转竖直轴重合。如前所述,每个变压器安装在其本身的 相应X、Y定位台359、360上,用于定位根据本发明的感应淬火线圈。 应当注意,对于V-6类型发动机(见图28),线圈的轴中线并不彼此重合。 且不与曲轴的旋转竖直轴重合。

尽管在附图中和前面的描述中详细说明了本发明,但它们仅用于说 明,并不对特征进行限制,可以理解,仅示出和描述了最佳实施例,在 本发明的宗旨下的所有的变化和修改都受到保护。

专利申请是目前悬而未决的在1997年10月29日提交的美国 No.08/959,799专利申请的部分继续专利申请。

高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈