首页 / 专利库 / 引擎 / 内燃机 / 变量泵 / 一种超低比转数离心泵叶轮多工况多目标水力优化方法

一种超低比转数离心叶轮多工况多目标优化方法

阅读:857发布:2023-01-23

专利汇可以提供一种超低比转数离心叶轮多工况多目标优化方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种超低比转数 离心 泵 叶轮 多工况多目标 水 力 优化方法。具体步骤为:测量各个工况下超低比转数 离心泵 的扬程、功率和效率;找出各个工况下超低比转数离心泵数值计算中与实验值误差最小的 湍流 模型;以多个工况下加权平均效率最大或多个工况下加权 平均功率 最小、多个工况下叶轮内的加权平均径向力最小与叶轮重量最轻的组合为目标函数,基于具有内、外双循环结构的VCM-MDF优化策略对超低比转数离心 泵叶轮 多工况多目标优化模型进行求解,解出叶轮整体最优解集;根据优化得到的叶轮整体最优解集设计出其水力模型。本发明不仅能对超低比转数离心泵叶轮进行多工况多目标水力优化,以提高泵的水力性能,还能减轻其叶轮内的径向力、降低其重量。,下面是一种超低比转数离心叶轮多工况多目标优化方法专利的具体信息内容。

1.一种超低比转数离心叶轮多工况多目标优化方法,其特征在于包括以下步骤:
(1)采用单工况设计方法对超低比转数离心泵进行设计,加工超低比转数离心泵,搭建超低比转数离心泵外特性实验台,测量各个工况下超低比转数离心泵的扬程、功率和效率;
(2)根据步骤(1)得到的实验值,找出各个工况下超低比转数离心泵数值计算中与实验值误差最小的湍流模型;
(3)基于VCM改进MDF策略,并建立具有内、外双循环结构的超低比转数离心泵叶轮多工况多目标水力优化的VCM-MDF优化策略;
(4)以超低比转数离心泵叶轮关键几何参数为设计变量,以多个工况下的扬程为约束,以多个工况下加权平均效率最大或多个工况下加权平均功率最小、多个工况下叶轮内的加权平均径向力最小与叶轮重量最轻的组合为目标函数,采用VCM-MDF优化策略对超低比转数离心泵叶轮多工况多目标优化模型进行求解,解出叶轮整体优化的整体最优解集;
(5)根据步骤(4)得到的叶轮整体最优解集对超低比转数离心泵叶轮进行水力设计,得到其水力模型。
2.根据权利要求1所述的一种超低比转数离心泵叶轮多工况多目标水力优化方法,其特征在于:步骤(3)中,所述的VCM-MDF优化策略是将优化过程分为内、外两种循环迭代优化,内循环采用低精度模型寻优以降低数值计算成本,外循环采用高精度模型逐步修正低精度模型的精度以提高优化精度。
3.根据权利要求1所述的一种超低比转数离心泵叶轮多工况多目标水力优化方法,其特征在于:步骤(4)中,所述的多个工况下加权平均效率最大或多个工况下加权平均功率最小、多个工况下叶轮内的加权平均径向力最小、叶轮重量最轻的组合为:多个工况下加权平均效率最大、多个工况下叶轮内的加权平均径向力最小、叶轮重量最轻的两两组合,多个工况下加权平均功率最小、多个工况下叶轮内的加权平均径向力最小、叶轮重量最轻的两两组合,多工况下加权平均效率最大、多个工况下叶轮内的加权平均径向力最小、叶轮重量最轻的组合,或多个工况下加权平均功率最小、多个工况下叶轮内的加权平均径向力最小、叶轮重量最轻的组合。
4.根据权利要求1所述的一种超低比转数离心泵叶轮多工况多目标水力优化方法,其特征在于:步骤(4)中,所述的采用VCM-MDF优化策略对超低比转数离心泵叶轮多工况多目标优化模型进行求解的具体步骤如下:
(A)通过试验设计方法确定超低比转数离心泵叶轮多工况多目标水力优化的数值试验样本,并建立数值试验数据库,同时采用响应面方法构建超低比转数离心泵叶轮多工况多目标水力优化的近似模型;通过对其近似模型进行内部优化,得到其最优解;
(B)当步骤(A)的内循环结束后,提取最优解信息进行外循环高精度分析,并将该分析结果添加到数值试验数据库中,重新拟合各项系数,构建新的超低比转数离心泵叶轮多工况多目标水力优化的近似模型,直至满足收敛标准得到超低比转数离心泵叶轮的整体最优解集。
5.根据权利要求4所述的一种超低比转数离心泵叶轮多工况多目标水力优化方法,其特征在于:所述的收敛标准是通过外循环的前后两次高精度分析目标函数的差值≤ε,其中ε为收敛精度。
6.根据权利要求5所述的一种超低比转数离心泵叶轮多工况多目标水力优化方法,其-3
特征在于:所述收敛精度ε=10 。
7.根据权利要求4所述的一种超低比转数离心泵叶轮多工况多目标水力优化方法,其特征在于:步骤(A)中,所述实验设计方法为:最优拉丁方试验设计方法。

说明书全文

一种超低比转数离心叶轮多工况多目标优化方法

技术领域

[0001] 本发明属于流体机械设计领域,特指涉及一种超低比转数离心泵叶轮多工况多目标水力优化方法。

背景技术

[0002] 比转数≤30的离心泵称为超低比转数离心泵,具有流量小、扬程高、结构紧凑等特点,已广泛应用于航空航天、石油化工等领域。随着航空航天、石油化工等工业的迅速发展,超低比转数离心泵逐步向高速、高压、高效化发展,并且随着输送介质的多元化,尤其是输送易汽化介质和低温液化气体等领域的不断扩展,超低比转数离心泵的应用也越来越广泛。
[0003] 目前,超低比转数离心泵叶轮的主要设计方法主要有以下四种方法:(1)复合叶轮设计法。采用长短叶片的复合叶轮结构是提高超低比转数离心泵效率较为有效的方法之一,但增加了叶轮重量。该叶轮出口叶片数较多,能有效消除射流-尾流以及流动分离,使泵在小流量运行时稳定性较好,且效率高。(2)加大流量设计法。该方法实质上是增大泵的流量,提高其比转数,使其最佳工况向大流量偏移,然后让其在小流量工况下运行。该方法常选取较大的叶片出口、叶片出口宽度、泵体喉部面积,以及较小的叶轮出口直径、叶片数等,泵在大流量工况下运行易出现过载现象,在小流量工况下运行易出现驼峰现象。(3)无过载设计法。该方法根据泵饱和轴功率特性产生的理论条件,推导无过载泵设计的约束方程组,并综合考虑几何参数对泵性能的影响,从而对现有的泵计算公式和系数进行修正,但是该方法需要大量的试验数据对计算公式和系数进行修正。(4)水力优化设计法。采用损失极值法和CFD法对其进行水力优化,从而找到一个性能较优的方案,但目前大多以效率为目标进行的单目标单工况水力优化。
[0004] 迄今为止,尚未见超低比转数离心泵叶轮多工况多目标水力优化方法的公开报道。

发明内容

[0005] 本发明旨在提供一种超低比转数离心泵叶轮多工况多目标水力优化方法,通过采用外特性实验、VCM-MDF优化策略和CFD技术来解超低比转数离心泵叶轮多工况多目标水力优化的多目标问题,从而求出一组叶轮关键几何参数的最优解集。
[0006] 为达到以上目的,采用如下技术方案:
[0007] 根据实验值找出各个工况下超低比转数离心泵数值计算中与实验值误差最小的湍流模型,并以超低比转数离心泵叶轮关键几何参数为设计变量,以多个工况下的扬程为约束,多个工况下加权平均效率最大或多个工况下加权平均功率最小、多个工况下叶轮内的加权平均径向力最小、叶轮重量最轻的组合为目标函数,采用VCM-MDF优化策略对超低比转数离心泵叶轮多工况多目标优化模型进行求解,解出叶轮整体最优解集。
[0008] 其具体步骤如下:
[0009] (1)采用单工况设计方法对超低比转数离心泵进行设计,加工超低比转数离心泵,搭建超低比转数离心泵外特性实验台,测量各个工况下超低比转数离心泵的扬程、功率和效率。
[0010] (2)根据各个工况下超低比转数离心泵扬程Hi、功率Pi和效率ηi的实验值,找出各个工况下超低比转数离心泵数值计算中与实验值误差最小的湍流模型。
[0011] (3) 基 于 VCM(Variable Complexity Method) 改 进 MDF(Multidisciplinary Feasible)策略,并建立具有内、外双循环结构的超低比转数离心泵叶轮多工况多目标水力优化的VCM-MDF优化策略。
[0012] (4)以超低比转数离心泵叶轮关键几何参数为设计变量,以多个工况下的扬程为约束,以多个工况下加权平均效率最大或多个工况下加权平均功率最小、多个工况下叶轮内的加权平均径向力最小与叶轮重量最轻的组合为目标函数,采用VCM-MDF优化策略对超低比转数离心泵叶轮多工况多目标优化模型进行求解,解出叶轮整体优化的整体最优解集。
[0013] (5)根据优化得到的叶轮整体最优解集对超低比转数离心泵叶轮进行水力设计,得到其水力模型。
[0014] 步骤(3)中,所述的VCM-MDF优化策略是将优化过程分为内、外两种循环迭代优化,内循环采用低精度模型寻优以降低数值计算成本,外循环采用高精度模型逐步修正低精度模型的精度以提高优化精度。
[0015] 步骤(4)中,所述的多个工况下加权平均效率最大或多个工况下加权平均功率最小、多个工况下叶轮内的加权平均径向力最小、叶轮重量最轻的组合为:多个工况下加权平均效率最大、多个工况下叶轮内的加权平均径向力最小、叶轮重量最轻的两两组合,多个工况下加权平均功率最小、多个工况下叶轮内的加权平均径向力最小、叶轮重量最轻的两两组合,多个工况下加权平均效率最大、多个工况下叶轮内的加权平均径向力最小、叶轮重量最轻的组合,或多个工况下加权平均功率最小、多个工况下叶轮内的加权平均径向力最小、叶轮重量最轻的组合。
[0016] 所述步骤(4)中,所述的采用VCM-MDF优化策略对超低比转数离心泵叶轮多工况多目标优化模型进行求解的具体步骤如下:
[0017] (A)通过试验设计方法确定超低比转数离心泵叶轮多工况多目标水力优化的数值试验样本,并建立数值试验数据库,同时采用响应面方法构建超低比转数离心泵叶轮多工况多目标水力优化的近似模型。通过对其近似模型进行内部优化,得到其最优解。
[0018] (B)当步骤(A)的内循环结束后,提取最优解信息进行外循环高精度分析,并将该分析结果添加到数值试验数据库中,重新拟合各项系数,构建新的超低比转数离心泵叶轮多工况多目标水力优化的近似模型,直至满足收敛标准得到超低比转数离心泵叶轮的整体最优解集。
[0019] 所述的收敛标准是通过外循环的前后两次高精度分析目标函数的差值≤ε,其中-3ε为收敛精度,ε=10 。
[0020] 步骤(A)中,所述实验设计方法为:最优拉丁方试验设计方法。
[0021] 本发明的有益效果为:
[0022] (1)将VCM和MDF有效结合起来,提高了超低比转数离心泵叶轮多工况多目标优化的计算效率和精度。
[0023] (2)将外特性实验与VCM-MDF优化策略、CFD技术相结合求解超低比转数离心泵叶轮多工况多目标水力优化问题,既提高泵的水力性能,又减轻了其叶轮内的径向力、降低了泵的重量。
[0024] (3)不仅能够根据对超低比转数离心泵叶轮进行多工况多目标水力优化,还可以对已有的超低比转数离心泵进行节能改造。附图说明
[0025] 图1为一种超低比转数离心泵叶轮多工况多目标水力优化方法的流程图具体实施方式
[0026] 下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
[0027] 实施例:
[0028] 一比转数为24.1的超低比转数离心泵,其设计流量为Qd=0.4m3/h,Hd=40m,n=10000r/min。
[0029] (1)采用单工况设计方法对超低比转数离心泵进行设计,其叶轮关键几何参数如表1所示。
[0030] 表1单点设计的叶轮关键几何参数值
[0031]
[0032] 加工超低比转数离心泵,搭建超低比转数离心泵外特性实验台,测量各个工况下超低比转数离心泵的扬程、功率和效率。
[0033] 0.8Qd、Qd、1.2Qd三个工况下超低比转数离心泵外特性试验结果为:H1=42.1m,P1=103.7W,η1=28.4%;H2=40.6m,P2=108.5W,η2=32.6%;H3=37.9m,P3=114.3W,η3=34.7%。
[0034] (2)根据步骤(1)中三个工况下超低比转数离心泵扬程Hi、功率Pi和效率ηi的实验值,找出三个工况下超低比转数离心泵数值计算中与实验值误差最小的湍流模型为k-ω模型。
[0035] (3)基于VCM改进MDF策略,并建立具有内、外双循环结构的超低比转数离心泵叶轮多工况多目标水力优化的VCM-MDF优化策略。
[0036] (4)以超低比转数离心泵叶轮进口直径Dj、叶轮出口直径D2、叶片出口安放角β2、叶轮出口宽度b2、叶片包角 为设计变量,以0.8Qd、Qd、1.2Qd三个工况下的扬程为约束,以三个工况下加权平均效率最大、三个工况下叶轮内的加权平均径向力最小的组合为目标函数,采用VCM-MDF优化策略对超低比转数离心泵叶轮多工况多目标优化模型进行求解,解出叶轮整体最优解集。
[0037] 通过最优拉丁方试验设计方法确定超低比转数离心泵叶轮多工况多目标水力优化的数值试验样本,并建立数值试验数据库,同时采用响应面方法构建超低比转数离心泵叶轮多工况多目标水力优化的近似模型。通过对其近似模型进行内部优化,得到其最优解。
[0038] 当内循环结束后,提取最优解信息进行外循环高精度分析,并将该分析结果添加到数值试验数据库中,重新拟合各项系数,构建新的超低比转数离心泵叶轮多工况多目标水力优化的近似模型,直至满足收敛准则得到超低比转数离心泵叶轮的整体最优解集。
[0039] 所述的收敛标准是通过外循环的前后两次高精度分析目标函数的差值≤ε,其中-3ε为收敛精度,ε=10 。
[0040] 解出的叶轮整体优化的全局最优解如表2所示。
[0041] 表2 优化后的叶轮主要几何参数值
[0042]
[0043] 超低比转数离心泵叶轮优化前后的数值计算结果为:0.8Qd、Qd、1.2Qd三个工况下的加权平均效率从32.1%提高到33.4%,三个工况下叶轮内的加权平均径向力从0.33N降低到0.2N,其中0.8Qd、1.0Qd和1.2Qd工况的目标权重因子由超传递近似法确定,分别为:0.286、0.428、0.286。
[0044] (4)根据优化得到的整体最优解集对超低比转数离心泵叶轮进行水力设计,得到其水力模型。
[0045] 所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈