首页 / 专利库 / 制动系统 / 制动系统 / 制动助力器 / 汽车爆胎防追尾控制方法及控制装置

汽车爆胎防追尾控制方法及控制装置

阅读:76发布:2021-08-09

专利汇可以提供汽车爆胎防追尾控制方法及控制装置专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种 汽车 爆胎防追尾控制方法及控制装置,包括如下步骤:后方车辆探测器每隔一定的时间间隔检测一次自车与后方车辆之间的相对车速、自车与后方车辆之间的相对车距L及后车相对于自车的 位置 坐标值;速度 传感器 测量自车的车速,横摆 角 速度 速度传感器测量自车的 横摆角速度 速度,胎压传感器检测胎压; 控制器 依次计算针对不同后方车辆可以执行的最大减速度;控制器按照最大减速控制速度通过汽车动 力 系统和 制动 产生装置控制汽车在最大减速控制速度内进行减速。本发明可以在自车爆胎时,根据自车的车速、后车车速及自车与后方车辆之间的车间距离控制自车制动减速。,下面是汽车爆胎防追尾控制方法及控制装置专利的具体信息内容。

1.一种汽车爆胎防追尾控制方法,其特征是,包括如下步骤:
(1-1)在控制器内设定行驶时的自车与后方车辆之间的纵向探测范围M、自车与后方车辆之间的横向探测范围S、自车与后方车辆停止后的安全距离dsafety、后方驾驶员预设反应时间treaction、后方车辆预设减速度aobj、自车行驶轨迹的曲率半径限值r和控制器中设有m个减速度值a1,a2,a3,…,am;|a1|,|a2|,|a3|,…,|am|依次减少,am=0;
(1-2)后方车辆探测器每隔一定的时间间隔检测一次自车与后方车辆之间的相对车速、自车与后方车辆之间的相对车距Li,(i=1,…,n);及后车相对于自车的位置坐标值(xi,yi),(i=1,…,n);n为后方车辆探测器检测到的后方车辆的总数目;速度传感器测量自车的车速,横摆速度速度传感器测量自车的横摆角速度速度,胎压传感器检测胎压;
(1-3)当自车行驶轨迹为直线时,如果|xi|≤M且|yi|≤S,则控制器做出后方车辆在自车的轨迹内的判断;
(1-4)当自车行驶轨迹为曲线时,控制器根据公式R=vego/yaw_rate计算自车行驶轨迹的曲率半径
其中,R为自车行驶轨迹的曲率半径,vego为自车车速,yaw_rate为横摆角速度速度传感器测量的横摆角速度速度;
当|R|≥r时,控制器采用公式 对后车坐标
进行变换;
其中,(xafter)i为变换后的横坐标、(yafter)i为变换后的纵坐标、xi为变换前的横坐标、yi为变换前的纵坐标;
当|(xafter)i|≤M且|(yafter)i|≤S时,则控制器做出后方车辆在自车的轨迹内的判断;
(1-5)当后方车辆在自车的轨迹内时,控制器根据检测的自车车速Vego、自车与后方车辆停止后的安全距离dsafety、设定的后方车辆预设减速度aobj、后方驾驶员预设反应时间treaetion和后方车辆车速vobj依次计算针对不同后方车辆可以执行的最大减速度(aavoid)i,(aavoid)i<0;(1-6)控制器利用公式
(aavoid)max=max((aavoid)1,(aavoid)2,…,(aavoid)n)计算制动控制可以执行的最大减速度(aavoid)max,(aavoid)max<0;
(1-7)控制器通过胎压传感器的检测数据判断得知发生爆胎时,控制器通过汽车动系统和制动产生装置控制汽车采用小于等于最大减速度的减速度减速。
2.根据权利要求1所述的汽车爆胎防追尾控制方法,其特征是,所述步骤(1-5)中的后方车辆的最大减速度的计算过程包括如下步骤:
(2-1)
控制器利用公式 计算后车停止时间tobjstop和自车停止时间tegostop,j=
1;
(2-2)当tobjstop≥tegostop时,则控制器根据公式
xafter-dsafety>dobj-dego无碰撞
xafter-dsafety≤dobj-dego有碰撞风险
计算碰撞可能,其中dobj为自车在treaction内的停车距离,dego为后车在treaction内的停车距离;
(2-3)当tobjstop<te.qostop时,利用公式
计算自车在后方车辆驾驶员反应时刻t1的车速vego@t1,后车在t1时刻的车速vobj@t1,当vego@t1>vobj@t1时,控制器判断无碰撞危险;
当vego@t1≤vobj@t1时,利用下列公式计算碰撞可能:
vego@t1+ajts=vobj@t1+aobjts
xafter-dsafety>dobj-dego无碰撞风险
xafter-dsafety≤dobj-dego有碰撞风险
Vego为自车车速,vobj为后方车辆车速,ts为计算得到的t1时刻后两车车速相同的时刻距t0时刻的时间,t0为当前时刻;
(2-4)当确认以aj控制自车进行制动时该后方车辆对自车无碰撞风险,则存储aj为针对该后方车辆的自车可以采取的最大减速度(aavoid)i;
(2-5)当确认以aj控制自车进行制动时该后方车辆对自车存在碰撞风险并且j<m时,则j值增加1,重复(2-1)至(2-4)的计算过程。
3.根据权利要求1所述的汽车爆胎防追尾控制方法,其特征是,步骤(1-1)中所述的自车与后方车辆之间的横向探测范围S≤2米。
4.根据权利要求1所述的汽车爆胎防追尾控制方法,其特征是,步骤(1-1)中所述的自车与后方车辆之间的纵向探测范围M为50至200米。
5.根据权利要求1所述的汽车爆胎防追尾控制方法,其特征是,步骤(1-2)中所述的时间间隔为1/10秒至1/1000秒。
6.根据权利要求1或2或3或4所述的汽车爆胎防追尾控制方法,其特征是,步骤(1-1)中的安全距离dsafety为1米至4米。
7.一种用于权利要求1所述的控制方法中的控制装置,所述汽车上设有横摆角速度传感器(1)和车速传感器(2),其特征是,包括分别设于各个轮胎内的胎压检测模(3),设于车厢内的控制器(4)和用于接收胎压信号的第一无线收发模块(5),设于车厢后部的后方车辆探测器(6);胎压检测模块包括微处理器(7)、第二无线收发模块(8)和传感器模块(9),微处理器分别与第二无线收发模块和传感器模块电连接;所述传感器模块包括温度传感器、压力传感器湿度传感器;所述控制器与胎压检测模块、第一无线收发模块、车速传感器、后方车辆探测器、横摆角速度传感器、制动产生装置和汽车动力系统电连接。
8.根据权利要求7所述的控制装置,其特征是,所述后方车辆探测器为至少一个毫米波雷达,或至少一个车载摄像头,或至少一个激光雷达,或至少一个卫星定位仪。
9.根据权利要求7或8所述的控制装置,其特征是,制动产生装置包括真空助力器、前腔电磁和后腔电磁阀;前腔电磁阀和后腔电磁阀分别与控制器电连接。

说明书全文

汽车爆胎防追尾控制方法及控制装置

技术领域

[0001] 本发明涉及汽车安全技术领域,尤其是涉及一种在车辆爆胎后,能够根据自车与后方车辆之间的相对车速、相对距离及自车横摆速度的变化而实时控制自车的减速度,有效防止后方车辆追尾的汽车爆胎防追尾控控制方法及控制装置。

背景技术

[0002] 随着电子传感技术与车辆动态控制技术的发展,各种主动安全系统正在被广泛的开发。各类主动安全系统按照是否干预驾驶可以分为两类功能: 预警类功能与控制类功能。其中,拥有控制类功能的主动安全系统中较为常见的有车辆爆胎监测及控制系统(BMCS)。
[0003] 车辆爆胎监测及控制系统通过安装在每个轮胎上的胎压传感器对胎压进行监视。如果确定发生爆胎,则系统会发出指令要求制动系统主动介入制动,在轮胎完全失去气压之前将车辆达到静止状态。
[0004] 然而,上述的车辆爆胎监测及控制系统在不清楚车辆后方的道路状况下,要求制动系统执行了较大的制动减速度,容易造成后方车辆对自车的追尾事故。
[0005] 中国专利授权公开号CN201646689U,授权公开日2010年11月24日公开了一种爆胎制动装置的中断控制系统,所述的中断控制系统包括中央处理器以及检测附近车辆信息的防撞雷达,防撞雷达与中央处理器连接,所述的中央处理器还与制动产生装置连接,中央处理器监测到制动产生装置的爆胎制动信号后,对防撞雷达发出触发信号,并根据防撞雷达反馈回来的附近车辆接近信息选择是否解除爆胎制动。该实用新型可以在自车发生爆胎时根据自车车速判断是否解除制动以防止后方车辆追尾。该实用新型的缺点是,不能根据自车与后方车辆之间的相对车速、相对距离的变化而实时控制自车的减速度,制动过程中容易造成后方车辆与自车的追尾。
[0006] 中国专利授权公开号CN201208956Y,授权公开日2009年3月18日公开了一种爆胎防追尾的控制系统,所述的该控制系统包括主控装置ECU,该主控装置ECU前端并列连接胎压监测模轮速传感器,该主控装置ECU后端连接制动产生装置。该实用新型可以在自车发生爆胎时根据自车车速判断是否解除制动以防止后方车辆追尾。缺点是,不能根据自车与后方车辆之间的相对车速、相对距离的变化而实时控制自车的减速度,制动过程中容易造成后方车辆与自车的追尾。

发明内容

[0007] 本发明是为了克服现有技术中的车辆爆胎控制装置不能根据自车与后方车辆之间的相对车速、相对距离的变化而实时控制自车的减速度,制动过程中容易造成后方车辆与自车的追尾的不足,提供了一种能够根据自车与后方车辆之间的相对车速、相对距离及自车横摆角速度的变化而实时控制自车的减速度,有效防止后方车辆追尾的汽车爆胎防追尾控制方法及控制装置。
[0008] 为了实现上述目的,本发明采用以下技术方案:
[0009] 一种汽车爆胎防追尾控制方法,包括如下步骤:
[0010] (1-1)在控制器内设定行驶时的自车与后方车辆之间的纵向探测范围M、自车与后方车辆之间的横向探测范围S、自车与后方车辆停止后的安全距离dsafety、后方驾驶员预设反应时间treaction、后方车辆预设减速度aobj、自车行驶轨迹的曲率半径限值r和控制器中设有m个减速度值a1,a2,a3,…,am;|a1|,|a2|,|a3|,…,|am|依次减少,am=0;
[0011] (1-2)后方车辆探测器每隔一定的时间间隔检测一次自车与后方车辆之间的相对车速、自车与后方车辆之间的相对车距Li,(i=1,…,n);及后车相对于自车的位置坐标值(xi,yi),(i=1,…,n);n为后方车辆探测器检测到的后方车辆的总数目;速度传感器测量自车的车速,横摆角速度速度传感器测量自车的横摆角速度速度,胎压传感器检测胎压;
[0012] 自车行驶轨迹的坐标系以将自车左右平均切分的第一铅垂面与平面的交线为横坐标(x坐标),以与第一铅垂面相垂直的第二铅垂面与水平面的交线为纵坐标(y坐标), 第二铅垂面与自车尾部所在的铅垂面重合。
[0013] (1-3)当自车行驶轨迹为直线时,如果| xi |≤M且| y i |≤S,则控制器做出后方车辆在自车的轨迹内的判断;
[0014] 如果,后方车辆不在自车的行驶轨迹范围内,如在相邻车道内或其他更远的车道内,则不会有对自车产生追尾后碰的危险。
[0015] (1-4)当自车行驶轨迹为曲线时,控制器根据公式R=vego/yaw_rate计算自车行驶轨迹的曲率半径
[0016] 其中,R为自车行驶轨迹的曲率半径,vego为自车车速,yaw_rate为横摆角速度速度传感器测量的横摆角速度速度;
[0017] 当|R|≥r时,控制器采用公式 ,对后车坐标进行变换;
[0018] 其中,(xafter)i为变换后的横坐标、(yafter)i为变换后的纵坐标、xi为变换前的横坐标、yi为变换前的纵坐标;
[0019] 当|(xafter)i |≤M且|(yafter)i |≤S时,则控制器做出后方车辆在自车的轨迹内的判断;
[0020] (1-5)当后方车辆在自车的轨迹内时,控制器根据检测的自车车速Vego、自车与后方车辆停止后的安全距离dsafety、设定的后方车辆预设减速度aobj、后方驾驶员预设反应时间treaction和后方车辆车速vobj依次计算针对不同后方车辆可以执行的最大减速度(aavoid)i,(aavoid)i<0;(1-6)控制器利用公式
[0021]
[0022] 计算制动控制可以执行的最大减速度(aavoid)max,(aavoid)max<0;
[0023] (1-7)控制器通过胎压传感器的检测数据判断得知发生爆胎时,控制器通过汽车动系统和制动产生装置控制汽车采用小于等于最大减速度的减速度减速。
[0024] 后方车辆探测器实时对自车后方车辆进行监测,如果爆胎发生时后方车辆跟车过近,则制动控制可以执行的最大减速度为0米/秒²,以防止后方车辆对自车追尾碰撞的发生。
[0025] 现有技术的车辆爆胎控制装置在没有安装后方车辆探测器的情况下,无法对车辆后方的道路状况进行监视,所以当爆胎发生时,控制器只能使用固定的制动减速度进行减速,容易造成后方车辆对自车的追尾事故的发生。
[0026] 作为优选,所述步骤(1-5)中的后方车辆的最大减速度的计算过程包括如下步骤:
[0027] (2-1)
[0028] 控制器利用公式 计算后车停止时间tobjstop和自车停止时间tegostop,j=1;
[0029] (2-2)当tobjstop≥tegostop时,则控制器根据公式
[0030] 计算碰撞可能,其中dobj为自车在treaction内的停车距离,dego为后车在treaction内的停车距离;
[0031] (2-3)当tobjstop<tegostop时,利用公式 计算自车在后方车辆驾驶员反应时刻t1的车速vego@t1,后车在t1时刻的车速vobj@t1,[0032] 当vego@t1>vob@t1时,控制器判断无碰撞危险;
[0033] 当vego@t1≤vob@t1时,利用下列公式计算碰撞可能:
[0034]
[0035] Vego为自车车速,vobj为后方车辆车速,ts为计算得到的t1时刻后两车车速相同的时刻距t0时刻的时间,t0为当前时刻;
[0036] (2-4)当确认以aj控制自车进行制动时该后方车辆对自车无碰撞险,则存储aj为针对该后方车辆的自车可以采取的最大减速度(aavoid) i;
[0037] (2-5)当确认以aj控制自车进行制动时该后方车辆对自车存在碰撞风险并且j
[0038] 分别计算各个减速度aj控制自车进行制动时,后方车辆对自车无碰撞风险,将没有碰撞危险的减速度aj存储为针对该后方车辆的自车可以采取的最大减速度。
[0039] 作为优选,步骤(1-1)中所述的自车与后方车辆之间的横向探测范围S≤2米。
[0040] 作为优选,步骤(1-1)中所述的自车与后方车辆之间的纵向探测范围M 为50米至200。
[0041] 作为优选,步骤(1-2)中所述的时间间隔为1/10秒至1/1000秒。
[0042] 作为优选,步骤(1-1)中的安全距离dsafety为1米至4米。
[0043] 一种汽车爆胎防追尾控制装置,所述汽车上设有横摆角速度传感器和车速传感器,包括分别设于各个轮胎内的胎压检测模块,设于车厢内的控制器和用于接收胎压信号的第一无线收发模块,设于车厢后部的后方车辆探测器;胎压检测模块包括微处理器、第二无线收发模块和传感器模块,微处理器分别与第二无线收发模块和传感器模块电连接;所述传感器模块包括温度传感器、压力传感器湿度传感器;所述控制器与胎压检测模块、第一无线收发模块、车速传感器、后方车辆探测器、横摆角速度传感器、制动产生装置和汽车动力系统电连接。
[0044] 车速传感器、后方车辆探测器、横摆角速度速度传感器和胎压检测模块在汽车行驶及静止时,分别实时检测自车的车速、后方车辆情况、自车行驶轨迹的横摆角速度速度及胎压状况。
[0045] 在控制器内设有行驶时的自车与后方车辆之间的纵向探测范围M及自车与后方车辆之间的横向探测范围S、自车与后方车辆停止后的安全距离dsafety、后方驾驶员反应时间treaction、后方车辆预设减速度aobj和自车行驶轨迹的曲率半径限值r;
[0046] 控制器利用dsafety、treaction和aobj分别计算出自车制动时对后方各个车辆的最大减速度,并取各个最大减速度的最大值作为制动控制可以执行的最大减速度;
[0047] 控制器通过胎压传感器的检测数据判断得知发生爆胎时,控制器通过汽车动力系统和制动产生装置控制汽车采用小于等于最大减速度的减速度减速。
[0048] 因此,本发明的汽车爆胎防追尾控制装置可以在自车爆胎时,根据自车与后方车辆之间的相对车速、相对距离及自车的横摆角速度速度的变化而实时控制自车的减速度,有效防止后方车辆对自车追尾。
[0049] 而现有技术中的防追尾控制装置只能根据自车车速控制是否开始减速,对于减速的范围则无法进行控制。
[0050] 作为优选,所述后方车辆探测器为至少一个毫米波雷达,或至少一个车载摄像头,或至少一个激光雷达,或至少一个卫星定位仪。
[0051] 毫米波雷达可以发现位于自车后方的一定夹角范围内的车辆,可以分别获得自车与后方车辆之间的相对车速、行驶过程中自车与后方车辆之间的相对车距L及自车的行驶轨迹坐标值(xi,yi)。
[0052] 卫星定位仪完成自车轨迹的扑捉及与后方车辆安装的卫星定位仪一起确定自车与后方车辆之间的相对车速。
[0053] 温度传感器和压力传感器在汽车行驶或静止的状态下实时监测轮胎的压力、温度,并将检测到的数据通过第二无线收发模块发射出去,控制器根据接收到的数据判断汽车是否爆胎。
[0054] 作为优选,制动产生装置包括真空助力器、前腔电磁和后腔电磁阀;前腔电磁阀和后腔电磁阀分别与控制器电连接。
[0055] 因此,本发明具有如下有益效果:(1)本发明的汽车爆胎防追尾控制装置及控制方法可以在自车爆胎时,根据自车的车速、后车车速及自车与后方车辆之间的车间距离和自车横摆角速度控制自车制动减速。附图说明
[0056] 图1是本发明的一种原理框图
[0057] 图2是本发明的一种流程图
[0058] 图中:横摆角速度速度传感器1、车速传感器2、胎压检测模块3、控制器4、第一无线收发模块5、后方车辆探测器6、微处理器7、第二无线收发模块8、传感器模块9。

具体实施方式

[0059] 下面结合附图和具体实施方式对本发明做进一步的描述。
[0060] 如图1所示的实施例是一种汽车爆胎防追尾控制装置,所述汽车上设有横摆角速度传感器1和车速传感器2,包括分别设于各个轮胎内的胎压检测模块3,设于车厢内的控制器4和用于接收胎压信号的第一无线收发模块5,设于车厢后部的后方车辆探测器6;胎压检测模块包括微处理器7、第二无线收发模块8和传感器模块9,微处理器分别与第二无线收发模块和传感器模块电连接;所述控制器与胎压检测模块、第一无线收发模块、车速传感器、后方车辆探测器、横摆角速度传感器、制动产生装置和汽车动力系统电连接。
[0061] 后方车辆探测器为一个毫米波雷达。传感器模块包括温度传感器、压力传感器和湿度传感器。制动产生装置包括真空助力器、前腔电磁阀和后腔电磁阀;前腔电磁阀和后腔电磁阀分别与控制器电连接。
[0062] 如图2所示,一种汽车爆胎防追尾控制方法,包括如下步骤:
[0063] 步骤100,在控制器内设定行驶时的自车与后方车辆之间的纵向探测范围M 为80米、自车横向探测范围S为1.5米、自车与后方车辆停止后的安全距离dsafety为1米、后方驾驶员反应时间treaction为1秒和自车行驶轨迹的曲率半径限值r为500米,5个减速度值2 2 2 2 2
a1=-9米/秒 ,a2=-7米/秒 ,a3=-6米/秒 ,a4=-5米/秒 ,a5=-4米/秒 ,a6= -3米/秒
2 2
, a7= 0米/秒 ;
[0064] 步骤200,假设本实施例中检测到的后方车辆探测器检测到的后方车辆的总数目S=10;后方车辆探测器每隔1/30秒检测一次自车与后方车辆之间的相对车速、自车与后方车辆之间的相对车距Li, (i=1,…,n)及后车相对于自车的位置坐标值(xi,yi),(i=1,…,10);速度传感器测量自车的车速,横摆角速度速度传感器测量自车的横摆角速度速度,胎压传感器检测胎压;控制器根据检测到的各个数值进行计算;
[0065] 步骤300,当自车行驶轨迹为直线时,如果| xi |≤80米且| y i |≤1.5米,则控制器做出后方车辆在自车的轨迹内的判断;
[0066] 步骤400,当自车行驶轨迹为曲线时,控制器根据公式R=vego/yaw_rate计算自车行驶轨迹的曲率半径;
[0067] 其中,R为行驶轨迹的曲率半径,vego为自车车速,yaw_rate为横摆角速度速度传感器测量的横摆角速度速度,可以使用低通滤波器对传感器的原始横摆角速度速度进行滤波;
[0068] 当|R|≥500米时,控制器采用公式 ,对后车坐标进行变换;
[0069] 其中,(xafter)i为变换后的横坐标、(yafter)i为变换后的纵坐标、xi为变换前的横坐标、yi为变换前的纵坐标;
[0070] 当|(xafter)i |≤80米且|(yafter)i |≤1.5米时,则控制器做出后方车辆在自车的轨迹内的判断;
[0071] 步骤500,当后方车辆在自车的轨迹内时,控制器根据检测的自车车速Vego、自车与后方车辆停止后的安全距离dsafety、设定的后方车辆预设减速度aobj、后方驾驶员预设反应时间treaction和后方车辆车速vobj依次计算针对不同后方车辆可以执行的最大减速度(aavoid)i,(aavoid)i<0;
[0072] 步骤500具体包括如下步骤:
[0073] 步骤510,
[0074] 控制器利用公式 计算后车停止时间tobjstop和自车停止时间tegostop,j=1;
[0075] 步骤520,
[0076] 当tobjstop≥tegostop时,则控制器根据公式
[0077] 计算碰撞可能,其中dobj为自车在treaction内的停车距离,dego为后车在treaction内的停车距离;
[0078] 步骤530,
[0079] 当tobjstop<tegostop时,利用公式 计算自车在后方车辆驾驶员反应时刻t1的车速vego@t1,后车在t1时刻的车速vobj@t1,[0080] 当vego@t1>vob@t1时,控制器判断无碰撞危险;
[0081] 当vego@t1≤vob@t1时,利用下列公式计算碰撞可能:
[0082]
[0083] Vego为自车车速,vobj为后方车辆车速,ts为计算得到的t1时刻后两车车速相同的时刻距t0时刻的时间,t0为当前时刻;
[0084] 步骤540,
[0085] 当确认以aj控制自车进行制动时该后方车辆对自车无碰撞风险,则存储aj为针对该后方车辆的自车可以采取的最大减速度(aavoid) i;
[0086] 步骤550,
[0087] 当确认以aj控制自车进行制动时该后方车辆对自车存在碰撞风险并且j
[0088] 对每个后方车辆均进行步骤510至步骤550的计算,分别得到针对各个后方车辆的自车可以采取的最大减速度(aavoid)1,(aavoid)2,…, (aavoid)n;
[0089] 例如:第一辆后方车辆没有碰撞危险的减速度值分别为a3=-6米/秒2,a4=-5米/2 2 2
秒 ,a5=-4米/秒 ,则(aavoid)1=-4米/秒 。
[0090] 第二辆后方车辆没有碰撞危险的减速度值分别为a4=-5米/秒2,a5=-4米/秒2,a6=2 2
-3米/秒 ,则(aavoid)2=-3米/秒 。
[0091] 步骤600,
[0092] 控制器利用公式
[0093]计算控制器制动控制的最大减速控制速度(aavoid)max;
[0094] 例如:10个后方车辆的最大减速度分别为:-9米/秒2,-8米/秒2,-8米/秒2,-72 2 2 2 2 2 2
米/秒 ,-6米/秒 ,-6米/秒 ,-5米/秒 ,-4米/秒 ,-3米/秒 ,-3米/秒 ;
[0095] 则(aavoid)max=-3米/秒2。
[0096] 步骤700,
[0097] 控制器通过胎压传感器的检测数据判断得知发生爆胎时,控制器通过汽车动力系统和制动产生装置控制汽车采用小于等于最大减速度的减速度减速。
[0098] 当至少一个胎压传感器检测的胎压突然急剧降低时,控制器做出发生爆胎的判断。
[0099] 应理解,本实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
相关专利内容
标题 发布/更新时间 阅读量
制动助力器 2020-05-11 1007
用于紧急制动的助力器 2020-05-15 777
制动助力器 2020-05-11 636
制动助力器管线 2020-05-13 159
气动制动助力器 2020-05-13 83
制动助力器 2020-05-11 38
制动助力器组件 2020-05-14 253
制动助力器 2020-05-11 507
一种制动助力器 2020-05-14 879
电子制动助力器 2020-05-12 885
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈