首页 / 专利库 / 医疗设备 / 支点效应 / 用于微创机器人外科处理系统的力评估

用于微创机器人外科处理系统的评估

阅读:161发布:2020-05-12

专利汇可以提供用于微创机器人外科处理系统的评估专利检索,专利查询,专利分析的服务。并且一种操作微创医疗系统的方法,系统包括:操纵器,具有装备有6 自由度 的 力 /转矩 传感器 的效应器单元;和微创器械,具有:被安装到效应器单元的第一端;第二端,被 定位 为超出了限制器械运动的外 支点 ;和器械轴;方法包括:确定器械相对于外支点的 位置 ,包括确定初始参考距离矢量其中,确定初始参考距离矢量包括:沿传感器参考系(X,Y,Z)的轴线(X,Y)两者移动微创器械,直到沿轴线(X,Y)的作用力低于给定 阈值 ;以及利用杠杆原理确定外支点沿器械轴线(Z)的位置,包括:枢转器械直到达到足够的 接触 力;测量对应于接触力的力矩矢量模 块 和力矢量模块;以及通过将力矩矢量模块除以力矢量模块来计算外支点沿器械轴线(Z)的位置。,下面是用于微创机器人外科处理系统的评估专利的具体信息内容。

1.一种操作微创医疗系统的方法,该系统包括:操纵器(10),该操纵器具有装备有6自由度/转矩传感器(30)的效应器单元(12),其具有彼此垂直的三个轴线的传感器参考系(X,Y,Z);和
微创器械(14),该微创器械具有:被安装到所述效应器单元的第一端(16);第二端(20),该第二端(20)被定位为超出了限制所述器械运动的外支点(23);和器械轴(18),其具有与所述传感器参考系(X,Y,Z)的器械轴线(Z)共线的纵轴;
所述方法包括:
确定所述器械相对于所述外支点(23)的位置,包括确定从所述传感器参考系(X,Y,Z)的原点到外支点(23)的初始参考距离矢量
其中,确定初始参考距离矢量 包括:
沿所述传感器参考系(X,Y,Z)的轴线(X,Y)两者移动所述微创器械(14),直到沿轴线(X,Y)的作用力低于给定阈值,其中所述轴线(X,Y)分别垂直于所述器械轴线(Z);以及利用杠杆原理确定外支点(23)沿所述器械轴线(Z)的位置,具体地说包括:
枢转器械(14)直到达到足够的接触力;
测量对应于所述接触力的力矩矢量模和力矢量模块;以及
通过将所述力矩矢量模块除以所述力矢量模块来计算外支点(23)沿所述器械轴线(Z)的位置。
2.如权利要求1所述的方法,其中,利用杠杆原理确定外支点(23)沿所述器械轴线(Z)的位置包括:
在第一方向枢转器械(14)直到达到足够的第一接触力;
测量对应于所述第一接触力的第一力矩矢量模块和第一力矢量模块;以及
通过将第一所述力矩矢量模块除以所述第一力矢量模块来计算外支点(23)沿所述器械轴线(Z)的第一位置;
在第二方向枢转器械(14)直到达到足够的第二接触力,其中,所述第二方向是与所述第一方向相反的方向;
测量对应于所述第二接触力的第二力矩矢量模块和第二力矢量模块;以及
通过将第二所述力矩矢量模块除以所述第二力矢量模块来计算外支点(23)沿所述器械轴线(Z)的第二位置;以及
使用计算的所述第一位置和计算的所述第二位置的平均值设定所述初始参考距离矢量
3.如权利要求1或2所述的方法,其中,基于确定的初始参考距离矢量 所述器械的全部运动均相对于所述外支点(23)给出。
4.如权利要求1或2所述的方法,其中,所述效应器单元装备有6自由度加速度计,且所述方法还包括步骤:
通过6自由度加速度计测量施加到所述6自由度力/转矩传感器上的重力载荷和/或动载荷;和
在所述被测量的力和所述被测量的转矩中补偿所述重力载荷和/或动载荷。
5.如权利要求3所述的方法,其中,确定所述器械相对于支点(23)的位置是基于所述距离矢量 和基于使用操纵器的运动信息作出的连续更新。
6.如权利要求1-5中任一项所述的方法,其中,所述给定阈值具有大约0.3N的值和/或所述足够的接触力具有大约3N的值。
7.如权利要求1至6中的任一项所述的方法,还包括步骤:
对由所述6自由度力/转矩传感器测量的力和转矩数据应用线性卡尔曼滤波器
8.如权利要求1至7中的任一项所述的方法,还包括:
通过从所述传感器参考系(X,Y,Z)到固定参考系的坐标变换,计算外支点(23)相对于固定参考系的位置。
9.一种微创医疗系统,该系统包括操纵器(10),该操纵器具有装备有6自由度的力/转矩传感器(30)的效应器单元(12)且被构造用于保持微创器械(14),其中,所述6自由度的力/转矩传感器(30)具有彼此垂直的三个轴线的传感器参考系(X,Y,Z),当所述微创器械(14)被所述效应器单元(12)保持时,该微创器械具有:被安装到所述效应器单元的第一端(16);第二端(20),第二端(20)被定位为超出了限制所述器械运动的外支点(23);和器械轴(18),其具有与所述传感器参考系(X,Y,Z)的器械轴线(Z)共线的纵轴;
所述系统包括可编程处理设备,其编程为:
确定所述器械相对于所述外支点的位置,包括确定从所述传感器参考系(X,Y,Z)的原点到外支点(23)的初始参考距离矢量 从而确定初始参考距离矢量
其包括:
沿所述传感器参考系(X,Y,Z)的轴线(X,Y)两者移动所述微创器械(14),直到沿轴线(X,Y)的作用力低于给定阈值,其中所述轴线(X,Y)分别垂直于所述器械轴线(Z);以及利用杠杆原理确定外支点(23)沿所述器械轴线(Z)的位置,具体地说包括:
枢转器械(14)直到达到足够的接触力;
测量对应于所述接触力的力矩矢量模块和力矢量模块;以及
通过将所述力矩矢量模块除以所述力矢量模块来计算外支点(23)沿所述器械轴线(Z)的位置。
10.如权利要求9所述的系统,其中,利用杠杆原理确定外支点(23)沿所述器械轴线(Z)的位置包括:
在第一方向枢转器械(14)直到达到足够的第一接触力;
测量对应于所述第一接触力的第一力矩矢量模块和第一力矢量模块;以及
通过将第一所述力矩矢量模块除以所述第一力矢量模块来计算外支点(23)沿所述器械轴线(Z)的第一位置;
在第二方向枢转器械(14)直到达到足够的第二接触力,其中,所述第二方向是与所述第一方向相反的方向;
测量对应于所述第二接触力的第二力矩矢量模块和第二力矢量模块;以及
通过将第二所述力矩矢量模块除以所述第二力矢量模块来计算外支点(23)沿所述器械轴线(Z)的第二位置;以及
使用计算的所述第一位置和计算的所述第二位置的平均值设定所述初始参考距离矢量
11.如权利要求9或10所述的方法,其中,所述可编程处理设备还可编程为;基于确定的初始参考距离矢量 使所述器械的全部运动均相对于所述外支点(23)给出。
12.如权利要求9、10或11所述的系统,其中,所述效应器单元装备有6自由度加速度计,且所述可编程处理设备还可编程为:
通过6自由度加速度计测量施加到所述6自由度力/转矩传感器上的重力载荷和/或动载荷;和
在所述被测量的力和所述被测量的转矩中补偿所述重力载荷和/或动载荷。
13.如权利要求10所述的系统,其中,所述可编程处理设备还可编程为:
确定所述器械相对于支点(23)的位置是基于所述距离矢量 和基于使用操纵器的运动信息作出的连续更新。
14.如权利要求9所述的系统,其中,所述可编程处理设备还可编程为:
通过从所述传感器参考系(X,Y,Z)到固定参考系的坐标变换,计算外支点(23)相对于固定参考系的位置。
15.一种用于微创医疗系统的计算机软件,该系统包括:可编程处理设备;操纵器(10),该操纵器具有装备有6自由度的力/转矩传感器(30)的效应器单元(12)且被构造用于保持微创器械(14),其中,所述6自由度的力/转矩传感器(30)具有彼此垂直的三个轴线的传感器参考系(X,Y,Z),当所述微创器械(14)被所述效应器单元(12)保持时,该微创器械具有:被安装到所述效应器单元的第一端(16);第二端(20),第二端(20)被定位为超出了限制所述器械运动的外支点(23);和器械轴(18),其具有与所述传感器参考系(X,Y,Z)的器械轴线(Z)共线的纵轴;
所述计算机软件包括编程代码,当在所述可编程处理设备上运行时,促使所述系统执行以下方法:
确定所述器械相对于所述外支点(23)的位置,包括确定从所述传感器参考系(X,Y,Z)的原点到外支点(23)的初始参考距离矢量
其中,确定初始参考距离矢量 包括:
沿所述传感器参考系(X,Y,Z)的轴线(X,Y)两者移动所述微创器械(14),直到沿轴线(X,Y)的作用力低于给定阈值,其中所述轴线(X,Y)分别垂直于所述器械轴线(Z);以及利用杠杆原理确定外支点(23)沿所述器械轴线(Z)的位置,具体地说包括:
枢转器械(14)直到达到足够的接触力;
测量对应于所述接触力的力矩矢量模块和力矢量模块;以及
通过将所述力矩矢量模块除以所述力矢量模块来计算外支点(23)沿所述器械轴线(Z)的位置。

说明书全文

用于微创机器人外科处理系统的评估

[0001] 本申请国际申请日为2007年10月25日的、题为“用于微创机器人外科处理系统的力评估”的、申请号为200780040097.7的中国专利申请的分案申请。

技术领域

[0002] 本发明一般涉及微创医疗过程的领域,包括外科和诊断过程。更具体地,本发明涉及一种用于力评估的方法和系统,能够确定施加给患者的力,特别是通过微创器械的末端施加的力,而且在器械进入患者身体的进入口(access port)层面处。
[0003] 引言
[0004] 已知的是,微创介入术有利于具有减小在诊断或外科处理过程期间被损坏的外部组织的量。这使得患者的恢复时间变短、痛苦变少、有害的副作用变少和在住院的费用降低。现在,在一般的外科、泌尿学科、妇科和心脏病学科专业中,通过微创技术实施的介入术的量在增加,如腹腔镜技术。
[0005] 一般来说,手动微创技术——特别是腹腔镜术——对实施操作的外科医生提出了严苛的要求,。外科医生以不舒服且令人疲惫的姿势操作,观察区域有限,灵活性差且触觉感知差。除了这些问题还要加上外科医生每天要连续实施多个介入术,每个介入术例如持续30分钟到几个小时。尽管固有的困难,但是由于人口平均年龄的增加和医疗领域中的成本压力,使得微创处理的区域都预计在未来进一步增加。
[0006] 例如在腹腔镜术中,外科医生的动作显然需要如同是在剖腹术中一样精确。在器械进入口(也叫套管针)处,即在患者身体的切口处,以减小到绕支点(枢转点)有四个自由度的运动灵活度来操作长轴器械也不会减轻他们的工作。由于所需的姿势通常令人疲惫且减小了对器械和组织之间的相互作用力的本已受限的感知,因此通常还引起复杂情况等。因此,外科医生的运动能力通常在20-30分钟后衰退,使得除此之外发生战抖、准确度丧失和触觉敏感性丧失,并最终对患者造成危险。因此,产生了新的计算机和/或机器人辅助技术,诸如微创机器人外科术(MIRS:Minimally Invasice Robotic Surgery)。这些技术意图改善介入术的效率、质量和安全。

背景技术

[0007] 考虑到以上问题,MIRS在过去的十年间已经得到了显著的发展。两个代表性的商用机器人系统是已知由加利福尼亚的桑尼维尔的Intuitive Surgical Inc.开发的商标为“DA VINCI”的系统和已知最初由加利福尼亚的Goleta的Computer Motion Inc.开发的商标为“ZEUS”的系统。已知名为“DAVINCI”的系统在Moll等的US 6,659,939、US 6,837,883和相同受让人的其它专利文献中可见。已知名为“ZEUS”的系统在Wang等的US 6,102,850、US 5,855,583、US 5,762,458、US 5,515,478和转让给加利福尼亚的Goleta的Computer Motion Inc.的其它专利文献中可见。
[0008] 这些远程操纵(teleoperated)的机器人系统允许直接从操作室或从远程地点控制外科介入术,一般仅利用二维或三维视觉反馈。在任一情况下,外科医生的令人疲惫的姿势都可以被消除。此外,这些系统倾向于例如在剖腹术中为外科医生提供在开放条件下工作的感觉并消除上述令人疲惫的姿势。
[0009] 当前可获得远程操纵的MIS系统一般不在操纵台上提供真实的触觉力反馈(以下称作力反馈),其中,外科医生利用该操纵台来指挥机器人(一个或多个)。由此,外科医生缺乏对施加到器官和组织上的力的真实触感。通过这样的系统,外科医生必须依赖视觉反馈和他的经验来限制器械与患者内在的环境的相互作用。在这方面,基于计算机可以将在手动MIS处理中熟练外科医生所能够做到的事情进行再现的构思,对计算机辅助无传感器的力反馈系统进行了研究工作。换句话说,计算机可以通过视觉观察到的变形来估算力。这样的尝试的例子可以参见:“Force feedback using vision”;Kennedy,C.and Desai,J.P.;International Conference on Advanced Robotics;Coimbra,Portugal,2003。但是这样的系统还未到达商业可用的状态。
[0010] 应意识到,准确的力反馈被视为关键特征,用来保证操作安全和改善利用机器辅助的微创系统实施的处理质量。因此,力反馈被认为是对远程介入术来说最重要的。
[0011] 在器械末端层面(level)处,力传感例如允许器官和组织的触诊,这在诊断过程和对识别例如动脉的关键区域时是非常需要的。其它可行的增强手段包括限制缝合处的拉伸力和根据介入术的类型和特定阶段限制施加在组织上的力。实践中,接触力可以通过增加运动范围、停止操纵器运动或增加在主装置上的力反馈而被保持在给定临界值以下。此外,例如当外科医生助手远离操作范围拿住器官时,力传感将允许利用不在内窥照相机视野内的器械来直观地工作。
[0012] 在进入口的层面处,力传感是有益的,以便监视并随后减小被器械在用于进入口的切口处施加的力。这些力是切口磨损的主要原因,切口磨损可导致腹压减小、套管针松脱并由于需要恢复状态而造成介入时间增加。这些有害的力主要由器械支点(枢转点)的不准确定位引起,这是由系统确定的,并且相对于患者切口来说由于腹内压力而改变,而且还由于(机器人)操纵器的定位不准确导致的操纵器运动漂移而改变。在手动介入术中,这些磨损力不那么显著,因为人可以相对于切口中的最佳枢转点而直接地调整手的运动。
[0013] 为了克服套管针松脱的问题,例如上述DA VINCI系统使用在器械插入/抽出滑动范围的末端处附连至操纵者腕部的套管针。该方案不能减小切口磨损的险且不能改善腹压的减小。
[0014] 为了克服在套管针层面处的后一问题,能够自动调整机器人操纵器在与患者腹部相切的平面上的支点的力反馈自适应控制器已被开发,并在论文“Achieving High Precision Laparoscopic Manipulation Through Adaptive Force Control”;Krupa,A.Morel,G.De Mathellin M.;Proceedings of the 2002 IEEE Intern.Conference on Robotics and Automation;Washington D.C.,May 2002.中有所描述。在这种方法中,在机器人的端部效应器(end-effector)上的传感器与力控制器结合被用于将施加到套管针上的侧向力明确地向0调整,该套管针与腹壁一起限定了支点。该方法和系统不能确定穿过套管针而插入的器械的末端处的力。替换地,在器械末端处的相互作用力被认为可以忽略。因此,该方法仅可以满意地用于与患者没有任何其它接触点的内窥镜操纵器。
[0015] 论 文“Development of actuated and sensor integrated forcepsfor minimally invasive robotic surgery”;B.Kübler,U.Seibold and
G.Hirzinger;Jahrestagung der Deutschen Gesellschaft für Computer-und
Roboterassistierte Chirurgie (CURAC),October 2004中描述了不同的手段。该论文描述了要被安装在微创器械的末端处的微型6自由度力/转矩传感器。该传感器确保被器械末端施加的力的准确传感和相应的力反馈。但是该构思具有多个缺点,包括制造和安装成本、缺乏高压灭菌器消毒方面的鲁棒性和当与电动器械组合时的EMI屏蔽问题。应理解,当使用这种手段时,必须在每个器械上设置专用传感器。类似的手段在论文“A miniature microsurgical instrument tip force sensor for enhanced force feedback during robot-assisted manipulation”;Berkelman,P.J.,Whitcomb,L.L.,Taylor,R.H.and Jensen,P.;IEEE Transactions on Robotics and Automation,October 2003中有描述。
[0016] 在 论 文“A New Robot for Force Control in Minimally InvasiveSurgerv”;Zemiti N.,Ortmaier T.et Morel G.;IEEE/RSJ International Conference on Intelligent Robots and Systems,Japan,2004中描述了不同的手段,其不需要在每个器械上都有末端安装的传感器。该论文描述了一种机器人和力传感器的布置,其可以通过放置在套管针上的传感器来测量远端器官-器械的相互作用。尽管如此,在该手段中,传感器没有安装在器械本身上并因此经历较低的微型化和消毒方面的限制,该方法仍需要经改进的套管针,其具有能够抵抗消毒处理的传感器设备。为MIS设计的另一手段在专利申请WO 2005/039835中有描述,其利用具有两个 触觉装置的主/从机构,该
触觉装置由萨诸塞的Woburn的SensAble Technologies开发。该系统包
括第一PHANTOM装置,该装置整合到从子系统(slave subsystem)中并与效应器子组件组合用作用于器械的操纵器,该子组件被构造为用于保持住微创器械——诸如抓紧器、解剖器、剪刀等——的非专(off the shelf)器械末端,并将其安装至第一PHANTOM装置。在操作中,微创器械具有安装到效应器子组件的第一端和定位在限制了器械运动的外支点以外的第二端。为了提供器械端目的处的力矢量(fx,fy,fz)和力矩(τz)的测量,设置有具有各种应变计的定制装置。此外,系统包括一个或多个具有应用程序的个人计算机,所述应用程序用于控制并服务从子系统的第一PHANTOM装置和主子系统的第二PHAMTOM装置。

发明内容

[0017] 技术问题
[0018] 本发明的目的是提供一种方法和系统,其允许以成本有效和高效且同时避免对安装在套管针和/或器械末端上的传感器的需求的方式来估算由器械末端施加的力。
[0019] 发明的概述
[0020] 为了达到该目的,本发明提出了一种力估算的方法和一种适于执行该方法的微创医疗系统——特别是腹腔镜系统。该系统包括操纵器,例如机器人操纵器,其具有装备有6个自由度(6自由度或6个轴线)的力/转矩传感器的效应器单元。该效应器单元被构造用于保持安装至其上的微创器械。在正常的使用中,器械的第一端被安装到效应器单元,且该器械的相反的第二端被定位为长陈丽限制器械运动的外支点(枢转点运动限制)。总体来说,支点定位在安装在患者身体中的切口处的进入口(例如,套管针)之内,例如在腹壁中。根据本发明,该方法包括以下步骤:
[0021] -确定器械相对于支点的位置(这在本文中尤其是指连续地更新器械的插入深度或传感器(它的参考系)和支点之间的距离);
[0022] -通过6自由度力/转矩传感器测量由器械第一端施加到效应器单元上的力和转矩;和
[0023] -通过叠加原理基于被确定的位置、被测量的力和被测量的转矩计算施加到器械第二端上的力的估算值。
[0024] 该系统包括可编程计算装置——诸如标准计算机、数据信号处理器(DSP)或现场可编译门阵列(FPGA),其被编程为如上所述地确定器械位置、对由6自由度力/转矩传感器测量作出的测量结果和计算力估算值进行处理。
[0025] 该方法和系统确保通过器械第二端——即通过诸如套管针这样的进入口侵入地被引入到患者体内的器械末端——施加到患者的组织和器官上的力的估算(这在本文中尤其是指对可被小的不准确度影响的值(一个或多个)的确定)。事实上,后一种力等于由本方法估算的反向力(反作用)的作用。应该理解,该方法进一步确保系统设计,其仅需要包括6自由度力/转矩传感器并安装在操纵器上——即在患者之外——的单个传感器单元。一般,传感器单元安装力传递部中,该力传递部位于用于效应器单元上的器械的连接接口和支承效应器单元的操纵器的最远联接部分/构件之间。换句话说,该6自由度力/转矩传感器被设置为用于对通过器械的第一端(=被安装端)施加到效应器上的力和转矩进行传感。
[0026] 因而,本发明克服了已经建立的“传感设备必须设置在器械末端和/或套管针的层面处以便获得施加在器械端部处的力的准确的力测量”这样的主流想法。其由此还消除要被设置在每个器械的末端和套管针上的昂贵的专用传感设备,这些设备可能经历严苛的小型化和消毒方面的限制。利用本发明和系统,小型化和消毒方面的限制能被克服,同时,可以获得在器械末端处的接触力的非常好的准确估算。
[0027] 应理解,本发明的方法/系统与手动操作的操纵器(器械定位支架)一起使用,或更通常的与机器人操纵器一起使用。该方法/系统使得力反馈具有经过辅助的实施和在远程操作的医疗系统——诸如微创机器人外科处理和诊断系统——中的自动安全特征。例如,在为外科医生准备的操作控制台的力反馈(触觉)主臂上的触觉传感以及用于限制由器械端部施加在患者器官(一个或多个)和组织(一个或多个)上的最大力的自动过程可以利用本发明的方法/系统获得的信息实施。
[0028] 在优选实施例中,该方法包括确定器械相对于支点的初始参考位置。在该实施例中,确定器械相对于支点的位置是基于被确定的初始参考位置和基于利用操纵器运动信息的连续更新。该有效处理通过机器人操纵器的直接运动利用诸如坐标信息这样的已知信息。
[0029] 优选地,该方法还包括通过叠加原理基于被确定的位置、被测量的力和被测量的转矩计算被器械施加在支点处的力的估算值的步骤,该力例如施加到套管针上。知道了在切口层面s处施加到患者组织上的力——施加在支点处的该力是反作用力(带负号)——允许支点坐标的自动(重新)调整,这些坐标例如被机器人控制器用于减小在切口层面处施加到患者组织上的应力载荷。此外,可以实施用于限制在进入口层面处施加的最大力的自动处理。
[0030] 优选地,效应器单元进一步装备有6自由度加速度计。在该情况下,该方法优选地进一步包括步骤:
[0031] -通过6自由度加速度计测量施加到该6自由度力/转矩传感器上的重力载荷和动载荷;和
[0032] -在被测量的力和被测量的转矩中补偿重力载荷和/或动载荷。
[0033] 这样的补偿允许改善在器械末端处和/或在支点层面处的需要的力估算值(一个或多个)的准确度。
[0034] 有利地,该方法进一步包括校准处理,包括额外的步骤:
[0035] -使效应器单元作出在操纵器的工作空间上分布的一套姿势,特别是取向工作空间;
[0036] -针对每个姿势记录所测量的力和所测量的转矩;和
[0037] -基于被记录的力和转矩测量结果确定力和转矩测量偏移。
[0038] 在进一步优选的实施例中,在设置有6自由度加速度计的情况下,校准处理还包括以下步骤:
[0039] -针对每个姿势记录测量的线加速度和测量的加速度;和
[0040] -基于被记录的线加速度和角加速度测量结果确定线加速度和角加速度测量偏移。
[0041] 校准处理允许确定在由传感器提供的测量信号中的(电)偏移和其它有用的系统参数,对于它们的了解可确保所需的力估算值(一个或多个)的准确度性的进一步改进。
[0042] 对于减小测量信号噪音来说,该方法有利地包括在计算被估算力之前对由6自由度力/转矩传感器测量的力和转矩数据应用线性卡尔曼滤波器(根据例如与非线性扩展卡尔曼公式相反的基本原理),或对被计算力估算值应用线性卡尔曼过滤器,即,在已经计算被估算力(一个或多个)之后。在许多可用的过滤器类型中,基本线性卡尔曼滤波器被认为是简单、可靠和快速的用于在测量成分中去除信号噪音的滤波器。
[0043] 在设置有加速度计的情况下,该方法优选地包括步骤:
[0044] -对由6自由度力/转矩传感器测量的力和转矩数据和对由6自由度加速度计测量的线加速度和角加速度数据应用第一线性卡尔曼滤波器;
[0045] -在应用第一线性卡尔曼滤波器之后补偿由于重力载荷和动载荷引起的干扰;
[0046] -对被补偿的力和转矩数据应用第二线性卡尔曼滤波器。
[0047] 用于每个力/转矩和加速度分量的每个卡尔曼滤波器会引起相同的滤波器固有响应延迟。在补偿后,力分量估算值中的噪音过大(由于加速度信号比力/转矩测量结果噪音更大)的情况下,干扰补偿后优选使用第二滤波器。第一滤波器减小在补偿期间噪音带来的伪象,而第二滤波器允许使补偿结果平滑。
[0048] 优选地,分别为第一卡尔曼滤波器和/或第二卡尔曼滤波器的卡尔曼滤波器是级联的并具有第一线性卡尔曼滤波器级和第二线性卡尔曼滤波器级,该第一线性卡尔曼滤波器级具有设定为较高值的过程噪音协方差参数,优选地在0.1和1之间,第二线性卡尔曼滤波器级具有设定为较低值的过程噪音协方差参数,优选地在0.001和0.1之间。与用于给定噪音减小能力的单级滤波器相比,在给定的测量噪音协方差下,级联的滤波器构造确保较低的总响应延迟。
[0049] 应理解,该系统适用于与无传感器的微创器械使用。其还有利地包括无传感器套管针,该套管针优选地具有基于磁性的空气且尤其不具有塑料帽。此外,系统有利地包括不具有优选地被制成为主要是塑料材料的气体旋塞,以便节省重量。
[0050] 该系统包括由可编程计算装置储存的软件程序,其包括当软件程序在可编程计算装置上运行时用于执行所述方法的上述任一实施例的所有步骤的程序代码。本发明还涉及软件编程产品,其包括储存在机器可读存储介质上的程序代码,当该代码在可编程计算装置上运行时或装载到可编程计算装置上时,可导致可编程计算装置执行所述方法的上述任一实施例的所有步骤。
[0051] 虽然递交的本专利申请主要涉及所附权利要求书中的限定的发明,本领域的技术人员应该理解,本专利申请涵盖对其它发明的限定的支持,这些其它发明例如可以在本申请中的修改的权利要求的主题要求权利或作为分案和/或继续申请的权利要求的主题要求权利。这样的主体可以通过在此披露的任意特征或特征的结合限定。附图说明
[0052] 本发明的其它细节和优点将参考附图通过以下的非限制性详细描述而显而易见,在附图中:
[0053] 图1是根据本发明优选实施例的用于微创医疗系统的机器人操纵器的透视图;
[0054] 图2是微创器械的局部透视图,其末端被插入到患者体内并且其相反端被安装到图1的机器人操纵器的效应器单元,该局部透视图用于显示支点力和末端力;
[0055] 图3是如图2所示的效应器单元的放大透视图,示出了设置在效应器单元上的力/转矩和加速度传感器的参考坐标系
[0056] 图4是级联线性卡尔曼滤波器的示意性方图;
[0057] 图5是用于执行根据本发明的方法的软件结构的示意性方块图;
[0058] 图6是图5中的结构的主要任务(FSS任务)的状态转变框图
[0059] 图7是在图6的APPLICATION_LOADS_EVALUATION状态期间要被循环执行的程序步骤的顺序流程图
[0060] 图8是在图6的APPLICATION_LOADS_EVALUATION状态期间要被循环执行的程序步骤的替换的顺序流程图。

具体实施方式

[0061] 系统部件和机械构造
[0062] 图1显示了根据本发明的微创医疗系统的主要机械部件。该系统包括机器人操纵器,一般由附图标记10指示。效应器单元12连接至操纵器10的凸缘。微创器械14的第一端16安装至效应器单元,如图1所示。器械14包括具有末端20的长轴18,该末端20形成器械14的第二端。在该末端20处,器械14一般包括特定工具,例如,抓取器、剪刀、钩子、凝结器(coagulator)等。机器人操纵器10本身通过PRP-RRR接头装置提供6个自由度(DOF),用于对效应器单元12定位和定向,该效应器单元12安装至最前旋转(R)接头,用于使微创器械14绕操纵器10的第六自由度旋转,该第六自由度与器械14的纵向轴轴线重合。应理解,机器人操纵器10提供6轴线定位和定向装置,其能够通过移动效应器单元12来重复外科医生的手的运动。
[0063] 图2显示了处于操作位置用于执行微创医疗处理的器械14,其安装至机器人操纵器10的效应器单元12。如图2中的虚线所指示,器械12的轴18部分地插入到患者的身体中,例如插入到患者的腹部中。器械可滑动地穿过进入口,在此之后被称作套管针22。器械14的第一端——即末端20定位为远离支点(也称作枢转点),该支点由十字形虚线在23处指示,并由插入到患者腹壁的切口中且固定到那里的套管针22限定。
[0064] 在正常使用中,支点是一种运动限制部,其允许围绕三个轴线的旋转(例如,两个正交的枢转方向和一个绕器械轴线的旋转,即,以下限定的SRF中的Z轴线)但仅允许器械14沿穿入轴线的平移(例如,套管针22的平移-在以下限定的SRF中的Z)。该支点由进入口——例如由套管针22——和/或患者的设置有切口的组织来限定,所述组织例如是患者的腹壁。图2示意性地示出了两个力 和 是施加到器械末端20上的力,并因
此代表与器械末端20施加在患者的内部器官或组织上的(相反)力(作用(actio))相对应的反作用(reactio)。 是施加到套管针22上的力,并因此代表与套管针22施加到
患者腹壁上的(相反)力(作用)相对应的反作用,该套管针通过器械轴18而受到对该套管针施加的载荷。以下将描述用于确定 和 二者的建议的方法。
[0065] 虽然没有在附图中示出,但是系统还包括操纵器控制器,即硬件,例如以主计算机的形式,用软件编程以用于操作一个或多个机器人操纵器10。此外,具有力反馈主臂(force reflection master arm)——即用于力反馈(force-feedback)的触觉接口——的用于远程操作的指挥控制台由操作者使用,例如外科医生,来经由操纵器控制器指挥机器人操纵器10。应该理解, 的估算值将被馈送到用于提供力反馈的触觉接口和馈送到用于安全功能的运动控制器。运动控制器还利用 的估算值用于安全功能和用于重新调整支点23的假定坐标(assumed coordinate)。
[0066] 图3显示了效应器单元12的放大视图,其被布置为用来以机械上刚性的方式支承器械14(在图3中未示出)的第一端16,并进一步设置有用于致动一些类型的器械的致动机构以及用于将器械14电连接至系统的信号和电力连接机构。效应器单元12包括刚性的主体24,该主体包括致动和连接机构以及插口26,在器械14(未示出)的第一端16处的适配器被刚性地连接至该插口。在其后端处,主体24包括连接凸缘28,主体通过该凸缘刚性地固定至具有12自由度(即,12轴线)力/转矩和加速度传感器30的传感板(sensing plate),其在此之后被称作F/TAS 30。F/TAS 30可被构造为单个传感器单元,其包括在此之后被称作F/T传感器的用于对三个正交轴线上的力和转矩进行传感的6自由度力/转矩传感器和用于对绕三个正交轴线的线加速度和角加速度进行传感的嵌入式6自由度加速度计。替换地,还可以使用带有适当关联且分体的6自由度加速度计的6自由度力/转矩传感器。F/TAS 30则被刚性地固定至机器人操纵器10,如图1所示。代替所述F/TAS30,可以使用仅包括6自由度F/T传感器的传感器单元(即,没有加速度计)。在后种情况下,加速度分量可以利用端部效应器(例如,效应器单元12)的位置坐标的二阶导数确定,该二阶导数例如通过利用关节位置(articulationposition)的直接运动学上的计算来获得。在此可以获得在后文描述的动载荷的补偿而不用加速度计。应该指出,还可以补偿重力的影响而不用加速度计,因为重力矢量是已知的并且可以确定附连至F/T传感器的有效载荷的重心
[0067] 图3还显示了F/TAS 30的卡迪尔参考坐标系,其具有三个正交的轴线X、Y和Z,在此之后被称作SRF(传感器参考坐标系)。应该理解,在SFT中,在F/TAS 30中的F/T传感器的6个自由度对应于分别用于X、Y和Z力分量的3个自由度以及分别绕X、Y和Z轴线的力矩(转矩值)的3个自由度。在分体的6自由度加速度计被附连至6自由度F/T传感器,用于提供F/TAS30的情况下,加速度计的参考坐标系优选地与F/T传感器的参考坐标系重合。否则,在随后描述的计算中应加入这两个笛卡尔坐标系之间的额外转换。在图1-3所示的实施例中,12轴线的F/TAS 30包括嵌入式6自由度加速度计。在图3所示的SRF中,加速度计的6个自由度对应于分别沿X、Y和Z轴线的线加速度分量和分别绕X、Y和Z轴线的角加速度分量。
[0068] 应该理解,效应器单元12刚性地固定至F/TAS 30的传感板,并优选地构造为使得被安装的器械14(见图2)的纵向(轴)轴线与F/TAS 30的SRF的一个轴线重合,优选地与Z轴线重合,如图3所示。否则,应该在随后描述的计算中加入额外的转换。
[0069] 主干扰源及其分析
[0070] 本部分给出了对图1-3所示系统的器械末端20处的力的期望估算有影响的主干扰源的概说。
[0071] 除了固有的F/T传感器干扰——诸如传感器偏移(sensor offset)、电噪音和温度漂移,与其它已知的力传感系统(例如,使用安装在器械末端上的F/T传感器)不同,本系统存在大量需要考虑的额外干扰和掩蔽因素。关于被测量的力和力矩信息,它们主要是:
[0072] -施加到F/T传感器上的静载荷和动载荷:由于重力(附连至安装有F/TAS 30的操纵器上的物体的重量)引起的静载荷、由于附连至F/T传感器的有效载荷的速度和加速度引起的动载荷;
[0073] -与微创医疗处理相关的干扰源:由于套管针气体旋塞(gas tap)和空气阀引起的沿穿入和抽出方向的套管针摩擦力、由于套管针气体旋塞引起的对枢转的阻力、由于腹部注气压力(abdominal insufflation pressure)的变化引起的支点23(枢转点)改变、支点23的不准确限定、由于操纵器10在移动期间不准确引起的支点23改变。
[0074] 由套管针摩擦产生的干扰力:套管针22沿穿入/抽出轴线产生摩擦。摩擦大小取决于在套管针22中使用的空气阀的类型(例如,磁性、基于弹簧或塑料隔膜(plastic membrane)类型)、塑料帽(plastic cap)的磨损、器械轴18的材料和其通过灌输的和粘性的腹腔内流体的内部润滑。根据实验室的试验,由磁性和基于弹簧的空气阀引起的摩擦可通过库伦摩擦理论而近似为是在0.5N-0.9N的范围,并且不取决于润滑条件。在实践中,基于弹簧的空气阀的摩擦略微取决于其磨损,并比磁性空气阀(magnetic air-valve)磨损高出约0.3N。塑料隔膜空气阀和塑料帽产生库伦摩擦,并在反转器械方向时产生脉冲式的反作用力。该反作用分量与运动方向相反,并且主要由塑料套圈的反向而引起。隔膜和帽的摩擦取决于隔膜的切割几何结构和材料的类型,但是会被套管针22的润滑所减弱,这种衰减会通过器械移动随着介入时间而增加。在利用标准套管针的干燥的实验室试验中,塑料帽产生1N-1.5N的库伦摩擦,塑料隔膜空气阀给出6N-10N的库伦摩擦。另外,发现摩擦大小相对于穿入和抽出方向不对称。对于塑料隔膜阀,观察到沿穿入方向有较小的摩擦幅度(friction amplitude)。因此,为了尽可能减小在套管针22处的穿入和抽出摩擦,基于磁性的空气阀是优选的,可能不具有塑料帽。
[0075] 由套管针气体旋塞产生的干扰力:一些类型的套管针具有用于注气的旋塞。当使套管针22枢转时,旋塞和被连接的导气管可作为阻挡物,导致与枢转方向相反的干扰阻力。该力的大小取决于腹壁的硬度(stiffness)且根据实验室试验一般在2N和5N之间。因而,该系统应该避免使用具有气体旋塞的套管针。
[0076] 由套管针重量产生的干扰力:多用套管针一般是轻质的,从30g到80g,并由不锈制成,其中一些部件可能由塑料制成。具有气体旋塞的套管针具有柱形的贮存器并且更重,在100g到180g的范围。套管针的重量可认为是沿SRF中的横向X和Y轴线的干扰力,取决于套管针22相对于重力矢量的取向。因此,用塑料部件制成的轻质套管针对于本系统来说是优选的。
[0077] 由低腹内压力产生的干扰力:在正常的腹腔镜术的条件下,腹壁是套管针22所附连的相对较硬的表面。在低腹内压力的情况下,套管针摩擦的大小会变得比腹壁提供的阻力大。在这种情况下,器械穿入或抽出将使套管针22向内或向外移动到腹壁张力克服套管针摩擦力的位置点。负面的副作用首先是支点23相对于腹壁的位置改变,由此在枢转期间干扰载荷由于器械与腹壁的相互作用而增加,其次,类似弹簧载荷(具有等于套管针摩擦力的最大值)沿与器械运动相反的方向施加。为了避免这些干扰力,腹内压力优选地被持续监视和保持。在压力降低的情况下,应产生警告以便采取适当的行动,诸如调整操纵器控制器的支点位置。
[0078] 由支点位置确定方面的不准确引起的干扰力:在手动腹腔镜外科手术期间,外科医生在套管针22内相对于略微倾斜的抵抗点自然地移动器械,该点是理想的支点23(枢转点),定位在腹壁最硬那层的层面处。在使用机器人操纵器10用于操纵器械14时,不需要对支点23作出任何特殊设计机械适应结构,支点位置应该通过适当的程序确定,并教授给操纵器控制器。在支点位置被不准确地限定的情况下,器械14的枢转产生与腹壁的相互作用的力,其可以掩盖在器械末端20和/或支点23处的期望的力/转矩值。这些掩盖力随着支点位置的不准确度而增加。另外,这样的不准确产生切口的磨损,导致套管针22的释放,由此使得腹腔压力丧失并因此由于需要恢复状态而不必要地增加介入时间。
[0079] 支点23的位置的限定准确度不仅依赖于用于识别其位置的程序,还依赖于机器人操纵器10的静态和动态准确度。在本申请中,考虑到切口尺寸和腹壁的弹性,大约+/-2.5mm的总体支点和操纵器准确度是可以接受的。根据实验设定,支点23有关的限定不准确度会导致在套管针22层面处存在2N-10N的干扰。
[0080] 因此,适当选择套管针22的类型可以避免气体旋塞的干扰,并将沿器械轴18的轴线方向的摩擦和重量干扰减小到人手的典型敏感度水平,大约是0.6N。腹内压力相对于初始支点限定压力变化的实时监视可以检测到由于注气条件变化引起的实际支点的变化。但是,由于支点23的不准确限定和由于操纵器10的不准确度,在进入口层面(即,支点23或枢转点)处的干扰力会通过以下所述的方法被实时地识别。
[0081] 本发明的方法和系统可以克服所遇到的干扰的问题,由此确保远程操作具有准确的力反馈和基于力的信息的大量其它有益的安全方面的功能,可以排他地由安装到操纵器10上的传感器装置获得,即,在患者之外,在器械14上或在套管针22上都不需要其它传感器。
[0082] 计算在器械末端处和在支点层面处的力
[0083] 本发明的方法允许提供对器械末端20处的力 和支点23处的力 的准确估算。
[0084] 本发明的要点在于,利用由F/TAS 30测量的力分量和转矩分量计算力 和应该理解,该F/TAS相对于 和 施加的各点而定位于远处的点处。该计算
进一步利用了器械14相对于套管针22的确定位置,例如,支点23和如图3所示的F/TAS
30的SRF的原点之间的距离。该计算基于几个假设和前提,如下:
[0085] A.在图3所示的右手笛卡尔坐标系(SRF)中,F/TAS 30中的6自由度F/T传感器测量由附加至F/TAS 30的载荷产生的力的三个分量(Fx,Fy,Fz)和力矩的三个分量(Mx,My,Mz)。
[0086] B.器械14通过支承部附连至F/T传感器,该支承部包含一个或多个用于器械机构以及更多其它子系统(即,效应器单元12)的致动器
[0087] C.为了简单说明,应认为,6自由度F/T传感器和F/TAS 30的6自由度加速度计的有效参考系与图3所示的SRF重合,其中,Z轴线与被安装的器械14的纵向轴线共线并指向器械末端20,Y轴线平行于主体24的上表面,并且原点定位在F/TAS 30的传感板上。在由F/T传感器测量的力和转矩相对于其它参考系进行表示的情况下,需要进行转换来相对于SRF表示被测力和力矩值。
[0088] D.在此之后的等式中使用的力和转矩分量的值通过原始的未滤波6自由度F/T传感器测量且在该测量经历电偏移(electrical offset)、重力和加速载荷以及后述的用于减小测量噪声的特定滤波处理之后而获得。
[0089] E.只有两个外接触力被施加至器械14,如图2所示,即,被认为与腹壁相切的在支点23处的反作用力 以及具有任意方向和含义的器械末端20上的接触力
[0090] F.在SRF中表示且被标记为 的支点反作用具有为0的Z分量,并且没有向支点23施加的外部力矩。
[0091] G.向器械末端20施加的外力在SRF中表示并被标记为 等于施加到与器械末端接触的组织/器官上的力的相反值(作用+反作用=0)。没有向器械端部20施加的外部力矩。
[0092] H.从SRF原点到支点23的距离矢量 是已知的,并且仅具有沿Z轴线的分量。在实践中,如果器械14的轴18弯曲,则可以有几毫米的X和Y分量,并且因此沿Z轴线的距离可以略微不准确。该距离矢量 可以被确定,即,利用后述的处理从初始参考值开始不断地更新。
[0093] I.从SRF原点到器械20的距离矢量 是已知的,并沿Z轴线对齐。考虑到上述假设,分别标记为 和 的在SRF中的最终的转矩和力矩可以利用对力和力矩进行叠加的原理通过以下等式计算:
[0094]
[0095]
[0096] 其中, 代表从SRF原点到器械末端20的矢量,其与SRF的Z轴线共线。
[0097] 在器械末端20处的接触力通过替换(10)中的 来确定,从而:
[0098]
[0099]
[0100] FTip(z)=FS(z) (14)
[0101] 类似地,在支点23处的力分量为:
[0102]
[0103]
[0104] 应理解,除了别的以外,分别施加在器械末端20处和支点23处的接触力 和的准确估算允许在机器人辅助的微创医疗处理的安全和质量方面有所改进。例如,通过机器人控制软件利用 在处理期间实时地将支点23的假定位置(assumed
location)朝向最小阻力点不断调整,其中机器人操纵器10相对于该假定位置移动。此外,在器械末端20处的接触力可以通过(主)臂反馈,外科医生用其指挥(从动)机器人操纵器
10以便实现触觉传感。
[0105] 确定器械相对于支点的位置
[0106] 当给定器械14第一次插入到套管针22中时,器械相对于支点的初始参考距离——例如距离 可以通过以下的过程确定。利用初始参考距离 随
后利用受命令控制的穿入/抽出而被不断地更新(即,实时地确定),因为该受命令控制的穿入/抽出是操纵器的运动的函数,因此可以由操纵器控制器知道。
[0107] 确定初始支点位置(参考距离 )的过程的例子是基于以下假设:支点23是最小的力抵抗点并且可以利用在效应器单元12上的F/T传感器获得。对于该过程,应假设SRF的X和Y轴线位于F/T传感器的传感板的前平面上,而Z分量与器械轴18共线。该构成概述如下:
[0108] 步骤1-将附连至操纵器10的器械14插入到套管针22中,直到可以在内腔镜监视器上看到器械末端20(即,退出套管针的套筒)。
[0109] 步骤2-通过沿SRF的X和Y轴线滑动器械14直到反作用力低于给定临界值——例如0.3N,从而确定器械14沿这些轴线给出最小反作用力的位置。一旦找到适当的点,可以假定支点23沿器械轴线——即在Z轴线上——定位在某一点处。
[0110] 步骤3-利用杠杆原理确定支点23在器械轴线(相应于Z轴线)上的位置(Z轴线坐标),其中,有力施加的距离等于力矩矢量的模(module)除以力矢量的模。
[0111] 因为在步骤2时器械位置对应于接近0的接触力 器械14相对于其末端20枢转,直到到达足够大的接触力(大约3N)。在该点处,根据杠杆原理计算该距离。随后,器械沿相反的方向枢转,直到测量到相同的接触力,并且再一次计算该距离。之后,器械
14枢转到其在步骤2中确定的初始位置。将传感器上的支点23和SFR的原点之间的参考距离 (沿Z轴线)设定为最后两个测量结果的平均值。
[0112] 同样,宇宙参考坐标系中的SRF的位置和取向以及初始参考距离 ——给出位于步骤2中找到的位置处的支点23相对于SRF(即,传感器)的位置,支点相对于宇宙参考坐标系的位置可以通过参考系的简单变化(坐标的转换)而被算出。
[0113] 之后,所有移动(枢转和穿入)可以相对于支点23给出,器械相对于支点23的位置——例如SRF的原点和支点23之间的距离——例如可以利用来自操纵器控制器的位置信息相应地更新。
[0114] 偏移(offset)的补偿以及重力和动载荷的补偿
[0115] 应理解,例如F/TAS 30中,附连至机器人操纵器10的力/转矩传感器不仅测量接触力 还测量施加到与传感器传感板附连的部件的重力载荷以及动态(即,与运动相关)载荷。
[0116] 因此,力估算的方法利用由与6自由度F/T传感器相关联的6自由度加速度计获得的附加测量来提供这些载荷的补偿。
[0117] 相对于传感器参考系(SRF)的补偿力矢量 由下式给出:
[0118]
[0119]
[0120]
[0121] 其中:
[0122] 是在SRF中由F/T传感器测量的力矢量;
[0123] 是在SRF中由6自由度加速度计测量的线加速度,包括重力加速度;
[0124] 是在SRF中由6自由度加速度计测量的角加速度;
[0125] 是在SRF中作用于F/T传感器的载荷的重心的矢量,其是在后文的概述中估算的;
[0126] 和 是传感器偏移的矢量,在后文所述的校准过程中估算;
[0127] 相对于传感器参考系(SRF)的补偿转矩矢量 由下式给出:
[0128]
[0129] (18)
[0130]
[0131] 其中:
[0132] 是由F/T传感器测量的SRF中的力矩矢量;
[0133] 是力矩偏移矢量,由后文的概述进行估算;
[0134] 等于(17)中右手侧的第三项,其代表由重力影响和与加速度相关载荷的影响所产生的力,该力在F/TAS 30的传感板上施加转矩;
[0135] 是绕SRF轴线X、Y和Z的载荷惯量矢量,其例如可以在离线分析中通过视觉调整而估算出,在惯性矢量不同值的测量图上观察补偿准确度的改进。
[0136] 关于取决于相对于固定系的移动系角加速度和线速度的科里奥利加速度(Coriolis acceleration)影响,需要注意的是,在本系统中不需要考虑该影响,因为力和转矩是相对于F/T传感器的移动坐标系(SRF)测量的。
[0137] 本系统中的沿器械的杆部轴线——即SRF的Z轴线——的离心加速度的影响按照经验为:对于典型器械移动来说小于0.2N且对于在微创处理中的快速移动来说小于0.4N。虽然为了完整而进行了描述,但是通过实验发现,该影响应该被忽略并因此不必考虑到等式(17)和(18)中。
[0138] 对于典型的系统构造来说,在非接触但快速的移动——即大约60度/秒的俯仰和偏转枢转自由度和大约150mm/秒穿入/方向——中的实验结果显示力在+/-0.25N的范围内得以补偿,并且显示出,力矩在+/-约0.03Nm的范围内得以补偿。
[0139] 应该理解,补偿的力和转矩矢量将用于在“在器械末端处的力和在支点层面处的力进行计算”部分中所描述的计算,即, 且
[0140] 校准过程
[0141] 为了确定对测量准确度和用于力估算的计算有影响的系统相关参数,例如最小二乘拟合方法(least-squares fitting method)被应用于一系列被测量数据。为了获得用于实施最小二乘法的数据系列,机器人操纵器10通过在机器人操纵器10的工作空间上适当预先限定的一套测量姿势而被接连定位。在每个姿势,通过操纵器10的六个自由度的不同构造的与F/TAS 30的不同位置和取向相对应,当测量数据从F/TAS 30的传感器读出时,机器人操纵器10处于静止。该套姿势优选地被选择为覆盖以下取向角度(orientation angle)的足够范围(“取向工作空间”):绕SRF的Z轴线的旋转(“滚动”)和绕俯仰或偏转枢转轴线的任意旋转(例如,利用能相对于重力来改变传感器取向的腕关节/关节部)。
[0142] 如果被适当地选择,假定F/TAS 30是厂家校准的并且假定传感器的准确度和分辨率远超过应用要求,则是安全的。在该情况下,应用于测量数据系列的拟合方法确保每个轴线上的力和转矩分量的(电)偏移和每个轴线上的线加速度分量测量的(电)偏移的准确识别。此外,施加至F/TAS 30传感板的载荷的重心(COG)和质量LoadMass可以利用如下所述的校准处理准确地确定。
[0143] 为了确定力测量偏移 (force measurement offsets)、有效载荷质量(LoadMass)和线加速度偏移 (linear acceleration offsets),使用以下等
式:
[0144]
[0145] 其中:
[0146] 是由F/T传感器测量的SRF中的力矢量;
[0147] 给出了重力相对于SRF的取向,由于线加速度测量结果 除了运动相关的加速度(静止时为0)和电偏移 包括重力加
速度项
[0148] 是重量力矢量,其由附连至F/TAS 30的有效载荷的质量及其取向而相对于SRF给出
[0149] 为了确定力矩测量偏移 (moment measurement offests)和有效载荷相对于SRF 的重心坐标,使用以下等式:
[0150]
[0151] 其中:
[0152] -(LoadMass, )如上文所述,见(21)。为了确定线加速度测量偏移,等式是:
[0153]
[0154] 其中:
[0155] -G是重力常量。
[0156] 应理解,矢量等式(21)、(22)和(23)提供具有13个未知数的7个标量的等式用于F/TAS传感器在操纵器10的给定校准姿势中的每一测量。
[0157] 由于机器人操纵器10以及F/TAS 30在每个姿势上处于静止,即,当进行测量时没有运动,所以角加速度分量的偏移可基于对所有姿势的角加速度测量的平均值来估算:
[0158]
[0159] 其中:
[0160] 是由加速度计测量的角加速度矢量;
[0161] 是角加速度分量的电偏移矢量。
[0162] 该套姿势应被选择为在外科处理施加中覆盖操纵器10的取向工作空间。例如,这样的取向工作空间应对绕SRF的Z轴线的滚动角和由SRF的Z轴线相对于重力轴线所给出的取向角进行取样。实验中,30个姿势、对应于210个等式一般被认为是足够得到所需系统参数的满意逼近。
[0163] 由于电偏移在每次启动时都不同,应该在每次启动时在使用通过F/TAS30进行任何测量之前进行校准处理。如在“偏移漂移的检查”这部分所述的,有利的是在介入期间也重复校准处理,以便将偏移漂移考虑进去。在该情况下,系统需要通过该套姿势驱动操纵器10,这需要在安全条件下进行。
[0164] 该校准方法的值得关注方面在于,不需要知道端部效应器(例如,效应器单元12)的位置和取向,这也意味着,该方法独立于机器人操纵器的准确度。因此,对于需要测量补偿力的应用来说,例如,在手持便携装置上,被简单地手动致动的(即被动的)定位装置可以经历本发明的校准处理。
[0165] 应该理解,除了别的以外,具有随后的逼近(数据拟合方法)的上述校准处理允许确定在等式(17)和(18)中使用的用于由F/TAS 30获得的传感器数据的偏移补偿的和
[0166] 传感器数据滤波
[0167] 滤波技术应该应用于通过F/TAS 30获得的原始测量数据。虽然原理上存在许多合适的技术,但是提出了用于线性随机过程的离散卡尔曼滤波器的基本经典形式和两个变形的应用,以用于有效地估算加速度和力/转矩处理变量,特别是用来减小F/T传感器和加速度计固有的测量噪音。
[0168] 在使用具有力反馈的机器人远程操作的微创医疗应用中,除了将信号噪音去除到令人满意的程度,特别需要的是,所用的滤波处理遵循两个额外的要求:首先,被滤波的信号的幅值增益应接近于1(系统带宽中)以便确保力反馈的逼真度,其次,由滤波器引入的额外时间延迟应尽可能短。优选地,总的远程操作循环延迟——包括信号滤波延迟——应小于100毫秒,以使得外科医生不会视觉上注意到延迟,例如,在器械接触到组织的情况下。此外,为了避免不稳定性,例如,当用器械末端20触及到诸如骨骼这样的硬表面时,总的远程操作循环延迟应优选地小于20毫秒。
[0169] 实验已经发现,基本(数字)线性卡尔曼滤波器是简单且有效的解决方案。其中,它比一些其它类型滤波器提供更好的噪音抑制和动态特性,特别是当与在商用力/转矩传感器的固件中通常使用的经典切比数字滤波器相比时。与用于力和转矩数据处理的扩展卡尔曼滤波器类型相反,本方法可实时地应用、可被更简单地调节并不需要知道机器人操纵器10的难以准确识别的非线性动态模型。
[0170] 由于滤波器的目的是估算单独测量并且不相互相关的有噪音数字信号,滤波器的例子单独地应用于每个以下的信号分量:
[0171] -用于力测量的Fx,Fy,Fz;
[0172] -用于力矩测量的Mx,My,Mz;
[0173] -用于线加速度测量的Ax,Ay,Az;
[0174] -用于角加速度测量的Rx,Ry,Rz。
[0175] 根据基本卡尔曼滤波器,每个信号可以被认定为是通过线性差分等式决定的过程:
[0176] xk=Axk-1+Buk-1+wk-1
[0177] 其中 的测量是:
[0178] zk=Hxk+vk
[0179] 在本系统中,我们认为H=1,因为直接考虑测量的状态,且u=0,因为没有控制输入。此外,对于所有的信号,我们认为A=1,因为状态一步接一步地逼近不变。但是,在力和力矩的情况下,状态根据重力和加速载荷而变化,并且对于所有其它信号,该状态是操作者运动命令的函数,即,操纵器10的行为。因此,该后一种逼近吸收状态变化的来源,以处理噪音。
[0180] 应该理解,本发明的滤波器的构成是基本的离散卡尔曼滤波器的实施,其应用于线性随机过程。该滤波器实施的相关时间更新和测量更新等式可以例如在“An introduction to the Kalman Filter”;Greg Welch,Gary Bishop;UNC-Chapel Hill;2002中找到,如下所述:T T -1
[0181] Kk=P`kH(HP`kH+R)
[0182]T
[0183] P`k=APk-1A+Q Pk=(I-KkH)P`k
[0184] 时间更新等式 测量更新等式
[0185] 关于初始化,以下初始化参数可以用于所有信号:
[0186] -测量噪音的协方差R=1.0:虽然最优值是可以在传感器校准阶段获得的真实测量噪音协方差,但是可以使用意味测量是不可信的任意严格的正值(R>0)。事实上,在滤波器调整阶段确定的系统/过程噪音协方差参数Q补偿在初始测量噪音协方差值R中的误差;
[0187] -初始状态值xk-1=第一次观察值;
[0188] -初始卡尔曼增益值Kk=1.0;
[0189] -初始系统过程/系统噪音协方差Q0,通过滤波器的调谐确定。
[0190] 已经显示,通常在递归重复50个循环之后,卡尔曼增益Kk收敛到独立于给定参数过程/系统噪音协方差Q和测量噪音协方差R的同一恒定值。通过本发明的系统,可以通过实验发现在150毫秒(50次循环)之后,卡尔曼增益Kk向恒定值收敛,在4.5秒(1500次循环)之后其保持恒定,并在2.1秒(700次循环)之后,其到达其恒定值99%范围(window)。进一步发现,卡尔曼增益Kk保持恒定,而与动态和接触载荷影响的力和转矩测量(的幅值)无关,这验证了基本线性滤波公式的逼近。
[0191] 关于滤波器(参数)调谐,可以使用这样一种手段:基于对系统/过程噪音协方差Q的不同值并在真实的远程操作条件下(例如,在1:1运动比例下,具有操纵器10的加速移动而不具有施加到器械14上的接触力)而在同一实时曲线图上比较未滤波信号与的被滤波信号和。
[0192] 调谐的主要目的是获得不具有尖峰或高频率脉动(high frequency ripple)的滤波信号,其平均了未滤波信号但在信号转变上具有非常小的响应延迟(时间滞后)。在本文中,响应延迟意味着滤波器固有的、在信号变化期间观察到的“真实”未滤波信号和滤波信号之间的时间滞后。对于在补偿处理中使用的力、转矩和加速度信号(见“传感器数据中的偏移的补偿以及重力和动载荷的补偿”章),所有的信号应该用相同协方差参数R、Q滤波,以便对每个信号保持相同的时间延迟特性,特别是关于信号转变。通过实验,该手段被证实是可靠的,并且可以通过相同的物理现象——即操纵器10的运动加速度——几乎排他性地确定被测量信号的动态特性这一事实来得到证明。
[0193] 关于定性分析,已经显示出,对于受到噪音影响的静态信号来说,卡尔曼滤波器是具有1:1增益的优选估算器(estimator)。对于动态信号来说,如在本发明的系统中,卡尔曼滤波信号由于噪音几乎被完全去除而不具有由噪音带来的尖峰,并且滤波信号与取决于被选择的过程噪音协方差参数Q而具有转变平滑性的平均信号具有的类似性。
[0194] 应该理解的是,通过较小的过程噪音协方差Q,滤波信号变得更加平滑,因为测量不那么可信,反之亦然。此外,通过在卡尔曼滤波器中设定的过程/系统噪音协方差Q的较小值,不仅滤波信号的平滑性而且由滤波过程引起的响应延迟都因给定的测量噪音协方差R而增加。但是,期望的是,获得即时且平滑变化的力的估算,例如用于反馈到远程操作指挥控制台的主臂。表1显示了对于力信号(例如,在SRF的X轴线上)的不同过程噪音协方差参数Q的典型响应延迟。
[0195]
[0196]
[0197] 表1
[0198] 利用测量噪音协方差R=1.0、通过测量用基本线性卡尔曼滤波器获得的滤波信号和利用卡尔曼算法的平行反向递归(RTS:parallel backward recursion)表获得的信号之间的时间滞后来离线地估算在表1中所示的响应延迟,该算法在“Maximum likelihood estimates of linear dynamic systems”;H.Rauch,F.Tung,and C.Striebel;American Institute of Aeronautics and Astronautics Journal;3(8),1965中描述,其优化地跟随原始的“真实”信号而不引入响应延迟。
[0199] 为了减小滤波器固有的响应延迟,提出了如图4所示的级联(cascaded)滤波器装置40。该滤波器级联40包括第一滤波器级42和第二滤波器级44,每个滤波器级42、44是上述基本的线性卡尔曼滤波器的分体装置。第一滤波器级42被构造为用于降低协方差,即,减小影响未滤波信号的噪音的峰值(噪音尖峰)但仅能引起相对较短的响应延迟(例如,2-3毫秒)。第二滤波器级44被构造为用于提供基本平滑的输出信号,并因此引入比第一滤波器级42长的响应延迟(例如,15毫秒)。
[0200] 已经发现,对于给定的总响应延迟,两个级联的滤波器相对于引起相同响应延迟的单个滤波器而言能改善滤波信号的平滑性。为了实现这个目的,例如在如图4所示的两个滤波器级联中,第一滤波器级42被构造有系统/过程误差协方差(Q1),其比具有给定相同测量误差协方差R的第二滤波器级44(Q2)的系统/过程误差协方差大得多。因而,与单级卡尔曼滤波器相比,可以以低的总响应延迟获得相同滤波性能。换句话说,具有给定总响应延迟的卡尔曼滤波器级联与具有相同响应延迟的单级卡尔曼滤波器相比能提供更好的滤波性能。通过实验发现,例如对于两个级联的卡尔曼滤波器——其中第一和第二滤波器级42、44被构造为具有相同的测量噪音协方差R=1,且具有分别为Q1=0.7和Q2=0.012的不同系统/处理误差协方差参数,这种两个级联的卡尔曼滤波器相对于构造有Q=0.01且具有相同的观察到的响应延迟(≈32毫秒)的单级滤波器可以改善最终的滤波信号的平滑性。用于第一和第二滤波器级42、44的噪音协方差Q1和Q2的优选参数范围分别是:0.1≤Q1≤1和0.001≤Q2≤0.1。优选地,总的响应延迟不应超过40毫秒,以便减小在硬表面接触时不稳定的风险。
[0201] 因此,至少两个线性卡尔曼滤波器的级联是优选的,因为其相对于给出相同滤波性能(信号平滑性)的单通(一级)滤波器来说引入了较小的响应延迟。应该指出的是,用于每个未滤波信号((Fx,Fy,Fz);(Mx,My,Mz);(Ax,Ay,Az);(Rx,Ry,Rz))的各滤波器装置通常被构造有相同的滤波器参数(Qi,Ri等),以便确保所有信号上的相同的响应延迟,并因此确保同步的信号。
[0202] 偏移漂移的检查
[0203] 应理解,由F/T传感器和F/TAS 30中的加速度计获得的每个分量测量(信号)受到通常随时间变化且依赖于温度的电偏置或偏移的影响。在实验室试验中发现,来自6自由度基于箔的F/T传感器(具有内置的温度补偿)的测量信号在大约3小时后的预热阶段之后得以稳定,并且在此之后保持在整个测量范围的大约1.5%的范围内。但是,每个信号的偏移值经历随时间的变化,并且在医疗、特别是外科处理的情况下,该变化是不可接受的,因为其改变了上述用于估算力的计算结果。
[0204] 因此,提出加入用于检查这些偏移仍在可接受范围内的过程。这可以以简单的方式通过检查当没有外部载荷施加在附连至F/TAS 30的有效载荷时被补偿的力和转矩矢量分量是否接近于0而实现。
[0205] 被提出的功能可以包含在相应命令请求而进行检查的由软件实施的过程中。在存在过度偏移漂移的情况下,该过程向操纵器控制器发出警报,例如请外科医生起动重复校准处理。此外,该功能在外科处理器械改变时期间可以根据在HMI上给定的命令――例如基于效应器单元12上的外科处理器械存在检测器的信号――或自动地执行。
[0206] 软件模块构建
[0207] 首先应该指出,后文描述的软件构建是指这样一种软件:其目的限于用于对在器械末端20层面处和在支点23的层面处的接触力进行估算的数据处理和计算。不应该将功能和机构考虑到操纵器10、效应器单元12或系统的其它部件的控制中。但是,该模块可以由本领域的技术人员整合到操纵器控制器的软件程序中。
[0208] 软件模块的大体结构示意性地在图5中示出。其包括核心处理、被后述的状态转变框图控制的FSS(力传感系统)任务,其可以在任务环境(task context)中运行或在中断服务例程层处的主功能中进行实施。为了简化,假定软件模块在周期性任务中运行,该周期性任务通过如图5的信号机被实时时钟同步化。该FSS任务以给定优先级在实时操作系统中并以给定的堆栈大小运行。软件模块具有消息队列,其在每个时钟周期处为新消息轮询(poll)。一般存在两种消息:用于执行功能的命令消息或用于产生状态转变框图(见下文)的转变的事件消息。命令消息通过属于例如操纵器控制器的外部模块产生,而事件消息通过软件模块本身内部地产生。模块能够产生涉及例如是操纵器控制器模块的其它部件模块的事件和命令消息,例如以便产生故障事件、命令应答或停止_运动(stop_motion)命令。
[0209] 在软件模块中,如图5所示,FSS任务的主接口是:
[0210] -消息队列,每个时钟周期读取;
[0211] -到硬件板的接口,未滤波的力、转矩和加速度数据通过该接口读取;
[0212] -到实时数据库的接口,用于读取模块的功能所需的信息并写入结果;
[0213] -到外部模块的用于命令和事件消息的接口。
[0214] 状态转变框图(FSS任务)
[0215] 图6显示了作为有限状态机(finite state machine)来实施的力传感系统(FSS)任务的主要的5个状态。以下,简要地描述如图5所示的状态:
[0216] 状态1:硬件和软件初始化:该状态涉及用于微创医疗系统的软件和硬件部件的初始化程序。这些初始化程序在操纵器10的控制器的接电和/或引导时间(boot time)进行。除了别的以外,硬件初始化任务涉及例如F/TAS 30的加速度计和F/T传感器以及相关接口(板)的设置。软件初始化任务包括分配诸如用于应用的数据结构的存储器和其它操作系统事项(即,任务、信号机、消息队列、时钟等)的资源的步骤。如果硬件和软件初始化成功,则系统进入闲置(IDLE)状态,等待校准命令。否则,系统进入失败(FAILED)状态,如图6所示。初始化操作的结果可以通过软件事件或通过函数调用返回参数通信到操纵器10的控制器。
[0217] 步骤2:闲置(IDLE)状态:系统等待命令以开始校准过程,其在“校准处理”部分中有所描述。
[0218] 步骤3:故障(FAULT)状态:在任何系统/软件出错的情况下或检测到安全危险的情况下进入该状态,该系统等待重启命令。在进入FAULT状态时,异步消息或事件被发送至操纵器控制器以便对该条件进行警报。
[0219] 步骤4:F/T_&_ACCELEROMETER_CALIBRATION状态:在该状态中,操纵器10被命令作出具有不同位置和取向的一套预定姿势(见“校准处理”部分)。在每个姿势中,F/T传感器和加速度计数据在接收“记录”命令时被记录。在完成该套动作后,一旦接收到“计算”命令,实施前述最小二乘拟合技术或任意其它适当的逼近方法,以便计算F/T传感器和加速度计偏移( 和 )以及所附加载荷的重心坐标。在不太可能发生的事件计算失败中,例如是由于不一致的结果或由于用户作出的该套姿势移动的中止命令造成的,系统回到IDLE状态,向操纵器控制器发出该事件的报警。否则,在校准阶段结束时,系统进入到APPLCATION_LOADS_EVALUATION状态。在软件或硬件失败检测的情况下,系统进入FAULT状态。
[0220] 步骤5:APPLCATION_LOADS_EVALUATION状态:在该状态中,周期性过程依次地——但不是必须遵循所给的顺序――来执行下列操作:
[0221] -数据滤波,例如通过用于线性随机过程的离散卡尔曼滤波器级联(见“传感器数据滤波”部分);
[0222] -在F/T传感器数据中的重力和动载荷影响的补偿(见“偏移的补偿以及重力和动载荷的补偿”部分);
[0223] -对器械14相对于支点23的位置进行确定——即基于操纵器10运动连续更新(见“确定器械相对于支点的位置”部分);
[0224] -计算分别在器械末端20处和在支点处的力的估算值(见“计算在器械末端处和在支点层面处的力”部分);
[0225] 可选地,以下的进一步操作也可以通过周期性过程进行:
[0226] -针对例如存储在实时数据库中的预定最大临界值来监视被补偿的载荷。在超过这些值的情况下,该功能产生警告消息、或停止运动命令并将该状态写入到实时数据库中;该过程也可应用于在器械末端20处和在支点层面(套管针22)处的被估算力,以便检测F/TAS 30的不安全状态或失败;
[0227] -检验传感器偏移的漂移(见“偏移漂移的检查”部分);
[0228] -监视腹内注气压力。在压力下降的情况下,该功能产生警告消息,以使得可以采取适当的动作,例如重新限定支点23的位置。
[0229] 图7以流程图显示了上述操作的可能的顺序。如图7所示,例如如图4所示的级联构造的第一线性卡尔曼滤波器在“寄生载荷”的补偿之前对传感器数据滤波。在补偿之后,第二线性卡尔曼滤波器应用于力和转矩值,以便进一步改进在力估算值(计算 和)计算的操作的输入处的信号平滑性质量。尽管如图7所示,在执行力估算值计算的步骤之前,用于确定器械位置的操作可以在流程中的另一点处周期性地执行。类似地,上述可选操作的一个或多个(由图7和8中的块“…”指示)不是必须在计算力估算值之后执行。
[0230] 图8以流程图显示了上述操作的替换顺序。如图8所示,在计算力估算值(计算和 )之后执行一个滤波操作。滤波操作可以基于如图4所示的级联卡尔曼滤波器构造。
[0231] 图8的替换例减小了由于滤波而在力估算值的计算之前的信息损失(过低/过高的载荷),以使得可以获得增加的准确性。图7的实施例在以下情况下是优选的,即系统被构造为将效应器单元12用作控制装置(“操纵杆”),用于例如在器械14插入期间对操纵器10辅助定位。
[0232] 在收到重新校准请求的情况下,系统的状态改变为F/T_&_ACCELEROMETER_CALIBRATION并且周期性过程停止。在软件或硬件失败检测的情况下,系统被改变到FAULT状态并产生警报。
[0233] 循环过程的执行速率根据应用需求来构造。例如,当将被补偿的数据用于机器人远程操作时,该过程优选地以与用于操纵器10的设定点发生(set-point generation)的速率相同的速率运行,例如在300Hz和1000Hz之间。
[0234] 结论
[0235] 本发明的方法/系统通过提供准确且成本有效的、对器械末端处和可选地在套管针层面处的接触力进行估算而对机器人和/或计算机的辅助微创外科术作出贡献。
[0236] 在原型系统的实验室试验中,确定了0.25N的平均估算误差和0.65N的最大估算误差。应理解,虽然这些值是利用仍在开发中的原型所获得的,但是估算误差水平即使对外科腹腔镜术来说也是令人满意的,因为0.25N在人手的灵敏度临界值之下。此外,应理解,通过该原型获得的50ms的总信号延迟使得系统能容易地适用于远程操作。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈