首页 / 专利库 / 手术 / 微创手术 / 微创手术系统

微创手术系统

阅读:50发布:2020-05-12

专利汇可以提供微创手术系统专利检索,专利查询,专利分析的服务。并且本 发明 涉及一种 微创手术 系统。一种手术器械的远端可以以全部六个笛卡尔 自由度 移动,与远程操作的手术系统的其他组件无关。所述手术器械延伸通过 导管 。所述远端由致动装置移动,所述致动装置是以远程操作方式被控制的。,下面是微创手术系统专利的具体信息内容。

1.一种微创手术系统,包括:
导管
手术器械,其包括远端,其中所述手术器械延伸通过所述导管;
多个远程操纵致动装置,其以全部六个笛卡尔自由度移动所述手术器械的所述远端;

其中所述手术器械的所述远端的所述自由度独立于所述导管的自由度。
2.一种微创手术器械系统,包括:
可弯曲导引探测器;
可弯曲导管;
手术器械,包含远端末端执行器;和
远程操纵控制系统;
其中所述远程操纵控制系统输出控制信号,从病人身体上的入口推进所述导管,经过中间组织结构到达手术位置,并且其中在所述导引探测器的远端通过所述中间组织结构后,所述导引探测器被定以保持弯曲位置;
其中所述导管可在锁定的导引探测器上同轴推进,并且其中在所述导管的远端位于所述手术位置之后,所述导管被锁定以保持弯曲位置,该弯曲位置对应于所述导引探测器的被锁定的所述弯曲位置;
其中在所述导引探测器被解锁并从所述被锁定的导管中取出后,所述手术器械通过被锁定的导管插入,以将所述末端执行器定位在所述手术位置。
3.一种微创手术方法,包括:
生成远程操纵控制信号,从病人身体上的入口推进导引探测器,通过中间组织到达手术位置;
在所述导引探测器的末端通过所述中间组织结构后,锁定所述导引探测器;
在所述锁定的导引探测器上同轴推进导管;
在所述导管的远端位于所述手术位置后锁定所述导管;
从被锁定的所述导管中取出所述导引探测器;
通过被锁定的所述导管推进手术器械,以将所述手术器械的末端执行器定位在手术位置。
4.一种装置,包括
导管;
第一器械,包括第一细长主体和位于所述第一细长主体近端的第一传动机构,其中所述第一传动机构被耦合以移动在所述第一器械远端的部件,并且其中所述第一传动机构包含楔形;
第二器械,包括第二细长主体和位于所述第二细长主体近端的第二传动机构,其中所述第二传动机构被耦合以移动在所述第二器械远端的部件,并且其中所述第二传动机构包含楔形;
其中所述第一传动机构的所述楔形靠近所述第二传动机构的所述楔形;
其中所述第一传动机构和所述第二传动机构的所述楔形的所述顶点被定向为朝向所述导管的延长中心线;和
其中所述第一细长主体和所述第二细长主体延伸通过所述导管。
5.一种方法,包括:
多个手术器械主体延伸通过导管;
围绕所述导管的延长中心线排列多个传动机构,其中每个传动机构被耦合到所述手术器械主体中的唯一一个;
其中排列所述传动机构包括定向所述传动机构的顶点,朝向所述导管的所述延长中心线。
6.一种装置,包括:
导管;
第一器械,包括第一细长主体和位于所述第一细长主体近端的第一传动机构,其中所述第一传动机构被耦合以移动在所述第一器械远端的部件;
第二器械,包括第二细长主体和位于所述第二细长主体近端的第二传动机构,其中所述第二传动机构被耦合以移动在所述第二器械远端的部件;
其中所述第一传动机构和所述第二传动机构围绕所述导管的延伸中心线排列;
其中所述第一细长主体和所述第二细长主体延伸通过所述导管;和
其中所述第一细长主体和所述第二细长主体是基本刚性的并且在所述第一和第二传动机构与导管之间弹性弯曲。
7.一种装置,包括:
导管;
第一器械,包括第一细长主体和位于所述第一细长主体近端的第一传动机构,其中所述第一传动机构包括与第一致动装置机构的接口,并且其中与所述第一致动装置机构的所述接口在所述第一传动机构的侧面,所述第一传动机构远离所述导管的延长中心线;
第二器械,包括第二细长主体和位于所述第二细长主体近端的第二传动机构,其中所述第二传动机构包括与第二致动装置机构的接口,并且其中与所述第二致动装置机构的所述接口在所述第二传动机构的侧面,所述第二传动机构远离所述导管的延长中心线;
其中所述第一传动机构和所述第二传动机构基本位于所述导管的所述延长中心线的对侧;并且
其中所述第一细长主体和所述第二细长主体延伸通过所述导管。
8.一种装置,包括:
远程操纵致动组件;
手术器械;和
内窥镜成像系统;
其中所述手术器械和所述内窥镜成像系统可交换地安装在所述致动组件上。
9.一种方法,包括:
感测手术器械或成像系统是否被安装在远程操纵致动组件上;
如果所述器械被安装在所述致动组件上,在器械控制模式中通过致动组件操纵所述手术器械;和
如果成像系统被安装在所述致动组件上,在摄影机控制模式中通过所述致动组件操纵所述成像系统。
10.一种手术器械,包括:
器械主体;
末端执行器;和
平行运动机构,包括细长刚性主体段;
其中所述平行运动机构被耦合在所述器械主体和所述末端执行器之间;并且其中所述平行运动机构改变所述末端执行器的位置而不改变所述末端执行器的方向。

说明书全文

微创手术系统

[0001] 本申请是于2007年6月13日提交的名称为“微创手术系统”的中国专利申请200780030036.2的分案申请。

技术领域

[0002] 本发明的方面与用于微创手术的系统和程序相关,特别是用于该手术的远程操作的系统。

背景技术

[0003] 已知的微创手术具有不同名称(例如内窥镜检查法、腹腔镜检查、关节镜检查、血管内窥、孔(keyhole)等等),通常针对解剖区域进行工作。该手术包括使用手持式装置和远程操作/远程操纵/远程呈现(机器人辅助/远程机器人技术)设备,诸如加利福尼亚Sunnyvale的直观外科手术(Intuitive Surgical)股份有限公司制造的da 手
术系统。可以完成诊断(例如,活组织检查)和治疗两个程序。器械通过手术切口或自然腔口经由皮肤插入病人体内。经自然腔道内窥镜手术(NOTES)是新的实验性的微创手术变体,其中器械通过自然腔口(例如,口、鼻孔、道、肛阴道、尿道)进入并通过身体内的腔内切口(例如,在胃壁或结肠壁上)继续进入到手术位置。与很多手持式程序相比,尽管使用da 手术系统的远程操作手术提供了很大的好处,但是对于一些病人和一些解
剖区域,da 手术系统不能有效地接近手术位置。另外,进一步减小切口的大小和数
量帮助病人恢复并且有助于减小病人的创伤和不适。
[0004] 自由度(DOF)数量是唯一确定系统的位姿/配置的独立变量的个数。因为机器人操纵器是将(输入)关节空间映射到(输出)笛卡尔空间的运动链,DOF的概念可以在这两个空间的任何一个中表示。特别地,关节DOF的集合为用于所有被独立控制关节的关节变量的集合。不失一般性,关节为提供单独平移(柱状关节)或转动(转动关节)自由度
的机构。从运动学建模的观点,提供多于一个DOF运动的任何机构被认为是两个或多于两个的独立关节。笛卡尔DOF的集合通常由三个平移(位置)变量(例如纵荡、升沉、横荡)和三个转动(方向)变量(例如,欧拉或滚动角/俯仰角/平摇角)表示,其相对于给定
的笛卡尔参考系描述了末端执行器(或尖端)坐标系(frame)的位置和方向。
[0005] 例如,平面机构具有安装在两条垂直的独立轨道上的末端执行器,该平面机构具有在两条轨道(棱柱状自由度)的跨度区域内控制x/y位置的能。如果末端执行器可以围绕垂直于轨道平面的轴旋转,那么有三个输入DOF(两个轨道位置和平摇角)对应三个输出DOF(末端执行器的x/y位置和方向角)。
[0006] 尽管笛卡尔DOF的个数最多为六,在所有平移变量和方向变量被独立控制的情况下,关节DOF的个数通常为设计选择的结果,包括机构的复杂性和任务说明的考虑。因此,关节DOF的个数可以多于、等于、或小于六。对于非冗余运动学链,被独立控制的关节的个数等于末端执行器坐标系的可移动度。对于某数量的棱柱形和旋转关节DOF,末端执行器坐标系将和笛卡尔空间具有相同数目的DOF(除了奇异配置时),该自由度数目对应平移运动(x/y/z位置)和旋转运动(滚动/俯仰/平摇方向角)。
[0007] 输入DOF和输出DOF之间的区别在冗余或“有缺陷的”运动链(例如机械操纵器)的情况下非常重要。具体地说,“有缺陷的”操纵器具有小于六个的独立控制关节并且因此不具有完全控制末端执行器位置和方向的能力。作为替代,有缺陷的操纵器仅限于控制位置变量和方向变量的子集。另一方面,冗余操纵器具有多于六个的关节DOF。这样,冗余操纵器可以使用多于一个关节配置建立期望的6-DOF末端执行器位姿。换句话说,附加的自由度不只可以用于控制末端执行器位置和方向,也可以控制操纵器自身的“形状”。除运动学自由度之外,机构可以具有其他DOF,诸如抓取夹具或剪刀刀片的绕杆旋转运动。
[0008] 为指定了DOF的空间考虑参考系也很重要。例如,关节空间中的单个DOF变化(例如,两个旋转连杆之间的关节)可能导致运动,该运动结合坐标系的笛卡尔平移变量和方向变量的变化,该坐标系被附加到连杆的其中之一的远端(位于远端的坐标系通过空间旋转并平移)。运动学描述从一个测量空间转变成另一测量空间的过程。例如,使用关节空间测量确定在运动链的尖端的参考系的笛卡尔空间位置和方向是“正向”运动学。对在运动链的尖端的参考坐标,使用笛卡尔空间位置和方向确定期望的关节位置为“反向”运动学。如果有任何旋转关节,运动学包括非线性(三角)函数。

发明内容

[0009] 本发明各方面的目的是提供多个远程操纵手术器械,每个手术器械相对于另一个独立工作,并且每个手术器械具有末端执行器,该末端执行器通过病人身体的单一入口并且具有笛卡尔空间中的至少六个被主动控制的自由度(即,纵荡、升沉、横荡、滚动、俯仰、平摇)。
[0010] 本发明各方面的进一步目的是提供多个远程操纵手术器械,每个手术器械相对于另一个独立工作并且每个手术器械具有末端执行器,该末端执行器通过病人身体的单一入口并穿过限制刚性器械体横向运动的中间组织,并且具有笛卡尔空间中的至少六个被主动控制的自由度(即纵荡、升沉、横荡、滚动、俯仰、平摇)。
[0011] 根据本发明各方面,手术器械通过导管被插入。手术器械的远端是可移动的,并且致动装置可以以全部六个笛卡尔自由度移动远端。这六个自由度独立于导管的运动。致动装置可通过远程操纵控制。附图说明
[0012] 图1为微创手术器械及其关于由切口或自然腔口表示的关于枢轴点的运动的图示。
[0013] 图2A为另一微创手术器械及其运动的图示。
[0014] 图2B为又一微创手术器械及其运动的图示。
[0015] 图3为微创手术器械的示意图。
[0016] 图4为说明了微创手术器械装置的方面的示意图。
[0017] 图4A和图4B为说明了被约束在导管内的位置的可移除的器械各方面的立体图。
[0018] 图5为说明了第二微创手术器械组件的各方面的示意图。
[0019] 图6为说明了第三微创手术器械组件的各方面的示意图。
[0020] 图7为说明了第四微创手术器械组件的各方面的示意图。
[0021] 图8为说明了第五微创手术器械组件的各方面的示意图。
[0022] 图9为说明了第六微创手术器械组件的各方面的示意图。
[0023] 图9A为说明了图9的替代方面的细节的示意图。
[0024] 图10为说明了第七微创手术器械组件的各方面的示意图。
[0025] 图11为说明了第八微创手术器械组件的各方面的示意图。
[0026] 图11A和图11B为手术器械组件的端视图。
[0027] 图12为说明了第九微创手术器械组件的各方面的示意图。
[0028] 图12A和图12B为向后弯曲位置的图示。
[0029] 图13为说明了第十微创手术器械组件的各方面的示意图。
[0030] 图14为说明了第十一微创手术器械组件的各方面的示意图。
[0031] 图15A到图15D为说明了插入一个可弯曲的、可操纵的手术器械和手术器械组件的示意图。
[0032] 图16为说明了第十二微创手术器械组件的各方面的示意图。
[0033] 图16A为包括平行运动机构的微创手术器械的远端段实施例的侧视图。
[0034] 图16B为平行运动机构中关节的实施例的立体图,并且图16C为平行运动机构中关节的实施例的横断面视图。
[0035] 图16D和图16E为说明了平行运动机构的设计和操作方面的侧视图。
[0036] 图16F和图16G为平行运动机构中连接盘的侧视图。
[0037] 图16H和图16I为平行运动机构中加强支架的的透视图。
[0038] 图16J为加强支架的侧视图。
[0039] 图17为说明了第十三个微创手术器械装置的方面的示意图。
[0040] 图17A为图17细节的示意侧视图。
[0041] 图17B为手术器械装置的透视图。
[0042] 图18为说明了第十四个微创手术器械装置的方面的示意图。
[0043] 图18A为说明了器械装置远端的成像系统的方面的示意图。
[0044] 图18B为示出了说明成像系统运动的方面的示意图。
[0045] 图18C为微创手术器械装置的透视图。
[0046] 图18D为说明了手术器械装置的远端怎样上仰和下俯的透视图。
[0047] 图18E为微创手术器械装置的另一个透视图。
[0048] 图18F为导管的远侧尖端具有可移动的成像系统的手术器械装置的平面图,并且图18G为示出了图18F所示的手术器械装置的替代方面的详图。
[0049] 图19为说明了第十五个微创手术器械装置的方面的透视图。
[0050] 图19A为图19中描述的实施例的另一个透视图。
[0051] 图19B为手术器械装置的平面图。
[0052] 图19C为图19B中示出的手术器械装置的另一个平面图。
[0053] 图19D为说明了手术器械机构的方面的分解透视图。
[0054] 图19E为缆线导管的透视图。
[0055] 图19F为缆线导管的侧视图。
[0056] 图19G为缆线导管件的透视图。
[0057] 图19H为说明了透过并离开导管的手术器械的方面的透视图。
[0058] 图19I为说明了离开导管后手术器械的运动的方面的透视图。
[0059] 图19J为说明了具有两个倒向手术器械的手术器械装置的方面的透视图。
[0060] 图19K为手术器械装置的平面图。
[0061] 图20A为导管的远端面的侧视图。
[0062] 图20B为图20A中示出的导管的远端面的侧视图,具有成像系统和两个手术器械。
[0063] 图20C说明了具有器械通道的导管的侧视图,该器械通道包括排列成“V”形的槽。
[0064] 图20D、图20E和图20F为说明了其他导管通道配置的各个侧视图。
[0065] 图21A为机器人辅助微创远程手术系统的示意图。
[0066] 图21B和图21C为远程手术系统中病人侧面支撑系统的示意图。
[0067] 图22A为用于微创远程手术系统的集中运动控制系统的示意图。
[0068] 图22B为用于微创远程手术系统的分散运动控制系统的示意图。
[0069] 图23为手术器械装置和致动装置之间的接口的示意图。
[0070] 图24A为微创手术器械的近端部分的透视图。
[0071] 图24B为与图24中所示的器械紧密配合并驱动该器械的致动装置2420的部分的透视图。
[0072] 图25A为说明了在安装臂的末端安装微创手术器械和动力致动装置的透视图。
[0073] 图25B为说明了在安装臂的末端安装微创手术器械和动力致动装置的另一个透视图。
[0074] 图26A为器械传动机构和导管的侧视图。
[0075] 图26B、图26C和图26D为围绕导管彼此隔开的传动机构的侧视图。
[0076] 图26E为致动装置外壳和器械的分解透视图。
[0077] 图27为关联可弯曲同轴导管和器械的传动机构的示意图。
[0078] 图28A为多入口手术的示意图。
[0079] 图28B为多入口手术的另一个示意图。
[0080] 图29A和图29B为微创手术器械装置位置感测的示意图。
[0081] 图29C到图29E为说明了防止器械与组织之间不期望的碰撞的进一步方面的平面图。
[0082] 图29F为提供给外科医生的镶嵌图像输出显示的图示。
[0083] 图30为用于自动更换微创手术器械的机构的示意图。
[0084] 图30A为在圆筒上储存器械或其他组件的示意图。
[0085] 图30B为在卷轴上储存可自动更换的器械的示意图。
[0086] 图31为说明微创手术器械装置的透视图,包括用于缩回的多关节器械。

具体实施方式

[0087] 说明本发明各方面和实施例的本说明书和附图不应被视为限制权利要求限定的受保护的发明。可以进行不同的机械、组合、结构、电的和操作变化而不偏离本发明的精神和范围。在一些实例中,没有详细示出熟知的电路、结构和技术,这是为了避免使本发明模糊不清。两个或更多附图中同样的数字表示相同或相似元件。
[0088] 进一步地,本说明书的术语并不试图限制本发明。例如空间关系术语—例如“在...之下”、“在...下面”、“下方”、“在...上方”、“上方”、“近端”、“远端”等等可用于描述一个元件或特征与另一元件或特征的关系,如图所示。除图中示出的位置和方向以外,这些空间关系术语试图包含使用或操作的设备的不同位置和方向。例如,如果附图中的设备被翻转,以“在其他元件下面”、“在其他元件之下”描述的设备将会成为“在其他元件上方”、“在其他元件之上”。这样,示例性的术语“在...下面”可以包括在...上方和在...下面的位置和方向。设备可能以其他方式定向(旋转90度或其他方向),本文使用的空间关系描述符被相应地解释。同样地,沿着不同轴或围绕不同轴运动的描述包括不同的特定的设备位置和方向。另外,单数形式“一”、“一个”和“该”也试图包括复数形式,除非上下文中以其他方式指出。并且术语“包含”、“包括”、“含有”等列举了叙述的特征、步骤、操作、元件和/或部件的存在,但不排除一个或更多其他特征、步骤、操作、元件、部件和/或组的存在和附加。被描述为耦合的部件可能为电耦合或机械上直接耦合,或者他们可能通过一个或多于一个中间部件间接耦合。
[0089] 远程操纵和相似术语通常是指操作者以相对自然的方式(例如,自然的手或手指运动)操纵主设备(例如,输入运动链),因此主设备运动被转变为实时处理和发送到从设备(例如输出运动链)的命令,从设备几乎立即对命令和环境力作出反应。编号为6,574,355(Green)的美国专利公开了远程操纵,其并入本文以供参考。
[0090] 为了避免附图和下面描述的不同方面以及示例性实施例中的重复,应该理解很多特征是很多方面和实施例共有的。对说明书或附图一方面的省略并不意味着将该方面从合并有该方面的实施例中省去。作为替代,为了清楚并避免冗长的描述可能已经省略该方面。
[0091] 因此,将几个普通方面应用到下面各种描述。例如,至少一个手术末端执行器在不同附图中被示出或描述。末端执行器是微创手术器械或组件的一部分,其执行特定手术功能(例如,镊子或抓紧器、针驱动器、剪刀、电烙器钩、吻合器、施夹器/拆卸器等等)。很多末端执行器具有单一DOF(例如,打开和闭合的抓紧器)。末端执行器可能耦合到手术器械主体,该手术器械主体具有提供一个或多于一个附加DOF的机构,如“腕”类型机构。编号为6,371,952(Madhani等人)的美国专利和编号为6,817,974(Cooper等人)的美国专利中示出了该机构的示例,两者被并入本文以供参考,并可能被认为是Intuitive Surgical(直观外科手术)股份有限公司的多种 机构,如da 手术系统在8mm和5mm器械上所使用。尽管本文描述的手术器械通常包括末端执行器,应该理解在一些方面中末端执行器可能被省略。例如,器械主体轴的远侧尖端可能用于缩回组织。另一个示例中,主体轴或腕机构的远侧尖端可能有吸口或冲洗开口。在这些方面中,应该理解定位和定向末端执行器的描述包括对不具有末端执行器的手术器械的尖端的定位和定向。例如,为末端执行器的尖端定位(addresses)参考系的描述应被理解为包括不具有末端执行器的手术器械的尖端的参考系。
[0092] 贯穿本说明书,应该理解在示出或描述末端执行器的情况下,单一成像或立体成像系统/图像获取部件/摄像机设备可能被设置于器械的远端(该设备可能被认为是“摄像机器械”),或者其可能被置于靠近任何导管或其他器械装置元件或位于任何导管或其他器械组件元件的远端。因此,在描述的各方面和实施例的上下文中,术语“成像系统”和本文中使用的同类术语应该被宽泛地解释为包括图像获取部件和具有关联的电路和硬件的图像获取部件的组合。该内窥镜成像系统(例如,光学、红外、超声等等)包括具有置于远端的图像感测芯片的系统和关联电路,该关联电路通过与主体外部有线连接或无线连接传送获取的图像数据。该内窥镜成像系统也可能包括用于传送(例如,使用棒透镜或光纤)捕获的主体外部的图像的系统。在一些器械或器械组件中可能使用直接观察光学系统(在目镜中直接观察内窥镜图像)。编号为11/614,661的美国专利申请“Stereoscopic Endoscope(立体内窥镜)”(Shafer等人)中描述了置于远端的半导体立体成像系统,该申请作为参考被并入本文。为了清楚起见,众所周知的内窥镜成像系统部件如电力和光纤照明连接被省略或象征性地表示。在附图中用于内窥镜成像的照明由一个单个照明端口典型地表示。应该理解这些描述是示例性的。照明端口的大小、位置和数量可能改变。照明端口被典型地排列在成像孔径的多个侧面(multiple sides)上,或完全环绕成像孔径,以最小化深度阴影。
[0093] 本说明书中,典型地使用了套管来防止手术器械或导管摩擦病人组织。套管可能用于切口或自然腔口。当器械或导管不相对于其插入(纵向)轴频繁平移或旋转时,可能不使用套管。当需要使用注气法时,套管可能包括密封以防止过剩注入气体泄漏出器械或导管。例如,对于不需要注气法的胸外科,可能省略套管密封,并且如果器械或导管插入轴运动为最小,那么套管本身可能被省略。刚性导管在相对于导管被插入的器械的一些配置中可以起套管的作用。例如,套管和导管可能为挤压塑料。塑料没有钢昂贵,适合一次性使用。
[0094] 示出并描述了可弯曲手术器械和导管的不同实例和组件。本说明书中该可弯曲是通过不同方式实现的。例如,一段或器械或导管可能是连续弯曲的可弯曲结构,如基于螺旋缠绕线圈或具有被移除的不同段(例如,切缝式切口)的管道。或者,可弯曲部分可能用一系列短的枢轴连接段(“椎骨”)制成,其提供了近似蛇形的连续弯曲结构。器械和导管可能包括公开号为US2004/0138700(Cooper等人)的美国专利申请中的结构,该申请作为参考并入本文。为了清楚,附图和关联的描述通常只示出器械和导管的两段,称为(termed)近端(靠近传动机构;远离手术位置)和远端(远离传动机构;靠近手术位置)。应该理解器械和导管可被分成三段或多于三段,每一段为刚性、被动地变形或主动地变形。如描述的远端段、近端段或整个机构的弯曲或弯折也可以应用到中间段,为了清楚该中间段已被省略。例如,近端段和远端段之间的中间段可能以简单曲线或复合曲线弯曲。可弯曲段可以是不同的长度。当弯曲时,与具有较大外径的段相比,具有较小外径的段可具有较小的最小曲率半径。对于缆线控制系统,当弯曲时,不能接受的高的缆线摩擦力绑限制了最小曲率半径和总弯曲角度。导管(或任何关节)的最小弯曲半径是这样的,其不扭结或以其他方式约束内部手术器械机构的平滑运动。例如,可弯曲部件可能例如长达越4英尺并且直径近似为0.6英寸。用于特定机构的其他长度和直径(例如,长度更短、直径更小)和挠度(degree of flexibility)可能由目标解剖结构确定,已为该目标解剖结构设计该机构。
[0095] 在一些实例中只有器械或导管的远端段是可弯曲,而近端段为刚性。在其他实例中,病人体内的整段器械或导管是可弯曲的。在其他实例中,最远端的段可以为刚性,并且一段或多于一段其他近端段是可弯曲。可弯曲段可能被动弯曲或者其可能被主动控制(“可操纵”)。例如,该主动控制可以使用相对的缆线组来完成(例如,一组控制“俯仰”而正交组控制“平摇(yaw)”;三条缆线可用于执行相似动作)。可以使用其他控制元件诸如小电或磁致动装置、记忆合金、电活性聚合物(“人工肌肉”)、气动或液压波纹管活塞等等。实例中,器械或导管的段完全或部分地处于另一个导管内,可能存在被动弯曲和主动弯曲的不同组合。例如,被动弯曲导管内的主动弯曲器械可能施加足够的横向力以弯曲环绕的导管。同样地,主动弯曲导管可能弯曲其内的被动弯曲器械。导管和器械的主动弯曲部分可能一致工作。对于可弯曲和刚性的器械和导管,与距离中心纵轴较近的缆线相比,距离中心纵轴较远的控制缆线可提供更好的机械优势,这取决于不同设计中的柔度考虑。
[0096] 可弯曲段的柔度(刚度)可能从几乎完全松弛(存在小的内摩擦)变化到基本刚性。在一些方面中,柔度是可控制的。例如,器械或导管的可弯曲段的一段或全部可以制成基本(即,有效地但不是无限地)刚性(该段为“可刚性化的”或“可锁定的”)。可锁定段可以被锁定为直的、简单曲线或复合曲线形状。锁定可能通过将张力施加到沿着器械或导管纵向延伸的一个或多于一个缆线完成,该张力足以引起摩擦,从而防止邻近的椎骨移动。
缆线或多个缆线可能通过每个椎骨中的大的中心孔延伸,或者可能通过接近椎骨的外部圆周的较小孔延伸。作为替代地,移动一个或多于一个控制缆线的一个或多于一个电动机的驱动元件可能被软锁定在适当位置(例如,通过伺服控制)以将缆线保持在适当位置,从而防止器械或导管移动,因此将椎骨锁定在适当位置。可以将电动机驱动元件保持在适当位置以有效地将其他可移动器械和导管组件也在适当位置。应该理解伺服控制下的刚度尽管有效,但通常小于可能通过直接置于关节上的制动装置得到的刚度,诸如用于保持被动设置节点在适当位置的制动装置。缆线刚性通常占主导地位,因为其通常小于伺服系统刚性或制动节点刚性。
[0097] 在一些情况中,可弯曲段的柔度可能在松弛状态和刚性状态之间连续变化。例如,锁定缆线张力可以被增加,以增加刚性但不将可弯曲段锁定在刚性状态。该中间柔度可允许远程手术操作,同时减小由于来自手术位置的作用力引起的运动产生的组织外伤。可弯曲段中整合的适当弯折传感器允许远程手术系统确定器械和/或导管弯折时的位置。公开号为US 2006/0013523的美国专利申请(Childers等人)被并入本文以供参考,其公开了光纤位置形状感测设备和方法。编号为11/491,384的美国专利申请(Larkin等人)被并入本文以供参考,其公开了该段和可弯曲设备的控制中使用的光纤弯折传感器(例如,光纤布拉格光栅)。
[0098] 本文中描述的用于控制微创手术器械组件、器械和末端执行器的多方面的外科医生的输入通常使用直观的、摄像机参考控制界面完成。例如,da 手术系统包括具有该控制界面的外科医生控制台,其可能被修改以控制本文描述的各方面。外科医生操纵具有例如6个DOF的一个或多于一个主手动输入机构以控制从动器械组件和器械。输入机构包括手指操作抓持器用于控制一个或多于一个末端执行器DOF(例如,闭合抓持夹具)。通过定向末端执行器和内窥镜成像系统的相对位置以及外科医生输入机构和图像输出显示的位置,提供了直观的控制。该定向允许外科医生操纵输入机构和末端执行器控制器,好像在基本真实现场观察手术工作地点一样。该远程操作真实现场表示外科医生从好像操作者在手术位置直接观察并工作的角度观察图像。编号为6,671,581的美国专利(Niemeyer等人)被并入本文以供参考,其包含微创手术设备中摄像机参考控制的进一步信息。
[0099] 图1为微创手术器械1及其运动的图示。如图1所示,手术器械1为直的、刚性器械,其通过小切口2插入到体腔(例如,腹腔)或内腔3内。切口2在相对薄的体壁组织结构4上,如腹壁。外科医生通过手(例如,通过操作传统的腹腔镜器械)或通过机器人远程操作(例如,使用Intuitive Surgical直观外科手术股份有限公司的da 手术系统)移动器械1。由于器械1是直的,其运动被切口2部分地约束。器械1可能在其纵轴方向平移(插入或取出),并且可能围绕其纵轴旋转。器械1也可以在中心点5转动,其大约在切口2处,以使末端执行器7扫描整个体积6。器械1远端的可选择的腕机构(未示出)
可能用于控制末端执行器7的方向。但是,在一些情况下,中间组织结构(例如,器官或血管、厚组织壁4、弯曲的身体内腔壁等等)防止器械1在切口2处绕其中心点5在某些或所有方向上旋转,这种旋转会阻止外科医生到达期望的手术位置。
[0100] 如果微创手术器械被设计成在一个位置之间弯曲,在该位置微创手术器械进入病人和手术位置,那么中间组织结构不约束器械的末端执行器的定位。该弯曲可能以两种方式进行。第一种,两个或更多长的、刚性主体段由关节各自耦合在一起。第二种,使用上面描述的可弯曲机构。刚性主体段和可弯曲机构的位置被主动控制以在器械的远端定位和定向末端执行器。
[0101] 图2A为根据本发明各方面的另一微创手术器械10及其运动的图示。如图2A中所示,器械10包括说明性近端器械主体段10a和说明性远端器械主体段10b。在一些方面中可能使用多于两个主体段。如上述,近端主体段10a和远端主体段10b都为直的、刚性的。
作为替代地,主体段10a和主体段10b中的一个或两者可以按特殊路径或任务弯曲。两个主体段10a和10b在关节11处耦合,允许远端主体段10b移动。在一些方面中,关节11允许段10b以单一DOF关于段10a移动,并且在其他方面中关节11允许段10b以两个DOF关
于段10a移动。器械10可以沿其纵(插入)轴平移。在一些方面中,近端段10可以围绕
其纵轴滚动。因此,位于远端主体段10b远端的末端执行器7可以被定位在体积12内。在一些方面中,关节11提供单一DOF,这样末端执行器7沿平面曲线扫描,其随着近端段10a围绕其纵轴旋转而旋转。在一些方面中关节11提供两个DOF,这样末端执行器7沿曲面扫描。体积12的高度取决于器械10插入的量。体积12作为示例性的具有凹/凸的末端的
圆柱体被示出。其他体积形状是可能的,这取决于器械10的远端处的段和关节的运动。例如,在一些方面中,远端段10b可能从段10a的纵轴移位大于90度的角θ(向后弯向其自身被称为“向后弯曲(retroflexive)”)。可选择的腕机构(未示出)可用于改变末端执行器7的方向。
[0102] 与图1中示出的器械1不同,器械10不受体壁处枢轴点的约束,因为关节11深入病人体内。因此,器械10可以被插入病人体内并穿过中间组织结构13,在其他方式下该中间组织结构13将约束器械1的运动(例如,如果要进行胃部手术,则食道是中间组织13),或者该中间组织结构13不能被扰乱(例如,脑组织,如果将进行神经外科手术)。因此,手术器械10的各方面允许外科医生到达使用器械1不能到达或操作的组织。去除手术器械段为直的、刚性的约束甚至允许手术通路进入组织结构。
[0103] 作为只使用刚性器械主体段的替代,可替代地使用一个或多于一个可弯曲段。图2B为根据本发明各方面的另一微创手术器械15及其运动的图示。如图2B所示,手术器械
15具有近端主体段15a和远端主体段15b。如上所述,远端主体段15b是可弯曲的,而不是直的和刚性的。在一些方面中,可弯曲远端段15b在中间位置15c耦合到直的(或作为替代地,弯曲的)、刚性近端段15a。在其他方面中,近端主体段15a和远端主体段15b两者都是可弯曲的,并且中间器械主体位置15c为连接该两段的示例性位置。器械主体段15b以示例性简单曲线示出。在以下讨论的其他各方面中,主体段15b可以是二维空间或者三维两者之一中的复合曲线。
[0104] 手术期间,器械15将末端执行器7定位在示例性体积16中的不同位置。器械主体段15a仍然被中间组织结构13限制,并且器械主体段15b弯曲。远端段15b的长度和弯曲半径确定器械15是否能进行向后弯曲的操作。器械主体段15b的复合弯曲将允许外科医生在体积16内另一中间组织结构13a的周围操纵。(如果器械10(图2A)具有两个或多于两个远端段,类似动作可能被执行。)可选择的腕机构(未示出)用于控制末端执行器7的方向。另外,在一些方面中,如果可弯曲段15b被设计用于传递滚动,那么末端执行器7可以由滚动器械15滚动(具有或者不具有腕机构)。
[0105] 图2A和图2B所示的手术器械10和15不限于单一器械。手术器械10和15所示的结构可应用在以下组件中:该组件结合如下描述的一个或多于一个不同导管、手术器械和导引探测器(guide probes)。并且,一个或多于一个成像系统(内窥镜)可被添加到该器械和器械组件。下面描述的各方面结合附图是在是图2A和图2B中一般描述的示例性方面。因此,本发明的各方面提供多个远程操纵手术器械,每个手术器械独立于另一手术器械独立工作,并且每个手术器械具有末端执行器,该末端执行器在笛卡尔空间中具有至少六个主动控制的DOF(即,纵荡、升沉、横荡、滚动、俯仰、平摇),其通过病人的单一入口。进一步地,本发明的方面提供多个远程操纵手术器械,每个手术器械独立于另一个手术器械工作并且每个手术器械具有末端执行器,该末端执行器在笛卡尔空间中具有至少六个主动控制的DOF(即,纵荡、升沉、横荡、滚动、俯仰、平摇),其通过病人的单一入口并穿过限制刚性器械主体横向运动的中间组织。笛卡尔空间中末端执行器的六个DOF不包括例如移动导管提供的DOF内,通过该导管,器械延伸到达手术位置。
[0106] 手术器械组件
[0107] 图3为微创手术器械300的示意图。典型地,手术器械300通过套管302或通过自然腔口或切口插入病人体内。末端执行器304安装在器械300的末端。在一些实例中器械300的主体沿其整个长度以类似于现有可弯曲微创手术器械的方式被动弯曲。例如,缆线轴向地通过螺旋缠绕线圈和保护缆线的外部护套,并且缆线在线圈内平移以操作末端执行器(例如,“Bowden”缆线)。另一个示例中,一系列小的环形椎骨段可用于使器械300弯曲。在其他实例中,器械300的主体可被分成近端段306和远端段308。每个器械主体段
306、308都可能为刚性的、可被动弯曲或可主动弯曲的。可弯曲段可在不同的直的或弯曲的位置成为刚性(“可刚性化”或“可锁定(lockable)”)。例如,如图3所示,近端段306可能为固有刚性或锁定刚性(lockably regid),并且远端段308可被动弯曲或主动弯曲。在其他实例中,近端段306和远端段308(实质上器械302的整个段在病人体内)在不同的结合中可能被动弯曲或主动弯曲并刚性化。
[0108] 图3中示出的手术器械300为末端执行器304提供了不同的自由度。例如,为了控制末端执行器304的位置,指定了器械300插入和远端段308弯曲的结合。为了控制末端执行器304的方向,指定了器械300滚动和远端段308弯曲的结合。因此,如果远端段308只能被设置成简单曲线(如替代位置310所示),那么可得到4自由度。如果指定末端执行器304的位置,那么末端执行器304俯仰和平摇是该位置的功能。如果指定末端执行器
304的方向,那么升降和横荡定位是该定向的功能。因此,远端腕机构被添加以控制末端执行器304的方向,以便可指定位置和方向。如果远端段308可被设置成复合曲线(如替代位置312所示),那么可得到6自由度,并且末端执行器304的位置和方向可被指定。虽然末端执行器304的位置和方向可能在该6自由度器械中独立指定,远端腕机构可能被添加以提供对末端执行器304方向的增强控制。例如,当远端段308保持在特殊位姿时该增强控制允许俯仰和平摇位移,该俯仰和平摇位移大于由远端段308可以呈现的不同位姿提供的位移,在组织约束远端段308的位姿形状的手术情况下允许俯仰和平摇位移。
[0109] 图4为说明了微创手术器械组件400的各方面的示意图。器械组件400包括手术器械402和导管404,手术器械402类似于根据图3描述的手术器械300。导管404具有至少一个纵向通道406,其可能被全部或部分地密封,该通道406从近端408通向远端410延伸。手术器械402延伸通过通道406并且可以例如卡扣装配到不旋转的套筒,以在导管404内保持位置。除关联主动控制机构(例如,用于操纵或锁定的缆线)的通道外,导管404可具有其他通道(未示出),冲洗或抽吸可能通过该通道被提供到手术位置。末端执行器412被耦合到手术器械402的远端。器械组件400通过套管414或通过自然腔口或切口被插入到病人体内。在一些实例中,套管型导引装置可用于通过自然腔口协助插入。套管414和该套管型导引装置可能为直的或弯曲的以便于插入(例如,用于喉部手术)。手术器械组件
400的横截面可能为圆形或其它形状(例如,椭圆、圆角多边形)。如上述,手术器械402和导管404的不同结合可能为刚性、可被动弯曲以及可主动弯曲,并可以可变地柔性和/或锁定(lockable)。在一些实例中,可选择的内窥镜成像系统(未示出)可以在导管404的远端。
[0110] 如同一些或全部手术器械300(图3)可以被弯曲以移动其末端执行器到不同的位置和方向,手术器械组件400可被类似地弯曲以移动末端执行器412到不同位置和方向。远端段416或器械组件400的整个长度可被主动弯曲,以升降和/或横荡末端执行器412。
弯曲和滚动的结合也可用于移位末端执行器412。如上述,横向平移期间复合弯曲可避免末端执行器412俯仰和/或平摇。替代位置418和420说明了这些主动弯曲。根据本发明的
一方面,在一些实例中导管404的远端段416为末端执行器412提供了小的腕形俯仰和平摇定向。器械组件400的其他段提供末端执行器滚动和定位。
[0111] 手术器械组件400可能为末端执行器412提供比手术器械300为末端执行器304所提供的更多的自由度和一些冗余度,如根据图3所描述。如图4所示,在一些方面中,手术器械402可以在导管404内旋转,和/或导管404可以在套管414(或自然腔口)内旋转,以使末端执行器412以绕器械组件400的纵轴的方式移位。手术器械402可以在导管404
内平移,和/或导管404可以在套管414内平移,以使末端执行器412沿器械组件400的纵轴移位(纵荡)。可替代地,器械402被保持在导管404内的位置,如下面所描述。导管的远端段416施加到手术器械远端402的横向弯曲力足够大到允许末端执行器412执行其手术任务。在一些实例中,末端执行器412可能通过提供一个或多于一个附加DOF(例如,滚动、俯仰、平摇)的腕机构耦合到手术器械402的远端。
[0112] 图4也说明了当导管弯曲时,该弯曲不准约束通过其内的器械或另一导管的操作。例如,导管404不准以这种方式弯曲:缆线操作的末端执行器412被摩擦力束缚或被永久地扭结。在一些方面中,曲率半径由例如组成可弯曲导管的单独椎骨的结构机械地限制。在其他方面中,曲率半径由下面描述的控制系统限制,以提供例如致动期间更平滑的行为。进一步地,在一些方面中用于内部器械或导管的缆线不准移动到它们的近端和远端之间的较短路径,以便它们控制的部件在导管弯曲时不受影响(该移动可能通过以下方式补偿:使用远端弯曲/形状传感器和维持适当缆线长度的控制系统)。通过使用用于缆线延伸通过可弯曲关节的中心的护套(例如,Bowden缆线)或者通过缆线选定路线通过关节外围,如下文描述的用于虚拟(virtual)枢轴点关节,缆线路径长度可能被稳定。
[0113] 在一些实例中,手术器械402是可移除的,并且可以用不同的手术器械替换,该不同的手术器械具有与器械402相似的结构但具有不同的末端执行器以执行不同的手术任务。因此,单一导管404可能用于为一个或多于一个可互换手术器械402提供腕形DOF。在一些实例中,当导管404仍在病人体内时手术器械可能被互换。下面更详细地描述了该可互换性。导管允许新插入的器械直接定位在手术位置,与轨迹无关。无论器械402是否被全部或部分地插入,手术期间一个导管404可能被取出并替换为另一个。由于一些或所有的可控制DOF在导管中,因此在一些方面中器械可以制成廉价的并且是一次性的,并且导管可以制成可消毒的和可重复使用。
[0114] 图4A和图4B为说明了可移除器械的各方面的透视图,该器械被保持在导管440内的适当位置。导管440的远端442具有开口444,器械的远端通过该开口穿过。开口444可选择地被制成非圆形以防止器械在导管440内滚动。可任选的配件446(例如,接啮合到稳定装置的弹簧等等)将器械的末端执行器448保持在适当的位置,以避免器械平移通过导管。当配件446防止器械平移时圆形开口444允许器械滚动。当配件446释放器械时(例如当施加了足够大的拉力时),器械可能从导管中被取出。在一些方面中远端442可以是用于器械的末端执行器的腕机构。防止滚动配置和配件被示例性地示出在导管的远端,但其可位于不同的位置(例如,在导管的插入末端)。在以下描述的不同方面中,防止滚动配置和配件可以用于其他器械和导管结合,应理解防止滚动配置和配件将去除冗余插入DOF和/或冗余滚动DOF。
[0115] 器械组件400可以刚性化或被锁定的状态插入,或者其可在插入期间被主动操纵以到达目标手术位置。在一些方面中,作为替代地,器械402和导管404被同轴推进。例如,器械402被主动操纵,一部分沿轨迹到手术位置并且接着被锁定(只有器械(或导管)的远端部分需要被主动操纵;当器械(或导管)推进时更多近端部分可以是被动或可以使用曲线传播)。曲线传播在例如Ikuta,K.等人的“Shape memory alloy servo actuator system with electric resistance feedback and application for active endoscope(具有电阻抗反馈的形状记忆合金伺服致动系统和有源内窥镜的应用)”1988IEEE International Conference on Robotics and Automation,April 24-29,1988,Vol.1,pages 427-430中公开,其被并入本文以供参考。导管404接着被动地推进到器械402的远端并被锁定以支撑器械402的进一步推进。同轴交替推进和锁定继续进行,直到沿期望的轨迹到达手术位置。作为替代地,导管404可主动操纵并锁定,并且器械402在导管中可被动推进并锁定,直到到达手术位置。如果手术器械402和导管404都可主动操纵,那么随着它们同轴推进并锁定,它们可能沿着到手术位置的轨迹互相“交替前进(leapfrog)”。该同轴插入也可能和本文描述的两个或更多个器械和导管的任何结合一起使用。
[0116] 图5为说明了第二微创手术器械组件500的各方面的示意图。手术器械组件500说明了两个或更多个手术器械502a、502b可被单个导管504围绕。手术器械502a、502b可以在单一通道506中纵向通过导管504。或者,手术器械502a、502b可能在唯一的、单独的通道506a、506b中各自通过导管504。末端执行器508a、508b各自耦合到器械502a、502b的远端。器械组件500通过套管510被插入,如上所述。器械组件500的横截面可能为圆形、椭圆或其他形状(例如,圆角矩形或其它多边形)。手术器械502a、502b和导管504的各种结合可以是刚性、被动弯曲和主动弯曲,以及可锁定的,如上所述。说明性的任选成像系统511(例如,具有关联的光学器件和电子设备的一个或多于一个的图像获取芯片)位于导管504的远端。成像系统511具有视场,该视场可用于协助推进导管504并允许外科医生观察末端执行器508a、508b在手术位置工作。
[0117] 手术器械组件500以类似于手术器械组件400(图4)的方式操作,除了它是说明性的方面,其中两个或多于两个手术器械从近端通过单一导管延伸到远端。因此,附加通道、主动弯曲和被动弯曲、锁定/刚性、不同DOF、腕机构的可选使用、器械可互换性、交替同轴推进和套管的上述描述应用到器械组件500。远端段和整个组件可弯曲性由替代位置线512和514说明,类似于上述图中所示。如上所述,导管504的复合弯曲为末端执行器508a、
508b提供了至少6个DOF。可以进行如上所述的交替同轴推进。该推进的不同方式是可能的。例如,在一些方面中,可使用这两种器械并且导管滑过这两种器械;在其他方面中,首先一个器械被推进并锁定,接着导管被推进并锁定,接着其他器械被推进并锁定等等。
[0118] 图6为说明了第三微创手术器械组件600各方面的示意图。手术器械组件600以类似于手术器械组件400(图4)的方式操作,除了其为说明性的方面以外,其中手术装置602的主动弯曲远端段604延伸超出导管606的远端。导管606的远端段608和/或整个
导管606的主动弯曲由替代位置线610和612说明。器械602的远端段604的主动弯曲将
末端执行器614移动到说明性的替代位置616。因此,根据器械602的远端段604运动、根据导管606的远端段608的运动和/或远端段604、608的运动的结合,末端执行器614经
历腕形DOF(例如,滚动、俯仰、平摇)。这样,器械组件600说明的方面中,器械和导管的结合为末端执行器614提供冗余位置与方向DOF。附加通道、主动弯曲和被动弯曲、锁定/刚化、不同自由度、增加的横向力应用和刚度、腕机构和成像系统的选择使用、器械可互换性、交替同轴推进和套管的上述描述应用到器械组件600。
[0119] 图7为说明了第四微创手术器械组件700各方面的示意图。如图7所示,手术器械702沿器械组件700的纵轴延伸通过主导管704。另外,主导管704沿纵轴延伸通过辅助导管706。在一些实例中,手术器械组件700通过套管708被插入。末端执行器710被耦合到手术器械702的远端以便其延伸超过主导管704的远端。
[0120] 不同于关联其特定任务(例如,抓持)的固有一个或多于一个DOF,末端执行器710的冗余自由度以不同的方式提供。手术器械702可在主导管704内旋转,和/或主导管
704可能在辅助导管706内旋转,和/或辅助导管706可在套管708(或自然腔口或切口)
内旋转,其导致末端执行器710以围绕器械组件700纵轴滚动的方式移动。手术器械702可在主导管704内平移,和/或第一导管704可能在辅助导管706内平移,和/或辅助导管
706可在套管708(或自然腔口或切口)内平移,以沿器械组件700的纵轴移动(纵荡)末
端执行器710。
[0121] 如图7所示,主导管704的主动弯曲远端段712延伸超过辅助导管706的远端。远端段712会导致末端执行器710升降和/或横荡(伴随上述俯仰和平摇),从而添加了一个或两个附加自由度,如替代位置714所说明。类似地,辅助导管706的主动弯曲远端段716或整个辅助导管706会导致末端执行器710升降和/或横荡,从而添加一个或两个自由度,如替代位置718和720所说明。由于器械组件700为末端执行器710提供了滚动、升降和横荡移位的不同结合,可以不需要腕形机构来将末端执行器710耦合到手术器械702,尽管该机构可用于提供附加的一个或多于一个自由度(例如,滚动、俯仰、平摇)。
[0122] 如图7中替代位置线所示出的,主导管和辅助导管可以用简单弯曲和复合弯曲的不同结合操纵末端执行器710。在一个示例性实施例中,辅助导管702的主动弯曲用于末端执行器710的相对大的运动,并且主导管远端段712的主动弯曲用于末端执行器710的相对小的腕形运动。该运动的大小取决于远端段712沿伸超过辅助导管706的距离,并且这样可能提供类似于图2B中描述的运动。
[0123] 在一些实例中,手术器械702可延伸超过主导管704,如图6中所描述。附加通道、主动弯曲和被动弯曲、锁定/刚化、不同自由度、增加的横向力应用和刚度、器械可互换性、交替同轴推进和导管的上述描述应用到器械组件700。另外,由于辅助导管706具有比主导管704更大的外径,用于辅助导管706的致动和锁定机构可提供相对于反作用力增加的横向力和刚度,其大于器械702或主导管704可单独提供或一起提供的横向力和刚度。
[0124] 图8为说明了第五微创手术器械组件800的各方面的示意图。手术器械组件800说明了两个或多于两个主导管802a、802b可能被单一辅助导管804围绕。说明性的手术器械806a、806b沿伸通过各自主导管802a、802b。主导管802a、802b具有通常近似于手术器械组件400(图4)的结构体系。但是在一些实例中,一个或多于一个主导管802可具有类似于手术器械组件500(图5)或手术器械组件600(图6)的结构。沿伸超过辅助导管804的末端的主导管802a、802b的远端段的主动弯曲由替代位置线808a、808b说明。主导管802a、802b的远端段可以移动末端执行器809a、809b,使其在病人体内手术位置的不同位置彼此接近,以执行不同的手术任务。辅助导管804的不同的主动弯曲由可替代位置线
810a、810b说明。附加通道、主动弯曲和被动弯曲、锁定/刚化、不同自由度、增加的横向力应用和刚度、腕机构的选择使用、器械可互换性、交替同轴推进和套管的上述描述应用到器械组件800。
[0125] 在一些实例中,由虚线框示意性表示的内窥镜成像系统812位于辅助导管804的远端。如上所述,成像系统812可以单一成像或立体成像并且可具有与器械组件800的纵轴成一直线或成某一角度(例如30度)的视角。在一些实例中,成像系统812位于主导管802a、802b之间。在其他实例中,成像系统812位于主导管802a、802b的上面、下面或侧面,以使辅助导管804的横截面更加紧凑(例如,主导管802a、802b上面的一个立体透镜窗口和其下面的立体透镜窗口;如果主导管向外弯曲,并且接着与瞳孔间的轴大致共面地向内朝向手术位置,则该配置的摄像机参考控制变得可能)。
[0126] 图9是说明了第六微创手术器械组件900的各方面的示意图。器械组件900类似于器械组件800(图8),除了说明性附加手术器械902通过辅助导管904延伸,但手术器械902不被主导管围绕。因此,手术器械902和辅助导管904之间的关系类似于所描述的图4和图6所示的手术器械和导管之间关系。主导管906a、906b和器械908a、908b组件之间的关系类似于图7和图8说明的各方面描述。器械组件900是说明性的辅助导管,一个或多于一个主导管、器械组件和不具有导管的一个或多于一个器械延伸通过该辅助导管。
[0127] 在一些实例中,手术器械902为刚性的或可被动弯曲的,并且其末端执行器910用于抓持和拖拉组织以协助末端执行器912a和912b在器械908a、908b末端执行的手术任务。尽管为刚性的或可被动弯曲的,器械902能够以相当大的力拖拉。在其他实例中,手术器械可能执行其他功能,如缩回、冲洗、抽吸等等。进一步地,如果内窥镜成像系统位于辅助导管904的远端,如器械组件800(图8)所示,那么器械902可能用于服务(例如,以一股液体清洗)成像系统的窗口。
[0128] 在其他实例中,如上所述,手术器械902的远端可主动弯曲,并且末端执行器910被替换为内窥镜成像系统914,如图9A所示。在这些实例中,远端成像设备可能通过腕形机构916耦合到手术器械902的可主动弯曲末端,该腕形机构916提供至少一个俯仰自由度。该结构体系允许图像感测设备从主导管906a、906b的远端之间向外移动,并且接着视角俯仰(和/或平摇)以将视场中心对准末端执行器912a、912b工作的区域。该结构允许外科医生通过进入身体的单一入口、具有两个独立致动的手术末端执行器和独立于手术器械的内窥镜成像系统在手术位置工作。图9A中说明的独立控制的成像系统的另一个好处是组织收缩,如以下根据图17A更加充分描述的那样。
[0129] 根据上述的方面,一个或多于一个手术器械在导管的远端引出,其可能为平面或其他形状、正方形的或倾向于组件的纵轴。根据其他方面,一个或多于一个手术器械从导管的侧面引出。图10为说明了第七微创手术组件1000中这些方面的示意图。
[0130] 如图10所示,两个手术器械1002a、1002b(示例性的两个或多于两个器械)纵向地延伸通过导管1004。器械1002a、1002b通过侧面出口1008a、1008b从导管1004的远端段1006中引出,而不通过导管1004的最远端引出。侧面出口1008a、1008b通常可能定向为彼此相对(即,彼此成大约180度)或它们可能分开较小的角(例如,120度)。并且,在多于两个出口用于一个、两个或多于两个器械1002的方面中,围绕远端段1006,侧面出口可具有不同的角度定向。在一个方面中,与另一侧面出口相比,一个侧面出口距离导管204的远端尖端较远。器械1002a的远端段1010a和器械1002b的远端段1010b可各自独立地主动弯曲,以移动末端执行器1012a、1012b在手术位置工作。器械简单弯曲或复合弯曲与滚动和插入的各种结合以及可任选腕机构提供了期望的末端执行器DOF。内窥镜成像系统
1014位于导管1004的远端。成像系统1014的视角可与器械组件1000的纵轴成一直线,或者视角可与纵轴成一个角度(例如,30度)。在一些方面中,视角可以在手术过程期间被主动改变,例如通过使用一个或多于一个可移动的反射面(镜子、棱镜)。将附加通道、主动弯曲和被动弯曲、锁定/刚化、不同DOF、增加的横向力和刚度、腕机构的选择使用、器械可互换性和套管的上述描述应用到器械组件1000。
[0131] 手术装置1000通过切口或自然腔口被插入到病人体内,在一些实例中,通过套管1016或相似导引结构被插入,如上所述。在一些实例中,随着导管1004被插入,手术器械
1002a、1002b全部或者部分地缩回,以便当导管1004朝手术位置推进时它们不超出开口
1008a、1008b延伸。来自成像系统1014的图像可协助推进。一旦导管1004位于手术位置,器械1002a、1002b可接着被插入和/或在导管1004内推进以到达手术位置。导管1004可在手术过程期间被主动弯曲,以在手术位置提供粗略运动,而器械远端段1010a、1010b执行精细运动以完成手术任务,如替代位置线1018a、1018b所说明。当通过末端执行器1012a、
1012b执行手术任务时,外科医生从成像系统1014观察图像。当远端段1010a、1010b从侧面出口1008a、1008b引出时,由于外科医生不能从成像系统1014看到远端段1010a、1010b的图像,在一些方面中如下描述,当远端段1010a、1010b从导管1004引出时,控制系统控制远端段1010a、1010b,以使它们弯曲从而到达成像系统1014的前面。在其他方面中,如下所述,管腔空间被映射,并且控制系统使用映射数据导引末端执行器进入成像系统1014的视场。在其他方面中,导管的远端可被移动到例如已知空间的左侧,从而允许右侧器械被插入到导管右侧的“安全”空间。接着,同样地,导管的远端被移动到右侧并且左侧器械被移动到导管左侧的“安全”空间内。对于导管的远端独立于器械引出的导管部分向上移动的方面,器械可能类似地被插入到“安全”空间,该“安全”空间位于向上移动的导管末端的下面。对于取出操作或后续的大的重新定位,器械1002a、1002b可通过侧面出口1008a、1008b取出,也可部分地进入导管1004或从导管1004中全部被取出。
[0132] 图11为说明了第八微创手术组件1100的示意图。如图11所示,手术器械1102a通过主导管1104a沿其纵轴延伸。相似地,手术器械1102b通过主导管1104b沿其纵轴延伸。末端执行器1106a、1106b耦合到器械1102a、1102b的远端。主导管1104a、1104b通过辅助导管1108纵向延伸。手术器械1002a、1002b以相似方式从导管1004远端段1106的侧面
出口1008a、1008b引出,主导管1104a、1104b从辅助导管1108的侧面出口1110a、1110b引出。主导管1104a、1104b的远端段1112a、1112b主动弯曲以移动末端执行器1106a、1106b,如替代位置线1114a、1114b所说明。内窥镜成像系统1116位于辅助导管1108的远端。将附加通道、主动弯曲和被动弯曲、锁定/刚化、不同DOF、增加的横向力应用和刚度、腕机构的选择使用、器械可互换性、套管和内窥镜成像系统的上述描述应用到器械组件1100。
[0133] 器械组件1100以类似于器械组件1000(图10)的方式操作。两个方面的主要差别是组件1100中使用了辅助导管和主导管。因此器械组件1100和1000之间的关系类似
于器械组件800(图8)和器械组件500(图5)之间的关系。将插入、插入和重新定位期间
全部或部分器械缩回、成像系统的使用、主导管和辅助导管的使用和控制器械延伸的上述描述应用到器械组件1100的各方面。
[0134] 图11A和图11B为手术器械组件的端视图,并且它们说明了侧面出口装置如装置1000(图10)和装置1100(图11)可能用于减小导管或辅助导管的全部横截面区域。图
11A为组件的示意图,如组件800(圆形截面形状仅仅是说明性的),其中器械/导管的结合
802a、806a和802b、806b从导管或辅助导管的末端引出。在该说明性示例中,成像系统812为立体成像系统,具有成像端口和示例性照明端口1122之间的瞳孔间距1120。如图11B的说明性示例,侧面出口组件的器械/远端导管段的结合1102a、1112a和1102b、1112b与图
11A所示的结合802a、806a和802b、806b具有相同的横截面大小。并且,说明性的立体成像系统1116具有与图11A所示的成像系统812相同的瞳孔间距1120。如果内窥镜图像在
导管的末端被捕获并数字化,那么图像获取和数字化部件的导管区域近端可以用于器械和致动而不是用于光学器件(例如,光纤束、棒透镜等等)。因此,图11B的侧面出口导管的长方形横截面区域小于图11A的末端出口导管的横截面区域,并且成像系统的瞳孔间距相同。对于例如要使用的切口的大小和位置、特殊自然腔口的大小、或入口和手术位置之间的中间组织的位置,该减小的横截面区域可能是优势。该长方形截面形状可以用于本文描述的其他器械组件导管。
[0135] 图12为说明了第九微创手术器械组件1200的各方面的示意图。器械组件1200类似于器械组件1100,具有从辅助导管1204的远端延伸的附加手术器械1202。手术器械
1202以类似于手术器械902(图9)的方式操作,在一些方面中为刚性的,在其他方面中为可被动弯曲或主动弯曲,如上所述。并且,末端执行器1206可能替换为根据图9和图9A或图
17和图17A描述的内窥镜成像系统,以便在一些方面中器械组件1200具有独立操作的、可选择腕安装的内窥镜成像系统1208,如图12中所说明。
[0136] 图12A和图12B为说明了侧面出口导管的示例中向后弯曲位置的实施例的图示,类似于上述用于末端出口导管的向后弯曲运动。图12A说明了在一方面中侧面出口器械组件1220在与侧面出口1222a和1222b(关于视场参考平摇)近似共面的平面内主动弯曲。图12B说明了在另一方面侧面出口器械组件1230在与侧面出口1232a和1232b(隐藏)(关
于视场参考俯仰)近似垂直的平面内主动弯曲。组件1230的弯曲半径可小于组件1220的弯曲半径,其他尺寸实质上相同,归因于机械结构,在一些方面中,侧面出口机械组件可同时平摇和俯仰,并且组件可在侧面出口的远端平摇/俯仰。
[0137] 图13和图14为说明了微创手术器械组件1300(图13)和1400(图14)的第十和第十一方面的示意图。手术器械组件1300和1400结合了图3到图12B中说明的手术器械
组件和关联描述的各方面。特别地,器械组件1300说明的方面中,一个或多于一个手术器械1302从导管1306的远端段1304的末端引出,并且一个或多于一个其他手术器械1308
从位于导管1306的远端段1304的侧面出口1310引出。同样地,器械组件1400说明的方
面中,一个或多于一个手术器械1402同轴延伸在一个或多于一个主导管1404中,该一个或多于一个主导管1404从辅助导管1408的远端段1406的末端引出,并且一个或多于一个其他手术器械1410同轴延伸通过一个或多于一个其他主导管1412,该一个或多于一个其他主导管1412在辅助导管1408中同轴延伸,并从辅助导管1408的远端段1406的一个或多
于一个侧面出口1414引出。将附加通道、主动弯曲和被动弯曲、锁定/刚化、不同DOF、增加的横向力应用和刚度、腕机构的选择使用、器械可互换性、套管和内窥镜成像系统的上述描述应用到器械组件1300和1400。
[0138] 在很多实例中,本文中描述的器械或器械组件可以主动或被动地定位在手术位置。充分可弯曲和可操纵的手术器械或手术器械组件如本文中所描述的,可以和器械或装置的一个或多于一个段一起被插入,该器械或组件的一个或多于一个段的功能根据下文的插入描述。但是,在一些实例中导管可以用于初始定义入口和手术位置之间的一些或所有轨迹。可以通过使用例如来自引导探测器远端尖端的成像系统的图像数据、来自外部成像系统(例如,超声、荧光透视法、MRI)的实时图像数据、外科手术前图像数据和可能轨迹的计算机分析以及这些数据的各种组合来对导引探测器进行操纵。
[0139] 图15A到图15D为说明了插入可弯曲、可操纵的手术器械和手术器械组件的各方面的示意图,如本文中所描述,通过使用导引探测器操纵,穿过中间组织结构以到达病人体内的手术位置。可以通过自然腔口或切口插入,不论是否使用上述的套管(未示出)。如图15A所示,第一中间组织结构1502阻止手术器械或手术器械组件与旋转中心点在其通常进入体内的位置一起操作,如图1所示。另外,第二中间组织结构1504存在于两位置之间,该两位置为器械或器械组件通过第一中间组织结构1502的位置和目标手术位置1506,如图
2B所示。器械或器械组件必须在中间组织结构之间或周围被引导,以到达手术位置。
[0140] 如图15A所示,在一个方面中,导引探测器1508被插入并通过第一中间结构1502,并且接着围绕第二中间组织结构1504被主动操纵以到达手术位置1506或另一个期望的位置。导引探测器的主要功能是建立到达手术位置的轨迹。可选择的内窥镜成像系统1509可能安装在导引探测器1508的远端尖端。在一些方面中,在插入期间使用上述的曲线传送——随着其向手术位置推进,通过操纵远端初始形成的曲线自动地在导引探测器的近端方向传送。该曲线传送使用例如下面描述的控制系统完成。一旦导引探测器处于其期望的位置,其接着被刚性化以便保持其两维或三维曲线形状。下一步,导管1510通过导引探测器1508被同轴地插入,如图15B所示。导管1510可能被插入到所示的中间位置或其可能被插入并被操纵到手术位置1506,如替代位置线所示。在一些方面中,导引探测器和导管可能被同轴地插入,首先插入第一个,接着另一个,以重复的、交替的方式被插入。导管1510为不同主导管和辅助导管的说明,如图4到图14中所示的导管。一旦导管1510处于其期望位置,则接着被刚性化以保持导引探测器1508限定的形状,导引探测器接着被取出,如图15C所示。在导引探测器被取出后,手术器械或手术器械组件1512可能接着被插入通过导管1510到达手术位置1506,如图15D所示。
[0141] 为了方便导管插入,在一个方面,导引探测器超出同轴导管延伸的距离足以允许导引探测器进入病人体内并到达手术位置。接着,导引探测器被同轴地插入。在替代方面中,导引探测器的近端部分(例如,传动机构;参看图27的说明性视图)是可去除的,从而允许导管被同轴地插入到导引探测器上。
[0142] 如根据手术器械组件400(图4)的说明性示例,导引探测器被插入,导管404被插入到导引探测器上,导引探测器被取出,并且接着手术器械402通过导管404被插入。相似的过程可以用于具有多个器械通道的导管,如手术器械组件500(图5)。如根据手术器械组件700(图7)的另一说明性示例,导引探测器被插入,主导管704被插入到导引探测器上,辅助导管706被插入到主导管704上,导引探测器被取出,并且器械702通过主导管704被插入。作为替代地,具有相对较大外径的导管探测器被插入,辅助导管706被插入到导引探测器上,导引探测器被取出,并且主导管704和器械706接着通过辅助导管706被插入。相似的过程可以用于具有两个或多于两个主导管和/或器械通道的辅助导管。如另一个说明性示例,导管1510类似于套管708,并且器械组件700通过导管1510被插入。插入顺序的很多变化是可能的,并且在本发明的范围内。
[0143] 再次参看图2A,可看出微创手术器械的刚性远端段也可以提供通过中间组织结构到达体内的大的体积深度的通路。该机构可在机械方面制作和操作更加简单,并且因此可以比使用可弯曲技术的系统更加便宜、更加易于控制。并且在一些方面中该机构可以背靠其自身工作,以提供类似于上述的向后弯曲的能力。
[0144] 图16为说明了第十二微创手术器械组件1600的各方面的示意图。如图16所示,两个手术器械1602a、1602b通过通道1604a、1604b延伸,通道1604a、1604b通过刚性导管1606纵向延伸。在一些方面中导管1606是直的,而在其他方面中它是弯曲的以提供特殊插入端口(器械被同样地弯曲以便于插入)。导管1606可以具有不同的截面形状(例如,圆形、椭圆形、圆角多边形),并且可能使用不同数量的手术器械和通道。可以使用一些可选择的工作通道以提供支持手术功能,例如冲洗和抽吸。在一些方面中,内窥镜成像系统(例如,单一像或立体图像获取或直接观察)位于导管1606的远端1610。在一个方面中,在使用或不使用套管1612或类似的导引结构的情况下,导管1606通过切口(例如,在脐处,大约2cm)或自然腔口插入病人体内。在一些方面中导管1606可以在套管1612中旋转。
[0145] 如图16所示,手术器械1602a和1602b功能相同,并且很多器械功能(主体滚动、腕操作、末端执行器操作等等)类似于da 手术系统(器械主体直径为8mm和5mm)中使用的手术器械。在其他方面中,器械的功能可能不同,并且/或者具有da 手术
器械不包含的能力(例如,一个器械可能是直的,一个器械可能具有关节,一个器械可以可弯曲等等)。在图16示出的说明性方面中,器械1602a包括位于其近端的传动部分(未示出)、伸长的器械主体1614、不同手术末端执行器1616中的一个,和蛇形两个自由度腕机构
1618,该腕机构1618将末端执行器1616耦合到器械主体1614。如da 手术系统中
那样,在一些方面中传动部分包括与电力致动装置(例如,伺服电动机)接合的圆盘,该电力致动装置永久安装在支撑臂上以便容易地改变器械。诸如匹配的万向节板和杠杆之类的其他联接可能在机械接口处用于传递致动力。传动部分中的机械机构(例如,齿轮、杠杆、万向节)将致动力从圆盘传递到穿过器械主体1614(可能包括一个或多于一个铰接段)中的一个或多于一个通道的多条缆线、多条线和/或缆线、线和海波管(hypotube)组合,以控制腕1618和末端执行器1616运动。在一些方面中,一个或多于一个圆盘和关联的机构传递致动力,该致动力使器械主体1614围绕其纵轴1619滚动,如图所示。在一些方面中用于特殊器械的致动装置本身安装在单一线性致动装置上,该单一线性致动装置在通道1604a内纵向移动器械主体1614,如图所示。器械主体1614的主要段是基本刚性的单一管,尽管在一些方面中其可能有一些弹性并可弯曲。该小的可弯曲性允许导管1606近端的近端主体段1620(即,病人体外)有一些弯曲,以便与单独的传动段外壳相比,几个器械主体可以在导管1606内被更接近地隔开,如同被置于小颈花瓶中长度相等的几个切花。该弯曲是最小的(例如,在一个实施例中小于或等于大约5度的弯曲角度)并且没有引起显著的摩擦,这是由于用于控制器械主体内的缆线和海波管的弯曲角度小。
[0146] 如图16所示,器械1602a和1602b的每一个包括穿过导管延伸的近端主体段,和位于导管的远端之外的至少一个远端主体段。例如,器械1602a包括近端主体段1620、远端主体段1622、腕机构1626和末端执行器1630,该近端主体段1620穿过导管1606延伸,远端主体段1622在关节1624处耦合到近端主体段1620,腕机构1626在另一个关节1628处耦合到远端主体段1622(该耦合可能包括另一个短的远端主体段)。在一些方面中远端主体段1622和关节1624、1628的作用是平行运动机构1632,其中位于机构远端的参考系位置可相对于位于机构近端的参考系改变,而不改变远端参考系的方向。
[0147] 图16A为器械1602a的远端的实施例的侧视图,包括平行运动机构1632、腕机构1626和末端执行器1630。在该说明性实施例中,平行运动机构1632的直径为大约7mm,并且腕机构1626的直径为大约5mm。图16A示出的关节1624和1628的每一个具有围绕正
交轴转动的两个铰链。随着一个铰链在关节1624中转动,关节1628中的相应铰链朝相反方向转动相等的量。因此,随着远端主体段1622移动,腕1626和末端执行器1630的方向保持基本不受影响。铰链被构造成滚动接触,以便枢轴的每一侧的缆线长度保持平衡(“虚拟枢轴点”);编号为6,817,974的美国专利中公开了细节,其被并入本文以供参考。编号为6,817,974的美国专利进一步公开了有关平行运动机构1632中铰链的平摇-俯仰-俯
仰-平摇(YPPY;作为替换地,PYYP)配置(腕1626被相似地配置),其提供恒速滚动配置。
因此,近端主体段1620的滚动被平滑地传递给末端执行器1630。将缆线、线或可弯曲海波管的路径规定为通过主体段1620、1622的中央通道、关节1624、1628和腕1626以操作末端执行器1630(例如,在抓持器中打开和闭合夹具,如图所示)。将操作平行运动机构1632和腕1626的缆线的路径定为通过靠近关节外围的开口。图16B和图16C分别为关节1624、
1628的说明性实施例的立体图和横截面视图。
[0148] 如本文中所描述,平行运动机构1632包括两个关节1624和1628。关节1624、1628被耦合在一起,但是它们的操作不是彼此无关的。因此,如果“关节”1624和1628均具有两个正交的铰链(机构的末端的位置可在3D笛卡尔空间中改变),整个平行运动机构1632在关节空间可能被考虑为具有两个自由度(例如,俯仰和平摇)的单一关节,如果“关节”1624和1628的每一个具有单一铰链(机构的远端的位置只可在2D笛卡尔空间中改变),整个平行运动机构1632在关节空间可以被考虑为具有一个自由度(例如,俯仰或平摇)的单一关节。如果平行运动机构1632在关节空间具有两个DOF,那么它的作用是恒速关节并且其传递滚动。机构1632的运动是“平行的”,因为随着机构改变远端(坐标系)的位置,机构的近端和远端(坐标系)的相对方向保持不变。
[0149] 图16D和图16E为说明了平行运动机构1632的设计和操作原理的各方面的示意图。为了清楚起见,仅示出了相应旋转铰链中的一组(即,俯仰-俯仰或平摇-平摇,PP或YY)。铰链的另一组以同样的方式工作。每个铰链具有近端连接盘和远端连接盘。如图16D所示,缆线1640a、1640b的第一组位于平行运动机构1632的相对侧并将铰链1624a中的近端连接盘耦合到铰链1628中的远端连接盘。两条缆线1640a、1640b是说明性的可使用的缆线的不同组合(例如,每一侧的两条缆线用于增加强度;间隔大约120度的三条缆线将在两个平面内维持平行性等等)。第二组缆线缆线1642a、1642b被耦合到铰链1624a的远端连接盘并通过近端主体段1620返回到传动机构(未示出)。控制腕机构1626和末端执行
器1630的其他缆线由第三组缆线1644a、1644b说明。
[0150] 如图16E所示,当传动机构将拉力施加到缆线1642a时(允许缆线1642b放出),铰链1624旋转。缆线1640a、1640b在铰链1624a的近端连接盘和铰链1628a的远端连接盘之间耦合,导致铰链1628a朝相反方向旋转相同的量。因此,腕1626和末端执行器1630横向移动,远离近端主体段1620的纵轴1619。因为铰链的设计,缆线1644a、1644b的长度不受该运动的影响,并且因此腕1626和末端执行器1630的方向也不受该运动影响。如果近端器械主体段1620保持固定,那么在病人的参考系中,末端执行器1630在与纵轴1619成直线的(被纵荡)方向上有一些平移。因此,如下所述,控制系统通过以下方式补偿该小的运动:通过移动近端主体段1620一定的量,该一定的量是将末端执行器1630在病人参考系中保持在恒定插入深度所必须的量。
[0151] 在一些实例中,当不需要向末端执行器传递滚动时(例如,对于抽吸或冲洗工具,对于成像系统),平行运动机构中的每个关节可能只具有一个单个旋转铰链。进一步地,技术人员将会理解如果不需要保持末端执行器的方向,那么平行运动机构可以被省略。例如,近端器械主体段可以在具有单一旋转轴的关节处耦合到远端器械主体段,以便必须滚动近端主体段,以将位于远端主体段远端的末端执行器从一侧移动到另一侧。或者,可使用两个或多于两个细长的远端主体段。如果不需要滚动,那么主体段的截面不必是圆形的。在一些方面中,腕机构可以被除去。
[0152] 图16F为连接盘的端视图,并且其说明了平行运动机构中缆线路径的各方面。如图16F所示,十二个缆线路径孔靠近连接盘1650的外周。连接盘1650上,在3点、6点、9点、12点钟位置之间,缆线路径孔彼此隔开22.5度。因为连接盘1650的正面反面上的铰链部件,所以孔的位置不在3点、6点、9点、12点位置上。从12点位置开始,这些孔被标记为1652a-1652l。四组三条缆线各自提供四个功能。第一组缆线在平行运动机构中保持平行功能,并且将第一组缆线的路径定为通过孔1652a、1652e和1652i。第二组缆线用于移动腕机构(例如,腕机构1626)的远端部分,并且将其路径规定为通过孔1652b、1652f和1652j。第三组缆线用于移动平行运动机构,并且将其路径定为通过孔1652c、1652g和1652k。第四组缆线用于移动腕机构的近端部分,并且将其路径定为通过孔1652d、1652h和1652l。缆线和末端执行器关联的其他部件的路径通过连接盘1650上的中央孔1654。
[0153] 图16G为连接盘的另一个端视图,并且其说明了平行运动机构中缆线路径的更多方面。如图16G所示,十二个缆线路径孔的第一组被设置在环绕连接盘1660的外周,类似于图16F中所示的路径孔。另外,十二个缆线路径孔的第二组被设置为围绕第一组孔内部的同心圆。从12点位置开始,缆线路径孔的外环被标记为1662a-1662l,并且孔的内环被标记为1664a-1664l。与平行运动机构关联的缆线的路径通过外环孔1662,并且与腕机构关联的缆线的路径通过内环孔1664。三个缆线对的第一组在平行运动机构中保持平行功能,其路径通过相邻的孔1662a和1662l、1662d和1662e、1662h和1662i。三个缆线对的第二组用于移动平行运动机构,并且其路径通过相邻的孔1662b和1662c、1662f和1662g、1662j和1662k。三个缆线对的第三组用于移动腕机构的近端部分,并且其路径通过相邻的孔1664a和1664l、1664d和1664e、1664h和1664i。三个缆线对的第四组用于移动腕机构的远端部分,并且其路径通过相邻的孔1664b和1664c、1664f和1664g、1664j和1664k。缆线和与末端执行器关联的其他部件的路径通过连接盘1660上的中央孔1666。
[0154] 如图16G所示,缆线对的使用增加了致动刚度,超过了使用单一缆线的刚度。增加的刚度允许器械组件在运动期间被更加精确地定位(例如,增加的刚度有助于减少运动滞后)。在一个示例中,该缆线对用于具有直径为大约7mm的平行运动机构的器械。但是具有较小直径的器械(例如,直径为大约5mm)可能没有足够的内部空间容纳缆线对。在该情况下,根据图16F规定路径的单一缆线可能被耦合到平行运动机构的相对侧。图16H-16J说明了该耦合的各方面。
[0155] 图16H为耦合缆线的加强支架1670的立体图,该缆线的路径在平行运动机构的主体段的相对侧。支架1670具有横档1672和附着在(例如,以焊接的方式)横档1672相对侧的两个平行支撑部件1674。海波管1676(例如,以焊接的方式)附着在每个支撑部件上,以便海波管彼此平行。海波管1676间隔的距离稍小于将被耦合的两条缆线之间的自由空间距离。缆线1678保持平行运动机构的平行功能,随着缆线在平行运动机构中缆线的两个锚定点之间延伸,缆线1678穿过其关联的海波管1676。海波管1676是加硬的(crimped)以将缆线保持在适当位置。因此,缆线1680的远端被固定到缆线1678的中间位置(不一定是一半长度的位置)。参看图16F,穿过孔1652a和1652g的缆线被耦合在一起,穿过孔
1652c和1652i的缆线被耦合在一起,穿过孔1652e和1652k的缆线被耦合在一起。图16I说明了多个支架1670可能位于平行运动机构主体内的方式的方面。就是说,与移动平行运动机构有关的每条缆线被耦合到相对侧的缆线,相对侧的缆线与平行运动机构的平行功能有关。
[0156] 归因于上述构造铰链的方式,保持平行功能的缆线在平行运动机构内移动,即使它们被锚定在平行运动机构的每一端。因此,如图16D-图16E所说明的,对于平行运动机构的给定运动,如果缆线被锚定到平行运动机构的主体段,缆线耦合需要尽可能远地两次移动缆线1680,该缆线1680移动平行运动机构。与未耦合的缆线相比,该耦合的作用使关节刚度增加了大约四倍,因为缆线尽可能远地移动了两次,并且缆线上的负载为给定关节扭矩的一半。
[0157] 图16J为加强支架1670的端视图。如图16J所示,横档1672是空心的,以便缆线和关联末端执行器的其他部件的路径可能通过横档。在一个方面中,横档1672使用放电加工制作。再次参看图16,近端主体部分、平行运动机构、腕和末端执行器沿着纵轴1619排列,以允许器械通过导管1606被插入并取出。因此,两个或多于两个独立操作、可交换器械和每个平行运动机构一起可以通过导管1606同时插入,以允许外科医生操纵手术器械通过单一入口进入病人体内,并在病人体内的大的体积深度内工作。每个独立器械的末端执行器在笛卡尔空间具有全部的6DOF(器械插入和平行运动机构提供平移DOF,并且器械主体滚动和腕机构提供方向DOF)。进一步地,器械1602a、1602b可能被部分地取出,以便例如只有腕和末端执行器从导管1606的末端1610延伸。在该配置中,一个或多于一个腕和末端执行器可以执行有限的手术工作。
[0158] 图17为说明了第十三微创手术器械组件1700的各方面的示意图。手术器械组件1700类似于器械组件1600(图16-16J),手术器械1702a、1702b功能类似于上述手术器械
1602a、1602b,不同之处在于固定的内窥镜成像系统位于导管的末端,装置1700具有独立操作的内窥镜成像系统1704。
[0159] 在一方面中,成像系统1704机械上类似于上述手术器械1602。如图17所示,汇总了这些方面,光学系统1704包括实质上刚性的细长管状近端主体段1706,其通过导管1708延伸,并且近端主体段1706的远端耦合有1或2DOF的平行运动机构1712,其类似于平行运动机构1622(图16-16J)。平行运动机构1712包括第一关节1714、中间远端主体段1716和第二关节1718。如图17所示,在腕机构或其他主动关节(例如,1.DOF允许改变俯仰角度;2.DOF允许改变俯仰和平摇角度)1720将图像获取部件1722耦合到第二关节1718。作为替代地,在另一方面中,关节1714是可独立控制的1或2DOF关节(俯仰/平摇),关节1718是另一可独立控制的1或2DOF关节(例如,俯仰/平摇),并且图像获取部件1722在关节1718机构的远端直接耦合。编号为11/614,661的美国专利申请中示出了合适的立体图像获取部件的示例,其被并入本文以供参考。在一些方面中成像系统1704在导管1708内纵向移动(纵荡)。合并提交的名为“Control System Configured to Compensate for Non-Ideal Actuator-to-Joint Linkage Characteristics in a Medical Robotic System”、编号为[xx/xxx,xxx][Atty Docket No.ISRG 00560]的美国专利申请(Diolaiti等人)中进一步描述了成像系统1704的控制,其被并入本文以供参考。在一些方面中,可能不需要滚动,因为需要保持特殊视场方向。具有升降、横荡、纵荡、平摇和俯仰DOF允许图像获取部件移动到不同位置,同时为组件1700保持特殊摄像机参考,为外科医生保持视觉定向。
[0160] 仅为说明目的,图17A为图17的平面图的侧视图。图17A示出了平行运动机构1712移动图像获取部件1722,使其远离手术器械组件1700的纵向中心线。该移位提供了手术位置1724的改良观察,因为器械主体远端段末端的一部分或全部未出现在输出给外科医生的图像中,如同器械组件1600(图16)中那样。如箭头所示,平行运动机构1712和图像获取部件的俯仰是可控制的。
[0161] 图17B是说明了微创手术器械组件1700的实施例的透视图。如图所示,两个独立的远程操作手术器械1740a、1740b(每个器械关联分立的主控(master)——例如,一个左手主控用于左侧器械,一个右手主控用于右侧器械)穿过并出现在刚性导管1742的末端。如上所述,器械1740a、1740b的每一个是6DOF器械,并且包括平行运动机构1744a、1744b,附着有腕1746a、1746b和末端执行器1748a、1748b。另外,独立远程操作内窥镜成像系统
1750穿过并出现在导管1742的末端。在一些方面中成像系统1750也包括平行运动机构
1752、位于平行运动机构1752远端的只能俯仰的腕机构1754(在关节空间该机构可能具有一个或两个DOF)和与腕机构1754耦合的立体内窥镜图像获取部件1756。在其他方面中,腕机构1754可能包括平摇DOF。在又一方面中,成像系统1750的近端关节和远端关节可被独立控制。在说明性用法中,平行运动机构1752升降并横荡图像获取部件1756,使其上升并到一侧,并且腕机构1754定向图像获取部件1756,以便在器械在导管的延长的中心线的一侧工作时定位视场的中心,使其在器械尖端之间。在另一说明性用法中,成像系统的远端主体段独立地上仰(在一些方面中也独立地平摇),并且图像获取部件1756独立地下俯(在一些方面中也独立地平摇)。如上面和以下讨论的,成像系统1750可能被移动到不同位置以缩回组织。
[0162] 图17B还示出了辅助通道1760,冲洗部件、抽吸部件或其它手术部件可能通过辅助通道1760被引入或取出。在一些方面中,一个或多于一个小的可操纵设备(例如,图9中说明的器械902)可能通过辅助通道1760被插入,将清洗液(例如,加压、气体)和/或干燥剂(例如,压缩空气或吹入气体)喷射到成像系统的窗口上以对其进行清洁。在另一个方面中该清洁棒可能是插入之前附于摄像机的无源设备。在又一个方面中,图像获取部件出现在导管末端时,该棒的末端自动钩住图像获取部件。随着成像系统从导管中被取出,弹簧逐渐地拉紧清洁棒以便有助于使其缩回到导管内。
[0163] 图17A进一步说明了随着图像获取部件1722被移动远离组件1700的中心线,它可能压住并移动外层组织结构表面1726,从而从所示的手术位置缩回该组织结构。用于缩回组织的成像系统1704的用法是使用其他手术器械或为该任务专门设计的设备以缩回组织的说明性示例。该“帐篷柱(tent-pole)”型缩回可能由本文描述的任何不同的可移动部件执行,如远端出口可弯曲设备或侧面出口可弯曲设备、刚性主体部件设备上的平行运动机构和下面描述的其他设备(例如,根据图31描述的设备)。
[0164] 在一些方面中,一个或多于一个手术器械通常沿着导管的纵轴从导管引出但不位于导管的末端。图18是说明了第十四微创手术器械组件1800的各方面的示意图。如图18所示,第一手术器械1802同轴地穿过主导管1804,并且第二手术器械1806同轴地穿过主导管1808。器械和主导管组合1802、1804和1806、1808是上述不同可弯曲器械、刚性器械和器械/导管组合的说明性示例。器械/导管组合1802、1804通过辅助导管1810延伸,并从辅助导管1810的最远端1812引出。器械/导管组合1806、1808通过辅助导管1810延伸,并在接近最远端1812的中间位置1814引出。例如与组件1300(图13)和组件1400(图
14)中所示的导引器械远离导管纵轴的侧面出口相比,器械/导管组合1806、1808通常沿着辅助导管1810的纵轴1816被引出。远端位置导管和中间位置导管面角可能不垂直于轴
1816。
[0165] 图18也示出了内窥镜成像系统1818位于辅助导管1810上,在最末端1812和中间位置1814之间。成像系统1818的视场通常被定向成垂直于纵轴1816。手术期间(例
如,在长的、狭窄的空间内),在成像系统1818的视场内定位手术位置,并且器械/导管组合
1802、1804和1806、1808(工作时从其末端1812出口稍倒退)被移动到手术位置工作。在一些方面中成像系统1818是电子立体图像获取系统。在一些方面中,第二成像系统1820(例如,分辨率低于成像系统1818的单一像系统)被定位,以具有通常与轴1816成直线的视场,以协助器械组件1800插入。可见图18示出的结构允许导管的截面相对地小——足够容纳通过其内的器械和/或导管(例如,参看图11B和相关描述)——但是如果位于导管的远端面上,成像系统尺寸(例如,立体成像系统中的瞳孔间距)可以更大。
[0166] 图18A为说明了成像系统的进一步方面的示意图,该成像系统位于说明性器械组件1801的远端。如图18A所示,如上所述,一个或多于一个器械和/或器械/导管组合从导管1811的中间位置1814引出。导管1811的远端段1822可旋转地安装,以便其可以相对于导管1811的主要部分俯仰,尽管不必在中间位置附近旋转,如替代位置线1823所示。替代位置1823是不同运动和机构的说明性示例。例如,在一个方面中上述的平行运动机构用于移动成像系统1818。另一示例中,替代位置1823表示使用两个可独立控制的1或2DOF关节定位并定向成像系统1818。可能使用关节和连接的其他组合。因此,如果手术位置附近的空间允许,成像系统1818的视场方向可能改变。远端1822可能位于出口上方,如图18A所示,或可能位于出口之间以提供较小的器械组件截面,如图18F所说明。
[0167] 图18B是另一示意图,示出了成像系统1824可能在远端段1822旋转,如替代位置线和箭头所示。旋转成像系统1824可能位于导管的最远端,或可能稍接近最远端(在一些方面中该情况下第二成像系统1820可能位于远端,当成像系统1824观察侧面时第二成像系统1820可以沿着器械组件的纵轴观察)。
[0168] 图18C是微创手术器械组件的实施例的立体图,该微创手术器械组件包括了器械组件1800和1801的各方面。如图18C所示,两个手术器械1830a、1830b的每一个都是刚性的,都具有可移动的远端连接,从导管1834上的中间位置1832延伸。器械1830a、1830b的每一个包括上臂连接1836、下臂连接1838和末端执行器1840(示出了说明性的抓持器)。肩关节1842将上臂连接1836耦合到器械主体(未示出),器械主体向后延伸通过导管1834。肘关节1844将上臂连接1836耦合到上臂连接1836,并且腕关节1846将下臂连接
1838耦合到末端执行器1840。在一些方面中,可能使用根据图16A-16J的如上所述的平行运动机构,并且在其他方面中肩关节和肘关节可能被独立控制,如同腕关节1846一样。在一些方面中只使用单一臂连接;在其他方面中使用了多于两个臂连接。在一些方面中,一个或两个肩关节1842被固定到导管1834,所以没有关联的器械主体。
[0169] 图18C进一步示出了立体成像系统1850在靠近导管1834的最远端1852处安装。如图所示,成像系统1850包括右图像获取元件1854a、左图像获取元件1854b和照明输出端口(LED、光纤端和/或按照期望控制照明光的棱镜)1856,右图像获取元件1854a、左图像获取元件1854b可能位于保护成像端口后面。如上所述,成像系统1850的视场通常垂直于导管1834的纵轴,以便外科医生清楚地看到末端执行器1840在手术位置工作,并看到导管1834远端的一侧。并且优选地,成像孔径之间的轴通常平行于手术器械尖端之间的线,这种对齐提供给外科医生一个方位,在所述方位器械尖端被映射到主控制台上自然的、舒服的手的位置。在一些方面中,如图18A所示,导管1834的远端在关节1858处旋转,以便成像系统1850的视场方向可以改变,如上所述。关节1858可能位于导管1834上的不同位置。在一个方面中,导管外径为大约12mm,该器械外径为大约5mm,并且成像系统1850的透镜大约3mm,瞳孔间距大约5mm。图18D是立体图,说明了远端上仰和下俯的方式,以便成像系统1850向前看(向远端方向;顺行观察)或向后看(向近端方向;逆行观察)。
[0170] 如本文其他地方描述的,尽管示出并描述的很多方面和实施例具有穿过其他导管延伸的器械和/或导管,在其他方面中器械和/或导管可能固定在器械组件结构的末端或中间位置,以和该结构成一整体。但是在一些方面中,如果该结构从病人体内被取出,固定的器械和/导管可能在体外被更换。例如,外科医生可能从病人体内取出该器械组件,将(例如,使用已知机构)附着在末端或中间位置的一个或多于一个器械更换为一个或多于一个其他器械,接着重新插入该器械组件。
[0171] 图18E是微创手术器械的实施例的透视图,其中可移动的手术器械1860(例如,如下描述的U形弯曲器械、可弯曲臂、多连接臂等等)被固定在导管1862的最远端1861。这样,导管1862和器械1862的组合的功能类似于图2B所示的器械15的段15a和15b。另外,第二手术器械1864也固定在导管1862的中间位置1866或是可移动的,如上所述。并且如上所述,视场方向通常垂直于导管1862纵轴的成像系统1868靠近导管1862的远端。
[0172] 在插入期间,在一个方面中器械1860伸直,通常沿着纵轴,并且1864也同样地沿着纵轴(如果固定;如果可移除地附加,)或至少部分地撤回到导管中。作为替代地,在另一个方面中器械1860可能向后弯曲,向后折向导管1862。可选择的第二成像系统1870位于远端1861,可能用于协助插入,如上所述。
[0173] 图18F为导管的远端尖端处具有可移动成像系统的手术器械组件的另一方面的说明性平面图。如图18所描述,内窥镜图像获取部件1880位于平行运动机构1884的远端,在导管1882的远端被耦合。如图所示,平行运动机构1884在关节空间具有单一DOF以便其使图像获取部件1880向页面外朝着看图的人移动。在一些方面中,平行运动机构可能比图中所示的更细(在两个器械之间),因为它只具有一个DOF,如图所示。在其他方面中,平行运动机构1884可能具有两个DOF,如上所述。作为替代地,可能使用可独立控制的两个关节,每一个关节通常位于平行运动机构1884中所示的铰链位置。在一个方面中,导管1882具有椭圆形截面,如图11B所示。
[0174] 附加DOF可能用于定向图像获取部件1880。例如,图18G说明了独立平摇关节1886可能位于平行运动机构1884和图像获取部件1880之间。关节1886是可能使用的不
同单一DOF关节和多个DOF关节的说明性示例(例如,俯仰或俯仰/平摇)。如图19J所说
明的,在一个方面中,可能使用可弯曲臂代替平行运动机构1884。图像获取部件1880中的光学器件可能提供下视角(例如,30度)。
[0175] 图18F进一步示出了在一个方面中平行运动机构1884足够长,以允许可独立控制器械1888a和1888b的平行运动机构、腕机构和末端执行器穿过导管1882上的中间位置出口1890a和1890b延伸并移动,同时图像获取部件1880仍然对准导管1882的中心。当平行运动机构1884移动图像获取部件1880使其远离而不与导管1882呈直线时,器械1888a和1888b可以在图像获取部件1880的下面延伸以到达手术位置。
[0176] 图19是说明了第十五微创手术系统器械组件的各方面的透视图,示出了组件的说明性的远端段1900。该组件1900类似于组件1800(图18-图18G)的一些变化,主要用于通常在该组件的侧面执行手术工作,而不用于在其末端的前面执行手术工作。在图19所示的实施例中,第一手术器械1902、第二手术器械1904和成像系统1906穿过导管1908延伸。器械和成像系统的不同组合可以被使用,可以是可更换的或固定的,如上所述。手术器械1902通常以类似于上述的各种器械的方式工作,其远端段1902a为刚性的或可弯曲的,如上所述。并且,器械1902是说明性的方面,其中其使用主导管和器械组合,如上所述。导管1908可能为刚性的或可弯曲的,如上所述。该手术器械主体直径为例如大约7mm。
[0177] 成像系统1906中的图像获取系统具有通常垂直于器械组件1900的纵轴的视场,以便外科医生可以在位于装置侧面的位置工作。成像系统1906可能在导管1908限定的通道中纵向平移(纵荡),可能固定到导管1908的远端,或可能为导管1908的组成部分,如组件1800(图18-图18G)的方面所说明。在一些方面中成像系统1906具有圆形器械主体,可能在通道内滚动。圆形器械主体可能足够大,以容纳例如传感器数据线(除非是使用无线连接)和光纤照明束。在其他方面中,远端1912可能单独关于成像系统1906的纵轴滚动,如箭头所示,以便使手术位置位于视场内。如果远端1912单独滚动,那么接口允许传感器数据线(除非是使用无线连接)和例如电源线或用于照明的光纤弯曲,以适应该滚动。
[0178] 将手术器械1904设计为主要用于逆向工作。如图19所示,器械1904的远端段1904a通过U形弯曲的机构1904c被连接到主体部分1904b上。U形弯曲组件1904c内的
部件(例如,杠杆、滑轮、齿轮、万向节、缆线、缆线导管等等)环绕U形弯曲传递机械力(例如,来自缆线或缆线/海波管组合),以移动远端段1904a和可选择的腕机构,并且操作末端执行器(未示出)。U形弯曲机构1904c不同于可弯曲机械结构,因为例如其通过曲率半径传递机械力,该曲率半径明显小于相同大小的可弯曲机械结构的最小曲率半径。进一步地,由于U形弯曲机构不会自己移动,致动力进入U形弯曲机构的位置和致动力离开U形弯曲机构的位置之间的距离不可改变。对于一个方面,其中关节位于主体段1904上以便其被分成近端段和远端段,如果器械主体滚动不通过关节传送,那么远端尖端1904d可能被配置成围绕远端段的纵轴旋转。
[0179] 图19A是图19描述的实施例的另一个立体图,并且其说明了手术工作期间器械1902和1904的远端通常在成像系统1906的视场内,在组件1900的侧面。
[0180] 图19和图19A进一步示出了在一些方面中,手术器械远端在单一枢轴点1914处被耦合到主体。通过上面的图18C(1842)和下面的图19B和图19C中所示的例如球式关节和套式关节,在多于一个平面内的运动更为容易。在其他方面,使用了如图16A-图16C所示的关节。末端执行器(未示出)可能直接被耦合,或通过位于最远端1916的腕机构被耦合。
[0181] 图19B是手术器械组件实施例的平面图,其合并了U形弯曲的手术器械1920。远端器械前臂部分1922通过U形弯曲机构1926和说明性的可控制的球状关节1928被耦合到器械主体段1924。腕1930(说明性地示出了球形和环形段可弯曲机构;可能使用如上所述的其他腕机构)将末端执行器1932耦合到前臂部分1922的远端。移动前臂1922、腕1930和末端执行器1932的缆线(未示出)的路径通过U形弯曲机构1926中的单个缆线导管,如下文更加详细地描述的那样。替代位置线1934说明在一些示例中,腕1930在三维空间中能弯曲至少135度,以使末端执行器1932能以不同的有用的方式被定向。该腕的实施例可能包括例如两个铰链每个具有三个2DOF关节,如上参考图16A-C所述。每个2DOF关节允许从对准前臂连接1922纵轴的方向俯仰和平摇大约45度。在一些方面中不使用所示的分度关节(indexed joint),可能使用上述的平行运动机构和腕的组合。图19C所示的手术器械组件也可合并第二手术器械1936,第二手术器械1936的操作类似于器械1920,除了它没有合并U形弯曲机构。
[0182] 图19C是图19B示出的手术器械组件实施例的另一平面图,其中手术器械1920从导管1938中伸出更远。图19B中,末端执行器工作时靠近并通常指向成像系统1940。图19C中,末端执行器工作时仍靠近成像系统1940,但是它们现在通常垂直于成像系统1940的视角。这样图19C说明了器械1920从导管1938的伸长距离可能取决于末端执行器角,该末端执行器角由主输入控制命令。还可以看出,在一些方面中如果给出改变末端执行器方向而保持其位置的命令,那么器械主体和前臂连接必须被移动成新位姿。
[0183] 图19D是说明了缆线路径(术语“缆线”是说明性的可能使用的不同丝状物(此处,术语“丝状物”应该广泛地被解释,并且包括例如单股丝和多股丝或者非常细的海波管))的示例的各方面的立体图,其通过U形弯曲机构控制远端器械部件。如图19D所示,用于例如前臂连接1922、腕1930和末端执行器1932的致动缆线1950穿过器械主体段1924并且其路径通过单个缆线导管1952,使缆线1950的路径环绕U形弯曲。缆线导管是例如不锈钢海波管。托架(brace)1954夹住并稳定缆线导管1952的两端。作为替代地,或者另外,缆线导管可能是焊接的或是焊的。一外罩可能覆盖并保护缆线导管和U形弯曲器械从其导管延伸时可能压到的任何组织。在示出的实施例中,每个单个缆线导管长度大约相同并且具有大约相同的弯曲半径(有一些小差别,如图所示)。管的长度和曲率半径大约相等使每条缆线的柔度、直径和长度的函数大约相同。摩擦力取决于每条缆线的负载和总弯曲角度。
[0184] 在该说明性实施例中示出了18个缆线导管。为了控制远端DOF,理论上张力缆线的最小数量是DOF+1。为简单起见可能使用更多的缆线以增加强度或刚度,或约束关节的行动。例如,在上述的说明性的5mm腕机构中,铰链中的两个是通过缆线连接的,是另外两个铰链的从动装置。在该示例中,18条缆线将用于控制附加4个远端DOF的末端执行器夹钳。在一些实施例中没有用于腕机构的滚动控制。末端执行器的滚动由导管内器械主体轴的滚动完成。通过其他关节的协调运动,滚动器械主体轴将使末端执行器围绕其端点滚动。
[0185] 图19E为缆线导管1952的说明性实施例的透视图。示出了全部的18个缆线导管。缆线导管被排列以形成中心通道1955,用于末端执行器的控制缆线的路径和用于抽吸、冲洗或电灼烧等的手术器械的路径可能通过中心通道1955。可选择的套管(未示出)可能被插入通道1955以减小摩擦。可能使用其他数量的导管(例如,9个)。
[0186] 图19F是示出了围绕中心通道1955的导管1952的排列的端视图。
[0187] 图19G是示出了围绕U形弯曲的缆线路径的替代方式的实施例的立体图。没有使用多个缆线导管1952和支柱1954,它们被构造成单一部分1956。金属铸件或快速金属成型法用于制作该部分,其包括单个通道1957和中心通道1958,缆线的路径通过单个通道
1957,其他部件的路径可能通过中心通道1958,如上所述。
[0188] 图19H是说明了手术器械的各方面说明性方面的立体图,该手术器械具有通过导管并从导管引出的U形弯曲机构。导管1962中的单一通道1960的形状是特定的,以容纳器械主体段1924和逆向段1964(只示出了用于逆向段的控制缆线;例如参看图19B),当器械在通道内移动时逆向段向主体段折回。通道向中间夹紧(pinch)/收缩,当U形弯曲机构和逆向段引出导管时主体段通过通道的部分仍牢固地固定主体段。单件U形弯曲部分1956也夹紧,如图所示,以便其在通道1960内滑动。逆向段1964通过通道1960的部分,一旦逆向段1964已经离开导管1962,第二器械可能通过通道1960的部分被插入。下面详细描述了允许多个通过导管插入的器械的其他不同通道形状。
[0189] 图19I是立体图,说明了一旦U形弯曲器械离开导管其可能在通道内滚动,并且接着前臂连接可能被移动以便末端执行器位于成像系统的视场内。在一个方面中,因为关节的性质,保持末端执行器的位置并在导管内滚动器械主体可以使末端执行器滚动,如旋转箭头所示。
[0190] 图19J是说明了手术器械组件实施例的主体图,其使用多于一个U形弯曲的逆向手术器械。使用两个U形弯曲的器械允许末端执行器后退到靠近导管处工作。为了给外科医生提供图像获取,示出了说明性的独立成像系统1970,图像获取部件1972安装在说明性的可弯曲机构1974的末端。可能使用U形弯曲机构或一系列刚性连接代替可弯曲机构。成像系统向后弯曲允许图像获取部件1972的视场包括两个U形弯曲的器械末端执行器。作为替代地,如果末端执行器通常在器械组件的侧面工作,成像系统1976可能位于导管侧面。
[0191] 图19K是说明了U形弯曲机构1990的另一个方面的平面图,使用了例如小的杠杆以将力从器械主体传递到远端前臂连接、腕机构和末端执行器。不同的缆线、线、杆、海波管等和这些部件的组合可能用在主体和前臂中,并且与力传送部件耦合。
[0192] 取决于手术工作部位相对于器械组件和要使用的器械的位置,用于成像系统的照明器件可能位于侧面的不同位置和向后弯曲工作系统内。除此之外或者代替此方案,如上所述,靠近图像获取部件处具有一个或多于一个照明输出端口,一个或多于一个照明LED可能位于向后弯曲工具的主体上。例如,参看图19C,一个或多于一个LED可能位于说明性的位置1942并沿着器械主体部分1920。或者,LED可能在例如1938上,沿着前臂段,如图19B所示。同样地,LED可能位于向后弯曲的可弯曲机构的内弯道上,如位于图19J所示的位置1978。附加照明器件离成像孔径有一些距离的优点是附加照明器械可能提供阴影,该阴影提供更好的深度提示。但是靠近或围绕成像孔径的照明器件防止阴影过深以致看不见阴影区域的细节。因此,在一些方面中靠近和远离成像孔径的照明器件都得到了使用。
[0193] 在安装了LED的结构中,虚线1944(图19C)或1980(图19J)说明的一个或多于一个通道可能运送冷却液体(例如,水)通过LED。LED芯片(或多个LED芯片)可以安装
在导热衬底(例如,板、电陶瓷)的正面,并且导热衬底被结合在冷却通道中以便衬底的背面暴露在冷却流体中。将LED结合到衬底的技术是公知的并且适宜和液体冷却一起使用。冷却液体可能在封闭系统中流通或可能流入(empty)病人体内或体外。对于流入病人体内的开放式冷却系统,使用了无菌的生物相容液体(例如,无菌生理盐水)。抽吸可能用于从病人体内去除冷却液体。另外,被排出或流注到病人体内的冷却液体可能用于执行其他功能。例如,排出的冷却液体可能直接流过成像透镜。该液体可能清洁透镜或防止体液、烟尘或手术碎片粘在透镜上。
[0194] 将LED的温度保持在可接受范围内的冷却液体的量很小。例如,以热量的方式消耗大约4瓦特的电功率的LED可以使用通过外径为0.020英寸的塑料软管、大约0.1毫升/秒的水流(例如,总长12英尺;6英尺供应和6英尺返回),并且水温将只升高大约10摄氏度。
[0195] 如上所述,LED的使用是器械上替代性照明布置的示例。在一些方面中可能使用纤维光导,在这种情况下未进行冷却考虑。
[0196] 如上所述,在一些方面中导管的截面面积必须适应器械,该器械本身具有远端部分,远端部分有相对大的横截面积。为了使导管的横截面积最小化,在一个方面中多于一个器械通过单一特定形状的通道被插入。
[0197] 图20A是说明性的导管2002的远端面的端视图。导管2002的横截面被相似地配置(即,所描述的通道通过整个导管延伸)。如图20A所示,导管2002具有三个通道(可能使用更多通道或更少通道)。通道2004容纳腔内(endoluminal)成像系统并且可能具有不同的横截面形状(例如,圆形、椭圆形、圆角多边形等等)。图20A说明的形状是覆盖在圆角矩形上并以圆角矩形为中心的圆。通道2004的圆形孔2004a容纳成像系统主体(虚线所说明的),并且圆形孔2004a的每个侧面上的槽孔2004b(圆角矩形的末端)允许比圆柱形主体段宽的图像获取元件通过通道2004。由于圆形孔2004a的直径比槽孔2004b的直径稍大(通道2004横截面的形状是椭圆形、两面凸起的形状),图像获取元件离开导管2002的远端后,成像系统的主体段被固定在通道2004内的合适位置。
[0198] 被描绘为单一的圆形孔的通道2006是可选择的辅助通道,并且可用于冲洗、抽吸和小的(例如,直径为3mm)器械等等。
[0199] 通道2008的形状独特以容纳两个手术器械,其中一个具有大于其主体段的远端段,如器械1902和1904(图19)。如图20A所示,通道2008的横截面形状通常为椭圆形,夹紧中心通过主轴(横截面形状为椭圆形,两面凹陷的形状)。通道2008包括两个圆柱孔2008a、2008b,圆柱形器械主体通过圆柱孔2008a、2008b被插入。孔2008a、2008b由槽孔
2008c连通。随着器械主体(由圆形虚线2009a说明)通过孔2008a被插入,例如,器械的远端部分穿过槽孔2008c的至少一部分和可能穿过孔2008b的一些或全部,器械的远端部分比其近端主体段大。图19H说明了该方面。一旦器械的远端部分已经插入并超过导管的远端,器械的近端主体段在孔2008a内被旋转,将近端主体段固定在合适位置。因此,圆柱形的或具有增大的远端部分的另一个器械(由圆形虚线2009b说明)适合通过槽孔2008c,并且可以通过孔2008b插入。该通道配置和插入过程可以用于具有畸形远端部分的不同器械,诸如吻合器、夹填充器(clip applier)和其他特殊任务器械,也用于本文描述的逆向工作器械。另外,成像设备可能被类似地插入,随后是一个或多于一个其他器械,该成像设备的远端图像获取部件横截面比其主体横截面大,并且具有的形状适合穿过通道的椭圆形截面。在一些实例中,通道2008或任何通道的边缘2011是圆形的或是有斜面的,如图所示,以便于器械取出并进入导管。
[0200] 图20B是导管2002远端面的端视图,具有说明性的成像系统2010和两个手术器械2012、2014,都从其插入通道2004、2008延伸。器械2012是U形弯曲机构型逆向工作器械,类似于图19和图19A中说明性的实施例。插入期间器械2014的横截面通常是圆形,尽管插入期间器械2014的一部分可能延伸进入器械2012没有占据的槽孔2008c的任何部分。如另一示例所示,类似于图19B到图19I中所示的实施例,具有多个缆线导管U形弯曲机构的器械,可能通过通道2008被插入,器械的主体和远端部分穿过孔,并且U形弯曲机构的夹紧部分穿过孔之间的槽孔。
[0201] 图20A中说明的通道构形可以适合于允许例如具有大的远端的两个器械通过导管插入,也可能插入第三个器械。图20C的端视图说明的各方面中,器械通道包括排列成“V”形的孔,尽管“V”可能变平以使三个或更多通道孔并列在一条线上。如图所示,通道2020包括三个圆柱体孔2020a、2020b、2020c,连接孔2020a和2020b的槽孔2020d,和连接孔2020b和2020c的槽孔2020e。孔2020a和2020c出现在“V”形的末端,并且孔2020b
出现在“V”形的顶点。作为说明,具有U形弯曲机构的第一逆向工作器械通过孔2020a和
2020b插入,并且接着具有U形弯曲机构的第二逆向工作器械通过孔2020c和2020b插入。
一旦被插入,三个孔允许器械的任何一个被独立地移除——不必移除一个器械以允许另一器械被移除。一旦两个其他器械被插入,并且其近端主体部分被固定在孔2020a和2020c中的适当位置,可选择的第三器械可能通过孔2020b被插入。可见在不同组合中,两个大末端器械和可选择的第三器械可能通过通道2020插入。成像系统可能通过通道2022插入,通道2022可能为圆角矩形(如图所示)、圆形或其他不同形状,如本文中所说明的(例如,图20A中2004)。作为替代地,如果成像系统具有形状合适的远端,其可能通过通道2020被插入。图19J中说明了具有两个逆向工作器械和一个成像系统的装置。
[0202] 图20D、图20E和图20F是说明了用于容纳具有大的远端的一个或多于一个器械的其他通道配置的各方面的端视图。图20D示出的通道2030具有排列成三角形的三个孔2030a、2030b、2030c。连接临近孔的槽孔合并为单一开口,使每个孔和其他两个孔连接(例如,图20C中说明的“V”形的顶部由第三槽孔连接。通道通常具有三角形的横截面,并且孔位于三角形的顶点)。还示出了说明性的定位件(spacer)2032,出现在通道2030的中心,如果孔之间的通道侧面的收缩不足以将器械主体固定在孔内的合适位置,该定位件有助于将器械主体保持在其孔内或者位于其顶点。图20E说明了通道可以具有任何数量的孔以容纳手术器械(示出了排列在正方形四角上的孔)。图20F说明的通道为“T”形,用于器械的孔为“T”的三个末端。如图20D所示的定位件可能用于将器械保持在“T”内的合适位置,或者孔之间的连接开口可能稍收缩以将器械保持在其孔内。其他横截面通道形状(例如,十字形或“X”形;可看出“T”形是十字形或“X”形的一部分)可能和横截面配置或分立部件一起使用,该分立器件将手术器械的主体或轴保持在通道内的合适位置。
[0203] 图20A到图20F示出的固定器械的近端段和成像系统主体的孔为圆形,其允许主体在孔内滚动。但是,在一些方面中,一些孔或所有的孔可能具有非圆形的横截面,以防止主体部分在孔内滚动。例如,一个非圆形孔可能用于固定成像系统的近端主体段,该近端主体段被固定以防止滚动。或者,特定形状的孔可能用于确保只有特殊设备可能被插入到特殊孔中。但是,在一些方面中,任何器械或成像系统可能通过任何孔插入。
[0204] 支持和控制方面
[0205] 图21A是说明了机器人辅助(远程操纵)微创手术系统的示意图,其使用了本文描述的微创手术器械、器械组件、操纵和控制系统的方面。该系统的一般结构类似于其他这样的系统的结构,这些系统诸如Intuitive Surgical股份有限公司的da 手术系统和 手术系统。三个主要部件为外科医生控制台2102、病人侧面支撑系统2104和视
频系统2106,都由有线连接或无线连接与2108连通,如图所示。一个或多于一个电子数据处理器可能位于这些主要部件的不同位置以提供系统功能性。
[0206] 外科医生控制台2102包括例如多个DOF机械输入(“主控”)设备,其允许外科医生操纵本文描述的手术器械、导管和成像系统(“从动”)设备。在一些方面中,这些输入设备可能向外科医生提供来自器械和器械组件部件的触觉反馈。控制台2102也包括立体视频输出显示器,其被定位以便显示器上的图像通常聚焦在对应于工作在显示屏之后/之下的外科医生的手的距离处。编号为6,671,581的美国专利申请中充分讨论了这些方面,其并入本文以供参考。插入期间的控制可能以例如类似于da 手术系统中远程操作的内窥镜控制的方式完成——在一个方面外科医生实质上使用一个或两个主控设备移动图像;使用主控设备左右移动图像并将图像拉向自己,从而命令成像系统和其关联器械组件(例如,可弯曲导管)朝向输出显示器上的固定中心点并在病人体内推进。在一个方面中将摄影机控制设计为提供这样的效果:主控设备被固定到图像以便图像移动的方向与主控设备手柄移动的方向相同,如同da 手术系统中那样。当外科医生退出摄影机控制
时,该设计导致主控设备在正确的位置以控制器械,并且因此不需要离合器啮合(放开)、移动、离合器分开啮合(接合),使主控设备回到以前的位置或重新开始器械控制。在一些方面中主控设备位置可能与插入速度成比例,以避免使用大的主控设备工作空间。作为替代地,外科医生可能抓住或放开主控设备以使用用于插入的棘轮动作。在一些方面中,可能手动控制插入(例如,当通过食道插入时越过声门),并且接下来,当手术器械组件的远端靠近手术位置时完成自动插入(例如伺服器电机驱动滚轮)。病人解剖学结构的外科手术前的或实时图像数据(例如,MRI、X射线)和用于插入轨迹的可用空间可能用于协助插入。
[0207] 病人侧面支撑系统2104包括安装在地面上的底座2110,或作为替代地,包括替代线所示的安装在天花板上的底座2112。底座可能是可移动的或固定的(例如,固定在地面上、天花板上或例如手术台的其他设备上)。在一个实施例中,操纵器臂装置为改进的da 手术系统臂组件。该臂组件包括两个说明性的被动转动安装关节2114a、2114b,当其制动器被解开时其允许耦合连接的手动定位。臂组件和底座之间的被动棱柱安装关节(未示出)可能用于允许大的垂直调整。另外,臂装置包括说明性的主动滚动关节2116a和主动平摇关节2116b。关节2116c和2116d作为平行机构以便由导引操纵器2118固定的
(手术器械组件的)导管在入口(例如,病人1222的脐)处围绕远心2120移动。主动棱柱
关节2124用于插入和取出导管。一个或多于一个手术器械和内窥镜成像系统独立地安装在导引操纵器2118上。当病人2122位于活动工作台2126上的不同位置时,不同安装和主动关节允许操纵器移动导管、器械和成像系统。
[0208] 图21B和图21C是病人侧面支撑系统的另一个说明性实施例的侧视图和正视图。底座2150是固定的(例如,固定在地面或天花板上)。连杆2152在被动转动安装关节2154处耦合到底座2150。如图所示,关节2154的转动轴对准远心点2156,该远心点2156通常是(未示出的手术器械组件的)导管进入病人体内的位置(例如,在脐处,用于腹部外科手术)。连杆2158在转动关节2160处耦合到连杆2152。连杆2162在转动关节2164处耦
合到连杆2158。连杆2166在转动关节2168处耦合到连杆2162。导管被安装以滑过连杆
2166的末端2166a。操纵器平台2170由棱柱关节2172和转动关节2174支撑并耦合到连
杆2166。当棱柱关节2172沿连杆2166滑动时其插入导管和从导管抽出。关节2174包括
轴承组件,其固定“C”形的环悬臂。“C”形环滑过轴承,围绕“C”内的中心点旋转,从而滚动导管。“C”内的开口允许导管被安装或交换,不需要移动上面的操纵器。操纵器平台2170支撑用于手术器械和成像系统的多个操纵器2176,如下所述。
[0209] 这些说明性的操纵器臂组件用于例如器械组件,该器械组件包括刚性导管,并且在操作时关于远心移动。如果不需要围绕远心的运动,操纵器臂中的某些安装和活动关节可能被省略。应该理解操纵器臂可能包括连杆、被动关节和主动关节(可能提供冗余DOF)的各种组合以获得用于手术的位姿的必要范围。
[0210] 再次参看图21A,视频系统2106执行图像处理功能,用于例如捕获的手术位置内窥镜成像数据和/或来自病人体外其他成像系统的外科手术前的或实时图像数据。成像系统2106在外科医生控制台2102向外科医生输出处理的图像数据(例如,手术位置的图像和相关控制以及病人信息)。在一些方面中,处理的图像数据被输出到可选择的外部监视器,该监视器对于其他手术室人员是可见的,或对于远离手术室的一个或多于一个位置是可见的(例如,在另一个位置的外科医生可能监视该视频;直播的视频可能用于训练等等)。
[0211] 图22A是说明了用于微创远程手术系统的集中运动控制和协调系统结构的各方面的示意图,该微创远程手术系统合并了本文描述的手术组件和部件。运动协调系统2202接收主控设备输入2204、传感器输入2206和最优化输入2208。
[0212] 主控设备输入2204可能包括外科医生的手臂、腕、手和手指在主控机构上的运动。输入也可能来自其他运动(手、足、膝等按压或移动按钮、杠杆、开关等)和命令(例如,声音),该命令控制特定部件的位置和方向或者控制特殊任务操作(例如,为电烙器末端执行器或激光器、成像系统操作等供电)。
[0213] 传感器输入2206可能包括来自例如所测量的伺服电动机位置的位置信息或所感测的弯曲信息。编号为11/491,384、名为“Robotic surgery system including position sensors using fiber Bragg gratings”的美国专利申请(Larkin等人)被并入本文以供参考,其描述了用于位置感测的光纤布拉格(Bragg)光栅的使用。当确定部件(例如末端执行器尖端)的位置和方向信息时,该弯曲传感器可能被合并到本文描述的不同器械和成像系统内使用。位置和方向信息也可能由位于病人体外的一个或多于一个传感器(例如,荧光透视法、MRI、超声等等)产生,其实时感测病人体内部件的位置和方向变化。
[0214] 如下所述,用户接口具有三个耦合的控制模式:一个模式用于器械,一个模式用于成像系统,一个模式用于导管。这些耦合的模式使用户可以将系统视为一个整体进行处理,而不是直接控制单一部分。因此,运动协调器必须确定怎样利用整体系统运动学(即,系统的全部DOF)以达到特定目标。例如,一个目标可能是为特殊配置最优化器械工作空间。另一个目标可能是将成像系统的视场保持在两个器械的中心。因此,最优化输入2208可能为高级命令,或者输入可能包括更详细的命令或传感信息。高级命令的示例可以是用于智能控制器最优化工作空间的命令。更详细的命令的示例可以用于成像系统开始或停止对其摄影机进行最优化的命令。传感器输入的示例可以是已经到达工作空间界限的信号
[0215] 运动协调器2202输出命令信号到不同致动装置控制器和与用于不同远程手术系统臂的操纵器关联的致动装置(例如,伺服电动机)。图22A描述的示例中,输出信号被送到两个器械控制器2210、成像系统控制器2212和导管控制器2214。可能使用其他数量的控制器和控制器组合。
[0216] 作为示例,该运动协调系统可能用于控制手术器械组件1700(图17)。器械控制器2210与器械1702a、1702b相关联,成像系统控制器2212与成像系统1704相关联,并且导管控制器2214与导管1708相关联。因此,在一些方面中操作远程手术系统的外科医生将同时并自动地访问以上确定的至少三种控制模式:用于移动器械的器械控制模式、用于移动成像系统的成像系统控制模式和用于移动导管的导管控制模式。类似的集中结构可能适于与本文描述的其他不同机构方面一起工作。
[0217] 图22B是说明了分布式运动控制和协调系统结构的各方面的示意图,其用于合并有本文描述的手术器械组件和部件的微创远程手术系统。在图22B示出的说明性方面中,控制和转换处理器2220与两个主控臂优化器/控制器2222a和2222b、三个手术器械优化器/控制器2224a、2224b和2224c、成像系统优化器/控制器2226、导管优化器/控制器2228交换信息。远程手术系统中,每个优化器/控制器与主控臂或从动臂(包括例如摄影机(成像系统)臂,导管臂和器械臂)相关联。每个优化器/控制器接收臂特殊最优化目
标2230a-2230g。
[0218] 控制和转换处理器2220和不同优化器/控制器之间的双头箭头表示与优化器/控制器臂交换跟踪数据。跟踪数据包括整个臂的所有笛卡尔配置,包括底座坐标系和远端尖端坐标系。控制和转换处理器2220将从每个优化器/控制器接收的跟踪数据路由到所有优化器/控制器,以便每个优化器/控制器具有关于系统中所有臂的当前笛卡尔配置的数据。另外,用于每个臂的优化器/控制器接收最优化目标,该最优化目标对于臂是唯一的。
接着在追求其最优化目标时,每个臂的优化器/控制器使用其他臂的位置作为输入和约束条件。在一个方面中,每个最优化控制器使用嵌入式局部优化器以追求其最优化目标。用于每个臂的优化器/控制器的最优化模可以独立地开启或关闭。例如,只用于成像系统和导管的最优化模块可能被开启。
[0219] 与集中结构相比,分布式控制结构提供了更大的灵活性,尽管可能降低性能。如果使用该分布式控制结构而不使用集中结构,则更容易添加新臂并改变整个系统配置。但是,在该分布式结构中,相对于可以使用集中结构执行的全局最优化,最优化是局部的,其中单一模块察觉完全系统的状态。
[0220] 图23是说明了手术器械组件2302的之间的接口的示意图,其表示了本文描述的各种可弯曲机构和刚性机构,和说明性的致动组件2304。为了该示例的目的,器械组件
2302包括手术器械2306、环绕器械2306的主导管2308和环绕主导管2308的辅助导管
2310。
[0221] 如图23所示,传动机构位于每个器械或导管的近端:传动机构2306a用于器械2306,传动机构2308a用于主导管2308并且传动机构2310a用于辅助导管2310。每个传动机构机械地、可移除地耦合到关联的致动机构:传动机构2306a耦合到致动机构2312,传动机构2308a耦合到致动机构2314,传动机构2310a耦合到致动机构2316。在一个方面中使用了匹配的圆盘,如同da 手术系统中的器械接口,在下面更详细地示出。在另一方
面中使用了匹配的万向节板和杠杆。传动机构中的不同机械部件(例如,齿轮、杠杆、缆线、滑轮、缆线导引管、万向节等等)用于将机械力从接口传递到被受控元件。每个致动机构包括至少一个致动装置(例如,伺服电动机(有电刷或没有电刷)),该致动装置控制在关联器械或导管的远端的运动。例如,致动装置2312a是控制手术器械2306的末端执行器2306b抓持器DOF的电力伺服电动机。器械(包括本文描述的导引探测器)或导管(或者总体来
说,器械组件)可能从关联的致动机构去耦合并滑出,如图所示。接着其可能由另一器械或导管替换。除机械接口以外,在每个传动机构和致动机构之间有电子接口。该电子接口允许传递数据(例如,器械/导管类型)。
[0222] 在一些实例中可能手动驱动一个或多于一个DOF。例如,手术器械2306可能是可被动弯曲的腹腔镜器械,具有手动的末端执行器抓持器DOF,并且导管2308可能是可主动操纵的,以提供上述的腕运动。在该示例中,外科医生伺服控制导管DOF,而辅助手控制器械抓持器DOF。
[0223] 除了控制器械和/或导管元件的致动装置,每个致动装置也可能包括致动部件(例如,发动机驱动的缆线、丝杠(lead screw)、小齿轮等等;线性电动机等),该致动部件提供沿器械组件2302的纵轴的运动(纵荡)。如图23的示例所示,致动机构2312包括线性致动装置2312b,致动机构2314包括线性致动装置2314b,致动机构2316包括线性致动装置2316b,以便器械2306、主导管2308和辅助导管2310的每一个可以独立地同轴移动。
如图23中进一步示出的,致动装置2316被动地或主动地安装在安装臂2318上,如上所述。
在主动安装结构中,主动安装可能用于控制一个或多于一个组件DOF(例如,刚性导管的插入)。
[0224] 来自控制系统2320的控制信号在致动装置2304中控制不同的伺服电动机致动装置。例如,控制信号与外科医生主控输入关联,外科医生主控输入在输入/输出系统2322处,以移动器械组件2302的机械从动部件。依次地来自致动组件2304和/或器械组件2302和/或其他组件的不同反馈信号被传给控制系统2320。该反馈信号可能是位姿信息和力的信息,如伺服电动机位置或其它位置、方向所表明的位姿信息,和使用基于光学布拉格光纤的传感器时可能得到的力的信息。反馈信号也可能包括力感测信息(如组织作用力),该感测信息在输入/输出系统2322处通过视觉或触觉的方式输出给外科医生。
[0225] 来自内窥镜成像系统的图像数据被传送到图像处理系统2324。该图像数据可能包括例如立体图像数据,该立体像数据将被处理并通过输入/输出系统2322输出给外科医生,如图所示。图像处理也可能用于确定器械位置,其被输入到控制系统,作为一种远端位置反馈传感器。另外,位于病人体外并靠近病人的可选择的感测系统2326可能感测有关器械组件2302的位置或其它数据。感测系统2326可能是静态的或可能由控制系统2320控制(致动装置未示出,可能类似于已描述的致动装置或已知的机械伺服部件),并且可能包括靠近病人的一个或多于一个实际传感器。来自感测系统2326的位置信息(例如来自一个或多于一个无线发射器、RFID芯片等等)和其他数据可能被发送到控制系统2320。如果该位置信息或其他数据要通过视觉的方式输出给外科医生,控制系统2320将该位置信息或其他数据以原始形式或经处理的形式传送给图像处理系统2324,用于在输入/输出系统
2322处与外科医生的输出显示集成。进一步地,来自感测系统2326的任何图像数据如荧光透视法成像或其他实时成像(超声、X射线、MRI等等)被送到图像处理系统2324,用于与外科医生的显示集成。并且,来自感测系统2326的实时图像可能与外科手术前的图像集成,外科手术前的图像由图像处理系统2324存取,用于与外科医生的显示集成。这样,例如从数据存储位置2328接收特定组织(例如,脑组织结构)的外科手术前的图像,为了更好的可见性,该外科手术前的图像可能被增强,在实时图像中该外科手术前的图像与其他组织界标对准/重合(registered),并且外科手术前的图像和实时图像的结合与来自器械和致动组件2302、2304和/或感测系统2326位置信息一起使用,以给出输出显示,该输出显示协助外科医生操纵器械组件2302朝向手术位置而不破坏中间组织结构。
[0226] 图24A是微创手术器械2402的近端部分的透视图。如图24A所示,器械2402包括传动机构2404,传动机构2404耦合到器械主体管2406的近端。为了清楚起见,位于主体管2406远端2408的部件被省略,并且可能包括例如,如上所述的2DOF平行运动机构、腕和末端执行器组合等等;如上所述的关节和内窥镜成像系统。在示出的说明性实施例中,传动机构2404包括六个接口圆盘2410。一个或多于一个圆盘2410与器械240的DOF相关联。例
如,一个圆盘可能与器械主体滚动DOF相关联,并且第二圆盘可能与末端执行器抓持器DOF相关联。如图所示,在一个实例中,为了紧密排列,圆盘排列在六边形格子中——在此情况下六个圆盘排成三角形。可能使用其他格子图案或更随机的排列。传动机构2404中的机械部件(例如,齿轮、杠杆、万向节、缆线等等)将圆盘2410的滚动力矩传送给例如主体管
2406(用于滚动)并且传送给耦合到远端机构的部件。控制远端DOF的多条缆线和/或一
条缆线和海波管组合通过主体管2406。在一个实例中,主体管直径大约为7mm,并且在另一实例中其直径大约为5mm。被离开中心间隔的突起的销2412当与关联的致动圆盘配合时,为圆盘2410提供适当的方向。一个或多于一个电子接口连接器2414在器械2402和其关
联的致动机构之间提供电子接口。在一些实例中,器械2402可能通过其关联的致动机构将存储在半导体存储器集成电路中的信息传送到控制系统。这些被传送的信息可能包括器械类型识别、使用的器械的数量等等。在一些实例中控制系统可能更新该存储的信息(例如,记录使用的次数以确定日常维护时间表或防止使用次数超过规定次数的器械被使用)。编号为6,866,671的美国专利(Tierney等人)讨论了在器械上存储信息,其被并入本文以供参考。电子接口也可能包括用于例如电烙器末端执行器的电源。作为替代,该电源连接可能位于器械2402的其他位置(例如,在传动机构2404的外壳上)。可能包括其他连接,用于例如光纤激光器、光纤远端弯曲或力传感器、冲洗、抽吸等等。如图所示,传动机构2404的外壳一般为楔形或扇形以允许其紧邻类似外壳,如下所示。
[0227] 图24B是致动组件2420的一部分的立体图,其与手术器械2402中的致动部件配合。致动圆盘2422被排列为与接口圆盘2410配合。圆盘2422上的孔2424被对准,以只在单一的360度方向上容纳销2412。每个圆盘2422由关联的旋转伺服电动机致动装置2426转动,如上所述其接收伺服控制输入。一般为楔形的安装支架2428,其形状对应器械2402的传动机构外壳,支撑圆盘2422、伺服电动机致动装置2426和与器械2402的接口连接器2414配合的电子接口2430。在一个实例中,器械2402由弹簧夹(为示出)紧靠致动装置
2402固定,以允许容易地去除。如图24B所示,致动组件外壳2428的部分2432被截去尖端以允许器械主体管2406通过。作为替代,一个孔可能位于致动组件上,以允许主体管通过。消毒的定位件(可重复使用或是一次性的;通常为塑料)可能用于分离致动组件和器械的传动机构以维持消毒的手术区域。消毒的薄塑料片或“披盖”(例如,0.002英寸厚的聚乙烯)用于覆盖致动组件的未被定位件覆盖的一部分,也覆盖操纵器臂的一部分。编号为6,866,671的美国专利讨论了这样的定位件和披盖,其被并入本文以供参考。
[0228] 图25A是说明了安装微创手术器械及其关联的位于安装臂/操纵臂末端的致动组件的各方面的立体图。如图25A所示,手术器械2502a被安装在致动组件2504上,以便传动机构配合致动组件(可选择的定位件/披挂未示出),如上所述。器械2502a的主体管2506越过致动组件2504延伸,并进入刚性导管2508的入口。如上所述,尽管基本上为刚性,主体管2506在传动机构外壳和导管之间稍弯曲,如上面根据图16所讨论。与器械主体管孔的传动机构允许的大小相比,该弯曲允许进口导管中的器械主体管孔的距离更近。由于刚性器械主体管中的弯曲角度小于可弯曲(例如,松弛的)器械主体的弯曲角度,与在可弯曲主体中相比,缆线可以更硬。由于器械中被控制的远端DOF的数量,高刚度缆线是重要的。刚性器械主体也比可弯曲主体更易于插入导管。在一个实施例中,当器械从导管中取出时,该弯曲是有弹性的以便主体管呈现直的形状(主体管可能被制成永久性弯曲,防止器械主体滚动)。致动组件2504被安装到线性致动装置2510上(例如,伺服控制的丝杠和螺母或滚珠丝杠和螺母组件),线性致动装置2510在导管2508内控制主体管2506的插入。第二器械2502b和所示的类似机构一起被安装。另外,成像系统(未示出)可能类似地被安装。
[0229] 图25A进一步示出了导管2508可移除地安装在支撑平台2512上。该安装可能类似于例如用于将套管固定在da 手术系统操纵器臂上的安装。可移除和可替代的导管允许不同的导管和同样的远程操纵系统一起使用,该不同的导管被设计为用于和不同的方法一起使用(例如,具有不同截面形状或具有不同数量和形状的工作通道和辅助通道的导管)。依次地,驱动平台2512被安装到机器人操纵臂2514(例如,4DOF)上,机器人操纵臂2514使用一个或多于一个附加致动机构(例如,用于俯仰、平摇、滚动、插入)。依次地,操纵器臂2514可能安装到被动安装臂上,如上根据图21A所描述。
[0230] 图25B是从不同的角度并根据病人说明了图25A中示出的各方面的立体图。图25B中,臂2514和平台2512被定位,以便导管2508在脐处进入病人腹部。该进入是说明性的各种自然口或切口进入,包括经皮切口和腔内切口(例如,经胃、经结肠、经直肠、经阴道、经直肠子宫(道格拉斯陷凹)等等)。图25B也通过示出成像系统2518插入和器械2502a、2502b取出说明了用于每个器械/成像系统的线性致动装置怎样独立操作。这些方面可能应用到本文描述的其他手术器械组件(例如,具有末端或侧面出口的可弯曲导管、侧面工作工具等等)。可见在一些实例中操纵臂移动以围绕远心2520在进入病人体内的入口处旋转导管2508。但是,如果中间组织限制围绕远心的运动,臂可能将导管2508保持在合适的位置。
[0231] 如上所述,在一个方面中,器械和其传动机构通常围绕导管以图26A所示的扇形边布置排列,图26A是器械传动机构和导管的端视图(楔形的顶点朝向导管的延长中心线)。示出的楔形的顶点被稍微截去尖端;楔形应被理解为宽泛的解释,并且包括顶角包括锐角和钝角。器械传动机构2602a、2602b将控制力从伺服电动机转移到器械,该器械通过导管2604的工作通道2606a、2606b插入。成像系统传动机构2608将控制力从伺服电动机转移到多DOF成像系统器械,该多DOF成像系统器械通过导管2604的成像系统通道2606插入。一个或多于一个可选择的导管通道2604d允许手动插入器械、冲洗、抽吸等等。图26B和图26C是类似的端视图,其说明了在其他配置中传动机构可能围绕导管被间隔开,诸如四个楔形2608围绕导管在360度内被间隔开(图26B),或两个半圆形外壳2610(图26C)。
从图25A、25B、26A、26B和26C中说明的方面也可看出传动组件不只围绕导管被间隔开,并且可以叠在另一个传动组件的上面或下面,如图23示意性的说明。图26D是另一端视图,其说明了与器械/导管和成像系统传动机构2624相比,致动机构2620可能远离导管2622的延长中心线。
[0232] 图26E是说明了用于可能位于单一外壳内的多于一个部件的致动装置的分解立体图。如图26E所示,致动机构外壳2630包括伺服电动机和关联部件(未示出),用于移动导管2632。外壳2630也包括伺服电动机和关联部件,用于操作器械2634。器械2634的主体和远端段通过外壳2630插入,如图所示,并且外壳2630上的接口部件2636连接器械2634上的对应部件(例如,圆盘2410(图24))。该排列可能用于例如本文描述的侧面出口手术器械组件,其中有两个外壳2634,每一个关联侧面引出器械或导管中的一个。
[0233] 编号为6,886,671(Tierney等人)和6,132,368(Cooper)的美国专利中讨论了关于用于不同器械、导管和成像系统的机械接口和电子接口和关于保持消毒区域的消毒披盖的更多细节,将它们并入本文以供参考。机械接口机构不限于示出并描述的圆盘。可能使用其他机构如摇板、万向节、移动销、杠杆、缆线锁和其他可移除耦合。
[0234] 图27是说明了关联可弯曲同轴导管和器械的传动机构的示意图。图27示出了主导管2702同轴地通过并离开辅助导管2704的远端。同样地,辅助导管2704同轴地通过并离开第三导管2706的远端。传动机构和致动机构2708与第三导管2706相关联。传动机构和致动机构2710与辅助导管2704相关联,并且导管2704的近端段在进入第三导管2706之前通过(可替换地,邻近)传动机构和致动构2710延伸。同样地,传动机构和致动机构
2712与主导管2702相关联,并且导管2702的近端段在进入辅助导管2704和第三导管2706之前延伸通过(作为替代,靠近)传动机构和致动机构2708、2710。用于器械和成像系统(未示出)的传动机构通过并离开主导管2702中通道2714的远端,可能类似地通常沿着器械组件的纵轴被堆叠,或者可能在其近端围绕导管2702的延长的纵轴排列,如上所述。或者,控制器位置可能被并行组合并被堆叠,如对于侧面出口组件,其中用于侧面引出部件的传动机构被并行定位,并且都被堆叠在导管传动机构后面。中间出口组件和可能被类似地配置。器械和/或成像系统致动装置和控制也可能在同样的外壳内被关联,如同用于导管的致动机构和传动机构。
[0235] 在很多方面中本发明描述的设备用作单个端口设备—完成手术过程必须的所有部件通过单个入口进入身体。但是,在一些方面中可能使用多个设备和端口。图28A是说明了多端口方面的示意图,三个手术器械组件在三个不同端口进入身体。器械组件2802包括主导管、辅助导管和两个器械,以及关联的传动机构和致动机构,如上所述。在该示意性示例中,器械组件2804包括主导管、辅助导管和单个器械,以及关联的传动机构和致动机构,如上所述。成像系统组件2806包括导管和成像系统,以及关联的传动机构和致动机构。这些机构2802、2804、2806的每一个通过分立的、唯一的端口进入身体2808,如图所示。示出的设备是本文描述的说明性的不同的刚性和可弯曲方面。
[0236] 图28B是说明了多端口方面的另一示意图。图28B示出了三个说明性的器械或组件2810进入不同的自然口(鼻孔、嘴)并且接着继续通过单一体腔(咽喉)到达手术位置。
[0237] 图29A和图29B是说明了微创手术器械组件位置感测和运动控制的更多方面的示意图。如图29A所示,手术器械设备或组件的远端2902在体腔或其他空腔的壁2904内向手术位置2906推进。远端2902是说明性的不同部件,如导引探测器或导管,如上所述。远端2902推进时其向上、向下和左右移动(如图中弯曲,或在关节处转动),如替代位置线所描述。当远端2902的尖端接触或接近接触壁2904上的位置,致动装置控制系统2908记录尖端的位置并在存储器2910中存储该位置数据。尖端位置信息可能直接来自手术器械组件或来自外部传感器2912,如上所述。尖端可能在不同的3维方向中弯曲以便其以不同的图样(例如,一系列圆环、螺旋线、一系列不同十字或星形等等)接触或接近接触壁2904,由外科医生直接控制或由控制系统2908自动控制。一旦内腔或空腔的内部空间被绘制,空间信息用于协助推进后来的手术器械组件部件,如图29B所示。如同示例,示出了具有侧面出口的辅助导管2912,并且控制系统2908使用绘制信息防止主导管2914a、2914b及其关联的末端执行器在向手术位置2906推进时干扰壁2904。
[0238] 图29C到图29E是说明了防止不期望的器械与组织碰撞的更多方面的平面图。病人解剖结构限定的空间中(例如,喉部手术),器械可能在成像系统的视场外碰撞病人组织。这种碰撞会损伤组织。对于多DOF手术器械,一些DOF可能在视场内,而其他更多近端DOF可能在视场外。因此,外科医生可能没有意识到这些近端DOF移动时发生的组织损伤。例如,如图29C所示,内窥镜成像系统2920从导管2922的末端延伸。左侧工作器械2924a被定位以便所有DOF在成像系统2920的视场2926(虚线为边界)内。但是,虽然器械2924b的末端执行器在视场2926内,右侧工作器械2924b具有位于视场2926外的近端DOF(示出了说明性的如上所述的平行运动机构和腕)。该器械位置是任务的说明性示例,如打结缝合。
[0239] 在一个方面中,当摄影机的制造方法使边界相对于摄影机头(图像获取部件)是已知的,视场边界可以被确定。接着边界信息被存储在与成像系统相关联的非易失性存储器中,该成像系统包括摄影机头。因此,控制系统可以使用成像系统器械的运动学和关节位置信息来相对于工作器械定位摄影机头,并且因此控制系统可以确定相对于工作器械的视场边界。接着器械在边界内受控工作。
[0240] 在用于立体成像系统的另一方面中,通过使用机器视觉算法在视场内识别器械及其位置,视场边界可以相对于器械确定。公开号为US2006/0258938A1的美国专利申请(Hoffman等人)中公开了该“工具跟踪”问题,其被并入本文以供参考。
[0241] 如图29D所示,成像系统2920被定位,以便摄影机头刚好位于导管2922的远端。器械2924a和2924b从导管的远端延伸并且在成像系统2920的视场内延伸。“容许体积”被定义为与视场边界一致。控制系统防止器械2924a和2924b的任何一部分移出容许体
积。由于外科医生可以看到器械2924a和2924b的所有远端移动部分,接着外科医生移动器械,而不碰撞周围的组织。记录该器械的运动,并且确定边界为器械的最远运动的“器械体积(volume)”2928(边界为虚线)。器械体积是一个凸面量,器械可能在其中移动而不碰撞组织。
[0242] 接下来,成像系统2920被插入,如图29E所示。因此,视场2926也被嵌入,并且器械2924a、2924b的一部分在嵌入的视场2926外。新的容许体积被确定为新嵌入的视场加上先前确定的视场外的器械体积。因此,控制系统将允许外科医生在新容许体积内将器械移动到任何位置。该过程可能被重复用于进一步视场嵌入或用于导管2922移动。该方案允许外科医生实时定义允许器械运动的范围而不需要组织的模型。外科医生只需要在视场内追踪器械运动范围的边界,视场变化时控制系统将记录该信息。
[0243] 防止不期望的器械/组织碰撞的另一种方式是使用图像拼接(mosaicing)。图29F是显示(例如,立体图像)的示意图,外科医生在手术过程中观看该显示。如图29F所示,来自新嵌入的视场2940(虚线为边界)的图像与来自旧的提取视场2942的图像配准和拼接。图像拼接是已知的(参看例如编号为4,673,988(Jansson等人)和5,999,662(Burt
等人)的美国专利,将其并入本文以供参考)并且已被应用到医疗设备(参看例如编号为
7,194,118(Harris等人)的美国专利申请,将其并入本文以供参考)。因此,外科医生看到的区域大于当前插入的视场。旧视场2942中示出了器械的运动学精确图解模拟,以便外科医生可以看到器械移动时在该区域内可能的碰撞。
[0244] 在一些方面中,手术期间微创手术器械组件部件可能用手代替。在其他方面中,部件可能被自动替换。图30是说明了手术期间用于自动交换微创手术器械(例如,直径大约3mm,例如具有单一抓持DOF的可弯曲腹腔镜器械)的机构的示意图。如图30所示,器械箱
3002存储了几个器械3004a、3004b、3004c(例如,如上所述的三个器械)。器械可能被存储在圆筒(drum)上、线性延伸或者其他。在一些方面中,箱3002中的器械被选择用于每个手术过程——就是说,外科医生确定要用于手术过程的器械,并且箱3002被据此配置。如图
30所示,箱3002被定位,允许致动装置控制系统3006将器械3004a推进导管3008。为了交换器械,控制系统3006从导管3008取出器械3004a并重新定位箱3002以推进器械3004b
或3004c进入导管3008。图30中所示的箱、器械和导管是本文描述的说明性的不同部件(例如,器械、主导管和辅助导管、导引探测器、成像系统(光学、红外、超声)等等)。
[0245] 图30A是说明了在圆筒上存储器械或其他部件的方面的示意图。圆筒3004在箱外壳3022内旋转时,器械3004延伸。用于器械3004的末端执行器3008的致动装置3006位于圆筒3020上。致动装置3006是示意性的其他致动组件,如果例如可操纵导管被推进,致动装置是可能使用。器械3004卷得足够松,以便用于末端执行器3008的缆线致动装置不在其可弯曲的盖子内弯曲。图30B是说明了在卷轴3030上存储可自动更换器械的方面的示意图,该卷轴3030安装在个体绞盘3032上。
[0246] 图31是示出了说明性微创手术器械组件的各方面的立体图,包括专于缩回的多关节器械。如图31所示,导管3102包括通道3104和三个通道3106a、3106b、3106c,成像系统通过通道3104插入,手术器械可能通过三个通道3106a、3106b、3106c插入。示出的缩回器械3108通过通道3106c延伸。
[0247] 如上所述,缩回器械3108包括近端器械主体3110和四个连续连杆3112a-3112d。四个关节3114a-3114d将近端器械主体3110和连杆3112a-3112d耦合到一起。在一个方
面中,每个关节3114a-3114d是可独立控制的单一DOF俯仰关节。在其他方面,中关节可能具有附加DOF。主动控制(由手或远程操纵控制)的抓持器3116通过被动滚动关节3118
安装在最远端连杆3112d的远端。在一些方面中,其他末端执行器可能代替抓持器,或者不使用任何设备。在一个方面中连杆3112a-3112d和抓持器3116的组合长度足以收回器械工作封套外的组织,该器械延伸通过通道3106a和3106b。例如,连杆和抓持器的组合长度可能大约等于器械的全部插入范围(例如,大约5英寸)。示出了四个连杆和关节,并且可能使用其它数量的连杆和关节。使用俯仰关节3114a-d和通道内3160c滚动器械3108的
不同组合完成收回。
[0248] 对于收缩,器械3108被插入以便每个关节3114a-d相继露出。可以变化插入深度,以便当关节从导管远端伸出时,缩回不同数量的关节可以在距离导管远端的不同位置开始。就是说例如,可能导管一插入并通过导管的远端就开始缩回。对于缩回,抓持器3116可能抓紧组织。当器械3108在通道3106c内滚动时,被动滚动关节3118防止被抓紧的组织被扭转。在一个方面中,控制系统耦合器械3108和导管3102的运动。当导管被移动到被缩回的组织“下面”左侧或右侧时,运动的耦合控制允许组织由抓持器3116固定在合适位置。例如,随着导管3102的远端被移动到左侧,器械3108被滚动(并且关节3114a-d的俯仰可能被改变)以将抓持器3116移动到右侧。
[0249] 图31进一步说明了导管内器械位置和控制的方面。工作手术器械不需要通过对应或对准其工作位置的导管通道被插入。例如如图31所示,左侧工作器械不必通过最左侧的通道3106c插入。作为替代,左侧工作器械可能通过“底”通道3106b插入。接着右侧工作器械可能通过最右侧通道3106a插入。接着,左侧工作器械和右侧工作器械可能被控制以在与成像系统视场对准的手术位置工作,成像系统通过未被滚动或平摇的通道3104插入。以另一种方式表述,工作器械插入通道之间的左右轴不必对齐工作器械的末端执行器之间的左右轴,或者不必对齐立体成像系统的瞳孔间的左右轴。进一步地,通过控制系统识别哪个器械被耦合到每个特定致动装置,左右方向的器械位置可能被改变。例如,缩回器械3108可能通过通道3106a插入,右侧工作器械可能通过通道3106b插入,并且左侧工作器械可能通过通道3106c插入。在一些方面中,通过形状合适的通道和/或成像系统,成像系统可能通过几个通道中的一个插入。例如“顶”通道3104和“底”通道3106b可能为椭圆形,具有固定圆柱器械主体的中心孔,如图20A所示。因此,成像系统可能通过“顶”通道或“底”通道插入,并且工作器械可能通过其他“顶”通道或“底”通道插入。
[0250] 不同微创手术系统、组件、器械及关联的部件的示例的描述不应被理解成限制性的。应该理解合并本文中描述的各方面的许多不同变化是可能的。例如,刚性器械、可弯曲器械和器械组件的不同组合以及导管和导管部件的不同组合落入本发明的范围中。权利要求书限定本发明。
[0251] 有关本发明各方面的条款
[0252] 方面【990】包括
[0253] 1.微创手术系统,包括:
[0254] 导管;
[0255] 手术器械,包括远端,其中所述手术器械延伸通过所述导管;
[0256] 多个远程操纵致动装置,其以全部六个笛卡尔自由度移动所述手术器械的所述远端;和
[0257] 其中所述手术器械的所述远端的所述自由度独立于所述导管的自由度。
[0258] 2.根据条款1所述的微创手术系统,其中所述导管是基本刚性的。
[0259] 3.根据条款1所述的微创手术系统,其中所述导管是基本刚性的和弯曲的。
[0260] 4.根据条款1所述的微创手术系统,进一步包括:
[0261] 第二批多个远程操纵致动装置,其移动所述导管。
[0262] 5.根据条款4所述的微创手术系统:
[0263] 其中所述第二批多个致动装置以至少两个平移自由度移动所述导管的远端。
[0264] 6.根据条款1所述的微创手术系统:
[0265] 其中所述导管包括被动弯曲段。
[0266] 7.根据条款6所述的微创手术系统:
[0267] 其中所述被动弯曲部分是所述导管的最远端段。
[0268] 8.根据条款6所述的微创手术系统:
[0269] 其中所述被动弯曲部分可有效地锁定以保持弯曲位置。
[0270] 9.根据条款6所述的微创手术系统:
[0271] 其中控制所述被动弯曲段的柔度以在有效松弛状态和有效刚性状态之间连续变化。
[0272] 10.根据条款1所述的微创手术系统:
[0273] 其中所述导管包括可主动弯曲段。
[0274] 11.根据条款10所述的微创手术系统:
[0275] 其中可主动弯曲段是所述导管的最远端段。
[0276] 12.根据条款10所述的微创手术系统:
[0277] 其中所述可主动弯曲段被锁定以保持弯曲位置。
[0278] 13.根据条款10所述的微创手术系统:
[0279] 其中可主动弯曲段的柔度被控制以在可移动状态和有效刚性状态之间连续变化。
[0280] 14.根据条款1所述的微创手术系统:
[0281] 其中所述导管包括刚性段和被动可弯曲段。
[0282] 15.根据条款1所述的微创手术系统:
[0283] 其中所述导管包括刚性段和主动可弯曲段。
[0284] 16.根据条款1所述的微创手术系统:
[0285] 其中所述导管包括可被动弯曲段和主动可弯曲段。
[0286] 17.根据条款1所述的微创手术系统:
[0287] 其中所述导管包括弯曲传感器。
[0288] 18.根据条款1所述的微创手术系统:
[0289] 其中所述导管包括立体图像获取部件。
[0290] 19.根据条款1所述的微创手术系统,进一步包括:
[0291] 辅助导管,其中所述导管延伸通过所述辅助导管。
[0292] 20.根据条款19所述的微创手术系统:
[0293] 其中所述辅助导管包括可被动弯曲段。
[0294] 21.根据条款19所述的微创手术系统:
[0295] 其中所述辅助导管包括以远程操纵方式控制的可主动弯曲段。
[0296] 22.根据条款1所述的微创手术系统:
[0297] 其中所述手术器械包括弯曲传感器。
[0298] 方面【1000】进一步包括:
[0299] 1.微创手术器械系统,包括:
[0300] 可弯曲导引探测器;
[0301] 可弯曲导管;
[0302] 手术器械,包括远端的末端执行器,和
[0303] 远程操纵控制系统;
[0304] 其中所述远程操纵控制系统输出控制信号,该控制信号将导引探测器从病人身体上的入口推进并通过中间组织结构,到达手术位置,并且
[0305] 其中在所述导引探测器的远端通过所述中间组织结构以后所述导引探测器被锁定以保持弯曲位置;
[0306] 其中所述导管同轴地在锁定的导引探测器上推进,并且其中在所述导管的远端处于所述手术位置之后,所述导管被锁定以保持弯曲位置,该弯曲位置对应导引探测器的所述锁定弯曲位置;
[0307] 其中在所述导引探测器被解锁并从所述锁定导管中取出后,所述手术器械通过所述锁定导管插入,以将所述末端执行器置于所述手术位置。
[0308] 2.根据条款1所述的系统,其中所述导引探测器包括位于所述导引探测器远端的图像捕获设备。
[0309] 3.根据条款1所述的系统,其中通过所述入口和所述手术位置之间路径的外科手术前的图像的协助,所述远程操纵控制系统推进所述导管。
[0310] 4.根据条款1所述的系统,其中通过所述入口和所述手术位置之间路径的实时图像的协助,所述远程操纵控制系统推进所述导引探测器。
[0311] 5.根据条款1所述的系统,其中当所述导引探测器推进时,所述控制系统自动从所述导引探测器的远端部分向所述导引探测器的近端部分传递弯曲。
[0312] 6.根据条款1所述的系统,其中所述中间组织在头部内。
[0313] 7.根据条款1所述的系统,其中所述中间组织挡住了所述入口和所述手术位置之间的直的路径。
[0314] 8.根据条款1所述的系统,其中所述远程操纵控制系统输出第二控制信号,所述第二控制信号在所述末端执行器处于手术位置后移动所述手术器械的远端部分。
[0315] 9.根据条款1所述的系统,其中所述远程操纵控制系统输出第二控制信号,所述第二控制信号在所述末端执行器处于手术位置后移动所述导管的远端部分。
[0316] 10.微创手术方法,包括:
[0317] 生成远程操纵控制信号,其从病人身体上的入口推进导引探测器,通过中间组织结构到达手术位置;
[0318] 在所述导引探测器的远端通过所述中间组织结构后锁定所述导引探测器;
[0319] 同轴地推进导管,超过所述锁定的导引探测器;
[0320] 在所述导管的远端处于所述手术位置后锁定所述导管;
[0321] 从所述锁定的导管中取出所述导引探测器;
[0322] 通过所述锁定的导管推进手术器械,以将所述手术器械的末端执行器定位在所述手术位置。
[0323] 11.根据条款10所述的方法,其中所述控制信号的至少一部分基于所述入口和所述手术位置之间路径的外科手术前的图像。
[0324] 12.根据条款10所述的方法,其中所述控制信号的至少一部分基于所述入口和所述手术位置之间路径的实时图像。
[0325] 13.根据条款10所述的方法,进一步包括生成第二远程操纵控制信号,该第二远程操纵控制信号在所述末端执行器处于所述手术位置后移动所述手术器械的远端部分。
[0326] 14.根据条款10所述的方法,进一步包括生成第二远程操纵控制信号,该第二远程操纵控制信号在所述末端执行器处于所述手术位置后移动所述导管的远端部分。
[0327] 方面【1010】进一步包括:
[0328] 1.一种装置,包括:
[0329] 导管;
[0330] 第一器械,其包括第一细长主体和位于所述第一细长主体近端的第一传动机构,其中所述第一传动机构被耦合以移动在所述第一器械远端的部件,并且其中所述第一传动机构包括楔形;
[0331] 第二器械,包括第二细长主体和位于所述第二细长主体近端的第二传动机构,其中所述第二传动机构被耦合以移动在所述第二器械远端的部件,并且其中所述第二传动机构包括楔形;
[0332] 其中所述第一传动机构的所述楔形靠近所述第二传动机构的所述楔形;
[0333] 其中所述第一传动机构和所述第二传动机构的楔形的顶点被定向,朝向所述导管的延长中心线;和
[0334] 其中所述第一细长主体和所述第二细长主体通过所述导管延伸。
[0335] 2.根据条款1所述的装置:
[0336] 其中所述第一细长主体为基本刚性并且在所述第一传动机构和所述导管的近端之间弹性弯曲。
[0337] 3.根据条款1所述的装置,进一步包括:
[0338] 位于所述导管的近端的第三传动机构;
[0339] 其中所述第三传动机构被耦合以移动位于所述导管末端的部件;和
[0340] 其中所述第一细长主体延伸通过所述第三传动机构。
[0341] 4.根据条款1所述的装置,进一步包括:
[0342] 位于所述导管近端的第三传动机构;
[0343] 其中所述第三传动机构被耦合以移动位于所述导管远端的组件;
[0344] 其中所述第一细长主体和所述第二细长主体延伸通过所述第三传动机构。
[0345] 5.根据条款1所述的装置:
[0346] 其中耦合以移动位于所述第一器械的远端的部件包括耦合以在所述导管内滚动所述第一细长主体。
[0347] 6.根据条款1所述的装置,进一步包括:
[0348] 第一致动组件,所述第一传动机构安装于所述第一致动组件上;和
[0349] 第二致动机构,所述第二传动机构安装于所述第二致动机构上;
[0350] 其中所述第一致动组件通过所述导管移动所述第一器械;和
[0351] 其中所述第二致动机构通过所述导管独立于所述第一器械移动所述第二器械。
[0352] 7.根据条款1所述的装置:
[0353] 其中所述第一传动机构包括用于致动机构的机械接口;和
[0354] 其中所述机械接口位于靠近所述导管的所述第一传动机构的侧面。
[0355] 8.根据条款1所述的装置:
[0356] 其中所述第一传动机构包括用于致动机构的机械接口;和
[0357] 其中所述机械接口位于远离所述导管的延长中心线的所述第一传动机构的侧面。
[0358] 9.一种方法,包括:
[0359] 将多个手术器械主体延伸通过导管;
[0360] 围绕所述导管的延长中心线排列多个传动机构,其中每个传动机构耦合到所述手术器械主体中的唯一一个;
[0361] 其中排列所述传动机构包括定向所述传动机构的顶点,朝向所述导管的所述延长中心线。
[0362] 10.根据条款9所述的方法,进一步包括:
[0363] 至少一个所述手术器械主体在传动机构和所述导管之间弹性弯曲。
[0364] 11.根据条款9所述的方法,进一步包括:
[0365] 将至少一个所述手术器械主体延伸通过耦合到所述导管的传动机构。
[0366] 12.根据条款9所述的方法,进一步包括:
[0367] 致动所述手术器械主体的第一个和所述手术主体的第二个以独立地移动并通过导管。
[0368] 13.根据条款9所述的方法,进一步包括:
[0369] 在靠近所述导管的所述传动机构侧面将致动力耦合到所述传动机构的一个。
[0370] 14.根据条款9所述的方法,进一步包括:
[0371] 在远离所述导管的所述延长中心线的所述传动机构的侧面将致动力耦合到所述传动机构的一个。
[0372] 15.一种设备,包括:
[0373] 导管;
[0374] 第一器械,包括第一细长主体和位于所述第一细长主体近端的第一传动机构,其中所述第一传动机构被耦合以移动所述第一器械远端的部件;
[0375] 第二器械,包括第二细长主体和位于所述第二细长主体近端的第二传动机构,其中所述第二传动机构被耦合以移动所述第二器械远端的部件;
[0376] 其中所述第一传动机构和所述第二传动机构围绕所述导管的延长中心线排列;
[0377] 其中所述第一细长主体和所述第二细长主体延伸通过所述导管;和
[0378] 其中所述第一细长主体和所述第二细长主体为基本刚性并且在所述第一传动机构和所述第二传动机构与所述导管之间弹性弯曲。
[0379] 16.一种装置,包括:
[0380] 导管;
[0381] 第一器械,包括第一细长主体和位于所述第一细长主体近端的第一传动机构,其中所述第一传动机构包括与第一致动机构的接口,并且其中与所述第一致动机构的接口在远离所述导管延长中心线的所述第一传动机构的侧面上;
[0382] 第二器械,包括第二细长主体和位于所述第二细长主体近端的第二传动机构,其中所述第二传动机构包括与第二致动机构的接口,并且其中与所述第二致动机构的接口在远离所述导管延长中心线的所述第二传动机构的侧面上;
[0383] 其中所述第一传动机构和所述第二传动机构在所述导管的所述延长中心线的基本相对侧面上;和
[0384] 其中所述第一细长主体和所述第二细长主体延伸通过所述导管。
[0385] 18.一种装置,包括:
[0386] 远程操纵致动组件;
[0387] 手术器械;和
[0388] 内窥镜成像系统;
[0389] 其中所述手术器械和所述内窥镜成像系统可交换的安装在所述致动组件上。
[0390] 19.一种方法,包括:
[0391] 感测手术器械或成像系统是否安装在远程操纵致动组件上;
[0392] 如果所述器械安装在所述致动组件上,在器械控制模式中使用所述致动组件操纵所述手术器械,和
[0393] 如果所述成像系统安装在所述致动组件上,在摄影机控制模式中使用所述致动组件操纵所述成像系统。
[0394] 方面【1020】进一步包括:
[0395] 1.手术器械,包括:
[0396] 器械主体;
[0397] 末端执行器;和
[0398] 平行运动机构,包括细长刚性主体段;
[0399] 其中所述平行运动机构被耦合在所述器械主体和所述末端执行器之间;和
[0400] 其中所述平行运动机构改变所述末端执行器的位置而不改变所述末端执行器的方向。
[0401] 2.根据条款1所述的器械:
[0402] 其中所述平行运动机构关于所述器械主体的纵轴升降并横荡所述末端执行器。
[0403] 3.根据条款1所述的器械:
[0404] 其中所述平行运动机构进一步包括位于所述刚性主体段近端的第一铰链和位于所述刚性主体段远端的第二铰链;和
[0405] 其中所述第一铰链和所述第二铰链被耦合,以便所述第一铰链在第一方向中旋转时,所述第二铰链在与所述第一方向相反的第二方向中旋转。
[0406] 4.根据条款3所述的器械:
[0407] 其中所述第一铰链和所述第二铰链由多个丝状物耦合。
[0408] 5.根据条款4所述的器械:
[0409] 其中所述丝状物包括线缆。
[0410] 6.根据条款1所述的器械,进一步包括:
[0411] 位于所述主体段近端的传动机构;和
[0412] 多个丝状物,在所述传动机构和所述平行运动机构的铰链之间耦合;
[0413] 其中至少一个所述丝状物上的力移动所述平行运动机构的所述刚性主体段。
[0414] 7.根据条款6所述的器械:
[0415] 其中所述丝状物包括线缆。
[0416] 8.根据条款1所述的器械,进一步包括:
[0417] 位于所述主体段近端的传动机构;
[0418] 其中所述平行运动机构进一步包括位于所述刚性主体段近端的第一铰链和位于所述刚性主体段远端的第二铰链;
[0419] 其中第一丝状物在所述第一铰链和所述第二铰链之间耦合;
[0420] 其中第二丝状物被耦合在所述传动机构和所述第一丝状物之间在所述第一铰链和所述第二铰链之间的位置。
[0421] 9.根据条款8所述的器械:
[0422] 其中所述第一丝状物和所述第二丝状物包括线缆。
[0423] 10.手术器械,包括:
[0424] 近端主体段;和
[0425] 耦合在所述近端主体段的远端的平行运动机构;
[0426] 其中所述平行运动机构包括:
[0427] 远端主体段,
[0428] 第一铰链,包括耦合到所述远端主体段近端的近端连杆和远端连杆,
[0429] 第二铰链,包括耦合到所述远端主体段远端的远端连杆和近端连杆,和
[0430] 丝状物,其被耦合在所述第一铰链的所述近端连杆和所述第二铰链的所述远端连杆之间。
[0431] 11.根据条款10所述的器械:
[0432] 其中所述丝状物包括线缆。
[0433] 12.根据条款10所述的器械,进一步包括:
[0434] 传动机构,位于所述近端主体段的近端;和
[0435] 第二丝状物,其被耦合在所述传动机构和所述第一铰链的所述远端连杆之间。
[0436] 13.根据条款12所述的器械,进一步包括:
[0437] 其中所述丝状物和所述第二丝状物包括线缆。
[0438] 14.根据条款10所述的器械,进一步包括:
[0439] 传动机构,位于所述近端主体段的近端;和
[0440] 耦合到所述丝状物的第二丝状物,所述丝状物被耦合在所述第一铰链的所述近端连杆和所述第二铰链的所述远端连杆之间。
[0441] 15.根据条款10所述的器械:
[0442] 其中所述丝状物和所述第二丝状物包括线缆。
[0443] 16.一种方法,包括:
[0444] 在手术器械主体和末端执行器之间耦合平行运动机构;和
[0445] 移动所述平行运动机构以改变所述末端执行器的位置而不改变所述末端执行器的方向。
[0446] 17.根据条款16所述的方法:
[0447] 其中移动所述平行运动机构包括关于所述器械主体的纵轴升降和横荡所述末端执行器。
[0448] 18.根据条款16所述的方法,进一步包括:
[0449] 将所述平行运动机构的近端铰链和远端铰链耦合,以向相反的方向旋转。
[0450] 19.根据条款16所述的方法,进一步包括:
[0451] 耦合传动机构以移动所述平行运动机构的远端主体段。
[0452] 20.根据条款16所述的方法,进一步包括:
[0453] 将第一丝状物耦合在所述平行运动机构的近端铰链和远端铰链之间;和
[0454] 将第二丝状物耦合在传动机构和所述第一丝状物之间。
[0455] 21.根据条款20所述的方法:
[0456] 其中所述第一丝状物和所述第二丝状物包括线缆。
[0457] 方面【1030】进一步包括:
[0458] 1.手术器械组件,包括:
[0459] 导管,具有至少两个侧面出口;
[0460] 第一手术器械,其延伸通过所述导管并通过所述侧面出口的第一个引出;
[0461] 第二手术器械,其延伸通过所述导管并通过所述侧面出口的第二个引出;和
[0462] 立体图像获取部件,其被定位于所述导管的远端。
[0463] 2.根据条款1所述的组件:
[0464] 其中所述第一侧面出口直接对着所述第二侧面出口。
[0465] 3.根据条款1所述的组件:
[0466] 其中当所述第一手术器械从第一个所述侧面出口延伸时,所述第一手术器械的远端自动延伸进入所述图像获取部件的视场。
[0467] 4.根据条款1所述的组件:
[0468] 其中所述第一手术器械包括弯曲传感器。
[0469] 5.根据条款1所述的组件:
[0470] 其中从第一个所述侧面出口延伸的所述第一手术器械的至少一部分包括可主动控制弯曲段。
[0471] 6.根据条款1所述的组件:
[0472] 其中手术过程中所述第一手术器械可以从所述导管去除,并用第三手术器械替换。
[0473] 7.根据条款1所述的组件,进一步包括:
[0474] 第三手术器械,延伸通过并离开所述导管的所述远端。
[0475] 8.根据条款7所述的组件:
[0476] 其中所述第三手术器械包括被动弯曲器械,所述被动弯曲器械包括抓持末端执行器。
[0477] 9.根据条款1所述的组件:
[0478] 其中所述导管包括可主动控制弯曲部分。
[0479] 10.根据条款1所述的组件:
[0480] 其中所述导管包括可主动控制向后弯曲部分。
[0481] 11.根据条款10所述的组件:
[0482] 其中所述向后弯曲部分以俯仰自由度或平摇自由度向后弯曲。
[0483] 12.根据条款1所述的组件:
[0484] 其中所述导管的部分在所述侧面出口和所述远端之间,是可弯曲的;和
[0485] 其中当所述侧面出口的位置保持不变时所述导管的所述部分在所述侧面出口和所述远端之间是可移动的。
[0486] 13.根据条款1所述的组件:
[0487] 其中所述导管的截面包括椭圆形;
[0488] 其中所述第一手术器械延伸通过所述椭圆形的第一末端;和
[0489] 其中所述第二手术器械延伸通过所述椭圆形的第二末端。
[0490] 14.根据条款1所述的组件,进一步包括:
[0491] 远程操纵控制系统,其控制所述导管、所述第一手术器械和所述第二手术器械的运动。
[0492] 15.一种方法,包括:
[0493] 当所述远端部分延伸通过所述导管的侧面出口时,控制手术器械的远端部分,以便将所述手术器械的所述远端自动移动进入内窥镜视觉系统的视场,该内窥镜视觉系统位于所述导管的远端。
[0494] 16.一种方法,包括:
[0495] 第一手术器械延伸通过导管中的第一侧面出口;
[0496] 第二手术器械延伸通过所述导管中的第二侧面出口;和
[0497] 将所述第一手术器械的远端和所述第二手术器械的远端置于立体图像获取部件的视场内,该立体图像获取部件位于所述导管的远端。
[0498] 17.根据条款16所述的方法,进一步包括:
[0499] 当所述第一手术器械从所述第一侧面出口延伸时,将所述第一手术器械的所述远端自动延伸进入所述图像获取部件的视场。
[0500] 18.根据条款16所述的方法,进一步包括:
[0501] 手术过程中用第三手术器械替换所述第一手术器械;和
[0502] 将所述第三手术器械的远端置于所述图像获取部件的所述视场内。
[0503] 19.根据条款16所述的方法,进一步包括:
[0504] 第三手术器械延伸通过位于所述导管的所述远端的侧面出口。
[0505] 20.根据条款16所述的方法,进一步包括:
[0506] 向后弯曲所述导管。
[0507] 21.根据条款16所述的方法,进一步包括:
[0508] 以俯仰自由度或平摇自由度向后弯曲所述导管。
[0509] 22.根据条款16所述的方法,进一步包括:
[0510] 当所述侧面出口保持固定时,在所述侧面出口和所述导管的所述远端之间移动所述导管的段。
[0511] 23.根据条款16所述的方法,进一步包括:
[0512] 以远程操纵方式控制所述导管、所述第一手术器械和所述第二手术器械。
[0513] 方面【1031】进一步包括:
[0514] 1.手术器械组件,包括:
[0515] 辅助导管,具有至少两个侧面出口;
[0516] 第一主导管,其延伸通过所述辅助导管并通过所述侧面出口的第一个引出;
[0517] 第二主导管,其延伸通过所述辅助导管并通过所述侧面出口的第二个引出;
[0518] 第一手术器械,延伸通过并离开所述第一主导管的远端;
[0519] 第二手术器械,延伸通过并离开所述第二主导管的远端;
[0520] 立体图像获取部件,位于所述辅助导管的远端。
[0521] 2.根据条款1所述的组件:
[0522] 其中所述第一侧面出口直接对着所述第二侧面出口。
[0523] 3.根据条款1所述的组件:
[0524] 其中当所述第一主导管从所述侧面出口的第一个延伸时,所述第一主导管的所述远端自动延伸进入所述图像捕获部件的视场。
[0525] 4.根据条款1所述的组件:
[0526] 其中所述第一主导管包括弯曲传感器。
[0527] 5.根据条款4所述的组件:
[0528] 其中所述第一器械包括弯曲传感器。
[0529] 6.根据条款1所述的组件:
[0530] 其中所述第一器械包括弯曲传感器。
[0531] 7.根据条款1所述的组件:
[0532] 其中从所述侧面出口的第一个延伸的所述第一主导管的至少一部分包括可主动控制弯曲部分。
[0533] 8.根据条款7所述的组件:
[0534] 其中所述第一主导管的所述可主动控制弯曲段是所述第一主导管的最远端段;和[0535] 其中所述第一主导管的所述可主动控制弯曲段移动所述第一手术器械的末端执行器。
[0536] 9.根据条款1所述的组件:
[0537] 其中手术过程中所述第一手术器械可以被去除并替换为第三手术器械。
[0538] 10.根据条款1所述的组件:
[0539] 其中手术过程中所述第一主导管可以被去除并替换为第三主导管。
[0540] 11.根据条款1所述的组件,进一步包括:
[0541] 第三手术器械,其延伸通过并离开所述辅助导管的所述远端。
[0542] 12.根据条款11所述的组件:
[0543] 其中所述第三手术器械包括可被动弯曲器械,该可被动弯曲器械包括抓持末端执行器。
[0544] 13.根据条款1所述的组件:
[0545] 其中所述辅助导管包括可主动控制弯曲部分。
[0546] 14.根据条款1所述的组件:
[0547] 其中所述辅助导管包括可主动控制向后弯曲部分。
[0548] 15.根据条款1所述的组件:
[0549] 其中所述向后弯曲部分以俯仰自由度或平摇自由度中向后弯曲。
[0550] 16.根据条款1所述的组件:
[0551] 其中所述辅助导管的部分在所述侧面出口和所述远端之间,是可弯曲的;和
[0552] 其中当所述侧面出口的所述位置保持不变时,所述辅助导管的所述部分在所述侧面出口和所述远端之间,是可移动的。
[0553] 17.根据条款1所述的组件:
[0554] 其中所述辅助导管的截面形状包括椭圆形;
[0555] 其中所述第一主导管延伸通过所述椭圆形的第一末端;和
[0556] 其中所述第二主导管延伸通过所述椭圆形的第二末端。
[0557] 18.根据条款1所述的组件,进一步包括:
[0558] 远程操纵控制系统,其控制所述辅助导管、第一主导管和第二主导管、第一手术器械和第二手术器械的运动。
[0559] 19.一种方法,包括:
[0560] 当所述远端部分延伸通过辅助导管的侧面出口时控制主导管的远端部分,以便将所述主导管的所述远端自动移动进入内窥镜视觉系统的视场,该内窥镜视觉系统位于所述辅助导管的远端。
[0561] 20.一种方法,包括:
[0562] 第一主导管延伸通过辅助导管上的第一侧面出口;
[0563] 第二主导管延伸通过所述辅助导管上的第二侧面出口;
[0564] 第一手术器械延伸通过所述第一主导管;
[0565] 第二手术器械延伸通过所述第二主导管;和
[0566] 将所述第一手术器械的远端和所述第二手术器械的远端置于立体图像获取部件的视场内,该立体图像获取部件位于所述辅助导管的末端。
[0567] 21.根据条款20所述的方法,进一步包括:
[0568] 当所述第一主导管从所述第一侧面出口延伸时,所述第一主导管的远端自动延伸进入所述图像获取部件的所述视场。
[0569] 22.根据条款20所述的方法,进一步包括:
[0570] 手术过程中用第三主导管替换所述第一主导管;和
[0571] 将所述第三主导管的远端置于所述图像获取部件的所述视场内。
[0572] 23.根据条款20所述的方法,进一步包括:
[0573] 第三手术器械延伸通过所述导管的所述远端的开口。
[0574] 24.根据条款20所述的方法,进一步包括:
[0575] 向后弯曲所述辅助导管。
[0576] 25.根据条款20所述的方法,进一步包括:
[0577] 以俯仰自由度或平摇自由度向后弯曲所述辅助导管。
[0578] 26.根据条款20所述的方法,进一步包括:
[0579] 当所述侧面出口保持固定,在所述辅助导管的所述侧面出口和所述远端之间移动所述辅助导管的段。
[0580] 27.根据条款20所述的方法,进一步包括:
[0581] 以远程操纵方式控制所述辅助导管、所述第一主导管、所述辅助导管、所述第一手术器械和所述第二手术器械。
[0582] 方面【1040】进一步包括:
[0583] 1.微创手术系统,包括:
[0584] 导管;
[0585] 箱,其包括多个手术器械;
[0586] 致动机构,其被耦合以移动所述箱的一个或多于一个部件;和
[0587] 控制系统,用于所述致动机构;
[0588] 其中来自所述控制系统的信号导致所述致动机构从所述导管中取出所述手术器械的第一个,并通过所述导管推进所述手术器械的第二个。
[0589] 2.根据条款1所述的手术系统:
[0590] 其中所述多个手术器械围绕箱中的单一轴安装。
[0591] 3.根据条款1所述的手术系统:
[0592] 其中每个手术器械围绕所述箱中的唯一轴安装。
[0593] 4.根据条款1所述的手术系统,进一步包括:
[0594] 第一末端执行器,位于所述手术器械的第一个的末端;和
[0595] 第二末端执行器,位于所述手术器械的第二个的末端;
[0596] 其中所述箱包括第一致动器和第二致动器,所述第一致动器移动所述第一末端执行器,所述第二致动器移动所述第二末端执行器。
[0597] 5.根据条款1所述的手术系统:
[0598] 其中所述箱包括第一手术过程需要的全部手术器械;
[0599] 其中所述箱可以用第二箱替换,该第二箱包括第二手术过程需要的全部手术器械;和
[0600] 其中所述第一手术过程和所述第二手术过程需要不同的手术器械。
[0601] 6.一种方法,包括:
[0602] 响应来自控制系统的第一命令从导管中取出第一手术器械,其中所述第一手术器械是存储在箱中的多个手术器械的一个;和
[0603] 响应来自控制系统的第二命令将存储在所述箱内的第二手术器械推进导管,其中所述第二手术器械是存储在箱中的多个手术器械的另一个。
[0604] 7.根据条款6所述的方法,进一步包括:
[0605] 从第一位置处移动所述箱,在该第一位置所述第一器械被取出到达第二位置,在该第二位置所述第二器械被推进;
[0606] 其中响应来自所述控制系统的第三命令移动所述箱。
[0607] 8.根据条款6所述的方法,进一步包括:
[0608] 响应来自所述控制系统的第三命令,通过操作所述箱中的致动机构移动所述第一器械远端的末端执行器。
[0609] 9.一种方法,包括:
[0610] 在微创手术系统中安装第一箱,其中所述第一箱包括第一批多个可交换手术器械;
[0611] 用第二箱替换所安装的第一箱,其中所述第二箱包括第二批多个可交换手术器械。
[0612] 方面【1050】进一步包括:
[0613] 1.手术器械组件,包括:
[0614] 导管,包括近端、远端和所述近端与所述远端之间的中间位置,其中纵轴在所述近端和所述远端之间延伸;
[0615] 第一手术器械,其中所述第一手术器械通过所述导管的所述远端延伸;
[0616] 第二手术器械,其中所述第二手术器械从所述中间位置的所述导管处延伸,所述中间位置基本平行于所述导管的所述纵轴;和
[0617] 立体图像获取部件位于所述中间位置和所述远端之间的所述导管上,其中所述捕获组件的视场大体垂直于所述导管的所述纵轴。
[0618] 2.根据条款1所述的组件:
[0619] 其中所述第一手术器械包括可弯曲段。
[0620] 3.根据条款1所述的组件:
[0621] 其中所述第一手术器械包括刚性段。
[0622] 4.根据条款4所述的组件:
[0623] 其中所述第一手术器械被固定到所述导管。
[0624] 5.根据条款1所述的组件:
[0625] 其中使用U形弯曲机构将所述第一手术器械固定到所述导管上;和
[0626] 其中所述U形弯曲机构传递力,该力致动所述第一手术器械远端的部件。
[0627] 6.根据条款1所述的组件:
[0628] 其中所述第一手术器械通过所述导管并从所述导管的所述远端引出,所述导管基本平行于所述导管的所述纵轴。
[0629] 7.根据条款1所述的组件:
[0630] 其中所述第二手术器械包括平行运动机构。
[0631] 8.根据条款1所述的组件:
[0632] 其中所述第二手术器械包括刚性段。
[0633] 9.根据条款1所述的组件:
[0634] 其中所述第二手术器械包括可弯曲段。
[0635] 10.根据条款1所述的组件:
[0636] 其中所述第二手术器械通过所述导管并从所述中间位置引出,基本平行于所述导管的所述纵轴。
[0637] 11.根据条款1所述的装置,进一步包括:
[0638] 第二图像获取部件,位于所述导管上;
[0639] 其中所述第二图像获取部件的视场大体平行于所述导管的所述纵轴。
[0640] 12.一种方法,包括:
[0641] 从导管的远端延伸第一手术器械;
[0642] 从所述导管的中间位置延伸第二手术器械,其中所述第二手术器械从所述导管延伸,大体平行于所述导管的所述纵轴;和
[0643] 定位位于所述导管上的图像获取部件的视场,使其大体垂直于所述导管的所述纵轴。
[0644] 13.根据条款12所述的方法,进一步包括:
[0645] 移动所述第一手术器械的可弯曲段。
[0646] 14.根据条款12所述的方法,进一步包括:
[0647] 移动所述第一手术器械的刚性段。
[0648] 15.根据条款12所述的方法,进一步包括:
[0649] 通过耦合到所述导管的U形弯曲机构传递力;
[0650] 其中所述力致动所述第一手术器械远端的部件。
[0651] 16.根据条款12所述的方法,进一步包括:
[0652] 移动所述第二手术器械的可弯曲段。
[0653] 17.根据条款12所述的方法,进一步包括:
[0654] 移动所述第二手术器械的刚性段。
[0655] 18.根据条款12所述的方法,进一步包括:
[0656] 移动所述第二手术器械的平行运动机构。
[0657] 19.根据条款12所述的方法,进一步包括:
[0658] 将位于所述导管上的第二图像获取部件的视场定向为大体平行于所述导管的所述纵轴。
[0659] 方面【1051】进一步包括:
[0660] 1.手术器械组件,包括:
[0661] 导管,包括近端、远端和位于所述近端和所述远端之间的中间位置,其中纵轴在所述近端和所述远端之间延伸;
[0662] 手术器械,其中所述手术器械通过所述导管,并且其中所述手术器械在所述中间位置基本平行于所述导管的所述纵轴离开所述导管;和
[0663] 立体图像获取部件,其位于所述中间位置和所述远端之间的所述导管上,其中所述图像获取部件的视场大体垂直于所述导管的所述纵轴。
[0664] 2.根据条款1所述的组件:
[0665] 其中所述导管包括关节,该关节允许所述图像获取部件移动而所述中间位置保持静止。
[0666] 3.根据条款1所述的组件:
[0667] 其中所述手术器械包括平行运动机构。
[0668] 4.根据条款1所述的组件:
[0669] 其中所述手术器械包括多个刚性连杆。
[0670] 5.根据条款1所述的组件:
[0671] 其中所述图像获取部件包括第一成像端口、第二成像端口和所述第一成像端口和所述第二成像端口之间的瞳孔间轴;和
[0672] 其中所述瞳孔间轴基本垂直于所述导管的所述纵轴。
[0673] 6.根据条款1所述的组件,进一步包括:
[0674] 第二手术器械,其中所述第二手术器械通过所述导管,并且其中所述第二手术器械在所述中间位置基本平行于所述导管的所述纵轴离开所述导管。
[0675] 7.根据条款6所述的组件:
[0676] 其中所述第二手术器械包括平行运动机构。
[0677] 8.根据条款6所述的组件:
[0678] 其中所述第二手术器械包括多个刚性连杆。
[0679] 9.根据条款1所述的组件,进一步包括:
[0680] 第二手术器械,将所述第二手术器械在所述中间位置处固定到所述导管。
[0681] 10.根据条款9所述的组件:
[0682] 其中所述第二手术器械包括平行运动机构。
[0683] 11.根据条款9所述的组件:
[0684] 其中所述第二手术器械包括多个刚性连杆。
[0685] 12.根据条款1所述的组件,进一步包括:
[0686] 第二图像获取部件,位于所述导管上;
[0687] 其中所述第二图像获取部件的视场大体平行于所述导管的所述纵轴。
[0688] 13.手术器械组件,包括:
[0689] 导管,包括近端、远端和所述近端和所述远端之间的中间位置,其中纵轴在所述近端和所述远端之间延伸;
[0690] 手术器械,在所述中间位置固定到所述导管;和
[0691] 立体图像获取部件,位于所述中间位置和所述远端之间的所述导管上,其中所述图像获取部件的视场大体垂直于所述导管的所述纵轴。
[0692] 14.根据条款13所述的组件:
[0693] 其中所述导管包括关节,该关节允许所述图像获取部件移动而所述中间位置保持静止。
[0694] 15.根据条款13所述的组件:
[0695] 其中所述手术器械包括平行运动机构。
[0696] 16.根据条款13所述的组件:
[0697] 其中所述手术器械包括多个刚性连杆。
[0698] 17.根据条款13所述的组件:
[0699] 其中所述图像获取部件包括第一成像端口、第二成像端口和所述第一成像端口和所述第二成像端口之间的瞳孔间轴;和
[0700] 其中所述瞳孔间轴基本垂直于所述导管的所述纵轴。
[0701] 18.根据条款13所述的组件,进一步包括:
[0702] 第二手术器械,在所述中间位置固定到所述导管;
[0703] 其中所述手术器械包括平行运动机构。
[0704] 19.根据条款13所述的组件,进一步包括:
[0705] 第二手术器械,在所述中间位置固定到所述导管;
[0706] 其中所述第二手术器械包括多个刚性连杆。
[0707] 20.根据条款13所述的组件,进一步包括:
[0708] 第二图像获取部件,位于所述导管上;
[0709] 其中所述第二图像获取部件的视场大体平行于所述导管的所述纵轴。
[0710] 21.一种方法,包括:
[0711] 从导管的中间位置延伸手术器械,其中所述手术器械从所述导管延伸,大体平行于所述导管的纵轴;和
[0712] 将位于所述导管上的立体图像获取部件的视场定向为大体垂直于所述导管的所述纵轴。
[0713] 22.根据条款21所述的方法,进一步包括:
[0714] 移动所述图像获取部件而所述中间位置保持静止。
[0715] 23.根据条款21所述的方法,进一步包括:
[0716] 移动所述手术器械的平行运动机构。
[0717] 24.根据条款21所述的方法,进一步包括:
[0718] 将所述图像获取部件的瞳孔间轴定向为基本垂直于所述导管的所述纵轴。
[0719] 25.根据条款21所述的方法,进一步包括:
[0720] 第二手术器械从所述导管的所述中间位置延伸,其中所述第二手术器械从所述导管延伸,大体与所述导管的所述纵轴平行。
[0721] 26.根据条款21所述的方法,进一步包括:
[0722] 将位于所述导管上的第二图像获取部件的视场定向为通常平行于所述导管的所述纵轴。
[0723] 方面【1060】进一步包括:
[0724] 1.手术装置,包括:
[0725] 导管,包括可主动弯曲远端部分;
[0726] 手术器械,包括所述手术器械远端的末端执行器;和
[0727] 远程操纵控制系统;
[0728] 其中所述手术器械延伸通过所述导管;和
[0729] 其中响应所述控制系统生成的信号,手术期间所述导管的所述可主动弯曲远端段作为用于所述末端执行器的腕机构。
[0730] 2.根据条款1所述的装置,进一步包括:
[0731] 立体成像系统;
[0732] 其中所述导管和所述立体成像系统在单一端口处进入病人体内;和
[0733] 其中所述成像系统捕获的图像用作所述控制系统的远程操纵输入的参考。
[0734] 3.根据条款1所述的装置:
[0735] 其中响应所述导管内所述手术器械的滚动,所述末端执行器滚动。
[0736] 4.根据条款1所述的装置:
[0737] 其中响应所述导管内所述手术器械的纵荡,所述末端执行器纵荡。
[0738] 5.根据条款1所述的装置:
[0739] 其中所述导管的所述远端段包括弯曲传感器。
[0740] 6.根据条款1所述的装置:
[0741] 其中所述手术器械被固定在所述导管中以防止所述末端执行器纵荡、滚动或关于所述导管纵荡和滚动。
[0742] 7.根据条款1所述的装置:
[0743] 其中所述手术器械被固定在所述导管中以允许所述导管运动以纵荡、滚动或纵荡并滚动所述末端执行器。
[0744] 8.根据条款1所述的装置:
[0745] 其中所述导管的所述远端段包括机械界限,该机械界限建立的最小曲率半径防止约束所述手术器械或末端执行器的操作。
[0746] 9.根据条款1所述的装置:
[0747] 其中所述控制系统为所述导管的所述远端段建立的最小曲率半径防止约束所述手术器械或末端执行器的操作。
[0748] 10.根据条款1所述的装置:
[0749] 其中当所述导管的所述远端段移动时,延伸通过所述导管的所述远端段并操作所述末端执行器的线缆的长度保持基本恒定。
[0750] 11.根据条款1所述的装置:
[0751] 其中所述导管包括靠近所述远端段的可弯曲近端段;和
[0752] 其中当所述末端执行器抓持组织时,所述远端部分移动所述末端执行器时所述近端段刚度足够大以便所述近端段保持其形状。
[0753] 12.根据条款11所述的装置:
[0754] 其中所述近端段是活动的并且可锁定。
[0755] 13.根据条款11所述的装置:
[0756] 其中所述近端段是可锁定的伺服装置。
[0757] 14.根据条款11所述的装置:
[0758] 其中所述近端段是被动的并且可锁定。
[0759] 15.根据条款1所述的装置,进一步包括:
[0760] 辅助导管;
[0761] 其中所述导管包括可弯曲近端部分;和
[0762] 其中所述远程操纵控制系统插入所述可弯曲近端段的至少一部分并且所述导管的所述可弯曲远端段的至少一部分穿过所述辅助导管的远端。
[0763] 16.一种方法,包括:
[0764] 手术器械延伸通过导管,其中所述手术器械包括所述手术器械远端的末端执行器;和
[0765] 响应控制系统生成的信号,手术过程中以远程操纵方式控制所述导管的可弯曲远端部分,作为用于所述末端执行器的腕机构。
[0766] 17.根据条款16所述的方法,进一步包括:
[0767] 通过单一端口将所述导管和立体成像系统插入病人体内;和
[0768] 接收用于所述控制系统的远程操纵输入,该远程操纵输入参考了所述成像系统捕获的图像。
[0769] 18.根据条款16所述的方法,进一步包括:
[0770] 通过滚动所述导管内的所述手术器械滚动所述末端执行器。
[0771] 19.根据条款16所述的方法,进一步包括:
[0772] 通过纵荡所述导管内的所述手术器械纵荡所述末端执行器。
[0773] 20.根据条款16所述的方法,进一步包括:
[0774] 将来自弯曲传感器的信号输入到所述控制系统;
[0775] 其中所述弯曲传感器关联所述导管的所述可弯曲远端部分。
[0776] 21.根据条款16所述的方法,进一步包括:
[0777] 机械地防止所述末端执行器纵荡、滚动或关于所述导管纵荡和滚动。
[0778] 22.根据条款16所述的方法,进一步包括:
[0779] 在所述导管中固定所述手术器械以允许导管运动,纵荡、滚动或纵荡并滚动所述末端执行器。
[0780] 23.根据条款16所述的方法,进一步包括:
[0781] 建立机械障碍,该机械障碍限制所述导管的最小曲率半径以防止约束所述手术器械或末端执行器的操作。
[0782] 24.根据条款16所述的方法,进一步包括:
[0783] 建立控制系统障碍,该控制系统障碍限制所述导管的最小曲率半径,以防止约束所述手术器械或末端执行器的操作。
[0784] 25.根据条款16所述的方法,进一步包括:
[0785] 当所述导管的所述远端部分移动时,线缆的长度实质上保持不变;
[0786] 其中所述线缆延伸通过所述导管的所述远端部分并且操作所述末端执行器。
[0787] 26.根据条款16所述的方法,进一步包括:
[0788] 建立靠近所述远端部分的所述导管的可弯曲近端部分的刚度;
[0789] 其中当所述末端执行器抓持组织,所述远端部分移动所述末端执行器时,所述刚度足够大以便所述近端部分保持其形状。
[0790] 27.根据条款16所述的方法,进一步包括:
[0791] 锁定所述近端部分;
[0792] 其中所述近端部分可主动弯曲。
[0793] 28.根据条款16所述的方法,进一步包括:
[0794] 锁定所述近端部分;
[0795] 其中所述近端部分可被动弯曲。
[0796] 29.根据条款16所述的方法,进一步包括:
[0797] 所述导管延伸通过辅助导管;
[0798] 其中所述导管的可弯曲近端部分和远端部分从所述辅助导管延伸。
[0799] 30.根据条款16所述的方法,其中所述第一手术器械是第一个手术器械并且所述末端执行器是第一个末端执行器,所述方法进一步包括:
[0800] 从所述导管取出所述第一手术器械;
[0801] 第二手术器械延伸通过所述导管,其中所述第二手术器械包括所述第二手术器械远端的第二末端执行器,和
[0802] 其中所述第二末端执行器执行的手术任务不同于所述第一末端执行器执行的手术任务;和
[0803] 响应所述控制系统生成的信号,在手术过程中移动所述导管的所述可弯曲远端部分,作为用于所述第二末端执行器的腕机构。
[0804] 方面【1070】进一步包括:
[0805] 1.微创手术导管,包括:
[0806] 通道,通过所述导管纵向延伸;
[0807] 其中所述通道包括孔,该孔接收手术器械的主体段;
[0808] 其中所述通道进一步包括第一槽孔和第二槽孔;和
[0809] 其中所述第一槽孔和所述第二槽孔通常从所述孔的对侧延伸。
[0810] 2.微创手术导管,包括:
[0811] 通道,其纵向延伸通过所述导管;
[0812] 其中所述通道包括第一孔和第二孔,所述第一孔接收第一手术器械的主体段,第二孔接收第二手术器械的主体段;槽孔,其沿着所述通道的长度连接所述第一孔和所述第二孔。
[0813] 3.根据条款2所述的导管:
[0814] 其中所述通道被收缩以在所述第一孔内固定所述第一手术器械的所述主体段。
[0815] 4.根据条款2所述的导管,进一步包括:
[0816] 定位架,在所述第一孔内固定所述第一手术器械的所述主体段。
[0817] 5.根据条款2所述的导管:
[0818] 其中所述通道进一步包括第三孔和第二槽孔,所述第三孔接收第三手术器械的主体段,第二槽孔沿着所述通道的长度连接所述第二孔和所述第三孔。
[0819] 6.根据条款2所述的导管:
[0820] 其中所述通道包括V形截面。
[0821] 7.根据条款2所述的导管:
[0822] 其中所述通道包括T形截面。
[0823] 8.微创手术导管,包括:
[0824] 通道,通过所述导管纵向延伸;
[0825] 其中所述通道包括V形截面;
[0826] 其中所述通道包括第一孔,该第一孔接收第一手术器械的主体段,并且所述第一孔位于所述V形的第一末端;和
[0827] 其中所述通道包括第二孔,该第二孔接收第二手术器械的主体段,并且所述第二孔位于所述V形的所述顶点或第二末端。
[0828] 9.根据条款8所述的导管:
[0829] 其中所述通道包括第三孔,该第三孔接收第三手术器械的主体段。
[0830] 10.一种方法,包括:
[0831] 限定通道,该通道纵向延伸通过微创手术导管;
[0832] 其中所述通道包括孔,该孔接收手术器械的主体段;
[0833] 其中所述通道进一步包括第一槽孔和第二槽孔;和
[0834] 其中所述第一槽孔和所述第二槽孔从所述孔的大体相对侧延伸。
[0835] 11.一种方法,包括:
[0836] 限定通道,该通道纵向延伸通过微创手术导管;
[0837] 其中所述通道包括第一孔和第二孔,所述第一孔接收第一手术器械的主体段,所述第二孔接收第二手术器械的主体段;槽孔,该槽孔沿着所述通道的长度连接所述第一孔和所述第二孔。
[0838] 12.根据条款11所述的方法:
[0839] 其中所述通道被收缩以在所述第一孔内固定所述第一手术器械的第一主体段。
[0840] 13.根据条款11所述的方法,进一步包括:
[0841] 在所述通道内放置定位架;
[0842] 其中所述定位架在所述第一孔内固定所述第一手术器械的所述主体段。
[0843] 14.根据条款11所述的方法:
[0844] 其中所述通道进一步包括第三孔和第二槽孔,所述第三孔接收第三手术器械的主体段,所述第二槽孔沿着所述通道的长度连接所述第二孔和所述第三孔。
[0845] 15.根据条款11所述的方法:
[0846] 其中所述通道包括V形截面。
[0847] 16.根据条款11所述的方法:
[0848] 其中所述通道包括T形截面。
[0849] 17.一种方法,包括:
[0850] 限定通道,该通道纵向延伸通过微创手术导管;
[0851] 其中所述通道包括V形截面;
[0852] 其中所述通道包括第一孔,该第一孔接收第一手术器械的主体段,并且所述第一孔位于所述V形的第一末端;和
[0853] 其中所述通道包括第二孔,该第二孔接收第二手术器械的主体段,并且所述第二孔位于所述V形的所述顶点或第二末端。
[0854] 18.根据条款17所述的方法:
[0855] 其中所述通道包括第三孔,该第三孔接收第三手术器械的主体段。
[0856] 19.微创手术系统,包括:
[0857] 第一导管,其被配置为同时接收多个第一手术器械;和第二导管,其被配置为同时接收多个第二手术器械;
[0858] 其中所述第一手术器械的至少一个不能由所述第二导管接收;和
[0859] 其中所述第一导管和所述第二导管被配置为可交换地安装在所述手术系统中。
[0860] 20.根据条款19所述的手术系统:
[0861] 其中第一手术器械的数量不同于所述第二手术器械的数量。
[0862] 21.微创手术系统,包括:
[0863] 第一导管,其被配置为同时接收多个第一手术器械;和
[0864] 第二导管,其被配置为同时接收多个第二手术器械;
[0865] 其中第一手术器械的数量不同于所述第二手术器械的数量;和
[0866] 其中所述第一导管和所述第二导管被配置为可交换地安装在所述手术系统中。
[0867] 22.一种方法,包括:
[0868] 配置第一导管,以同时接收多个第一手术器械;和
[0869] 配置第二导管,以同时接收多个第二手术器械;
[0870] 其中所述第一手术器械的至少一个不能由所述第二导管接收;和
[0871] 其中所述第一导管和所述第二导管被配置以可交换地安装在所述微创手术系统中。
[0872] 23.根据条款22所述的方法:
[0873] 其中第一手术器械的数量不同于所述第二手术器械的数量。
[0874] 24.一种方法,包括:
[0875] 配置第一导管,以同时接收多个第一手术器械;和
[0876] 配置第二导管,以同时接收多个第二手术器械;
[0877] 其中第一手术器械的数量不同于所述第二手术器械的数量;和
[0878] 其中所述第一导管和所述第二导管被配置为可交换地安装在所述微创手术系统中。
[0879] 方面【1071】进一步包括:
[0880] 1.微创手术导管:
[0881] 其中所述导管的截面的外径包括椭圆形;
[0882] 其中第一通道接收第一手术器械的主体段,该第一通道在所述椭圆形的一端至少部分地通过所述导管延伸;和
[0883] 其中第二通道接收第二手术器械的主体段,该第二通道在所述椭圆形的相对一端至少部分地通过所述导管延伸。
[0884] 2.根据条款1所述的导管,进一步包括:
[0885] 内窥镜成像系统,位于所述导管的远端。
[0886] 3.根据条款1所述的导管,进一步包括:
[0887] 立体成像系统,位于所述导管的远端。
[0888] 4.根据条款1所述的导管:
[0889] 其中所述导管是辅助导管;
[0890] 其中所述第一手术器械延伸通过主导管;和
[0891] 其中所述主导管至少部分地通过所述辅助导管延伸。
[0892] 5.根据条款1所述的导管:
[0893] 其中所述导管为辅助导管;
[0894] 其中所述第一手术器械通过第一主导管延伸;
[0895] 其中所述第二手术器械通过第二主导管延伸;和
[0896] 其中所述第一主导管和所述第二主导管至少部分地通过所述辅助导管延伸。
[0897] 6.根据条款1所述的导管:
[0898] 其中所述导管可远程操纵移动。
[0899] 7.根据条款1所述的导管:
[0900] 其中所述导管包括可弯曲部分。
[0901] 8.根据条款7所述的导管:
[0902] 其中所述可弯曲部分可远程操纵移动。
[0903] 9.一种方法,包括:
[0904] 将微创手术导管的截面的外径限定为具有椭圆形;
[0905] 限定所述导管中的第一通道,该第一通道接收第一手术器械的主体段,其中所述第一通道在所述椭圆形的一端至少部分地通过所述导管延伸;和
[0906] 限定所述导管中的第二通道,该第二通道接收第二手术器械的主体段,其中所述第二通道在所述椭圆形的相对一端至少部分地通过所述导管延伸。
[0907] 10.根据条款9所述的方法,进一步包括:
[0908] 在所述导管的远端安装内窥镜成像系统。
[0909] 11.根据条款9所述的方法,进一步包括:
[0910] 在所述导管的远端安装立体内窥镜成像系统。
[0911] 12.根据条款9所述的方法:
[0912] 其中所述导管为辅助导管;
[0913] 所述方法进一步包括:
[0914] 所述第一手术器械延伸通过主导管;和
[0915] 至少部分地通过所述第二主导管延伸所述第二手术器械。
[0916] 13.根据条款9所述的方法:
[0917] 其中所述导管为辅助导管;
[0918] 所述方法进一步包括:
[0919] 所述第一手术器械延伸通过第一主导管;和
[0920] 所述第二手术器械延伸通过第二主导管;
[0921] 其中所述第一主导管和所述第二主导管至少部分地通过所述辅助导管延伸。
[0922] 14.根据条款9所述的方法:
[0923] 其中可以远程操纵方式移动所述导管。
[0924] 15.根据条款9所述的导管:
[0925] 其中所述导管包括可弯曲部分。
[0926] 16.根据条款15所述的导管:
[0927] 其中以远程操纵方式移动所述可弯曲部分。
[0928] 方面【1080】进一步包括:
[0929] 1.微创手术系统,包括:
[0930] 导管;
[0931] 手术器械,包括远端;和
[0932] 成像系统,包括立体图像获取部件;
[0933] 其中所述手术器械和所述成像系统延伸通过所述导管;
[0934] 其中所述器械的所述远端独立于所述导管以全部六个笛卡尔自由度移动;和
[0935] 其中所述图像获取部件独立于所述导管以至少一个笛卡尔自由度移动;
[0936] 2.根据条款1所述的系统:
[0937] 其中所述导管包括可弯曲段。
[0938] 3.根据条款1所述的系统:
[0939] 其中所述导管包括刚性段。
[0940] 4.根据条款1所述的系统:
[0941] 其中所述成像系统进一步包括可主动控制弯曲段,其超过所述导管的远端延伸。
[0942] 5.根据条款1所述的系统:
[0943] 其中所述成像系统进一步包括可独立控制的两个旋转关节。
[0944] 6.根据条款5所述的系统:
[0945] 其中所述旋转关节的第一个控制所述图像获取部件的收缩方向,并且所述旋转关节的第二个控制所述图像获取部件的平摇方向。
[0946] 7.根据条款1所述的系统:
[0947] 其中所述成像系统进一步包括细长近端主体段、细长远端主体段、可独立控制的第一关节和可独立控制的第二关节,耦合在所述近端主体段和所述远端主体段之间的可独立控制的第一关节,耦合在所述远端主体段和所述图像获取部件之间可独立控制的第二关节。
[0948] 8.根据条款1所述的系统:
[0949] 其中所述成像系统包括平行运动机构。
[0950] 9.根据条款1所述的系统:
[0951] 其中所述图像获取部件至少以插入、俯仰和平摇自由度移动。
[0952] 10.根据条款1所述的系统,进一步包括:
[0953] 第一组远程操纵致动装置,其被耦合以独立于所述导管移动所述手术器械;和[0954] 第二组远程操纵致动装置,其被耦合以独立于所述导管移动所述成像系统。
[0955] 11.根据条款1所述的系统,进一步包括:
[0956] 第一批多个远程操纵致动装置;和
[0957] 第二批多个远程操纵致动装置;
[0958] 其中:
[0959] 所述手术器械可以被耦合以从所述第一批多个致动装置接收致动力,并且所述成像系统可以被耦合以从所述第二批多个致动装置接收致动力;和
[0960] 所述成像系统可以被耦合以从所述第一批多个致动装置接收致动力,并且所述手术器械可以被耦合以从所述第二批多个致动装置接收致动力;
[0961] 12.根据条款1所述的系统,进一步包括:
[0962] 一种设备,其在图像获取部件的成像端口指引气体或流体。
[0963] 13.根据条款12所述的系统:
[0964] 其中所述设备延伸通过所述导管,并且所述设备的远端尖端以至少两个笛卡尔自由度移动。
[0965] 14.根据条款1所述的系统,进一步包括:
[0966] 第二成像系统包括第二图像获取部件;
[0967] 其中手术过程中所述成像系统和所述第二成像系统是可交换的;
[0968] 其中在所述成像系统和所述第二成像系统已经被交换后,所述第二图像获取部件独立于所述导管以至少一个笛卡尔自由度移动;和
[0969] 其中所述图像获取部件和所述第二图像获取部件各自获取不同类型的图像。
[0970] 15.根据条款1所述的系统:
[0971] 其中所述图像获取部件捕获可视图像;和
[0972] 其中所述第二图像获取部件捕获超声图像。
[0973] 16.一种方法,包括:
[0974] 通过导管延伸手术器械;
[0975] 通过所述导管延伸成像系统;
[0976] 独立于所述导管以全部六个笛卡尔自由度移动所述手术器械的远端;和
[0977] 独立于所述导管以至少一个笛卡尔自由度移动所述成像系统的立体图像获取部件。
[0978] 17.根据条款16所述的方法:
[0979] 其中移动所述图像获取部件包括移动所述成像系统的可弯曲段。
[0980] 18.根据条款16所述的方法:
[0981] 其中移动所述图像获取部件包括移动所述成像系统的刚性段。
[0982] 19.根据条款16所述的方法:
[0983] 其中移动所述图像获取部件包括移动可独立控制的旋转关节。
[0984] 20.根据条款16所述的方法:
[0985] 其中移动所述图像获取部件包括移动平行运动机构。
[0986] 21.根据条款16所述的方法:
[0987] 其中移动所述图像获取部件包括至少以插入、俯仰和平摇自由度移动所述图像获取部件。
[0988] 22.根据条款16所述的方法:
[0989] 其中移动所述手术器械的所述远端包括以远程操纵方式控制所述远端的位置和方向;和
[0990] 其中移动所述图像获取部件包括以远程操纵方式控制所述图像获取部件的位置和方向。
[0991] 23.根据条款16所述的方法:
[0992] 其中移动所述图像获取部件包括使用所述图像获取部件缩回组织。
[0993] 24.根据条款16所述的方法,进一步包括:
[0994] 当所述图像获取部件在病人体内时,在所述图像获取部件的成像端口指引气体或流体。
[0995] 25.根据条款16所述的方法,进一步包括:
[0996] 当所述导管被插入病人体内时从所述导管去除所述成像系统;
[0997] 第二成像系统通过所述导管延伸进入病人体内;和
[0998] 以至少一个笛卡尔自由度移动所述第二成像系统的图像获取部件。
[0999] 26.根据条款25所述的方法,进一步包括:
[1000] 使用所述成像系统捕获第一类型的图像;和
[1001] 使用所述第二成像系统捕获第二类型的图像。
[1002] 27.根据条款25所述的方法:
[1003] 其中所述第一类型的图像包括可见光图像;和
[1004] 其中所述第二类型的图像包括超声图像。
[1005] 方面【1090】进一步包括:
[1006] 1.微创手术器械组件,包括:
[1007] 导管;
[1008] 细长主体,其延伸通过所述导管,其中所述细长主体的远端段超过所述导管的远端延伸;和
[1009] 照明设备,位于所述主体的所述远端的侧面。
[1010] 2.根据条款1所述的手术器械组件,进一步包括:
[1011] 所述主体内的冷却通道;
[1012] 其中所述冷却通道靠近所述照明设备。
[1013] 3.根据条款2所述的手术器械组件:
[1014] 其中所述冷却通道内的冷却液体再循环。
[1015] 4.根据条款2所述的手术器械组件:
[1016] 其中来自所述冷却通道的冷却液体在冷却所述照明设备之后流出,进入病人体内。
[1017] 5.根据条款2所述的手术器械组件:
[1018] 其中在冷却所述照明设备后,来自所述冷却通道的冷却液体被指引流过内窥镜成像系统的成像端口。
[1019] 6.根据条款1所述的手术器械组件:
[1020] 其中所述照明设备包括发光二极管
[1021] 7.根据条款1所述的手术器械组件:
[1022] 其中所述主体的所述远端段是基本刚性的。
[1023] 8.根据条款1所述的手术器械组件:
[1024] 其中所述主体的所述远端段是可弯曲的。
[1025] 9.根据条款1所述的手术器械组件,进一步包括:
[1026] 手术器械末端执行器,耦合到所述主体的所述远端段。
[1027] 10.根据条款1所述的手术器械组件,进一步包括:
[1028] 内窥镜图像获取部件,其被耦合到所述主体的所述远端段。
[1029] 11.根据条款1所述的手术器械组件,进一步包括:
[1030] 第二细长主体,其延伸通过所述导管;和
[1031] 内窥镜图像获取部件,其被耦合到所述第二细长主体的远端。
[1032] 12.一种方法,包括:
[1033] 细长主体延伸通过微创手术器械组件导管;和
[1034] 使用位于所述主体的远端段侧面的照明设备照明手术位置。
[1035] 13.根据条款12所述的方法,进一步包括:
[1036] 使用所述主体内的冷却通道冷却所述照明设备。
[1037] 14.根据条款12所述的方法,进一步包括:
[1038] 在所述冷却通道中再循环液体。
[1039] 15.根据条款12所述的方法,进一步包括:
[1040] 在所述液体已经冷却所述照明设备后,液体从所述冷却通道流出,进入病人体内。
[1041] 16.根据条款12所述的方法,进一步包括:
[1042] 在所述液体已经冷却所述照明设备后,指引来自所述冷却通道的液体流过内窥镜成像系统的成像端口。
[1043] 17.根据条款12所述的方法,进一步包括:
[1044] 通过移动所述主体的刚性段移动所述照明设备的照明区域。
[1045] 18.根据条款12所述的方法,进一步包括:
[1046] 通过移动所述主体的可弯曲段移动所述照明设备的照明区域。
[1047] 19.根据条款12所述的方法,进一步包括:
[1048] 冷却所述主体远端的末端执行器。
[1049] 20.根据条款12所述的方法,进一步包括:
[1050] 在所述主体的远端耦合内窥镜图像获取部件。
[1051] 21.根据条款12所述的方法,进一步包括:
[1052] 使用图像获取部件捕获所述手术位置的图像,该图像获取部件耦合到第二细长主体的远端,该第二细长主体延伸通过所述导管。
[1053] 22.根据条款12所述的方法:
[1054] 其中所述照明设备包括发光二极管
[1055] 方面【1100】进一步包括:
[1056] 1.微创手术器械,包括:
[1057] 近端主体段;
[1058] 传动机构,其被耦合到所述近端主体段的近端;
[1059] 远端主体段;
[1060] U形弯曲机构,其被耦合在所述近端主体段和所述远端主体段之间;和
[1061] 部件,其被耦合到所述远端主体段的远端;
[1062] 其中所述U形弯曲机构将致动力从所述传动机构传递到所述部件。
[1063] 2.根据条款1所述的器械:
[1064] 其中所述U形弯曲机构包括多个导管。
[1065] 3.根据条款2所述的器械:
[1066] 其中所述导管基本等长。
[1067] 4.根据条款1所述的器械:
[1068] 其中所述U形弯曲机构包括具有多个通道的单一部分。
[1069] 5.根据条款1所述的器械:
[1070] 其中所述U形弯曲机构包括关节,该关节将所述U形弯曲机构耦合到所述远端主体段。
[1071] 6.根据条款1所述的器械:
[1072] 其中所述远端主体段实质上是刚性的并且是直的。
[1073] 7.根据条款1所述的器械:
[1074] 其中所述远端主体段是可弯曲的。
[1075] 8.根据条款1所述的器械:
[1076] 其中致动力进入所述U形弯曲机构的点和所述致动力离开所述U形弯曲机构的点之间的距离是不能改变的。
[1077] 9.根据条款1所述的器械:
[1078] 其中所述部件包括腕组件。
[1079] 10.根据条款1所述的器械:
[1080] 其中所述部件包括末端执行器。
[1081] 11.一种方法,包括:
[1082] 通过U形弯曲机构将致动力从传动机构传递到微创手术器械的远端部件。
[1083] 12.根据条款11所述的方法:
[1084] 其中通过所述U形弯曲机构传递致动力包括在多个导管中移动丝状物。
[1085] 13.根据条款12所述的方法:
[1086] 其中所述导管基本等长。
[1087] 14.根据条款11所述的方法:
[1088] 其中通过所述U形弯曲机构传递致动力包括在单一部分内移动丝状物。
[1089] 15.根据条款11所述的方法,进一步包括:
[1090] 通过关节传递所述致动力,该关节将所述U形弯曲机构耦合到所述手术器械的远端主体段。
[1091] 16.根据条款11所述的方法:
[1092] 其中所述远端主体段是基本刚性的并且是直的。
[1093] 17.根据条款11所述的方法:
[1094] 其中所述远端主体段是可弯曲的。
[1095] 18.根据条款11所述的方法:
[1096] 其中致动力进入所述U形弯曲机构的点和所述致动力离开所述U形弯曲机构的点之间的距离是不能改变的。
[1097] 19.根据条款11所述的方法:
[1098] 其中所述部件包括腕组件。
[1099] 20.根据条款11所述的方法:
[1100] 其中所述部件包括末端执行器。
[1101] 方面【1101】进一步包括
[1102] 1.微创手术系统,包括:
[1103] 导管;和
[1104] 手术器械,其延伸通过所述导管,其中所述手术器械包括:
[1105] 近端主体段;
[1106] 远端主体段;
[1107] U形弯曲机构,其被耦合在所述近端主体段和所述远端主体段之间;
[1108] 腕机构,其被耦合到所述远端主体段的远端;和
[1109] 末端执行器,其被耦合到所述腕机构的远端。
[1110] 2.根据条款1所述的系统:
[1111] 其中所述导管包括孔和槽孔;
[1112] 其中当所述手术器械通过所述导管插入时,所述孔接收所述近端主体段和所述U形弯曲机构的第一部分;和
[1113] 其中当所述手术器械通过所述导管插入时,所述槽孔接收所述U形弯曲机构的第二部分。
[1114] 3.根据条款1所述的系统:
[1115] 其中所述导管包括第一孔、第二孔和连接所述第一孔和所述第二孔的槽孔;
[1116] 其中当所述手术器械通过所述导管插入时,所述第一孔接收所述近端主体段;
[1117] 其中当所述手术器械通过所述导管插入时,所述第二孔接收所述远端主体段;和[1118] 其中当所述手术器械通过所述导管插入时,所述U形弯曲机构穿过所述槽孔。
[1119] 4.根据条款3所述的系统:
[1120] 其中所述U形弯曲机构已经通过所述导管之后,所述第二孔接收第二手术器械的主体段。
[1121] 5.根据条款1所述的系统,进一步包括:
[1122] 立体成像系统;
[1123] 其中所述成像系统的视场被定向为大体垂直于所述导管的纵轴。
[1124] 6.根据条款1所述的系统,进一步包括:
[1125] 立体成像系统;
[1126] 其中所述成像系统的视场以逆向定向。
[1127] 7.根据条款1所述的系统,进一步包括:
[1128] 立体成像系统;
[1129] 其中所述成像系统通过所述导管延伸。
[1130] 8.根据条款1所述的系统,进一步包括:
[1131] 立体成像系统;
[1132] 其中所述成像系统的视场是可移动的。
[1133] 9.根据条款1所述的系统,进一步包括:
[1134] 立体成像系统,其延伸通过所述导管;和
[1135] 多个远程操纵致动装置,其在所述成像系统的远端移动图像获取部件。
[1136] 10.根据条款1所述的系统,进一步包括:
[1137] 立体成像系统;
[1138] 其中所述成像系统包括可弯曲段,该可弯曲段移动以定向所述成像系统的视场。
[1139] 11.根据条款1所述的系统,进一步包括:
[1140] 多个远程操纵致动装置,其以笛卡尔空间中的六个非冗余自由度移动所述远端部件。
[1141] 其中所述远端部件的所述六个自由度独立于所述导管的自由度。
[1142] 12.根据条款1所述的系统:
[1143] 其中所述手术器械是第一手术器械;
[1144] 所述系统进一步包括:
[1145] 第二手术器械,其延伸通过所述导管,其中所述第二手术器械包括:
[1146] 近端主体段,
[1147] 远端主体段,和
[1148] 部件,其被耦合到所述远端主体段的远端;
[1149] 其中手术期间所述第一手术器械的所述远端主体段以逆向被定向,并且所述第二手术器械的所述远端主体段以顺向被定向。
[1150] 13.根据条款12所述的系统,进一步包括:
[1151] 第一批多个远程操纵致动装置,其以笛卡尔空间中的六个非冗余自由度移动所述第一手术器械的所述部件;和
[1152] 第二批多个远程操纵致动装置,其以笛卡尔空间中的六个非冗余自由度移动所述第二手术器械的所述部件;
[1153] 其中第一手术器械和所述第二手术器械彼此独立地移动;和
[1154] 其中所述部件的所述六个自由度独立于所述导管的自由度。
[1155] 14.一种方法,包括:
[1156] 手术器械延伸通过导管;和
[1157] 通过U形弯曲机构将致动力从传动机构传递到所述手术器械的部件。
[1158] 15.根据条款14所述的方法,进一步包括:
[1159] 定向立体成像系统的视场,使其大体垂直于所述导管的纵轴。
[1160] 16.根据条款14所述的系统,进一步包括:
[1161] 通过将所述视场定向为逆向,将所述手术器械的所述远端部件置于所述立体成像系统的视场中。
[1162] 17.根据条款14所述的系统,进一步包括:
[1163] 通过所述导管延伸所述立体成像系统;和
[1164] 定位所述成像系统以便所述远端部件处于所述成像系统的视场中。
[1165] 18.根据条款14所述的系统:
[1166] 其中定位所述成像系统包括移动所述成像系统的可弯曲段。
[1167] 19.根据条款所述的方法,进一步包括:
[1168] 致动所述手术器械以便以笛卡尔空间的六个非冗余自由度移动所述部件;
[1169] 其中所述部件的所述六个自由度独立于所述导管的自由度。
[1170] 20.一种方法,包括:
[1171] 通过导管内的通道插入手术器械;
[1172] 其中所述插入期间所述手术器械的近端主体段通过所述通道内限定的孔;和
[1173] 其中所述插入期间所述手术器械的U形弯曲机构的至少一部分通过所述通道中限定的槽孔。
[1174] 21.根据条款20所述的方法:
[1175] 其中所述插入期间所述手术器械的远端主体段通过所述通道中限定的第二孔。
[1176] 22.根据条款21所述的方法,进一步包括:
[1177] 在所述U形弯曲机构已经通过所述导管后,通过所述第二孔插入第二手术器械。
[1178] 方面【1110】进一步包括:
[1179] 1.微创手术系统,包括:
[1180] 致动控制系统;
[1181] 第一手术设备,包括远端;和
[1182] 存储器;
[1183] 其中随着所述第一手术设备在所述体腔内推进,所述致动装置控制系统将所述远端移动到体腔内的多个位置;
[1184] 其中所述存储器存储限定所述位置的数据;和
[1185] 其中通过使用来自映像的信息,所述致动控制系统推进第二手术设备,该映像由所述位置构成。
[1186] 2.根据条款1所述的系统,进一步包括:
[1187] 位置传感器,其关联所述第一手术设备;
[1188] 其中所述位置传感器确定所述第一手术设备的所述远端的所述多个位置。
[1189] 3.根据条款2所述的系统:
[1190] 其中所述位置传感器包括弯曲传感器。
[1191] 4.根据条款1所述的系统,进一步包括:
[1192] 位于所述病人体外的传感器;
[1193] 其中所述传感器确定所述第一手术设备的所述远端的所述多个位置。
[1194] 5.一种推进微创手术设备的方法,包括:
[1195] 当所述第一手术设备推进所述体腔内以后,记录体腔内第一手术设备的一部分的多个位置;
[1196] 使用所述记录的位置构造映像;和
[1197] 通过使用来自所述映像的信息在所述体腔内推进第二手术设备。
[1198] 6.根据条款5所述的方法:
[1199] 其中所述第一手术设备的所述部分的所述多个位置由位置传感器确定,该位置传感器关联所述第一手术设备。
[1200] 7.根据条款6所述的系统:
[1201] 其中所述位置传感器包括弯曲传感器。
[1202] 8.根据条款5所述的方法:
[1203] 其中所述第一手术器械的所述部分的所述多个位置由位于病人体外的传感器确定。
[1204] 9.一种方法,包括:
[1205] 将导管从第一位置横向移动到第二位置;和
[1206] 手术器械通过所述导管延伸进入由所述第一位置中所述导管占据的空间。
[1207] 10.根据条款9所述的方法,进一步包括:
[1208] 将所述导管从所述第二位置横向移动到第三位置;和
[1209] 第二手术器械通过所述导管延伸进入由所述第二位置中所述导管占据的空间。
[1210] 11.一种方法,包括:
[1211] 限定第一允许体积,手术器械在该第一允许体积中可以延伸而不接触组织,其中所述允许体积的边界基本与位于第一位置的图像获取部件的视场的边界一致;
[1212] 限定器械体积,器械在该器械体积中移动而不接触组织,其中所述器械体积的边界由所述第一允许体积内部的手术器械的运动确定;
[1213] 在所述第一允许体积内将所述图像获取部件移动到第二位置;
[1214] 限定第二允许体积,所述手术器械在该第二允许体积中可以延伸而不接触组织,其中所述允许体积的边界基本与位于所述第二位置的所述图像获取部件的所述视场的所述边界一致;和
[1215] 控制所述手术器械,使其在所述器械体积和所述第二允许体积的结合体积中。
[1216] 12.一种方法,包括:
[1217] 捕获体腔的第一图像;
[1218] 捕获体腔的第二图像,其实所述体腔的所述第二图像在所述第一图像内,并且其中所述第二图像包括手术器械的图像;
[1219] 镶嵌所述第二图像和所述第一图像;和
[1220] 在所述镶嵌的第一图像中生成所述手术器械的显示。
[1221] 方面【1120】进一步包括:
[1222] 1.手术器械组件,包括:
[1223] 导管,包括近端、远端、所述近端和所述远端之间的关节和所述近端和所述远端之间的中间位置;
[1224] 手术器械,包括平行运动机构,其中所述手术器械通过所述导管并在所述中间位置离开所述导管;和
[1225] 立体图像获取部件,其位于所述导管的远端,其中所述关节允许所述图像获取部件移动而所述中间位置保持固定。
[1226] 2.根据条款1所述的组件:
[1227] 其中所述导管包括可独立控制的两个关节,该可独立控制的两个关节移动所述图像获取部件而所述中间位置保持固定。
[1228] 3.根据条款1所述的组件:
[1229] 其中所述导管的截面包括椭圆形;和
[1230] 其中所述手术器械通过所述椭圆形的一个末端。
[1231] 4.根据条款1所述的组件:
[1232] 其中所述导管包括平行运动机构,该平行运动机构移动所述图像获取部件而所述中间位置保持固定。
[1233] 5.根据条款1所述的组件,进一步包括:
[1234] 第二手术器械,包括平行运动机构;
[1235] 其中所述第二手术器械通过所述导管并且在所述中间位置离开所述导管。
[1236] 6.根据条款5所述的组件:
[1237] 其中当所述第一手术器械和所述第二手术器械从所述中间位置延伸时,所述关节在所述第一手术器械和所述第二手术器械之间。
[1238] 7.根据条款1所述的组件:
[1239] 其中所述导管的截面包括椭圆形;
[1240] 其中所述手术器械通过所述椭圆形的第一末端;和
[1241] 其中所述第二手术器械通过所述椭圆形的第二末端。
[1242] 8.一种方法,包括:
[1243] 从导管的中间位置延伸手术器械;
[1244] 移动所述手术器械的平行运动机构;和
[1245] 移动所述导管上的立体图像获取部件而所述中间位置保持固定。
[1246] 9.根据条款8所述的方法:
[1247] 其中移动所述图像获取部件包括移动可独立控制的两个关节。
[1248] 10.根据条款8所述的方法:
[1249] 其中移动所述图像获取部件包括移动平行运动机构。
[1250] 11.根据条款8所述的方法,进一步包括:
[1251] 通过所述导管的椭圆形截面的第一末端延伸所述手术器械。
[1252] 12.根据条款11所述的方法,进一步包括:
[1253] 通过所述导管的所述椭圆形截面的第二末端延伸第二手术器械。
[1254] 方面【1130】还包括:
[1255] 1.一种方法,包括:
[1256] 通过导管延伸手术器械,以将所述手术器械的远端超过导管的远端;和
[1257] 以远程操纵方式以独立于所述导管的自由度的全部六个笛卡尔自由度移动所述手术器械的所述远端。
[1258] 2.根据条款1所述的方法,进一步包括:
[1259] 以远程操纵方式移动所述导管的远端。
[1260] 3.根据条款2所述的方法:
[1261] 其中以远程操纵方式移动所述导管的所述远端包括从所述导管上的弯曲传感器接收信息。
[1262] 4.根据条款2所述的方法:
[1263] 其中以远程操纵方式移动所述导管的所述远端包括弯曲所述导管的可弯曲段。
[1264] 5.根据条款2所述的方法:
[1265] 其中以远程操纵方式移动所述导管的所述远端包括在所述导管内移动所述手术器械的一个段。
[1266] 6.根据条款2所述的方法:
[1267] 其中所述导管是基本刚性的;和
[1268] 其中以远程操纵方式移动所述导管的所述远端包括以至少两个自由度移动所述导管。
[1269] 7.根据条款1所述的方法,进一步包括:
[1270] 有效锁定所述导管的可被动弯曲段。
[1271] 8.根据条款1所述的方法,进一步包括:
[1272] 有效锁定所述导管的可主动弯曲段。
[1273] 9.根据条款1所述的方法,进一步包括:
[1274] 在有效松弛状态和有效刚性状态之间连续变化所述导管的一段。
[1275] 10.根据条款1所述的方法,进一步包括:
[1276] 使用所述导管上的图像获取部件捕获手术位置的图像。
[1277] 11.根据条款1所述的方法,进一步包括:
[1278] 通过第二导管延伸所述导管;和
[1279] 以远程操纵方式移动所述第二导管的远端。
[1280] 12.根据条款11所述的方法:
[1281] 其中以远程操纵方式移动所述第二导管的所述远端包括弯曲所述第二导管的可弯曲段。
[1282] 13.根据条款11所述的方法:
[1283] 其中以远程操纵方式移动所述第二导管的所述远端包括在所述第二导管内移动所述导管的一段。
[1284] 14.根据条款11所述的方法:
[1285] 其中以远程操纵方式移动所述第二导管的所述远端包括在所述第二导管内移动所述手术器械的一段。
[1286] 15.根据条款11所述的方法:
[1287] 其中以远程操纵方式移动所述第二导管的所述远端包括从所述第二导管上的弯曲传感器接收信息。
[1288] 16.根据条款11所述的方法:
[1289] 其中以远程操纵方式移动所述手术器械的所述远端包括从位于所述手术器械上的弯曲传感器接收信息。
[1290] 方面【1140】进一步包括:
[1291] 1.微创手术系统,包括:
[1292] 导管;
[1293] 第一手术器械,包括远端,其中所述第一手术器械延伸通过所述导管;
[1294] 第二手术器械,包括远端,其中所述第二手术器械延伸通过所述导管;
[1295] 第一批多个远程操纵致动装置,其以全部六个笛卡尔自由度移动所述第一手术器械的所述远端;和
[1296] 第二批多个远程操纵致动装置,其以全部六个笛卡尔自由度移动所述第二手术器械的所述远端;
[1297] 其中所述手术器械的所述第一远端和所述第二远端的所述自由度独立于所述导管的自由度。
[1298] 2.根据条款1所述的系统:
[1299] 其中所述第一手术器械包括多个连续刚性段。
[1300] 3.根据条款1所述的系统:
[1301] 其中所述第一手术器械包括可弯曲段。
[1302] 4.根据条款3所述的系统:
[1303] 其中所述可弯曲段可以远程操纵方式控制。
[1304] 5.根据条款3所述的系统:
[1305] 其中所述可弯曲段可有效地锁定以保持所述弯曲位置。
[1306] 6.根据条款1所述的系统:
[1307] 其中所述第一手术器械包括腕机构,该腕机构改变所述第一手术器械的所述远端的方向。
[1308] 7.根据条款1所述的系统:
[1309] 其中所述第一手术器械包括腕机构,该腕机构以至少两个自由度改变所述第一手术器械的所述远端的方向。
[1310] 8.根据条款1所述的系统,进一步包括:
[1311] 第三手术器械,其延伸通过所述导管;
[1312] 其中所述第三手术器械包括远程操纵牵引器。
[1313] 9.根据条款8所述的系统:
[1314] 其中所述第三手术器械包括被动滚动的抓持末端执行器。
[1315] 10.根据条款8所述的系统:
[1316] 其中所述第三手术器械包括多个关节,每一个关节具有俯仰自由度。
[1317] 11.根据条款1所述的系统:
[1318] 其中所述第一批多个远程操纵致动装置将所述第一手术器械的可弯曲段弯曲为复合曲线。
[1319] 12.根据条款1所述的系统:
[1320] 其中所述第一批多个远程操纵致动装置中的至少一个致动装置在所述导管内移动所述第一手术器械。
[1321] 13.根据条款1所述的系统:
[1322] 其中所述第一批多个远程操纵致动装置中的至少一个致动装置在所述导管内滚动所述第一手术器械。
[1323] 14.一种方法,包括:
[1324] 通过导管延伸第一手术器械,以将所述第一手术器械的远端超过导管的远端;
[1325] 通过所述导管延伸第二手术器械以将所述第二手术器械的远端超过所述导管的所述远端;
[1326] 独立于所述导管的自由度以全部六个笛卡尔自由度以远程操纵方式移动所述第一手术器械的所述远端;和
[1327] 独立于所述导管的自由度以全部六个笛卡尔自由度以远程操纵方式移动所述手术器械的所述远端。
[1328] 15.根据条款14所述的方法:
[1329] 其中以远程操纵方式移动所述第一手术器械的所述远端包括移动多个连续刚性连杆中的一个连杆。
[1330] 16.根据条款14所述的方法:
[1331] 其中以远程操纵方式移动所述第一手术器械的所述远端包括移动可弯曲段。
[1332] 17.根据条款14所述的方法:
[1333] 其中以远程操纵方式移动所述第一手术器械的所述远端包括将可弯曲段弯曲为复合曲线。
[1334] 18.根据条款14所述的方法,进一步包括:
[1335] 有效锁定所述第一手术器械的可弯曲段。
[1336] 19.根据条款14所述的方法,进一步包括:
[1337] 以远程操纵方式在所述导管内移动所述第一手术器械。
[1338] 20.根据条款14所述的方法,进一步包括:
[1339] 以远程操纵方式在所述导管内滚动所述第一手术器械。
[1340] 21.根据条款14所述的方法,进一步包括:
[1341] 通过所述导管延伸第三手术器械;和
[1342] 以远程操纵方式移动所述第三手术器械以缩回组织。
[1343] 方面【1150】进一步包括:
[1344] 1.微创手术系统,包括:
[1345] 导管;
[1346] 第一手术器械,包括远端,其中所述第一手术器械延伸通过所述导管;
[1347] 第二手术器械,包括远端,其中所述第二手术器械延伸通过所述导管;
[1348] 远程操纵控制系统;
[1349] 其中响应从第一主控设备接收的输入,所述控制系统以全部六个笛卡尔自由度移动所述第一手术器械的所述远端;
[1350] 其中响应从第二主控设备接收的输入,所述控制系统以全部六个笛卡尔自由度移动所述第二手术器械的所述远端;和
[1351] 其中所述手术器械的所述第一远端和所述第二远端的所述自由度独立于所述导管的自由度。
[1352] 2.根据条款1所述的系统,进一步包括:
[1353] 成像系统,其延伸通过所述导管;
[1354] 其中所述控制系统独立于所述导管以至少两个自由度移动所述成像系统的图像获取部件。
[1355] 3.根据条款2所述的系统:
[1356] 其中所述控制系统中央协调所述导管、所述手术器械和所述成像系统的运动。
[1357] 4.根据条款2所述的系统:
[1358] 其中所述控制系统分散协调所述导管、所述手术器械和所述成像系统的运动。
[1359] 5.根据条款2所述的系统:
[1360] 其中所述控制系统运行在导管控制模式、器械控制模式和成像系统控制模式。
[1361] 6.根据条款2所述的系统:
[1362] 其中所述控制系统在控制模式中操作,在该控制模式中由所述成像系统捕获的图像用作所述第一主控设备和所述第二主控设备的运动的参考。
[1363] 7.一种方法,包括:
[1364] 通过导管延伸第一手术器械;
[1365] 通过所述导管延伸第二手术器械;
[1366] 其中响应从第一主控设备接收的远程操纵输入,以全部六个笛卡尔自由度移动所述第一手术器械的远端;
[1367] 其中响应从第二主控设备接收的远程操纵输入,以全部六个笛卡尔自由度移动所述第二手术器械的远端;
[1368] 其中所述手术器械的所述第一远端和所述第二远端的所述自由度独立于所述导管的自由度。
[1369] 8.根据条款7所述的方法,进一步包括:
[1370] 通过所述导管延伸立体成像系统;和
[1371] 其中响应接收远程操纵输入,以独立于所述导管的至少两个自由度移动所述成像系统的图像获取部件;
[1372] 9.根据条款8所述的方法,进一步包括:
[1373] 中央协调所述导管、所述手术器械和所述成像系统的运动。
[1374] 10.根据条款8所述的方法,进一步包括:
[1375] 分散协调所述导管、所述手术器械和所述成像系统的运动。
[1376] 11.根据条款8所述的方法,进一步包括:
[1377] 在导管控制模式中移动所述导管,在器械控制模式中移动所述手术器械,在成像系统控制模式中移动所述成像系统。
[1378] 12.根据条款8所述的方法,进一步包括:
[1379] 使用所述成像系统捕获的图像作为所述第一主控设备和所述第二主控设备的运动的参考。
相关专利内容
标题 发布/更新时间 阅读量
一种微创手术器械 2020-05-13 783
一种智能微创手术装置 2020-05-13 217
用于微创手术的套筒 2020-05-13 400
微创手术系统 2020-05-11 802
微创手术系统 2020-05-11 491
微创手术器械 2020-05-12 805
微创手术钳钳头 2020-05-12 57
微创植牙手术钻 2020-05-13 372
CT颅脑微创手术定位器 2020-05-14 194
一种微创手术钳 2020-05-11 737
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈