首页 / 专利库 / 焊接,钎焊和锡焊 / 角焊 / 热塑性部件振动焊接的方法和装置

热塑性部件振动焊接的方法和装置

阅读:570发布:2021-03-13

专利汇可以提供热塑性部件振动焊接的方法和装置专利检索,专利查询,专利分析的服务。并且通过插入类似材料的接合 块 (47)并在高速振动接合块(47)的同时以可控制的方式将第一和第二构件(32,33)压在接合块的相对侧,从而在热塑性材料的第一和第二构件(32,33)之间形成振动 焊接 连接。由振动产生的摩擦产生热,热使接合表面处的少量材料 熔化 ,所述熔化的材料冷却时产生具有最少焊瘤的坚固焊接接头。诸如窗框之类的整个 框架 系统可以用装置系统(120)装配,所述装置系统(120)在相邻框架构件(134,135,136,137)之间形成 摩擦焊接 头。并且,所述框架可以装配在诸如窗玻璃嵌板之类的嵌板的周围。通过所述系统形成的焊接连接不会损害框架构件的 抛光 ,并且不会产生难看的需要通过后续加工去除的焊瘤。,下面是热塑性部件振动焊接的方法和装置专利的具体信息内容。

1.一种在第一和第二构件与接合之间形成振动焊接连接的方法, 其中所述构件和所述接合块至少部分由热塑性树脂材料构成,
所述方法包括:
提供振动头;
提供接合块,所述接合块具有用于焊接到所述第一和第二构件的第一 部分以及从所述第一部分延伸的第二部分,所述第二部分用于安装到连接 到所述振动头的夹持器上,并用于从所述夹持器支撑所述第一部分;
将所述接合块的第二部分安装到连接到所述振动头的夹持器中;
将所述第一和第二构件安装到独立于所述振动头的夹持器中;
在每个所述第一构件和第二构件与所述接合块的所述第一部分的各 个相对侧之间产生接合
维持所述接合力同时用所述振动头以50到500HZ的频率振动所述接 合块以便产生摩擦产热,用于熔化所述构件端部和所述接合块的第一部分 的各个相对侧处的材料,这样的熔化材料在冷却时在所述接合块和所述构 件之间形成焊缝;并且,其中
在所述第一和第二构件与所述接合块之间的所述接合力独立于振动 头的操作而被施加。
2.根据权利要求1所述的方法,其特征在于,控制接合力以在所述 接合块的每一侧提供均匀的压力。
3.根据权利要求1所述的方法,其特征在于,垂直于所述振动头的 运动平面施加每个所述接合力。
4.根据权利要求1至3中的任何一项所述的方法,其特征在于,每 个所述接合力是变化的,从而在达到熔化后,每个接合力减小到一个平, 在所述水平下在构件端部和接合块之间的位置大量保持熔化的材料。
5.根据权利要求1-3中任一项所述的方法,其特征在于,所述接合 块包括插孔,所述用于接合块的夹持器包括与所述接合块中的插孔具有类 似型材形状的插销。
6.根据权利要求1-3中任一项所述的方法,其特征在于,所述接合 块的所述第一部分具有相对于每个所述构件成一度延伸的平面凸缘,并 且,所述接合块的所述第二部分包括可除去的突出部,所述突出部是所述 平面凸缘的延伸,其中所述可除去突出部保持在连接到所述振动头的所述 夹持器中,所述方法还包括在振动焊接连接完成后除去突出部的步骤。
7.根据权利要求6所述的方法,其特征在于,所述可除去突出部位 于所述平面凸缘的外边缘上,并且所述突出部包括由夹持器保持定位的几 何形状,所述夹持器包括与可除去突出部具有类似几何形状的插孔,所述 夹持器构造用于夹持所述可除去突出部,并保证接合块牢固地保持定位。
8.根据权利要求7所述的方法,其特征在于,所述几何形状为T字 型。
9.根据权利要求1所述的方法,其特征在于,通过调节振动头操作 期间的振幅、频率和接合力来控制振动角焊过程。
10.一种用于在第一和第二构件的端面与接合块之间形成振动焊接连 接的装置,其中所述构件和所述接合块至少部分由热塑性材料组成,所述 装置包括:
a)振动头,包括驱动装置,所述驱动装置用于以至少0.4mm的振 幅以及50至500Hz的频率在预定平面中振动所述振动头;
b)相对的第一和第二夹持器,每个夹持器具有用于固定所述第一 和第二构件的各个构件的夹紧结构,其中所述第一和第二夹持器 支撑所述第一和第二构件以便独立于所述振动头运动;
c)连接到所述振动头的第三夹持器,用于保持所述接合块,其中 所述接合块包括用于焊接到所述第一和第二构件端部的第一部分 以及从所述第一部分延伸并用于支撑所述第一部分的第二部分, 并且,其中所述第三夹持器适于保持所述第二部分或所述接合块, 并且设置为允许所述第一部分在所述第二部分被所述第三夹持器 保持时与所述端面接合;
d)导向结构,用于沿着垂直于所述端面的方向引导所述构件和所 述接合块的相对运动,以便分别促进所述接合块的相对侧分别与 所述第一和第二构件之间的接合;
e)连接到第一和第二夹持器上的压力驱动器,用于在所述接合块 的相对侧和所述第一和第二构件之间提供接合力;和
f)控制系统,用于控制振动焊接装置的操作。
11.根据权利要求10所述的装置,其特征在于,对压力驱动器的控 制独立于振动头的操作。
12.根据权利要求10或11所述的装置,其特征在于,所述压力驱动 器是独立可调的以便在所述接合块的相对侧和所述第一和第二构件之间 提供可变的接合力,并且,其中所述第一和第二构件的型材尺寸和形状是 不同的。
13.根据权利要求10至11中任一项所述的装置,其特征在于,所述 第三夹持器以平衡的方式保持所述接合块,并被固定到所述振动头上,通 常固定在所述振动头的中心部位,并且所述第一和第二夹持器可独立于所 述第三夹持器运动并向所述接合块的任一侧施加均匀的压力。
14.根据权利要求10至11中任一项所述的装置,其特征在于,所述 第三夹持器位于所述振动头的上方。
15.一种用于互连一系列细长框架构件以形成封闭框架的设备,所述 设备包括如下的各装置,用于配合相邻的框架部分以及用于在所述相邻的 框架部件的端部表面之间形成振动焊接连接:
a)振动头,包括驱动装置,所述驱动装置用于以至少0.4mm的振幅 以及50至500Hz的频率在预定平面中振动所述振动头;
b)相对的第一和第二夹持器,每个夹持器具有用于固定所述第一和 第二构件的各个构件的夹紧结构,其中所述第一和第二夹持器支 撑所述第一和第二构件以便独立于所述振动头运动;
c)连接到所述振动头的第三夹持器,用于保持所述接合块,其中所 述接合块包括用于焊接到所述第一和第二构件端部的第一部分以 及从所述第一部分延伸并用于支撑所述第一部分的第二部分,并 且,其中所述第三夹持器适于保持所述第二部分或所述接合块, 并且设置为允许所述第一部分在所述第二部分被所述第三夹持器 保持时与所述端面接合;
d)导向结构,用于沿着垂直于所述端面的方向引导所述构件和所述 接合块的相对运动,以便分别促进所述接合块的相对侧分别与所 述第一和第二构件之间的接合;
e)连接到第一和第二夹持器上的压力驱动器,用于在所述接合块的 相对侧和所述第一和第二构件之间提供接合力;和
f)控制系统,用于控制振动焊接装置的操作。
16.根据权利要求15所述的设备,其特征在于,所述框架是矩形框 架,并且所述设备在所述矩形框架的四个角中的每个角处设置如权利要求 10所述的各装置。
17.根据权利要求15所述的设备,其特征在于,所述框架构件以不 同的角度装配到所述平面凸缘上,其中所述角度在90°至15°的范围内。
18.根据权利要求17所述的设备,其特征在于,相邻框架构件相对 于接合块的角度不同。
19.根据权利要求16所述的设备,其特征在于,所述框架构件中的 至少一个沿着纵向轴线弯曲。
20.根据权利要求15至19中任一项所述的设备,其特征在于,框架 构件在所述框架构件被焊接到一起以前被装配在内嵌板的周围。
21.根据权利要求20所述的设备,其特征在于,所述嵌板从由扁平 玻璃片材、硬塑料片材、塑料多孔片状挤出品,以及绝缘窗玻璃装置组成 的一组中选择。
22.根据权利要求15至19中任一项所述的设备,其特征在于,与所 述接合块的相对侧相邻的框架构件具有不同的型材形状。

说明书全文

技术领域

发明总的来说涉及热塑性部件的装配方法,尤其涉及用振动焊接技 术制造窗框和框的方法和装置。

背景技术

当前,通常用热板焊接技术由聚氯乙烯(PVC)挤塑型材装配塑料窗 框和门框。通常,焊工艺涉及将两个型材的斜切端部压在涂有特氟纶的 加热的金属板上。在热塑性PVC材料熔化以后,除去热金属板,这样所 述两个端部互相挤压,形成密封的焊接连接。通常,在制造四侧框组装件 时,使用单头、双头或四头焊接设备。对于四头焊接设备,在一个操作中 装配完整的框架,考虑到框架准备、型材装载、角焊、冷却和框架卸载所 需要的时间,总的周期时间大约为两分钟。
除了工艺相对较慢以外,热板焊接的另一个缺点是在焊接线上产生大 量的塑料焊瘤,这些塑料焊瘤必须通过包括切削、刨削和靠模铣切操作的 加工机械地除去。一般来说,用于除去焊瘤所需要的设备复杂且昂贵,并 且所述加工也会损坏涂敷于挤塑型材上的任何表面涂层。另外,由于塑料 焊瘤材料在焊接过程中被污染,除去的废塑料材料不能被再利用,并且污 染的材料也会影响最终的焊接强度。最后,为了连接得到直角形的方角, 所述设备包括精密和复杂的支持系统。
振动焊接是常用的用于将两个热塑性部件的平面端壁焊接在一起的 方法。如US专利US 4,352,711所公开的那样,典型的振动焊接工艺包 括一个部件牢固地固定在固定的底部夹持器中,而另一个部件被牢固地固 定在活动的顶部夹持器中。通过施加压和快速移动顶部夹持器,由于表 面摩擦在极短的时间内产热,熔化将被焊接在一起的两个部件的接触表 面,从而,除了短的周期时间以外,振动焊接的另一个关键优点在于产生 最少的焊瘤,从而极大地减小了通过机加工去除焊瘤的需要。一般来说, 两个塑料组件注塑成形,这允许部件包括焊瘤坝和其它特征。结果,即使 带有产生的有限焊瘤,它的运动和位置受到控制,从而在视觉上不会很突 出或很难看。
近年来进行了将振动焊接技术用于塑料框架装配的各种尝试,但没有 获得商业上的成功。在授予hanson等的美国专利US 5,902,657中,描 述了两种特别开发用于制造窗框和门框的选择工艺。一个工艺使用类似于 传统热板焊焊机的装置,其中振动金属板在两型材的端部之间快速地来 回移动。为了制造焊接接头,金属板接着被除去,两个型材互相压在一起。 如上所述,这种工艺存在一些技术问题,这是由于,不同于传统热板焊, 只有一个薄的表面层被加热,结果,当振动金属板被移去时,已经熔化的 少量的表面塑料材料或者被除去和/或者快速冷却,从而当两个型材最后被 挤压在一起时在两个型材之间形成的焊接连接较弱。
在美国专利US 5,902,657中描述的第二个选择工艺也涉及一些技术 问题。利用这种技术,对于四侧框架,两个相对侧被保持定位而另两个侧 可移动。可移动的侧被保持在连接到四个振动头的夹持器中,在将两个中 空的薄壁型材直接焊接在一起时振动头位于型材的角端。由于振动头很快 地来回移动,很难精确地控制振动头的最终位置,因此薄的型材壁不能正 确地对齐,这导致角焊强度减小以及可看到的不均匀的接头线。
利用振动焊接,通常在焊接线处具有最小的干扰区。然而,对于Kagan 等的美国专利US 5,874,146公开的玻璃纤维强化塑料,可以在容许一些 玻璃纤维离开流动方向定向和跨过焊接界面的宽焊接区获得较高的结构 强度。

发明内容

本发明提供了一种在第一和第二构件与接合块之间形成振动焊接连 接的方法,其中所述构件和所述接合块至少部分由热塑性树脂材料构成, 所述方法包括提供一种振动头;将所述接合块接合到连接到所述振动头的 夹持器中;将所述第一和第二构件安装到独立于所述振动头的夹持器中; 在每个所述第一构件和第二构件与所述接合块的各个相对侧之间产生接 合力;维持所述接合力同时用所述振动头以50到500HZ的频率振动所述 接合块以便产生摩擦产热,用于熔化所述构件端部和所述接合块的各个相 对侧处的材料,这样的熔化材料在冷却时在所述接合块和所述部件之间形 成焊接;并且,其中在所述第一和第二框架构件与所述接合块之间的所述 接合力独立于振动头的操作而被施加。
优选的是,所述接合力在接合块的每一侧提供均匀的压力。所述接合 力在焊接步骤期间最好是变化的,从而在接合力下的材料熔化达到期望的 程度后,每个接合力减小到一个平,在所述水平下熔化的材料在构件端 部和接合块之间的位置保持熔融状态。
优选接合块具有相对于每个构件成一角度延伸的平面凸缘,接合块包 括可除去的突出部,所述突出部是平面凸缘的延伸。所述突出部保持在连 接到振动头的夹持器中,在焊接步骤完成后除去所述突出部。所述突出部 优选具有容纳在夹持器中插孔中的几何形状,所述插孔具有类似的几何形 状,例如T字形,接合块通过金属弹性连接件等牢固地保持定位。可选地, 接合块可以包括用于和夹持器上的插销配合的插孔,以便将接合块保持定 位。
对于特定的应用,通过调节振动头操作期间的特定振幅、频率和接合 力来控制振动角焊过程。
另一方面本发明提供了一种用于在第一和第二框架构件的端面与接 合块之间形成振动焊接连接的装置,其中所述框架构件和所述接合块至少 部分由热塑性材料构成,所述装置包括:
a)振动头,包括驱动装置,所述驱动装置用于以一定振幅或者至 少0.4mm的振幅以及50至500Hz的频率在预定平面中振动所述 振动头;
b)相对的第一和第二夹持器,每个夹持器具有用于固定所述第一 和第二框架构件的各个构件的夹紧结构,其中所述第一和第二夹 持器支撑所述第一和第二框架构件以便独立于所述振动头运动。
c)第三夹持器,用于以平衡的方式保持接合块,并且通常将接合 块固定在所述振动头的中心部位,所述接合块具有平面部分,该 平面部分垂直地对齐所述预定平面。
d)导向结构,用于沿着平行于所述预定平面和垂直于所述平面部 分和所述端面的方向引导所述框架构件和所述接合块的相对运 动,以方便所述接合块的相对侧分别与所述第一和第二框架构件 之间接合。
e)连接到第一和第二夹持器上的压力驱动器,用于在所述接合块 的相对侧和所述第一和第二构件之间提供接合力;和
f)控制系统,用于控制振动角焊装置的操作。
优选的是,具有与每个压力驱动器连接的调节机构,从而由每个压力 驱动器提供的接合力是独立可调的。以这种方式,在焊接步骤的整个期间 可提供可变的接合力。
保持接合块的第三夹持器优选这样放置以便接合块的平面凸缘平衡 并且典型地位于中心部位,并且第一和第二夹持器可独立于第三夹持器运 动。
本发明还构思了一种用于互连一系列细长框架构件以形成封闭框架 的系统。在这种系统中,邻接框架构件的相邻端部通过上述装置接合。所 述框架构件可以是矩形框架,在所述框架的四个角中的每个角处设置上述 的一组装置。
所述框架构件不必以直角装配,而事实上可以在90°至15°的范围 内的任意选择角度下连接。相邻框架构件相对于接合块的角度可以不同。 框架构件也没有必要是直的,相反,一个或多个框架构件可以是纵向弯曲 的。
所述用于互连框架构件的系统可以用于在框架构件被焊接到一起以 与嵌板形成完整组装件以前将那些构件装配在内嵌板的周围。所述嵌板可 以是任何期望的组成成份,例如一张玻璃或硬塑料材料、绝缘窗玻璃装置、 多孔片状挤出物等等。
本发明还提供了一种框架,包括多个细长框架构件,成对的所述构件 的相邻端部通过插入的接合块互连,其中所述框架构件和所述接合块中的 每一个至少部分由热塑性树脂构成,其中每个所述接合块通过振动焊接连 接在所述接合块的相对侧上固定到一对相邻框架构件上,并且,所述接合 块具有相对于每个所述框架构件以一定角度延伸的平面凸缘。
优选每个中空型材具有周边壁,所述周边壁提供用于焊接到平面凸缘 上的表面。框架构件的中空型材可以被细分为两个或多个空腔。
优选平面凸缘具有2mm至12mm范围内的厚度,更优选为3mm至 6mm范围的厚度。
平面凸缘的扁平表面可以包括织构表面加工,以便提高摩擦产热的积 聚。
框架构件优选由玻璃纤维强化热塑性材料构成,例如聚氯乙烯。框架 构件的外表面上可以具有装饰涂层或抛光
接合块优选可以带有从平面凸缘的相对侧延伸的形成一体的腿,所述 腿的尺寸设定为沿纵向接合在相邻框架构件的中空内部中。接合块的一体 腿每个可以包括一体的弹簧对心装置。此外,中空框架型材构件可以通过 超声点焊在与平面凸缘间隔开的位置固定到接合块的腿上。
优选地,框架型材的端部为斜切的,以便提供理想的框架角度,例如 以45°斜切以提供90°角。框架型材的斜切端部可以由所谓的开口侧槽 (dado cut or open sided groove)形成,在焊接过程中压力板可以压在框架 型材前表面的斜切端部上,以便防止该前表面的外观被任何的焊接焊瘤所 损坏。
接合块可以包括诸如收集器、槽或焊道(welding bead)之类的装置, 用于定位或者容纳在振动焊接过程中产生的塑料焊瘤。
振动角焊过程有三种优选的应用,即:
(i)框架构件装配在绝缘玻璃装置周围以及密封剂涂在被组装 框架和绝缘玻璃单元之间的间隙中;
(ii)窗玻璃片通过硅酮密封剂直接粘接到框架组装件的侧边;和
(iii)被组装框架位于分开的窗玻璃片之间。
附图说明
以下是以特定实施例的例子的方式对本发明的描述,并参照附图,其 中:
图1A和1B是由方形型材和玻璃纤维填充PVC挤塑制品制造并且用传 统热板焊接技术在角部焊接的框架角组件的正视图;
图2是沿图1的1-1线通过角组件的垂直剖面图;
图3是按照北美门窗标准(NAFS-1)用于热塑性角测试的测试夹持器 的正视图;
图4是在外侧边缘包含可除去突出部的框架角组件的分解透视图,其 中热塑性挤塑制品是通过振动焊接在角部焊接到对角腹板上的;
图5是框架角组件的水平剖面图,其中热塑性压出器通过振动焊接焊 到在外侧边缘包括可除去突出部的对角平面凸缘接合块上。
图6A是单个角振动焊接装置的透视图;
图6B是单个角摩擦焊接装置的控制系统的示意图;
图7A是单个角振动焊接装置的平面图,其中挤塑制品在焊接过程之前 安装到夹持器中;
图7B是类似于图7A的视图,示出了处于焊接过程中的单个角振动焊 接装置;
图8A是分解透视图,图8B是透视图,示出了包括带有平面凸缘在底 边上的可除去突出部的接合块的振动焊接的角框架组件;
图9A是包括焊瘤收集器的平面凸缘腹板的剖面细节图;
图9B是包括焊道的平面凸缘腹板的剖面细节图;
图10是活动夹持器的剖面细节图,所述夹持器在振动焊接过程期间保 持框架型材定位;
图11是带有平面凸缘和在外侧边缘上的可移动T型突出部的接合块的 透视图;
图12A是带有平面凸缘并包括可移动突出部的接合块的透视细节图, 所述突出部在后部边缘上具有双重L型槽;
图12B是接合块固定夹持器和如图12A所示的平面凸缘结合块腹板的 分解顶视图;
图12C是带有如图12B所述的平面凸缘接合块的接合块固定夹持器的 垂直剖面图;
图13是在底边上带有可除去突出部的角腹板的透视图;
图14A是包括独立的压紧板装置的接合块夹持器的顶平面图;
图14B是包括独立的压紧板装置的角腹板夹持器的垂直剖面细节图;
图15A是框架角组件的剖视平面图细节,其中通过振动焊接利用带有 对角腹板和一体腿的角键将热塑性塑料挤塑制品焊到角部;
图15B是如图15A所示的框架角组件的剖面平面图细节,其中塑性框 架型材通过超声点焊焊到角键的一体腿上;
图15C是如图15A所示的塑料框架型材和角键的剖面和立视细节图;
图16是振动焊接装置的局部片平面图,示出了框架型材可以以不同的 角度装配到平面凸缘接合块上;
图17A是圆顶窗框的正视图;
图17B是在直线和曲线框架型材之间的对接接头组件的剖面图细节;
图18是包括带有平面凸缘和顶部保持的可除去突出部的接合块的振动 焊接角框架组件的分解透视图;
图19A和19B是以两阶段框架装配为特征的立式四头振动焊接装置的 正视图;
图20是立式四头振动焊接装置的正视图,其中全部四个角被同时焊接;
图21A是复合通道上下推拉窗嵌板的正视图,所述嵌板带有用振动角 焊接装配的热塑性框架型材;
图21B是沿图21A的21A-21A线的包括双玻璃绝缘单元的复合通道窗 嵌板垂直剖面图;
图22是利用振动角焊接装配在绝缘玻璃装置周围的复合通道框架的分 解透视图;
图23B是包括不同大小的框架型材并通过振动角焊接装配的角组件或 复合通道窗的透视图;
图24A是振动焊的复合通道框架组件的透视图,其中框架型材包括单 个L型空腔和用于支撑绝缘玻璃装置的薄实心框架型材壁;
图24B是图24A所示的角框架组件的分解顶视图;
图25A是带有硬热塑性分隔框架并通过振动角焊装配的绝缘玻璃嵌板 的正视图;
图25B是沿图25A的线25A-25A的包括硬热塑性间隔框架的绝缘玻璃 嵌板的垂直剖面细节图;
图26A是密封框架窗嵌板的正视图,其中外窗玻璃片直接粘接到框架 组件上;
图26B是沿图26A的26A-26A线的图26A的密封框架窗嵌板的垂直 剖面细节图;
图27A和27B是特别制造用于密封框架嵌板的摩擦角焊的框架型材的 角端的前视图和侧视图;
图28是用于如图26A所示的密封框架窗嵌板的角框架组件的分解透视 细节图;
图29A至29E是结合利用摩擦焊和超声点焊技术生产密封框架角组件 的步骤;
图30是带有可除去的突出部的接合块的透视图,所述突出部包括用于 与形成接合块固定夹持器的一部分的插销相接合的插孔。

具体实施方式

参照图1A和1B,示出了由方形中空型材、玻璃纤维填充PVC挤塑 制品32和33制造的框架角组件31的侧视图和前视图。框架构件32和33 的斜切角端部34用常规的热板焊设备焊接在一起。热板焊的一个主要缺 点在于,在焊接线36上产生大量的塑料焊瘤35。该塑料焊瘤35必须被机 械清除,而该过程往往包括除去焊接线36处的浅槽。作为这种机械清除 的结果,可能会相当大地减小角焊缝的结构性能。
图2示出了通过框架角组件31沿线1B-1B的垂直的剖面图,其中框 架32和33的斜切端34在周边壁边缘处焊接在一起。如前所述,该过程 产生必须从型材外部机械清除的焊瘤35。
在北美,根据北美门窗标准(NAFS-1)测试程序来评估热塑性角焊 缝的结构性能。如图3所示,测试程序包括将焊接的框架角组件31连接 到带有夹具40和41的支撑件上。底部夹具41位于下部框架型材33的顶 边缘42以上100mm处。点负载L44位于距离上部型材32的前侧边缘 360mm处并逐渐地施加到下部框架型材33上,所述点负载44位于距离 上部型材32的前侧边缘360mm处。通过/失败测试标准是:当加载到失 效时,断裂不会沿着整个焊缝线36延伸。
利用传统的热板焊接技术,如图2所示的角焊缝测试样品从30%玻璃 纤维填充PVC挤塑制品制造。样品根据NAFS-1程序测试,当裂缝沿着整 个焊接线36延伸时样品失效。纤维填充材料未通过NAFS测试程序的主 要原因是焊缝强度通常不高于基体聚合物,因此,由于30%的玻璃纤维填 充型材强度和硬度较大,框架组件中的接头连接较弱。
如参照图4-30所描述的,本发明的一个主要目的是提供角框架装配 方法,其中测试样品由30%玻璃纤维填充PVC挤塑制品制造,并一致通 过NAFS-1热塑性角焊缝测试程序。
图4示出了角框架组件的分解透视图,其中热塑性框架组件32和33 的斜切端部34通过振动焊接焊到包括平面凸缘48和可除去突出部49的 接合块47的相对侧上。接合块47由与热塑性框架组件32和33相同的基 础聚合物制成。平面凸缘48包括粗糙或织构表面,由于该表面处理加速 摩擦产热,极大地减小了焊接周期时间。平面凸缘48的壁厚可在2mm至 12mm之间变化,优选变化范围为3至5mm。可除去突出部49比平面凸 缘48厚,这是为了增加强度和硬度。在焊接过程完成后,可除去突出部 49被剪切压力机或其它类似设备切掉。由于振动焊接不会污染塑料焊缝材 料,该可除去突出部可再利用,塑性树脂可再使用。
图5示出了通过从中空塑料型材32和33制造的角框架组件的水平截 面。由于成型件32和33通过振动焊焊接到接合块47的任一侧,在两个 焊缝中的每个焊缝上的结构负载被相应的减少了。另外,平面凸缘48提 供对角斜撑,进一步增加了框架组件的结构性能。
形成平面凸缘48的延伸部分的可除去突出部49位于接合块47的外 侧后部。在振动焊过程中,突出部49牢固地固定保持夹持器50上,所述 夹持器50连接到专门的振动焊接装置51的振动头52,如图6A,6B和 7A,7B所述。
如同先前用传统热板焊设备制造的样品一样,利用相同的带有30%玻 璃含量的中空方形型材PVC挤塑制品制造角测试样品。与热板焊接测试 样品不同,使用特殊的振动焊接技术将型材样品焊接到平面凸缘上,这样 振动焊接样品通过了NAFS-1热塑性角焊测试程序。
如图5所示,振动焊接过程一般导致塑料框架型材32和33嵌入平面 凸缘48中。尽管平面凸缘最好由与框架型材相同的树脂基材料制造,一 个选择是接合块由较硬的塑料材料(例如玻璃纤维材料)制成以便型材不 过分嵌入到平面凸缘中。
图6A示出了原型单个角振动焊接装置51的顶部透视图。该装置由五 个主要部件构成:
1.振动头
线性振动头52,包括在预定的平面中很快速地来回振动的顶板53。
2.接合块固定夹持器50
接合块固定夹持器50直接连接到顶板53上并牢固地保持平面凸缘接 合块48定位。
3.可活动框架夹持器
两个可活动框架夹持器55和56包括夹紧装置60,夹紧装置60将框 架型材牢固地定位。框架夹持器55和56的运动通过以下多种装置操作, 包括电伺服电机气动和液压装置。
4.控制系统
控制系统46调节振动焊接装置的各种操作参数,包括:焊接时间、 操持时间、接头压力、振幅、频率和电压。控制系统位于保护容器中,并 连接到操作者界面64。
5.机器框架
机器框架65提供支撑其它部件的结构。
振动头53可以线性或轨道方式运动。利用线性振动焊接,振动头在 预定的平面中非常快速地来回移动。对于轨道振动,振动头以环形操作连 接转动。作为连续的过程,轨道振动提供了一些主要的优点,包括:时间 减少,能耗小、焊接振幅小、清理减少和焊瘤更好的控制。当前,由于连 续环形运动由电动机驱动,轨道振动在某种程度上不可靠,从而只有线性 振动焊接在以下的图中示出。然而,本领域技术人员将会理解,对于许多 这些角焊接应用,也可以用轨道振动焊接来代替,特别是,该工艺在使用 平面凸缘接合块中提供了优点。
图7A示出了单个角振动焊接装置51处于打开状态的平面图。线性振 动焊接装置51以在预定平面中线性来回运动的振动头52为特征。振动头 52类似子市场上可得到的诸如Branson Mini Welder线性振动焊机中所使 用的振动头,但与这些市场上可得到的产品不同,该振动头被倒转,这样 更灵活并且在框架装配过程中更容易定位框架构件32和33。平板53栓接 到振动头52的顶表面上。如同标准振动焊机一样,振动头被栓接到独立 的重支撑物(未示出)上并用橡胶软垫与铸铁支撑结构(未示出)隔 离。该铸铁支撑结构反过来栓接到将振动头52定位在方便于工作的工作 高度处的机械框架65上。
平板金属片54栓接到机器框架65的顶表面上,位该顶部工作表面与 振动头52分开以便最小的振动运动被传递给机械框架65。可活动型材夹 持器55和65支撑在直接连接到顶部桌面板54的导轨57上,这些夹持器 将框架型材挤塑制品32和33保持定位。可活动型材夹持器55和56在振 动头52上方运动,但除了框架型材32和33接触接合块47的地方外与振 动头没有直接接触。可活动夹持器还使得框架型材32和33的斜切端34 平行于接合块47的平面凸缘48定位。
每个可活动型材夹持器55和56由水平平板58、连接到水平板58的 支撑构件59和夹紧机构60组成,夹紧机构60将型材32和33牢固地保 持在支撑构件59上。前夹具60位于邻近于平板58的侧边缘61处以便保 证型材33牢固地保持定位,斜切型材32和33只延伸到侧边缘61以外2 或3mm。同样重要的是,两个型材从两个夹紧机构处延伸相同的距离。
为了提供直角接头连接(即90°),垂直支撑构件59相对于侧边缘 61定位在45°角处。然而,对于特殊的框架形状,支撑构件59的角度定 位可根据需要通过枢轴点62和连接装置63调节。用于接合块47的固定 保持夹持器50这样定位以便于接合块的平面凸缘处于平衡的中心位置处。 直接连接到振动头52的顶板53上的保持夹持器50牢固地保持接合块47 的可除去突出部49定位。
图7B示出了处于工作中的振动焊接设备的平面图。型材挤塑制品32 和33的斜切端部34被压向接合块47的平面凸缘48。根据需要,可调节 型材夹持器55和56的角位移,以便所有四个接合表面互相平行。
在操作中,在框架型材32和33的斜切端部34与接合块47的平面凸 缘48的平行表面之间的两个接合界面上产生摩擦热。通过来回振动接合 块47同时将框架型材31和32压向接合块47的平面凸缘48,在两个接合 界面上产生摩擦热。当在两个接合界面66和67处达到熔融状态时,停止 振动,并接着短时保持垂直压力P,同时熔融塑料固化以在平面凸缘48 的任一侧形成两个焊接接头66和67。为了提供均匀的焊缝强度,必要的 是相同的垂直接合力必须被同时施加到接合块47的每一侧。
在振动焊接过程中,如果在表面塑料已经熔化后施加过大的压力,熔 化的塑料会被从接合线推开,导致差的结构连接。通过精细地控制框架型 材在接合块上的接合力或压力,可避免这种接头连接问题。在接合线处的 材料的熔化达到期望的程度后,将接合力减小到一定水平,在该水平下熔 化的金属在框架型材的端部之间保持熔融态。
在摩擦焊接玻璃纤维填充型材中,焊接强度减小的一个原因是玻璃纤 维沿着焊接线对齐,垂直于施加的接合力或压力。这种焊接区通常在40 至100微米的非常窄的范围内变化。通过精密地控制和最优化焊接参数, 特别是焊接压力,可产生较宽的焊接区从而一些玻璃纤维取向离开焊接线 并穿过焊接界面。因此,对于玻璃纤维填充型材可获得较高的焊缝强度。
利用原型角焊接装置,已进行了一系列的实现,这些实验已显示出: 通过在相当大宽度范围的不同参数值中最优化不同的焊接参数,可达到满 意的结构焊缝。例如,如果振幅增加,最大施加压力可以减小,或者如果 焊接时间增加,最大施加压力和振幅都可以减小。特别为了减少产生的塑 料焊瘤的量,我们的实现已显示优选使用较高频率和较低振幅。一般来说, 尽管对于每种应用,需要建立特定的一组焊接参数,但不同的焊接参数可 在以下值中变化:
最大施加压力    6kN
焊接时间        2-12秒
焊接振幅        0.4mm-3mm
焊接频率        50-500HZ
一般来说,对于特定的应用,通过针对特定焊接振幅、频率和最大施 加压力或接合力确定的焊接时间来控制振动角焊过程。应当注意到被限定 为振动头工作的持续期间。
图6B是单个角振动焊接装置51的控制系统46的示意图。控制系统 46由在金属壳体中被保护并链接到操作界面45的中心控制器84组成。控 制器84控制五个主要部件的操作:
(i)振动头55,
(ii)第一可活动型材夹持器55的夹紧机构239和
(iii)第一可活动型材夹持器55的压力机构240和
(iv)第二可活动型材夹持器56的夹紧机构241和
(v)第二可活动型材夹持器56的压力机构242。
通过输入/输出信息反馈,可调节和控制这五个部件的操作。
利用如图6A,6B,7A和7B所述的原型单角振动焊接设备,已从包 括以下材料的较宽范围的不同材料中成功地制造出角框架型材组件,所述 材料包括:聚氯乙烯(PVC);复合玻璃纤维填充PVC;多孔状泡沫体PVC; 复合木纤维填充PVC和热塑性拉挤成型制品。对于所有的组件,希望平 面凸缘接合块基本上由与框架型材相同的基体树脂制成。还测试了角腹板 的一系列选择设计,实验显示即使平面凸缘厚度小于1.5mm也可以制造满 意的焊缝。
图8A和8B示出包括带有平面凸缘48的接合块47的振动焊接角框 架组件31的分解透视图,其中平面凸缘48包括在底边缘上的可除去的突 出部49。与侧部保持的接合块相比,在底部边缘处的突出部的一个优点是 接合块易于装载到保持夹持器中。
为了得到简单的角腹板设计,接合块可从塑料片材中冲切而成。作为 选择,接合块可以通过注塑制成,这样具有可以在接合块中结合各种设计 特征的优点,基本上消除了清除塑料焊瘤的需要。图9A和图9B显示了 两个可选接头设计,所述设计基本上消除了移除焊瘤的需要。在图9A中, 两个中空热塑性型材32和33利用包括平面凸缘48的接合块47纵长地接 合在一起。接合块47在中心焊道70的任一侧包括焊瘤收集器或熔化凹陷 69。在振动焊接过程中,塑料流进焊瘤收集器69中产生双分型线71。
如图9B所示,当美学要求较高时,塑料型材端部72可包括侧开口槽 (dato cut)73。型材32和33的平槽端部75与包括焊道74的平面凸缘48 交叠。在振动焊接过程中,流向接合块47端部周围的塑料和两个平槽端 部75几乎接触,形成单个薄分型线。如前所述,利用焊瘤收集器和焊道 的主要优点在于,塑料焊瘤在焊接过程中被包含并不必机械清除塑料挤塑 制品表面的焊瘤。结果,由于没有机械焊瘤清除,可行的是装饰表面抛光 76被结合到塑料挤塑制品32和33上,这些表面抛光在焊接过程期间不会 被损坏。焊道收集器和焊瘤的进一步优点是,由于不必清除熔化的塑料焊 瘤材料,也可增加接头焊缝的强度。尽管在图9示出,侧开口槽(dato cut) 被包括到框架型材中,本领域技术人员将会理解,可以在接头设计中包括 焊道而不需要侧开口槽(dato cut)。
对于图6A,6B和7A,7B所示的振动焊接设备,通过前夹具60将框 架型材牢固地保持定位。对于更复杂的型材形状,必须使用专门定制的夹 持器,当需要将不同的框架型材焊接到相同的生产线上时,有必要更换这 些定制的夹具。因此,会出现生产减速和延迟,这意味着不能实现振动角 焊接的生产优点。
为了消除对特殊定制夹具的需求,图10示出了用于牢固地保持塑料 框架型材77定位的可调夹具60的剖面细节。垂直支撑构件59连接到活 动水平板58上。框架型材77通过双组平面金属条78和79被牢固地保持 定位,每个条81包括特定的夹头82。第一组金属条78滑动定位并且呈现 为框架型材77的前表面80的总的型面形状,从而型材77被固定在垂直 支撑构件59上。第二组平面金属条79滑动定位并且呈现为框架型材77 的侧面83的总的型面形状,从而型材77也被固定在水平板58上。每一 组金属条包括定系统(未示出),将条锁定定位。
图11示出了用于单个角振动焊接设备51的接合块保持夹持器50的 透视图细节。接合块保持夹持器50机械连接到振动头52(未示出)的顶 板53上。由于接合块保持夹持器50非常快速地来回振动,在夹持器上的 应力或冲击水平很高,估计这些应力超过100-重力(G-force)。因此,由 于用于保持角键定位的机械压力装置不能承受连续振动,该机械压力装置 是不适合的。
如图11所示,消除机械压力装置的一个方法是使接合块47的可除去 突出部49包括T型的型材85,并使保持夹持器50也包括互补的T型插 孔86。接合块47滑动定位,T型型材85通过金属弹性连接件(未示出) 牢固地保持定位。
图12示出了也不包括移动部件的选择角键保持系统的图示。
图12A示出了包括平面凸缘48和可除去突出部49的接合块47的透 视细节。可除去突出部49的后边缘87包括双组L型槽88。
图12B示出了在将接合块安装到保持夹持器内之前接合块保持夹持 器50和平面凸缘接合块47的顶视图。接合块保持夹持器50包括狭窄槽 89,该槽89的宽度稍大于可除去突出部49的宽度。两个环形金属销90 跨过窄槽89。
图12C示出了接合块安装以前的接合块保持夹持器50的剖面图。在 角框架组装过程中,接合块47首先水平横向移动从而两个环形销90接合 在双组L型槽88中。接合块接着向下落到最终位置处,在那里环形销90 容纳在L型槽88的圆形尖部91中。与图1所示的T型接合块相比,双L 型槽的主要优点是,接合块使用较少的材料,从而可以以较低的成本制造。
图13示出了带有凸缘48和底边缘带有可除去突出部49的接合块47 的分解透视图。可除去突出部49包括双垂直槽92,其对应于包括在接合 块夹持器(未示出)中的双环形销。与图12所示的侧部保持的保持系统 相比,主要优点在于,接合块更容易装载到底部保持的保持系统中。
图30示出了也不包括移动部件的第二选择接合块保持系统。接合块 47包括平面凸缘48和可除去突出部49。两个插孔96和97包括在接合块 47的可除去突出部49中。互补插销98和99包括在连接到振动头顶板53 的接合块保持夹持器50中。当两个插销98和99被插入到两个孔96和97 中时,接合块在振动焊期间牢固地保持定位。
与包括焊瘤接收器和焊道不同,如图14所示的用于控制塑料焊瘤的 选择方法在振动焊接期间将压紧板装置应用到焊接接头上。
图14A示出了包括单独压紧带装置95的角腹板夹持器的俯视图细节, 其中以压紧带装置95具有在压紧带95的接触表面上涂有诸如特氟纶之类 的非粘性涂层的特征。型材挤塑制品32和33通过可活动框架夹持器55 和56保持定位。压紧带装置95连接到独立的支撑结构96,该支撑结构 96与振动头52隔离。
图14B是包括独立的压紧板装置95和底部保持平面凸缘接合块48的 单个角振动焊接设备51的垂直剖面细节图。在振动焊接过程中,向下的 压力直接作用在框架型材32和33之间的焊接线上,因此,在焊接过程中 产生的塑料流动被向内引导并离开两个型材之间的焊接线。
如前述图中所示,接合块47由带有可除去突出部49的平面凸缘48组 成。对于特定的框架应用,该平面凸缘构造不能提供充分的结构支撑,需 要附加的角强化。如图15所示,可以通过包括一体腿101的接合块或角 键100满足上述需要。
图15A和15B示出了由方形玻璃纤维填充PVC型材挤塑制品32和33 制造的角框架组件31的切开截面平面图,其中型材32和33通过包括一 体腿101的接合块或L型角键100被焊接。
如图15A所示,角键100的一体腿101包括简化了框架装置的一体弹 性中心装置102。角键100的平面凸缘48首先振动焊接到型材32和33 的斜切端部。由于需要适应来回振动运动,腿101只是松配合在型材中。
如图15B所示,为了提供附加的支撑,塑料框架挤出品超声点焊到角 键100的腿上。双头焊头通过用于制造点焊缝106和107。由于腿只是松 配合在型材中,超声焊过程允许塑料在角键腿和型材挤塑制品之间的间隙 中流动,产生额外的强焊接点连接并减少了材料在外表面上的流动。由于 它们的复杂型材形状,角键100通常通过注模制造,并且必须用与挤塑型 材32和33基本相同的基础树脂材料制造。
利用超声点焊的一个主要优点是,它是将两个类似的热塑性部件在定 位点处连接的装配技术,并且没有预制孔或能量导向器。在操作中,点焊 电极工作尖端经过框架型材壁,移动的熔融塑料通过尖端中的凸起孔洞 (未示出)成形,在表面上形成整洁的凸起环。同时,能量在界面处释放 产生摩擦热。尖端接着穿透角键,在两个表面之间移动熔融的塑料材料, 在塑料固化后,在框架型材和角键腿之间形成永久的结构连接。
图15C示出了中空型材33的垂直剖面图。角键100的一体腿101由带 有中心定位销104的硬扁平条103组成。型材挤塑制品33包括半圆形缺 口,这允许定位销104中心定位。
图16示出单个角摩擦角焊接装置51的振动头52的断面平面图,示出 了框架角选择。接合块47中心定位,并且挤塑制品32和33定位在垂直 支撑构件(未示出)上,这些支撑构件的角位移D可自90°变化至15°, 这允许制造特定形状的框架。
图17A示出了圆顶窗框架108的正视图。直框架型材109,110,111 被斜切并通过平面凸缘接合块48在底部角113和114处被振动焊接。在 直框架型材109和111以及圆顶型材112之间的对接接头115和116处, 利用特定的接合块117将型材直切和振动焊接在一起。
图17B示出了在直框架型材111和圆顶或弯曲框架型材112之间的对 接接头115的横截面细节。接合块117包括以一体弹性中心装置为特征的 腿,所述弹性中心装置简化了窗框的装配。
图18示出了角框架组件的分解透视图,其中两个框架型材32和33通 过振动焊接焊到包括平面凸缘和位于平面凸缘48的顶边缘119上的可除 去突出部的接合块47上。为了简化框架型材的处理,接合块角键夹持器 通常连接到位于振动头顶表面上的平板上。然而,振动头的位置可以颠倒, 从而接合块47可以从上方保持,特别是对于框架和嵌板组合件,这种颠 倒的振动头位置提供这样的优点,即嵌板和最后装配单元均可以更容易地 移入和移出振动焊接装置。
尽管框架组件可以用单个角焊机制造,但是如果两个或多个角同时焊 接则更有生产效能。图19A示出了立式四头振动焊机设备120的前部正视 图。与传统热板焊设备相同,四头焊接设备120由带有腿支撑件122和123 的矩形结构框架121组成。四个焊接头130,131,132和134连接到两个 垂直桥支撑件124和125上,所述垂直桥支撑件跨在结构框架121的顶梁 126和底梁127之间。第一垂直桥支撑件124保持定位而第二桥支撑件125 可活动并被接头轨道(cog track)上的伺服电机所驱动,所述接头轨道位 于结构框架121的底梁127上。可移动桥125的顶端129被位于结构框架 121的顶梁126上的导轨128支撑。
第一组振动焊头130和133连接到保持定位的第一桥支撑件124,第二 组振动焊头131和132连接到第二可活动桥支撑件125。每一组振动焊机 由电伺服电动机驱动的滚珠螺杆操作,所述滚珠螺杆与专门的控制装置结 合,使每个头的垂直位置被个别地控制,从而,在操作中,所有四个头可 以同时上下移动或者独立地朝着中心水平基准线154运动。在四个焊头 130、131、132和133移动到初始起动位置后,四个框架型材134,135, 136和137和四个接合块138,139,140和141被装载定位。
与全部四个角同时焊接的传统四点焊机相比,摩擦焊的优选操作策略 是两阶段过程。如图19A所示,两个对角相对的角150和152首先被焊接 在一起。对于每个角焊缝,所述过程基本上与用单个角振动焊机的过程相 同。两组框架型材被独立地压在两个对角相对的角键138和140上。另外, 只有紧邻角键138和140的可活动框架夹紧装置处于操作状态。在焊接过 程完成后,角键138和140必须被释放,并且,通过包括作为振动焊接头 的一部分的突出部除去剪切压力机或类似装置(未示出),使得该释放过 程更有效地进行。
如图19B所示,下一步是另一组对角相对的角将被焊接在一起。第一 垂直梁上的底部焊头133被保持定位,而两个顶部焊头130和131均向下 移动,同时第二桥支撑件125向侧部移动。在第二阶段的过程期间,只有 紧邻角键139和141的可活动框架夹紧装置处于操作状态。在第二组对角 相对的角被焊接后,接着被组装的框架被卸载。
由于摩擦焊过程很快(3-6秒),这样的两阶段过程不会显著增加周期 时间,并且与同时焊接四个角相比,主要优点在于极大地简化了所需要的 焊头的运动和控制。对于四头焊机,用于个别焊头的控制器形成配合的控 制系统(未示出)的一部分,所述控制系统控制自动四点焊机的四个头和 其它机械化部件的操作。
对于传统四头热板焊机,整个周期时间大约是两分钟,该整个周期时 间包括:型材装载、角焊接、冷却和框架卸载。作为比较,用于两阶段振 动焊接过程的估计整个周期时间小于30秒,从而这代表着生产率的显著 增加。为了进一步提高生产率,一个选择是在角保持夹持器中结合用于安 装接合块的自动机械传送装置(未示出)。
如图20所示,在一个操作中同时焊接四个角150,151,152和153在 技术上是可行的。全部四个振动焊接头130,132,133和134包括附加的 伺服电动机156,所述伺服电动机156允许每个焊头在塑料材料在振动焊 过程中熔化时微小地移动。因此,焊头的位置可以以不同的方向微调,从 而在全部四个角处,通过四个框架型材134,135,136和137同时对四个 角键150,151,152和153施加垂直压力。然而,由于涉及的焊头移动如 此之小和复杂,用于同时四头焊接操作的控制系统很复杂并且需要复杂的 软件。尽管图18,19和20示出了垂直四头振动角焊机,本领域技术人员 可以理解,桥支撑件可以水平横跨在工作台支架上。
尽管振动角一般可以用于连接挤塑型材制品,改进的装配方法提供了 用于门窗应用的特殊优点。除了生产传统的门窗之外,改进的装配方法可 以用于开发新型的门窗产品。为了示出振动角焊的性能优点,图21至31 示出了这些新型门窗产品的三个例子,即,1.复合通道窗嵌板,2.玻璃 嵌板装置和3.密封框架窗嵌板。
与前面的图中示出的简单矩形框组件相比,这些新型门窗产品包括复 杂的型材形状,但应当注意基本部件接头设计没有改变并且平面凸缘接合 块可构造为对应于这些更复杂的型材形状的斜接接头外形。
图21A示出了复合通道窗嵌板158的正视图,所述窗嵌板158由传统 的密封双玻璃装置159和矩形窗架160组成,其中矩形窗架160通过振动 角焊接装配在密封窗玻璃装置159的周围。
图21B示出了复合通道窗嵌板158沿线21A-21A的截面细节。密封双 窗玻璃装置159由两个窗玻璃片161和162组成,并包括传统周边密封 163,示出的特殊的例子为干燥剂填充的聚异丁烯(TPS)内阻挡层密封 164和聚硫化物密封胶外结构密封165。密封的窗玻璃装置159支撑在传 统的硬橡胶窗玻璃块166上,并且,窗玻璃通道167被方便地排空。在多 孔中空塑料框架被装配和在角部焊接后,在窗玻璃装置159和通道框架型 材168之间的间隙中应用两个硅密封焊道169和170。优选窗框架型材由 玻璃纤维填充PVC制成,这样具有以下优点:即由于玻璃和框架组件的 复合硬度,因此与传统PVC窗型材相比,可减小整个框架型材的尺寸。
图22示出了复合通道窗嵌板158的分解透视角细节。通道型的框架型 材171和172装配在绝缘窗玻璃装置159的周围,接着框架型材171和172 利用振动角焊接在角部连接和密封。一个关键特征是接合块47包括可除 去塑料腹板49,可除去塑料腹板49位于框架的外侧并保持在连接到摩擦 焊设备的振动头的角腹板保持夹持器上。这具有以下优点:即框架可装配 在绝缘玻璃装置的周围,接着焊接和密封角部。因此,通过消除需要单独 安装绝缘玻璃装置169,就显著地节约了材料和劳动消耗。
利用传统热板焊,为了使薄壁型材壁在角部处焊接在一起,框架型材 必须具有基本上相同的尺寸和形状。然而,利用振动角焊接,通过使用常 用的角腹板,不同的型材尺寸和形状可以结构连接在一起。例如,如图23 所示,底部框架型材173更大并包括深的硬件通道。另外,利用传统的热 板焊接,只可以使用45°斜切角,而对于摩擦焊和角键腹板,将带有不同 斜切角度(即60°和30°)的角的框架型材连接在一起是可行的。
应当注意,当利用摩擦角焊将不同尺寸的型材连接在一起时,两个可 活动框架夹持器有必要施加不同的接合力,从而当考虑不同的型材尺寸 时,基本上在腹板的任一侧上施加相同的压力。
尽管图21-24的给出的例子示出了装配在绝缘玻璃装置周围的窗框架 型材的例子,本领域技术人员可以理解,同样的生产过程也可以用于制造 宽范围的框架和嵌板产品,包括:画框;镜子;隔板;浴室门和碗柜门。
图24A和24B示出了焊接的复合通道框架组件的透视图和顶平面图, 其中,框架型材176和177单个L型的空腔178,并且用于绝缘玻璃装置 的薄支撑型材壁179是实心的。这种窄复合通道型材的主要优点在于减小 了框架型材的整个宽度,因此,材料和成本节约了。这种窄通道型材的一 个缺点是,由于完全截面角腹板,从而由于通道型角腹板的腿太细以至于 很难得到一致的角焊缝。
一个选择是使角腹板只延伸到L型空腔178的顶型材壁181处,并在 框架型材176和177的斜切角中包括槽口182。因此,尽管型材183的底 部在角部被密封并被焊接,斜切实心型材壁184只对接在一起。然而,由 于振动焊接过程可以被精密地控制,可保持两个斜切型材176和177之间 的开放间隙185最小。
图25A示出了包括硬热塑性间隔框架186的密封双窗玻璃嵌板159的 正视图,所述间隔框架186通过振动角焊在角部焊接并密封。
图25B示出了双窗玻璃嵌板外周边缘沿线25A-25A的截面细节。间隔 框架186由开口通道制成,在角部处振动焊接到平面凸缘接合块47上的 硬热塑性框架型材187由基本上与间隔型材相同的热塑性树脂制成。为了 最小化窗玻璃片161和162与间隔框架186之间的不均匀膨胀,热塑性间 隔型材由玻璃纤维强化热塑性挤压成型或连续玻璃纤维强化拉挤成型制 成。在间隔框架186被装配后,干燥剂填充聚异丁烯密封剂被涂到间隔框 架186的内表面188上,产生连续阻挡层密封。在嵌板被装配后,结构热 固性密封剂的双压条190和191应用于间隔框架186和两个窗玻璃片161 和162之间。
为了绝缘玻璃嵌板,使用振动角焊的主要优点是具有由硬热塑性材料 制成的连续的、单个的壁阻挡层密封。结果,间隔框架168的背面可结合 包括连接装置的各种型材特征。除了不损坏阻挡层密封的一体性外,其它 热塑性部件(例如充气片)也可以被焊接到间隔框架186的背面192上。
图26A示出了密封框架、包括带有振动焊接角的周边窗架194的三个 玻璃上下推拉窗嵌板的正视图。
图26B示出了三个玻璃的密封框架窗嵌板193在线26A-26A上的截面 图。嵌板由两个窗玻璃外片161和162组成,它们与周边窗架194交叠, 并通过热固性结构密封剂195粘接到所述窗架上。内中心窗玻璃嵌板196 由周边框架194支撑。
周边框架194由玻璃纤维填充的中空热塑性型材197装配而成,热塑 性型材197通过振动角焊接在角部连接并密封。该热塑性型材包括玻璃纤 维填充物,如前所述,这提供了增加的强度和硬度并减小了热膨胀。与传 统窗组件相比,密封框架窗玻璃装置的主要优点是通过复合结构作用,所 需要的窗框型材197的尺寸可以显著地减小,导致改进的能量效率和材料 成本的减小。
利用复合结构作用,该密封框架嵌板以与承力表层夹层结构嵌板相类 似的方式作用,其中两个窗玻璃片161和162的周边边缘分别处于受压和 张紧状态下,从而,嵌板不是作为两个独立的窗玻璃片操作,相反,两个 窗玻璃片161和162作为一个结构单元共同作用。
窗玻璃片161和162通过结构热塑性密封剂195结构粘接到塑料框架 型材197上,为了长期耐用性,硅密封剂是优选的材料。为了提高复合结 构性能,需要密封剂厚度优选小于3mm的高模量硅密封剂。为了提供增 加的嵌板硬度,窗玻璃片161和162的底边缘198和周边侧边缘199在周 边框架型材197的任一侧上被粘接到L型基座200上。为了使窗玻璃片 161和162随着温度和压力变化弯入和弯出,侧边缘接触长度被保持到最 小,通常要求10mm的长度。
第三中心窗玻璃片196位于两个外窗玻璃片161和162之间,该窗玻 璃片形状类似于两个外窗玻璃片,但尺寸较小。为了提高热性能,在窗玻 璃片161,196和162之间的空腔空间201和202的宽度通常在9mm和 18mm之间。为了提高能量效率,低档(Low-e)涂料203也可以应用于 窗嵌板193的一个或多个玻璃空腔表面。另外,空腔空间161和162也可 以包括低传导气体,例如氩或氪。
为了提供长期的气体保持并保持周边密封的一致性,需要在外窗玻璃 片之间具有连续的周边密封。各种边缘密封构造窗框密封材料可被用于提 供这种连续阻挡层密封。如图26B所示的一个选择是将低渗透性的密封剂 材料204应用于周边框架194的前面205和前侧边缘206。为了适应玻璃 弯曲和移动,密封剂材料必须是柔性的,由于聚异丁烯的低温性能,因此 它是优选的材料。为了从窗玻璃空腔空间201和202中除去潮气,低渗透 性的密封剂包括干燥剂填充材料,优选的材料组合为85%的3A分子筛和 15%的硅胶。
硬框架型材197可以由通过不同工艺制造的许多可选择塑料材料制成。 一个优选的材料是挤压成需要的型材形状的玻璃纤维填充聚氯乙烯 (PVC)。一个适合的产品是Fiberloc 80530,它以30%的玻璃纤维填充物 为特征,并由PolyOne Inc.Of Cleveland Ohio公司生产。30%玻璃纤维填 充材料的热膨胀系数是18×10-6cm/cm/℃,与9×10-6cm/cm/℃的玻璃热膨 胀系数形成对比。对于很大的嵌板尺寸,通过用连续单向玻璃纤维条(未 示出)加固邻近于外玻璃片的框架型材壁207和208,塑料型材的热膨胀 可以被进一步减小。
代替玻璃纤维强化PVC,框架型材197可以由各种其它的选择塑料材料 制造,包括热塑性纤维玻璃挤出品、玻璃纤维强化工程结构塑料泡沫挤出 品以及高拉伸取向(high draw oriented)热塑性挤出品。由于塑料型材 被牢固地粘接到窗玻璃片上并从周边框架的中点向外膨胀,由于塑料型 材和玻璃片的不同膨胀性,在角部出现最大应力。特别是对于玻璃纤维填 充型材,由于角焊缝通常只是与未强化的塑料具有相同的强度,在框架组 件中角焊缝可能是一个潜在的弱点。为了提供增加的强度和硬度,并且减 小角焊缝的应力,优选的装配方法是,利用摩擦角焊和超声点焊的结合在 角部将塑料型材连接在一起,这种生产方法已在前面的图15A和15B中描 述过。
图27A和27B示出了用于三层玻璃密封窗框嵌板的框架型材的对角切 割端209的前视图(27A)和侧视图(27B)。通过除去框架型材材料,在 型材209的对角切割端形成3-4mm深的通道210,产生塑料侧肋(rib)211 和212。在对角切割端的侧视图上的虚线212表示通道210的深度。
图28示出了用于三层玻璃密封框架窗嵌板193的角框架组件的分解透 视细节。两个框架型材213和214通过特殊的角键连接在一起,所述角键 包括平面凸缘腹板215和一体腿216。为了简化框架装配,一体腿包括自 定心的弹性装置。
如前面的图27A和27B所示,通过除去框架型材材料,可在框架型材 213和214的斜切端217和218中形成通道,从而顶侧肋表面220和221 与角键217的对角中心凸缘215重叠。在摩擦焊期间,除了顶侧肋220和 221的型材端部被压在中心凸缘215上。由于塑料焊瘤只在型材端部222 和223与角键凸缘215之间的界面处产生,在框架型材213和214的两个 顶侧肋220和221之间产生清晰的分割线。
图29A-29E示出了制造单个振动焊密封框架角组件所涉及的生产步骤。
如图29A所示,密封框架角组件由两个框架型材213和214以及带有 对角中心凸缘215和可除去突出部224的特殊L型角键219组成。在框架 型材213和214的斜切端部中形成通道,从而框架型材的顶侧凸出220和 221与角键219的对角中心凸缘215交叠。
如图29B和29C所示,L型角键219的两个腿225和226松配合到两 个框架型材中,角组件被放置到振动角焊接装置中。可除去突出部224包 括箭头型材227,箭头型材227装配到角键夹持器229内的具有互补形状 的插孔228中。框架型材213和214通过前夹紧装置230和231牢固地保 持定位,该前夹紧装置230和231连接到振动焊接装置(未示出)的可活 动框架夹持器232和233。
如图29C和29D所示,利用垂直力将两个型材压在角键219的接触表 面234和235上,通过快速地来回移动角键219产生摩擦。在摩擦焊接过 程期间,当两个型材213和214被压向角键凸缘215上时,塑料焊瘤流动 到接触表面的任一侧。由于产生相对限制的焊瘤,焊瘤不会延伸到框架型 材的两个对角斜切端236之间的接合线中,因此,在框架型材之间产生清 晰的分割线237。
在摩擦焊过程完成后,如图29E所示,突出部224用机械方法从L型 角键219上除去。生产过程的最后步骤是利用超声点焊238将内型材壁连 接到L型角键上。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈