技术领域
背景技术
[0002] 当暴露于高温(即,大于或等于约1,300℃)和
氧化环境时,金属会氧化、
腐蚀并变脆。这些环境产生在用于发电应用的
涡轮机中。热障涂层(TBC)在涂敷到金属
涡轮机组件上时可以减小作用在金属组件上的高温和氧化环境的影响。
[0003] 热障涂层可以包括金属粘合涂层和陶瓷涂层。金属粘合涂层可以包含诸如
铝、铬、铝
合金和铬合金的氧化防护材料。例如,金属粘合涂层可以包含铬、铝、钇或它们的组合,例如MCrAlY,其中M是镍、钴或
铁(赫克特的美国
专利N0.4,034,142和笈多等人的美国专利No.4,585,481说明了一些涂层材料)。这些金属粘合涂层可以通
过热喷涂技术(笈多等人说明了包含
硅和铪微粒的涂层材料通过
等离子喷涂涂敷)涂敷。陶瓷涂层可以通过诸如空气等离子喷涂(APS)或
电子束
物理气相沉积(EB-PVD)的方法涂敷到金属粘合涂层上。
[0004] 伯恩斯等人的美国专利No.6,042,898讲授了通过将MCrAlY粘合层沉积到超
耐热合金基质上来涂敷热障涂层。伯恩斯等人讲授了在MCrAlY粘合层上形成铝氧化膜和使用物理气相沉积在铝氧化膜上沉积陶瓷层。伯恩斯等人讲授了使用诸如逆转
电弧清洁的电离气体清洁工艺提高涂层寿命。该工艺需要在
叶片表面上形成使氧化物和其它污染物过热的电弧,使得氧化物和污染物
汽化。该工艺在30绝对托(4.0kPa)到40绝对托(5.3kPa)的压
力和1,400 (760℃)到1,600 (871℃)的
温度下进行。
[0005] 当将陶瓷涂层涂敷到包含铝化MCrAlY的金属粘合涂层和/或过密的高速氧化油火焰(HVOF)涂层上时,陶瓷涂层会表现出差的附着性。HVOF是可以产生超过6,000英尺每秒(fps)的气体速度的
超声波工艺,这可以使粒子速度达到3,000fps并可以产生具有高粘合强度的涂层。这是给具有强腐蚀和磨损环境的工业提供了无限范围可能性的极其通用的系统。然而,产物涂层是光滑的并且限制了与后续涂层的附着性。因此,需要改进的方法以将陶瓷涂层附着到这些光滑涂层上。
发明内容
[0006] 本文公开了用于涂敷金属基质的方法、系统和由此制成的制品。在一个
实施例中,涂敷金属基质的方法包括:将金属粘合涂层布置在金属基质上,用反极性高频装置在大于或等于约2.5kHz的
频率下产生离子,用离子将表面粗糙化到大于或等于约5μm的后续平均表面粗糙度,并将陶瓷涂层布置在金属粘合涂层表面上。金属粘合涂层具有初始平均表面粗糙度小于或等于约1μm的表面。
[0007] 在一个实施例中,用于涂敷金属基质的系统包括:第一涂层装置,该第一涂层装置能够布置具有小于或等于1μm的初始平均表面粗糙度的涂层;电离气体装置,该电离气体装置能在大于或等于约2.5kHz的频率下操作,并能在涂层处产生并导向离子以形成具有大于或等于5μm的后续平均表面粗糙度的粗糙涂层;以及第二涂层装置,该第二涂层装置能将陶瓷涂层布置在粗糙涂层上。
[0008] 在一个实施例中,带涂层的基质包括在基质上的HVOF金属粘合涂层。该HVOF金属粘合涂层具有大于或等于5μm的后续平均表面粗糙度。
[0009] 通过以下
附图和详细说明举例说明上述和其它特征。
附图说明
[0010] 现在参照附图,该附图是一示例性实施例。
[0011] 图1是具有布置在其上的金属粘合涂层和陶瓷涂层的金属基质的侧视图。
具体实施方式
[0012] 文中的术语“第一”、“第二”等不表示任何顺序、数量或重要性,而是用以区分一个元件和另一个元件,并且文中的术语“一”不表示数量的限制,而是表示存在至少一个提及的对象。与数量联合使用的修饰词“约”包括所述值并且具有由上下文所述的意思(例如,包括与特定量的测量相关联的误差度)。文中使用的“(多个)”、“(多种)”意在包括其所修饰的术语的单数和复数,由此包括一个或多个所述术语(例如,(多种)金属包括一种或多种金属)。本文公开的范围是包含性的并且可单独地结合的(例如,“多至约25%的重量百分比,或者,更具体地,约5%的重量百分比到约20%的重量百分比”的范围包含端点和“约5%的重量百分比到约25%的重量百分比”的范围的所有中间值,等等)。
[0013] 图1示出包括涂敷到金属基质12上的金属粘合涂层14的
金属陶瓷合成物10。在涂敷陶瓷涂层16之前处理金属粘合涂层14以提供用于附着的较高的平均表面粗糙度。
[0014] 金属基质12可以代表各种采用屏蔽涂层的组件,例如,铲斗、
喷嘴、叶片、轮叶、护罩以及例如将布置在涡轮
发动机中的热气流中的组件的其它组件。金属基质12可以包含在这种应用中采用的各种金属,包括镍、钴、铁、包括上述金属中的至少一种的组合以及包含上述金属中的至少一种的合金,例如镍基超耐热合金和/或钴基超耐热合金。
[0015] 金属粘合涂层14附着到金属基质12上。因此,兼容性和良好的附着性是在选择粘合涂层材料时考虑的因素。金属粘合涂层可以包含镍(Ni)、钴(Co)、铁(Fe)、铬(Cr)、铝(Al)、钇(Y)、包含上述金属中的至少一种的合金以及包括上述金属中的至少一种的组合,例如,金属粘合涂层可以包含MCrAlY(其中M由镍、钴、铁和包括上述金属中的至少一种的组合组成)。MCrAlY涂层还可以包含这些元素,诸如硅(Si)、钌(Ru)、铱(Ir)、锇(Os)、金(Au)、
银(Ag)、钽(Ta)、钯(Pd)、铼(Re)、铪(Hf)、铂(Pt)、铑(Rh)、钨(W)、包含上述金属中的至少一种的合金以及包括上述金属中的至少一种的组合。例如,金属粘合涂层可以包含充足的铝以在金属粘合涂层14的表面上形成氧化铝膜。铝可以是铝化物的形式,该铝化物可选择地包含钌(Ru)、铱(Ir)、锇(Os)、金(Au)、银(Ag)、钯(Pd)、铂(Pt)、铑(Rh)、包含上述金属中的至少一种的合金以及包括上述金属中的至少一种的组合。
[0016] 可以在单个或多个阶段完成的金属粘合涂层14在基质12上的涂敷可以以各种方式实现,这些方式包括气相沉积(例如,电子束物理气相沉积(EB-PVD)和
化学气相沉积(CVD)等)、电
镀、等离子沉积(IPD)、等离子喷涂(例如,
真空等离子喷涂(VPS)、低压等离子喷涂(LPPS)和空气等离子喷涂(APS)等)和热沉积(例如,高速氧化油(HVOF)沉积等)等,以及包括上述过程中的至少一个的组合。例如,金属粘合涂层的成分可以被化合(例如,通过感应
熔化等)、
粉碎(例如,通过粉末雾化)并等离子喷涂到基质12上。替代地,或附加地,可以将金属粘合涂层元素合结合到靶中并等离子沉积。当采用多个阶段时,可以在各阶段将相同或不同的元素涂敷到基质上。作为示例,可以通过减少浪费的技术涂敷贵金属(例如铂),而后通过其它工艺涂敷剩余元素。因此,可以将贵金属
电镀到基质表面上,可以通过粉末成分的热沉积(例如,通过HVOF)涂敷其它元素。然后进行铝化,例如,以获得贵金属与其余涂层成分的混合。
[0017] 例如,可以将金属材料(例如,以线和棒等形式)涂敷到基质上。可以将金属材料供给到氧炔焰中。火焰熔化金属材料并用高压空气的辅助气流将颗粒熔化物雾化,所述辅助气流使材料沉积为基质上的涂层。也可以采用诸如在维德曼(Weidman)的美国专利No.5,285,967中公开的那些无火焰的喷
涂装置。HVOF工艺产生光滑的涂层,例如,具有小于或等于约1μm(50微英寸)的Ra的涂层。
[0018] 金属粘合涂层14的厚度取决于其中使用带涂层组件的应用和涂敷技术。可以将涂层以约50微米(μm)到约625μm,或者,更具体地,约75μm到约425μm的厚度涂敷到涡轮机组件上。
[0019] 在涂敷陶瓷涂层16之前处理金属粘合涂层14以使表面粗糙化。该处理可以包括在充分苛刻的条件下的反极性工艺(例如,反极性高频电弧工艺,即,大于或等于约2.5千赫(kHz)的频率)以使金属粘合涂层14粗糙化,而不仅仅是清洁涂层。可以使用焊炬(例如,钨焊炬电弧
焊枪)的反极性工艺可以采用交流(AC)反电弧或直流(DC)反电弧。反极性工艺使用流过焊枪的惰性气体(例如,氦和氩等)和/或不与基质12或金属粘合涂层14产生化学反应的其它气体(例如,氢和氮等),以及包括这些气体中的至少一种的组合。产生(例如,撞击)反极性高频率,使得电子从气体剥离。通过剥离电子形成的离子撞击金属粘合涂层的表面。
[0020] 不受理论约束,电弧装置在高频率下操作以便在装置与金属粘合涂层之间没有电弧形成。当电子从气体剥离时,由此形成的离子撞击涂层表面并使其粗糙化而没有留下残余。由于采用了低的安培数(例如,小于或等于约10安培,或者,更具体地,小于或等于约3安培),并且由于电子向装置流动而离子向基质流动,因此基质的温度没有通过该工艺而显著升高;例如,温度升高小于或等于约10℃,或者,更具体地,小于或等于5℃。
[0021] 例如,可以用正极并用金属粘合涂层14作为负极来产生电弧。因此在低安培数下在
电极之间产生电势;例如,在小于或等于约10安培,或者,更具体地,小于或等于约2安培下,约10伏特(V)到约50伏特(V)的电势。在建立电弧后,在电极之间保持足以使金属粘合涂层表面粗糙化的电势。例如,在约0.1安培(amps)到约10安培下约10V到约50V的电势。粗糙化时间根据金属涂层表面面积及其成分而变化。该时间可以多达约10分钟,或者,更具体地,约1分钟到约5分钟。应理解,可以在上述范围内选择电势、安培数和时间的组合,以仅仅清洁涂层表面。例如,时间可能太短而不能够在给定的电势和安培数下粗糙化。然而,这种组合将不足以获得这里寻求的附着性。当按照美国国家标准化组织(ANSI)B46.1测量时,这里的组合应该足以在0.030英寸(约0.76毫米)切口处获得大于或等于约5μm的平均表面粗糙度。
[0022] 不受理论束缚,在高频下操作的焊枪导致惰性气体离子的形成,所述惰性气体
离子轰击金属粘合涂层14的表面,打碎其上的氧化物层并改变表面形态,由此增大了平均表面粗糙度并形成粗糙的表面18。涂层处理可以将平均表面粗糙度(Ra)增大到大于或等于约5μm(200微英寸),或者更具体地约9μm(350微英寸)到约15μm(600微英寸),并且甚至更具体地,约10μm(400微英寸)到约13μm(500微英寸)。
[0023] 一旦得到希望的平均表面粗糙度,停止电弧并可以涂敷陶瓷层。可以将具体为陶瓷涂层16的陶瓷层涂敷到金属粘合涂层14的粗糙表面18上。陶瓷涂层16可以包括能够保护金属粘合涂层14和基质12不被氧化的陶瓷。可能的陶瓷包括被选择性地稳定化的氧化锆(ZrO2)和氧化铝(Al2O3)等。可能的稳定剂包括钇(Y)、铈(Ce)、钡(Ba)、镧(La)、镁(Mg)、钪(Sc)和
钙(Ca)等,包含上述金属中的至少一种的氧化物,以及包括上述金属中的至少一种的组合,例如钇稳定的氧化锆。
[0024] 可以通过诸如以上讨论的关于金属粘合涂层14的涂敷的那些技术的各种技术涂敷陶瓷涂层16。陶瓷涂层16的厚度可以大到约1,750μm或更大,或者,更具体地,约250μm到约1,500μm,并且更具体地,约350μm到约1,250μm。
[0025] 使用反极性、高频处理以使金属粘合涂层(例如,MCrAlY粘合涂层)粗糙化并且尤其是使用HVOF工艺涂敷的涂层,增强了粘合涂层与涂敷在其上的后续陶瓷涂层的附着性。增强的附着性延长了涂层的寿命。HVOF涂敷的涂层倾向于具有不益于接收后续涂层的非常光滑的表面(例如,小于1μm的Ra)。通过将表面粗糙化到例如大于或等于约5μm的平均表面粗糙度,大大增强了HVOF与后续涂层之间的附着性。
[0026] 虽然参照优选实施例说明了本发明,但本领域的技术人员应理解,可以对其元素做出各种改变并可替代为等效物而不背离本发明的范围。另外,可以做出许多变型以使具体的情况或材料适应本发明的教导而不背离其实质范围。因此,意在不使本发明局限于作为执行本发明的预期的最佳方式的具体实施例,而是使本发明包括落在所附
权利要求书的范围内的全部实施例。