首页 / 专利库 / 制造过程 / 三维扫描仪 / 基于深度学习与视场投影模型的渗漏水面积检测与识别方法

基于深度学习与视场投影模型的渗漏面积检测与识别方法

阅读:340发布:2022-05-17

专利汇可以提供基于深度学习与视场投影模型的渗漏面积检测与识别方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种基于 深度学习 与视场投影模型的渗漏 水 区域检测与识别方法,具体包括如下步骤:步骤1)采集待测区域的视频数据和点 云 数据;步骤2)通过渗漏水 图像识别 神经网络对步骤1)采集的视频数据进行检测,得到渗漏水区域图片;步骤3)对步骤1)采集的点云数据进行识别,得到曲面形状;步骤4)根据步骤3)得到的曲面形状对步骤2)得到的漏水区域图片进行相应曲面形状投影,并计算投影后的渗漏水区域实际面积。本发明对于地 铁 隧道渗漏水面积测量无需人工参与,提高工作效率,且能够对检测到的渗漏水区域进行曲面投影转换,得到更精确的渗漏水面积。因此,该检测 算法 效率高、检测精确。,下面是基于深度学习与视场投影模型的渗漏面积检测与识别方法专利的具体信息内容。

1.一种基于深度学习与视场投影模型的渗漏区域检测与识别方法,其特征在于,具体包括如下步骤:
步骤1)采集待测区域的视频数据和点数据;
步骤2)通过渗漏水图像识别神经网络对步骤1)采集的视频数据进行检测,得到渗漏水区域图片;
步骤3)对步骤1)采集的点云数据进行识别,得到曲面形状;
步骤4)根据步骤3)得到的曲面形状对步骤2)得到的漏水区域图片进行相应曲面形状投影,并计算投影后的渗漏水区域实际面积。
2.根据权利要求1所述的基于深度学习与视场投影模型的渗漏水区域检测与识别方法,其特征在于,所述的步骤2)通过渗漏水图像识别神经网络对步骤1)采集的视频数据进行检测,得到渗漏水区域图片,具体检测步骤如下:
步骤2.1)采集历史渗漏水区域的视频数据和点云数据;
步骤2.2)对视频数据中的图片数据进行数据增强,得到增强图像;
步骤2.3)对增强图像中的渗漏水区域进行标注,作为标签;
步骤2.4)构建隧道渗漏水图像识别神经网络框架,并将增强图像和标签输入隧道渗漏水图像识别神经网络,训练隧道渗漏水图像识别神经网络框架,得到深度学习后的隧道渗漏水图像识别神经网络;
步骤2.5)将采集的视频数据输入到所述的深度学习后的隧道渗漏水图像识别神经网络,对图像中的渗漏水区域进行预测,属于渗漏水的像素被预测为前景像素,不属于渗漏水的像素被预测为背景像素,从而实现渗漏水病害的图像识别。
3.根据权利要求2所述的基于深度学习与视场投影模型的渗漏水区域检测与识别方法,其特征在于,所述步骤2.3)对增强图像中的渗漏水区域进行标注,作为标签,具体如下:
步骤2.3.1)对增强图像进行自适应阈值法分割,得到二值图像,其中,黑色像素点为渗漏水区域,白色像素点为背景区域;
步骤2.3.2)对二值图像修正后,对像素点进行标签;
步骤2.3.3)将二值图像的黑色像素点转化为洋红色像素点,白色像素点转化为红色像素点,其中,洋红色像素点为训练的渗漏水区域,红色像素点为背景边界修正;
步骤2.3.4)对于二值图像中仍存在的黑色像素点进行形态学处理,得到可供训练的样本集,通过迭代,得到可供训练的样本集。
4.根据权利要求2所述的基于深度学习与视场投影模型的渗漏水区域检测与识别方法,其特征在于,所述步骤2.4)构建的渗漏水图像识别神经网络框架包括初始化权重、学习率、批尺寸和迭代次数参数。
5.根据权利要求2所述的基于深度学习与视场投影模型的渗漏水区域检测与识别方法,其特征在于,所述步骤2.4)训练渗漏水图像识别神经网络框架,得到深度学习后的隧道渗漏水图像识别神经网络,具体是:
步骤2.4.1)通过对增强图像的多次卷积、池化运算获得图像抽象的高维特征信息;
步骤2.4.2)通过总体误差函数度量网络输出的预测图与对应标签图之间的误差的对比,完成一次迭代中的正向推理运算;
步骤2.4.3)采用随机梯度下降法对总体误差函数进行最小化,并通过反向传播算法将误差的梯度进行反向传递,实现权值的更新,完成一次迭代中的反向学习运算:
步骤2.4.4)反复步骤2.4.3)-2.4.4)直至损失值达到既定值,使用验证集图像对网络进行交叉验证,当得到的交叉验证误差小时,则网络训练完成,否则调节学习率和学习衰减率参数重新进行交叉验证。
6.根据权利要求2所述的基于深度学习与视场投影模型的渗漏水区域检测与识别方法,其特征在于,所述的步骤2.5)不属于渗漏水的像素包括管片拼缝、遮挡、管线或阴影。
7.根据权利要求1所述的基于深度学习与视场投影模型的渗漏水区域检测与识别方法,其特征在于,所述的步骤3)对步骤1)采集的点云数据进行识别,得到曲面形状,具体是基于随机抽样一致算法(RANSAC),采集的待测区域为隧道侧面,主要有平面、椭圆柱面和圆柱面三种,从采集到的点云数据中,随机选择四点{p1(x1,y1,z1),p2(x2,y2,z2),p3(x3,y3,z3),p4(x4,y4,z4)},隧道的横截面为xz平面,随机选择四点中的三个点,确定一个平面和一个圆柱面;将这三个点代入到以下两个式子,确定平面的三个参数A、B和C和圆柱面的圆心坐标和半径参数:
Ay+Bz+C=x
(x-x0)2+(z-z0)2=r2
由随机选择的四个点,确定一个椭圆柱面,将这四个点代入到以下式子,确定椭圆柱面的参数
设定一个阈值ε,统计点云数据中到以上确定的平面,椭圆柱面和圆柱面距离小于阈值的点云个数,记为得分数,隧道侧面对应的曲面形状得分数必然远远大于其他两种形状,由此可以识别出曲面形状为平面、圆柱面或者椭圆柱面;
在识别出曲面形状后,多次从点云中反复抽取四个点,确定曲面模型,计算得分数,得到精确曲面模型。
8.根据权利要求1所述的基于深度学习与视场投影模型的渗漏水区域检测与识别方法,其特征在于,所述的步骤1)采集待测区域的视频数据和点云数据,具体是用防抖摄像机进行视频数据采集,用三维激光扫描仪进行点云数据采集。
9.根据权利要求1所述的基于深度学习与视场投影模型的渗漏水区域检测与识别方法,其特征在于,所述的步骤4)计算投影后的渗漏水区域实际面积,具体是:
步骤4.1)当识别到的曲面是圆柱面时,采用柱面投影模型将平面还原为柱面,小车运行时防抖摄像机的运动发生在X—Z平面,图像中心点就是光轴与图像平面的交点,为了得到投影中心O点观察到的原始图像,即图像J在柱面空间K上的柱面投影图像J’。设柱面半径为r,投影为α,图像J宽度为W,图像高度为H。得到柱面图像的宽度W’为r*α,高度仍为H,图像的像素坐标均以图像平面中的最左上角像素为坐标原点;
对图像J上的任意一点P(x,y),在柱面图像J’上的对应点为P’(x’,y’),对点P沿X一Z平面和Y—Z的横截面分别投影,可得柱面投影变换公式:
其中,r为拍摄焦距,α为每张图像所占的弧度角,x,y为原图的坐标,x',y'为变换后图像的坐标,W和H为原图的宽和高,α为防抖摄像机水平视角,取值为(0,π);通过柱面投影公式,可以将e中检测到的渗漏水病害区域图片每一个像素点投影到圆柱平面上去;
计算渗漏水病害实际面积S,公式如下:
其中,h是到物体表面的距离,P是图像中目标物体区域内像素个数测量值,Q是防抖摄像机整个视场范围内像素的个数,α和β分别是防抖摄像机的水平视场和垂直视场,γ是视场面积转化为圆形隧道的投影面积修正系数。
步骤4.2)当识别到的曲面是平面时,计算渗漏水病害实际面积S,公式如下:
其中h是到物体表面的距离,P是图像中目标物体区域内像素个数测量值,
步骤4.3)当识别到的曲面是椭圆柱面时,采用椭圆柱面投影模型将平面还原为椭圆柱面,小车运行时防抖摄像机的运动发生在X—Z平面,而且图像中心点就是光轴与图像平面的交点,为了得到投影中心O点观察到的原始图像,即图像J在椭圆柱面空间K上的投影图像J’。设椭圆柱面半长轴为b,半短轴为c,b和c可以通过点云数据拟合测得。投影角为α,图像J宽度为W,图像高度为H,得到椭圆柱面图像的宽度W’为 高度仍为
H;图像的像素坐标以图像平面中的最左上角像素为坐标原点;
对图像J上的任意一点P(x,y),在椭圆柱面图像J’上的对应点为P’(x’,y’),对点P沿X一Z平面和Y—Z的横截面分别投影,可得椭圆柱面投影变换公式:
α为每张图像所占的弧度角。椭圆柱面投影就是将一张二维的图像投影到三维的椭圆柱体上。其中,x,y为原图的坐标,x',y'为变换后图像的坐标,W和H为原图的宽和高,这里α为防抖摄像机水平视角,α取值为(0,π)之间。通过椭圆柱面投影公式,可以将e中检测到的渗漏水病害区域图片每一个像素点投影到椭圆柱面上去;
计算渗漏水病害实际面积S,公式如下:
其中h是到物体表面的距离,P是图像中目标物体区域内像素个数测量值,Q是防抖摄像机整个视场范围内像素的个数;α和β分别是防抖摄像机的水平视场和垂直视场,γ是视场面积转化为椭圆柱面形隧道的投影面积修正系数。

说明书全文

基于深度学习与视场投影模型的渗漏面积检测与识别方法

技术领域

[0001] 本发明属于图像处理技术领域,具体涉及一种基于深度学习与视场投影模型的渗漏水面积精确检测与识别方法,常用于隧道、房屋等建筑。

背景技术

[0002] 隧道渗漏水现象在运营隧道中非常普遍,是一种常见的病害,若不及时对其进行修补,将会降低管片结构的强度,并引发筋和螺栓腐蚀、管片开裂及混凝土剥落等其他病害,会严重危害隧道的运营并且可能导致安全事故。
[0003] 传统的隧道渗漏水结构病害检查,主要采用人工巡检目测、手工记录和拍摄照片等方式进行数据采集,但使用这种数据采集方式,受主观因素的影响,不可避免的会发生误判、遗漏等错误,且费时、费,危险程度高、效率低下。近年来,以计算机视觉技术为依托的图像处理检测方法在该领域进行了相关研究。这种检测虽然在一定程度上带来了大量的隧道结构表面基础图像数据,但由于隧道盾构拼装的多缝及管道、管线、油漆数字等的遮挡干扰,使得图像数据异常复杂,从而导致检测难度不断加大。Marvin Teichmann对隧道病害目标进行了几何分析,使用的是目标分割算法。传统目标分割算法已经发展很成熟,大致可分为基于轮廓的方法,包括边缘检测,轮廓搜索、分水岭算法;基于区域的方法,包括全局阈值、局部阈值、动态阈值、多分辨率阈值、过度区阈值等。此外,还有大律法、区域生长法、分水岭法等,但是不足之处在于,传统目标分割算法对于遮挡、光照、阴影等干扰的影响较大。在此种情况下,研究一种快速、准确、高效的自动检测方法是十分有必要的。

发明内容

[0004] 针对现有技术存在的缺陷,本发明的目的在于提供一种隧道管片渗漏水面积检测的方法,从而实现在不同的干扰环境下对管片渗漏水的面积精确的检测,并通过曲面投影转换得到更精确的渗漏水面积。
[0005] 为了达到以上目的,本发明采用以下技术方案:
[0006] 一种基于深度学习与视场投影模型的渗漏水区域检测与识别方法,其特点在于,具体包括如下步骤:
[0007] 步骤1)采集待测区域的视频数据和点数据;
[0008] 步骤2)通过渗漏水图像识别神经网络对步骤1)采集的视频数据进行检测,得到渗漏水区域图片;具体检测步骤如下:
[0009] 步骤2.1)采集历史渗漏水区域的视频数据和点云数据;
[0010] 步骤2.2)对视频数据中的图片数据进行数据增强,得到增强图像;
[0011] 步骤2.3)对增强图像中的渗漏水区域进行标注,作为标签,具体如下:
[0012] 步骤2.3.1)对增强图像进行自适应阈值法分割,得到二值图像,其中,黑色像素点为渗漏水区域,白色像素点为背景区域;
[0013] 步骤2.3.2)对二值图像修正后,对像素点进行标签;
[0014] 步骤2.3.3)将二值图像的黑色像素点转化为洋红色像素点,白色像素点转化为红色像素点,其中,洋红色像素点为训练的渗漏水区域,红色像素点为背景边界修正;
[0015] 步骤2.3.4)对于二值图像中仍存在的黑色像素点进行形态学处理,得到可供训练的样本集,通过迭代,得到可供训练的样本集。
[0016] 步骤2.4)构建包括初始化权重、学习率、批尺寸和迭代次数参数的隧道渗漏水图像识别神经网络框架,并将增强图像和标签输入隧道渗漏水图像识别神经网络,训练隧道渗漏水图像识别神经网络框架,得到深度学习后的隧道渗漏水图像识别神经网络;具体是:
[0017] 步骤2.4.1)通过对增强图像的多次卷积、池化运算获得图像抽象的高维特征信息;
[0018] 步骤2.4.2)通过总体误差函数度量网络输出的预测图与对应标签图之间的误差的对比,完成一次迭代中的正向推理运算;
[0019] 步骤2.4.3)采用随机梯度下降法对总体误差函数进行最小化,并通过反向传播算法将误差的梯度进行反向传递,实现权值的更新,完成一次迭代中的反向学习运算:
[0020] 步骤2.4.4)反复步骤2.4.3)-2.4.4)直至损失值达到既定值,使用验证集图像对网络进行交叉验证,当得到的交叉验证误差小时,则网络训练完成,否则调节学习率和学习衰减率参数重新进行交叉验证;
[0021] 步骤2.5)将采集的视频数据输入到所述的深度学习后的隧道渗漏水图像识别神经网络,对图像中的渗漏水区域进行预测,属于渗漏水的像素被预测为前景像素,不属于渗漏水的像素被预测为背景像素,从而实现渗漏水病害的图像识别。
[0022] 步骤3)对步骤1)采集的点云数据进行识别,得到曲面形状;
[0023] 步骤4)根据步骤3)得到的曲面形状对步骤2)得到的漏水区域图片进行相应曲面形状投影,并计算投影后的渗漏水区域实际面积,具体:
[0024] 1)当识别到的曲面是柱面时,因为实际采集的图片是柱面投影到平面的,采用的柱面投影模型可以将平面还原为柱面。相机与所测目标的距离是通过激光测距的,而距离可以进行实时采集。假定照相机的运动都发生在X—Z平面,而且图像中心点就是光轴与图像平面的交点,现在要得到投影中心O点观察到的原始图像,即图像J在柱面空间K上的柱面投影图像J’。设柱面半径为r,投影为α,图像J宽度为W,图像高度为H。容易得到柱面图像的宽度W’为r*α,高度仍为H。图像的像素坐标均以图像平面中的最左上角像素为坐标原点。
[0025] 对图像J上的任意一点P(x,y),在柱面图像J’上的对应点为P’(x’,y’),对点P沿X一Z平面和Y—Z的横截面分别投影,可得柱面投影变换公式:
[0026]
[0027]
[0028]
[0029] r为拍摄焦距,α为每张图像所占的弧度角。圆柱投影就是将一张二维的图像投影到三维的圆柱体上,不过在显示图像的时候依然是以二维的形式给出。其中,x,y为原图的坐标,x',y'为变换后图像的坐标,W和H为原图的宽和高,这里α为相机水平视角,我们通过设置这个参数来实现不同的投影效果,α取值为(0,π)之间。通过柱面投影公式,可以将e中检测到的渗漏水病害区域图片每一个像素点投影到圆柱平面上去。
[0030] 视场转换可以将图片尺寸转化为实际尺寸,图像中目标物体区域内像素个数测量值P与实际物体的面积大小S的比值和在该距离下相机整个视场范围内像素的个数Q与整个视场面积的比值是相等的,如式所示:
[0031]
[0032]
[0033] 其中h是到物体表面的距离,P是图像中目标物体区域内像素个数测量值,S是物体实际面积大小,Q是相机整个视场范围内像素的个数;α和β分别是相机的水平视场和垂直视场,γ是视场面积转化为圆形隧道的投影面积修正系数。由式所示在α、β、Q、P已知的情况下即可以求出目标物体区域的面积。这样对获得的渗漏水图像面积乘以一个柱面投影系数γ即可求出渗漏水病害实际面积。
[0034] 2)当识别到的曲面是平面时,此时不需要进行投影转换。直接通过视场转换可以将图片尺寸转化为实际尺寸,图像中目标物体区域内像素个数测量值P与实际物体的面积大小S的比值和在该距离下相机整个视场范围内像素的个数Q与整个视场面积的比值是相等的,如式所示:
[0035]
[0036] 其中h是到物体表面的距离,P是图像中目标物体区域内像素个数测量值,S是物体实际面积大小,Q是相机整个视场范围内像素的个数;α和β分别是相机的水平视场和垂直视场,由式所示在α、β、Q、P已知的情况下即可以求出目标物体区域的面积,即渗漏水病害实际面积。
[0037] 3)当识别到的曲面是椭圆柱面时,采用椭圆柱面投影模型可以将平面还原为椭圆柱面。相机与所测目标的距离是通过激光测距的,而距离可以进行实时采集。假定照相机的运动都发生在X—Z平面,而且图像中心点就是光轴与图像平面的交点,现在要得到投影中心O点观察到的原始图像,即图像J在椭圆柱面空间K上的投影图像J’。设椭圆柱面半长轴为b,半短轴为c,b和c可以通过点云数据拟合测得。投影角为α,图像J宽度为W,图像高度为H。容易得到椭圆柱面图像的宽度W’为 高度仍为H。图像的像素坐标
以图像平面中的最左上角像素为坐标原点。
[0038] 对图像J上的任意一点P(x,y),在椭圆柱面图像J’上的对应点为P’(x’,y’),对点P沿X一Z平面和Y—Z的横截面分别投影,可得椭圆柱面投影变换公式:
[0039]
[0040]
[0041]
[0042] α为每张图像所占的弧度角。椭圆柱面投影就是将一张二维的图像投影到三维的椭圆柱体上,不过在显示图像的时候依然是以二维的形式给出。其中,x,y为原图的坐标,x',y'为变换后图像的坐标,W和H为原图的宽和高,这里α为相机水平视角,我们通过设置这个参数来实现不同的投影效果,α取值为(0,π)之间。通过椭圆柱面投影公式,可以将e中检测到的渗漏水病害区域图片每一个像素点投影到椭圆柱面上去。
[0043] 视场转换可以将图片尺寸转化为实际尺寸,图像中目标物体区域内像素个数测量值P与实际物体的面积大小S的比值和在该距离下相机整个视场范围内像素的个数Q与整个视场面积的比值是相等的,如式所示:
[0044]
[0045]
[0046] 其中h是到物体表面的距离,P是图像中目标物体区域内像素个数测量值,S是物体实际面积大小,Q是相机整个视场范围内像素的个数;α和β分别是相机的水平视场和垂直视场,γ是视场面积转化为椭圆柱面形隧道的投影面积修正系数。由式所示在α、β、Q、P已知的情况下即可以求出目标物体区域的面积。这样对获得的渗漏水图像面积乘以一个椭圆柱面投影系数γ即可求出渗漏水病害实际面积。
[0047] 与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点:
[0048] 本发明对于地隧道渗漏水面积测量无需人工参与,提高工作效率,且能够对曲面形状进行识别,然后对检测到的渗漏水区域进行相应的投影转换,得到更精确的渗漏水面积。附图说明
[0049] 图1是本发明基于深度学习与视场投影模型的渗漏水面积检测与识别方法的总流程图
[0050] 图2是训练图片所做的标签图。
[0051] 图3是神经网络结构和视场投影转换以及柱面投影示意图。
[0052] 图4是通过神经网络框架检测出来的渗漏水图片。
[0053] 图5是渗漏水图片的一个柱面投影图。
[0054] 图6是训练迭代过程中的精确度变化过程。

具体实施方式

[0055] 下面结合附图和具体实施例对本发明的技术方案作进一步具体说明,[0056] 如图1所示,一种基于深度学习与视场投影模型的隧道渗漏水面积识别方法,具体包括如下步骤:
[0057] a.使用无人车进行隧道壁面视频和点云数据采集,其中防抖摄像机进行视频采集,三维激光扫描仪进行点云数据采集;
[0058] b.对采集视频中的训练图片进行数据增强;
[0059] c.对步骤b中进行数据增强后的图片制作标签,标注真实渗漏水区域,作为算法的参考基准。如图2所示;
[0060] d.通过设置初始化权重、学习率、批尺寸和迭代次数这些基本参数构建了一个适用于隧道渗漏水病害图像识别的深度学习网络框架。将步骤b中数据增强后的图像和步骤c中得到的标签图输入神经网络,训练神经网络框架;神经网络结构示意图如图3所示;
[0061] e.根据步骤d中得到的训练好的神经网络框架对步骤a中的采集到的图像进行检测,检测到图像上的渗漏水区域;如图4所示,对各种干扰下的渗漏水图像检测,与传统目标分割方法做了一个对比;
[0062] f.根据步骤a中采集到的点云数据采用基于随机抽样一致算法(RANSAC)的方法对曲面形状进行识别,判别出是圆柱曲面,还是椭圆柱曲面或者平面。本实例识别出来的为圆柱曲面。
[0063] g.对于步骤e中检测后的渗漏水病害区域图片,根据步骤f识别出来的曲面,进行相应曲面投影,并通过计算像素点的视场转换原理计算投影后的渗漏水病害区域真实面积。步骤f中识别出来的为圆柱曲面,故进行柱面投影,柱面投影如图5所示;
[0064] 所述步骤c中的对数据增强后的图片制作标签,具体如下:
[0065] 对原图片进行自适应阈值法分割,得到二值图像,其中黑色的为渗漏水区域,白色的为背景。然后再加修正后标签,接着将二值图像的黑色像素点转化为洋红色,白色像素点转化为红色,其中洋红色区域为训练的渗漏水区域,红色为背景边界修正。对于图像仍存在黑色像素点进行形态学处理,进一步得到可供训练的样本集,通过程序的迭代,可以得到大量可供训练的样本集。如图2中的第一排图像为原图,第二排图像为二值化图像,第三排为修正后的图像,第四排为第三排图像经过形态学处理,去除仍存在的黑色像素点后的图像。
[0066] 所述步骤d中的训练神经网络,具体如下:
[0067] 通过对原图像的多次卷积、池化运算获得图像抽象的高维特征信息,将抽象的特征图还原到原图像尺寸,这样得到每个像素的预测。然后通过总体误差函数度量网络输出的预测图与对应标签图之间的误差的对比,完成一次迭代中的正向推理运算。随后采用随机梯度下降方法对总体误差函数进行最小化,并通过反向传播算法将误差的梯度进行反向传递,实现权值的更新,完成一次迭代中的反向学习运算。反复进行正向推理和反向学习运算,验证损失值是否达到既定值。如果达到既定值,则使用验证集图像对网络进行交叉验证,当得到的交叉验证误差小时,则网络训练完成。否则调参重新进行交叉验证。如图6所示,经过11900次的迭代运算,误差值趋于收敛,得到神经网络的一组最优权值集。这组最优权值集经保存后,即为训练得到的模型。在训练和训练中获得了最好的验证数据集。可以看出,精确度从开始的0.67~0.92,到最后稳定的0.98~0.99,训练过程中每20此迭代为一batch,验证一次精确度。
[0068] 所述步骤e中的对采集到的隧道图像进行检测,具体如下:
[0069] 将采集到的图像输入到神经网络框架后,调用训练好的模型中的权重集便可对图像中的每个像素进行预测,此时只进行正向推理,不进行反向学习。属于渗漏水的像素被预测为前景像素,不属于渗漏水的像素(如管片拼缝、遮挡、管线、阴影等干扰物)被预测为背景像素,从而实现渗漏水病害的图像识别。
[0070] 所述步骤g中的对渗漏水病害区域图片进行相应的曲面投影,并通过计算像素点的视场转换原理计算曲面投影后的渗漏水病害区域真实面积,具体如下:
[0071] 因为识别出来的曲面形状为圆柱面,采用柱面投影模型将平面还原为柱面。相机与所测目标的距离是通过激光测距的,而距离可以进行实时采集。假定照相机的运动都发生在X—Z平面,而且图像中心点就是光轴与图像平面的交点,现在要得到投影中心O点观察到的原始图像,即图像J在柱面空间K上的柱面投影图像J’。设柱面半径为r,投影角为α,图像J宽度为W,图像高度为H。容易得到柱面图像的宽度W’为r*α,高度仍为H。图像的像素坐标均以图像平面中的最左上角像素为坐标原点。
[0072] 对图像J上的任意一点P(x,y),在柱面图像J’上的对应点为P’(x’,y’),对点P沿X一Z平面和Y—Z的横截面分别投影,可得柱面投影变换公式:
[0073]
[0074]
[0075]
[0076] r为拍摄焦距,α为每张图像所占的弧度角。圆柱投影就是将一张二维的图像投影到三维的圆柱体上,不过在显示图像的时候依然是以二维的形式给出。其中,x,y为原图的坐标,x',y'为变换后图像的坐标,W和H为原图的宽和高,这里α为相机水平视角,我们通过设置这个参数来实现不同的投影效果,α取值为(0,π)之间。通过柱面投影公式,可以将e中检测到的渗漏水病害区域图片每一个像素点投影到圆柱平面上去。检测出来的渗漏水病害图片得到的柱面投影图如图5所示。
[0077] 视场转换可以将图片尺寸转化为实际尺寸,图像中目标物体区域内像素个数测量值P与实际物体的面积大小S的比值和在该距离下相机整个视场范围内像素的个数Q与整个视场面积的比值是相等的,如式所示:
[0078]
[0079]
[0080] 其中h是到物体表面的距离,P是图像中目标物体区域内像素个数测量值,S是物体实际面积大小,Q是相机整个视场范围内像素的个数;α和β分别是相机的水平视场和垂直视场,γ是视场面积转化为圆形隧道的投影面积修正系数,可以通过几何关系求出。由式所示在α、β、Q、P已知的情况下即可以求出目标物体区域的面积。这样对获得的渗漏水图像面积乘以一个柱面投影系数γ即可求出渗漏水病害实际面积。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈