首页 / 专利库 / 办公及商业设备 / 书写工具 / 超过传统分辨率极限的光刻方法

超过传统分辨率极限的光刻方法

阅读:916发布:2021-11-17

专利汇可以提供超过传统分辨率极限的光刻方法专利检索,专利查询,专利分析的服务。并且用于制作光耦合结构,尤其是弹性光耦合结构的 光刻 方法。这些光耦合结构包括凸起部分和连接部分。凸起的单元被设计成与待曝光的抗蚀剂共形 接触 的形式,以将被引导到凸起单元内的光由此直接耦合到抗蚀剂中。凸起单元的横向形状和尺寸限定为与抗蚀剂中待曝光的小细节的横向尺寸和形状1∶1。,下面是超过传统分辨率极限的光刻方法专利的具体信息内容。

1.一种利用曝光光对抗蚀剂层曝光作为掩模用的光耦合结构, 包括
凸起部分,它把曝光光引向其端部,在该端部曝光光被直接耦 合到抗蚀剂上,这些端部具有抗蚀剂中待曝光结构的横向形状, 和
连接部分,它连接这些凸起部分,并阻挡曝光光到达正在曝光 的抗蚀剂上除这些被曝光的凸起部分之外的区域,
该光耦合结构具有起伏的折射率,以便通过内反射将曝光光引 向凸起部分。
2.如权利要求1的光耦合结构,其中至少凸起部分之一的横向 形状具有在曝光光半波长(λ/2)与五分之一波长(λ/5)之间的横向 尺寸。
3.如权利要求1的光耦合结构,其中至少凸起部分之一的横向 形状具有200nm与73nm之间的尺寸。
4.如权利要求1的光耦合结构,包括一弹性体。
5.如权利要求1的光耦合结构,其中的弹性体是聚合物
6.如权利要求1的光耦合结构,其中的凸起部分是折射率匹配 的,以将光充分地耦合到抗蚀剂中。
7.如权利要求6的光耦合结构,其中折射率匹配是通过降低凸 起部分与抗蚀剂之间的折射率阶跃而实现的。
8.如权利要求6的光耦合结构,其中折射率匹配是通过在凸起 部分与抗蚀剂之间设置一折射率匹配材料薄层,以降低凸起部分与 抗蚀剂之间的折射率阶跃而实现的。
9.如权利要求6的光耦合结构,其中折射率匹配是通过在凸起 部分与抗蚀剂之间设置一粘性的油或聚合物薄层,以降低凸起部分 与抗蚀剂之间的折射率阶跃而实现的
10.如权利要求1的光耦合结构,其中凸起部分被设计成确保优 化地透射到抗蚀剂内的结构。
11.如权利要求1的光耦合结构,被设计成用于将曝光光耦合到 正色调的抗蚀剂内的结构。
12.如权利要求1的光耦合结构,被设计成用于将曝光光耦合到 负色调的抗蚀剂内的结构。
13.如权利要求1的光耦合结构,包括对准抗蚀剂层的对准标 识。
14.如权利要求1的光耦合结构,其中凸起部分的表面能量是低 的,以使其与抗蚀剂的接触是可反转的,并且后面不残留抗蚀剂上 的材料,反之亦然。
15.如权利要求5的光耦合结构,其中该聚合物是通过添加含有 交联键的低分子量烷制成的硅烷。
16.如权利要求4的光耦合结构,其中的弹性体是弹性体。
17.如权利要求1的光耦合结构,其中该连接部分包括提高曝光 光遮挡作用的机构。
18.如权利要求17的光耦合结构,其中连接部分的某些界面覆 盖有提高曝光光反射的层。
19.如权利要求17的光耦合结构,其中一薄金属层形成在连接 部分的某些界面上,以提高曝光光的反射。
20.如权利要求17的光耦合结构,其中该连接部分包括布喇格 光栅,以提高曝光光的反射。
21.如权利要求17的光耦合结构,其中该连接部分还可用作借 助于内反射将曝光光引导到凸起部分中的光波导
22.如权利要求1的光耦合结构,其中该凸起部分的侧壁被增加 内反射的层所覆盖
23.一种制备对于抗蚀剂层曝光用作掩模的光耦合结构的方 法,该光耦合结构包括:凸起部分,它具有类似于抗蚀剂中待曝光 结构横向形状的凸起端横向形状;和连接部分,它连接该凸起部分, 并阻挡曝光的光到达正在曝光的抗蚀剂上除这些被曝光的凸起端之 外的区域;该光耦合结构具有起伏的折射率,以便通过内反射将曝 光光引向光耦合部分的凸起端,该方法包括以下步骤:
在带有凸起端横向形状的负性浮雕的主体上浇注聚合物;
固化主体上的聚合物以形成固态的,有凸起部分图案的弹性光 耦合结构;
从主体上取下此固态的弹性光耦合结构。
24.如权利要求23的方法,其中该聚合物是通过添加含有交联 键的低分子量硅烷制成的硅氧烷。
25.如权利要求23的方法,其中该聚合物是碳弹性体。
26.如权利要求23的方法,其中
     在从主体上取下光耦合结构以后在其上形成一材料层;
     该材料层被形成图案以使连接部分的某些界面被覆盖,以 提高曝光光的反射。
27.如权利要求26的方法,其中该材料层是金属层。
28.如权利要求26的方法,其中该材料层通过其与另一基板接 触使这里的材料粘附而有选择地与光耦合结构相分离。
29.如权利要求26的方法,其中另一基板为软聚合物。
30.如权利要求29的方法,其中另一基板通过形成离子键或共 价键而具有促使该层粘附的表面化学性质。
31.如权利要求23的方法,其中固化步骤是在烘箱中经过几个 小时完成。
32.一种在基板上形成子波长结构的方法,包括以下步骤:
      在基板上形成抗蚀剂层;
      在抗蚀剂上确定光耦合结构的位置,该光耦合结构包括 具有类似于待形成的子波长结构横向形状的凸起端横向形状的凸起 部分;和连接部分,用于连接凸起部分并防止曝光光到达正在曝光 的抗蚀剂上除这些被曝光的凸起端之外的区域;该光耦合结构具有 起伏的折射率,以便通过内反射将曝光光引向光耦合部分的凸起 端,光耦合结构的位置应确保凸起部分和抗蚀剂之间的共形接触;
      相对于基板对准光耦合结构;
      将曝光光耦合到光耦合结构中,以将曝光光引导到凸起 部分中并进而耦合到抗蚀剂上;
      取下该光耦合结构;
      显影抗蚀剂,以形成抗蚀剂图案;
      通过蚀刻工艺过程将抗蚀剂图案转移到基板上;
      除去抗蚀剂图案。
33.如权利要求32的方法,其中抗蚀剂是负或正色调的抗蚀 剂。
34.如权利要求32的方法,其中光耦合结构仅仅是通过重和 表面张力定位
35.如权利要求32的方法,其中蚀刻工艺过程是一种干蚀刻工 艺过程。
36.如权利要求35的方法,其中干蚀刻工艺过程被优化,以确 保抗蚀剂的图案精确地转移到基板上。
37.一种制备用于形成光耦合结构的主体的方法,该光耦合结构 包括具有类似于待形成的子波长结构横向形状的凸起端横向形状的 凸起部分;和连接部分,用于连接凸起部分并防止曝光光到达正在 曝光的抗蚀剂上除这些被曝光的凸起端之外的区域;该光耦合结构 具有起伏的折射率,以便通过内反射将曝光光引向光耦合部分的凸 起端,该方法包括如下步骤:
      用薄膜覆盖基板;
      在薄膜上形成抗蚀剂;
      用电子束掩模-书写工具对抗蚀剂曝光,由此限定出待形 成光耦合结构凸起部分的负浮雕;
      显影抗蚀剂,以显示出负浮雕;
      通过蚀刻工艺过程将负浮雕转移到放在下面基板上的薄 膜中;
      除去显现凸起部分负浮雕的抗蚀剂。
38.如权利要求37的方法,其中低的表面自由能量涂层被施加 到凸起部分的负浮雕上。
39.如权利要求37的方法,其中该基板是硅基板。
40.如权利要求37的方法,其中的薄膜是石英薄膜。
41.如权利要求37的方法,其中用聚合物作抗蚀剂。
42.如权利要求37的方法,其中大约100KeV的电子用于电子 束光刻
43.如权利要求37的方法,其中该蚀刻工艺过程是活性离子蚀 刻工艺过程。
44.如权利要求37的方法,其中该主体在氧等离子体中被灰 化,以除去残留的有机物。

说明书全文

技术领域

发明涉及一种新的光刻方法,它可以超过传统的由曝光光波 长所致的分辨率极限。

发明背景

传统光刻方法的分辨率主要受到用于转移掩模图案到抗蚀剂上 用的光的波长的限制。曝光辐射的波长是瑞利公式W=k1λ/NA给出 的图案分辨率W的一个主要因素,其中λ是曝光光的波长,NA是光 刻工具的数值孔径,而k1是具体光刻处理的常数。换句话说,分辨 率W正比于曝光光波长λ。现今,削边生产(cutting edge production) 获得了248nm光照射下得到的250nm宽度。目前所用的基于光的方 法是试图得到低于200nm的尺寸特征结构时的瓶颈。按照目前工艺 现状,制作当前DRAM的光刻系统是相当昂贵的。当人们的注意 移到更小的特征尺寸时,其它方法越来越诱人,但是所需的花费巨 大。因此,保持与许多现有方法兼容性的技术是很有价值的。
集成电路和平板显示器制造技术的发展方向,要求在小规模光 刻方面进一步提高。在这些和其它领域中,日益要求一种可以生产 大面积(用于大约45cm对线显示器)纳米级结构的成本效益好的 光刻工艺。半导体工业的发展道路要求前沿的制造业在2001年达到 180nm,且2011年达到70nm。
一种公知光刻形式是所谓硬接触光刻,其中掩模移动与要制作 图案的基板直接接触。非常精细的图案中有交替透明和不透明区的 掩模,其特征结构按与源图面积1∶1的关系被印制在光致抗蚀剂上。 从原理上讲,硬接触光刻可以制造出低于照明波长的尺寸结构。但 是将掩模放置在基板上的接触,由于有混淆掩模表面上的材料的可 能性,故牺牲了方法的完备性,而且对掩模的损害大大限制了(与 投影光刻相比)可用的印数。尤其是,成本困扰着特征规模的缩小, 制作掩模的昂贵价格随着其细部特征密度的加大而急剧提高。而 且,接触掩模通常比光投影光刻的掩模贵得多,因为要获得相同的 分辨率,前者的临界尺寸必须比可利用通过投影系统缩小系数的后 者要小。在硬接触光刻中,当尘埃和其它物理的障碍物离开掩模表 面到达基板上而污染图案时,这些基板上的尘埃和障碍物是灾难性 的。由于该掩模不能保证其周围的环境,出现这种缺陷的面积比不 可见颗粒的大得多;这个问题妨碍了该细节规模的缩小,即使200nm 的颗粒也可能是有害的。此外,抗蚀剂可能粘住掩模。因此,硬接 触光刻在小规模集成电路的制造中没有发挥出重要作用。
已知有许多种方法可以改进传统的光刻系统,其中该系统采用 了滤光片、投影镜头或适当改变的掩模。这些方法随着细节规模的 减小而越来越复杂和越来越贵。其中一个例子是所谓光学投影光刻 法。基于投影的光刻法无疑是最成功的,并广泛用于制造低至 ~200nm的细节。这里,当光透过象接触光刻那样的掩模时,即产生 远场强度变化图案。光通过空气传播并由透镜聚焦,以在涂覆于基 板的抗蚀剂上形成所需图案的图象,通常从掩模的尺寸缩小5-10 倍。但是,投影光刻大大限制了细节的尺寸,且大于光波长λ。此外, 其随着规模的缩小到甚至低于200nm,该方法的实现越来越困难, 其中需要很复杂的镜头系统和材料需要,来实现现行的和建议的方 案。突出的问题是在整个区域上必须有均匀的照明。目前,在最好 的248nm曝光工具中的最大电流场尺寸仅仅是~20×20mm。原则上 通过酸盐基质的复杂镜头形成均匀曝光时由于材料和工程方面有 困难,有用的曝光区域会继续随着照明波长而显著地缩小。
因此,在努力得到更小的细节尺寸时,这些方法最大的缺点通 常是越来越复杂和昂贵。而且,在聚焦光束所用镜头的最大分辨率、 焦距深度和可实现的象场之间存在着折中取舍问题。
用控制曝光光相位而非振幅的掩模(称为相位掩模,相移掩模 或PSM),可提高标准光刻系统的分辨率,降低其特征尺寸。基于 相移方法的两个例子是D.M.Tennant等人在[Microelectronic Engineering],vol.27,1995,pp.427-434的“E光束写入和干蚀刻法制 造集成光路用的相位光栅掩模:商业应用问题”,和J.A.Rogers等 人在[Appl.phys.Lett.],No.70,vol.20,19 may,1997,pp.2658-2660的 “在光学近场进行亚-100nm光刻时弹性相位掩模的使用”中所描述 的。
Tennant等人提出采用硬接触掩模,而Rogers等人倾向于用于 形成高密度子波长特征17的弹性掩模10(图1)。在这些方法中, 通过光致抗蚀剂11与掩模10之间的接触,掩模上的图案使照明光 在近场产生干涉。光在各处透过完全透明但带有按规定好的方式变 化的表面浮雕图案的掩模10。通过有这种构造掩模10的光,根据其 出射的位置而分别经历了或长或短的光路。通过有结构掩模10的有 效光路长度的这种变化,对传播光相位(而且只有相位)差有贡献。 这些相位差导致抗蚀剂11表面上曝光辐射强度中的子波长节点。如 果适当地设计和制造这些掩模10,则在掩模/抗蚀剂界面15处有密 度相对最小的节点。
Roger等人表示,用有弹性掩模的相位法使他们在光致抗蚀剂层 11中制造出子波长细节18,同时避免了图1所示的与脆的接触掩模 (Tennant等人的)相关的问题。然后这些细节18可以借助于基板 16的干刻或湿的化学溶解转移到基板16上,如现有技术中公知的那 样。形成在基板中的细节17具有大致与形成在光致抗蚀剂11中的 细节18相同的横向尺寸。前述基于透过掩模10光相移的光刻方法, 所存在的问题是:在产生小细节17(子波长)的同时,这些细节17 被基板16上的几何尺寸(线)或低密度限制住了。而且,抗蚀剂中 结构18的形状是受限制的。在Roger等人的论文中,作者表示,光 强度中的相移在抗蚀剂11中提供了结构18,该结构是由相位掩模 10中布局导出的,即相位掩模10中表面浮雕14图案的每个侧壁给 出了比抗蚀剂11表面15处要小的光强。这些节点的宽度窄而固定, 以致这些细节18和17的横向尺寸仅在很有限的范围内变化。
用这种工艺在单一步骤中显然不可能制作出圆点、方或任意 形状的普通填充结构。而且,为了在各处都有相移,相位掩模10中 表面浮雕14的高度必须与曝光光13的波长很好的匹配。相移方法 的这种要求意味着相位掩模10的结构受到限制,随着其尺寸的缩 小,各向异性逐步增大,这是在弹性材料中形成这类细节的主要问 题。这种方法的另一个问题是由于相位掩模10的每个“腿”14在它 的边缘产生一对低强度的节点,抗蚀剂中总是有成对的曝过光的结 构。
当然上述掩模制造方法的问题以及处理过程对缺陷和损伤的灵 敏度依然存在。可以用各种工艺方便地从有机聚合物形成掩模,或 许从母板复制掩模最值得注意。许多聚合物掩模可以浇注在单个母 板上而后者没有明显的损坏,因为该方法在基板上不施加或很少施 加应力。掩模的复制克服了一些与他们形成高密度小结构使用接触 光刻的成本有关的问题:复制品可以更便宜地制造,而使其能在废 弃之前一次性使用。但是,不是所有这些用途的结构都能采用最适 宜的一些聚合物材料,如Rogers等人所用的弹性聚(二甲基硅烷)。 Delamarche等人的论文“Stability of Molded Polydimethylsiloxane microstructures”(Advanced Materials 1997,9,p.741)显示,普通弹性 体中的许多细节不是很好,而且趋向于分辨率不高而且各向异性 大,且其细节规模减小。
提出的其他有关方法和方案可以使光刻系统的分辨率减小到更 小特征尺寸。例如H.Fukuda等人的文章“Can synthetic aperture techniques be applied to optical lithography?”〔公开在J.Vac.Sci. Technol.B,Microelectron.Nanometer Struct.(USA),Vol.14,No.6, Nov.Dec.1996,p.4162-4166〕给出的。该文章从理论上讨论了光学 孔径合成应用于光刻的可行性。它描述了包括在传统投影系统中插 入三个相位光栅的技术。然而该方法在近轴区产生具有双空间带宽 成象的同时,应该严格限制的光栅所引起的象差却显现了出来。图 象同时说明,对于非常精细的图案类型,可达到的理论分辨率低至 0.1μm。
如Ch.Xiaolan等人在“Multiple exposure interferometric lithography-a novel approach to nanometer structures”(Conference proceedings-lasers and Electro-Optics Society Annual Meeting 1996, p.390-391)中所描述的,用昂贵的光学系统和现有的激光光源以及光 致抗蚀剂,可以使干涉光刻技术推广到大大地超过目前工业化的线 路图平。
也考虑了更多新奇的用于亚200nm光刻的方案。现在,X-射线、 远紫外和电子射束都是制造领域中的活跃研究方向。这些技术的难 点是:掩模制造,实用化光束成形技术,对于新型的对光束强度敏 感而有效的抗蚀剂材料的要求,形成和稳定光束的实际问题已经成 本和复杂程度的局限。本发明的目的是提供一种新的光刻方案,, 它可以使光刻系统的用途推广到低至350nm的细节尺寸,尤其是用 现有光源可达到λ/2至λ/5范围内的细节尺寸。
发明概要
上述目的通过在配套的光耦合部分和光阻挡部分的基础上,提 供平行的光刻系统(称之为光耦合结构)来实现。光耦合部分用于 将曝光光导向待曝光的抗蚀剂,且其结构被设计成与抗蚀剂共形接 触的形式,以使抗蚀剂的折射率通过其表面上的预定部位的光耦合 部分有选择地进行匹配。通过与折射率遮挡结构相邻的光耦合部分 选择的此折射率匹配,可以有选择地准确地将光引导并耦合到抗蚀 剂的限定区域内。突起单元的横向形状和尺寸限定为:与抗蚀剂中 待曝光的小细节的尺寸与形状为1∶1。
这里将教导如何形成和使用光耦合结构,该光耦合结构把光引 导到基板的可以以新的形式进行具有随意形状和高密度的子波长细 节并行制备用的接触光刻的表面上。我们依赖于这些通过与有半透 明掩模的基板直接接触而形成的光耦合器(本文称为光耦合结构), 它们起着把光引向图案形成表面上的作用。我们采用不需使用参考 波的方法(在下文中描述),于是便没有通常对基于相移光(相移 掩模法)的光刻的干涉效应。
本发明方法的重要优点是不需要成象光学系统。用单曝光即可 获得大的面积,这是因为本发明的方法本身是并行处理的,其全部 细节是在抗蚀剂中同时曝光,具有高的产量。本发明的方案可用于 大区域的图象,而且很适于显示器的制作和半导体芯片批量生产, 如DRAM等等,也可用于形成高密度小结构。本发明还很适于形成 微机械结构。
弹性的光耦合结构可以很容易地从母板复制出来,且每个复制 品可以用很多次。
本发明的优点是保持了与现有的抗蚀剂和处理工艺的兼容。
本发明还有一个优点是可以继续利用大量设计处理抗蚀剂的经 验,因为这些抗蚀剂被继续沿用了。
本发明的另一个优点是可以用多个波长而不必调整光耦合结 构,因为没有镜头系统。
本发明的再一个优点是曝光时间比传统掩模的情况要短,因为 没有镜头和其它装置的遮挡、吸收和散射掉光。
本发明的优点还在于所用的光刻方案简单。
附图说明
下文将参考如下附图详细说明本发明:
图1是表示用J.A.Roger等人的相移方法制造纳米级结构的示意 图(现有技术)。
图2是表示用本发明方法制造纳米级结构的示意图。
图3是表示位于抗蚀剂上的本发明的光耦合结构示意性截面 图。
图4A是根据本发明制作纳米级光耦合结构的示意图。
图4B是根据本发明的光耦合结构的示意性顶视图。
图5A-E是根据本发明的不同光耦合结构的示意性截面图。
图5F是本发明另一个光耦合结构的示意性截面图。
图6A是本发明母板的典型顶视图。
图6B是本发明光耦合结构(复制品)的典型顶视图。
图6C是根据本发明被曝光的抗蚀剂的典型顶视图。
图6D是根据本发明被曝光的抗蚀剂的45°角视图。
图7是根据本发明被曝光的抗蚀剂的典型顶视图。
详细说明
在本文中,术语光耦合结构或光耦合器用于描述掩模状的物 体,它可以放在发射曝光光的光源与待形成图案结构(如覆盖有抗 蚀剂层的基板)之间。
本发明的方案利用了光耦合结构边沿(交界面)的相互作用。 光耦合结构的折射率应该与抗蚀剂的折射率相匹配。对于许多现有 的材料而言,折射率在1.4与1.5之间。除了光耦合结构的折射率要 适当之外,还应该有图案,以便于曝光光进入光耦合结构进而穿过 该耦合器传播,最好经内反射引导而离开光耦合器边界限定的界 面。即,光耦合结构作为波导来用。足够的光被留下,以在待形成 图象的抗蚀剂与光耦合结构之间的界面处提供光强度对比。两种之 间的一致性确保最大限度的耦合,并由其界面处折射率的很好匹配 而得到最大限度的对比度,因而抑制了无用的散射光。
请注意,本文中我们指的是光耦合器/空气界面上的反射。当用 在非空气环境(插入气体,液体等等)中时,可以用有适当折射率 的其它材料,以确保能以内反射的方式正确地引导光。
现在结合图2和3描述本发明的第一实施例。在图2中,示意 性地表示用本发明方法制造纳米级结构27。在传统方法之后,该图 如实鲜明地表示出两种方法的基本差异。图3表示抗蚀剂11上的光 耦合结构20的示意性截面。该光耦合结构20具有使曝光光13透过 而耦合到其内部的上表面22。而且,光耦合结构20具有与空气相交 界的连接部分29(也称为光遮挡部分),和与抗蚀剂11直接接触的 光耦合部分24(也称为凸起部分,腿,或印模)。曝光光13传播通 过光耦合结构20,并在抬高部分29的空气界面发生内反射,如图3 中箭头所示。
根据光耦合结构的这种设计,连接部分可以遮挡住光13,并将 其引导到腿部24。这些腿24直接形成耦合器/抗蚀剂界面25,在该 界面曝光光13被耦合到抗蚀剂11中。这些界面25正下方抗蚀剂11 内部的区域被曝光光13曝光,如图所示。如果抗蚀剂11是正抗蚀 剂(即曝过光区域的抗蚀剂是可溶的),只有区域28未曝光而在抗 蚀剂显影时保持原状,如图2所示。曝光并随后的显影工序之后便 显现出小的凹槽30。
请注意,术语“凸起部分”和“连接部分”是用于强调本发明 光耦合结构是从母板复制而来的。总是有某些部分连接着凸起部 分。这些连接部分机械地连接着凸起部分,并用作光阻挡装置。当 作为母板的复制品两者被形成在一起时,连接部分可由与凸起部分 相同的材料构成。连接部分的遮挡功能可以通过添加附加装置来提 高,因为以后还要对其定位。而且凸起部分的光导和耦合特性可以 通过适当的测量而提高,如将要说明的那样。
腿24的横向形状和尺寸限定了抗蚀剂11中被曝光部分的横向 形状与尺寸,因为在理想的光耦合结构中,光仅仅通过这些腿耦合 到抗蚀剂中。光耦合结构20中腿24的宽度W1例如可以直接限定被 曝光抗蚀剂区域和随后形成的槽30的宽度Wr。
重要的是,耦合到光耦合器20中的曝光光13要适于形成抗蚀 剂11图案。曝光光可以是偏振的、单色、多色(宽带)光或非相干 光,其波长至少在800至200nm之间。宽带光可以由水灯产生。 氩离子激光器,YAG激光器,KrF激光器,以及其它许多种光源均 可使用。光源可以是远场无焦光源。光源发出的光可以通过任何界 面耦合到光耦合结构中,例如图3中最上面的界面22。类似地,光 可以通过光波导和光纤从顶部或侧边、或LED或固态激光器的输出 端耦合到光耦合结构中。光源的波长可由针对具体用途进行优化。 如果认为合适,光源可以是脉冲的。此外,光可以在光耦合结构上 进行扫描,或在用带有附加掩模的投影系统作光源时将图案投影到 该结构上。
本发明的方案利用了光耦合结构界面处的相互作用。与空气的 界面要设计成借助于向着光耦合部分(凸起单元)的内反射而引导 光,这些凸起与待曝光的抗蚀剂共形接触。在凸起单元的端部与抗 蚀剂之间的界面处,光要正面耦合到抗蚀剂内部,即凸起单元的设 计要使光耦合结构与抗蚀剂之间有充分的这种耦合。实际上,现有 的抗蚀剂中,与光耦合部分接触的抗蚀剂内外区域之间的两个且甚 至更少因素的光强度调制具有足够的差别,以在其曝光之后的抗蚀 剂显影中产生有用的结构。
耦合的效率取决于光耦合结构和抗蚀剂的折射率,以及波长(如 果采用多色光,为波长区)等等。优化耦合效率有不同的方式。主 要要求是在比波长小很多的规模情况下光耦合部分24与抗蚀剂11 之间应没有折射率不连续问题。这种情况通过两者之间的共形而迅 速实现,即两表面之间的紧密匹配。理想地,光耦合结构和抗蚀剂 的折射率尽可能地一样大,因为这将引起光刻所用照明有效波长的 减小。实现这种共形存在着几种可能。首先,如果基板和掩模都是 脆而硬的材料,可以将两者夹在一起加压,如在通常的硬接触光刻 情况下。第二,抗蚀剂11可以通过控制其组分和处理而使其适用, 使其与光耦合结构支柱24的表面吻合,确保共形接触。第三,可以 将一折射率匹配材料薄层加在支柱上,象粘性的油或聚合物,在两 者都是脆硬材料的情况下用于支柱24与抗蚀剂11之间的光学耦 合。在此折射率匹配材料应理解为柔顺,而且必须放在支柱上以保 持光耦合结构中相邻结构之间的整个折射率比。第四,光耦合结构 中的遮挡部分20和光耦合部分24可以用诸如弹性材料制成,它可 使其与抗蚀剂之间柔顺接触。部分20和24可以另外沉积在基板上 (图2中未示出),即至少部分地透明且比较硬,以便于光耦合结 构的整体定位。
与传统的光刻系统一样,本发明方法的分辨率并不严格地与光 源的波长成比例。由于本发明的耦合结构代替传统掩模的事实,可 以得到λ/2至λ/5之间的分辨率。如果采用i线光源(有λ=365nm), 可以产生低达73nm(=λ/5)的尺寸细节。应注意λ/5的限制不是物 理极限。从理论的角度看,用本发明的方法甚至可以得到更小的细 节,这取决于提供的设备。
传统的市售光致抗蚀剂可用于本发明中。一般地说,适用的是 甲酚基质的光致抗蚀剂,例如可以是丙烯酸酯或苯乙烯和其混合物 基质的抗蚀剂。正或负色调抗蚀剂都可以用。还可以用放大抗蚀剂, 以提高抗蚀剂曝光和显影后的细节比(宽度/深度)。也可以用光导 引的抗蚀剂,如SU-8负色调抗蚀剂,它本身在曝光时显示出不同的 光导引效应。双层、三层和顶表面成象抗蚀剂的方案都适用,且很 适用于本发明的光耦合结构。有关抗蚀剂的详细资料由书籍和其它 出版物给出,如“IBM的Journal of Research and Development” Vol.41,No.1/2,Jan/Mar 1997中的“Optical Lithography”。
曝光时间取决于许多公知的参数,如光源波长、光耦合结构的 吸收率、抗蚀剂的敏感度、掩模的耦合效率(或是本文中的光耦合 结构)、抗蚀剂的厚度、对比度等等。
在下文中,将详细地描述光耦合结构20和制作这种光耦合结构 的方法。本发明人发现聚合物尤其适合。形成复制品的理想聚合物 的有几个共同的特性。首先,该聚合物必须有与目标抗蚀剂相似的 折射率。第二,该聚合物必须有能够限定其表面的稳定结构,该结 构的纵横比(其厚度与一个面积之比)至少为0.1。第三,该材料应 该坚韧并有些柔顺(如前所述),以使其适合放置在抗蚀剂的表面 上,尤其是在除了重力和表面能之外没有其它外力的情况下彼此相 互接触。第四,聚合物的表面能最好低一些,以使其与抗蚀剂的接 触是可反转的,且不离开抗蚀剂上其后面的材料或趋于损坏。第五, 为了使光信息通过并透出光耦合结构,该材料应该对照明目标波长 是半透明的。第六,该材料在其处理过程中某种程度上应该是流动 的,或通过融化它或通过化学反应直接模制成聚合物。第七,适于 前文要求的强度改变和应力应该不足以引起母板的破损或复制不完 全。第八,该材料应该可以共形接触,如上所述。通过将含交联剂 的低分子量硅烷硅烷添加到有接枝的和直链的烯类端基的硅氧烷 主链混合物中而制成的硅氧烷,尤其可以证明上述优点。在其预聚 合物形式时,产生这种混合物的硅氧烷材料的表面能可以为在~ 25mN/m,强度~10Mpa,且粘度为~1000cSt,并可以形成低至100nm 细节尺度的有用的光耦合结构形状,同时保持必要的一致性。全 弹性体基质的其它材料也很适用,这些材料与石英或含填充物的硅 氧烷的组合物同样适用。有机材料与无机材料组合成复合结构可以 证明尤其是有利的:如上所述,可选择满足具体光耦合结构单元的 所需物理特性的给定材料类型。
一般地说,因本发明方法是真正的1∶1方法,所以形成光耦合结 构所用的材料应该是这样的:可以实现低至在抗蚀剂中和下方半导 体中待形成的细节尺寸的特征分辨率。换句话说,如果90nm宽的 柱状物或凸棱27要形成在半导体基板16上(见图2),那么光耦合 结构20的各个凸起单元24的宽度必须也要90nm宽(用正抗蚀剂 11提供)。
根据本发明,光耦合结构可以通过在具有所需光耦合结构表面 负片的母板41上固化一种聚合物而制成。这将产生具有凸起单元 42,43,44的图案的弹性固体物40。母板41例如可以用电子束分 辨(definition)来形成。制作精密高分辨率母板41所花费的大量的 时间和金钱,通过制作多个复制品40而分摊开了,而每个复制品都 可以用在半导体电路的制造中。每个复制品可以适用几次,而且使 用弹性体制作的还不易损坏。
光耦合结构40要设计成这样:由于整个过程依赖于光从光耦合 结构到抗蚀剂中的充分耦合,所以凸起的腿42,43和44必须与抗 蚀剂共形接触。
光耦合结构40的凸起单元几乎可以是任何形状和尺寸的,如图 4B中所示的。在本实例中,光耦合结构40具有三个凸起的腿42, 43,44。第一个腿42的横截面是空心的矩形或方形。腿43是一个 凸脊,而腿44为圆形横截面。这三个实例表示了本发明的方法是如 何地灵活。
优选实施例的描述 
下文将描述优选的实施例
母板的形成:用等离子沉积的100nm厚石英层作为各向同性薄 膜覆盖硅圆片。按15%固体的比例溶解于氯苯中的聚甲基丙烯酸甲 酯聚合物(980K)被旋涂在圆片上,以在基板上形成100nm厚的聚 合物薄膜。通过用e-束掩模书写工具将该聚合物在100KeV电子流 中进行图案曝光,有选择地改变该抗蚀剂。曝光后抗蚀剂在丙中 溶解的差异,在基板上显现出有低至100nm尺寸的周期阵列的特征 图案。根据活性离子蚀刻(RIE)化学,用氟将该图案转移到基板上 的石英层内,这种方法对硅具有极好的选择性。当到达下面的硅层 时停止RIE过程,进而确保石英层与硅界面处形成的正方形层底的 细节均匀显影。这种情况有助于保证光耦合结构的光耦合部分中形 成结构24的极好分辨率。在氧等离子体中烧毁基板以除去残留的有 机物,且然后用等离子体辅助方法在整个基板上沉积10nm的氟化 聚合物,以便在其上涂上低表面自由能的涂层(15mN/m)。该涂层 必须可以在后续的处理步骤中与固化形成复制品脱开。
通过制作母板的复制品制备光耦合结构:用5ppm的铂催化剂, 制备6.5g乙烯基甲基硅氧烷-二甲基硅氧烷共聚物(1000cSt,VDT731 Gelest,Karlsruhe,Germany)与2g甲基氢化硅氧烷-二甲基硅氧烷共 聚物(30cSt,HMS 301,Gelest)和450mg熔融石英颗粒(20nm大小, Gelest)的混合物。将该混合物直接倾注在前述的母板上,并在60° 的烘箱中固化24小时。通过用手从母板上剥离下复制品而使其脱 模。该复制品具有23mN/m的表面能,10Mpa的强度和大约为玻璃 3%的硬度。根据用扫描电子显微镜(SEM)检验的上述过程,母板 的所有细节全部复制到其复制品上,其中母板上的凹陷现在是复制 品表面上的凸起结构。5nm厚的金层被蒸到复制品有结构一侧的 顶面上。然后将处理过的复制品与其表面有一层1nm且再新蒸镀 一层30nm金层的硅圆片相接触;然后通过将该表面上的金暴露在 1,10癸烷硫酸醇(Aldrich)蒸气中5分钟而对其进行处理。在复制 品表面与硅圆片处理后的金表面之间接触和脱离之后,通过其界面 处夹着的硫醇结尾的有机分子的两层之间粘附接触,有选择地除去 了复制品凸起表面顶部的金,而留在硅圆片处理后的金表面上。
光耦合结构的使用:600nm厚的Shipley6612(novalac)的光致 抗蚀剂旋涂在硅圆片表面上,该圆片事前用起抗蚀剂粘附促进剂作 用的六甲基二硅化合物处理过。在90°下对基板进行20分钟的烘烤。 用手将前述光耦合结构放置到覆盖有光致抗蚀剂的基板顶上,在两 者之间的重力和表面力保持其密切的共形接触。用从KrF激光器(每 20纳秒200次,和300毫焦)发出的脉冲对抗蚀剂进行曝光。然 后根据制造者的要求在Shipley 400k中显影。
图6A-6D给出了进行完上述程序之后,母板、光耦合结构、以 及在1×1cm区域(母板尺寸)上形成于光致抗蚀剂层中的结构的说 明示意图。
由于光耦合结构通常是半透明的,所以是可以核对和校正对准 的情况。在曝光之前,光耦合结构的位置可以在抗蚀剂上反复挪动 直至达到最终的满意位置。这种对准显然不可能用于现有的光学投 影工艺中,它必须确实地依赖于基板位置的全部信息来实现精确重 合。
本发明方法的另一个优点是,基板的布局不必是精确的平面。 光耦合结构允许一定的表面粗糙度。光耦合结构可以如图5A-5E所 示的那样加大。所示的所有光耦合结构都是共同的特点,即具有特 定的机构以便提高在光耦合结构/空气界面上的内反射。在图5A中 表示了最简单的方法。该方法已经在图2和3中描述过。界面上的 折射率突变使入射光发生返回的反射。
在图5B中表示了这样的光耦合结构:抬高部分具有倾斜的界面 51,以提高内反射。图5C表示了另一种方法。其中,在抬高部分上 沉积有反射层52,如金属(金)层,以提高内反射,如前述实例所 示的。图5D中表示了一种光栅53,其作用类似。
还可以通过在结构的某些界面上涂覆光阻挡层54来改进至此所 描述的光耦合结构,如图5E所示。本实例中的光阻挡层54覆盖在 面向抗蚀剂的光阻挡部分的界面55,和凸起的光耦合部分的侧壁 56。
在图5F中,所示的光耦合结构有一个小缝隙或间隙使光束分裂 开。
在下文中,我们将描述本发明的光耦合结构如何可以用于生产 过程。
首先,将抗蚀剂形成在待构图的基板上。从现有技术可知,不 同方法可以使这种抗蚀剂成型。然后,本发明限定的光耦合结构被 放在抗蚀剂上。如果光耦合结构是那种柔性的,则可以辊压在抗蚀 剂上。用光学方法检查该结构相对于基板的位置。用精确定位装置 通过光耦合结构与基板之间的横向相对移动校正位置。然后,再次 进行位置检查,并重复整个过程直至达到充分地对准。
现在,可以将光耦合结构按压在抗蚀剂上,以提高其耦合效率。 该步骤也可以根据情况省略。然后打开连续或脉冲光源。光源发出 的并耦合到光耦合结构中的光束,被自动地引导到凸起端,在该处 光被直接耦合到抗蚀剂内。这些凸起端正下方的抗蚀剂被曝光。曝 光过程完成之后(如果曝光充分的话),关闭光源,并除去光耦合 结构。当这些结构有不同的尺寸时,用几个光波长有助于抑制这些 结构比标定波长小得多情况下光波离开结构时可能发生的干涉效 应。如现有技术中所公知的那样,抗反射涂层和其它这类措施可以 加到基板或抗蚀剂上,以抑制返回的光反射。
然后,用适合的显影步骤对抗蚀剂显影。在正色调抗蚀剂的情 况下,抗蚀剂曝光过的部分在显影步骤中被除去。如果用负色调的 抗蚀剂,则未曝光的部分被除去。
加硬衬垫的步骤可以在下一步之前进行。抗蚀剂的遗留部分现 在用作掩模保护基板的某些区域不被刻蚀掉。现在可以用湿或干的 蚀刻步骤将抗蚀剂遗留部分的横向形状和尺寸转移到基板上。然 后,除去抗蚀剂(灰化掉)。
我们注意到,基于相移的已知干涉法的简单定标不导致本文描 述和要求保护的光刻类型。由Rogers等人提出的相移掩模周期降 低,会导致不适于提供有较小值密度分布的并要将细节限定于抗蚀 剂中的掩模和方法,如从Rogers等人的图4中可以看出。如果依据 Roger的设计准则,得到的刚好与本文所公开和描述的相反。根据本 发明,用零级模(m=0)进行限定好的抗蚀剂曝光。由于Roger等 人没有另外获得干涉效应和相移,所以他们沿用更高级的光模式。
还应该注意到,在本发明人工作之前,不可能制作出本发明的 适合用作光耦合结构的掩模。如已经看到的,在比较图1和2时, 掩模20的凸起部分24必须有带形成在基板16上的细节27的横向 形状和尺寸。即凸起部分24必须比掩模10的凸起部分14小得多。
相关专利内容
标题 发布/更新时间 阅读量
书写工具 2020-05-11 647
书写工具 2020-05-11 992
书写工具 2020-05-11 847
书写工具 2020-05-12 589
书写工具 2020-05-12 773
书写工具 2020-05-12 173
书写工具 2020-05-13 305
书写工具 2020-05-14 148
书写工具 2020-05-13 181
书写工具 2020-05-14 22
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈