首页 / 专利库 / 核能 / 核反应堆 / 堆芯 / 燃料组件 / 核燃料棒 / 在用于核电应用的锆合金上沉积包括含金属和含铬的层的防护性涂层

在用于核电应用的锆合金上沉积包括含金属和含铬的层的防护性涂层

阅读:581发布:2020-05-08

专利汇可以提供在用于核电应用的锆合金上沉积包括含金属和含铬的层的防护性涂层专利检索,专利查询,专利分析的服务。并且本 发明 涉及涂覆用于核 水 反应堆中的 燃料 元件的锆 合金 包壳的组合物和方法。该涂层包括第一层或层和第二层或层。所述第一层包括单质金属,且第二层是耐 氧 化层,其包括单质铬。第一层用作锆合金基材和第二层之间的 中间层 。该中间层可有效地提高第二层对锆合金基材的粘附性。多层涂层形成防护层,它提供锆合金包壳改进的承受其在 核反应堆 中所暴露的正常和事故条件的能 力 。,下面是在用于核电应用的锆合金上沉积包括含金属和含铬的层的防护性涂层专利的具体信息内容。

1.一种核反应堆中的多层涂覆的燃料棒包壳(122),包括:
合金细长管壁(121),其具有形成于其中的空腔(127)、内表面(123),和外表面(125),构造成在空腔(127)中容纳核燃料;
包含单质金属的第一涂覆组合物,其沉积在细长管壁(121)的外表面(125)上以形成中间金属性层(133);和
沉积在中间金属性层(133)上的含铬的第二涂覆组合物以形成铬层(151),其中中间金属性层(133)将铬层(151)与锆合金细长管壁(121)的外表面(125)分离以避免Zr-Cr反应。
2.根据权利要求1所述的燃料棒包壳(122),其中所述单质金属是贵金属。
3.根据权利要求1所述的燃料棒包壳(122),其中所述单质金属选自钯、镍、及其组合。
4.根据权利要求1所述的燃料棒包壳(122),其中所述单质金属具有0.1至7.0靶恩的中子吸收横截面。
5.根据权利要求1所述的燃料棒包壳(122),其中所述单质金属具有高于1200℃的熔点。
6.制备核水反应堆中的多层涂覆的燃料棒包壳(122)的方法,包括:
获得锆合金细长管壁(121),其具有形成于其中的空腔(127)、内表面(123),和外表面(125),构造成在空腔(127)中容纳核燃料;
在细长管壁(121)的外表面(125)上沉积第一涂覆组合物以形成中间金属性层(133),该第一涂覆组合物包含单质金属;和
在中间金属性层(133)上沉积第二涂覆组合物以形成铬层(151),该第二涂覆组合物包含单质铬,
其中中间金属性层(133)将铬层(151)与锆合金细长管壁(121)的外表面(125)分离以避免Zr-Cr反应。
7.根据权利要求6所述的方法,其中使用电沉积各自沉积第一涂覆组合物和第二涂覆组合物。
8.根据权利要求7所述的方法,其中使用含水铬酸浴沉积第二涂覆组合物。
9.根据权利要求6所述的方法,其中采用选自喷涂化学气相沉积电子物理气相沉积、溅射、脉冲激光沉积、电电泳沉积、以及无电涂覆中的方法各自沉积所述第一涂覆组合物和第二涂覆组合物。
10.根据权利要求6所述的方法,其中沉积中间金属性层(133)和铬层(151)以形成具有
1至20微米的厚度的防护性涂层。
11.根据权利要求6所述的方法,其中采用选自等离子体喷涂、丝弧涂覆、和原子层沉积中的方法各自沉积所述第一涂覆组合物和第二涂覆组合物。

说明书全文

在用于核电应用的锆合金上沉积包括含金属和含铬的层的防

护性涂层

背景技术

技术领域

[0001] 本发明涉及一种制造用于核反应堆用的锆基燃料元件的组合物和方法,更具体地涉及锆合金包壳,其包括铬涂层和沉积在包壳和铬涂层之间的中间金属性层,以提高在核反应堆事故条件和正常运行期间的耐腐蚀性。
[0002] 相关技术说明
[0003] 在典型的核水反应堆例如加压水反应堆(PWR)、重水反应堆(例如CANDU)或沸水反应堆(BWR)中,反应堆堆芯包括大量的燃料组件,其每个都由多个细长的燃料元件或燃料棒的束或组件构成。燃料组件在尺寸和设计方面取决于堆芯和反应堆的所需尺寸而变化。
[0004] 燃料棒各含有核燃料裂变材料,例如二(UO2)、二氧化钚(PuO2)、二氧化钍(ThO2)、氮化铀(UN)以及化铀(U3Si2)及其混合物中的至少一种。燃料棒的至少一部分还可以包括中子吸收材料,例如或硼化合物、钆或钆化合物、铒或铒化合物等。中子吸收材料可以存在于核燃料芯的堆垛体形式的芯块之上或之中。也可以使用环形或颗粒形式的燃料。
[0005] 将燃料包埋在密封管中,通常称为燃料包壳。每个燃料棒具有充当容器以容纳裂变材料的包壳。燃料棒以阵列形式集合在一起,其组织起来从而在芯中提供足以支撑高的核裂变速率的中子通量,因而以热的形式释放大量的能量。包壳将燃料保持在一定位置,因此受控的裂变可以继续并产生热量。将冷却剂例如水送通过反应堆芯从而提取在反应堆芯中产生的热量,用于产生有用功如电。然后,包壳将热量从燃料转移到加压的水中,其围绕反应堆冷却剂系统的主回路循环。在主回路中的加热的水用于在蒸汽发生器煮沸水,然后蒸汽在涡轮机中膨胀,驱动发电机。或者,可以使循环通过反应堆的水煮沸以直接产生蒸汽,然后在涡轮机中膨胀。
[0006] 在典型的商业核反应堆中,在堆芯中的燃料组件各自具有顶部和底部的喷嘴。多个细长横向隔开的引导套管在喷嘴之间纵向延伸。将组成该燃料组件的多个细长的燃料元件或棒彼此并从引导套管横向隔开。沿着引导套管将多个横向支撑栅格轴向隔开,并连接到所述引导套管。将栅格用于精确地维持在反应堆堆芯中的燃料棒之间的间隔和支撑,对燃料棒提供侧向支撑,并诱发冷却剂混合。
[0007] 图1示出了示例性反应堆压力容器10和核堆芯14。核堆芯14包括多个平行的、竖直的、共同延伸的燃料组件22。出于本说明书的目的,可以将其他的容器内部结构分成下方内部结构24和上方内部26结构。在常规的设计中,下方内部的功能是支撑、对准并引导堆芯部件和仪器,以及在容器内引导流动。上方内部结构抑制或提供用于燃料组件22的辅助约束(在图1中为简单起见仅示出其中的两个),并支撑和引导仪器和部件如控制棒28。在图1中所示的示例性反应堆中,冷却剂通过一个或多个入口喷嘴30进入反应堆容器10,通过该容器和堆芯筒体32之间的环形体向下流动,在下部空腔34中转过180°,向上通过下支撑板37和下堆芯板36(燃料组件位于其上),并通过及围绕所述组件。在某些设计中,下支撑板37和下堆芯板36由单一的结构所取代,该下方堆芯支撑板37具有相同的高度。通过堆芯和周围区域38中的冷却剂流通常是大的,在每秒约20英尺的速度下为约每分钟400000加仑。所产生的压降和摩擦力趋于使燃料组件上升,该移动受到上方内部结构(包括圆形上堆芯板40)的限制。离开堆芯14的冷却剂沿着上方堆芯板40的下侧流动并且向上通过多个穿孔42。冷却剂然后向上并径向向外流向一个或多个出口喷嘴44。
[0008] 在图2中更详细地显示了图1所示的一个示例性的燃料组件22。每个燃料组件22包括径向延伸的锚爪或臂52和燃料棒66,其分组为阵列。通过栅格64将燃料棒66保持为彼此间隔开的关系,所述栅格沿着燃料组件长度间隔开。在其下端,底部喷嘴58将每个燃料组件22支撑在下方堆芯板36上。在其上端,每个燃料组件22包括顶部喷嘴62。仪表管68位于中心并在底部和顶部的喷嘴58和62之间延伸,并且被安装到所述喷嘴。每个燃料棒66包括多个核燃料芯块70,且在其相对端分别接近上方和下方端塞72和74。通过空腔弹簧76将芯块70保持在堆垛体中,所述弹簧布置在上方端塞72和芯块堆垛体的顶部之间。由裂变材料组成的燃料芯块70负责产生反应堆的无功功率(reactive power)。
[0009] 每个燃料棒66都包括围绕芯块的包壳,其充当阻挡体以防止裂变副产物进入冷却剂和进一步污染反应堆系统。燃料棒上的包壳可以由锆(Zr)基合金构成。包壳可以包括Zr和多达约百分之二重量的其它金属,例如铌(Nb)、(Sn)、(Fe)、铬(Cr)和它们的组合。
[0010] 现有技术中已知有与核燃料棒包壳相关的各种担忧,包括与事故场景相关的Zr合金管在高温下的快速腐蚀。在发生事故如冷却剂流失事故的情况下,在反应堆堆芯内的温度可以超过1200℃。在非常高的温度下,锆在蒸汽存在下迅速氧化,这导致燃料棒的劣化和产生大量的氢,其可导致化学爆炸。此外,燃料/包壳阻挡体的破损与爆炸的组合可以导致工厂和周围环境的广泛污染。
[0011] 向燃料元件的外表面施加的能够承受高温(例如约1200℃以上)的抗氧化涂层,可以对操作者和安全系统提供更长的时间段来将反应堆堆芯恢复到安全条件,因此至少减少并可能避免与在事故场景中与锆氧化和燃料棒劣化有关的潜在负面影响。
[0012] 本发明的一个目的是提供用于制造Zr合金核燃料包壳的组合物和方法,该包壳在Zr合金和施加于Zr合金核燃料元件的铬涂层之间具有中间金属性层。在锆合金基材上的铬涂层和中间金属性层通过赋予防护性氧化铬层而在暴露于蒸汽或水后提高耐腐蚀性。已知的常规沉积装置和技术用于施加粘附性中间金属性层和铬涂层。

发明内容

[0013] 在一个方面,本发明提供了一种涂覆的复合材料,其包括锆合金基材,沉积在基材上以形成第一涂覆层的第一涂覆组合物和沉积在第一涂覆层上以形成第二涂覆层的第二涂覆组合物。第一涂覆组合物包括单质金属,和第二涂覆组合物包括单质铬。
[0014] 基材可以是用于核水反应堆的燃料元件。在某些实施方案中,基材是燃料棒包壳。
[0015] 单质金属可以是贵金属或其它适当的金属。在某些实施方案中,单质金属选自钯、镍、及其组合。
[0016] 单质金属可具有比预定温度高的熔点。在某些实施方案中,该熔点高于1200℃。
[0017] 共晶组合物可形成界面,该界面选自第一涂覆层与基材之间的界面和第一涂覆层与第二涂覆层之间的界面。可以选择单质金属使得共晶组合物的熔点比预定的温度高。在某些实施方案中,熔点高于1200℃。
[0018] 单质金属可以具有低的中子吸收横截面。
[0019] 在另一个方面,本发明提供了涂覆用于核水反应堆的锆合金基材的方法。该方法包括:获得锆合金基材,在所述基材的外表面上沉积第一涂覆组合物以形成第一涂覆层和在第一涂覆层上沉积第二涂覆组合物以形成第二涂覆层。第一涂覆组合物包括单质金属,和第二涂覆组合物包括单质铬。
[0020] 可以使用电沉积来各自沉积第一涂覆组合物和第二涂覆组合物。在某些实施方案中,使用含水铬酸浴沉积第二涂覆组合物。
[0021] 可以各自使用选自喷涂等离子体喷涂、丝弧涂覆(wire arc coating)、化学气相沉积电子物理气相沉积、溅射、脉冲激光沉积、电电泳沉积、无电涂覆、以及原子层沉积中的方法来沉积第一涂覆组合物和第二涂覆组合物。
[0022] 例如,可以沉积第一涂覆层和第二涂覆层以形成具有约1至约20微米厚的防护性涂层。
[0023] 附图的简要说明
[0024] 当结合附图阅读时,从优选实施方案的以下描述可以得到本发明的进一步理解,其中:
[0025] 图1是根据现有技术的正视图,部分在核反应堆容器和内部部件的截面中;
[0026] 图2是根据现有技术的正视图,部分在如图1中所示的竖直缩短形式的燃料组件的截面中,为清楚起见而剖开了部分;
[0027] 图3是根据现有技术的横截面视图,部分在燃料棒的截面中;
[0028] 图4是根据本发明的某些实施方案具有沉积在外表面上的第一和第二涂层的燃料棒包壳基材的横截面图;和
[0029] 图5是根据本发明的某些实施方案具有沉积在外表面上的第一和第二涂层的燃料棒包壳的横截面图。

具体实施方式

[0030] 本发明一般涉及用于核水反应堆例如压水反应堆和沸水反应堆的燃料棒元件。燃料棒元件包括锆(Zr)合金基材,例如包壳。包壳可以由在现有技术中已知的多种常规材料组成与构成。如本文先前所述,已知从Zr合金构建用于核水反应堆的燃料棒包壳,该Zr合金含有主要量的Zr和次要量(例如最多约2重量%,基于组合物的总重量)的其它金属,例如但不限于铌(Nb)、锡(Sn)、铁(Fe)、铬(Cr)和它们的组合。
[0031] 图3示出了现有技术的设计,它示出了锆合金燃料棒2、弹簧压紧装置4、端塞6、和燃料芯块1的堆垛体。燃料棒包壳2通常是具有形成于其中的空腔和两个相对的开放端的细长管形状。一个端塞6,即位于最靠近压紧装置4的端塞,通常称为顶端塞。管壁的厚度可以变化。在某些实施方案中,管壁厚度为约100至约1000微米,或约200微米至400微米。该空腔具有包含在其中的燃料芯块1和通常的压紧装置4如弹簧以例如保持燃料芯块1的堆垛体结构。一个端塞6位于燃料棒包壳2的每个开放端处或在燃料棒包壳2的每个开放端中以提供密封,并防止在堆芯中循环的反应堆冷却剂进入燃料棒包壳2的空腔。燃料棒包壳2位于核水反应堆的堆芯中。
[0032] Zr合金基材至少部分涂覆有包括单质铬(Cr)的耐氧化涂覆材料或组合物,以提高基材在核反应堆事故的条件下的耐腐蚀性。当暴露于蒸汽或水时形成防护性氧化铬层。使用已知的常规沉积装置和技术施加含单质铬的涂层。在某些实施方案中,使用常规电沉积装置和技术施加含单质铬的涂层,其包括使用含水铬酸浴。这种技术的缺点是,铬酸可导致Zr合金基材的显著氧化。
[0033] 为了减少或排除氧化该锆合金基材,在沉积含单质铬的涂层之前,将中间金属性层沉积在锆合金基材上。通常,本发明包括在Zr合金基材(例如包壳)的外表面之上(例如直接之上)沉积中间金属性层的组合物或材料,以形成第一外涂层。使用可以与含单质铬的层的沉积相同或相似的已知常规沉积装置和技术沉积中间金属性层。中间金属性层可以提供一个或多个下列优点:(i)在含单质铬的涂层的沉积过程中防护锆合金基材免于氧化,(ⅱ)含单质铬的涂层对锆合金基材的提高的粘附性,和(iii)从Zr合金基材分离含单质铬的涂层以避免Zr-Cr反应。
[0034] 用于中间金属性层的组合物和材料可以包括选自本领域已知的那些中一种或多种单质金属。合适的单质金属包括但不限于贵金属及其组合。在某些实施方案中,用于中间金属性层中的单质金属包括镍、铜、钯和它们的组合。
[0035] 在某些实施方案中,选择单质金属,使得它具有的熔点比预定温度高。例如,在核反应堆事故中,冷却剂的温度可能达到或超过1200℃。因此,可优选选择具有熔点高于1200℃的单质金属。例如,钯因1550℃的高熔点而可以是用于本发明的某些实施方案的优选单质金属。
[0036] 在其他实施方案中,可在考虑中间金属性层和Zr合金或者中间金属性层和含单质铬的涂层之间的共晶组合物(或相对低熔点的其它中间组合物)的潜在形成的情况下选择单质金属。在某些实施方案中,共晶组合物可具有比预定的事故温度低或比中间金属性层中的单质金属的熔点低的熔点。共晶组合物的较低熔点可影响含单质铬的涂层对锆合金基材的附着性。因此,可选择单质金属,使得由其形成的共晶组合物具有的熔点高于预定的温度,如高于核反应堆事故中冷却剂的温度,例如高于1200℃。
[0037] 在某些实施方案中,可在考虑到其中子横截面的情况下选择单质金属。例如,可以选择具有低中子吸收的单质金属以最小化源自向包壳引入附加材料/层的中子吸收冲击,或者可以使用薄层。对于某些可用于中间金属性层的单质金属,约0.1靶恩至约7.0靶恩的一般中子横截面范围是固有的。
[0038] 在一个实施方案中,基于可形成的Zr-Pd共晶组合物的高熔点,可以选择钯(Pd)为用于本发明的单质金属。在使用钯作为单质金属时,优选施加中间金属性组合物的薄涂层以减少钯的中子横截面的影响。
[0039] 在考虑使用铜作为单质金属时,可以考虑,即使铜具有良好的例如低的中子横截面,可形成的Zr-Cu共晶组合物也具有比Zr-Pd共晶低的熔点。
[0040] 因此,用于本发明的合适或最佳的单质金属的选择可以考虑各种考虑事项。
[0041] 单质金属的量可以变化。在某些实施方案中,单质金属占总组合物重量的约1%至约99%。在某些实施方案中,优选在中间金属性层中使用最小量的单质金属。
[0042] 随后,将含单质铬的涂层的组合物或材料沉积在中间金属性层例如第一外涂层上,以在其上形成第二外涂层。所得的Zr合金基材或燃料元件具有多层防护性涂层。如本文所述,作为中间金属性层的第一层(tier)对于协助粘附含单质铬的涂层有效,和含单质铬的涂层对于在核反应堆事故中提供高温氧化抵抗性有效。
[0043] 可使用如前所述的装置和技术施加多层防护性涂层的每一层。在某些实施方案中,沉积过程产生薄的、致密的涂层,其在暴露于蒸汽或水时将形成氧化铬钝化层以防护下方的锆合金基材。该涂层的厚度和致密性可以变化。在某些实施方案中,防护性涂层的总厚度为约1至约20微米。此外,在某些实施方案中,用于形成中间金属性层的该组合物可包含钯作为单质金属。使用钯是有利的,因为它1550℃的熔点超过1200℃的事故场景温度。然而,钯层的厚度应尽可能薄,以最小化来自中间金属性层的中子横截面的影响。
[0044] 如前所述,燃料元件包括插入管的每一端的塞子以在其中包含内容物例如燃料芯块。塞子可以由与包壳相同或不同的材料/组合物构成。在某些实施方案中,其中采用根据电沉积工艺的含水浴施加本发明的多层防护性涂层,在涂覆包壳之前,可将两个端塞中的每者插入该包壳的相对的开放端。此外,可以预想的是,除了向锆合金包壳的外表面施加涂层,也可以将该涂层施加于每个端塞的表面,所述端塞与燃料元件的管状端部大致齐平以形成闭合端。在常规的燃料加载过程中,将一个端部塞子插入并连接到包壳的开放端例如以密封一端,然后将燃料芯块和堆垛压紧弹簧装载入包壳的空腔中,在装载之后,将另一端塞插入并连接到包壳的另一开放端。作为替代,可以将燃料芯块和堆垛压紧件装载到包壳中,随后可以将两个端塞插入并连接到包壳的开放端。
[0045] 在某些其它实施方案中,在空腔中装载燃料和压紧装置和将端塞插入该包壳的开放端之前或之后,可以进行多层防护层的沉积。
[0046] 使用两步法施加燃料棒包壳的外表面上的多层涂层。第一步骤包括在Zr合金基材的外表面上沉积第一涂覆组合物以在基材上形成第一外涂层,即中间金属性层。第二步骤包括在第一外涂层的表面上沉积第二涂覆组合物以形成第二外涂层,即含单质铬的涂层。
[0047] 图4示出了根据本发明的某些实施方案的燃料棒包壳122。包壳122包括具有内表面123,外表面125并形成空腔127的细长管壁121。将中间金属组合物沉积在包壳122的外表面125上以在外表面125上形成中间金属性层例如第一涂覆层133。将铬组合物沉积在中间金属性层133上以在中间金属性层133上形成铬涂层例如第二涂覆层,151。
[0048] 图5示出了根据本发明的某些实施方案的燃料棒包壳122。图5包括细长管壁121,内表面123,外表面125,空腔127,中间金属性层133和铬涂层151,如图4所示。此外,图5示出了燃料芯块120的堆垛体和定位在空腔127内的压紧装置124,以及第一端131a和第二端131b。第一端塞126a定位和固定在第一端131a中,和第二端塞126b定位和固定在第二端
131b中。如图5中所示,中间金属性层133和铬涂层151对于完全包围或包封包括端塞126a,b的包壳管122有效。
[0049] 通常,可使用各种已知的方法将本发明的第一和第二涂层施加于锆合金基材。例如,可以使用现有技术中已知的电沉积法施加第一涂层和第二涂层之一。当通过采用电沉积而施加这些涂层时,可将中间金属性层和含铬涂层中的一个或两个称为放电层(strike layer)。
[0050] 另外的已知沉积工艺包括采用热喷枪和对于每个涂层产生单一层所特定的参数。在某些实施方案中,可以使用热喷涂工艺例如超速氧燃料(HVOF)、超速空气燃料(HVAF)或它们的组合施加用于涂覆的组合物。这些过程导致涂覆组合物的颗粒粘附到基材表面,例如彼此粘附以形成涂层。在HVOF法中使用的温度通常为约3000K。另外,在HVOF法中,对于平均尺寸为约5微米至约35微米的金属颗粒,通常采用约450米/秒的平均颗粒速度。
[0051] 在HVOF热喷涂工艺中有一些使用不同的方法来实现高速喷涂的HVOF枪。一种方法基本上是高压水冷HVOF燃烧室和长的喷嘴。在该方法中,将燃料(油、乙炔、丙烯和氢)和氧送入该室中。燃烧产生热的高压火焰,将其向下推向喷嘴,从而增加它的速度。可以在高压下将粉末例如涂层的组合物轴向送入HVOF燃烧室中,或通过喷嘴侧(在此压力较低)送入。
[0052] 另一种HVOF方法使用高压燃烧喷嘴和空气帽的简单系统。在高压下供给燃料气体(例如丙烷、丙烯或氢)和氧,燃烧发生在喷嘴之外,但在空气帽内供有压缩空气。压缩空气收缩(pinch)和加速火焰和充当HVOF枪的冷却剂。在高压下从喷嘴的中心轴向送入粉末。热喷涂工艺典型地使颗粒在热火焰时的氧化最小化,但是该颗粒具有足以平化到锆合金基材的表面上的能量以形成致密的涂层。
[0053] 在另一个实施方案中,可以使用现有技术中已知的等离子体喷涂工艺施加该涂层。等离子体喷涂方法通常通过将熔融或热软化的材料喷涂到表面上以提供涂层来施加涂层。将粉末形式的涂覆组合物注入到非常高温的等离子体中,在那里它被迅速加热并加速到高的速度。例如,等离子体炬的火焰温度可以是约15,000K。热材料影响基材表面,并迅速冷却,形成涂层。正确进行的该等离子体喷涂工艺可以被称为“冷工艺”(相对于涂覆中的基材材料),因为在工艺过程中可以将基材温度保持为低的,避免对基材材料的损坏、冶金变化和畸变。
[0054] 在某些实施方案中,利用包含铜阳极和钨阴极(两者都是水冷)的等离子体喷枪。等离子体气体(氩、氮、氢、氦)围绕阴极流动和通过成形为收缩喷嘴的阳极。通过高电压放电引发等离子体,该高电压放电引起局部电离和导电路径,用于在阴极和阳极之间形成DC弧。在弧中的电加热可导致气体达到极端的温度、离解和电离,以形成等离子体。等离子体以游离或中性等离子体(不携带电流的等离子体)离开阳极喷嘴,这与等离子体转移弧涂覆方法(其中弧延伸到待涂表面)非常不同。当等离子体得到稳定并准备好用于喷涂时,电弧向下延伸到喷嘴,而不是短路到阳极喷嘴的最近边缘。弧的这种拉伸是由于热收缩效应。水冷阳极喷嘴表面周围的冷气体是不导电的,这限制了等离子体弧,提高它的温度和速度。最通常通过安装在阳极喷嘴出口附近的外部粉末端口将该涂覆组合物送入等离子体中。如此迅速地加热和加速该粉末,使得喷涂距离可以为约25毫米至约150毫米(约1-6英寸)。
[0055] 在另一个实施方案中,可通过丝弧涂覆工艺施加涂层。在丝弧涂覆方法中,以约20度的度将具有电势的两个丝放在一起。引导电流通过所述丝,且在丝的接触点处它们熔融待施加的涂覆材料。雾化气体在基材处以低速推动熔融颗粒。
[0056] 或者,可以使用现有技术中已知的涂覆技术施加该涂层,例如化学气相沉积(CVD)、电子束物理气相沉积、溅射、脉冲激光沉积、电镀电泳沉积、无电涂覆、原子层沉积或任何其它合适的方法。
[0057] 虽然已经详细描述本发明的具体实施方案,但本领域的技术人员可以理解,可在本公开的全部教导下开发对这些细节的各种修改和替代。因此,所公开的具体实施方案是意在说明,而不是限制本发明的范围,该范围将由所附权利要求的全部广度及其任何和所有等同物所给予。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈