首页 / 专利库 / 换热器 / 对流 / 空气对流 / 紧凑型重整反应器

紧凑型重整反应器

阅读:918发布:2024-02-22

专利汇可以提供紧凑型重整反应器专利检索,专利查询,专利分析的服务。并且用于将工艺 流体 转 化成 氢的重整反应器包括:重整部段、 锅炉 部段和燃烧部段,所述重整部段和所述锅炉部段均被包含在公共体积空间内,其中所述重整部段包含填充有重整催化剂的一根或多根催化剂管道,所述锅炉部段设有载运着来自所述燃烧部段的 烟道气 的一根或多 根管 道且所述燃烧部段设有至少一个 燃烧器 ,其中在所述一根或多根催化剂管道中对所述工艺流体进行重整所需的热交换介质是气体-液体混合物,所述气体-液体混合物在包括所述重整部段和所述锅炉部段的所述公共体积空间内部进行自循环且被封装在所述公共体积空间内部。,下面是紧凑型重整反应器专利的具体信息内容。

1.用于将工艺流体化成氢的重整反应器,所述重整反应器包括:
重整部段、锅炉部段和燃烧部段,所述重整部段和所述锅炉部段均被包含在公共体积空间内,其中所述重整部段包含填充有重整催化剂的一根或多根催化剂管道,所述锅炉部段设有载运着来自所述燃烧部段的烟道气的一根或多根管道且所述燃烧部段设有至少一个燃烧器,其中在所述一根或多根催化剂管道中对所述工艺流体进行重整所需的热交换介质是气体-液体混合物,所述气体-液体混合物在所述一根或多根催化剂管道外面并且不通过所述一根或多根催化剂管道内部进行自循环,其中所述热交换介质被封装在包括所述重整部段和所述锅炉部段的所述公共体积空间内部,其中进入所述反应器的所述工艺流体包括甲醇、二甲醚或者二甲醚和甲醇的混合物,并且其中所述气体-液体混合物是在55至
110barg的压下和270℃至320℃的温度下进行循环的饱和的蒸汽-体系。
2.根据权利要求1所述的反应器,其中载运着要被转化的工艺流体的至少一根工艺供给管道延伸进入所述反应器的所述公共体积空间内部。
3.根据权利要求2所述的反应器,其中载运着要被转化的所述工艺流体的所述至少一根工艺供给管道通过被布置在所述反应器的外壁中的导管进入所述反应器且其中所述工艺流体通过与来自所述反应器的所述重整部段的排出的经过转化的气体进行间接接触而受到预热。
4.根据权利要求2或3所述的反应器,其中所述至少一根工艺供给管道垂直地延伸进入过渡隔室内,载运着要被转化的工艺气体的至少一根工艺管道在所述反应器的所述公共体积空间内部从所述过渡隔室垂直地延伸,且其中载运着所述工艺气体的所述至少一根工艺管道被形成为盘管。
5.根据权利要求1-3中任一项所述的反应器,其中包含所述重整部段和锅炉部段的所述公共体积空间由绝缘的壳体大体上围绕,其中所述绝缘的壳体由载运着烟道气的第一环形区域和载运着燃烧空气的第二环形区域包绕。
6.根据权利要求1-3中任一项所述的反应器,其中所述燃烧部段设有单个催化燃烧器且其中所述催化燃烧器被设置为串联布置的金属丝网层,所述串联布置的金属丝网层上涂覆有陶瓷且浸渍有化催化剂,由此使得在燃烧过程中产生的热量通过对流机理且借助于产生的烟道气被传递至所述自循环的气体-液体混合物。
7.根据权利要求1-3中任一项所述的反应器,进一步包括布置在所述催化剂管道上方的催化剂的固定床,其中所述固定床覆盖了所述反应器的大体上整个水平剖面且其中所述固定床适于在要被转化的工艺气体进入所述催化剂管道内的通过之前接收所述工艺气体。
8.用于在根据前述权利要求中任一项所述的包含燃烧部段、锅炉部段和重整部段的反应器中由供给工艺流体生产氢的方法,所述方法包括以下步骤:
-使经过预热的工艺气体通过所述重整部段,
-通过使所述重整部段中的至少一根催化剂管道与气体-液体混合物进行间接热交换而对所述至少一根催化剂管道进行加热,所述气体-液体混合物在包含所述重整部段和所述锅炉部段的公共体积空间内部进行自循环且被封装在所述公共体积空间内部,-从所述重整部段回收经过重整的工艺气体并且通过对所述供给工艺流体进行预热而对所述经过重整的工艺气体进行可选地冷却,
-将燃料与燃烧空气一起引入所述燃烧部段中的至少一个燃烧器内,其中通过使所述燃烧空气与来自所述锅炉部段的烟道气进行间接热交换而对所述燃烧空气进行预热,-从所述燃烧器回收烟道气并且使所述烟道气通过锅炉部段,并且
-通过使所述气体-液体混合物与通过所述锅炉部段的所述烟道气进行间接热交换而对所述气体-液体混合物进行加热,所述气体-液体混合物在所述反应器中的包含所述重整部段和所述锅炉部段的公共体积空间内部进行自循环且被封装在所述公共体积空间内部,
其中所述气体-液体混合物在所述一根或多根催化剂管道外面并且不通过所述一根或多根催化剂管道内部进行自循环,其中进入所述反应器的所述工艺流体包括甲醇、二甲醚或者二甲醚和甲醇的混合物,并且其中所述气体-液体混合物是在55至110bar g的压力下和270℃至320℃的温度下进行循环的饱和的蒸汽-水体系。

说明书全文

紧凑型重整反应器

技术领域

[0001] 本发明涉及一种用于生产在工业应用如冶金工业、化学和制药工业以及燃料电池设备中使用的氢的整合且紧凑的重整反应器。特别是,本发明涉及一种用于将原料转化成氢的紧凑型重整反应器,其中所述反应器的经过重整的气体借助于通过变压吸附(PSA)单元、Pd-合金膜、-气体变换单元或借助于优先化(PROX)而进一步富集氢。更特别地,本发明涉及一种用于将甲醇转化成适用于燃料电池设备中的氢气的紧凑型重整反应器,特别地,其中所述反应器的经过重整的气体借助于通过变压吸附单元而进一步富集氢。本发明进一步涉及一种用于利用该反应器将烃原料重整成氢气的方法。

背景技术

[0002] 燃料电池设备通常需要作为燃料源的氢供应且因此重整反应器一般被整合在燃料电池设备中。重整反应器将用作能量载体的适当的烃原料如甲烷、液化石油气、汽油、柴油或甲醇转化成富氢气体,所述富氢气体随后可在进入燃料电池组件之前通过富氢单元。目前,紧凑型燃料电池动力设备可提供约20kW的功率和甚至更高例如达50kW的功率,由此促进了所述燃料电池动力设备的广泛应用。这样一种应用是将紧凑型燃料电池设备用于汽车工业中。
[0003] 对于普遍的应用而言,无论从燃料电池设备的度考虑,还是从在其它工业领域的小型设备中的应用角度考虑,甲醇依然均被视作是用于生产富氢气体的最佳烃原料。大3
体而言,在氢的需要量在50-500Nm/h范围内时,该范围通常是小型设备的需要量,甲醇是
3
特别适当的原料。对于氢的需要量高于500Nm/h的情况而言,烃原料如天然气通常更为适
3
宜。在低于50Nm/h的情况下,电解或瓶装氢一般更为适宜。
[0004] 用于对燃料气体进行重整的反应器在本领域中是已公知的,所述燃料气体特别地是甲醇且被用于燃料电池设备中。Düsterwald等在Chem.Eng.Technol.20(1997)617-623中披露了一种包括四根独立地处于平衡状态的反应器管道的甲醇蒸汽重整器。每根反应器管道包括同心布置的两根不锈管道,且催化剂填充在内管中,且其中甲醇-水的混合物进行吸热反应所需的热量是由在管道之间的间隙中流动的冷凝蒸汽提供的。通过美国专利No.4861347还已公知的是,对原料燃料如甲醇进行氧化以便获得放热反应,由此由该反应产生的热量被用于烃原料的吸热重整反应中,所述烃原料一般是甲醇和水的混合物。该热量借助于供来自燃烧部段的热烟道气通过的热管或者如JP-A-63248702所述借助于布置在反应器中的热管而从反应器的燃烧部段被传递至其重整部段。结果是,在燃烧系统中产生的热量可被均匀地分布到反应器的剩余部分上,由此使得实现了均匀的温度分布。
[0005] 通常情况下,重整反应器中的热传递系统并未足够迅速到在工艺条件发生变化之后例如在发生突然的负载变化之后或者在启动和关闭过程中实现所需运行温度的程度,特别是当在重整反应器中设置独立的热管时情况更是如此。一般情况下,需要多个或多或少顺次实施的步骤以便启动重整反应器,从而导致过程可能相当冗长且耗时。
[0006] 在燃料电池的特定领域中,具有增加的功率例如达20kW或甚至更高的功率如达50kW的燃料电池的出现导致需要在单个重整反应器中设置多根催化剂管道。这进一步使得在紧凑性、更好的温度分布和热效率方面对反应器设计提出了更多要求。特别是,当必须通过反应器中的单个燃烧器提供重整过程中所需的加热时,提供均匀的温度分布从而使反应器内部的所有催化剂管道被加热至相同的温度变得更难以实现。
[0007] 此外,催化剂管道内的催化剂通常可能并未均匀分布,从而使得催化剂可能例如在一些管道中的装填要优于在其它管道中的装填。这就可能使得在催化剂管道上形成所不希望的温度条件变化。

发明内容

[0008] 因此,本发明的一个目的在于提供一种在所有的催化剂管道上均具有改进的温度分布的重整反应器。
[0009] 本发明的另一目的在于提供一种重整反应器,所述重整反应器是紧凑型的且不含有用于使热交换介质从所述反应器的高温部段循环至所述反应器的重整部段的机械装置。
[0010] 本发明的又一目的在于提供一种重整反应器,所述重整反应器是紧凑型的且同时能够在工艺条件发生变化例如烃供给流或温度发生变化或者燃烧器条件发生变化的情况下或者在启动运行过程中迅速且简单地实现或保持其运行温度。
[0011] 本发明的另一目的在于提供一种重整反应器,所述重整反应器对于在所述催化剂管道上的分散的催化剂装填不那么敏感。
[0012] 本发明的另一目的在于提供一种重整反应器,所述重整反应器结构简单、廉价且与常规的重整反应器相比具有更低的热损失
[0013] 本发明的又一目的在于提供一种重整反应器,所述重整反应器是紧凑型的且适用于燃料电池设备中,特别地适用于能够产生达20kW的功率或甚至更高的功率如达50kW的燃料电池设备中。
[0014] 这些和其它目的是通过本发明的反应器和方法而实现的。
[0015] 在本发明的一个方面中,我们提供了一种用于将工艺流体转化成氢的重整反应器,所述重整反应器包括:重整部段、锅炉部段和燃烧部段,所述重整部段和所述锅炉部段均被包含在公共体积空间内,其中所述重整部段包含填充有重整催化剂的一根或多根催化剂管道,所述锅炉部段设有载运着来自所述燃烧部段的烟道气的一根或多根管道且所述燃烧部段设有至少一个燃烧器,其中在所述一根或多根催化剂管道中对所述工艺流体进行重整所需的热交换介质是气体-液体混合物,所述气体-液体混合物在包括所述重整部段和所述锅炉部段的所述公共体积空间内部进行自循环且被封装在所述公共体积空间内部。
[0016] 因此,在本发明中,在所述重整部段中的所述催化剂管道外部和在所述锅炉部段中的载运着烟道气的管道外部循环的气体-液体混合物提供了大的吸热器,所述大的吸热器使得能够积聚并供应热量以便进行所述重整反应,从而使得所述反应器内的所有金属部件特别是所述催化剂管道保持或迅速达到了相同的温度,且由于所述反应器对于工艺条件的暂时变化如燃烧器负荷的变化变得更不敏感,因此使得实现了所述反应器的耐久运行。
[0017] 就术语“自循环(self-circulates)”而言,该术语意味着:用作热交换介质的所述气体-液体混合物在不需要任何机械装置的情况下在所述反应器内部进行移动。气体流到表面或催化剂管壁上,在由当所述气体转变成液体时由于气体体积减少而形成的略微更低的压力所驱动的趋势下在所述表面或催化剂管壁处发生冷凝。液体随后在重力的驱动下流至所述锅炉部段。
[0018] 在本发明的所述反应器中,载运着要被转化的工艺流体的至少一根工艺供给管道可延伸进入所述反应器的所述公共体积空间内部,所述要被转化的工艺流体例如为甲醇和水的液体混合物。因此,所述至少一根工艺供给管道可延伸进入包含所述重整部段和所述锅炉部段的所述公共体积空间内部的任何位置处,例如,所述至少一根工艺供给管道可从位于所述反应器顶部处且位于所述重整部段上方的区域延伸进入该重整部段内或甚至进一步延伸进入被布置在下面的所述锅炉部段内。载运着所述要被转化的工艺流体的所述至少一根工艺供给管道通过位于所述反应器的外壁中的导管被引导至所述反应器且随后可从布置在所述外壁中的所述导管延伸进入所述反应器内。所述工艺供给导管优选在所述公共体积空间内部与所述反应器壁大体上共轴地从所述反应器的所述重整部段延伸至所述反应器的所述锅炉部段。这使得能够提供一种紧凑型反应器,原因在于所述至少一根工艺供给管道例如单根大体上直的管道或管道组被有利地整合在所述反应器内,由此使得随着所述管道外部的所述进行自循环的气体-液体混合物中的气体的冷凝而可以有利地实现所述工艺流体的预热或汽化。因此,有可能将所需的汽化阶段整合在所述反应器内部,因此避免了在所述反应器外部不适当地设置独立的汽化装置。
[0019] 对于术语“大体上共轴地进行延伸”而言,该术语意味着所述工艺供给管道的一部分,特别是与所述反应器的所述外壁中的所述导管协同作用的所述入口部分可沿与所述反应器的长度轴线垂直的方向延伸进入所述反应器的中心内,随后弯曲90°并因此垂直地延伸进入所述重整部段或下面的锅炉部段内。
[0020] 所述至少一根工艺供给管道可垂直地延伸进入过渡隔室(transition compartment)内,载运着要被转化的工艺气体的至少一根工艺管道在所述反应器的所述公共体积空间内部从所述过渡隔室垂直地向上延伸,且其中载运着所述工艺气体的所述至少一根工艺管道被形成为盘管。单根工艺管道优选从所述外壁中的所述导管向下延伸至所述过渡隔室,其中烃供给物例如液态烃供给物通过所述导管进入所述反应器。所述过渡隔室被布置作为箱体,所述箱体具有适于容纳载运着以大体上液体的形式存在的工艺流体的至少一根工艺管道的入口孔和适于容纳载运着以大体上气体的形式存在的工艺流体的至少一根工艺管道的出口孔。这些管道垂直地向上延伸且被形成为盘管或螺旋管。这样就确保实现了更好的热传递以便在重整之前对所述工艺气体进行预热且同时提供了紧凑的反应器设计,原因在于可在更低的高度中容纳与例如直的管道相同的热传递区域。此外,盘管或螺旋管的使用在两相流(气体-液体)上施加了离心效应,由此使得仍未汽化的任何液体能够产生回流且有利于工艺气体向上流动。
[0021] 所述至少一根工艺管道优选从所述反应器的所述锅炉部段中的过渡隔室延伸至所述重整部段,从而确保了所述工艺气体在所述重整部段中被加热至适当反应温度。
[0022] 在本发明中,还有可能使所述至少一根工艺供给管道延伸进入位于所述燃烧部段中的过渡隔室内,例如在恰位于所述锅炉部段下面的烟道气区域中。
[0023] 在本说明书中,术语“烃原料(hydrocarbon feedstock)”可与术语“工艺流体(process fluid)”或“供给工艺流体(feed processfluid)”互换地使用。一般情况下,进入所述反应器内的供给物例如甲醇和水的混合物以液体的形式存在,而所述供给物在进入所述重整部段内时以气体的形式存在。当进入所述反应器时,所述烃供给物还被称作工艺流体且在所述工艺管道中进行汽化之后,所得的流体还被称作工艺气体。本文所使用的术语“工艺供给管道(proces s feed tube)”指的是载运着所述工艺流体且进入所述过渡隔室的至少一根管道。从所述过渡隔室伸出并载运着被引导至所述重整部段的汽化气体的管道被简单地称作“工艺管道(process tube)”。
[0024] 在本发明的另一实施例中,载运着要被转化的所述工艺流体的所述至少一根工艺供给管道通过被布置在所述反应器的所述外壁中的导管进入所述反应器且所述工艺流体通过与来自所述反应器的所述重整部段的排出的经过转化的气体进行间接接触(即在热传递表面上)而受到预热,其中所述排出的经过转化的气体优选进入所述导管的环形区域中。一般情况下,下游的变压吸附单元需要相对较冷的富氢气体流且因此要使用位于所述反应器下游的冷却装置如空气冷却器。因此,该实施例使得来自所述反应器的所述经过重整的气体(富氢气体)能够由一般情况下的约280℃冷却至约150℃,由此减轻下游的所述空气冷却器中所需的效应且因此同时减小了其尺寸,所述约280℃的温度是对甲醇进行重整的典型温度。载运着与来自所述重整部段的所述排出的经过转化的气体进行接触的所述工艺流体的所述至少一根工艺管道的部分可有利地被形成盘管以便确保实现甚至更为紧凑的反应器设计,而不会产生太多明显的伸出部分。所述导管优选位于所述反应器的上部部分中,例如接近其顶部的位置处。在另一可选实施例中,出口管道载运着所述排出的经过转化的气体且与所述导管内部的所述工艺供给管道平行地进行延伸。
[0025] 在优选被布置在所述反应器的下部部分中且位于所述锅炉部段下面的所述燃烧部段中,适当的燃料如甲醇通过燃料入口被注入且与所述至少一个燃烧器中的经过预热的燃烧空气产生反应。甲醇的放热氧化反应产生了热烟道气且所述热烟道气随后到达所述锅炉部段。载运着所述烟道气的管道可从所述燃烧部段垂直地延伸进入所述锅炉部段内且其出口随后可从所述锅炉部段朝向所述反应器的环形部段伸出。
[0026] 所述锅炉部段被包含在隔室或公共体积空间内,其中气体-液体体系,优选饱和的气体-液体混合物,例如饱和的水-蒸汽混合物进行自循环。所述隔室中包含一根或多根管道,来自布置在下面的燃烧部段的热烟道气流动通过所述管道。所述热烟道气将热量供应给所述气体-液体混合物,由此使所述液体的一部分汽化且促进了所述液体的所述一部分在所述反应器内向上进行的循环。所述气体-液体混合物中的热量的一部分还被传输给载运着要被转化的所述气体或液体或气体-液体混合物例如甲醇-水的所述至少一根工艺管道。所述工艺管道延伸远离所述锅炉部段且向上延伸通过所述反应器的中间部分并进一步延伸到所述重整部段,在所述重整部段内部设置了一根或多根垂直的催化剂管道。如同所述锅炉部段,所述重整部段还被包含在同一隔室或公共体积空间内,但是优选被独立地布置在所述反应器的上部部分中。因此,所述重整部段和所述锅炉部段均被包含在公共体积空间内。术语催化剂管道意味着这些管道中填充有适用于对给定的烃原料如甲醇和水的混合物进行重整的固体催化剂颗粒。
[0027] 在进行重整之前,要被重整的所述工艺气体在所述重整器部段中的适当位置处,优选在位于所述一根或多根催化剂管道上方的位置处,被排出所述工艺管道。所述一根或多根催化剂管道一般被布置为多根沿周向且沿径向隔开的催化剂管道。所述催化剂管道的数量通常大于5或20,更通常地大于50且甚至高于100或200,这取决于所述反应器的氢容量。要被重整的所述工艺气体进入所述催化剂管道且向下流动通过所述催化剂颗粒以便随着所述工艺气体通过所述催化剂管道而被逐渐转化。进行重整反应所需的热量是由在所述催化剂管道外部进行自循环的所述气体-液体混合物提供的。随着所述气体-液体混合物将热量传输给所述催化剂管道,所述气体被冷凝且受到重力的作用而向下流至所述锅炉部段。用作热交换介质的所述气体-液体混合物因此在所述反应器内部且在被封装在包含所述重整部段和所述锅炉部段的所述公共体积空间内部的区域中以自循环方式移动。这使得所述气体-液体混合物能够连续地循环通过所述反应器内部的所述锅炉部段和所述重整部段。
[0028] 因此应该理解:所述气体-液体混合物在所述至少一根工艺供给管道外部、在载运着要被转化的所述工艺气体的所述至少一根工艺管道外部、在载运着烟道气的管道外部、并且在密封的隔室中的所述一根或多根催化剂管道外部进行自循环。所述混合物中的气体或液体,例如当所述混合物是饱和的水-蒸汽混合物时所述混合物中的蒸汽,除了被用作上述热传递介质以外并未用于实现其它目的。
[0029] 至少所述重整部段和锅炉部段优选被共轴地布置在所述反应器中以便能够装配在外部的大体上呈圆柱形的壳体内。因此,在一个实施例中,所述燃烧部段、重整部段和锅炉部段被共轴地布置在所述反应器中。在另一实施例中,所述重整部段和锅炉部段可被共轴地布置在所述反应器中,而所述燃烧部段可与所述锅炉部段垂直地被布置以便形成L形反应器。这使得所述反应器的长度更短且在反应器长度成为限制性因素的情况下有利于所述反应器的输运。
[0030] 所述重整部段优选相对于所述锅炉部段串联地被布置,在所述锅炉部段中,载运着所述工艺气体的所述至少一根工艺管道且可选地载运着进入的所述工艺流体的所述至少一根工艺供给管道被共轴地设置。所述锅炉部段优选相对于燃烧部段串联地被布置,所述燃烧部段除了一个或多个燃烧器以外还可包括用于引入适当的燃料的燃料入口,且可选地包括用于引入另一种燃料的共轴布置的燃料入口,所述适当的燃料为甲醇,所述另一种燃料优选是来自所述变压吸附单元的废气或者是来自富集氢步骤的任何其它废气。通常在所述反应器的正常运行过程中,来自所述变压吸附单元的废气用作主要的燃料,而甲醇用作辅助燃料,而在启动时则用作主要燃料的是甲醇。使用来自所述变压吸附单元的废气且可选地使用来自所述燃料电池的阳极废气使得能够在例如包括所述反应器和所述附属变压吸附单元的燃料电池设备中实现更高的总热效率。
[0031] 所述反应器的所述燃烧部段还设有至少一个燃烧器。由于需要反应器的紧凑性,因此将燃烧器的数量保持在最小值。优选设置单个燃烧器;更优选设置单个催化燃烧器。所述催化燃烧器可以是陶瓷中空圆柱体,所述陶瓷中空圆柱体在其外表面上具有氧化催化剂,与空气预先混合的燃料气体从内部被供应至所述外表面。所述催化燃烧器优选是被布置在流道中且被设置为串联布置的金属丝网层的燃烧器,所述串联布置的金属丝网层上涂覆有陶瓷且浸渍有氧化催化剂。燃烧过程中产生的热量通过对流机理且借助于产生的烟道气被传递至所述自循环的气体-液体体系。因此,在本发明的另一实施例中,在所述反应器中,所述燃烧部段设有单个催化燃烧器且其中所述催化燃烧器被设置为串联布置的金属丝网层,所述串联布置的金属丝网层上涂覆有陶瓷且浸渍有氧化催化剂,由此使得燃烧过程中产生的热量通过对流机理且借助于产生的烟道气被传递至所述自循环的气体-液体混合物。这使得与例如通过辐射机理进行热传递的体系相比能够实现更好的热量传递,且同时使得能够获得紧凑的反应器设计,原因在于仅使用了单个燃烧器。
[0032] 在本发明的另一实施例中,所述重整部段和锅炉部段由绝缘的壳体大体上围绕,其中所述绝缘的壳体由载运着烟道气的第一环形区域和载运着燃烧空气的第二环形区域包绕。这使得能够实现向周围环境产生的低热损失,原因在于包含重整部段、燃烧部段和载运着用作热交换介质的气体-液体体系的公共体积空间的反应器的主体内的更热的部分首先被绝缘壳体包绕、随后被供烟道气通过的套筒包绕、且最终被载运着要用于所述燃烧器中的燃烧空气的第二(外部)环形区域包绕。这还使得燃烧气体和任何其它适当的燃料气体如来自下游的氢纯化单元的废气通过与烟道气进行间接热交换而被预热,所述烟道气优选在其被排出所述反应器的途径中以逆流方式流动。在优选的实施例中,烟道气从所述锅炉部段通过位于所述锅炉部段外部的环形区域直接进入所述第一环形区域内。烟道气借助从所述锅炉部段中伸出的载运着该气体的管道被供应给该环形区域。所述烟道气还可从所述反应器的所述燃烧部段直接进入所述第一环形区域内,由此使得可在所述烟道气中实现更高的温度。
[0033] 本文所使用的术语“由绝缘壳体大体上围绕(substantiallysurrounded by an insulated housing)”意味着所述反应器的一些部分可能并未被绝缘。例如,所述重整部段的一部分有可能不需要进行绝缘。所述重整部段或锅炉部段的一小部分也有可能不被所述绝缘壳体围绕。例如,所述绝缘壳体可能不覆盖位于最接近所述燃烧部段的位置处的所述锅炉部段的下部部分。
[0034] 所述反应器可适于与变压吸附单元(PSA)协同作用,所述变压吸附单元优选是用于对被排出所述反应器的经过重整的工艺气体进行进一步处理的氢纯化单元。如上所述,来自所述变压吸附单元的废气可作为燃料被用于所述反应器中。因此,在本发明的又一实施例中,入口被适配给载运着燃烧空气的所述第二环形区域以便使变压吸附单元的废气通过。这使得能够在将所述废气引入所述燃烧部段中的所述至少一个燃烧器内之前对所述废气进行预热。
[0035] 还可使用Pd合金膜代替变压吸附单元以便对经过重整的工艺气体进行富集。一般情况下,可通过利用Pd合金膜获得更高的纯化程度,所述Pd合金膜可被包括在所述反应器内。因此,在本发明中,氢纯化单元如Pd合金膜还有可能被整合在所述反应器内。然而,由于变压吸附纯化单元与Pd合金膜相比不那么敏感且更为廉价,因此仍优选利用变压吸附纯化单元。通常情况下,Pd合金膜还需要在所述经过重整的气体中具有相对较高的温度,例如约350℃的温度。因此,在甲醇重整过程中,将需要对被排出所述反应器的处于约300℃下的经过重整的气体进行加热以便符合Pd合金膜的需要。可有利地利用其它富氢单元如常规的水-气体变换步骤如一氧化的低温变换(low shift)和选择性氧化,所述选择性氧化也被称作一氧化碳的优先氧化(PROX),所述单元特别地与燃料电池相关。水-气体变换和优先氧化步骤使得能够从经过重整的富氢气体中除去一氧化碳。这导致提高了质子交换膜(PEM)燃料电池中的电化学反应的效率,原因在于被吸附在质子交换膜燃料电池的Pt阳极中的一氧化碳抑制了氢离解为质子和电子的过程且因此大大降低了质子交换膜燃料电池的功率输出或性能。
[0036] 载运着燃烧空气的所述反应器的所述第二环形区域优选被连接至燃烧部段。因此,所述第二环形区域可优选延伸进入所述燃烧部段内以便确保经过预热的燃烧空气与入口燃料和另一燃料一起进入燃烧器内,所述入口燃料优选是甲醇且所述另一燃料优选是来自变压吸附单元的废气。应该理解:可利用任何其它适当的氧化剂如富氧空气来代替空气。
[0037] 气体-液体混合物优选是在约55至110barg,优选65至110barg的压力下和在270℃至约320℃,优选280℃至约320℃的温度下进行自循环的饱和的蒸汽-水体系。最优选地,所述饱和的蒸汽-水体系在65bar g的压力和280℃的温度下进行自循环。应该理解:所述温度是由循环体系中的饱和蒸汽压力决定的,对于温度为280℃的这种情况而言,所述饱和的蒸汽-水体系的压力为65bar g。因此,所述饱和的蒸汽-水体系还可在110bar g的压力和约320℃的温度下进行自循环,或者在50bar g的压力以及270℃的温度下进行自循环。所述饱和的蒸汽-水体系使得能够提供一种自循环体系,其中易于实现在所述重整部段中进行的将甲醇转化成氢所需的温度如280℃。当要被重整的工艺气体包括甲醇,例如甲醇和水的混合物时,上面的压力和温度是特别适当的,原因在于甲醇的重整一般发生在250-350℃的温度范围内。因此,在本发明的另一实施例中,进入所述反应器的所述工艺流体是甲醇和水的混合物且所述气体-液体混合物是在55至110bar g的压力和270℃至约320℃(更具体而言为318℃)的温度下循环的饱和的蒸汽-水体系。所述饱和的蒸汽-水体系的高热容使得因此能够在所述反应器中提供大的吸热器。热量被积聚且准备用在周围情况使得需要热量的时候,例如反应器的运行状态或燃烧器的负荷发生变化而使得需要热量的时候。热量通过自循环蒸汽-水体系而被分布在整个反应器上,其中水通过与来自催化燃烧器的热烟道气进行热交换而汽化,同时在消耗热量的位置处产生蒸汽冷凝。
[0038] 在又一实施例中,进入所述反应器的所述工艺流体包含二甲醚(DME)。二甲醚一般是通过甲醇的脱水而获得的。进入所述反应器的所述工艺流体可因此包括甲醇、二甲醚或者二甲醚和甲醇的混合物。
[0039] 当利用二甲醚作为工艺流体时,通过两步反应将二甲醚分解为氢。在第一反应中,醚通过下面的反应被水合成甲醇:
[0040] CH3OCH3+H2O=2CH3OH (1)
[0041] 且在二甲醚的水合过程中产生的甲醇在第二步骤中被分解为碳的氧化物和氢:
[0042] CH3OH+H2O=CO2+3H2 (2)
[0043] CO2+H2=CO+H2O (3)
[0044] 两个反应都可以气相和液相的形式发生。
[0045] 反应(1)在存在弱酸的情况下以极低的反应速率进行且该反应对于甲醇而言在热力学上是不利的。已公知地借助于固体催化剂对通过上面的反应(2)和(3)进行的甲醇分解进行催化,所述固体催化剂通常基于、锌和的氧化物。在热力学上,高温、低压和高蒸汽浓度有利于所述甲醇分解。
[0046] 可通过在存在如美国专利No.5,837,217所述的固体酸的情况下实施所述反应(1)而大大提高在通过反应(1)进行的将二甲醚水合成甲醇的过程中的反应速率。当借助于从甲醇到氢的反应而随着甲醇的形成除去产生的甲醇并除去根据上面的反应(2)和(3)生成的碳的氧化物从而克服了二甲醚水合反应(1)的平衡限制时,使得通过反应CH3OCH3+3H2O=2CO2+6H2进行的从二甲醚到富氢气体的总反应以适当的速率进行且对于氢和碳的氧化物的形成而言具有高产率和选择性。二甲醚因此优选在存在选自固体酸组群的醚水合催化剂且存在甲醇分解催化剂的情况下与水进行反应,所述醚水合催化剂和甲醇分解催化剂在所述反应器的所述催化剂管道内被布置成物理混合物。用于二甲醚进行水合的适当催化剂是任何的固体酸。水合催化剂优选包括酸性沸石,所述酸性沸石最优选为以H-形式存在的ZSM-5。二甲醚水合催化剂与甲醇分解催化剂以介于1∶5与5∶1之间的重量比进行物理混合,所述甲醇分解催化剂优选是Cu-Zn-氧化铝。
[0047] 在工艺流体侧上,压力被保持处于更低的水平,所述更低的压力水平一般在3至30bar g的范围内,例如在20至30bar g的范围内。例如,进入所述反应器的工艺流体的压力可为约22bar g且其温度在0℃至50℃的范围内,此处所述工艺流体是甲醇和水的液体混合物,而在被排出所述反应器的经过重整的气体中,压力可能略低例如为20barg且温度在120℃至270℃的范围内。由反应器生产的氢产率(排出的经过重整的气体)一般在
3 3 3
10-5000Nm/h的范围内,通常在15-1000Nm/h的范围内,优选在25-1000Nm/h的范围内,更
3
优选在25-500Nm/h的范围内。一般情况下,所述经过重整的气体的成分为约65%体积的H2、11%体积的H2O、2.1%体积的CO、23%体积的CO2和1.4%体积的甲醇。所述反应器中的
3
甲醇转化率一般高于90%,通常高于95%,例如为97%至99%。对于具有600Nm/h的氢容量(产率)的反应器而言,催化剂管道的数量一般在110至120根的范围内。所述催化剂管道一般长2.5至3.0m且内径为20mm。所述反应器中的在所述重整部段中的所述催化剂管道上的温度被保持处于均匀水平,例如被保持处于280℃的温度水平,且该水平是由所述循环体系中的饱和蒸汽压力确定的,在这种情况下所述饱和蒸汽压力为65bar g。对于更高的温度应用情况而言,自循环体系可包括钠或来代替水-蒸汽混合物。
[0048] 所述反应器可进一步包括布置在所述催化剂管道上方的催化剂的固定床,其中所述固定床覆盖了所述反应器的大体上整个水平剖面且其中所述固定床适于在要被转化的工艺气体进入所述催化剂管道内之前接收所述工艺气体。所述催化剂的固定床可围绕载运着所述要被转化的工艺气体的所述一根或多根工艺管道。因此,所述固定床被布置在所述重整部段的所述一根或多根催化剂管道上游。载运着所述工艺气体的所述一根或多根工艺管道延伸通过所述固定床且可伸出并略微远离所述床。所述工艺管道可因此设有恰位于所述固定床上方的出口孔以便允许工艺气体通过所述床并随后通过所述一根或多根催化剂管道内部的催化剂床。覆盖所述反应器的大体上整个水平剖面的所述催化剂的固定床用作防中毒催化剂层且通常使得所述工艺气体能够均匀地流入下游的所述催化剂管道内且因此使得在所述反应器的所述水平剖面上实现了更好的温度分布。
[0049] 应该理解:根据本发明的经过整合且紧凑的反应器在单个单元中整合了可能要不然需要在反应器外部独立地运行的多个工艺单元或步骤,例如用于对烃原料进行预热和汽化、对燃烧空气进行预热且可选地对来自变压吸附单元的废气进行预热的加热器,以及催化燃烧器和封装有用作热交换介质的所述气体-液体混合物(气体-液体体系)的所述公共体积空间。所述反应器不需要使用活动部件如,例如并非必需设置泵而提供用作热交换介质的所述气体-液体混合物在所述反应器内部进行的内部循环。
[0050] 在第二方面中,本发明还包括一种用于生产氢的方法。因此,我们提供了一种用于在如本文所述的包含燃烧部段、锅炉部段和重整部段的反应器中由供给工艺流体生产氢的方法,所述方法包括以下步骤:
[0051] -通过使供给工艺流体与来自所述重整部段的排出的经过重整的工艺气体进行间接热交换而对所述供给工艺流体进行可选地预热,
[0052] -通过使所述反应器中的所述供给工艺流体与气体-液体混合物进行间接热交换而对所述供给工艺流体进行可选地进一步加热和汽化以便形成经过预热的工艺气体,所述气体-液体混合物在包含所述重整部段和所述锅炉部段的公共体积空间内部进行自循环且被封装在所述公共体积空间内部,
[0053] -使经过预热的工艺气体通过所述重整部段,
[0054] -通过使所述重整部段中的至少一根催化剂管道与气体-液体混合物进行间接热交换而对所述至少一根催化剂管道进行加热,所述气体-液体混合物在包含所述重整部段和所述锅炉部段的公共体积空间内部进行自循环且被封装在所述公共体积空间内部,[0055] -从所述重整部段回收经过重整的工艺气体并且通过对所述供给工艺流体进行预热而对所述经过重整的工艺气体进行可选地冷却,
[0056] -将燃料与燃烧空气一起引入所述燃烧部段中的至少一个燃烧器内,其中通过使所述燃烧空气与来自所述锅炉部段的烟道气进行间接热交换而对所述燃烧空气进行预热,[0057] -从所述燃烧器回收烟道气并且使所述烟道气通过锅炉部段,并且[0058] -通过使所述气体-液体混合物与通过所述锅炉部段的所述烟道气进行间接热交换而对所述气体-液体混合物进行加热,所述气体-液体混合物在所述反应器中的包含所述重整部段和所述锅炉部段的公共体积空间内部进行自循环且被封装在所述公共体积空间内部。
[0059] 所述方法使得能够生产经过重整的工艺气体,所述经过重整的工艺气体是富氢的且特别适用于变压吸附单元中。另一种可选方式是,在Pd合金膜或相似部件代替变压吸附单元被用作氢纯化单元的情况下,可通过使所述经过重整的工艺气体与烟道气进行间接热交换而有利地实现对所述经过重整的工艺气体进行的进一步加热。所述氢纯化单元可因此是膜,所述膜也可被整合在所述反应器内。
[0060] 与燃烧空气一起被引入所述燃烧部段中的所述至少一个燃烧器内的燃料可以是烃燃料如甲醇,但通常仅是来自被用作富氢单元的位于下游的变压吸附单元的废气。
[0061] 上面的方法可进一步包括以下步骤:
[0062] -使经过冷却的经过重整的工艺气体通过空气冷却器,
[0063] -随后使所述经过冷却的经过重整的工艺气体通过氢纯化单元以便形成富集氢的气体,并且
[0064] -将来自所述氢纯化单元的废气引入所述反应器的所述至少一个燃烧器内。
[0065] 在所述氢纯化单元是变压吸附单元的情况下,该单元和所述空气冷却器优选位于所述反应器的外部。来自所述变压吸附单元的废气可随后被引入所述至少一个燃烧器内,如上所述。来自所述氢纯化单元的富氢气体可随后用于任何适当的工业应用中,例如用于冶金工业、电子器件、化学和制药工业中或用作燃料电池设备中的氢源。附图说明
[0066] 通过附图对本发明进行进一步描述,其中:
[0067] 图1示出了根据本发明的一个实施例的反应器的示意图,所述反应器用于以3
25-1000Nm/h的量生产变压吸附单元所使用的氢。

具体实施方式

[0068] 在图1中,具有80Nm3/h的氢容量的呈圆柱形的整合的反应器1包含燃烧部段2、锅炉部段3和重整部段4。该圆柱形反应器1具有300kg的总重量且高约1.6m,且直径(除了3 3
燃烧部段以外)为约0.4m。该反应器的总体积为约0.275m,且总的催化剂体积为0.020m。
[0069] 重整部段4还包括重整催化剂的固定床5,所述固定床被布置在重整部段的区域上方,在所述区域中设置了催化剂管道。这些部段被共轴地布置在反应器中以便能够装配在外部的大体上呈圆柱形的壳体内。
[0070] 甲醇和水的混合物通过反应器外壁中的导管6被引导至反应器1。载运着工艺流体(甲醇和水的混合物)的工艺供给管道7延伸通过导管6。工艺管道垂直地向下延伸至锅炉部段3。
[0071] 锅炉部段被布置在隔室或公共体积空间8中,饱和的水-蒸汽混合物9在所述隔室或公共体积空间8内部进行自循环,如图中阴影区域所示。饱和的水-蒸汽混合物因此在反应器内部且在被封装在包含锅炉部段和重整部段的公共体积空间8内部的区域中以自循环方式进行移动。该隔室或公共体积空间8中包含一根或多根管道10,来自被布置在下面的燃烧部段2的热烟道气11通过所述一根或多根管道。在被布置在反应器的下部部分中且位于锅炉部段3下面的燃烧部段2中,适当的燃料如甲醇通过燃料入口12被注入,所述燃料入口适于用作喷嘴。甲醇随后在单个催化燃烧器14中与通过入口13进入的经过预热的燃烧空气进行反应,所述单个催化燃烧器包括浸渍有氧化催化剂的金属丝网且被共轴地设置在圆柱形反应器1的流道中。热烟道气11被产生并随后到达锅炉部段3。载运着所述烟道气的管道10自燃烧部段2垂直延伸进入到锅炉部段3中且其出口15朝向所述反应器的环形部分16伸出。
[0072] 在锅炉部段3中的公共体积空间8中,饱和的水-蒸汽混合物9中的热量的一部分被传输给工艺管道17的系统。工艺管道17延伸远离锅炉部段3中的过渡隔室18且向上延伸通过反应器的中间部分且进一步延伸至重整部段4,所述工艺管道在此被形成为盘管或螺旋管。重整部段4被布置在反应器的上部部分中的隔室或公共体积空间8中,一根或多根垂直的催化剂管道19被设置在所述重整部段的内部。在工艺管道17内部行进的要被重整的工艺气体在催化剂的固定床5上方被排出、通过该床并且进入催化剂管道19。经过重整的气体通过出口管道20在催化剂管道19的底部处被排出重整部段且被用于对在反应器的外壁处的导管6中的工艺供给管道7内部进行输运的烃供给物进行预热。
[0073] 重整部段4、5和锅炉部段3被绝缘壳体21围绕。该绝缘壳体21被载运着烟道气的第一环形区域22和载运着通过入口13进入的燃烧空气的第二环形区域23包绕。通过使燃烧空气与在环形部段22中朝向烟道气出口24以逆流方式行进的烟道气11进行间接热交换而对所述燃烧空气进行预热。燃烧部段2也被独立的绝缘壳体25围绕。来自下游的变压吸附单元的废气也被用作燃料并且通过入口26进入到燃烧器14中。烟道气11通过所述锅炉部段外部的环形区域27从锅炉部段直接进入所述第一环形区域22内。载运着燃烧空气的第二环形区域23通过狭窄的通路28被连接至燃烧部段2。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈