[0001] 本
申请是2014年8月6日提交到中华人民共和国国家知识产权局的
发明名称为“用于制备氨和尿素的方法”、申请号为“201280069097.0”的发明
专利申请的分案申请。
技术领域
[0002] 本发明涉及用于制备氨的方法以及用于制备氨且随后制备尿素的方法。
背景技术
[0003] 通常根据以下反应式通过使氢与氮反应来制备氨:
[0004] 3H2+N2→2NH3
[0005] H2通常从
合成气体(通常称为“合成气”)中获得,而合成气体从
烃类进料中获得,该烃类进料进行
蒸汽重整,其后经常为自热重整(ATR),以生成包括一
氧化
碳(CO)、氢(H2)和二氧化碳(CO2)的混合物,之后通常进行
水煤气变换反应,在该反应中,
一氧化碳与水反应,以形成二氧化碳和氢。在去除CO2(或从气体混合物中分离出H2)后,氢可用于与氮(N2)的反应。后者存在于原始气体混合物中(因为其对于在氨合成条件之前的所有步骤均为惰性),或者如果从空气获得的话则在之后添加到从氧中分离氮的单元中。使氢和氮在合成反应器中压缩,并转
化成氨。
[0006] 氨经常用作尿素合成中的起始材料。可以在尿素设备的合成区中,在通常为150℃~250℃的升高
温度以及通常为12~40Mpa的升高压
力下,由氨和二氧化碳制备尿素(NH2CONH2)。在该合成中,可认为发生两个连续的反应步骤。在第一步骤中,形成氨基
甲酸铵,且在下一步骤中,使该氨基甲酸铵脱水以得到尿素:
[0007] (i)2NH3+CO2→H2N–CO–ONH4
[0008] (ii)
[0009] 图1示出的用于制备氨的参考方法包括,用于制备氢的蒸汽重整工序,后接所述氢与空气分离单元(ASU)中生成的氮的反应。然而,该方法的缺点在于,大量
能量用于将空气分离成氮与氧,而所产生的氧没有用处。
[0010] 例如在US专利6,448,441(并入本文以供参考)中示出的另一参考方法,涉及使用在不同操作条件下工作的两个平行
气化装置,以在使用
天然气气化装置来生成合成气时增加用于尿素制备的CO2率。通过使用两个气化装置,可以获得反应混合物中的正确化学计量,以用于后续的氨的制备。在US专利6,448,441的方法中,相对于氮需要生成额外的CO2以获得氨与CO2反应的正确化学计量。这需要燃烧额外的
碳质材料例如天然气,其消耗更多的原材料和能量。
[0011] 因此,在氨的制备中,以及在尿素的制备中,期望能够以所需的化学计量来提供起始材料,且期望尽可能降低能量和材料成本。
发明内容
[0012] 为更好地解决一个或多个上述期望,本发明在一方面提供用于制备氨的方法,包括以下步骤:
[0013] (a)提供烃类材料;
[0014] (b)使烃类材料进行催化部分氧化(CPO),以产生包括一氧化碳、氢和二氧化碳的CPO气流;
[0015] (c)提供由烃类进料的蒸汽重整(SR)而获得的SR气流;
[0016] (d)使CPO气流和SR气流进行
水煤气变换(WGS)反应,以使一氧化碳与水反应形成包括氢和二氧化碳的WGS气体;
[0017] (e)在WGS反应之前或之后,使单独的气流进行混合步骤,以提供混合的WGS气体;
[0018] (f)使混合的WGS气体进行氢富集步骤,以获得富含氢的物流;
[0019] (g)在氨形成条件下使富含氢的物流与氮反应,以制备氨。
[0020] 在另一方面,本发明涉及用于制备尿素的方法,包括如上限定的用于制备氨的工序,其中分离步骤(d)包括从反应混合物中去除CO2,并在尿素形成条件下使氨与所去除的CO2反应。
附图说明
[0021] 图1和图2是领域内已知的实施方式的示意性表示。
[0022] 图3是本发明实施方式的示意性表示。
具体实施方式
[0023] 广义而言,本发明基于如下明智见解,即由于产生可用于增加的尿素产量的额外CO2,在合成气的形成中与蒸汽重组组合地使用催化部分氧化(CPO)能够在氨的制备(引起改进的氨制备)和尿素的制备中同时带来预料不到的优点。
[0024] 为了增加用于尿素制备的CO2比率,对一部分用于蒸汽重整的常规烃进料进行CPO,并转化为一种合成气,在本
说明书中表示为“CPO气体”,其相比于在蒸汽重整中所获得者具有更高的CO/H2比。所得的相对较高量的CO随后在下游在水煤气变换转化器中转化成CO2。
[0025] 氨的制备需要作为反应物的氮(N2)的可得性。氮得自空气,在常规方法中,这引起氧(O2)的损失。在本发明中,明智地预见到,将通过提供作为反应物的氮而得到的氧用作催化部分氧化步骤中氧化氧的来源,并被回收用于生产进一步的尿素。
[0026] 因此,根据本发明,催化部分氧化步骤和用于氨合成的蒸汽重整步骤的组合呈现出高度经济的进步。这在催化部分氧化所需的氧可通过氨的制备而得到的情况下实际上提供协同作用,也就是说,现在可以使用通常损失的氧。
[0027] CPO气流和SR气流可以在WGS反应之前混合。也可以使它们分别进行WGS反应,然后将所得的气流混合以提供混合的WGS气体。优选地,本发明的方法包括混合CPO气流和SR气流以提供混合气体,并使混合气体进行WGS反应的步骤。在一个特别优选的实施方式中,对整个CPO气体和SR气流进行WGS,由此没有气流绕开WGS反应。此实施方式的优点是用于氨和随后的尿素制备的必需化学计量比已从完全进行WGS的该两股气流获得。因此,不需绕开WGS和使用部分CPO和SR气流用于例如氢回收,以在氨合成反应之前调整组成。
[0028] 尿素的制备需要作为反应物的二氧化碳(CO2)的可得性。常规尿素制备方法的问题在于通常存在CO2相对于可用氨的缺乏(deficit)。本发明具有以下优点,即氨和CO2都以所需的量生产并因此直接适用于尿素合成。催化部分氧化中形成的任何CO2,特别是从水煤气变换反应的后续步骤中而来的CO2,存在于部分制备工序的气流中,因此直接可得以用作尿素制备的反应物。
[0029] 本发明的方法,不管用于制备氨或是用于制备尿素,均以烃类材料的催化部分氧化以及烃类材料的蒸汽重整开始。烃类材料可以是单一烃、烃的混合物、或包括至少一种烃的任何其他组合物。通常而言,在采用天然气的情况中,通常在进行本发明方法之前进行
脱硫。
[0030] 烃类材料可以是气态(例如,甲烷或天然气)和/或液态,也可以来自
生物质。烃类材料可以适用于直接供应至CPO或者可以进行预处理以去除任何可能存在的杂质例如硫化合物。
[0031] 优选地,烃类材料选自天然气、
液化石油气(LPG)、炼厂气、石脑油及其混合物。
[0032] 根据本发明方法的SR部分对于技术人员是已知的。CPO部分将在下文中更详细地阐明。
[0033] CPO反应器为技术人员已知。CPO反应器通常包括由
内衬耐火材料的竖直圆柱形
钢制
压力容器构成的反应区。CPO反应器通常区别于自热重整反应器,因为后者包括
燃烧器,而CPO通常没有。
[0034] 混合器例如在WO2007045457中所示者可以用于向反应器中引入进料流。
[0035] CPO方法形成合成气体、或合成气,其包括CO、CO2和H2。这种气体在本说明书中被称为“CPO气体”。参考作为示例性烃类进料的甲烷,CPO方法的反应式为:
[0036] CH4+0.5O2→CO+2H2
[0037] 术语CPO(也称为SCT-CPO)为技术人员已知。SCT-CPO是指短
接触时间催化部分氧化。CPO反应在反应器中在催化剂的影响下进行,
停留时间为10-2~10-4且典型催化剂表面接触时间为约10-6s-1。这些接触时间相应于100,000~250,000hr-1的典型
空速,优选为100,000~200,000hr-1。SCT-CPO采用的催化剂包括Ni、Pd、Pt、Rh或Ru。反应在高于950℃的催化表面温度进行,优选为高于1000℃。通过采用所述短接触时间和高催化剂表面温度,高度有利于CO的形成,并抑制碳或CO2的形成。这导致高度有利的合成气体组成,其继而导致用于氨和尿素制备的有利化学计量条件。CPO反应通常将在催化部分氧化反应器中进行,该反应器包括合适的催化剂床,其用于催化烃向CO和H2的部分氧化。应当理解的是,也可形成一些完全氧化产物(即,CO2)。术语“CPO”对于技术人员是已知的,并且实现其的催化剂是人们熟知的。参见,例如,L.Basini,Catalyst Today 117(2006),384-393或L.Basini,K.Aasberg-Petersen,A.Guarinoni,M.Oestberg,Catalysis Today(2001)64,9-20"Catalytic Partial Oxidation of Natural Gas at Elevated Pressure and Low Residence Time";(c)H.Hickman,L.D.Schmidt,J.Catal.138(1992)267;(d)D.Hichman,L.D.Schmidt Science,259(1993)343;(e)L.Basini,G.Donati WO 97/37929;(f)Sanfilippo,Domenico;
Basini,Luca;Marchionna,Mario;EP-640559;(g)D.Schaddenhorst,R.J.Schoonebeek;WO
00/00426;(h)K.L.Hohn,L.D.Schmidt,S.Reyes,J.S.Freeley,WO 01/32556;(i)A.M.Gaffney,R.Songer,R.Ostwald,D.Corbin,WO 01/36323。
[0038] 应理解的是,在CPO过程中,提供氧以实现氧化。尽管氧可以是空气的形式,其缺点在于,这意味着相当大量的在氨形成反应前为惰性的氮被带入工序中。这需要比将要进行的反应严格所需的仪器大得多的仪器,这是经济上不期望的,并且与其他缺点例如需要建造占据过大地表面积的设施相关。在该方面,优选催化部分氧化在包括至少40%氧、优选至少60%氧的含氧气流的影响下进行。更优选地,含氧气流是纯度为90%~100%的氧。
[0039] 使用催化部分氧化的其它优点在于,合成气体可以制备成具有合适的H2/CO2比,以关于进料组成使氨和尿素的产量最大化。通过适当地设定蒸汽与碳(S/C)以及氧与碳(O2/C)的比率并使去往CPO反应器的物流的温度预热,也在天然气进料的存在下,合成气体中生成的CO2的量很高,足以利用所有所生成的NH3而没有过量的NH3。技术人员无需过多实验即可知晓,怎样计算合成气体中所需的反应物的合适量,以及怎样设定催化部分氧化过程以实现这一点。
[0040] CPO反应器优选以0.3~1.0范围内的蒸汽与碳的比率(S/C)工作,更优选在0.4~0.6的范围内。氧与碳的比率(O/C)优选在0.3~1.0的范围内,更优选在0.5~0.7的范围内。
[0041] 在又一优选实施方式中,从催化部分氧化中得到的未
净化气体(raw gas)具有约900℃~1200℃的温度,优选为950~1050℃,更好为约1000℃。
[0042] 为提高氢生产的目的,使CPO反应混合物即CPO气体进行水煤气变换反应。为此,使混合物进行水煤气变换(WGS),其中包括一氧化碳与蒸汽的气体混合物转化为氢和二氧化碳。在进入WGS反应器之前,合成气体通常在工艺气体
锅炉或直接骤冷器中冷却,制备出变换的合成气流。在以上实例中,由CH4开始,通过WGS反应器使CO转换成CO2的该后续步骤由以下反应式表示:
[0043] CO+2H2+H2O→CO2+3H2
[0044] WGS反应通常使用单级或多级来执行,以达到期望的转化程度和转化率。在多级过程中,高温阶段(HTS)在300~450℃且通常在
铁类催化剂例如Fe/Cr的存在下操作。在HTS中,最大量的CO被转化,通常多于90%,例如96~98%。随后的阶段可以是高温、中温或低温阶段(HTS、MTS或LTS);使用MTS或LTS,操作温度为约180~280℃,且通常使用担载于氧化
铝(Cu/Zn/Al)催化剂上的
铜/锌催化剂。在这些后面的阶段中,出口物流中的剩余CO浓度通常低至0.1~0.3%。
[0045] 得自WGS反应器的气流主要包含氢、氮和二氧化碳。对该气流进行氢富集步骤以便获得富氢的物流。氢富集步骤包括将氢与二氧化碳分离,例如,通过除去后者。任选地,通过变压
吸附(pressure swing absorption,PSA)从WGS气流中分离氢,以得到纯氢流和吹扫气(purge gas)(通常包括H2、CH4、CO和CO2)。来自PSA的吹扫气循环至CPO反应器,以使进料100%转化。
[0046] 在第一方面,本发明的方法用于制备氨。具体而言,本发明的方法用于提高其后是尿素制备的氨制备中的CO2含量的目的。
[0047] 制备氨需要根据上述步骤(e),即从反应混合物中分离氢来提供作为反应物的氢。优选地,通过从包括氢和二氧化碳的气体混合物中去除CO2来执行从得自水煤气变换反应的反应混合物中分离氢,从而获得富含H2的气体混合物。H2与N2反应,从而形成氨。该反应众所周知,且技术人员熟悉制备方法和实施设备。
[0048] 在本发明的方法中,优选用于催化部分氧化中的氧以及用于氨形成反应中的氮均得自空气分离单元。这带来的优点是,不需要将氮带入工艺中,且分离的空气成分均以尽可能大的程度进行利用,而不是排出氧(在氨形成反应中使用氮的情况下)或使工艺负担大量的惰性氮(在催化部分氧化中使用空气的情况下)。
[0049] 在空气分离单元中,氮和氧通常根据下式进行制备:
[0050] 1,88N2+0.5O2(空气)→1,88N2+0.5O2
[0051] 空气分离单元(通常称为ASU)为技术人员所知。可以使用采取低温、吸附空气分离、
真空变压吸附或膜空气分离的空气分离单元。在优选的实施方式中,使用低温空气分离工序,因为其能够得到高纯的氮和氧。在该工序中,来自大气的大体积空气被压缩、冷却并液化。在压缩后,去除杂质,并且通过蒸馏来分离氮和氧。可以在Nexant PERP08/09S1(2010年2月)报告中找到综合概述。应理解的是,氧和氮也可以在不同的空气分离单元中生成。优选地,用于该工序中的氮和氧来自于同一空气分离单元。
[0052] 在第二方面,本发明的方法用于制备尿素。具体而言,本发明的方法用于提高现有单元中尿素的产量。更具体地,本发明的方法可用于通过消除任何过量的NH3或任何过量的CO2而提高现有单元中尿素的产量。根据本发明,在尿素形成条件下,氨与前述去除的CO2反应。该反应也是众所周知,且制备方法和设备为技术人员可得。
[0053] 在另外的方面,本发明提供提高与包括蒸汽
重整器的合成气生产系统偶联的现有尿素生产中的尿素产量的方法,其通过将CPO反应器以与蒸汽重整器并联的方式加至合成气生产系统。
[0054] 尿素生产设备通常偶联到合成气/氢生产设备和用于合成尿素生产用
试剂的氨设备。包括蒸汽重整器的合成气/氢生产设备的问题是随着时间推移,蒸汽重整器的生产能力(capacity)由于高温下的过度利用而降低。蒸汽重整器通常包含填充有催化剂的管,它们长时间经历极高的温度例如高于1000℃。此类管的典型寿命为15-20年,然而在实践中,生产能力的降低更早开始,例如在10年后就开始。同时,SR下游的WGS反应器的生产能力和其他设施像氨合成和尿素合成反应器的生产能力不随时间改变。总的来说,整个尿素生产的生产能力由于合成气/氢生产设施中生产能力的降低而降低。
[0055] 本发明对与包括蒸汽重整器的氢生产设施偶联的尿素设备中的生产能力下降提供解决方案,该生产能力下降是由于蒸汽重整器的老化引起的。具体而言,本发明提供提高与包括蒸汽重整器(SR)的合成气生产系统偶联的现有尿素生产中的尿素产量的方法,其通过以与蒸汽重整器并联的方式将催化部分氧化(CPO)反应器加至合成气生产系统。所述改进使得尿素设备的生产能力增加或恢复到初始生产能力,而不需改变WGS反应器或其他节段。而且,尿素设备的生产能力甚至可由于供应到氨和尿素合成段的供料的化学计量比更佳而增加到高于初始生产能力的值。CPO反应器相对紧凑,相对于蒸汽重整器具有更小的占地面积(footprint)和低的投资成本。在优选的实施方式中,本发明涉及提高与包括蒸汽重整器和自热反应器(SR+ATR)的合成气生产系统偶联的现有尿素生产中的尿素产量的方法,其通过将CPO反应器以与蒸汽重整器和自热反应器并联的方式加至合成气生产系统。
[0056] 现有的尿素设备优选包括ASU以在本发明的方法中生产并有效使用氮和氧,如上文所述。本说明书中所述的其他优选的实施方式和工艺参数等同地应用于根据本发明的用于提高尿素产量的方法。
[0057] 可以在升高的温度(通常在150℃和250℃之间)和升高的压力(通常在12和40MPa之间)下在尿素设备的合成区中从氨和二氧化碳生产尿素(NH2CONH2)。在该合成中,可以考虑进行两个连续反应步骤。在第一步骤中,形成氨基甲酸铵,且在下一步骤中,使该氨基甲酸铵脱水以得到尿素。第一步骤(i)放热,而第二步骤可以表示为吸热平衡反应(ii):
[0058] (i)2NH3+CO2→H2N–CO–ONH4
[0059] (ii)
[0060] 在典型的尿素制备设备中,上述反应在尿素合成部分进行,从而得到包括尿素的水溶液。在一个或多个后续的浓缩部分,使该溶液浓缩,以最终得到熔融体形式而非溶液形式的尿素。该熔融体进一步进行一个或多个结束步骤,例如
造粒(prilling)、颗粒化(granulation)、微粒化(pelletizing)或
压实。
[0061] 通过明智地在另一部分烃类进料的水煤气变换反应之前涉入部分烃类进料的催化部分氧化,特别是结合空气分离单元的使用,本发明在不从得自蒸汽重整(SR)的
烟道气回收CO2的尿素生产提高中提供非常经济的使用所获得的气体混合物的成分的方式。来自空气分离单元的过量氮可以在制备设施内使用或售卖给其他使用者。
[0062] 在本发明中,如上所述,用于生产合成气体(CPO气体和SR气体)的两个工序组合使用。可以仅通过提供两股不同的烃进料流来将两个工序预先分开进行。这些可以仅是具有不同来源和/或组成的不同的烃进料。这些还可以是相同来源和组成的两个烃进料。优选地,提供单一烃进料流,然后将其分成进行CPO的一股物流和进行SR的另一股物流。
[0063] 两股物流的相对量通常具有1.2至0.8,优选1.1至0.9且最优选1.05至0.95(vol%/vol%)的CPO物流:SR物流比。这些物流比允许实现对于氨合成反应以及进一步在尿素合成反应工艺中所需的有利的化学计量比。如上所述,本发明的一个优点是使用两股物流——CPO物流和SR物流,它们在WGS反应器中被处理,其中优选使两股物流完全进行WGS反应,可以实现用于氨和尿素生产的必需的试剂比。
[0064] 本发明还将关于具体实施方式并参考某些附图进行描述,但是本发明不限于此,而仅由
权利要求限制。权利要求中的附图标记应不被解释为限制范围。所述的附图仅仅是示意性的,而不是限制性的。在附图中,某些元件的尺寸可能放大而没按比例画出,以用于示例说明的目的。当术语“包括、包含、含有”用在本说明书和权利要求书中时,其不排除其他元素或步骤。当使用不定冠词或定冠词来指代单数名词时,例如“一个”或“一种”、“该”,其包括该名词的复数,除非具体指出其他情况。除非另外指明,百分比是体积百分比且比率(例如蒸汽/碳或氧/碳)基于体积%/体积%。
[0065] 附图详述
[0066] 在图1中,给出本领域已知的实施方式的典型图示。
[0067] 进料气流进入脱硫单元。所得物流与蒸汽混合,并供应至蒸汽重整反应器(SR)。
[0068] 将SR出口处的合成气(SR气)与工艺空气流一起引入到第二重整。合成气混合物进入HTS和LTS WGS反应器段,其中存在于合成气中的CO几乎全部被转化为CO2和另外的H2。
[0069] 所得的变换气体被冷却并引入到CO2去除单元中,并且然后进入甲烷化反应器中,其中残余的CO/CO2转化成CH4。所得的富H2物流,与对先前步骤表现为惰性的N2(其中H2/N2混合物被调整到适当比例,如果需要的话)一起被冷却,压缩并引入到氨合成反应器中。为了在用于尿素生产的NH3和CO2之间拥有较好的化学计量比,烟道气中所包含的CO2被回收,压缩并运送到尿素生产以提高其产量。
[0070] 在图2中,给出了
现有技术的另一个实施方式。与图1相比,这里蒸汽重整器单独产生H2,且下游增加N2。
[0071] 在图3中,呈现了本发明的一个实施方式。进料气流101进入脱硫单元10,然后分成两股物流。第一物流102基于参照图1所述的蒸汽重整去向常规设备。单元20、30和40分别对应于第一重整器、第二重整器和工艺气体锅炉。具有剩余脱硫进料的第二物流去向CPO段,202。物流202与另一含氧物流以及物流203在供给到CPO反应器31中之前在适当的混合器21中混合。在本发明的一个实施方式中,预重整器(未示出)在CPO反应器31的上游。
[0072] CPO反应器31可以是有内衬的用于转化烃类(例如天然气、LPG、炼厂气、石脑油和甚至更重的进料)的钢制容器。CPO反应器优选以0.3~1.0范围内的蒸汽与碳比率(S/C)工作,优选在0.4~0.6的范围内。氧与碳的比率(O2/C)优选在0.4~1.0的范围内,更优选在0.5~0.7的范围内。
[0073] 位于CPO反应器的出口处的CPO气体优选在800℃~1200℃的温度范围内,更优选为900℃~1050℃。物流205在工艺气体锅炉36中通过间接热交换产生蒸汽来冷却(在可替换实施方式中,可以通过直接水骤冷来冷却)。之后将冷却的CPO气体206引入常规的CO WGS反应器50中。WGS反应器50可以为使用中冷器(在可替换实施方式中,可以是等温变换转化器)的一级或两级。WGS反应器50通常使
用例如铁类催化剂和/或铜类催化剂。
[0074] 使所得的变换气体106冷却并引入CO2去除单元60中,在此处所有CO2进入物流110。CO2去除单元60可以是
溶剂洗涤体系,例如胺、赛列克索(selexol)或其他已知溶剂,或通过其他技术人员已知的方法。由于增加了CPO段,使CO2的量被最大化以提高尿素产量。
[0075] 然后,将得自CO2去除的物流107纯化进入甲烷化反应器70中,与物流108混合,在单元80中压缩并运送到氨合成反应器90。
[0076] 与更常规的蒸汽重整(SR)技术相对,本发明使得可以增加高达10%的源自从本发明工序生产的高压工艺气体混合物的总二氧化碳生成。从高压工艺气流中回收二氧化碳要简单得多,没有主要的严重
腐蚀问题并且便宜得多。与烟道气体CO2回收体系相比,功用和能量需求显著更低。
[0077] 从还生产氧气流203的空气分离单元(ASU)91获得氮气。在另一实施方式中,物流108和203在不同的ASU中生成。如本文所实施的,可以使用用于氨合成的任何方法。用于氨合成的最常见工业方法涉及以1:3的摩尔比形成气态氮与氢的混合物,加少量成分例如CH4和CO2。
[0078] 本发明使得可以提高尿素产量至少10%。
[0079] 所生产的氨随后与除去的CO2结合以形成物流106,并被送到尿素生产单元。如本文所表现的,可使用任何用于尿素合成的工艺。