首页 / 专利库 / 燃料种类 / 能源 / 燃料 / / 烟煤 / 一种处理高浓度、高浊度有机废水的一体化净化装置

一种处理高浓度、高浊度有机的一体化净化装置

阅读:507发布:2020-05-11

专利汇可以提供一种处理高浓度、高浊度有机的一体化净化装置专利检索,专利查询,专利分析的服务。并且本实用新型涉及工业废 水 处理 领域,特别是涉及一种处理高浓度、高 浊度 有机 废水 的一体化 净化 装置。本实用新型的一种处理高浓度、高浊度有机废水的一体化净化装置,包括 厌 氧 反应器 、好氧反应器、高浊度净化器、 污泥 处理系统和加药装置;所述的一体化净化装置为圆桶状,最外层为厌氧反应器, 中间层 为好氧反应器,最里层为高浊度净化器;本实用新型将多个处理工艺结合在一个罐体内,占地面积小、施工周期短、出水水质稳定且达到污水排放、中水回用或杂用水回用标准的各项指标要求、一体化设备易于管理和操作且运行 费用 低。(ESM)同样的 发明 创造已同日 申请 发明 专利,下面是一种处理高浓度、高浊度有机的一体化净化装置专利的具体信息内容。

1.一种处理高浓度、高浊度有机的一体化净化装置,其特征在于:包括反应器(2)、好氧反应器(4)、高浊度净化器、污泥处理系统和加药装置(23);所述的一体化净化装置为圆桶状,最外层为厌氧反应器(2),中间层为好氧反应器(4),最里层为高浊度净化器;
所述的厌氧反应器(2)采用上流式厌氧污泥床-UASB,包括反应区和三相分离器(18);
所述的反应区包括污泥床和悬浮污泥层,所述的污泥床位于厌氧反应器(2)的底部,是浓度较高的污泥层,所述的悬浮污泥层位于污泥床的上部,是浓度较低的污泥层;
所述的三相分离器(18)为气,液,固三相分离器,包括反射板(20)、气室(21)、沉淀区(19);所述的三相分离器(18)设置在厌氧反应器(2)的顶部,位于反应区的悬浮污泥层的上方;
所述的厌氧反应器(2)通过厌氧竖井(3)连接好氧反应器(4);所述厌氧竖井(3)的入水口位于厌氧反应器(2)上部,厌氧竖井(3)的出水口位于好氧反应器(4)的底部;
所述的好氧反应器(4),为SBR反应器,即序批式间歇活性污泥反应器;包括曝气管(5)和软性填料(6),所述曝气管(5)位于好氧反应器(4)的底部,所述软性填料位于好氧反应器(4)的下半部;
所述的好氧反应器(4)通过好氧竖井(7)连接高浊度净化器;所述好氧竖井(7)的入水口位于好氧反应器(4)上部,好氧竖井(7)的出水口位于高浊度净化器的底部;所述的好氧竖井(7)的出水口与高浊度净化器的底部进水口通过2#进水管(8)相接,所述的2#进水管(8)为横向设置,并在2#进水管(8)上设有管道混合器(22),所述的管道混合器(22)与加药装置(23)相连;
所述的高浊度净化器从下往上依次分为悬浮区(9)、澄清区(10)、过滤区(11),所述悬浮区(9)的设备结构为倒锥形,使得流速逐渐减慢,是矾花形成和逐渐长大的区域;所述澄清区(10)的罐体截面最大,使向上流速达最慢,以利于矾花在此沉降;所述过滤区(11)设置在高浊度净化器中部,使澄清后的水再经过滤料层过滤,进一步的深度处理;
所述的污泥处理系统,位于高浊度净化器的下部中,包括中央排泥桶(13)、污泥辐射管(14)和污泥浓缩室(15);所述的中央排泥桶(13)与污泥浓缩室(15)通过污泥辐射管(14)相连;
所述的高浊度净化器的过滤区(11)上设置有滤料反冲洗管(17),滤料反冲洗管(17)的管道上面设置有开关,当滤料出现堵塞时,可以通过开关阀门,从清水池中通过反冲洗泵入清水进行滤料的反冲洗;
所述的污泥浓缩室(15)和好氧反应器(4)与罐体外部的污泥收集池相连,将污泥浓缩室(15)的污泥和好氧反应器(4)的污泥排入到污泥收集池后再进行脱水干化。
2.根据权利要求1所述的一种处理高浓度、高浊度有机废水的一体化净化装置,其特征在于:所述过滤区(11)采用双层滤料,下层滤料为直径为1.2—1.8mm无烟,上层滤料为
0.5—1.0mm的石英砂。
3.根据权利要求1所述的一种处理高浓度、高浊度有机废水的一体化净化装置,其特征在于:所述高浊度净化器还设有强制出水管(16),所述的强制出水管(16)横向设置于高浊度净化器的污泥浓缩室(15)的上部,强制出水管(16)设置有开关阀门,强制出水管(16)与滤料反冲洗管(17)相连。
4.根据权利要求1所述的一种处理高浓度、高浊度有机废水的一体化净化装置,其特征在于:所述加药装置(23)用于投放混凝剂,所述的混凝剂为聚合氯化或者聚或者聚丙烯酰胺。
5.根据权利要求1所述的一种处理高浓度、高浊度有机废水的一体化净化装置,其特征在于:所述污泥辐射管(14)设置为4-8根,均匀分布于中央排泥桶(13)的下部,设置度为向下倾斜30-45度。

说明书全文

一种处理高浓度、高浊度有机的一体化净化装置

技术领域

[0001] 本实用新型涉及工业废水处理领域,特别是涉及一种处理高浓度、高浊度有机废水的一体化净化装置。

背景技术

[0002] 化工、精细化工、制药、农药制造、化工中间体、造纸业、食品酿造、制糖和制酒等行业,在生产过程中都会产生一定量的高浓度、高浊度的生产污水,污水中含有大量高浓度有机物,化学需量COD含量高达3000-5000mg/L,生物需氧量高达1500—2500mg/L,经过生化处理后未沉降的活性污泥形成的悬浮物也都在500-2000mg/L,过去传统处理这类高浓度,高浊度的有机废水,要进行厌氧和好氧处理,需要建立体积很大的水泥池,经过厌氧和好氧处理后的污水,由于未沉降的活性污泥形成的悬浮物较高,不能直接排放,还要新建单独的沉淀池或过滤池来进行处理后达标排放水或回用水,使得处理这类污水工艺流程复杂,建造成本高,占地面积大,施工周期长,同时运行设备多,设备维护量大,运行成本高。
[0003] 因此提出一种适合于处理含高浓度、高浊度污水的一体化净化装置,使得这类污水经过一体化净化装置处理后,一次性达到污水排放标准、中水回用标准或杂用水回用标准很有必要。实用新型内容
[0004] 本实用新型的目的在于克服上述缺点而提供的一种占地面积小、施工周期短、出水水质稳定且达到污水排放、中水回用或杂用水回用标准的各项指标要求、一体化设备易于管理和操作,运行费用低的一种处理高浓度、高浊度有机废水的一体化净化装置。
[0005] 本实用新型目的及解决其主要技术问题是采用以下技术方案来实现的:
[0006] 一种处理高浓度、高浊度有机废水的一体化净化装置,包括厌氧反应器、好氧反应器、高浊度净化器、污泥处理系统和加药装置;所述的一体化净化装置为圆桶状,最外层为厌氧反应器,中间层为好氧反应器,最里层为高浊度净化器;
[0007] 所述的厌氧反应器采用上流式厌氧污泥床-UASB,包括反应区和三相分离器;所述的反应区包括污泥床和悬浮污泥层,所述的污泥床位于厌氧反应器的底部,是浓度较高的污泥层,所述的悬浮污泥层位于污泥床的上部,是浓度较低的的污泥层;废水从污泥床的底部进入,与污泥床中的污泥进行混合接触微生物分解废水中的有机物产生沼气,微小的沼气泡在上升过程中,不断合并,逐渐形成较大的沼气泡;由于气泡上升产生较强烈的搅动,在污泥床上部形成悬浮污泥层;
[0008] 所述的三相分离器为气,液,固三相分离器,包括反射板、气室、沉淀区;所述的三相分离器设置在厌氧反应器的顶部,位于反应区的悬浮污泥层的上方;沼气、废水和污泥的混合液从反应区上升至三相分离器内,沼气气泡碰到三相分离器下部的反射板时,折向气室而被有效的分离排出;污泥和废水则经孔道进入三相分离器的沉淀区,在重作用下,上清液从沉淀区上部排出,沉淀区下部的污泥沿着斜壁返回到反应区;在一定的水力负荷下,绝大部分污泥颗粒能保留在反应区内,使反应区具有足够的污泥量;
[0009] 所述的厌氧反应器通过厌氧竖井连接好氧反应器;所述厌氧竖井的入水口位于厌氧反应器上部,厌氧竖井的出水口位于好氧反应器的底部;
[0010] 所述的好氧反应器,为SBR反应器,即序批式间歇活性污泥反应器;包括曝气管和软性填料,所述曝气管位于好氧反应器的底部,所述软性填料位于好氧反应器的下半部,为整体高度的1/3处;好氧反应器主要是在运行上的有序和间歇操作,在好氧反应器中周期性循环进行进水,曝气,沉淀和滗水过程,将生物反应过程和泥水分离过程结合在一个池子中完成,以时间分割替代了空间分割,生物降解和沉淀均可在稳态下进行。
[0011] 所述的好氧反应器通过好氧竖井连接高浊度净化器;所述好氧竖井的入水口位于好氧反应器上部,好氧竖井的出水口位于高浊度净化器的底部;所述的好氧竖井的出水口与高浊度净化器的底部进水口通过2#进水管相接,所述的2#进水管为横向设置,并在2#进水管上设有管道混合器;
[0012] 所述的高浊度净化器从下往上依次分为悬浮区、澄清区、过滤区,所述悬浮区的设备结构为倒锥形,使得流速逐渐减慢,是矾花形成和逐渐长大的区域;所述澄清区的罐体截面最大,使向上流速达最慢,以利于矾花在此沉降;所述过滤区设置在高浊度净化器中部,使澄清后的水再经过滤料层过滤,进一步的深度处理;
[0013] 所述的加药装置为圆筒状,加药装置上方设有搅拌桨,加药装置出口设置有计量,控制加药量,加药装置与管道混合器相连,利用管道混合器内的叶片起到很好的搅拌作用;
[0014] 所述的污泥处理系统,位于高浊度净化器的下部中,包括中央排泥桶、污泥辐射管和污泥浓缩室;所述的中央排泥桶与污泥浓缩室通过污泥辐射管相连;
[0015] 所述的高浊度净化器的过滤区上设置有滤料反冲洗管,滤料反冲洗管的管道上面设置有开关,当滤料出现堵塞时,可以通过开关阀门,从清水池中通过反冲洗泵泵入清水进行滤料的反冲洗;
[0016] 所述的污泥浓缩室和好氧反应器与罐体外部的污泥收集池相连,将污泥浓缩室的污泥和好氧反应器的污泥排入到污泥收集池后再进行脱水干化。
[0017] 优选的,所述过滤区采用双层滤料,下层滤料为直径为1.2—1.8mm烟煤,上层滤料为0.5—1.0mm的石英砂。
[0018] 优选的,所述高浊度净化器还设有强制出水管,所述的强制出水管横向设置于高浊度净化器的污泥浓缩室的上部,强制出水管设置有开关阀门,强制出水管与滤料反冲洗管相连,污泥浓缩室静止沉淀后的污泥上清液澄清,浊度可达到5NTU以内,可通过强制出水管流入到滤料反冲洗管直接排入到清水池。借助于高浊度净化器本身的高程,强制出水管中的水能自动回流到清水池中,可以增加净水器的产水量,提高出水水量;强制出水与高浊度净化器的悬浮层联通,可以维持泥渣平衡,稳定悬浮层。这样即可增加污泥浓缩室中的污泥浓度,达到延长排泥周期的效果,减少排泥时的耗水量。
[0019] 优选的,所述加药装置用于投放混凝剂,所述的混凝剂为聚合氯化或者聚或者聚丙烯酰胺。
[0020] 优选的,所述污泥辐射管设置为4-8根,均匀分布于中央排泥桶的下部,设置度为向下倾斜30-45度。
[0021] 本实用新型同现有技术相比具有明显的优点和有益效果。由以上技术方案可知,本实用新型有以下优点:第一,创造性的将厌氧处理和好氧处理及高浊度水处理工艺结合在一个罐体内,占地面积小,仅为传统工艺占地面积的几分之一;第二,没有传统的二沉池、污泥回流泵和管道系统,结构更加简便,容易操作;第三,和传统操作系统比,建设和维护成本显著降低;第四,生化处理及悬浮物处理效果优秀,处理效果稳定,出水达到污水的排放、中水回用或杂用水回用的各项指标要求,特别适于有机物含量高、氮高且高浊度的工业废水;第五,适用于现有系统的改善和翻新。第六,通过用钢制结构进行特殊设计,使用竖井,使得污水只需要一次提升而后续为自流,大大节约了能源
[0022] 克服了场地限制、工期紧张、现有工艺制约等困难,结构简单,操作方便,管理简单,节约能耗,出水水质稳定且达标。附图说明
[0023] 图1是本实用新型的结构示意图;
[0024] 图2是本实用新型图1中的A-A剖面图。
[0025] 其中:1、1#进水管;2、厌氧反应器;3、厌氧竖井;4、好氧反应器;5、曝气管;6、软性填料;7、好氧竖井;8、2#进水管;9、悬浮区;10、澄清区;11、过滤区;12、清水管;13、中央排泥桶;14、污泥辐射管;15、污泥浓缩室;16、强制出水管;17、滤料反冲洗管;18、三相分离器;19、沉淀区;20、反射板;21、气室;22、管道混合器;23、加药装置。

具体实施方式

[0026] 如图1所示,一种处理高浓度、高浊度有机废水的一体化净化装置,包括厌氧反应器2、好氧反应器4、高浊度净化器、污泥处理系统和加药装置23;所述的一体化净化装置为圆桶状,最外层为厌氧反应器2,中间层为好氧反应器4,最里层为高浊度净化器;
[0027] 所述的厌氧反应器2采用上流式厌氧污泥床-UASB,包括反应区和三相分离器18;所述的反应区包括污泥床和悬浮污泥层,所述的污泥床位于厌氧反应器2的底部,是浓度较高的污泥层,所述的悬浮污泥层位于污泥床的上部,是浓度较低的的污泥层;废水从污泥床的底部进入,与污泥床中的污泥进行混合接触,微生物分解废水中的有机物产生沼气,微小的沼气泡在上升过程中,不断合并,逐渐形成较大的沼气泡;由于气泡上升产生较强烈的搅动,在污泥床上部形成悬浮污泥层;
[0028] 所述的三相分离器18为气,液,固三相分离器,包括反射板20、气室21、沉淀区19;所述的三相分离器18设置在厌氧反应器2的顶部,位于反应区的悬浮污泥层的上方;沼气、废水和污泥的混合液从反应区上升至三相分离器18内,沼气气泡碰到三相分离器18下部的反射板20时,折向气室21而被有效的分离排出;污泥和废水则经孔道进入三相分离器18的沉淀区19,在重力作用下,上清液从沉淀区19上部排出,沉淀区19下部的污泥沿着斜壁返回到反应区。在一定的水力负荷下,绝大部分污泥颗粒能保留在反应区内,使反应区具有足够的污泥量。
[0029] 所述的厌氧反应器2通过厌氧竖井3连接好氧反应器4;所述厌氧竖井3的入水口位于厌氧反应器2上部,厌氧竖井3的出水口位于好氧反应器4的底部;
[0030] 所述的好氧反应器4,为SBR反应器,即序批式间歇活性污泥反应器;包括曝气管5和软性填料6,所述曝气管5位于好氧反应器4的底部,所述软性填料6位于好氧反应器4的下半部,为整体高度的1/3处;好氧反应器4主要是在运行上的有序和间歇操作,在好氧反应器4中周期性循环进行进水,曝气,沉淀和滗水过程,将生物反应过程和泥水分离过程结合在一个池子中完成,以时间分割替代了空间分割,生物降解和沉淀均可在稳态下进行。
[0031] 所述的好氧反应器4通过好氧竖井7连接高浊度净化器;所述好氧竖井7的入水口位于好氧反应器4上部,好氧竖井7的出水口位于高浊度净化器的底部;所述的好氧竖井7的出水口与高浊度净化器的底部进水口通过2#进水管8相接,所述的2#进水管8为横向设置,并在2#进水管8上设有管道混合器22;
[0032] 所述的高浊度净化器从下往上依次分为悬浮区9、澄清区10、过滤区11,所述悬浮区9的设备结构为倒锥形,使得流速逐渐减慢,是矾花形成和逐渐长大的区域;所述澄清区10的罐体截面最大,使向上流速达最慢,以利于矾花在此沉降;所述过滤区11设置在高浊度净化器中部,使澄清后的水再经过滤料层过滤,进一步的深度处理。
[0033] 所述的加药装置23为圆筒状,加药装置23上方设有搅拌桨,加药装置23出口设置有计量泵,控制加药量,加药装置23与管道混合器22相连,利用管道混合器22内的叶片起到很好的搅拌作用;
[0034] 所述的污泥处理系统,位于高浊度净化器的下部中,包括中央排泥桶13、污泥辐射管14和污泥浓缩室15。所述的中央排泥桶13与污泥浓缩室15通过污泥辐射管14相连;
[0035] 所述的高浊度净化器的过滤区上设置有滤料反冲洗管17,滤料反冲洗管17的管道上面设置有开关阀门,当滤料出现堵塞时,可以通过开关阀门,从清水池中通过反冲洗泵泵入清水进行滤料的反冲洗;
[0036] 所述的污泥浓缩室15和好氧反应器4与罐体外部的污泥收集池相连,将污泥浓缩室15的污泥和好氧反应池4的污泥通过排泥管排入到污泥收集池后再进行脱水干化。
[0037] 其中,所述过滤区11采用双层滤料,下层滤料为直径为1.2—1.8mm无烟煤,上层滤料为0.5—1.0mm的石英砂。
[0038] 其中,所述高浊度净化器还设有强制出水管16,所述的强制出水管16横向设置于高浊度净化器的污泥浓缩室15的上部,强制出水管16设置有开关阀门,强制出水管16与滤料反冲洗管17相连,污泥浓缩室15静止沉淀后的污泥上清液澄清,浊度可达到5NTU以内,可通过强制出水管16流入到滤料反冲洗管17直接排入到清水池;借助于高浊度净化器本身的高程,强制出水管16中的水能自动回流到清水池中,可以增加产水量,提高出水水量;强制出水管16与高浊度净化器的悬浮层9联通,可以维持泥渣平衡,稳定悬浮层9,这样即可增加污泥浓缩室15中的污泥浓度,达到延长排泥周期的效果,减少排泥时的耗水量。
[0039] 其中,所述加药装置23用于投放混凝剂,所述的混凝剂为聚合氯化铝或者聚铁或者聚丙烯酰胺。
[0040] 其中,所述污泥辐射管14设置为4-8根,均匀分布于中央排泥桶13的下部,设置角度为向下倾斜30-45度。
[0041] 污水处理原理:首先通过提升水泵将调节池中的污水经过1#进水管1进入到厌氧反应器2,厌氧反应器2的上端设置有三相分离器18,三相分离器18下端为沉淀区19,污水在水解酸化厌氧反应器中停留10—12小时,厌氧反应器2采用上流式厌氧污泥床-UASB,包括反应区和三相分离器18,微生物分解污水中的有机物产生沼气,微小的沼气泡在上升过程中,不断合并,逐渐形成较大的沼气泡;由于气泡上升产生较强烈的搅动,在污泥床上部形成悬浮污泥层;沼气、废水和污泥的混合液从反应区上升至三相分离器18内,沼气气泡碰到三相分离器18下部的反射板20时,折向气室21而被有效的分离排出;污泥和废水则经孔道进入三相分离器18的沉淀区19,在重力作用下,上清液从沉淀区19上部排出,沉淀区19下部的污泥沿着斜壁返回到反应区。在一定的水力负荷下,绝大部分污泥颗粒能保留在反应区内,使反应区具有足够的污泥量。经过厌氧反应器2处理后的污水,从厌氧反应器2的顶部通过厌氧竖井3自流到SBR好氧反应器4中,在SBR好氧反应器4里周期性的循环,通过曝气管5进行曝气,并在软性填料6上挂膜,水力停留时间为6小时,然后自流到好氧竖井7通过切向的2#进水管8进入高浊度净化器,依次通过高浊度净化器的悬浮区9,澄清区10,过滤区11,高浊度净化器中共有四个反应阶段,其中第一阶段,混凝,将厌氧反应器2和好氧反应器4处理后的污水通过2#进水管8切向相接,使污水的水流旋转,也起搅拌作用,并且在2#进水管8上设置管道混合器22,将聚合氯化铝或者聚铁或者聚丙烯酰胺等混凝剂通过加药装置23加入到管道混合器22中,利用管道混合器22内的叶片起到很好的搅拌作用,以一定速度把经过厌氧反应器2和好氧反应器4处理后的污水与混凝剂充分均匀混合。第二阶段,悬浮,悬浮区9是矾花形成和逐渐长大的区域,要求逐渐减缓搅拌速度,减小水流对絮凝体矾花的“剪力”,以免将大矾花打碎,此处悬浮区9设置为流速逐渐减慢的倒锥形。第三阶段,澄清,澄清区10的罐体截面最大,使向上流速最慢,以利于矾花在此沉降。第四阶段,过滤,过滤区11采用直径为1.2—1.8mm无烟煤和0.5—1.0mm的石英砂组成双层滤料过滤区,使澄清后的水经过滤料层进一步过滤。最后过滤后的水通过清水管12排入外面的清水池。
[0042] 高浊度净化器运行中,泥渣不断增加,凝聚后沉降的污泥溢入中央排泥桶13内,通过中央排泥桶13下方的污泥辐射管14进入污泥浓缩室15沉降,达到一定的污泥浓度和工作周期后,即开启排泥阀向外部设置的污泥收集池进行排泥。
[0043] 污泥浓缩室15静止沉淀后的污泥上清液会通过强制出水管16流入到滤料反冲洗管17排进到清水池;设备内的过滤区11上设置有滤料反冲洗管17,连接清水池;滤料反冲洗管17的管道上面设置有开关阀门,当滤料出现堵塞时,可以通过开关阀门,从清水池中通过反冲洗泵泵入清水进行滤料的反冲洗。
[0044] 污泥浓缩室15的污泥,SBR好氧反应池4的污泥排入到污泥收集池后再进行脱水干化,压滤后的污泥定期由汽车外运倒入指定渣场,压滤后的滤液返回到调节池。
[0045] 经处理后废水中化学需氧量COD含量低于60-80mg/L,生物需氧量BOD含量低于30mg/L,pH为6-9,浊度为1-3NTU,达标排放或者达到中水回用标准或者是杂用水回用的指标要求。
[0046] 以上所述,仅是本实用新型的较佳实施例而已,并非对本实用新型作任何形式上的限制,任何未脱离本实用新型技术方案内容,依据本实用新型的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本实用新型技术方案的范围内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈