首页 / 专利库 / 变压器和转换设备 / 离网逆变器 / ASIC book to provide ESD protection on an integrated circuit

ASIC book to provide ESD protection on an integrated circuit

阅读:461发布:2022-08-10

专利汇可以提供ASIC book to provide ESD protection on an integrated circuit专利检索,专利查询,专利分析的服务。并且An ASIC book comprising a gate-array format of ESD components is provided. A customized, optimized and tuned ESD network can be constructed from the ASIC book. Novel ESD circuitry having inter-rail ESD circuitry and single-rail ESD circuitry can be constructed. The inter-rail ESD circuitry is scaleable and comprises one or more diode strings for interconnecting a pair of power rails. The ESD trigger voltage for a diode string is set by the number of diodes within the customized diode string and preferably a sufficient number of diodes are provided within each diode string for power-up and power-down sequence independence. The single-rail ESD circuitry is connected to a level-shifter and may comprise an RC discriminator comprising a customizable plurality of NFET transistors connected in series. The RC discriminator may be connected to a clamping transistor via a buffering circuit, such as an inverter stage, that isolates the gate capacitance of the clamping transistor from the RC discriminator. In a second aspect of the invention an ASIC book comprising a gate-array format of ESD components is provided. A customized, optimized and tuned ESD network can be constructed from the ASIC book.,下面是ASIC book to provide ESD protection on an integrated circuit专利的具体信息内容。

The invention claimed is:1. An integrated circuit (IC) chip comprising:an electrostatic discharge (ESD) network circuit including:a first, a second and a third power rail;a first RC discriminator network formed from at least a first resistor element selected from a plurality of resistor elements and at least a first capacitor element selected from a plurality of capacitor elements;a first clamp between the first and the third power rails, the first clamp being operatively controlled by the first RC discriminator network and selected from a plurality of gate elements;a second RC discriminator network formed from at least a second resistor element selected from the plurality of resistor elements and at least a second capacitor element selected from the plurality of capacitor elements; anda second clamp between the second and the third power rails, the second clamp being operatively controlled by the second RC discriminator network and selected from the plurality of gate elements; andat least two diode elements between the first and the second power rails for providing power-up sequence independence or power-down sequence independence between the first and the second power rails, the at least two diode elements being a selection from a plurality of diode elements;wherein the plurality of gate elements and the plurality of resistor elements and the plurality of capacitor elements and the plurality of diode elements are configured in gate array format on the integrated circuit chip.2. The ESD network of claim 1 further comprising:a first plurality of inverters connected between the first RC discriminator network and the first clamp; anda second plurality of inverters connected between the second RC discriminator network and the second clamp.3. The integrated circuit (IC) chip of claim 2, wherein each inverter of the plurality of inverters includes a plurality of Field Effect Transistors (FETs).4. The integrated circuit (IC) chip of claim 2, wherein the plurality of the capacitor resistor and diodes elements selected are interconnected by final metallization interconnections.5. The integrated circuit (IC) chip of claim 1, wherein the plurality of resistor elements includes at least one Field Effect Transistor (FET).6. The integrated circuit (IC) chip of claim 1, wherein at least one of the first and the second resistor elements includes at least two Field Effect Transistors (FETs) connected to each other in series.7. The integrated circuit (IC) chip of claim 6, wherein the two Field Effect Transistors (FETs) connected to each other in series are wired within the ESD network circuit so that the same quantity of electric current passes through both of the two transistors and into the respective first or second capacitor during operation.8. An ESD network comprising:a first, a second and a third power rail;a first RC discriminator network formed from at least a first resistor element selected from a plurality of resistor elements and at least a first capacitor element selected from a plurality of capacitor elements;a first clamp between the first and the third power rails, the first clamp being operatively controlled by the first RC discriminator network and selected from a plurality of gate elements;a second RC discriminator network formed from at least a second resistor element selected from the plurality of resistor elements and at least a second capacitor element selected from the plurality of capacitor elements; anda second clamp between the second and the third power rails, the second clamp being operatively controlled by the second RC discriminator network and selected from the plurality of gate elements; andat least two diode elements between the first and the second power rails for providing power-up sequence independence or power-down sequence independence between the first and the second power rails, the at least two diode elements being a selection from a plurality of diode elements;wherein the plurality of gate elements and the plurality of resistor elements and the plurality of capacitor elements and the plurality of diode elements are configured in gate array format on a semiconductor chip.9. The ESD network of claim 8, wherein the at least a first resistor element includes at least one Field Effect Transistor (FET).10. The ESD network of claim 9, wherein at least a first resistor element includes at least two Field Effect Transistors (FETs) connected to each other in series.11. The ESD network of claim 10, wherein the two Field Effect Transistors (FETs) connected to each other in series are wired within the ESD network so that the same quantity of electric current passes through both of the two transistors and into the first capacitor element during operation.12. The ESD network of claim 11, further comprising a first plurality of inverters operatively connected between the first RC discriminator network and the first clamp, and a second plurality of inverters operatively connected between the second RC discriminator network and the second clamp, wherein each inverter of each plurality of inverters includes a plurality of Field Effect Transistors (FETs).13. The ESD network of claim 8, wherein the plurality of the capacitor, resistor and diodes elements selected are interconnected by final metallization interconnections.

说明书全文

This application is a divisional of Ser. No. 09/224,766, U.S. Pat. No. 6,157,530 filed on Jan. 4, 1999.

FIELD OF THE INVENTION

The present invention generally relates to electrostatic discharge (ESD) and electrical overstress (EOS) protection circuitry and more particularly to ESD and EOS protection circuitry for electronic circuits employing multiple power supply rails.

BACKGROUND OF THE INVENTION

Techniques for protecting integrated circuits from large, undesirable current and voltage signals (e.g., ESD, EOS, etc.) are well known, particularly for integrated circuits employing a single power supply rail (hereinafter “power rail”). In single power rail systems, ESD and EOS protection circuitry (hereinafter “ESD circuitry”) need only be provided between a single power rail and a reference power rail such as ground (hereinafter “reference rail”). More recently, multiple power rail applications such as mixed-voltage interface circuitry, dynamic random access memory (DRAM) circuitry and the like have necessitated ESD protection between multiple power rails as well as between each power rail and ground.

Many multiple power rail applications have the additional requirement that power rails must be able to be powered-up or powered-down in any sequence without generating wasteful or harmful voltage or current conditions between the power rails (i.e., a sequence independence or power-up/power-down independence requirement). For example, an interface circuit between a printer and a computer should prevent current flow between the computer and the printer when only one of the computer and the printer is ON.

One conventional technique for providing multiple power rail, sequence independent ESD circuitry is disclosed in commonly assigned U.S. Pat. No. 5,610,791 to Voldman and is described with reference to FIG.

1

. Specifically,

FIG. 1

shows conventional ESD circuitry

101

which comprises a first single-rail ESD circuit

103

a

connected between a first power rail (V

DD1

) and a reference rail (V

SS

) (e.g., ground), a second single-rail ESD circuit

103

b

connected between a second power rail (V

DD2

) and the reference rail (V

SS

), and an inter-rail ESD circuit

105

connected between the first and the second power rails (V

DD1), (V

DD2

). As described below, each single-rail ESD circuit

103

a

,

103

b

produces a low impedance path between the single-rail ESD circuit's respective power rail and the reference rail (V

SS

) in response to an ESD impulse on the respective power rail so that the ESD impulse's energy is harmlessly dissipated (i.e., providing“single-rail” ESD protection). Similarly, the inter-rail ESD circuit

105

produces a low impedance path between the first and the second power rails (V

DD1

), (V

DD2

) in response to an ESD impulse applied therebetween so that the ESD impulse's energy is harmlessly dissipated (i.e., providing“inter-rail” ESD protection). A control connection

107

within the inter-rail ESD circuit

105

prevents the inter-rail ESD circuit

105

from dissipating current between the first and the second power rails (V

DD1

), (V

DD2

) in a sequence independent manner (as described below).

The first single-rail ESD circuit

103

a

comprises a plurality of p-channel metal-oxide-semiconductor field-effect-transistors (PFETs), specifically a first PFET

109

and a second PFET

111

, and a first capacitor

113

. The first PFET

109

has a source lead “S” and well lead “W” connected to the first power rail (V

DD1

), a gate lead “'G” connected to the reference rail (V

SS

), and a drain lead “D” connected to the gate lead “G” of the second PFET

111

and to the reference rail (V

SS

) via the first capacitor

113

. The second PFET

111

has a source lead “S” and a well lead “W” connected to the first power rail (V

DD1

) and a drain lead “D” connected to the reference rail (V

SS

). The second single-rail ESD circuit

103

b

comprises a third PFET

115

, a fourth PFET

117

and a second capacitor

119

similarly interconnected between the second power rail (V

DD2

) and the reference rail (V

SS

).

In operation, with the gate lead of the first PFET

109

connected to the reference rail (V

SS

) (e.g., ground), the first PFET

109

is ON and behaves as a resistor connected between the gate lead of the second PFET

111

and the first power rail (V

DD1

). The first PFET

109

and the first capacitor

113

thus form an RC discriminator (e.g., a low pass filter) such that the first capacitor

113

can charge quickly enough to track low frequency (e.g., D.C.) voltage changes on the first power rail (V

DD1

). Accordingly, absent a high frequency change in voltage on the first power rail (V

DD1

), the voltage present on the gate of the second PFET

111

and the voltage present on the source of the second PFET

111

remain approximately equal (e.g., VGS=0), and the second PFET

111

remains OFF. However, with the channel resistance R of the first PFET

109

and the capacitance C of the first capacitor

113

properly chosen, the first capacitor

113

is unable to charge quickly enough to track the high frequency voltage changes on the first power rail (V

DD1

) due to an ESD impulse. Accordingly, when an ESD impulse is present on the first power rail (V

DD1

), the voltage present on the gate of the second PFET

111

initially remains unchanged (as the first capacitor

113

charges toward the ESD impulse's voltage) while the source and the well of the second PFET

111

track the voltage of the ESD impulse. The gate-to-source voltage of the second PFET

111

, therefore, exceeds the second PFET

111

's threshold voltage and the second PFET

111

turns ON. With the second PFET

111

ON, a low impedance path is created between the first power rail (V

DD1

) and the reference rail (V

SS

).

The second PFET

111

remains ON until the first capacitor

113

charges to a voltage sufficient to turn OFF the second PFET

111

or until the ESD impulse is dissipated, whichever occurs first. If the charging time for the first capacitor

113

is sufficiently long (as set by the RC time constant of the current path to the first capacitor

113

, which is set by the first PFET

109

and the first capacitor

113

), the second PFET

111

will remain ON long enough for the ESD impulse to be harmlessly dissipated (e.g., to ground). The second single-rail ESD circuit

103

b behaves identically with respect to the second power rail (V

DD2

).

The inter-rail ESD circuit

105

comprises a fifth PFET

121

and a first PNP transistor

123

. The fifth PFET

121

has a gate lead “G” connected to the second power rail (V

DD2

), a source lead “S” connected to the first power rail (V

DD1

) and a drain lead “D” connected to the well “W” of the fifth PFET

121

and to the well “W” (e.g., the base) of the first PNP transistor

123

via the control connection

107

(forming a node

107

′). The first PNP transistor

123

has a collector lead “C” connected to the first power rail (V

DD1

) and an emitter lead “E” connected to the second power rail (V

DD2

). For reasons described below, the fifth PFET

121

is sized much smaller than the first PNP transistor

123

and the first PNP transistor

123

is symmetrically doped.

When an ESD impulse is present across the first and the second power rails (V

DD1

), (V

DD2

), the fifth PFET

121

has little affect on the response of the first PNP transistor

123

(due to its small size relative to the first PNP transistor

123

). For instance, with an ESD impulse induced on the first power rail (V

DD1

) relative to the second power rail (V

DD2

), the collector of the first PNP transistor

123

is pulled high rapidly via the ESD impulse and the first PNP transistor

123

's collector-base junction is forward biased while the first PNP transistor

123

's emitter-base junction is reverse biased. The first PNP transistor

123

thereby is turned ON, current flows from the first power rail (V

DD1

) to the second power rail (V

DD2

) and the ESD impulse is harmlessly dissipated. Base current is “forced” through the fifth PFET

121

during dissipation of the ESD impulse.

Similarly, with an ESD impulse induced on the second power rail (V

DD2

) relative to the first power rail (V

DD1

), the first PNP transistor

123

's emitter is pulled high rapidly via the ESD impulse and the first PNP transistor's emitter-base junction is forward biased while the first PNP transistor

123

's collector-base junction is reverse biased. The first PNP transistor

123

thereby is turned ON, current flows from the second power rail (V

DD2

) to the first power rail (V

DD1

) and the ESD impulse is harmlessly dissipated. Again, base current is forced through the fifth PFET

121

during dissipation of the ESD impulse.

The primary role of the fifth PFET

121

is to provide sequence independence between the first and the second power rails (V

DD1

), (V

DD2

). For example, if the first and the second power rails (V

DD1

), (V

DD2

) are initially at ground potential, a typical power-on sequence might comprise raising the first power rail (V

DD1

) to a first voltage (e.g., 2.5 v) prior to raising the second power rail to a second voltage (e.g., 3.3 v). With the first power rail (V

DD1

) at the first voltage while the second power rail (V

DD2

) is grounded, the fifth PFET

121

is turned ON and the node

107

′ is raised (e.g., charged) to the first voltage.

The base-collector junction of the first PNP transistor

123

is unbiased and the base-emitter junction of the first PNP transistor

123

is reverse biased. Accordingly, the first PNP transistor

123

remains OFF.

When the second power rail (V

DD2

) is raised to the second voltage (e.g., 3.3 v), the fifth PFET

121

turns OFF. The node

107

′ charges from the first voltage to approximately the second voltage minus the forward voltage of the first PNP transistor

123

's base-emitter junction and the first PNP transistor

123

remains OFF. If the first power rail (V

DD1

) thereafter is grounded, the first PNP transistor

123

's base-emitter junction remains insufficiently forward biased for the first PNP transistor

123

to turn ON. Accordingly, the first and the second power rails (V

DD1

), (V

DD2

) may be powered-up or powered-down in any sequence without generating wasteful or harmful voltage or current conditions between the first and the second power rails (V

DD1

), (V

DD2

).

The conventional ESD circuitry

101

of

FIG. 1

provides excellent ESD protection for integrated circuits employing power rail voltages of at least 2.5 volts (e.g., V

DD1

=2.5 v, V

DD2

=3.3 v, etc.). However, for circuitry employing lower voltage power rails (e.g., V

DD1

=1.8 v, V

DD2

=2.5 v, etc.), the “ESD trigger voltage” required to turn ON the first PNP transistor

123

(e.g., about 9 volts) is too large to prevent damage to the smaller dimension transistors (e.g., MOSFETS having lower snap-back voltages) typically employed within lower power rail voltage integrated circuits. Because there exists no easy method for reducing the ESD trigger voltage of the first PNP transistor

123

the conventional ESD circuitry

101

of

FIG. 1

cannot be scaled for use with lower power rail voltage integrated circuits.

In addition to lacking scaleability, the conventional ESD circuitry

101

also is difficult to tune. Specifically, gate capacitance contributions from the second PFET

111

affect the RC characteristics of the low pass filter formed from the first PFET

109

and the first capacitor

113

, and must be considered during the selection of the first capacitor

113

. Similarly, gate capacitance contributions from the fourth PFET

117

affect the RC characteristics of the low pass filter formed from the third PFET

115

and the second capacitor

119

, and must be considered during the selection of the second capacitor

119

. The second and the fourth PFETs

111

,

117

, therefore, cannot be optimized without affecting the selection of the first and the second capacitors

113

,

119

, and vice versa. Further, many designers prefer non-PFET based circuit designs due to the threshold-voltage dependence associated with PFETs that can lead to high temperature thermal runaway in PFET based networks.

Accordingly, a need exists for a method and apparatus for providing scaleable ESD protection with predictable RC characteristics that ensure proper ESD impulse dissipation. Such a method and apparatus will alleviate the need for ESD circuitry redesign for each successive generation of lower voltage circuitry.

SUMMARY OF THE INVENTION

To address the needs of prior art multiple power rail ESD circuitry, in a first aspect of the invention, ESD circuitry is provided that has both inventive inter-rail ESD protection (e.g., for use between power rails) and inventive single-rail ESD protection (e.g., for use between each power rail and a reference rail such as ground). Unlike conventional inter-rail ESD circuitry, the inventive inter-rail ESD circuitry is completely scalable and therefore may be used with any power rail voltages. The novel inter-rail ESD circuitry comprises one or more sets of series connected diodes (i.e., one or more diode strings) for interconnecting each pair of power rails. Preferably two diode strings are connected between each pair of power rails so as to provide sequence independence for each power rail (e.g., the number of diodes within each diode string preferably comprises at least the number of diodes required to prevent conduction of the diode string when one power rail within a power rail pair is grounded). The number of diodes within a diode string also sets the trigger voltage for ESD protection. Accordingly, to scale the inventive inter-rail ESD circuitry, the number of diodes within each diode string is increased or decreased as needed so as to adjust the ESD trigger voltage.

The inventive single-rail ESD circuitry comprises an RC discriminator (e.g., a low pass filter) connected between a power rail and a reference rail (e.g., ground) that controls the operation of a transistor responsible for creating a low impedance path between the power rail and the reference rail (i.e., a clamping transistor) so as to dissipate an ESD impulse present on the power rail. However, unlike conventional single-rail ESD circuits, the inventive single-rail ESD circuitry comprises a mechanism for isolating the RC discriminator from the clamping transistor.

The isolating mechanism eliminates the influence of the clamping transistor's gate capacitance on the RC characteristics of the RC discriminator controlling the clamping transistor and thus allows the size or other properties of the clamping transistor to be varied without affecting the ESD impulse dissipation behavior of the RC discriminator. Preferably, the isolating mechanism comprises a plurality of inverters, most preferably a plurality of CMOS inverters.

Additionally, the clamping transistor preferably comprises an n-channel MOSFET (hereinafter “NFET”) to eliminate any possibility of high temperature thermal runaway during operation of the inventive ESD circuitry.

In a second aspect of the invention, an electronic network is provided comprising a gate-array format of resistors, capacitors, p-channel and n-channel MOSFETs (i.e., a sea of gate elements), diodes (e.g., bipolar transistors) and the like (i.e., an ESD repository of ESD components) employable to construct, optimize, customize and tune ESD networks (e.g., for application specific integrated circuit (ASIC) applications). As used herein the term gate-array means an integrated circuit containing a plurality of unconnected devices that may be interconnected via final metallization steps or other known processes or techniques (i.e., an interconnection method) according to a user specified pattern so as to achieve a user specified function. Preferably, the components within the ESD repository are optimized for ESD/EOS protection.

By employing an ESD repository, ESD networks can be optimized and customized for each user's specific circuit implementation. For example, if the inventive ESD circuitry is used, the RC characteristics of each RC discriminator may be tuned so as to affect optimal ON times for each clamping transistor, the size of each clamping transistor may be varied for optimum ESD protection, the number of diodes within each diode string may be varied to achieve sequence independence or dependence and/or to adjust the ESD trigger voltage, etc.

In a third aspect of the invention, a method for automatically generating a custom ESD network for an integrated circuit is provided. The custom ESD network preferably is generated from components within the inventive gate-array format ESD repository described above based on one or more characteristics of the integrated circuit. Preferably, a user provides the chip size and the chip capacitance for the integrated circuit and based thereon the components for a customized ESD network are automatically selected. The ESD behavior of an ESD network employing the selected components then is simulated to determine if the level of ESD protection provided by the network is adequate. If the level of ESD protection is adequate, the customized ESD network is created (e.g., from the components within the ESD repository); otherwise the various components within the customized ESD network are tuned (e.g., the RC characteristics of each RC discriminator are varied, the width and length of the employed transistors, such as the clamping transistors, are varied, etc.) and the ESD behavior of an ESD network employing the tuned components is simulated to determine the adequacy of the ESD protection provided. This procedure is repeated until adequate ESD protection results. A highly effectively ESD network thereby is provided.

Other objects, features and advantages of the present invention will become more fully apparent from the following detailed description of the preferred embodiments, the appended claims and the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is described with reference to the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements. Additionally, the left-most digit of a reference number identifies the drawing in which the reference number first appears.

FIG. 1

is a schematic diagram of conventional ESD circuitry as previously described;

FIG. 2

is a block diagram of the main functional units of inventive ESD circuitry for providing ESD and EOS protection within a multiple power rail application in accordance with a first aspect of the invention;

FIG. 3

is a schematic diagram of inventive ESD circuitry that represents a preferred embodiment for the ESD circuitry of

FIG. 2

;

FIG. 4

is a schematic diagram of an inventive ASIC book of gate-array format ESD components and functional blocks for use in constructing customized ESD networks in accordance with a second aspect of the invention; and

FIG. 5

is a flowchart of an inventive method for automatically generating a custom ESD network in accordance with a third aspect of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

FIG. 2

is a block diagram of the main functional units of inventive ESD circuitry

201

for providing ESD and EOS protection within a multiple power rail application in accordance wish a first aspect of the invention. For illustrative purposes only, the ESD circuitry

201

is described with reference to a two power rail integrated circuit comprising a first power rail (V

DD1

), a second power rail (V

DD2

) and a reference rail (V

SS

) (e.g., a ground plane). It will be understood that the inventive ESD/EOS protection concepts described herein may be employed with integrated circuits having any number of power rails.

With reference to

FIG. 2

, the inventive ESD circuitry

201

comprises a first single-rail ESD circuit

203

a

connected between the first power rail (V

DD1

) and the reference rail (V

SS

), a second single-rail ESD circuit

203

b

connected between the second power rail (V

DD2

) and the reference rail (V

SS

), and an inter-rail ESD circuit

205

connected between the first and the second power rails (V

DD1

), (V

DD2

). As described below, each single-rail ESD circuit

203

a

,

203

b

provides a low impedance path between the single-rail ESD circuit's respective power rail and the reference rail (V

SS

) in response to an ESD impulse on the respective power rail so that the ESD impulse's energy is harmlessly dissipated (e.g., to ground). Similarly, the inter-rail ESD circuit

205

provides a low impedance path between the first and the second power rails (V

DD1

), (V

DD2

) in response to an ESD impulse applied therebetween so that the ESD impulse's energy is harmlessly dissipated.

The first single-rail ESD circuit

203

a

comprises a first RC discriminator

207

, first inverter logic

209

and a first clamp

211

, each connected between the first power rail (V

DD1

) and the reference rail (V

SS

). The first RC discriminator

207

is connected to the first clamp

211

via the first inverter logic

209

.

The second single-rail ESD circuit

203

b

comprises a second RC discriminator

213

, second inverter logic

215

and a second clamp

217

, each connected between the second power rail (V

DD2

) and the reference rail (V

SS

). The second RC discriminator

213

is connected to the second clamp

217

via the second inverter logic

215

. A level shifter

219

within the inventive ESD circuitry

201

reduces the voltage applied across the second clamp

217

so as to reduce stress on the second clamp

217

.

In operation, the first RC discriminator

207

generates an output signal in response to an ESD impulse on the first power rail (V

DD1

). The output signal is buffered by the first inverter logic

209

and turns on the first clamp

211

for a time period primarily set by the RC characteristics of the first RC discriminator

207

. The first clamp

211

thereby creates a low impedance path between the first power rail (V

DD1

) and the reference rail (V

SS

) that harmlessly dissipates the ESD impulse.

Unlike the first RC discriminator of the first single-rail ESD circuit

103

a

of

FIG. 1

, the first RC discriminator

207

of the first single-rail ESD circuit

203

a

is isolated from its clamping transistor (e.g., the first clamp

211

). As such, any capacitance associated with the first clamp

211

(e.g., gate capacitance) does not affect the RC characteristics of the first RC discriminator

207

. Accordingly, properties of the first clamp

211

(e.g., size) can be optimized without requiring the first RC discriminator

207

to be re-tuned. Greater control over the first RC discriminator

207

and the first clamp

211

thereby is provided. The second single-rail ESD circuit

203

b

behaves identically to the first single-rail ESD circuit

203

a

with respect to the second power rail (V

DD2

) and provides similar isolation between the second RC discriminator

213

and the second clamp

217

via the second inverter logic

215

. More specific operational details of the first and the second single-rail ESD circuits

203

a

,

203

b

are explained below with reference to the preferred embodiment for the inventive ESD circuitry

201

shown in FIG.

3

.

The inter-rail ESD circuit

205

comprises a first diode string

221

and a second diode string

223

both connected between the first and the second power rails (V

DD1

), (V

DD2

). Each diode string

221

,

223

allows conduction between the first and the second power rails (V

DD1

), (V

DD2

) in a different direction. For example, an ESD impulse on the first power rail (V

DD1

) relative to the second power rail (V

DD2

) may cause the first diode string

221

to conduct and dissipate the ESD impulse. Likewise, an ESD impulse on the second power rail (V

DD2

) relative to the first power rail (V

DD1

) may cause the second diode string

223

to conduct and dissipate the ESD impulse.

To achieve power-up and power-down sequence independence between the first and the second power rails (V

DD1

), (V

DD2

), the number of diodes within each diode string

221

,

223

preferably is sufficient to prevent conduction between the two power rails when one of the power rails is grounded. The number of diodes within each diode string

221

,

223

sets the ESD trigger voltage for ESD impulse dissipation and is scalable merely by increasing or decreasing the number of diodes with each diode string

221

,

223

. More specific operational details of the first and the second diode strings

221

,

223

are explained below with reference to the preferred embodiment for the inventive ESD circuitry

201

shown in FIG.

3

.

FIG. 3

is a schematic diagram of an ESD circuit

301

that represents a preferred embodiment for the ESD circuitry

201

of FIG.

2

. The ESD circuit

301

comprises the first single-rail ESD circuit

203

a

having the first RC discriminator

207

, the first inverter logic

209

and the first clamp

211

connected between the first power rail (V

DD1

) and the reference rail (V

SS

), the second single-rail ESD circuit

203

b

having the second RC discriminator

213

, the second inverter logic

215

and the second clamp

217

connected between the second power rail (V

DD2

) and the reference rail (V

SS

), the inter-rail ESD circuit

205

having the first and the second diode strings

221

,

223

connected between the first and the second power rails (V

DD1

), (V

DD2

), and the level shifter

219

. A typical voltage for the first power rail (V

DD1

) is 1.8 volts and a typical voltage for the second power rail (V

DD2

) is 2.5 volts.

The first RC discriminator

207

comprises a low pass filter comprising a first resistor

303

connected between the first power rail (V

DD1

) and a first node

305

, and a first capacitor

307

connected between the first node

305

and the reference rail (V

SS

). The first resistor

303

preferably comprises one or more series connected MOSFETs as shown.

The first inverter logic

209

comprises a plurality of complementary metal-oxide-semiconductor (CMOS) inverters, specifically a first CMOS inverter

309

a,

a second CMOS inverter

309

b

and a third CMOS inverter

309

c.

The input of the first CMOS inverter

309

a

is connected to the first node

305

of the first RC discriminator

207

and the output of the third CMOS inverter

309

c

is connected to the first clamp

211

. The first clamp

211

preferably comprises a first n-channel MOSFET

311

(“first NFET

311

”) that serves as a first clamping transistor having a gate lead connected to the output of the third CMOS inverter

309

. A PFET may be similarly employed as the first clamp

211

if an even number of inverters is employed within the first inverter logic

209

.

In operation, the first RC discriminator

207

behaves as a low pass filter such that for low frequency (e.g., D.C) changes in the voltage V

DD1

of the first power rail (V

DD1

), the voltage of the first node

305

(V

305

) is approximately equal to the voltage V

DD1

(e.g., the first capacitor

307

charges quickly enough for the first node

305

to track the voltage V

DD1

). The voltage V

DD1

on the first node

305

is input by the first CMOS inverter

309

a

which in response thereto outputs the voltage V

SS

(e.g., the “inverse” of V

DD1

) to the second CMOS inverter

309

b.

In response to the voltage V

SS

the second CMOS inverter

309

b

outputs the voltage V

DD1

to the third CMOS inverter

309

c

and the third CMOS inverter

309

c

outputs the voltage V

SS

to the gate lead of the first NFET

311

. With the gate lead of the first NFET

311

at the voltage V

SS

(e.g., 0 volts), the first NFET

311

is OFF. The first single-rail ESD circuit

203

a

, therefore, has no affect on the D.C. operation of the ESD circuit

301

.

If the resistance value for the first resistor

303

and the capacitance value for the first capacitor

307

are properly chosen, the first capacitor

307

will be unable to charge quickly enough to track the high frequency voltage increase on the first power rail (V

DD1

) due to an ESD impulse. Accordingly, the voltage present on the input of the first CMOS inverter

309

a

initially remains at a low voltage relative to V

DD1

(e.g., the voltage of the ESD impulse) as the first capacitor

307

charges toward V

DD1

. In response thereto, the first CMOS inverter

309

a

outputs the voltage V

DD1

to the second CMOS inverter

309

b

, the second CMOS inverter

309

b

outputs the voltage V

SS

to the third CMOS inverter

309

c,

the third CMOS inverter outputs the voltage V

DD1

to the gate of the first NFET

311

, and the first NFET

311

turns ON so as to create a low impedance path between the first power rail (V

DD1

) and to reference power-rail (V

SS

)

The first NFET

311

remains ON until the first capacitor

307

charges to a voltage sufficient to cause the first CMOS inverter

309

a

to output the voltage V

SS

(and thus to cause the third CMOS inverter

309

c

to output the voltage V

SS

, which turns OFF the first NFET

311

). Accordingly, if the charging time for the first capacitor

307

is sufficiently long, the first NFET

311

will remain ON long enough to harmlessly dissipate the entire ESD impulse.

The charging time for the first capacitor

307

(and thus the “ON time” for the first NFET

311

) is set by the RC time constant of the current path to the first node

305

(i.e., the first RC time constant). The resistance of the first RC time constant primarily comprises the resistance of the first resistor

303

, and the capacitance of the first RC time constant primarily comprises the capacitance of the first capacitor

307

and the capacitance of the first inverter

309

a

(e.g., gate capacitance). A significant advantage of the present invention is that the first RC time constant is unaffected by the choice of the first clamp

211

so that the ON time of the first clamp

211

can be adjusted merely by tuning the resistance of the first resistor

303

, the capacitance of the first capacitor

307

and the capacitance contributions of the first CMOS inverter

309

a.

The second RC discriminator

213

of the second single-rail ESD circuit

203

b

similarly comprises a second resistor

313

connected between the second power rail (V

DD2

) and a second node

315

, and a second capacitor

317

connected between the second node

315

and the reference rail (V

SS

). The second inverter logic

215

comprises a fourth CMOS go inverter

319

a

having an input connected to the second node

315

, a fifth CMOS inverter

319

b

having an input connected to the output of the fourth CMOS inverter

319

a

, and a sixth CMOS inverter

319

c

having an input connected to the output of the fifth CMOS inverter

319

b.

The second clamp

217

comprises a second NFET

321

having a gate lead connected to the output of the sixth CMOS inverter

319

c.

In the preferred embodiment of

FIG. 3

, the voltage VDD

2

is greater than the voltage V

DD1

and the level shifter

219

is provided to reduce the source-drain voltage, and thus the stress, applied to the second NFET

321

. The level shifter

219

at

FIG. 3

comprises a first diode

323

a

and a second diode

323

b

and thus provides an approximately 1.4 volt level shift (e.g., if V

DD1

=2.5 volts, the voltage applied across the second NFET

321

is approximately 1.1 volts).

The operation of the second single-rail ESD circuit

203

b

is identical to the operation of the first single-rail ESD circuit

203

a

and is not described in detail herein. Most importantly, due to the second inverter logic

215

, the RC time constant of the current path to the second node

315

(i.e., the second RC time constant) is not affected by the gate capacitance of the second NFET

321

and is primarily controlled by the resistance of the second resistor

313

, the capacitance of the second capacitor

317

, and capacitance contributions from the fourth CMOS inverter

319

a.

The ON time of the second clamp

217

, therefore, can be adjusted merely by tuning the second resistor

313

, the second capacitor

317

and the fourth CMOS inverter

319

a.

As stated, the inter-rail ESD circuit

205

comprises the first and the second diode strings

221

,

223

each connected between the first and the second power rails (VDD

1

), (V

DD2

). The first diode string

221

comprises a first plurality of series connected diodes

325

a-d,

and the second diode string

223

comprises a second plurality of series connected diodes

327

a-d.

In the preferred embodiment of

FIG. 3

, each diode string comprises four diodes, each having a forward voltage of about 0.7 volts so that the ESD trigger voltage required to forward bias each diode string is approximately 2.8 volts. It will be understood that any number of diodes may be employed and each diode may have any forward voltage. The preferred number of diodes per diode string is the number of diodes required for power-up and power-down sequence independence (as described below). However, sequence dependence may be desirable in certain applications (e.g., to address a user's particular power supply constraints, different inter-rail differential voltage limits, acceptable leakage levels, temperature sensitivity, etc.).

With a 2.8 volt ESD trigger voltage for each diode string

221

,

223

, and assuming V

DD1

=1.8 volts and V

DD2

=2.5 volts, the first and the second power rails (V

DD1

), (V

DD2

) may be powered-up and powered-down in any sequence without creating a current path between the first and the second power rails (V

DD1

), (V

DD2

). That is, absent an ESD or some other overvoltage condition, the largest voltage that can be present between the first and the second power rails (V

DD1

), (V

DD2

), and thus across the first and the second diode strings

221

,

223

, is 2.5 volts when the first power rail (V

DD1

) is grounded (e.g., V

DD1

=0), and the second power rail (V

DD2

) is ON (e.g., V

DD2

=2.5 volts). In this case, the first plurality of diodes

325

a-d

is reversed biased and is OFF, and the second plurality of diodes

327

a-d

has only about 2.5 volts-1.4 volts=1.1 volts thereacross due to the level shifter

219

, and therefore is insufficiently forward biased to turn ON. Complete sequence independence thereby is provided.

Inter-rail ESD protection is provided with sequence independence. For instance, if an ESD impulse is induced on the first power rail (V

DD1

) relative to the second power rail (V

DD2

) so as to raise the second power rail (V

DD1

) more than 2.8 volts above the second power rail (V

DD2

), the first diode string

221

will conduct and create a low impedance path between the first and the second power rails (V

DD1

), (V

DD2

) that harmlessly dissipates the ESD impulse. Similarly, if an ESD impulse is induced on the second power rail (V

DD2

) relative to the first power rail (V

DD1

) so as to raise the second power rail (V

DD2

) more than 4.2 volts (e.g., 2.8 volts for the second diode string

223

plus 1.4 volts for the level shifter

219

) above the first power rail (V

DD1

), the second diode string

223

will conduct and create a low impedance path between the first and the second power rails (V

DD1

), (V

DD2

) that harmlessly dissipates the ESD impulse.

A significant advantage of the inventive inter-rail ESD circuit

205

is that its ESD trigger voltage is scaleable for use with any power rail voltages merely by increasing or decreasing the number of diodes within each diode string

221

,

223

. That is, increasing the number of diodes increases the ESD trigger voltage, while decreasing the number of diodes decreases the ESD trigger voltage. When the inter-rail ESD circuit

205

is combined with the first and the second single-rail ESD circuits

203

a

,

203

b

, an easily tunable, preferably NFET based, scaleable ESD protection circuit for multiple power rail applications, including low voltage, low power and high performance applications, results.

FIG. 4

is a schematic diagram of an inventive ASIC book

401

of gate-array format ESD components and functional blocks for use in constructing customized ESD networks in accordance with a second aspect of the invention. Specifically, the ASIC book

401

comprises a sea of gate elements

403

comprising a plurality of n-channel transistors

405

and a plurality of p-channel transistors

407

, a plurality of inverter stages

409

, a plurality of diodes

411

, a plurality of diode strings

413

, a plurality of resistor elements

415

and a plurality of capacitor elements

417

for interconnecting between any number of power rails (V

DD1

), (V

DD2

), (V

DD3

) and a reference rail (V

SS

). Within the ESD ASIC book

401

, each component is “unconnected” to other components in typical gate-array format so as to form an ESD repository of user-selectable components. The various components within the ESD repository may be interconnected via an interconnection method such as a final metallization step (e.g., a WRIT B process) or via another known process or technique according to a user-specified pattern so as to achieve a user-specified function.

By employing the ASIC book

401

, ESD networks can be customized and optimized for each user's specific circuit implementation. For example, if the ASIC book

401

is used to form the inventive ESD network

301

of

FIG. 3

, the RC characteristics of the first and the second RC discriminators

207

,

213

may be tuned for optimum ESD/EOS protection by:

1. selecting different resistance value resistors from the plurality of resistor elements

415

for use as the first and the second resistors

303

,

313

;

2. selecting different capacitance value capacitors from the plurality of capacitor elements

417

for use as the first and the second capacitors

307

,

317

; and

3. selecting inverters having different channel width and channel length transistors from the inverter stages

409

for use as the first and the fourth CMOS inverters

309

a

,

319

a.

Resistors and capacitors can be coupled in series or in parallel to affect different resistance and capacitance values and further optimization. Additionally, the size of the first and the second NFETs

311

,

321

may be varied for optimum ESD protection, and the number of diodes within the first and the second diode strings

221

,

223

may be varied to achieve power-up and power-down sequence independence for different power rail voltage applications if desired and/or to adjust the ESD trigger voltage for the diode strings. Other sequence independent or sequence dependent ESD functional blocks may be defined within the ASIC book

401

to address a user's particular power supply constraints, different inter-rail differential voltage limits, acceptable leakage levels, temperature sensitivity, etc.

The elements within the ESD repository preferably are optimized for ESD/EOS protection. For instance, the MOSFETS within the sea of gate elements

403

preferably are provided with large gate-to-contact spacings, local interconnect wiring or contact bars, natural resistor ballasting, series resistance elements, local substrate contacts for NFETs, local well taps for PFETs, etc. The diodes

411

and the diode strings

413

preferably comprise diode fingers that may be wired in series or in parallel to provide single, high perimeter diodes or diode strings between power rails. Additional elements such as grounded gate NFETs (e.g., for use as overvoltage clamps) can be provided within the ASIC book

401

for other ESD network configurations.

Each resistor element within the plurality of resistor elements

415

may comprise any known resistor element such as a BR resistor (e.g., a gate structure which acts as a block mask to form a resistor), an n+ or p+ diffusion resistor, a salicided blocked diffusion resistor, an n-well resistor, etc. Similarly, each capacitor element within the plurality of capacitor elements

417

may comprise any known capacitor element such as a BR capacitor, an n+ or p+ diffusion capacitor, a MOSFET, a metal-to-metal capacitor, a trench capacitor, etc. The diodes

411

and the diode strings

413

may comprise NPN or PNP transistors, and the plurality of inverter stages

409

may comprise CMOS inverter stages. Additionally, the plurality of inverter stages

409

, the plurality of resistor elements

415

or the plurality of capacitor elements

417

may be formed from the sea of gate elements

403

.

FIG. 5

is a flowchart of an inventive method

501

for automatically generating a custom ESD network in accordance with a third aspect of the invention. Specifically, the inventive method

501

allows a customized and optimized ESD network to be generated for an integrated circuit based on one or more characteristics of the integrate circuit (e.g., chip size and chip capacitance) without requiring a user of the method to have an in-depth knowledge of the ESD network generated by the method. Preferably the ESD network generated by the inventive

501

method is the inventive ESD network

301

of

FIG. 3

formed from the ASIC book

401

of

FIG. 4

, although any ESD network may be similarly formed.

With reference to

FIG. 5

, in step

503

the inventive method

501

is started. In step

505

a user specifies the chip size (e.g., the physical layout area of the chip) for the integrated circuit to which ESD protection is to be provided. Thereafter, in step

507

, the user specifies the total chip capacitance of the integrated circuit. Step

507

is the last step requiring user input, and after step

507

control passes to step

509

.

In step

509

, based on the user-specified chip size and user-specified chip capacitance, appropriately valued components for a customized ESD network are automatically selected. The selected components, for instance, may comprise resistors to serve as the first and the second resistors

303

and

313

, capacitors to serve as the first and the second capacitors

307

and

317

, inverters to serve as the CMOS inverters

309

a-c

and

319

a-c,

transistors to serve as the first and the second NFETs

311

,

321

, diodes to serve as the level shifter diodes

323

a-b,

and diodes to serve as the diodes

325

a-d

,

327

a-d

within the first and the second diode strings

221

,

223

, respectively.

In step

511

, the ESD behavior of the customized ESD network is simulated. The ESD behavior may be simulated using any circuit simulation software package (e.g., an electrothermal simulation program such as SPICE).

In step

513

, the adequacy of the ESD protection provided by the simulated ESD network is evaluated. If the level of ESD protection provided by the simulated ESD network is adequate for the user's implementation then control passes to step

517

wherein a hard wired version of the customized ESD network is created (e.g., by performing a final metallization step to interconnect the selected components of the ASIC book

401

) and then to step

519

wherein the inventive method

501

ends; otherwise control passes to step

515

.

In step

515

, because the simulated ESD network provided inadequate ESD protection, the values of the components employed within the ESD network are tuned and the behavior of the ESD network is re-simulated. For example, the selected components may be tuned by varying the resistances of the first and the second resistors

303

,

313

, the capacitances of the first and the second capacitors

307

,

317

and the gate capacitances of the first and the fourth inverters

309

a

,

319

a

(e.g., by varying the channel length and/or width of the transistors employed therein) so as to tune the ON time for the first and the second NFETs

311

,

321

. Other ESD functional units may be similarly tuned to affect variations in ESD behavior of the ESD network.

If the simulated behavior of the tuned ESD network is adequate the ESD network is created in step

517

; otherwise the selected components are re-tuned and the ESD behavior of the ESD network is re-simulated. This process is continued until adequate ESD protection is provided by the ESD network. In this manner, based on one or more integrated circuit characteristics provided by a user, a customized and optimized ESD network is automatically generated by the inventive method

501

.

The foregoing description discloses only the preferred embodiments of the invention, modifications of the above disclosed apparatus and method which fall within the scope of the invention will be readily apparent to those of ordinary skill in the art. For instance, other ESD components than those described may be employed within the ASIC book

401

, and any type of ESD protection may be generated therefrom. Similarly, the inventive method

501

may be employed to automatically generate any type of ESD network.

Accordingly, while the present invention has been disclosed in connection with the preferred embodiments thereof, it should be understood that other embodiments may fall within the spirit and scope of the invention, as defined by the following claims.

高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈