首页 / 专利库 / 信号处理 / 频率发生电路 / 一种用于微机械谐振式器件的升频驱动控制方法

一种用于微机械谐振式器件的升频驱动控制方法

阅读:332发布:2024-02-29

专利汇可以提供一种用于微机械谐振式器件的升频驱动控制方法专利检索,专利查询,专利分析的服务。并且本 发明 涉及一种用于微机械谐振式器件的升频驱动控制方法,1)将微机械谐振式器件中的振动拾取结构上的两个差分 电极 同时连接振动 信号 读取装置;2)在微机械谐振式器件中的驱动结构的两个差动驱动电极上施加驱动 电压 ;3)振动信号读取装置将微机械谐振式器件中的两个差分电极输出的电容变化量读取出来,并将电容变化量转换为电压变化量输送给 滤波器 ;4)滤波器将电压变化量中的电耦合信号进行滤除,得到一能够体现所述微机械谐振式器件的谐振 频率 信息的振动电压信号。本发明能够减小低频段噪声和谐振频率处噪声以及避免驱动电压和驱动 力 之间出现非线性关系,适用于谐振式微 悬臂梁 、微 谐振器 、微机械陀螺和谐振式微 加速 度计 等微机械谐振式器件。,下面是一种用于微机械谐振式器件的升频驱动控制方法专利的具体信息内容。

1.一种用于微机械谐振式器件的升频驱动控制方法,通过控制施加在微机械谐振式器件中的驱动结构的驱动电压,来控制微机械谐振式器件的振动频率,其包括以下步骤:
1)将微机械谐振式器件中的振动拾取结构上的两个差分电极同时连接一振动信号读取装置,振动信号读取装置包括一前置读出电路和一滤波器,将振动拾取结构上的两个差分电极同时连接前置读出电路的输入端,再将前置读出电路连接滤波器;
2)在微机械谐振式器件中的驱动结构的两个差动驱动电极上分别施加驱动电压VL和VR,使驱动电压VL和VR满足:
VL=(Vacsinωndt+G)·f(p,ωct)+n1
VR=(Vacsinωndt-G)·f(p,ωct)+n2
式中,Vac为调制信号中交流分量幅度;ωnd为调制信号中交流分量频率,等于微机械谐振式器件的固有谐振频率;G为幅度控制信号;f(p,ωct)为外界加载的载波电压信号,其幅度为p,频率ωc大于微机械谐振式器件的固有谐振频率;n1,n2分别为两路驱动电压上的噪声;
3)振动信号读取装置将微机械谐振式器件中的两个差分电极输出的电容变化量读取出来,前置读出电路将电容变化量转换为电压变化量,并将电压变化量输送给滤波器;
4)滤波器接收前置读出电路输出的电压变化量,并将电压变化量中的谐振频率以外的电耦合信号进行滤除,得到一能够体现所述微机械谐振式器件的谐振频率信息的振动电压信号。
2.一种用于微机械谐振式器件的升频驱动控制方法,通过控制施加在微机械谐振式器件中的驱动结构的驱动电压,来控制微机械谐振式器件的振动频率,其包括以下步骤:
1)设置一模拟闭环升频驱动控制装置和一振动信号读取装置,使振动信号读取装置连接微机械谐振式器件中的振动拾取结构上的两个差分电极,再将振动信号读取装置的输出端连接模拟闭环升频驱动控制装置,最后将模拟闭环升频驱动控制装置的输出端连接微机械谐振式器件中的驱动结构的两个差动驱动电极;
2)在模拟闭环升频驱动控制装置中预先设置一振动幅度标准值;
3)振动信号读取装置将微机械谐振式器件中的两个差分电极输出的电容变化量读取出来,转换为电压变化量,并将电压变化量进行滤波处理,输出一振动电压信号;
4)将步骤3)得到的振动电压信号输入模拟闭环升频驱动控制装置,模拟闭环升频驱动控制装置根据输入的振动电压信号,计算得出一振动幅度;再将该振动幅度与预设的振动幅度标准值相比较,得到一振动幅度差值,并将振动幅度差值转换成一幅度控制信号G;
最后利用幅度控制信号G调制驱动电压VL和VR,使VL和VR满足:
VL=(Vacsinωndt+G)·f(p,ωct)+n1
VR=(Vacsinωndt-G)·f(p,ωct)+n2
式中,Vac为调制信号中交流分量幅度;ωnd为调制信号中交流分量频率,等于微机械谐振式器件的固有谐振频率;G为幅度控制信号;f(p,ωct)为外界加载的载波电压信号,其幅度为p,频率ωc大于微机械谐振式器件的固有谐振频率;n1,n2分别为两路驱动电压上的噪声;
5)将步骤4)中的两路驱动电压VL和VR分别施加在微机械谐振式器件中的差动驱动电极上,实现模拟闭环控制,使微机械谐振式器件中的可动谐振结构在其谐振频率处振动,并保持恒定幅度。
3.如权利要求2所述的一种用于微机械谐振式器件的升频驱动控制方法,其特征在于:所述步骤1)中,振动信号读取装置包括一前置读出电路和一滤波器,将微机械谐振式器件中的振动拾取结构上的两个差分电极同时连接前置读出电路的输入端,再将前置读出电路连接滤波器。
4.如权利要求2或3所述的一种用于微机械谐振式器件的升频驱动控制方法,其特征在于:所述步骤1)中,在设置模拟闭环升频驱动控制装置时,首先,在振动信号读取装置中的滤波器的输出端依次串联整流器、一低通滤波器、第一加法器、一PID控制器、第二加法器和第一乘法器,同时将PID控制器的输出端依次串联一反相器、第三加法器和第二乘法器;再将第一乘法器和第二乘法器的输出端分别连接微机械谐振式器件中的驱动结构的两个差动驱动电极,将滤波器的输出端还分别连接第二加法器和第三加法器。
5.如权利要求4所述的一种用于微机械谐振式器件的升频驱动控制方法,其特征在于:所述步骤2)中,振动幅度标准值预先设置在模拟闭环升频驱动控制装置中的第一加法器中。
6.如权利要求4所述的一种用于微机械谐振式器件的升频驱动控制方法,其特征在于:所述步骤4)中,模拟闭环升频驱动控制装置得到驱动电压VL和VR的步骤如下:
①将步骤3)中得到的振动电压信号依次输入整流器和低通滤波器,获得一振动幅度;
②将步骤①得到的振动幅度输入第一加法器,第一加法器将振动幅度与振动幅度标准值相比较,得到一振动幅度差值;
③将步骤②得到的振动幅度差值输入PID控制器,由PID控制器将振动幅度差值转换得出一幅度控制信号G;
④将步骤③得到的幅度控制信号G分成两路,一路输入第二加法器,另一路依次输入反相器和第三加法器;同时,滤波器将振动电压信号输入第二、三加法器;
⑤第二加法器将输入的幅度控制信号G与振动电压信号同相叠加,得到一调制信号(Vacsinωndt+G);第三加法器将幅度控制信号G与振动电压信号反相叠加,得到一调制信号(Vacsinωndt-G);
⑥往第一、二乘法器和输入一载波信号f(p,ωct),同时,将步骤⑤得到的两调制信号(Vacsinωndt+G)、(Vacsinωndt-G)分别输入第一、二乘法器,利用两调制信号(Vacsinωndt+G)、(Vacsinωndt-G)调制载波信号f(p,ωct),得到升频后的两路驱动电压VL和VR。
7.一种用于微机械谐振式器件的升频驱动控制方法,通过控制施加在微机械谐振式器件中的驱动结构的驱动电压,来控制微机械谐振式器件的振动频率,其包括以下步骤:
1)设置一数字闭环升频驱动控制装置和一振动信号读取装置,使振动信号读取装置连接微机械谐振式器件中的振动拾取结构上的两个差分电极,再将振动信号读取装置的输出端连接数字闭环升频驱动控制装置,最后将闭环升频驱动控制装置的输出端连接微机械谐振式器件中的驱动结构的两个差动驱动电极;
2)在数字闭环升频驱动控制装置中预先设置一振动相位标准值和一振动幅度标准值;
3)振动信号读取装置将微机械谐振式器件中的两个差分电极输出的电容变化量读取出来,转换为电压变化量,并将电压变化量进行滤波处理,输出一振动电压信号;
4)将步骤3)得到的振动电压信号输入数字闭环升频驱动控制装置,数字闭环升频驱动控制装置根据输入的振动电压信号,得到振动电压信号的相位信息和幅度信息;再将振动电压信号的相位信息与预设的振动相位标准值相比较,将振动电压信号的幅度信息与预设的振动幅度标准值相比较,分别得到一相位差值和一幅度差值;然后将相位差值转换成相位控制信号,将幅度差值转换成幅度控制信号G;最后利用相位控制信号和幅度控制信号G调制驱动电压VL和VR,使VL和VR满足:
VL=(Vacsinωndt+G)·f(p,ωct)+n1
VR=(Vacsinωndt-G)·f(p,ωct)+n2
式中,Vac为调制信号中交流分量幅度;ωnd为调制信号中交流分量频率,等于微机械谐振式器件的固有谐振频率;G为幅度控制信号;f(p,ωct)为外界加载的载波电压信号,其幅度为p,频率ωc大于微机械谐振式器件的固有谐振频率;n1,n2分别为两路驱动电压上的噪声;
5)将步骤4)中的两路驱动电压VL和VR分别施加在微机械谐振式器件中的差动驱动电极上,从而实现模拟闭环控制,使微机械谐振式器件中的可动谐振结构在其谐振频率处振动,并保持恒定幅度。
8.如权利要求7所述的一种用于微机械谐振式器件的升频驱动控制方法,其特征在于:所述步骤1)中,振动信号读取装置包括一前置读出电路和一滤波器,将微机械谐振式器件中的振动拾取结构上的两个差分电极同时连接前置读出电路的输入端,再将前置读出电路连接滤波器。
9.如权利要求7所述的一种用于微机械谐振式器件的升频驱动控制方法,其特征在于:所述步骤1)中,在设置模拟闭环升频驱动控制装置时,使其包括一A/D转换器、一数字信号处理器和两D/A转换器,使振动信号读取装置中的滤波器的输出端依次连接A/D转换器和数字信号处理器,再将数字信号处理器的输出端同时连接两个D/A转换器的输入端,最后将两个D/A转换器的输出端分别接入微机械谐振式器件中的驱动结构的两个差动驱动电极。
10.如权利要求9所述的一种用于微机械谐振式器件的升频驱动控制方法,其特征在于:在设置数字信号处理器时,首先,在数字信号处理器中设置同时连接A/D转换器输出端的一同相解调器和一正交解调器;然后,将同相解调器的输出端依次串联一滤波器、第四加法器、第一PID控制器、一正弦波发生器、第五加法器和第三乘法器,并将第三乘法器的输出端连接D/A转换器的输入端;同时,将正交解调器的输出端依次串联一滤波器、第六加法器、第二PID控制器、一反相器、第七加法器和第四乘法器,并将第四乘法器的输出端连接D/A转换器的输入端;再之,将第二PID控制器的输出端还连接第五加法器的输入端,将正弦波发生器的输出端连接第七加法器的输入端;最后,将第三乘法器、第四乘法器的输入端均连接一载波发生器。
11.如权利要求10所述的一种用于微机械谐振式器件的升频驱动控制方法,其特征在于:所述步骤2)中,振动相位标准值预先设置在数字信号处理器中的第四加法器中,振动幅度标准值预先设置在数字信号处理器中的第六加法器中。
12.如权利要求10或11所述的一种用于微机械谐振式器件的升频驱动控制方法,其特征在于:所述步骤4)中,数字闭环升频驱动控制装置得到驱动电压VL和VR的步骤如下:
①将得到的振动电压信号输入A/D转换器数字化后,分别输入数字信号处理器中的同相解调器和正交解调器;
②振动电压信号经过同相解调器后输入滤波器,得到振动电压信号的相位信息;同时,振动电压信号经过正交解调器后输入滤波器,得到振动电压信号的幅度信息;
③将步骤②得到的振动电压信号的相位信息输入第四加法器,将振动电压信号的幅度信息输入第六加法器;
④第四加法器将输入的相位信息与预先设置的振动相位标准值进行比较,得到一相位差值;第六加法器将输入的幅度信息与预先设置的振动幅度标准值相比较,得到一幅度差值;
⑤将步骤④得到的相位差值通过第一PID控制器转换得到一相位控制信号;将步骤④得到的幅度差值分别通过第二PID控制器,得到一幅度控制信号G;
⑥将步骤⑤得到的相位控制信号输入正弦波发生器,以对正弦波发生器输出的波形进行相位调整,得到一相位修正信号;同时,将步骤⑤得到的幅度控制信号G分成两路,其中一路幅度控制信号G输入第五加法器,由第五加法器将幅度控制信号G与相位修正信号同相叠加,得到调制信号(Vacsinωndt+G);将另一路幅度控制信号G依次通过反相器和第七加法器,由第七加法器将幅度控制信号G与相位修正信号反相叠加,得到调制信号(Vacsinωndt-G);
⑦将步骤⑥得到的两调制信号(Vacsinωndt+G)、(Vacsinωndt-G)分别输入第三、四乘法器,同时载波发生器分别向第三、四乘法器产生载波信号f(p,ωct),两调制信号(Vacsinωndt+G)、(Vacsinωndt-G)分别调制载波信号f(p,ωct),得到升频后的两路驱动电压VL和VR。

说明书全文

一种用于微机械谐振式器件的升频驱动控制方法

技术领域

[0001] 本发明涉及一种微机械谐振式器件的控制方法,特别是关于一种用于微机械谐振式器件的升频驱动控制方法。

背景技术

[0002] 微机械谐振式器件是用微电子工艺加工的特征尺寸在微米量级的器件,具有体积小、成本低、适于批量加工和易于与ASIC集成的优点。例如:谐振式微悬臂梁、微谐振器、微机械陀螺和谐振式微加速度计均属于微机械谐振式器件范畴。微机械谐振式器件的工作特点是:通过外围控制电路工作在谐振频率处,以获得谐振频率信息和以及最大振动幅度,因而有着广泛的应用前景和迫切的市场需求。目前,微机械谐振式器件已成功应用在汽车、消费类电子等工业、民用领域以及惯性制导和战术导弹等军用领域。现有的微谐振式器件普遍采用谐振频率式驱动,即在驱动固定电极上施加一个由交流分量直流分量叠加起来所形成的驱动电压,其中交流分量的频率与微谐振式器件的固有谐振频率相同,由此所形成的静电驱动信号与交流分量的频率相同,也与微谐振式器件的固有谐振频率相同。 [0003] 现有技术比如:专利“一种高灵敏度谐振加速度计芯片”(公开号为CN1580786A)和专利“具有较高灵敏度和带宽的差分式陀螺”(公开号为CN1766528A),已经能够实现微谐振式器件的闭环驱动,使其工作在谐振频率处并恒幅振荡。但是上述公开的技术仍然不能避免从驱动电极通过寄生电容、衬底阻抗和电容结构等到检测电极间的直接电信号耦合(电耦合)。而且,一旦驱动电路设计不当,外围控制电路中的低频段噪声调制到驱动频率处,会造成器件谐振频率处噪声增大,同时也不能减小低频段噪声。尽管专利“用于微机械传感器的半频驱动及闭环方法”(公开号为CN1299427C)采用了半频驱动的方法,抑制了常规谐振频率式驱动所带来的电信号耦合。但是,这种方法还是会将低频段的1/f噪声调制到谐振频率半频处,使得低频段噪声增大。而且,“用于微机械传感器的半频驱动及闭环方法”还会使得驱动电压与驱动力之间变为非线性关系,往往需要额外的线性化处理后才能使用,给后续闭环控制带来诸多不便。

发明内容

[0004] 针对上述问题,本发明的目的是提供一种能够减小低频段噪声和谐振频率处噪声以及避免驱动电压和驱动力之间出现非线性关系的用于微机械谐振式器件的升频驱动控制方法。
[0005] 为实现上述目的,本发明采取以下技术方案:一种用于微机械谐振式器件的升频驱动控制方法,通过控制施加在微机械谐振式器件中的驱动结构的驱动电压,来控制 微机械谐振式器件的振动频率,其包括以下步骤:1)将微机械谐振式器件中的振动拾取结构上的两个差分电极同时连接一振动信号读取装置;2)在微机械谐振式器件中的驱动结构的两个差动驱动电极上分别施加驱动电压VL和VR,使驱动电压VL和VR满足: [0006] VL=(Vacsinωndt+G)·f(p,ωct)+n1
[0007] VR=(Vacsinωndt-G)·f(p,ωct)+n2式中,Vac为调制信号中交流分量幅度;ωnd为调制信号中交流分量频率,等于微机械谐振式器件的固有谐振频率;G为幅度控制信号;f(p,ωct)为外界加载的载波电压信号,其幅度为p,频率ωc大于微机械谐振式器件的固有谐振频率;n1,n2分别为两路驱动电压上的噪声;3)振动信号读取装置将微机械谐振式器件中的两个差分电极输出的电容变化量读取出来,并将电容变化量转换为电压变化量,输送给滤波器;4)滤波器将步骤3)中得到的电压变化量中的电耦合信号进行滤除,并得到一能够体现所述微机械谐振式器件的谐振频率信息的振动电压信号。
[0008] 所述步骤1)中,振动信号读取装置包括一前置读出电路和一滤波器,将振动拾取结构上的两个差分电极同时连接前置读出电路的输入端,再将前置读出电路连接滤波器。 [0009] 一种用于微机械谐振式器件的升频驱动控制方法,通过控制施加在微机械谐振式器件中的驱动结构的驱动电压,来控制微机械谐振式器件的振动频率,其包括以下步骤:1)设置一模拟闭环升频驱动控制装置和一振动信号读取装置,使振动信号读取装置连接微机械谐振式器件中的振动拾取结构上的两个差分电极,再将振动信号读取装置的输出端连接模拟闭环升频驱动控制装置,最后将模拟闭环升频驱动控制装置的输出端连接微机械谐振式器件中的驱动结构的两个差动驱动电极;2)在模拟闭环升频驱动控制装置中预先设置一振动幅度标准值;3)振动信号读取装置将微机械谐振式器件中的两个差分电极输出的电容变化量读取出来,转换为电压变化量,并将电压变化量进行滤波处理,输出一振动电压信号;4)将步骤3)得到的振动电压信号输入模拟闭环升频驱动控制装置,模拟闭环升频驱动控制装置根据输入的振动电压信号,计算得出一振动幅度;再将该振动幅度与预设的振动幅度标准值相比较,得到一振动幅度差值,并将振动幅度差值转换成一幅度控制信号G;最后利用幅度控制信号G调制驱动电压VL和VR,使VL和VR满足:
[0010] VL=(Vacsinωndt+G)·f(p,ωct)+n1
[0011] VR=(Vacsinωndt-G)·f(p,ωct)+n2
[0012] 式中,Vac为调制信号中交流分量幅度;ωnd为调制信号中交流分量频率,等于微机械谐振式器件的固有谐振频率;G为幅度控制信号;f(p,ωct)为外界加载的载波电压信 号,其幅度为p,频率ωc大于微机械谐振式器件的固有谐振频率;n1,n2分别为两路驱动电压上的噪声;5)将步骤4)中的两路驱动电压VL和VR分别施加在微机械谐振式器件中的差动驱动电极上,实现模拟闭环控制,使微机械谐振式器件中的可动谐振结构在其谐振频率处振动,并保持恒定幅度。
[0013] 所述步骤1)中,振动信号读取装置包括一前置读出电路和一滤波器,将微机械谐振式器件中的振动拾取结构上的两个差分电极同时连接前置读出电路的输入端,再将前置读出电路连接滤波器。
[0014] 所述步骤1)中,在设置模拟闭环升频驱动控制装置时,首先,在振动信号读取装置中的滤波器的输出端依次串联整流器、一低通滤波器、第一加法器、一PID控制器、第二加法器和第一乘法器,同时将PID控制器的输出端依次串联一反相器、第三加法器和第二乘法器;再将第一乘法器和第二乘法器的输出端分别连接微机械谐振式器件中的驱动结构的两个差动驱动电极,将滤波器的输出端还分别连接第二加法器和第三加法器。 [0015] 所述步骤2)中,振动幅度标准值预先设置在模拟闭环升频驱动控制装置中的第一加法器中。
[0016] 所述步骤4)中,模拟闭环升频驱动控制装置得到驱动电压VL和VR的步骤如下:①将步骤3)中得到的振动电压信号依次输入整流器和低通滤波器,获得一振动幅度;②将步骤①得到的振动幅度输入第一加法器,第一加法器将振动幅度与振动幅度标准值相比较,得到一振动幅度差值;③将步骤②得到的振动幅度差值输入PID控制器,由PID控制器将振动幅度差值转换得出一幅度控制信号G;④将步骤③得到的幅度控制信号G分成两路,一路输入第二加法器,另一路依次输入反相器和第三加法器;同时,滤波器将振动电压信号输入第二、三加法器;⑤第二加法器将输入的幅度控制信号G与振动电压信号同相叠加,得到一调制信号(Vacsinωndt+G);第三加法器将幅度控制信号G与振动电压信号反相叠加,得到一调制信号(Vacsinωndt-G);⑥往第一、二乘法器和输入一载波信号f(p,ωct),同时,将步骤⑤得到的两调制信号(Vacsinωndt+G)、(Vacsinωndt-G)分别输入第一、二乘法器,利用两调制信号(Vacsinωndt+G)、(Vacsinωndt-G)调制载波信号f(p,ωct),得到升频后的两路驱动电压VL和VR。
[0017] 一种用于微机械谐振式器件的升频驱动控制方法,通过控制施加在微机械谐振式器件中的驱动结构的驱动电压,来控制微机械谐振式器件的振动频率,其包括以下步骤:1)设置一数字闭环升频驱动控制装置和一振动信号读取装置,使振动信号读取装置连接微机械谐振式器件中的振动拾取结构上的两个差分电极,再将振动信号读取装置的输出端连接数字闭环升频驱动控制装置,最后将闭环升频驱动控制装置的输出端连接微机械谐振式器件中的驱动结构的两个差动驱动电极;2)在数字闭环升频驱动控 制装置中预先设置一振动相位标准值和一振动幅度标准值;3)振动信号读取装置将微机械谐振式器件中的两个差分电极输出的电容变化量读取出来,转换为电压变化量,并将电压变化量进行滤波处理,输出一振动电压信号;4)将步骤3)得到的振动电压信号输入数字闭环升频驱动控制装置,数字闭环升频驱动控制装置根据输入的振动电压信号,得到振动电压信号的相位信息和幅度信息;再将振动电压信号的相位信息与预设的振动相位标准值相比较,将振动电压信号的幅度信息与预设的振动幅度标准值相比较,分别得到一相位差值和一幅度差值;然后将相位差值转换成相位控制信号,将幅度差值转换成幅度控制信号G;最后利用相位控制信号和幅度控制信号G调制驱动电压VL和VR,使VL和VR满足:
[0018] VL=(Vacsinωndt+G)·f(p,ωct)+n1
[0019] VR=(Vacsinωndt-G)·f(p,ωct)+n2 式中,Vac为调制信号中交流分量幅度;ωnd为调制信号中交流分量频率,等于微机械谐振式器件的固有谐振频率;G为幅度控制信号;f(p,ωcX)为外界加载的载波电压信号,其幅度为p,频率ωc大于微机械谐振式器件的固有谐振频率;n1,n2分别为两路驱动电压上的噪声;5)将步骤4)中的两路驱动电压VL和VR分别施加在微机械谐振式器件中的差动驱动电极上,从而实现模拟闭环控制,使微机械谐振式器件中的可动谐振结构在其谐振频率处振动,并保持恒定幅度。
[0020] 所述步骤1)中,振动信号读取装置包括一前置读出电路和一滤波器,将微机械谐振式器件中的振动拾取结构上的两个差分电极同时连接前置读出电路的输入端,再将前置读出电路连接滤波器。
[0021] 所述步骤1)中,在设置模拟闭环升频驱动控制装置时,使其包括一A/D转换器、一数字信号处理器和两D/A转换器,使振动信号读取装置中的滤波器的输出端依次连接A/D转换器和数字信号处理器,再将数字信号处理器的输出端同时连接两个D/A转换器的输入端,最后将两个D/A转换器的输出端分别接入微机械谐振式器件中的驱动结构的两个差动驱动电极。
[0022] 在设置数字信号处理器时,首先,在数字信号处理器中设置同时连接A/D转换器输出端的一同相解调器和一正交解调器;然后,将同相解调器的输出端依次串联一滤波器、第四加法器、第一PID控制器、一正弦波发生器、第五加法器和第三乘法器,并将第三乘法器的输出端连接D/A转换器的输入端;同时,将正交解调器的输出端依次串联一滤波器、第六加法器、第二PID控制器、一反相器、第七加法器和第四乘法器,并将第四乘法器的输出端连接D/A转换器的输入端;再之,将第二PID控制器的输出端还连接第五加法器的输入端,将正弦波发生器的输出端连接第七加法器的输入端;最后, 将第三乘法器、第四乘法器的输入端均连接一载波发生器。
[0023] 所述步骤2)中,振动相位标准值预先设置在数字信号处理器中的第四加法器中,振动幅度标准值预先设置在数字信号处理器中的第六加法器中。
[0024] 所述步骤4)中,数字闭环升频驱动控制装置得到驱动电压VL和VR的步骤如下:①将得到的振动电压信号输入A/D转换器数字化后,分别输入数字信号处理器中的同相解调器和正交解调器;②振动电压信号经过同相解调器后输入滤波器,得到振动电压信号的相位信息;同时,振动电压信号经过正交解调器后输入滤波器,得到振动电压信号的幅度信息;③将步骤②得到的振动电压信号的相位信息输入第四加法器,将振动电压信号的幅度信息输入第六加法器;④第四加法器将输入的相位信息与预先设置的振动相位标准值进行比较,得到一相位差值;第六加法器将输入的幅度信息与预先设置的振动幅度标准值相比较,得到一幅度差值;⑤将步骤④得到的相位差值通过第一PID控制器,转换得到一相位控制信号;将步骤④得到的幅度差值分别通过第二PID控制器,得到一幅度控制信号G;⑥将步骤⑤得到的相位控制信号输入正弦波发生器,以对正弦波发生器输出的波形进行相位调整,得到一相位修正信号;同时,将步骤⑤得到的幅度控制信号G分成两路,其中一路幅度控制信号G输入第五加法器,由第五加法器将幅度控制信号G与相位修正信号同相叠加,得到调制信号(Vacsinωndt+G);将另一路幅度控制信号G依次通过反相器和第七加法器,由第七加法器将幅度控制信号G与相位修正信号反相叠加,得到调制信号(Vacsinωndt-G);⑦将步骤⑥得到的两调制信号(Vacsinωndt+G)、(Vacsinωndt-G)分别输入第三、四乘法器,同时载波发生器分别向第三、四乘法器产生载波信号f(p,ωct),两调制信号(Vacsinωndt+G)、(Vacsinωndt-G)分别调制载波信号f(p,ωct),得到升频后的两路驱动电压VL和VR。 [0025] 本发明由于采取以上技术方案,其具有以下优点:1、本发明由于在微机械谐振式器件中的驱动结构的两个差动驱动电极上分别施加驱动电压VL和VR满足上述条件,利用高频的载波将低频段噪声和谐振频率处噪声调至到高频处,远离微机械谐振式器件的固有谐振频率,因此低频段噪声和谐振频率处噪声被大幅度衰减,而且驱动结构对可动谐振结构产生静电驱动力与驱动电压之间维持为线性关系,利于后续的控制。2、本发明由于在微机械谐振式器件中的驱动结构的两个差动驱动电极上分别施加驱动电压VL和VR满足上述条件,因此施加在驱动电压与所产生的静电驱动力在频域上得到了分离,滤波器除了能够提高输出振动电压信号的信噪比外,还能够将电压变化量中的谐振频率以外的电耦合信号进行滤除。3、本发明由于采用闭环驱动方式,对微机械谐振式器件的振动相位和幅度进行实时控制,因此可以提高微机械谐振式器件的驱动稳定性,实时跟踪微机械谐振式器件的谐振频率,并维持恒幅振荡。本发明适用于谐振 式微悬臂梁、微谐振器、微机械陀螺和谐振式微加速度计等微机械谐振式器件。
附图说明
[0026] 图1是本发明的所适用的微机械谐振式器件结构示意图
[0027] 图2是微机械谐振式器件的升频开环驱动控制原理示意图
[0028] 图3是微机械谐振式器件的升频闭环驱动模拟控制原理示意图
[0029] 图4是微机械谐振式器件的升频闭环驱动数字控制原理示意图

具体实施方式

[0030] 下面结合附图和实施例对本发明进行详细的描述。
[0031] 如图1所示,本发明所适用的微机械谐振式器件1包括一驱动结构101、一可动谐振结构102和一振动拾取结构103。其中,驱动结构101采用普遍使用的电容式静电差动驱动,主要包括梳齿型结构和平行板型结构两种结构。可动谐振结构102通过弹性梁连接至固支点处,从而构成可振动结构。振动拾取结构103采用通常使用的差分式电容式结构,主要有梳齿型电容结构和平行板型电容结构两种结构。驱动结构101具有两个差动驱动电极104、105,振动拾取结构103的输出端具有两个差分电极106、107。
[0032] 由于驱动结构101采用电容式静电差动驱动,在其上的两个差动驱动电极104、105上施加了驱动电压VL和VR后,驱动结构101便对可动谐振结构102产生一静电驱动力Fel,静电驱动力Fel的表达式为:
[0033]
[0034] 式(1)中,Fel为产生的静电驱动力;Kvf是电压到力的转换系数,即是与驱动结构101相关的常数;VL、VR分别是施加在差动驱动电极104、105上的驱动电压。 [0035] 在静电驱动力Fel驱动下,可动谐振结构102产生振动,其位移变化量被振动拾取结构103获取。振动拾取结构103将获取到的位移变化量转变为电容变化量,并通过差分电极106、107输出。
[0036] 本发明通过控制施加在差动驱动电极104、105的驱动电压VL和VR,使驱动电压VL和VR满足:
[0037] VL=(Vacsinωndt+G)·f(p,ωct)+n1
[0038] (2)
[0039] VR=(Vacsinωndt-G)·f(p,ωct)+n2
[0040] 式(2)中,(Vacsinωndt+G)为VL调制信号,(Vacsinωndt-G)为VR调制信号;Vac为调制信号中交流分量幅度;ωnd为调制信号中交流分量频率,等于微机械谐振式器件的固有谐振频率;G为幅度控制信号;f(p,ωct)为外界加在的载波电压信号,其幅度为p,频率(基波频率)ωc大于微机械谐振式器件的固有谐振频率;n1,n2分别为两路驱动 电压上的噪声。
[0041] 若式(2)中的载波f(p,ωct)为余弦波,则由式(1)和(2)可得静电驱动力9为: [0042]
[0043] (3)
[0044]
[0045] 从式(3)可以看出:等号右边第一项为主要作用力,其频率恰好等于微机械谐振式器件的固有谐振频率;第二项为高频静电力,其频率在二倍载波频率附近,远离微机械谐振式器件的固有谐振频率,因而会被大幅度衰减,不会对可动谐振结构102的位移变化量造成影响,因此也不会对输出的振动电压信号A产生影响;第三、四项为噪声被载波f(p,ωct)调制项,由于载波f(p,ωct)将原低频段的噪声调至到高频处,因此也不会对输出的振动电压信号A产生影响,从而可以减小低频段的噪声;第五项中的n1,n2均很小,因此该项可以忽略不计。
[0046] 从上述式(3)的分析结果看:式(3)中等号右边第一项为主要作用力,而且将施加在差动驱动电极104、105上的电压VL和VR与所产生的静电驱动力Fel在频域上进行了分离。
[0047] 下面列举三个具体实施例对本发明进行更为详细的说明。
[0048] 实施例1:
[0049] 如图2所示,本实施例的方法包括以下步骤:
[0050] 1)将振动拾取结构103的差分电极106、107同时连接一振动信号读取装置2,使振动信号读取装置2包括一前置读出电路201和一滤波器202。将差分电极106、107同时连接前置读出电路201的输入端,再将前置读出电路201连接滤波器202。
[0051] 2)在驱动结构101上的差动驱动电极104、105上分别施加驱动电压VL和VR,使驱动电压VL和VR满足上述公式(2)。
[0052] 3)驱动电压VL和VR使驱动结构101产生一静电驱动力Fel,并将静电驱动力Fel施加到可动谐振结构102上,从而可动谐振结构102振动而产生一位移变化量。该位移变化量通过振动拾取结构103转变成电容变化量,电容变化量再通过差分电极106、107输送至前置读出电路201。前置读出电路201将电容变化量转换为电压变化量,以获得可动谐振结构102的振动信息,并将电压变化量输送给滤波器202。滤波器202接收前置读出电路201输出的电压变化量,并将电压变化量中的谐振频率以外的电耦合信号进行滤除,输出一振动电压信号A。通过振动电压信号A实时跟踪微机械谐振式器件1的谐振频率,而且微机械谐振式器件1能够以其固有的谐振频率ωnd恒幅振动。
[0053] 从上述式(3)的分析结果看:式(3)中等号右边第一项为主要作用力,而且将施加在差动驱动电极104、105上的电压VL和VR与所产生的静电驱动力Fel在频域上进 行了分离,因而滤波器202除了能够提高输出振动电压信号A的信噪比外,还能够将电压变化量中的谐振频率以外的电耦合信号进行滤除。
[0054] 实施例2:
[0055] 如图3所示,本实施例的方法包括以下步骤:
[0056] 1)设置一振动信号读取装置2和一模拟闭环升频驱动控制装置3,使振动拾取结构103上的差分电极106、107同时连接振动信号读取装置2,再将振动信号读取装置2的输出端接入模拟闭环升频驱动控制装置3,最后将闭环升频驱动控制装置3的输出端连接驱动结构101的差动驱动电极104、105。
[0057] 2)在模拟闭环升频驱动控制装置3中预先设置一振动幅度标准值B。 [0058] 3)振动信号读取装置2将微机械谐振式器件1中的两个差分电极106、107输出的电容变化量读取出来,转换为电压变化量,并将电压变化量进行滤波处理,输出一振动电压信号A。
[0059] 4)将步骤3)得到的振动电压信号A输入模拟闭环升频驱动控制装置3,由模拟闭环升频驱动控制装置3根据输入的振动电压信号,计算得出一振动幅度;再将该振动幅度与预设的振动幅度标准值相比较,得到一振动幅度差值,并将振动幅度差值转换成一幅度控制信号G;最后利用幅度控制信号G调制驱动电压VL和VR,使VL和VR满足: [0060] VL=(Vacsinωndt+G)·f(p,ωct)+n1
[0061] VR=(Vacsinωndt-G)·f(p,ωct)+n2
[0062] 式中,Vac为调制信号中交流分量幅度;ωnd为调制信号中交流分量频率,等于微机械谐振式器件的固有谐振频率;G为幅度控制信号;f(p,ωct)为外界加载的载波电压信号,其幅度为p,频率ωc大于微机械谐振式器件的固有谐振频率;n1,n2分别为两路驱动电压上的噪声。
[0063] 5)将步骤4)中的两路驱动电压VL和VR分别施加在微机械谐振式器件1中的差动驱动电极104、105上,从而实现模拟闭环控制。该模拟闭环控制方法可以使可动谐振结构102在其谐振频率处振动,并保持恒定幅度。
[0064] 在本实施例的步骤1)中,在设置振动信号读取装置2时,使其包括一前置读出电路201和一滤波器202。将差分电极106、107同时连接前置读出电路201的输入端,再将前置读出电路201连接滤波器202。
[0065] 在设置模拟闭环升频驱动控制装置3时,使其包括一整流器301、一低通滤波器302、第一加法器303、一PID控制器304、第二加法器305、第一乘法器306、一反相器307、第三加法器308和第二乘法器309。首先,在滤波器202的输出端依次串联整 流器301、低通滤波器302、第一加法器303、PID控制器304、第二加法器305和第一乘法器306,同时将PID控制器304的输出端依次串联反相器307、第三加法器308和第二乘法器309。再将第一乘法器306和第二乘法器309的输出端分别连接驱动结构101的差动驱动电极104、105,将滤波器202的输出端还分别连接第二加法器305和第三加法器308。
[0066] 在本实施例的步骤2)中,振动幅度标准值B预先设置在模拟闭环升频驱动控制装置3中的第一加法器303内。
[0067] 在本实施例的步骤4)中,模拟闭环升频驱动控制装置3得到驱动电压VL和VR的步骤如下:
[0068] ①将步骤3)得到的振动电压信号A依次输入整流器301和低通滤波器302,获得一振动幅度C。
[0069] ②将步骤①得到的振动幅度C输入第一加法器303,第一加法器303将振动幅度C与振动幅度标准值B相比较,得到一振动幅度差值D。
[0070] ③将步骤②得到的振动幅度差值D输入PID控制器304,PID控制器304将振动幅度差值D转换成一幅度控制信号G。
[0071] ④将步骤③得到的幅度控制信号G分成两路,一路输入第二加法器305,另一路依次输入反相器307和第三加法器308;同时,滤波器202将振动电压信号A输入第二加法器305和第三加法器308。
[0072] ⑤第二加法器305将输入的幅度控制信号G与振动电压信号A同相叠加,得到一调制信号(Vacsinωndt+G);第三加法器308将幅度控制信号G与振动电压信号A反相叠加,得到一调制信号(Vacsinωndt-G)。
[0073] ⑥往第一、二乘法器306、309输入一载波信号f(p,ωct),同时,将步骤⑤得到的两调制信号(Vacsinωndt+G)、(Vacsinωndt-G)分别输入第一、二乘法器306、309,利用两调制信号(Vacsinωndt+G)、(Vacsinωndt-G)调制载波信号f(p,ωct),得到升频后的两路驱动电压VL和VR。
[0074] 实施例3:
[0075] 如图4所示,本实施例的方法包括以下步骤:
[0076] 1)设置一振动信号读取装置2和一数字闭环升频驱动控制装置4,使振动拾取结构103上的差分电极106、107同时连接一振动信号读取装置2,再将振动信号读取装置2的输出端连接数字闭环升频驱动控制装置4,最后将数字闭环升频驱动控制装置4的输出端连接驱动结构101的差动驱动电极104、105。
[0077] 2)在数字闭环升频驱动控制装置4中预先设置一振动相位标准值E和一振动幅度标准值F。
[0078] 3)振动信号读取装置2将微机械谐振式器件1中的两个差分电极106、107输出的电容变化量读取出来,转换为电压变化量,并将电压变化量进行滤波处理,输出一振动电压信号A。
[0079] 4)将步骤3)得到的振动电压信号A输入数字闭环升频驱动控制装置4,由数字闭环升频驱动控制装置4输入的振动电压信号A,得到振动电压信号A的相位信息A1和幅度信息A2;再将振动电压信号A的相位信息A1与预设的振动相位标准值E相比较,将振动电压信号A的幅度信息A2与预设的振动幅度标准值F相比较,分别得到一相位差值和一幅度差值;然后将相位差值转换成相位控制信号,将幅度差值转换成幅度控制信号G;最后利用相位控制信号和幅度控制信号G调制驱动电压VL和VR,使VL和VR满足:
[0080] VL=(Vacsinωndt+G)·f(p,ωct)+n1
[0081] VR=(Vacsinωndt-G)·f(p,ωct)+n2
[0082] 式中,(Vacsinωndt+G)为VL调制信号,(Vacsinωndt-G)为VR调制信号;Vac为调制信号中交流分量幅度;ωnd为调制信号中交流分量频率,等于微机械谐振式器件的固有谐振频率;G为幅度控制信号;f(p,ωct)为外界加载的载波电压信号,其幅度为p,频率ωc大于微机械谐振式器件的固有谐振频率;n1,n2分别为两路驱动电压上的噪声。 [0083] 5)将步骤4)中的两路驱动电压VL和VR分别施加在微机械谐振式器件1中的差动驱动电极104、105上,从而实现模拟闭环控制。该闭环控制方法可以使可动谐振结构102在其谐振频率处振动,并保持恒定幅度。
[0084] 在本实施例的步骤1)中,在设置振动信号读取装置2时,使其包括一前置读出电路201和一滤波器202。将差分电极106、107同时连接前置读出电路201的输入端,再将前置读出电路201连接滤波器202。
[0085] 在设置数字闭环升频驱动控制装置4时,使其包括一A/D转换器401、一数字信号处理器402和两D/A转换器403、404,使滤波器202的输出端依次连接A/D转换器401和数字信号处理器402,再将数字信号处理器402的输出端同时连接D/A转换器403、404的输入端,最后将D/A转换器403、404的输出端分别接入驱动结构101的差动驱动电极104、105。
[0086] 其中,数字信号处理器402包括一同相解调器4021,一正交解调器4022,两滤波器4023、4024,第四加法器4025,第六加法器4026,第五加法器4027,第七加法器4028,两个PID控制器4029、40210,一正弦波发生器40211,一反相器40212,第三乘法器40213,第四乘法器40214和一载波发生器40215。首先,将A/D转换器401输出端同时接入同相解调器
4021和正交解调器4022。然后,将同相解调器4021的输出端依次串联滤波器4023、第四加法器4025、PID控制器4029、正弦波发生器40211、第五加法器4027和第三乘法器40213,并将第三乘法器40213的输出端连接D/A转换器403的输入端。同时,将正交解调器4022的输出端依次串联滤波器4024、第六加法器4026、PID控制器40210、反相器40212、第七加法器4028和第四乘法器40214,并将第四乘法器40214的输出端连接D/A转换器404的输入端。再之,将PID控制器40210的输出端还连接第五加法器4027的输入端,将正弦波发生器40211的输出端连接第七加法器4028的输入端。最后,将第三乘法器40213、第四乘法器40214的输入端均连接载波发生器40215。
[0087] 在本实施例的步骤2)中,振动相位标准值E预先设置在数字闭环升频驱动控制装置4中的第四加法器4025内,振动幅度标准值F预先设置在第六加法器4026中。 [0088] 在本实施例的步骤4)中,数字闭环升频驱动控制装置4得到施加在微机械谐振式器件1中的差动驱动电极104、105上的驱动电压VL和VR的步骤如下:
[0089] ①将步骤3)得到的振动电压信号A输入A/D转换器401数字化后,分别输入数字信号处理器402中的同相解调器4021和正交解调器4022。
[0090] ②振动电压信号A经过同相解调器4021后输入滤波器4023,得到振动电压信号A的相位信息A1;同时,振动电压信号A经过正交解调器4022后输入滤波器4023,得到振动电压信号A的幅度信息A2。
[0091] ③将步骤②得到的振动电压信号A的相位信息A1输入第四加法器4025,将振动电压信号A的幅度信息A2输入第六加法器4026。
[0092] ④第四加法器4025将输入的相位信息A1与振动相位标准值E进行比较,得到一相位差值;第六加法器4026将输入的幅度信息A2与振动幅度标准值F相比较,得到一幅度差值。
[0093] ⑤将步骤④得到的相位差值通过PID控制器4029转换得到一相位控制信号H;将步骤④得到的幅度差值通过PID控制器40210转换得到一幅度控制信号G。
[0094] ⑥将步骤⑤得到的相位控制信号H输入正弦波发生器40211,用以对正弦波发生器40211输出的波形进行相位调整,得到一相位修正信号I。同时,将步骤⑤得到的幅度控制信号G分成两路,其中一路幅度控制信号G输入第五加法器4027,由第五加法器4027将幅度控制信号G与相位修正信号I同相叠加,得到调制信号(Vacsinωndt+G);将另一路幅度控制信号G依次通过反相器40212和第七加法器4028,由第七加法器4028将幅度控制信号G与相位修正信号I反相叠加,得到调制信号(Vacsinωndt-G)。
[0095] ⑦第三乘法器40213和第四乘法器40214,同时载波发生器40215分别向第三乘法器40213和第四乘法器40214产生载波信号f(p,ωct),两调制信号(Vacsinωndt+G)、(Vacsinωndt-G)分别调制载波信号f(p,ωct),得到升频后的两路数字驱动信号VL和VR。 [0096] 上述各实施例中,各部件的结构、设置位置及其连接都是可以有所变化的,在本发明技术方案的基础上,对个别部件进行的改进和等同变换,不应排除在本发明的保护范围之外。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈