首页 / 专利库 / 电路 / 击穿电压 / Integrated circuitry fuse forming methods, integrated circuitry programming methods, and related integrated circuitry

Integrated circuitry fuse forming methods, integrated circuitry programming methods, and related integrated circuitry

阅读:121发布:2024-02-23

专利汇可以提供Integrated circuitry fuse forming methods, integrated circuitry programming methods, and related integrated circuitry专利检索,专利查询,专利分析的服务。并且Integrated circuitry fuse forming methods, integrated circuity programming methods, and related integrated circuitry are described. In one implementation, a first layer comprising a first conductive material is formed over a substrate. A second layer comprising a second conductive material different from the first conductive material is formed over the first layer and in conductive connection therewith. A fuse area is formed by removing at least a portion of one of the first and second layers. In a preferred aspect, an assembly of layers comprising one layer disposed intermediate two conductive layers is provided. At least a portion of the one layer is removed from between the two layers to provide a void therebetween. In another aspect, programming circuitry is provided over a substrate upon which the assembly of layers is provided. The programming circuitry comprises at least one MOS device which is capable of being utilized to provide a programming voltage which is sufficient to blow the fuse, and which is no greater than the breakdown voltage of the one MOS device.,下面是Integrated circuitry fuse forming methods, integrated circuitry programming methods, and related integrated circuitry专利的具体信息内容。

What is claimed is:1. An integrated circuitry fuse forming method comprising:forming a first layer of conductive material above a semiconductor substrate;forming a second layer of material above the first layer; andforming a fuse area comprising a closed circuit configuration having the second layer as a conductive interconnect extending across the fuse area by removing a portion of the first layer from below the second layer.2. The method of claim 1, wherein forming the fuse area includes removing a portion of the first layer from below the second layer to form a void and further comprising forming a dielectric on the fuse area to seal the void.3. The method of claim 1, wherein forming the first layer and forming the second layer comprise forming the second layer from a different material than that used in forming the first layer.4. The method of claim 1, wherein forming the first layer and forming the second layer comprise forming the first and second layers from conductive materials.5. The method of claim 1 further comprising, after the removing, forming a dielectric material layer over the substrate within the fuse area, at least some of the dielectric material layer being disposed proximate an area where the first layer portion was removed.6. The method of claim 1, wherein forming the fuse area comprises removing essentially all of the first layer portion within the fuse area.7. The method of claim 1, wherein removing the first layer portion comprises selectively etching the portion relative to the second material.8. The method of claim 1, wherein the first layer comprises aluminum and the second layer comprises titanium, and the forming of the fuse area comprises removing aluminum selectively relative to titanium.9. The method of claim 8, wherein the first material comprises AlCu.10. The method of claim 1, wherein the first layer comprises aluminum.11. The method of claim 10, wherein removing comprises removing essentially all of the aluminum within the fuse area.12. An integrated circuitry fuse forming method comprising:forming a first layer of conductive material above a semiconductor substrate;forming a second layer conductive material above the first layer and in conductive connection with the first layer;forming a masking layer over the first and second layers;exposing portions of the first and second layers through the masking layer; andforming a fuse area by selectively etching material comprising the first layer from beneath the second layer, the fuse area having the second layer as a conductive interconnect extending across the fuse area.13. The method of claim 12, wherein forming the first layer and forming the second layer comprise forming the second layer from a different material than that used in forming the first layer.14. The method of claim 12, further comprising, after etching, forming a dielectric layer over the substrate within the fuse area, at least some of the dielectric layer being disposed proximate an area from where the first layer material was etched.15. The method of claim 12, further comprising, prior to forming the first layer, forming a base layer of conductive material over the substrate, forming of the first and second layers comprising forming the layers in conductive connection with the base layer.16. The method of claim 15, wherein forming the fuse area comprises selectively etching the first layer relative to the base, thereby forming a void between the base and second layers in the fuse area.17. The method of claim 16, further comprising, after etching, forming a dielectric material layer over the substrate in the fuse area, material of the base, first, second and dielectric layers substantially enclosing the void.18. An integrated circuitry fuse forming method comprising:forming an assembly of layers comprising at least one layer between two separately-formed conductive layers; andremoving at least a portion of the one layer from between the two separately-formed layers, one of the two separately-formed layers bridging over an area where the at least a portion of the one layer was removed, the assembly of layers providing a fuse in a closed circuit configuration.19. The method of claim 18, wherein removing the at least a portion of the one layer comprises selectively etching the one layer relative to at least one of the two conductive layers.20. The method of claim 18, wherein removing the at least a portion of the one layer comprises selectively etching the one layer is relative to both of the conductive layers.21. The method of claim 18, wherein removing the at least a portion of the one layer comprises selectively etching the one layer relative to both of the conductive layers.22. The method of claim 21, wherein forming the at least one layer comprises forming the at least one layer to comprise aluminum.23. The method of claim 21, wherein forming the at least one layer comprises forming the at least one layer to comprise AlCu.24. The method of claim 18, wherein forming the at least one layer comprises forming the at least one layer from a material selected from a group consisting of aluminum, silver, copper and gold.25. The method of claim 18, wherein forming the at least one layer comprises forming a metal alloy layer.26. The method of claim 18, wherein forming the assembly of layers comprises forming at least one of the two conductive layers to comprise titanium.27. The method of claim 18, wherein forming the assembly of layers comprises:forming the two conductive layers to comprise titanium; andforming the at least one layer between the two separately-formed conductive layers comprises forming the at least one layer to comprise aluminum.28. An integrated circuitry fuse forming method comprising:forming an assembly of layers comprising at least one layer disposed intermediate two separately-formed conductive layers;forming a masking layer over the assembly of layers;exposing a portion of the assembly of layers through the masking layer; andforming a fuse area by selectively etching substantially all of the one layer within the exposed assembly portion relative to the two conductive layers, the etching leaving one of the two conductive layers spanning over an area within which the one layer was etched.29. The method of claim 28, wherein at least one of the two conductive layers comprises titanium.30. The method of claim 28, wherein both of the two conductive layers comprise titanium.31. The method of claim 28, wherein the at least one layer comprises a material which is more conductive than either of the two separately-formed conductive layers.32. The method of claim 28, wherein the at least one layer comprises aluminum.33. The method of claim 32, wherein at least one of the two separately-formed conductive layers comprises titanium.34. The method of claim 28, wherein the at least one layer is etchably different from the two conductive layers.35. An integrated circuitry fuse forming method comprising:forming an assembly of elevationally-separated layers above a semiconductive wafer, the layers comprising one layer disposed elevationally between a pair of conductive layers; andselectively removing a portion of the one layer relative to the pair of conductive layers to define a void between the pair of conductive layers, the removing providing a fuse area initially configured into a closed circuit configuration.36. The method of claim 35 wherein selectively removing comprises selectively etching the one layer relative to the pair of conductive layers to define the void.37. The method of claim 36, further comprising, after removing the portion of the one layer, forming another layer of material proximate the void which, together with material of the assembly of layers, substantially encloses the void.38. The method of claim 35, wherein the one layer comprises a metal.39. The method of claim 35, wherein the one layer comprises aluminum.40. The method of claim 36, wherein etching the one layer comprises removing less than an entirety of the one layer along a shortest possible line extending from one of the pair of conductive layers to another of the pair of conductive layers and through the void.41. The method of claim 35, wherein at least one of the pair of conductive layers comprises titanium.

说明书全文

RELATED PATENT DATA

This application is a continuation of U.S. patent application Ser. No. 09/015,414, filed on Jan. 29, 1998 now U.S. Pat. No. 5,976,917 issued Nov. 2, 1999.

TECHNICAL FIELD

This invention relates to integrated circuitry fuse forming methods, integrated circuitry programming methods, and integrated circuitry comprising programmable integrated circuitry.

BACKGROUND OF THE INVENTION

Some types of integrated circuitry utilize fuses. A fuse is a structure which can be broken down or blown in accordance with a suitable electrical current which is provided through the fuse to provide an open circuit condition. Within the context of integrated circuitry memory devices, fuses can be used to program in redundant rows of memory. Fuses have use in other integrated circuitry applications as well.

One problem associated with integrated circuitry fuses is that the voltage required to provide the necessary current to blow the fuse can be very high, e.g., on the order of 10 volts. Because of this, memory circuitry utilizing MOS logic cannot typically be used to route an appropriate programming signal or current to the fuse since the voltage required to do so would break down the gate oxide of the MOS device. One solution has been to provide a dedicated contact pad for each fuse so that the desired programming voltage can be applied directly to the fuse from an external source without the use of the MOS devices. Providing a dedicated contact pad, however, utilizes valuable silicon real estate which could desirably be used for supporting other memory devices.

This invention arose out of concerns associated with providing improved integrated circuitry fuse forming methods and resultant fuse constructions suitable for programming at relatively low programming voltages. This invention also arose out of concerns associated with conserving wafer real estate and providing integrated circuitry which incorporates such improved fuse constructions.

SUMMARY OF THE INVENTION

Integrated circuitry fuse forming methods, integrated circuitry programming methods, and related integrated circuitry are described. In one implementation, a first layer comprising a first conductive material is formed over a substrate. A second layer comprising a second conductive material different from the first conductive material is formed over the first layer and in conductive connection therewith. A fuse area is formed by removing at least a portion of one of the first and second layers. In a preferred aspect, an assembly of layers comprising one layer disposed intermediate two conductive layers is provided. At least a portion of the one layer is removed from between the two layers to provide a void therebetween. In another aspect, programming circuitry is provided over a substrate upon which the assembly of layers is provided. The programming circuitry comprises at least one MOS device which is capable of being utilized to provide a programming voltage which is sufficient to blow the fuse, and which is no greater than the breakdown voltage of the one MOS device.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the invention are described below with reference to the following accompanying drawings.

FIG. 1

is a diagrammatic sectional view of a semiconductor wafer fragment in process, undergoing processing in accordance with one aspect of the invention.

FIG. 2

is a view of the

FIG. 1

wafer fragment at a different processing step.

FIG. 3

is a view of the

FIG. 1

wafer fragment at a different processing step.

FIG. 4

is a view of the

FIG. 1

wafer fragment at a different processing step.

FIG. 5

is a view of the

FIG. 1

wafer fragment at a processing step in accordance with an alternate aspect of the invention.

FIG. 6

is a side sectional view of an integrated circuitry fuse which is formed in accordance with one aspect of the invention.

FIG. 7

is a view of the

FIG. 1

wafer fragment at a different processing step.

FIG. 8

is a high level diagram of integrated circuitry which is provided or formed in accordance with one aspect of the invention.

FIG. 9

is a diagram of a portion of the

FIG. 8

diagram, with the illustrated fusing having been programmed or blown.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws “to promote the progress of science and useful arts” (Article 1, Section 8).

Referring to

FIG. 1

, a semiconductor wafer fragment in process is shown generally at

10

and comprises a semiconductive substrate

12

. In the context of this document, the term “semiconductive substrate” is defined to mean any construction comprising semiconductive material, including, but not limited to, bulk semiconductive materials such as a semiconductive wafer (either alone or in assemblies comprising other materials thereon), and semiconductive material layers (either alone or in assemblies comprising other materials). The term “substrate” refers to any supporting structure, including, but not limited to, the semiconductive substrates described above. A plurality of stacks are formed over the substrate. Exemplary stacks are shown at

14

,

16

,

18

. Each stack comprises a base layer

20

, a first layer

22

formed over base layer

20

, and a second layer

24

formed over first layer

22

and base layer

20

. Collectively, layers

20

,

22

,

24

comprise assemblies

26

which include at least one layer, i.e., layer

22

, disposed intermediate two other layers, i.e., layers

20

,

24

. The illustrated stacks run into and out of the plane of the page upon which

FIG. 1

appears.

In the illustrated and preferred embodiment, each of layers

20

,

22

, and

24

comprise conductive materials and accordingly, are in conductive connection with a next adjacent layer. First layer

22

comprises a first conductive material and second layer

24

comprises a second conductive material which is different from the first conductive material. The first conductive material is also different from the material comprising base layer

20

. In the illustrated example, layer

22

is etchably different from and more conductive than either of layers

20

,

24

which will become apparent below. Exemplary materials for base layer

20

include titanium or titanium nitride; exemplary materials for first layer

22

comprise conductive metal materials such as aluminum, AlCu or some other suitable metal alloy; and an exemplary material for second layer

24

comprises titanium nitride. It is possible, however, for one or more of the layers to be formed from material which is not conductive. For example, second layer

24

can comprise an insulative or non-conductive material such as an inorganic anti-reflective coating (ARC) layer.

Referring to

FIG. 2

, a masking layer

28

is formed over substrate

12

and assemblies

26

. An exemplary material for masking layer

28

is photoresist.

Referring to

FIG. 3

, an opening

30

is formed through masking layer

28

and a portion of centermost assembly

26

is exposed. Opening

30

defines an area over the exposed assembly

26

in which a fuse is to be formed. The portion of the assembly which is exposed through the masking layer constitutes less than an entirety of the assembly which runs into and out of the plane of the page.

Referring to

FIG. 4

, at least a portion of first layer

22

is removed to define a void

32

intermediate base layer

20

and second layer

24

. Layers

20

,

24

are supported proximate the void by portions of layer

22

which are not removed and which are disposed into and out of the plane of the page. Such unremoved layer

22

portions are shown in more detail in FIG.

6

. Collectively, the illustrated portions of layers

20

,

24

and void

32

define a fuse area

34

. In the

FIG. 4

example, essentially all of first layer

22

is removed within fuse area

34

. Such removal can be achieved by selectively etching the material comprising first layer

22

relative to the material comprising layers

20

,

24

. Where layers

20

,

24

comprise titanium and layer

22

comprises aluminum, an exemplary etch is a wet etch which utilizes hot phosphoric acid at a temperature of around 90° C. at atmospheric pressure and for a duration appropriate to remove the layer. The duration of the etch can, however, be modified so that less than an entirety of first layer

22

is removed within fuse area

34

. Such is accordingly shown in

FIG. 5

at

22

a

where less than the entirety of layer

22

is removed along a shortest possible line “A” extending from one of the pair of conductive layers to the other of the pair of conductive layers and through void

32

. Leaving an amount of a more conductive layer

22

a

behind may be desirable from the standpoint of reducing the overall resistivity of the fuse.

Referring to

FIG. 6

, fuse area

34

is defined to have a length dimension l, a width dimension into and out of the page, and a height dimension h. Exemplary length dimensions are from between about 0.5 micron to 1 micron. An exemplary width dimension is around 0.25 micron. An exemplary height dimension is around 4000 Angstroms. Concurrent and subsequent processing to complete formation of integrated circuitry which incorporates one or more fuses can take place in accordance with conventional techniques. For example,

FIG. 7

shows an additional layer of material

44

which has been formed over the substrate and in fuse area

34

. In the illustrated example, material

44

is formed proximate void

32

and does not meaningfully fill the void. Such provides an air or vacuum gap proximate the illustrated layers and within void

32

. The air or vacuum gap can desirably lower the programming voltage necessary to blow the fuse. An exemplary material for material

44

is a dielectric material which can be formed through plasma enhanced chemical vapor deposition techniques. Such deposition provides a substantially enclosed void, with the exemplary void being enclosed by material of layers

20

,

22

,

24

and

44

.

Referring to

FIG. 8

, an exemplary implementation comprising integrated circuitry formed in accordance with the above-described methodology is shown generally at

36

. Programming circuitry

38

is provided and is operably connected with a fuse

40

which has been formed in accordance with the above-described methodology. Memory circuitry

42

is provided and is operably coupled with programming circuitry

38

and fuse

40

. In one preferred aspect, programming circuitry

38

comprises at least one MOS device which is formed over the same substrate upon which fuse

40

is supported. Fuse

40

can be exposed to a programming voltage through programming circuitry

38

which is sufficient to blow the fuse. In the illustrated example, MOS devices comprising programming circuitry

38

have breakdown voltages associated with breakdown of the source/drain-to-substrate junction and breakdown of the gate oxide. In one aspect, fuse

40

can be programmed with a programming voltage which is no higher than the breakdown voltage of the MOS devices comprising programming circuitry

38

. An exemplary programming voltage can be provided which is less than 10 volts. In a preferred aspect, the programming voltage is no greater than about 5 volts. In this way, MOS devices can be utilized to route a programming signal to fuse

40

. Such programming signal is accordingly provided by a programming voltage which is no greater than the breakdown voltage of the MOS devices.

Referring to

FIG. 9

, fuse

40

has been suitably programmed through the programming circuitry.

The above-described methodologies and structures reduce the wafer real estate which is needed to provide suitable programming voltages and signals to programmable integrated circuitry devices. Such is accomplished in one aspect by reducing, if not eliminating all together, the need for large dedicated contact pads for each fuse. In other aspects, fuses formed in accordance with the invention can be tied to a suitable contact pad and programmed accordingly. Additionally, the above-described methodologies and structures enable programming to be conducted at locations other than locations where such devices are fabricated. Specifically, a programmer can suitably program devices which incorporate the above-described structures at the programmer's own facility.

In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.

高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈