首页 / 专利库 / 分销网络和设备 / 高压直流输电 / A SYSTEM FOR DISCHARGING ELECTRICAL POWER FROM A HIGH-VOLTAGE DIRECT CURRENT LINE

A SYSTEM FOR DISCHARGING ELECTRICAL POWER FROM A HIGH-VOLTAGE DIRECT CURRENT LINE

阅读:736发布:2021-07-31

专利汇可以提供A SYSTEM FOR DISCHARGING ELECTRICAL POWER FROM A HIGH-VOLTAGE DIRECT CURRENT LINE专利检索,专利查询,专利分析的服务。并且For the purpose of discharging energy from a HVDC-network, there is incorporated in series in a high-voltage direct-current line a first converter (1) and a first transformer (4), the primary winding of which is able to withstand a current corresponding to the total current in the HVDC-network. The first converter is able to operate at 120-150 Hz, and the secondary current of the first transformer (4) is rectified (in 2) to an intermediate direct-current network (DC) connected to a converter (3) which operates at network frequency and which feeds a second transformer (4'), which in turn delivers power to a local network (L).,下面是A SYSTEM FOR DISCHARGING ELECTRICAL POWER FROM A HIGH-VOLTAGE DIRECT CURRENT LINE专利的具体信息内容。

A system for discharging electrical power from a high-voltage direct-current transmission line to a local network, in which a direct current line (HVDC) is connected in series to a first converter bridge (1) and to the primary winding of a first transformer (4), characterized in that the secondary winding of the first transformer is connected to a second converter bridge (2) which, in turn, is connected to a secondary direct voltage network, to which is connected a third converter bridge (3) which generates an alternating current for the local network (L).A system according to Claim 1, characterized in that the first converter bridge (1) connected to the high-voltage direct-current line is a single-phase bridge, and in that the first transformer (4) is a single-phase transformer.A system according to Claim 1 or Claim 2, characterized in that the first converter bridge (1) is composed of semiconductor valves which are ignitable by means of electric signals and which can be extinguished solely with current zero crossing; and in that the second (2) and third (3) converter bridges are composed of electrically ignitable and extinguishable semiconductor valves.A system according to any one of the preceding Claims, characterized in that the second converter bridge (2) is constructed so as to be voltage stiff; and in that the direct voltage output of said bridge is shunted with a stabilizing capacitor (c).A system according to Claim 4, characterized in that the stabilizing capacitor (c) is connected in parallel with an accumulator battery.A system according to any one of the preceding Claims, characterized in that the first converter bridge (1) and the second converter bridge (2) are constructed to commutate with a frequency which is 2-4 times higher than the normal network frequency, whereas the third converter bridge (3) is constructed to commutate at normal network frequency.A system according to any one of the preceding Claims, characterized in that the direct current line (HVDC) is connected in series with a plurality of converter bridges (1, 1'), which are deactivatable at least partially and each of which is able to deliver a respective alternating current which contributes with varying values to the power supplied to the first transformer (4).
说明书全文

It has become progressively more usual to utilize high voltage direct current for the purpose of transmitting electrical power over long distances, particularly because of the lower line costs achieved thereby. A large cost entailed by such systems lies in the current converters and in the transformers used. Consequently, it is not realistic to place several complete receiving stations of relatively low power along such a high voltage line.

For the purpose of discharging, i.e. tapping-off, lower powers, typically powers of less than 10% of the total power transmitted, it has been suggested that power discharge stations are connected in series in the d.c. circuit, the power discharged or tapped-off corresponding to a line voltage drop. The simplest of these solutions involves connecting a three-phase current converter bridge in series with the d.c. circuit. The converter bridge is connected directly to the three-phase network via a transformer. The bridge is line-commutated, which means that commutation of the valves is achieved with the aid of the a.c. voltage in the three-phase network (see e.g. DE-B- 1813853).

A first drawback with systems of this kind is that line-controlled commutation requires the provision of synchronous machines, which becomes expensive in the case of small or average-size networks. A second drawback is that the transformer is expensive in relation to the power, while a third drawback is that disturbances and interference in the a.c. network can result in disturbances in the commutating process in the converter and therewith in the main network.

One object of the present invention is to provide a series energy discharge system capable of eliminating these drawbacks. Another object is to provide an energy discharge system which will enable small powers to be delivered to smaller networks in an economically viable manner. This is highly significant in the case of a public service company which can expect little understanding of its reluctance to deliver electric current to a sparsely populated area through which the cost-encumbered power line is drawn.

These and other objects are achieved in accordance with the invention by means of a system having the characteristic features set forth in Claim 1.

The invention enables a small amount of energy to be taken from a large HVDC-network with the aid of relatively inexpensive components, so that the cost of said delivery is found defensible. All that need be connected to the high line voltage is a converter bridge with associated commutating equipment controlled via optical fibres from earth and the primary winding of a transformer, and within which winding all that need be accommodated is a voltage drop which corresponds to the power discharged or tapped off.

In order to form the concepts, there can be imagined a case which involves an HVDC-network of known kind with a voltage of ± 500kV and a maximum current of 1600 A. Connected to a conductor in this network is a first converter bridge and the primary winding of a transformer. Both may be single-phase. The primary winding must be capable of withstanding the whole of the maximum current of 1600 A and shall be insulated for 500kV against the transformer core. On the other hand, it is not necessary that the voltage across the winding is higher than a voltage corresponding to the power discharged, e.g. a maximum of 50 kV at a maximum power of 80 MW. The cost of the transformer can also be lowered, if the alternating current taken out is given a higher frequency than the normal network frequency, e.g. a frequency of 120-150 Hz. There can then be taken from the secondary side of the transformer, e.g. 40 kV, 2 kA, which is rectified to a local d.c. voltage of 40 kV in a second converter, which is assumed to be force commutated. Preferably, a three phase voltage is produced from this d.c. voltage by conversion in a third converter, which converter may be force commutated to a network frequency of 50 or 60 Hz, according to the case in question, at a voltage suitable for local transmission.

The local d.c. network is preferably made voltage-stiff with a capacitor and may be provided optionally with an accumulator battery for temporary energy storage. The power output is preferably controlled by sensing the local d.c. voltage, which tends to fall with increased power output via the third converter, and by controlling the commutation for the first and the second converters in a manner to obtain the desired local d.c. voltage.

The second and the third converters are suitably constructed with extinguishable valves, e.g. GTO-thyristors, whereas the first converter preferably includes thyristors of the kind which are extinguished by zero crossing.

The HVDC-network will suitably include filter circuits operative to eliminate harmonics generated by the power discharge.

The cost of the discharge station will be moderate, particularly since the voltage between the two commutator risers from the high voltage line is relatively low, thereby even enabling the commutator risers to be taken to the converter transformer between the first and the second converter bridge, via a common porcelain insulator.

An exemplifying embodiment and a number of variant: thereof will now be described with reference to the accompanying drawings. In order not to encumber the description with details of known techniques concerning high voltage direct current transmission (HVDC), reference is made to the monograph literature in the field, such as E. Uhlmann: Power Transmission by Direct Current (Springer Verlag 1975).

Brief Description of the Drawings

Figure 1 is a block schematic of a system constructed in accordance with the principles of the invention.

Figures 2 and 3 are more detailed circuit illustrations.

Figure 4 is a block diagram illustrating the construction of a control system for the illustrated discharge system.

The block schematic shown in Figure 1 illustrates the principal construction, with four mutually different voltage systems, namely the HVDC-system of the line from which energy is discharged, i.e. tapped-off, which system can lie on, e.g. 500 kV, a first alternating current system AC1, which preferably has a system frequency which is 2-4 times higher than the standard network frequency, a direct voltage system DC, e.g. on 40 kV, and a second alternating current system AC2 which has the network frequency and which is intended to supply/constitute a local distribution network. Energy is transmitted between these systems through converter bridges. Although the first alternating current system may be a single-phase system, it can also be a three-phase network, as illustrated in Figure 2.

For the purpose of providing a wide power-discharge control range, it may also be expedient to incorporate in the high voltage direct current line a plurality of activatable and deactivatable converter bridges each functioning to deliver a respective alternating current, the powers of which are combined, e.g. by supplying said currents each to a respective primary winding in the first transformer. By suitable dimensioning, it is possible, in this way, to avoid excessively large ignition angles for the rectifying thyristors and the well-known problems associated with such angles.

Obviously, a single-phase network will be the cheapest, since only four thyristor arrays are required on the high voltage side, these thyristors needing only to withstand the maximum voltage drop of the high voltage current over the actual system, and only one high-voltage insulated winding in the transformer 4. This involves a question of dimensioning, and in certain instances it is possible, as illustrated in Figure 2, to connect several converters 1, 1' in series when the power discharged or tapped-off increases, and to effect more expensive twelve-pulse commutation, etc., in accordance with prevailing requirements. However, in the case of moderate to small power discharges, it is preferred to work with a single-phase and a frequency of 120-150 Hz, since the transformer 4 can be made less expensive in this way. The frequency can also be made variable, so as to enable the power discharged, or tapped-off, to be controlled.

Figure 2 illustrates symbolically an entire network including terminal stations A and B for the HVDC-line, and a power discharge system connected to one conductor in the line, which conductor may comprise one overhead conductor of a twin-conductor (not shown).

The systems illustrated in Figures 2 and 3 include thyristor valves for the converters 2 and 3, these valves being extinguishable by means of current pulses (GTO-type). The converter 2 illustrated in Figure 2 is indicated as being voltage-stiff and force-commutated. At least one of the converters 1 or 2 must be force-commutated. The converter 2 is then connected, via the direct-current interlink, to the converter 3, which is force-commutated and connected directly to the alternating current network connected for distribution. By working with a relatively constant direct voltage, it is also possible to connect an energy-storage battery, which facilitates start-up procedures in the case of a "dead" alternating current network and which also makes it possible to avoid disturbances of short duration on the direct current line from disturbing the alternating current network, and vice versa. When the converter 3 is force-commutated, the connected network need not include synchronous machines.

If the local network has no other power supply, the frequency in the network will be controlled unequivocally by the commutation frequency in the converter 3, which is also force-commutated. In its simplest variant, the converter 3 is controlled as a square-wave current converter. The fundamental-tone component Uv(1) of the alternating voltage is therewith proportional to the d.c. voltage Udc , i.e.Uv(1) = Ku · Udc

The proportionality fastor Ku is a fix constant for square-wave converters, but may also be controlled by pulsewidth modulation, by using two phase-displaced, six-pulse bridges or a so-called NPC-coupling. This is described in the monograph Ekström: "High Power Electronics HVDC SVC" (Stockholm 1989).

Described below is a steering and control system for the simple case when Ku1 is a constant, the a.c. voltage Uv1, and therewith the voltage in the local a.c. voltage network, being controlled by steering Udc . On the other hand, if the system is constructed so that Ku can be controlled, the voltage in the d.c. voltage interlink Ud is steered towards a fixed value, which enables a battery to be connected to the interlink voltage.

Figure 4 illustrates in block form a steering and control system for the system illustrated in Figure 1. In this case, the ignition systems for the converter 2 and the converter 3 are particularly simple, since it is assumed that these converters are solely steered to provide desired values of the frequencies f₄ and fL.

The control systems 5 and 6 can, for instance, have the form of ring counters triggered by pulses having the frequencies 2 x f₄ and 6 x fL respectively.

The main problem is to steer Udc , so that the desired a.c. voltage UL can be obtained in the local network. In the simplest variant, this network can be constructed as a feedback system according to Figure 4, wherein the measured voltage UL is compared with the desired voltage ULref. When the measured voltage is excessively low, the voltage regulator 7 will calculate an appropriate addition to the input power ΔP, which is supplied to the control device 8 for the converter 1. The measured voltage U₄ is also supplied to the control device 8. The control device may be configured in the manner illustrated for a HVDC converter according to Chapter 7 of the aforesaid monograph to Ekström. This converter is constructed so that the ignition pulses are delayed at positive ΔP and are made premature in the case of a negative ΔP. Delayed application of the ignition pulses to the converter 1 causes the ignition angle to increase and the extinguishing angle to decrease, which in turn results in an increase of the d.c. voltge Ud1 over the converter 1 at constant a.c. voltage U₄. When the direct current Id1 is assumed to be constant, an increase in Ud1 will result in an increase in the power supplied to the capacitor C in the direct voltage interlink and therewith in an increase in the voltage Udc over said capacitor. For the purpose of preventing commutation errors in the converter 1, the control system 8, similar to the control system for the HVDC converter described in the aforesaid monograph to Ekström, is provided with a limitation such that the extinguishing angle can never be smaller than a predetermined smallest value.

A multiple of alternative embodiments are possible within the scope of the invention, as will be realized by the person skilled in this art. The degree of complication depends to a large extent on the power to be discharged or tapped-off in each particular case, and the aforedescribed example is primarily conceived for relatively low discharge powers, where the advantages afforded by the invention are thought to be most significant, although, as mentioned, the system can be constructed to some extent for higher power discharges, by using a three-phase/six-pulsed converter as the first converter or simply a twelve-pulse converter, so as to reduce the problems associated with filtering and disturbance elimination on the high voltage side.

高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈