首页 / 专利库 / 电池与电池 / 电化学电池 / 阴极 / 一种成对电极同时制备芳香卤化物和醛类物质的方法

一种成对电极同时制备芳香卤化物和类物质的方法

阅读:686发布:2020-05-08

专利汇可以提供一种成对电极同时制备芳香卤化物和类物质的方法专利检索,专利查询,专利分析的服务。并且本 发明 涉及一种成对 电极 同时制备芳香卤代物和 醛 类物质的方法,在 阳极 室 芳香化合物(A)与卤化物(B)发生 氧 化反应得到芳香卤代物,同时在 阴极 室 有机酸 (C)发生还原反应得到醛类物质,两者独立发生。通过离子膜将 电解 槽 分隔为阳极室和阴极室,阳极发生氧化反应的同时,阴极室发生还原反应,将有机酸还原为醛类物质,两者互不干扰。通过控制阳极电解液组成和电极材料,可以选择性的合成邻/对位取代的卤代物。成 对电极 提高了 电能 的利用效率,降低了生产成本,减少了氢气生成,提高了操作的安全性,具有良好的工业化前景。,下面是一种成对电极同时制备芳香卤化物和类物质的方法专利的具体信息内容。

1.一种成对电极同时制备芳香卤代物和类物质的方法,其特征在于:在阳极室芳香化合物(A)与卤化物(B)发生化反应得到芳香卤代物,同时在阴极有机酸(C)发生还原反应得到醛类物质,两者独立发生,电极反应式如式(1)或式(2)所示:
反应式(1)中,芳香化合物(A)中的R1选自甲基、乙基、异丙基、甲氧基、乙氧基、基、N-甲胺基、N,N-二甲氨基、氰基、羟基、羧基中的一种,优选甲基、乙基、甲氧基、氨基、羟基中的一种。
2.根据权利要求1所述的方法,其特征在于:反应式(1)中卤化物(B)选自HCl、LiCl、NaCl、HBr、NaBr、KBr、NaI、KI、HI中的一种,优选LiCl、NaCl、NaBr、KBr、KI中的一种,卤化物(B)的加入量为芳香化合物(A)摩尔量的1.1-1.8倍,优选1.2-1.5倍。
3.根据权利要求1或2所述的方法,其特征在于:反应式(2)中有机酸(C)为脂肪族羧酸或芳香族羧酸,选自甲酸草酸、乙酸、丁二酸、丙酸、苯甲酸丙二酸、对羟基苯甲酸、杨酸、酒石酸、丁酸中的一种或多种,优选草酸、水杨酸、酒石酸、苯甲酸、丁酸中的一种或多种。
4.根据权利要求1所述的方法,其特征在于:当使用质子性溶剂和铂族元素金属做阳极时,得到邻位取代的芳香卤代产物,质子性溶剂选自水、甲醇、乙醇、乙二醇、丙醇、异丙醇、甲酸、乙酸、丙酸中的一种或多种,优选水、甲醇、乙醇、异丙醇、乙酸中的一种或多种;铂族元素选自铂、钯、锇、铱、钌或铑,优选铂、钯、铱或钌。
5.根据权利要求1所述的方法,其特征在于:当使用非质子性溶剂和涂层电极做阳极时,得到对位取代的芳香卤代产物,非质子性溶剂选自丙、乙腈、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、N-甲基吡咯烷酮和二甲基亚砜、环丁砜中的一种或多种,优选乙腈、丙酮、环丁砜、N,N-二甲基甲酰胺或N-甲基吡咯烷酮中的一种或多种;涂层电极包含一种基材和一种涂层,其中基材选自,优选钛作为基材,涂层选自RuO2、AgO、IrO2、AuO2、PbO2、PdO2中的一种,优选RuO2、IrO2、MnO2、PbO2中的一种。
6.根据权利要求5所述的方法,其特征在于:还需要向阳极室中加入表面活性剂,所述的表面活性剂选自四甲基乙酸铵、四乙基四氟酸铵、四甲基硫酸甲酯胺、四乙基三氟乙酸铵、乙基三甲基硫酸甲酯铵、四丁基四氟硼酸铵、二甲基二乙基硫酸甲酯胺、二甲基二乙基硫酸乙酯胺、四甲基硫酸乙酯胺、乙基三甲基硫酸乙酯胺,四甲基硫酸甲酯铵中的一种或多种,优选四甲基乙酸铵、四乙基三氟乙酸铵、四丁基四氟硼酸铵、四乙基四氟硼酸铵、四甲基硫酸甲酯铵中的一种或多种,表面活性剂的投入量为原料芳香化合物(A)摩尔量的1%-
10%,优选2-5%。
7.根据权利要求1-6中任一项所述的方法,其特征在于,阴极室和阳极室需要用阳离子交换膜分隔,阳离子交换膜选自磺酸型离子膜、磷酸型离子膜、羧酸型离子膜、酚类离子膜等其中一种或多种,优选磺酸型离子交换膜。
8.根据权利要求1-7中任一项所述的方法,其特征在于,阴极使用的电极材料为铅、汞、镉、镍、钛、锌、中的一种或多种,优选铅、镉、银和钛中的一种或多种。
9.根据权利要求1-8中任一项所述的方法,其特征在于,反应过程中槽电压选自5-50V,优选8-20V,进一步优选10-15V。
10.根据权利要求1-9中任一项所述的方法,其特征在于,阳极的电流密度选自20-
2 2 2 2
500A/m ,优选50-400A/m ,进一步优选100-300A/m;阴极的电流密度选自500-2000A/m ,优选600-1500A/m2,进一步优选700-1000A/m2。

说明书全文

一种成对电极同时制备芳香卤化物和类物质的方法

技术领域

[0001] 本发明涉及一种成对电极选择性制备芳香卤代物和醛类物质的方法,属于有机电化学合成领域。

背景技术

[0002] 芳香卤化物是一类重要的化工基础原料,在制药、精细化学品等领域应用广泛。卤原子可以有效的改变化合物空间结构,改变化合物的亲/亲油性质,从而改变化合物的物化和生理活性;卤原子还可以被转化为其它官能团,如还原(加氢脱除)、亲核取代、亲核加成、偶联反应(如Suzuki偶联、Heck反应等),这些使得芳香卤化物成为重要的化学原料和医药中间体。
[0003] 虽然芳香卤化物的应用广泛,但是其制备方法却十分有限。以甲基氯苯为例,它有邻甲基氯苯和对甲基氯苯两种异构体,工业上以甲苯为原料,通过氯化反应制备,但反应选择性较差,不仅有邻甲基氯苯和对甲基氯苯,还有多取代氯苯等副产物,产物收率低,副产分离困难,不符合绿色化学的发展趋势。
[0004] 为了提高目标产物选择性,人们开发了复杂的卤化试剂,如NCS、NBS,(N,N-二甲基)乙酰胺基三溴化氢等;或者严格控制反应温度,如反应在零下几十度下进行,以提高反应的邻/对位选择性。以苯酚溴化为例:苯酚在-70℃发生溴化反应,以60%收率制得邻溴苯酚,而用(N,N-二甲基)乙酰胺基三溴化氢做溴化试剂可以使苯酚的对位优先取代。反应方程式如下:
[0005]
[0006] 因此,采用传统的化学方法选择性的制备含取代基的芳香卤化物还存在很多问题,如反应条件苛刻、能耗高,原子利用率低、副产较多、收率偏低等,需要一种新的合成工艺来改变现状。
[0007] 电化学有机合成有别于传统的化学合成,它通过电极上的电子得失/获得实现产物的化或还原,无需使用额外的氧化剂/还原剂,是一种绿色环保的合成方法,同时,对电解工艺和电极的选择,还可以实现独特的选择性。《The Journal of Organic Chemistry,Year 1985,Volume 50,Issue 26,Page 5895-5896》报道了一种电化学合成氯甲苯的方法,对氯甲苯和邻氯甲苯的比例(对位/邻位比)比化学法高了2.2倍左右,进一步优化条件,采用环糊精修饰过的石墨阳极,以NaCl或HCl-H2O等做电解液,可使对位/邻位比提高到4倍以上,当甲苯转化率为50%时,对氯/邻氯甲苯的总选择性高达99%。
[0008] 专利DE2436111(1975)报道了一种选择性碘化反应,以苯胺为原料,金属铂为阳极,NH4I为碘化试剂,制备对碘苯胺,该反应的电流密度为91%,产物对位/邻位比为96:4。专利JP55034617(1980)报道了N,N-二苯基胺的溴化反应,以金属铂或为阳极,NaBr为溴化试剂,在水-乙腈混合溶剂中高选择性的制备了单溴对位取代的二苯胺。
[0009] 以上这些报道虽然提高了芳香卤代物的选择性,解决了卤代物选择性偏低的问题,但是无法根据需要对对位/邻位选择性进行调控。例如:当目标产物的需求由邻氯甲苯变为对氯甲苯时,原有的工艺条件无法满足,需要重新设计实验方案。同时,电化学过程只利用了电极的阳极半反应,阴极半反应没有有效利用,一般设计为还原水产生氢气,氢气是一种可燃气体,处理不当会有燃烧、甚至爆炸的危险。因此,如果阴极反应只产生了氢气,不仅白白浪费了电能,还会增加反应的危险性,使芳香卤化物的成本偏高,难以大规模生产。
[0010] 因此,目前电化学制备芳香卤代物,仍然存在电能浪费、产品成本偏高、对位/邻位选择性无法调控等问题,需要开发一种新的电极合成工艺及其对应的成对电极电解方法,以解决目前存在的问题。

发明内容

[0011] 本发明的目的在于提供一种成对电极同时制备芳香卤化物和醛类物质的方法,对阴极进行有效利用并可以实现高选择性的合成邻/对位取代的芳香卤代物,提高了电能的利用效率,降低了生产成本,减少了氢气生成,提高了操作的安全性。
[0012] 为实现以上发明目的,本发明的技术方案如下:
[0013] 一种成对电极同时制备芳香卤代物和醛类物质的方法,在阳极室芳香化合物(A)与卤化物(B)发生氧化反应(卤代反应)得到芳香卤代物,同时在阴极室有机酸(C)发生还原反应得到醛类物质,两者独立发生,电极反应式如式(1)或式(2)所示:
[0014] 阳极反应:
[0015] 阴极反应:
[0016] 本发明中,反应式(1)中芳香化合物中的R1选自甲基、乙基、异丙基、甲氧基、乙氧基、基、N-甲胺基、N,N-二甲氨基、氰基、羟基、羧基中的一种,优选甲基、乙基、甲氧基、氨基、羟基中的一种。
[0017] 本发明中,反应式(1)中卤化物(B)可以是HCl、LiCl、NaCl、HBr、NaBr、KBr、NaI、KI、HI中的一种,优选LiCl、NaCl、NaBr、KBr、KI中的一种,卤化物(B)的加入量为芳香化合物(A)的1.1-1.8倍(摩尔比),优选1.2-1.5倍(摩尔比)。
[0018] 电极材料在电化学合成中有重要作用,类似于常规有机反应中催化剂的作用,通过对电极反应及电解质溶液的调变与优化,我们惊奇的发现,当使用质子性溶剂和铂族金属元素做阳极时,卤代反应主要发生在芳香化合物(A)中R1的邻位,反应式如下:其中原料(A)的转化率>90%,产物(D)的选择性>95%。
[0019]
[0020] 质子性溶剂指的是能提供质子与溶质分子以氢键相缔合或形成配位阳离子的一类溶剂,一般为含有羟基的化合物,如:水、甲醇、乙醇、乙二醇、丙醇、异丙醇、甲酸、乙酸、丙酸中的一种或多种,优选水、甲醇、乙醇、异丙醇、乙酸中的一种或多种。铂族金属包括铂(Pt)、钯(Pd)、锇(Os)、铱(Ir)、钌(Ru)、铑(Rh)六种金属。这类金属具有较高的催化活性,因此由这些元素组成的电极材料也具有优良的电催化性能。电极选自铂(Pt)、钯(Pd)、锇(Os)、铱(Ir)、钌(Ru)或铑(Rh),优选(Pt)、钯(Pd)、铱(Ir)或钌(Ru)。
[0021] 当使用非质子性溶剂和涂层电极时,卤代反应主要发生在芳香化合物(A)中R1的对位,反应如下:其中原料(A)的转化率>97%,产物(E)的选择性>98%。
[0022]
[0023] 非质子性溶剂选自丙、乙腈、DMAc(N,N-二甲基乙酰胺)、DMF(N,N-二甲基甲酰胺)、NMP(N-甲基吡咯烷酮)、DMSO(二甲基亚砜)、环丁砜中的一种,优选乙腈、丙酮、环丁砜、DMF或NMP中的一种或多种;涂层电极包含一种基材和一种涂层,其中基材选自,优选钛作为基材,涂层选自RuO2、AgO、IrO2、AuO2、PbO2、PdO2中的一种,优选RuO2、IrO2、MnO2、PbO2中的一种。
[0024] 优选地,为了使上述生成产物(E)的反应顺利进行,还需要向阳极室中加入一种表面活性剂,所述的表面活性剂选自四甲基乙酸铵、四乙基四氟酸铵、四甲基硫酸甲酯胺、四乙基三氟乙酸铵、乙基三甲基硫酸甲酯铵、四丁基四氟硼酸铵、二甲基二乙基硫酸甲酯胺、二甲基二乙基硫酸乙酯胺、四甲基硫酸乙酯胺、乙基三甲基硫酸乙酯胺,四甲基硫酸甲酯铵中的一种或多种,优选四甲基乙酸铵、四乙基三氟乙酸铵、四丁基四氟硼酸铵、四乙基四氟硼酸铵、四甲基硫酸甲酯铵中的一种或多种,表面活性剂的投入量为原料芳香化合物(A)的1%-10%(摩尔比),优选2-5%(摩尔比)。
[0025] 本发明中,式(2)中的有机酸(C)选自脂肪族羧酸和/或芳香族羧酸,可以是一元酸,也可以是二元酸,如甲酸、草酸、乙酸、丁二酸、丙酸、苯甲酸丙二酸、对羟基苯甲酸、水杨酸、酒石酸、丁酸中的一种或多种,优选草酸、水杨酸、酒石酸、苯甲酸、丁酸中的一种或多种。为了提高电流效率,降低析氢反应比例,选择析氢电位较高的金属材料作为阴极,如铅(Pb)、汞(Hg)、镉(Cd)、镍(Ni)、钛(Ti)、锌(Zn)、(Ag)中的一种或多种,选优铅(Pb)、镉(Cd)、银(Ag)和钛(Ti)中的一种或多种为电极材料,阴极电解质主要为水。有机酸(C)的用量与原料(A)用量的摩尔比值是0.5:1-1.5:1,优选0.7:1-1.2:1。
[0026] 为了使阴极室和阳极室同时发生反应又互不影响,需要用离子交换膜将阴极液和阳极液分开,离子交换膜选自阳离子交换膜、阴离子交换膜和双极膜,优选阳离子交换膜。采用阳离子交换膜,阳极反应生成的氢离子可以透过膜层并进入阴极,参与还原反应,保持了物料和电荷的平衡。阳离子交换膜选自磺酸型离子膜、磷酸型离子膜、羧酸型离子膜、酚类离子膜等其中一种或多种,优选磺酸型离子交换膜。
[0027] 为了降低反应能耗,控制反应速率,电解过程采用恒电流操作,即保持电流不变,槽电压选自5-50V,优选8-20V,进一步优选10-15V。阳极的电流密度选自20-500A/m2,优选50-400A/m2,进一步优选100-300A/m2。阴极的电流密度选自500-2000A/m2,优选600-1500A/m2,进一步优选700-1000A/m2。阳极室和阴极室的溶剂质量比为0.5:1-1.5:1,优选的质量比为0.8:1-1.2:1。
[0028] 采用成对电极以后,每千瓦时的电量不仅可以在阳极产生约0.4kg芳香卤化物,还可以在阴极产生约0.2-0.3kg醛类物质,两者互不干扰,而且阴极几乎没有氢气生成,不仅极大的提高了电能的利用率,降低了产品成本,还增加了操作的安全性。
[0029] 本发明的有益效果在于:
[0030] 通过控制阳极电解液(溶剂)组成和电极材料,可以实现高选择性的合成邻/对位取代的芳香卤代物,解决了传统化学方法制备芳香卤代物时邻/对位选择性差、易生成多卤代物等问题,为制备此类物质提高了一种绿色、经济的方法。同时,利用阴极反应制备醛类物质,减少了氢气产生,提高了电能利用率,降低了反应的安全险,工艺流程简单,对设备要求不高,适合工业化生产。

具体实施方式

[0031] 以下通过实施例进一步详细说明本发明所提供的制备方法,但本发明并不因此而受到任何限制。
[0032] 草酸、水杨酸、酒石酸、苯甲酸、丁酸购买自阿拉丁试剂,纯度>98.0%;
[0033] 甲苯、乙苯、甲氧基苯(茴香醚)、氨基苯、苯酚:购买厂家:国药,纯度>99%;
[0034] LiCl、NaCl、NaBr、KBr、KI购买厂家:西陇试剂,纯度>98%;
[0035] 四甲基乙酸铵、四乙基三氟乙酸铵、四丁基四氟硼酸铵、四乙基四氟硼酸铵、四甲基硫酸甲酯铵:购买厂家:百灵威,纯度>98%;
[0036] 甲醇、异丙醇、乙醇、乙酸:购买厂家:西陇试剂,纯度>99%;
[0037] Nafion膜购买厂家:美国杜邦公司;
[0038] 阴极、阳极电极购买厂家:苏州枫港钛材;
[0039] 气相色谱型号:日本岛津GC-2010Plus;分析条件:进样口温度:300℃;分流比:30:1;色谱柱:DB-5(30m×0.25mm×0.25μm);升温程序:50℃保持2分钟,以5℃/min升温至80℃,保持0min,以15℃/min升温至300℃,保持10min;FID检测器温度:300℃。
[0040] 液相色谱型号:日本岛津LC-20AT,分析条件:进样器:自动进样器;进样量:10μL;色谱柱:安捷伦ZORBAX SB-aq 5um(4.6*250mm);流速:1.0ml/min;柱温:40℃;洗脱液:水(0.2%的磷酸):甲醇=3:7(体积比);检测器:PDA检测器;检测波长:210nm。
[0041] 实施例1.
[0042] 向阳极室加入90g甲醇、10g甲苯和5.53g LiCl,阳极采用钌电极;向阴极室中加入100g 10wt%草酸水溶液,阴极采用铅电极。阳极室和阴极室用Nafion离子膜分隔,控制阳极电流密度为300A/m2,阴极电流密度为700A/m2,槽电压为12.5V,在室温下电解4h。气相色谱测定阳极液中甲苯转化率为92%,产物邻氯甲苯的选择性为97.3%,电流效率为86.4%;
液相色谱测定阴极液中乙醛酸浓度为5.2%,选择性97.1%,电流效率87.8%。
[0043] 实施例2.
[0044] 向阳极室加入80g异丙醇、20g乙苯和16.54g NaCl,阳极采用铑电极;向阴极室中加入100g 20wt%水杨酸溶液,阴极采用镉电极。阳极室和阴极室用Nafion离子膜分隔,控制阳极电流密度为100A/m2,阴极电流密度为850A/m2,槽电压为10.0V,在室温下电解8h。气相色谱测定阳极液中乙苯转化率为93.2%,产物邻氯乙苯的选择性为96.3%,电流效率为84%;液相色谱测定阴极液中水杨醛浓度为10.1%,选择性89%,电流效率85%。
[0045] 实施例3.
[0046] 向阳极室加入90g乙醇、10g甲氧基苯(茴香醚)和12.86g NaBr,阳极采用铱电极;向阴极室中加入100g 10wt%酒石酸溶液,阴极采用银电极。阳极室和阴极室用Nafion离子膜分隔,控制阳极电流密度为200A/m2,阴极电流密度为1000A/m2,槽电压为15.0V,在室温下电解4h。气相色谱测定阳极液中茴香醚转化率为92.5%,产物邻溴茴香醚的选择性为
95.7%,电流效率为82.6%;液相色谱测定阴极液中1-羰基-2,3-二羟基丁酸浓度为4.3%,选择性82.5%,电流效率77.5%。
[0047] 实施例4.
[0048] 向阳极室加入95g水、5g氨基苯和11.52g KBr,阳极采用钯电极;向阴极室中加入100g 5wt%苯甲酸,阴极采用钛电极。阳极室和阴极室用Nafion离子膜分隔,控制阳极电流密度为400A/m2,阴极电流密度为1500A/m2,槽电压为20.0V,在室温下电解4h。气相色谱测定阳极液中氨基苯转化率为91.3%,产物邻溴苯胺的选择性为97.8%,电流效率为81.5%;液相色谱测定阴极液中苯甲醛浓度为2.1%,选择性80.9%,电流效率83.8%。
[0049] 实施例5.
[0050] 向阳极室加入90g乙酸、10g苯酚和19.43g KI,阳极采用铂电极;向阴极室中加入100g 10wt%丁酸,阴极采用镍电极。阳极室和阴极室用Nafion离子膜分隔,控制阳极电流密度为50A/m2,阴极电流密度为600A/m2,槽电压为8.0V,在室温下电解4h。气相色谱测定阳极液中苯酚转化率为94.6%,产物邻碘苯酚的选择性为96.4%,电流效率为80.1%;液相色谱测定阴极液中丁醛浓度为5.2%,选择性78.5%,电流效率80.1%。
[0051] 实施例6.
[0052] 向阳极室加入90g乙腈、10g甲苯、5.53g LiCl和0.72g四甲基乙酸铵,阳极采用钛基RuO2电极,其它条件同实施例1一样。气相色谱测定阳极液中甲苯转化率为98.1%,产物对氯甲苯的选择性为98.2%,电流效率为88.2%。阴极反应产物及结果不变。
[0053] 实施例7.
[0054] 向阳极室加入80g丙酮、20g乙苯、16.54gNaCl和1.61g四乙基三氟乙酸铵,阳极采用钛基镀IrO2电极,其它条件同实施例2一样。气相色谱测定阳极液中乙苯转化率为98.3%,产物对氯乙苯的选择性为98.7%,电流效率为89.3%。阴极反应产物及结果不变。
[0055] 实施例8.
[0056] 向阳极室加入90g环丁砜、10g茴香醚、16.54gNaBr和0.61g四丁基四氟硼酸铵,阳极采用钛基镀MnO2电极,其它条件同实施例3一样。气相色谱测定阳极液中茴香醚转化率为99.1%,产物对溴茴香醚的选择性为98.3%,电流效率为90.2%。阴极反应产物及结果不变。
[0057] 实施例9.
[0058] 向阳极室加入95gN,N-二甲基甲酰胺、5g氨基苯、11.52gNaBr和1.17g四乙基四氟硼酸铵,阳极采用钛基镀PbO2电极,其它条件同实施例4一样。气相色谱测定阳极液中氨基苯转化率为97.3%,产物对溴苯胺的选择性为98.6%,电流效率为89.3%。阴极反应产物及结果不变。
[0059] 实施例10.
[0060] 向阳极室加入90g N,-甲基吡咯烷酮、10g苯酚、19.42g KI和0.20g四甲基硫酸甲酯铵,阳极采用钛基AgO电极,其它条件同实施例5。气相色谱测定阳极液中苯酚转化率为97.9%,产物对碘苯酚的选择性为99.2%,电流效率为91.5%。阴极反应产物及结果不变。
[0061] 对比例1.
[0062] 实验投料及仪器同实施例1,所不同的是,阴极室中加入100g水,反应条件同实施例1,4h以后气相色谱测定阳极液中甲苯转化率为35%,邻氯甲苯选择性为47%,电流效率43%。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈