首页 / 专利库 / 电脑编程 / 算法 / 光线跟踪算法 / 基于光线跟踪算法的高帧频可见光图像模拟方法及系统

基于光线跟踪算法的高频可见光图像模拟方法及系统

阅读:861发布:2020-05-17

专利汇可以提供基于光线跟踪算法的高频可见光图像模拟方法及系统专利检索,专利查询,专利分析的服务。并且本 发明 公开一种基于 光线 跟踪 算法 的高 帧 频可见光图像模拟方法及系统,该方法包括:第一步、完成 飞行器 的三维 网格模型 建模并对模型进行区域剖分;第二步、通过坐标变换得到目标 坐标系 下的光照 角 度;第三步、基于 光线跟踪 算法 计算飞行器的可见表面的可见光散射特性并存储;第四步、根据实时接收的观测信息及光照信息对可见光散射特性进行分析及插值,完成散射特性数值到256级灰度值量化处理,依据可见光散射特性确定飞行器的显示角度,完成几何 渲染 绘制实体,实现高 置信度 的高帧频可见光图像模拟。本发明可同时保证可见光散射特性仿真的真实性与高帧频仿真的实时性。,下面是基于光线跟踪算法的高频可见光图像模拟方法及系统专利的具体信息内容。

1.一种基于光线跟踪算法的高频可见光图像模拟方法,其特征在于,该方法包括如下步骤:
第一步、建立飞行器三维网格模型,将飞行器三维网格模型的各三形面片定义为网格,并对飞行器三维网格模型进行区域剖分以确定每个面片在目标坐标系下的坐标;
第二步、依据观测日期、时间、观测角度确定地球坐标系下的太阳光照角度,并经坐标变换得到目标坐标系下的光照角度;
第三步、基于光线跟踪算法并根据目标坐标系下的光照角度计算在目标坐标系下,飞行器在不同观测角度及观测距离下的每个面片的可见光散射特性,并将不同观测角度及观测距离下的每个面片的可见光散射特性进行编码存储,得到散射特性数据文件组;
第四步、根据实时接收的观测信息及光照信息对散射特性数据文件组中的数据进行分析及插值,完成散射特性数值到256级灰度值量化处理,依据散射特性数据文件组中的数据确定飞行器的显示角度,完成几何渲染绘制实体,实现高帧频可见光图像模拟。
2.根据权利要求1所述的基于光线跟踪算法的高帧频可见光图像模拟方法,其特征在于,所述第一步至所述第三步均在离线状态下执行。
3.根据权利要求1所述的基于光线跟踪算法的高帧频可见光图像模拟方法,其特征在于,所述第一步的具体过程为:
依据近似原型和适合特性计算的模型简化原则,建立飞行器三维网格模型,利用三角形面片集合逼近形体,将飞行器三维网格模型的每个三角形面片定义为一个网格;并根据飞行器表面材质的不同、形态的差异对模型进行区域剖分,确定每个面片在目标坐标系下的坐标。
4.一种基于光线跟踪算法的高帧频可见光图像模拟系统,其特征在于,该系统包括:模型构建模、光照及探测几何关系计算模块、光线跟踪算法计算模块、动态查询插值模块和可见光图像模拟模块;
模型构建模块,建立飞行器三维网格模型,将飞行器三维网格模型的各三角形面片定义为网格,并对飞行器三维网格模型进行区域剖分以确定每个面片在目标坐标系下的坐标;
光照及探测几何关系计算模块,依据观测日期、时间、观测角度确定地球坐标系下的太阳光照角度,并经坐标变换得到目标坐标系下的光照角度;
光线跟踪算法计算模块,基于光线跟踪算法并根据目标坐标系下的光照角度计算在目标坐标系下,飞行器在不同观测角度及观测距离下的每个面片的可见光散射特性,并将不同观测角度及观测距离下的每个面片的可见光散射特性进行编码存储,得到散射特性数据文件组;
动态查询插值模块,根据实时接收的观测信息及光照信息对散射特性数据文件组中的数据进行分析及插值,完成散射特性数值到256级灰度值量化处理;
可见光图像模拟模块,依据散射特性数据文件组中的数据确定飞行器的显示角度,完成几何渲染绘制实体,实现高帧频可见光图像模拟。
5.根据权利要求4所述的基于光线跟踪算法的高帧频可见光图像模拟系统,其特征在于,所述模型构建模块、光照及探测几何关系计算模块和光线跟踪算法计算模块均在离线状态下工作。

说明书全文

基于光线跟踪算法的高频可见光图像模拟方法及系统

技术领域

[0001] 本发明涉及实时可见光图像模拟方法。更具体地,涉及一种基于光线跟踪算法的高帧频可见光图像模拟方法及系统。

背景技术

[0002] 飞行器的可见光特性与红外特性的模拟原理有很大差别,散射特性计算是可见光图像模拟仿真的基础。飞行器表面的光散射特性与其表面材料特性、几何外形、飞行状态以及观测状态等有关,存在复杂遮挡关系及高光反射特性等复杂且瞬态变化的特性,计算十分复杂,目前普遍采用的方法是基于图形引擎的可见光图像渲染方法,但该方法在高帧频状态下无法保证散射特性仿真的逼真度,因此急需解决现有技术中存在的复杂可见光散射特性高帧频高置信度仿真瓶颈,可见光散射特性仿真的真实性与高帧频仿真的实时性不能同时保证问题。
[0003] 因此,需要提供一种提升高帧频动态可见光图像模拟的仿真置信度的基于光线跟踪算法的高帧频可见光图像模拟方法及系统。

发明内容

[0004] 本发明的目的在于提供一种基于光线跟踪算法的高帧频可见光图像模拟方法及系统,解决了现有方法的可见光散射特性仿真的真实性与高帧频仿真的实时性不能同时保证问题。
[0005] 为达到上述目的,本发明采用下述技术方案:
[0006] 一种基于光线跟踪算法的高帧频可见光图像模拟方法,包括如下步骤:
[0007] 第一步、建立飞行器三维网格模型,将飞行器三维网格模型的各三形面片定义为网格,并对飞行器三维网格模型进行区域剖分以确定每个面片在目标坐标系下的坐标;
[0008] 第二步、依据观测日期、时间、观测角度确定地球坐标系下的太阳光照角度,并经坐标变换得到目标坐标系下的光照角度;
[0009] 第三步、基于光线跟踪算法并根据目标坐标系下的光照角度计算在目标坐标系下,飞行器在不同观测角度及观测距离下的每个面片的可见光散射特性,并将不同观测角度及观测距离下的每个面片的可见光散射特性进行编码存储,得到散射特性数据文件组;
[0010] 第四步、根据实时接收的观测信息及光照信息对散射特性数据文件组中的数据进行分析及插值,完成散射特性数值到256级灰度值量化处理,依据散射特性数据文件组中的数据确定飞行器的显示角度,完成几何渲染绘制实体,实现高置信度的高帧频可见光图像模拟。
[0011] 优选地,所述第一步至所述第三步均在离线状态下执行。
[0012] 优选地,所述第一步的具体过程为:
[0013] 依据近似原型和适合特性计算的模型简化原则,建立飞行器三维网格模型,利用三角形面片集合逼近形体,将飞行器三维网格模型的每个三角形面片定义为一个网格;并根据飞行器表面材质的不同、形态的差异对模型进行区域剖分,确定每个面片在目标坐标系下的坐标。
[0014] 一种基于光线跟踪算法的高帧频可见光图像模拟系统,包括:模型构建模、光照及探测几何关系计算模块、光线跟踪算法计算模块、动态查询插值模块和可见光图像模拟模块;
[0015] 模型构建模块,建立飞行器三维网格模型,将飞行器三维网格模型的各三角形面片定义为网格,并对飞行器三维网格模型进行区域剖分以确定每个面片在目标坐标系下的坐标;
[0016] 光照及探测几何关系计算模块,依据观测日期、时间、观测角度确定地球坐标系下的太阳光照角度,并经坐标变换得到目标坐标系下的光照角度;
[0017] 光线跟踪算法计算模块,基于光线跟踪算法并根据目标坐标系下的光照角度计算在目标坐标系下,飞行器在不同观测角度及观测距离下的每个面片的可见光散射特性,并将不同观测角度及观测距离下的每个面片的可见光散射特性进行编码存储,得到散射特性数据文件组;
[0018] 动态查询插值模块,根据实时接收的观测信息及光照信息对散射特性数据文件组中的数据进行分析及插值,完成散射特性数值到256级灰度值量化处理;
[0019] 可见光图像模拟模块,依据散射特性数据文件组中的数据确定飞行器的显示角度,完成几何渲染绘制实体,实现高置信度的高帧频可见光图像模拟。
[0020] 优选地,所述模型构建模块、光照及探测几何关系计算模块和光线跟踪算法计算模块均在离线状态下工作。
[0021] 本发明的有益效果如下:
[0022] 本发明所述技术方案通过离线计算方式,采用高置信度光线跟踪算法计算光线散射特性,通过预处理加载及动态查询插值的方式实现了高置信度计算数据和高帧频动态图像仿真的合理结合,保证了复杂可见光散射特性仿真的真实性。另外,仿真过程不需要计算目标特性,保证了高帧频仿真的实时性。附图说明
[0023] 下面结合附图对本发明的具体实施方式作进一步详细的说明。
[0024] 图1示出基于光线跟踪算法的高帧频可见光图像模拟方法的流程图
[0025] 图2示出基于光线跟踪算法的高帧频可见光图像模拟系统的示意图。

具体实施方式

[0026] 为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
[0027] 如图1所示,本发明公开的一种基于光线跟踪算法的高帧频可见光图像模拟方法,包括如下步骤:
[0028] 第一步、建立飞行器三维网格模型,将飞行器三维网格模型的各三角形面片定义为网格,并对飞行器三维网格模型进行区域剖分以确定每个面片在目标坐标系下的坐标;
[0029] 第二步、依据观测日期、时间、观测角度确定地球坐标系下的太阳光照角度,并经坐标变换得到目标坐标系下的光照角度;
[0030] 第三步、基于光线跟踪算法并根据目标坐标系下的光照角度计算在目标坐标系下,飞行器在不同观测角度及观测距离下的每个面片的可见光散射特性,并将不同观测角度及观测距离下的每个面片的可见光散射特性进行编码存储,得到散射特性数据文件组;
[0031] 第四步、根据实时接收的观测信息及光照信息对散射特性数据文件组中的数据进行分析及插值,完成散射特性数值到256级灰度值量化处理,依据散射特性数据文件组中的数据确定飞行器的显示角度,完成几何渲染绘制实体,实现高置信度的高帧频可见光图像模拟。
[0032] 其中,
[0033] 第一步至第三步均在离线状态下执行;
[0034] 第一步的具体过程为:
[0035] 依据近似原型和适合特性计算的模型简化原则,建立飞行器三维网格模型,利用三角形面片集合逼近形体,将飞行器三维网格模型的每个三角形面片定义为一个网格。之后,根据飞行器表面材质的不同、形态的差异对模型进行区域剖分,确定每个面片在目标坐标系下的坐标,方便后续计算。
[0036] 第三步的具体过程为:
[0037] 为了提高求值效率,采用空间剖分技术将飞行器空间剖分成一系列互不重叠有序排序的空间网格;另外,为了进一步提高效率,采用逆向光线跟踪技术,即依据光照关系从观测方进行光线追迹,进而避免对不落入探测系统的光线的追迹。基于光线跟踪算法并根据目标坐标系下的光照角度,计算得到飞行器在不同观测角度及观测距离下每个面片的光学散射特性,不同观测角度及观测距离下每个面片的光学散射特性进行编码存储,得到散射特性数据文件组,供动态图像模拟时调用。
[0038] 第四步的具体过程为:
[0039] 为保证数据调度效率,在图像模拟初始化阶段加载离线计算的散射特性数据文件组。在动态图像高帧频模拟过程中,实时接收观测信息及光照信息,根据实时接收的观测信息及光照信息对散射特性数据文件组中的数据进行分析及插值,完成散射特性数值到256级灰度值量化处理,依据散射特性数据文件组中的数据确定飞行器的显示角度,完成几何渲染绘制实体,实现高置信度的高帧频可见光图像模拟。
[0040] 如图2所示,本发明公开的一种基于光线跟踪算法的高帧频可见光图像模拟系统,包括:模型构建模块、光照及探测几何关系计算模块、光线跟踪算法计算模块、动态查询插值模块和可见光图像模拟模块;
[0041] 模型构建模块,建立飞行器三维网格模型,将飞行器三维网格模型的各三角形面片定义为网格,并对飞行器三维网格模型进行区域剖分以确定每个面片在目标坐标系下的坐标,具体为:依据近似原型和适合特性计算的模型简化原则,建立飞行器三维网格模型,利用三角形面片集合逼近形体,将飞行器三维网格模型的每个三角形面片定义为一个网格。之后,根据飞行器表面材质的不同、形态的差异对模型进行区域剖分,确定每个面片在目标坐标系下的坐标,方便后续计算;
[0042] 光照及探测几何关系计算模块,依据观测日期、时间、观测角度确定地球坐标系下的太阳光照角度,并经坐标变换得到目标坐标系下的光照角度;
[0043] 光线跟踪算法计算模块,基于光线跟踪算法并根据目标坐标系下的光照角度计算在目标坐标系下,飞行器在不同观测角度及观测距离下的每个面片的可见光散射特性,并将不同观测角度及观测距离下的每个面片的可见光散射特性进行编码存储,得到散射特性数据文件组,具体为:为了提高求值效率,光线跟踪算法计算模块采用空间剖分技术将飞行器空间剖分成一系列互不重叠有序排序的空间网格;另外,为了进一步提高效率,光线跟踪算法计算模块采用逆向光线跟踪技术,即依据光照关系从观测方进行光线追迹,进而避免对不落入探测系统的光线的追迹。基于光线跟踪算法并根据目标坐标系下的光照角度,计算得到飞行器在不同观测角度及观测距离下每个面片的光学散射特性,不同观测角度及观测距离下每个面片的光学散射特性进行编码存储,得到散射特性数据文件组,供动态图像模拟时调用;
[0044] 动态查询插值模块,根据实时接收的观测信息及光照信息对散射特性数据文件组中的数据进行分析及插值,完成散射特性数值到256级灰度值量化处理;
[0045] 可见光图像模拟模块功能为:依据散射特性数据文件组中的数据确定飞行器的显示角度,完成几何渲染绘制实体,实现高置信度的高帧频可见光图像模拟。
[0046] 模型构建模块、光照及探测几何关系计算模块和光线跟踪算法计算模块均在离线状态下工作。
[0047] 显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈