首页 / 专利库 / 电脑零配件 / 工业控制计算机 / Digital computer control system and method for monitoring and controlling operation of industrial gas turbine apparatus employing expanded parametric control algorithm

Digital computer control system and method for monitoring and controlling operation of industrial gas turbine apparatus employing expanded parametric control algorithm

阅读:402发布:2023-09-18

专利汇可以提供Digital computer control system and method for monitoring and controlling operation of industrial gas turbine apparatus employing expanded parametric control algorithm专利检索,专利查询,专利分析的服务。并且A hybrid digital computer gas turbine power plant control system which may operate in a multiple control loop arrangement is provided with a plurality of process sensors at various operating cycle positions. Derivative inputs provide a basis for responsive control system variation of gas turbine parameters. Parametric control is maintained over generator and turbine subsystems during all modes of operations. More specifically, optimally arranged system thermocouples provide inputs from which temperature control variables are derived. Inlet guide vanes are positioned in response thereto to control exhaust gas temperatures while maintaining near optimum generator output.,下面是Digital computer control system and method for monitoring and controlling operation of industrial gas turbine apparatus employing expanded parametric control algorithm专利的具体信息内容。

1. A gas turbine electric power plant comprising a gas turbine having compressor and combustion and turbine elements, a generator having a field winding and being coupled to said gas turbine for drive power, a fuel system for supplying fuel for said gas turbine combustion elements, means for exciting said generator field winding, a control system including a digital computer and an input/output system therefor, a plurality of sensors disposed to monitor selected turbine parameters and to provide control system inputs representative thereof, means for operating said fuel system to energize said turbine and for controlling said exciting means, means continuously responsive to a control system output for modulating air flow into said compressor, and means for operating said computer to make functionally independent control action determinations for implementation by said fuel system operating means, said exciting means and said air flow modulating means, said modulating means and said fuel system control actions being determined as some function of time varying combinations of control parameters whose values are determined in response to said sensor inputs.
2. An electric power plant as set forth in claim 1 wherein said computer operating means further operates to determine control actions for implementation by said air flow modulating means to maintain gas turbine operation at a constant exhaust temperature over at least one interval of gas turbIne operation.
3. An electric power plant as set forth in claim 2 wherein said plurality of sensors comprises at least an arrangement of sensors disposed to detect pressures on said combustion elements and wherein control actions for implementation by said air flow modulating means are at least partially determined over at least one time interval as a function of control parameters whose values are determined in response to inputs from said arrangement.
4. An electric power plant as set forth in claim 2 wherein said plurality of sensors comprises at least a first arrangement of sensors disposed to detect pressures on said combustion elements and a second arrangement of sensors disposed to detect temperatures at the exhaust cycle position of said turbine elements and wherein said control actions for implementation by said air flow modulating means are at least partially determined over at least one time interval as a function of control parameters whose values are determined in response to a combination of inputs from said first and second arrangements.
5. An electric power plant as set forth in claim 2 wherein said plurality of sensors comprises at least one turbine speed sensor and wherein control actions for implementation by said air flow modulating means are at least partially determined over at least one time interval as a function of control parameters whose values are determined in response to inputs from said speed sensor.
6. An electric power plant as set forth in claim 2 wherein said plurality of sensors comprises at least a first arrangement of sensors disposed to detect compressor inlet temperatures and a second arrangement of sensors disposed to detect exhaust gas temperatures and wherein said control actions for implementation by said air flow modulating means are at least partially determined over at least one time interval as a function of control parameters whose values are determined in response to inputs from the combination of said first arrangement and said second arrangement.
7. An electric power plant as set forth in claim 2 wherein said plurality of sensors comprises at least a first arrangement of sensors disposed to detect pressures on said combustion elements and a second arrangement of sensors disposed to detect turbine exhaust temperatures and wherein said control actions for implementation by said air flow modulating means are at least partially determined over at least one time interval as a function of control parameters whose values are determined in response to inputs from a combination of said first and said second arrangements.
8. An electric power plant as set forth in claim 2 wherein said plurality of sensors comprises at least a first sensor disposed to detect turbine speed, a first arrangement of sensors disposed to detect pressures on said combustion elements and a second arrangement disposed to detect temperatures of exhaust gases and wherein control actions for implementation by said air flow modulating means are at least partially determined over at least one time interval as a function of control parameters whose values are determined in response to said speed sensor and at least partially determined over at least another time interval as a function of control parameters whose values are determined in response to inputs from a combination of said first and second arrangements.
9. An electric power plant as set forth in claim 8 wherein control actions for implementation by said air flow modulating means are at least partially determined over an earlier time interval as a function of control parameters whose values are determined in response to inputs from said speed sensor and at least partially determined over a later time interval as a function of control parameters whose values are determined in response to inputs from the combination of said first and said second arrangements.
10. An electric power plant as set forth in claim 2 wherein said air flow modulating means comprises a plurality of compressor vaRiable inlet guide vanes, a positioning ring mechanically coupled to said guide vanes, and control means for rotating said positioning ring to open and close said guide vanes.
11. An electric power plant as set forth in claim 8 wherein said air flow modulating means comprises a plurality of compressor variable inlet guide vanes, a positioning ring mechanically coupled to said guide vanes, and control means for rotating said positioning ring to open and close said guide vanes.
12. An electric power plant as set forth in claim 1 wherein means are provided for detecting generator load and said computer operating means further provides for controlling said fuel system operating means in response to detected load to regulate the generator load substantially to a predetermined value.
13. An electric power plant as set forth in claim 2 wherein means are provided for detecting generator load and said computer operating means further provides for controlling said fuel system operating means in response to detected generator load to regulate the generator load substantially to a predetermined value.
14. An electric power plant as set forth in claim 13 wherein said computer operating means operates to regulate said generator substantially to a predetermined value as a function of exhaust temperature.
15. An electric power plant as set forth in claim 14 wherein said plurality of sensors comprises at least an arrangement of sensors disposed to detect pressures on said combustion elements and wherein control actions for implementation by said air flow modulating means are at least partially determined in response to inputs from said arrangement.
16. An electric power plant as set forth in claim 14 wherein said plurality of sensors comprises at least an arrangement of sensors disposed to detect temperatures at the exhaust cycle position of said turbine element and wherein said control actions for implementation by said air flow modulating means is at least partially determined over at least one time interval as a function of control parameters whose values are determined in response to inputs from said arrangement.
17. An electric power plant as set forth in claim 14 wherein said plurality of sensors comprises at least a first arrangement of sensors disposed to detect pressure on said combustion element and a second arrangement of sensors disposed to detect temperatures at the exhaust gas cycle position of said turbine element and wherein said control actions for implementation by said air flow modulating means are at least partially determined over at least one time interval as a function of control parameters whose values are determined in response to a combination of inputs from said first and second arrangements.
18. A method of operating a digital control computer associated with a gas turbine electric power plant interfaced with an industrial process including an electric generator and a gas turbine having compressor, combustion and turbine elements, air flow modulating means at the intake of said compressor and a fuel system for supplying fuel to the combustion element, the steps of said method comprising determining an acquired representation of actual generator load, determining an exhaust heat temperature requirement for said industrial process, determining a fuel requirement consistent with said exhaust heat temperature requirement, scheduling fuel to provide for turbine operation at said temperature, and regulating said generator load consistent with maintaining said temperature.
19. A method as recited in claim 18 wherein said scheduling step further comprises manipulating said air flow modulating means to alter fuel requirements consistent with maintaining a constant exhaust temperature.
说明书全文
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈