首页 / 专利库 / 电脑零配件 / 固件 / 软件 / 像素区块结构和布局

像素结构和布局

阅读:131发布:2023-03-19

专利汇可以提供像素结构和布局专利检索,专利查询,专利分析的服务。并且确定适用于将用作图像 渲染 表面的部分的多个 像素 区 块 中的各像素区块的总移位容限。所述多个像素区块中的每个像素区块包括多个子像素。基于该总移位容限来产生所述多个像素区块中的每个像素区块中的随机移位。将具有随机移位的多个图像渲染区块组合到图像渲染表面中。,下面是像素结构和布局专利的具体信息内容。

1.一种用于由多个像素创建图像渲染表面的方法,其中,所述多个像素区块中的每一个被配置为被放置成使得像素区块中的子像素或像素被布置成规则图案以形成图像渲染表面,其中像素区块之间的错位导致子像素或像素偏离所述规则图案,并且其中,两个像素区块之间的像素区块级错位作为位于所述两个像素区块中的对应像素行之间的差被测量,所述方法包括:
确定适用于将用作所述图像渲染表面的部分的多个像素区块中的各像素区块的总移位容限,其中所述多个像素区块中的每个像素区块包括具有多个子像素的多个像素行,其中总移位容限是在放置像素区块以形成图像渲染表面时产生的多个被测量的像素区块级错位之中的统计值;
在所述总移位容限的限度内来产生所述多个像素区块中的每个像素区块中的子像素或像素的不均匀移位;以及
组合所述多个像素区块以创建所述图像渲染表面。
2.根据权利要求1所述的方法,其中,所述移位表示像素相对于所述像素的被分配位置的随机移位,并且其中所述被分配位置形成规则图案。
3.根据权利要求1所述的方法,其中,所述移位表示子像素相对于所述子像素的被分配位置的随机移位,并且其中所述被分配位置形成规则图案。
4.根据权利要求1所述的方法,其中,所述多个像素区块中的至少一个像素区块中的子像素表示多个像素,其中所述多个像素中的每个像素包括所述至少一个像素区块中的子像素中的一个或多个子像素的子集。
5.根据权利要求4所述的方法,其中,所述多个像素中的像素包括多个子像素,并且其中所述多个像素中的像素中的所述多个子像素在所述像素中的子像素之间具有固定的空间关系。
6.根据权利要求4所述的方法,其中,所述多个像素中的像素包括多个子像素,并且其中所述多个像素中的像素的所述多个子像素在所述像素中的子像素之间具有可变的空间关系。
7.根据权利要求1所述的方法,其中,所述多个像素区块中的至少一个像素区块包括所述至少一个像素区块内的可变的像素的密度、高度、宽度、间距。
8.根据权利要求1所述的方法,其中,所述多个像素区块中的至少一个像素区块包括所述至少一个像素区块内的可变的子像素的密度、高度、宽度、间距。
9.根据权利要求1所述的方法,其中,所述总移位容限表示用于将单独的子像素或像素放置到所述多个像素区块中的像素区块上的物理装置的误差。
10.根据权利要求9所述的方法,其中,所述物理装置是以下中的一个或多个:激光器、像素放置模块、子像素放置模块或阴影掩模。
11.根据权利要求9所述的方法,其中,所述物理装置是纳米管,并且其中使用纳米管将单独的子像素或像素放置到多个像素区块中的像素区块上包括提供用于每个像素区块的基板,并且在所述基板上或者从所述基板生长纳米管,各纳米管被配置为在纳米管的两端之间施加电压时沿纳米管的光方向发射不同颜色的调制光。
12.根据权利要求11所述的方法,其中使用纳米管将单独的子像素或像素放置到多个像素区块中的像素区块上进一步包括使薄膜导电膜涂布基板以提供第一极性的公共电极,而多个不相交的金属团中的一个金属团在各像素区块的各纳米管的另一端与所述导电膜相对地放置,以提供与公共电极的第一极性相反的第二极性的像素电极。
13.根据权利要求1所述的方法,其中,所述总移位容限表示用于将单独的像素区块放置到所述图像渲染表面上的区块放置系统的误差。
14.根据权利要求1所述的方法,其中,至少一个像素区块包括以下中的一个或多个:有色颜料、含磷材料、量子点、纳米管、发光二极管有机发光二极管
15.根据权利要求1所述的方法,进一步包括:
给基板压印凹陷的一个或多个图案;
在凹陷的所述一个或多个图案中填充对应的形状的彩色发光二极管芯片;
随后将所述基板单颗化成所述多个像素区块。
16.根据权利要求15所述的方法,其中,凹陷在一个或多个流控自装配过程中被填充彩色发光二极管芯片。
17.根据权利要求15所述的方法,其中,凹陷在一个或多个卷对卷过程中被创建于所述基板上。
18.根据权利要求15所述的方法,其中,每一颜色的彩色发光二极管芯片的形状与其他颜色的其他彩色发光二极管芯片的其他形状不同。
19.根据权利要求9所述的方法,其中,所述物理装置是一个或多个激光器,并且其中使用所述一个或多个激光器产生所述多个像素区块中的各像素区块中的子像素或像素的不均匀移位包括,出于产生子像素或像素相对于相应的被分配位置的随机移位的目的,将所述一个或多个激光器中的每一个与空间振动器机械地耦合。
20.根据权利要求19所述的方法,其中,所述空间振动器是压电或声学振动器。
21.根据权利要求1所述的方法,其中,所述统计值是最大值、平均值、中值之一。
22.一种显示系统,包括由根据权利要求1-21中任一项所述的方法创建的图像渲染表面。
23.一种区块放置系统,包括:
放置控制器,被配置为出于由多个像素区块创建图像渲染表面的目的而执行控制操作;
子区块放置模块,被配置为基于所述放置控制器的控制操作在所述多个像素区块中的每个像素区块中执行像素级或子像素级放置操作;以及
区块放置模块,被配置为基于所述放置控制器的控制操作对于所述图像渲染表面执行区块级放置操作;以及
其中,所述区块放置系统被配置为执行根据权利要求1-21中任一项所述的方法。
24.根据权利要求23所述的区块放置系统,其中,所述放置控制器包括一个或多个处理器以及一个或多个存储指令集的存储介质,所述指令集当被所述一个或多个处理器执行时使得所述区块放置系统执行根据权利要求1-21中任一项所述的方法。
25.一种非暂时性计算机可读存储介质,包括当被根据权利要求23所述的区块放置系统的放置控制器的一个或多个处理器执行时使得所述区块放置系统执行根据权利要求1-
21中任一项所述的方法的软件指令。
26.一种用于区块放置系统的放置控制器,包括一个或多个处理器以及一个或多个存储指令集的存储介质,所述指令集当被所述一个或多个处理器执行时使得所述区块放置系统执行根据权利要求1-21中任一项所述的方法。
27.一种包括用于执行根据权利要求1-21中任一项所述的方法的部件的装置。
28.一种设备,包括:
一个或多个处理器,
一个或多个存储介质,包括软件指令,所述软件指令在被所述一个或多个处理器执行时使得执行根据权利要求1-21中任一项所述的方法。
29.一种非暂时性计算机可读存储介质,包括软件指令,所述软件指令当被一个或多个处理器执行时使得执行根据权利要求1-21中任一项所述的方法。

说明书全文

像素结构和布局

[0001] 相关申请的交叉引用
[0002] 本申请要求2015年1月12日提交的美国临时专利申请No. 62/102,534的优先权,该美国临时专利申请的内容特此通过引用而全文并入。

技术领域

[0003] 本发明总体上涉及显示技术,尤其涉及像素区块(pixel tile)结构和布局。

背景技术

[0004] 设计制造具有高空间分辨率、广色域和高亮度范围的大尺寸显示面板一直被许多显示器制造商公认为是困难的尝试。因为涉及相对较多的相对昂贵的光学、音频、电子和机械组件,并且将它们全都集成在单个显示系统的许多像素中是复杂的,所以制造高端显示系统的成本通常非常高。
[0005] 在制造尺寸相对大的显示面板时可能引入各种类型的可见伪像。例如,当将像素放置到单块大尺寸显示面板上、尤其是显示面板的边缘区域中时,空间误差可能容易发生。可替代地,尺寸相对较大的显示面板可以通过组合多个相对较小的区块而制成。然而,显示面板中的分隔相邻区块的边界处的小的错位在视觉上可能表现得尤其明显。
[0006] 本节中所描述的方法是可以实行的方法,但不一定是以前已经设想过的或实行过的方法。因此,除非另有指示,否则不应仅由于本节中所描述的任何方法被包括在本节中就假定该方法为现有技术。类似地,关于一种或多种方法被识别的问题不应基于本节而被假定为已经在任何现有技术中被认识到,除非另有指示。附图说明
[0007] 本发明在附图的各图中被以举例的方式、而非限制的方式例示说明,在附图中,相似的标号指代类似的元件,其中:
[0008] 图1A例示说明示例图像渲染表面;
[0009] 图1B例示说明示例子像素级错位、像素级错位以及像素区块级错位;
[0010] 图2例示说明示例区块放置系统;
[0011] 图3A和图3B例示说明图像渲染表面的像素区块中的像素级随机移位;
[0012] 图4A至图4D例示说明图像渲染表面的像素区块中的子像素级随机移位;
[0013] 图5A至图5E例示说明用于创建图像渲染表面的各种类型的像素区块;图5F至图5J例示说明使用流控自装配技术的像素或子像素的随机移位;
[0014] 图6例示说明示例过程流程;
[0015] 图7例示说明根据本发明的可能的实施例的在其上可以实现如本文中所描述的计算机或计算装置的示例硬件平台;以及
[0016] 图8例示说明示例显示系统。

具体实施方式

[0017] 本文中描述了与像素区块结构和布局相关的示例的可能的实施例。在以下描述中,为了解释的目的,阐述了许多特定细节,以便提供本发明的透彻理解。然而,将显而易见的是,在没有这些特定细节的情况下仍可实施本发明。在其他情况下,不对众所周知的结构和装置进行详尽描述,以便避免不必要地遮蔽、模糊或混淆本发明。
[0018] 在本文中根据以下大纲来描述示例实施例:
[0019] 1.总体概述
[0020] 2.结构概述
[0021] 3.示例区块放置系统
[0022] 4.视觉特性的像素级变化
[0023] 5.视觉特性的子像素级变化
[0024] 6.不同类型的图像渲染表面
[0025] 7.使用流控自装配的随机移位
[0026] 8.示例显示系统
[0027] 9.示例过程流程
[0028] 10.实现机制——硬件概述
[0029] 11.等同、扩展、替代及其他
[0030] 1.总体概述
[0031] 本概述呈现了本发明的可能的实施例的一些方面的基本描述。应注意到,本概述不是可能的实施例的各方面的广泛的或详尽的总结。而且,应注意到,本概述不应被理解为标识可能的实施例的任何特别重要的方面或元件,也不应被理解为具体地描绘可能的实施例的任何范围,也不应被理解为概括地描绘本发明。本概述仅以扼要简化的格式呈现与示例的可能的实施例相关的一些构思,并且应被理解为仅仅是下文对示例的可能的实施例的更详细描述的概念性序言。
[0032] 为了避免创建单块大尺寸图像渲染表面(例如,小于5英尺、5 英尺、7英尺、10英尺、剧院大小、影院大小、户外广告大小等)时的高成本和技术难题,可以通过组合多个像素区块来创建大尺寸图像渲染表面。
[0033] 然而,当区块中的像素按规则图案(比如矩阵图案、对图案、同心图案等)布置时,在区块边界处,相邻区块之间的放置偏差、甚至亚微米错位都可能是人类视觉系统可感知的。如本文中所描述的规则图案可以是指通过恒定步幅的重复而形成的图案、或通过加上或减去与在放置和组合像素区块时发生的空间错位相比较小的空间变化 (例如,1%、2%等)的恒定步幅的重复而形成的图案。
[0034] 根据如本文中所描述的技术,可以测量由区块放置模块引起的空间误差或错位。这些空间误差可以被分析并且被用于为有意引入的像素或子像素随机放置而设置总移位容限(displacement tolerance)。像素级或子像素级的随机移位被添加(inject)到被装配到图像渲染表面中的多个像素区块中的每个像素区块中。这些随机移位可以要么是各向同性的,要么是各向异性的,只要它们避免或基本上移除相邻像素区块中的错位的视觉可感知性即可。
[0035] 像素级或子像素级的多种随机移位可以被如本文中所描述的技术所用。在例子中,如本文中所描述的随机移位可以通过将像素放置在与形成规则图案的像素的被分配位置有随机化的空间距离和/或成随机化的空间角度的位置上来实现。在另一个例子中,如本文中所描述的随机移位可以通过将子像素放置在与形成规则图案的子像素的被分配位置有随机化的空间距离和/或成随机化的空间角度的位置上来实现。在进一步的例子中,如本文中所描述的随机移位可以通过在像素级和子像素级两者上组合随机化移位来实现。
[0036] 附加地、可选地或可替代地,如本文中所描述的随机移位可以通过(例如,随机地、伪随机地、等等)改变像素密度、像素之间和/ 或子像素之间的间隔、像素高度、像素宽度、像素直径、像素间距、子像素高度、子像素宽度、子像素直径、子像素间距、在像素中布置有色子像素的空间次序等来实现。
[0037] 结果,根据如本文中所描述的技术,不会跨分隔图像渲染表面中的像素区块的边界发生规则像素或子像素图案的视觉上明显的破裂。
[0038] 多种的显示技术、放置技术等可以得益于如本文中所描述的技术。如本文中所描述的图像渲染表面可以通过以下技术中的一种或多种来创建:基于掩模的技术、基于印刷的技术(包括但不限于3D印刷技术)、基于沉积的技术、基于半导体晶圆的技术、基于机器人臂的技术、基于隔膜的技术、基于激光的技术、基于纳米管的技术、流控自装配(FSA)技术、卷对卷或网处理技术等。
[0039] 在一些实施例中,为了避免或减小图像渲染表面中的视觉伪像的目的,可以测量并且分析通过这些技术放置像素区块时的准确度、误差等,以产生用于在像素块级、像素级、子像素级等上控制并且添加随机移位的总移位容限。像素区块可被以相对较小的尺寸(比如2英寸、5英寸、12英寸、24英寸等)、以相对较低的成本创建。这些像素区块(可以是或者可以不是各种不同的形状)可以用于也以相对较低的成本构造尺寸大得多(例如,5英尺、7英尺、10英尺、剧院大小、影院大小、户外广告大小等)的图像渲染表面。根据如本文中所描述的像素区块放置技术,像素区块的不大于像素大小或子像素大小的很小一部分的精度平的准确对齐不是必要的。
[0040] 附加地、可选地或可替代地,这些技术也可以与用于创建图像渲染表面的多种基板、材料等(比如有色颜料、含磷材料、量子点、发光二极管(LED)、有机发光二极管(OLED)、纳米管或纳米线LED、玻璃、半导体晶圆、金属、透明导电膜树脂、帆布、光学膜、光导、基板上的不规则凹陷、将被沉积到基板上的不规则凹陷中的成形组件、柔性基板(比如聚对苯二甲酸乙二醇酯或PET卷)、热塑性聚合物树脂等)一起工作。
[0041] 在一些实施例中,一种方法包括提供如本文中所描述的显示系统。在一些可能的实施例中,如本文中所描述的机制形成系统的一部分,所述系统包括,但不限于,工厂制造系统、放置机器、显示系统、户外图像显示器、手持装置、游戏机、电视机、膝上型计算机、上网本计算机、蜂窝无线电电话、电子书阅读器、销售点终端、台式计算机、计算机工作站、计算机亭、PDA以及各种其他种类的终端和显示单元。
[0042] 对于本文中所描述的优选实施例以及一般原理和特征的各种修改对于本领域技术人员将是显而易见的。因此,本公开并不意图限于所示的实施例,而是要被给予与本文中所描述的原理和特征一致的最广泛的范围。
[0043] 2.结构概述
[0044] 图1A例示说明示例图像渲染表面100。如本文中所描述的图像渲染表面可以包括两个或更多个像素区块。为了例示说明的目的,如图 1A所示,图像渲染表面(100)包括两个像素区块102-1和102-2。如本文中所描述的像素区块(例如,102-1、102-2等)可以是多种几何形状中的任何一种,比如矩形形状、三角形形状、椭圆形形状、多边形形状等。在一些实施例中,如本文中所描述的图像渲染表面(例如, 100)可以包括几何形状相同的像素区块。在一些实施例中,如本文中所描述的图像渲染表面(例如,100)可以包括至少两种不同几何形状的像素区块。
[0045] 在一些实施例中,如图1A所示,像素区块(例如,102-1、102-2 等)包括成几何形状的按二维阵列布置的相应的多个像素。例如,像素区块(102-1)包括第一多个像素,比如104-1-1、104-1-2等,而像素区块(102-2)包括第二多个像素,比如104-2-1、104-2-2等。
[0046] 在一些实施例中,如本文中所描述的像素(例如,104-1-1、104-1-2、 104-2-1、104-2-2等)可以包括不同类型的三个或更多个子像素,比如在图1A中分别被表示为“R”、“G”和“B”的红色、绿色和蓝色子像素。表示像素(例如,104-1-1、104-1-2、104-2-1、104-2-2等) 的子像素(例如,“R”、“G”、“B”等)可以被布置为单个小点或单个点、按线性或非线性图案布置的多个小点或多个点、等等。
[0047] 以单块的方式创建大尺寸图像渲染表面是困难的。在其中通过用阴影掩模(例如,包括填充或沉积有色颜料的分区的金属阴影掩模等等)填充有色颜料来创建子像素中的滤色器的显示面板中,用于大型显示面板的单个阴影掩模对于背板、相邻层、结构、基板等来说可能太重太大,以至于不能提供均匀的机械支撑、防止结构翘曲等。在子像素是由机器人臂定位的单独有色发光二极管(LED)或单独(有色) 有机发光二极管(OLED)的显示面板中,可能在有限区域(例如,半径为12英寸的区域、等等)外部发生相对较大的移动误差、位置误差等。在通过在涂布在图像渲染表面上的含磷材料、量子点等上扫描具有调制强度的激光或电子束而产生的图像渲染表面中,可能在有限区域(在该区域中,光路或电子束路径相对较短)外部发生相对较大的点扩散函数相关的误差、位置误差等。
[0048] 在一些实施例中,图像渲染表面可以由组合多个像素区块(例如, 102-1和102-2等)的像素区块级放置模块创建或形成,其中每个像素区块可以由子区块放置模块相对精确地创建。
[0049] 子区块放置模块是指将各个像素或子像素放在它们在像素区块内的被分配位置处的物理模块或机构。子区块放置模块的例子可以包括,但不仅限于,以下中的任何一个:具有将组件移动并且放置到像素区块中的机器人臂的放置机器;具有反射镜和准直器的激光器,这些反射镜和准直器产生具有调制强度的光并且将该光引导到被涂布光转换材料(比如含磷材料、量子点等)的像素区块上;拾取、移动并且放置组件到像素区块中的具有带电隔膜的放置机器;在其上生长特定直径的纳米管以产生特定强度(例如,经由脉宽调制或PWM等)的、各种波长(例如,对应于红色、绿色、蓝色等)的光的表面;将成形组件分布或传送到基板(其可以被单颗化、切割或分割为像素区块、显示面板等)上的不规则凹陷中的流控自装配过程;等等。
[0050] 像素区块放置模块是指将各个像素区块放在它们在图像渲染表面内的被分配位置处的物理模块或机构。像素区块放置模块的例子可以包括,但不仅限于,以下中的任何一个:具有移动像素区块并且将像素区块放置到图像渲染中的机器人臂的放置机器;具有多个激光器的激光控制背板,其中每个激光器与反射镜和准直器一起操作以产生具有调制强度的光并且将该光引导到被涂布光转换材料(比如含磷材料、量子点等)的相应的像素区块上;等等。
[0051] 将像素区块组合到图像渲染表面中可能在接合相邻像素区块的边界(例如,图1A的108等)处引起稍微的错位。虽然相邻像素区块之间的错位(例如,0.5微米等)与像素大小(例如,50微米等)、像素区块大小(例如,10英寸等)相比可能小,但是人类视觉系统仍相对容易地注意到规则图案中的这样的不规则。
[0052] 图1B例示说明示例像素区块级错位110。如所示,像素区块级错位(110)可能是由相邻像素区块(例如,102-1和102-2等)跨边界 (例如,108等)错位而引起的。在一些实施例中,像素区块级错位 (110)可以作为位于不同像素区块(例如,102-1和102-2等)中的像素行之间的差值被测量。根据本发明的一个或多个实施例,可以通过像素区块(例如,102-1等)内的像素的位置引入像素级错位(112) 以减轻像素区块级错位110的感知。在一些实施例中,像素级错位 (112)可以作为像素的实际位置和该像素在像素区块(例如,102-1 等)内的被分配位置之间的差值被测量。根据本发明的一个或多个可替代实施例,可以通过像素内的子像素的位置引入子像素级错位(114) 以减轻像素区块级错位110的感知。在一些实施例中,子像素区块级错位(114)可以作为子像素的实际位置和该子像素在像素内的被分配位置之间的差值被测量。
[0053] 3.示例区块放置系统
[0054] 图2例示说明示例区块放置系统200,其被配置为创建来自于像素区块之间的错位的视觉伪像没有或仅很小的图像渲染表面。在一些实施例中,区块放置系统(200)包括放置控制器202、子区块放置模块204、区块放置模块206等,放置控制器202被配置为执行用于创建图像渲染表面的目的的总体控制操作,子区块放置模块204被配置为在所述图像渲染表面中的每个像素区块内执行像素级或子像素级放置操作,区块放置模块206被配置为在所述图像渲染表面内执行区块级放置操作。
[0055] 在一些实施例中,子区块放置模块(204)可以仅表示被配置为执行像素级放置操作(例如,对于预制像素、对于单色像素等)的像素放置模块。
[0056] 在一些实施例中,子区块放置模块(204)可以仅表示被配置为执行子像素级放置操作(例如,像素区块内的像素位置在子像素被放置到像素区块中时被自动地设置,等等)的子像素放置模块。
[0057] 在一些实施例中,子区块放置模块(204)可以表示被配置为执行像素级放置操作和子像素级放置操作的组合子区块放置模块。
[0058] 在一些实施例中,子区块放置模块(204)可以包括相互分开的像素级放置子模块和子像素级放置子模块。
[0059] 放置控制器(202)可以被配置为确定可能是由区块放置模块(206) 执行的像素区块放置操作引起的像素区块级错位(例如,110等)的 组值。组值的例子可以包括,但不仅限于,在像素区块放置操作中产 生的多个像素区块级错位(例如,110等)之中的以下值中的任何一 个:最大值、平均值、中值、模式值、统计值等。
[0060] 附加地、可选地或可替代地,放置控制器(202)可以被配置为确定可能是由子区块放置模块(204)执行的像素放置操作引起的像素级错位(例如,112等)的组值。组值的例子可以包括,但不仅限于,在像素放置操作中产生的多个像素级错位(例如,112等)之中的以下值中的任何一个:最大值、平均值、中值、模式值、统计值等。
[0061] 附加地、可选地或可替代地,放置控制器(202)可以被配置为确定可能是由子区块放置模块(206)执行的子像素放置操作引起的子像素级错位(例如,114等)的组值。组值的例子可以包括,但不仅限于,在子像素放置操作中产生的多个子像素级错位(例如,114等) 之中的以下值中的任何一个:最大值、平均值、中值、模式值、统计值等。
[0062] 放置控制器(202)可以被配置为使用像素区块级错位、像素级错位、子像素级错位等的组值中的一个或多个来确定用于创建图像渲染表面的总移位容限。在一些实施例中,放置控制器(202)将总移位容限设置为像素区块级错位、像素级错位、子像素级错位等的组值中的所述一个或多个中的特定一个(例如,像素区块级错位的组值等)。在一些实施例中,放置控制器(202)将总移位容限设置为像素区块级错位、像素级错位、子像素级错位等的组值中的所述一个或多个之中的最大值。
[0063] 基于总移位容限,放置控制器(202)被配置为控制子区块放置模块(204),以对于将被组合到图像渲染表面中的每个像素区块中的像素或子像素添加随机移位。放置控制器(202)被进一步配置为控制像素区块级放置模块(206)将如下这样的像素区块组合到图像渲染表面中,关于每个像素区块,已经对于像素或子像素添加了随机移位。
[0064] 如本文中所描述的技术可以支持基于用于图像渲染表面的多个像素区块的总移位容限来对于像素区块中的像素或子像素添加随机移位的多种方式。
[0065] 4.视觉特性的像素级变化
[0066] 图3A例示说明像素区块(302)中的像素(例如,304-1、304-2、 304-3、304-4等)的不均匀的、不齐的或随机的移位(例如,312-1、 312-2、312-3、312-4等)。在一些实施例中,像素区块(302)中的像素(例如,304-1、304-2、304-3、304-4等)可以对应于相应的被分配位置(例如,306-1、306-2、306-3、306-4等)。在非限制性实施例中,被分配位置可以用沿着X轴和Y轴的一对坐标值表示。如本文中所描述的像素区块中的像素的被分配位置可以形成或者可以不形成规则图案,比如矩阵、对角线、多边形、圆形等。关于相应的被分配位置(例如,306-1、306-2、306-3、306-4等)的移位(例如,312-1、 312-2、312-3、312-4等)可以由区块放置系统(例如,图2的200等) 中的子区块放置模块(例如,图2的204等)产生。像素(例如,
304-1、 304-2、304-3、304-4等)的移位(例如,312-1、312-2、312-3、312-4 等)可以相对于像素(例如,304-1、304-2、304-3、304-4等)的相应的被分配位置(例如,306-1、306-2、306-
3、306-4等)被测量。
[0067] 图3B例示说明包括两个像素区块302-1和302-1的示例图像渲染表面300,其中每个像素区块是通过像素区块(302-1和302-2)中的每一个中的像素(例如,304-1、304-2、304-3、304-4等)的不均匀的、不齐的或随机的移位(例如,312-1、312-2、312-3、312-4等) 而创建的。如图所示,虽然像素区块(302-1和302-2)被沿着边界308 错位放置,但是由组合像素区块(302-1和302-2)而得到的图像渲染表面(300)中的像素(例如,304-1、304-2、304-
3、304-4等)形成的图案没有或只有很小的来自于像素区块之间的错位的(或与像素区块之间的错位有关的)视觉伪像。
[0068] 5.视觉特性的子像素级变化
[0069] 图4A例示说明像素区块(402)中的子像素(例如,410-1、410-2、 410-3、410-4等)的不均匀的、不齐的或随机的移位(例如,412-1、 412-2、412-3、412-4等)。如图所示,子像素区块(402)中的子像素(例如,410-1、410-2、410-3、410-4等)可以属于像素区块(402) 中的不同像素(例如,404-1、404-2、404-3、404-4等)。子像素(例如,410-1、410-2、410-3、410-4等)对应于相应的被分配位置(例如,406-1、406-2、406-3、406-4等)。在非限制性实施例中,被分配位置可以用沿着X轴和Y轴的一对坐标值表示。如本文中所描述的子像素区块中的子像素的被分配位置可以形成或者可以不形成规则图案,比如矩阵、对角线、多边形、圆形等。关于相应的被分配位置(例如,406-1、406-2、406-3、406-4等)的移位(例如,412-1、
412-2、 412-3、412-4等)可以由子区块放置系统(例如,图2的200等)中的子像素级或子像素放置模块(例如,图2的204等)产生。子像素 (例如,410-1、410-2、410-3、410-4等)的随机移位(例如,412-1、 412-2、412-3、412-4等)可以相对于子像素(例如,410-1、410-2、 410-
3、410-4等)的相应的被分配位置(例如,406-1、406-2、406-3、 406-4等)被测量。
[0070] 图4B例示说明包括两个像素区块402-1和402-2的示例图像渲染表面400,其中每个像素区块是通过像素区块(402-1和402-2)中的每一个中的子像素(例如,410-1、410-2、410-3、410-4等)的不均匀的、不齐的或随机的移位(例如,412-1、412-2、412-3、412-4等) 而创建的。如所示,虽然像素区块(402-1和402-2)被沿着边界412 错位放置,但是由组合像素区块(402-1和402-2)而得到的图像渲染表面(400)中的子像素(例如,410-1、410-2、410-
3、410-4等)形成的图案没有或只有很小的来自于像素区块之间的错位的(或与像素区块之间的错位有关的)视觉伪像。
[0071] 如本文中所描述的像素或子像素的不均匀的、不齐的或随机的移位(例如,关于像素和子像素的相应的被分配位置等)可以实现为多种不均匀空间位置布置中的任何一个。例如,随机移位可以被限制低于最大移位阈值,比如像素大小(例如,像素高度、像素宽度、像素直径等)、子像素大小(例如,子像素高度、子像素宽度、子像素直径等)的0.5%、1%、
2%、5%等。附加地、可选地或可替代地,随机移位可以被限制低于与像素区块、图像渲染表面的一个或多个空间大小、像素数量、子像素数量等相关地确定的最大移位阈值。
[0072] 在一些实施例中,如本文中所描述的随机移位在图像渲染表面内可以是各向同性的。随机移位的幅度的概率分布在图像渲染表面中可以是无方向性的,或者在一些或所有的空间方向上是相同的或类似的。具有各向同性随机移位的像素区块可以用于沿着任何轮廓、方位、方向等的多种边界相互接合。
[0073] 在一些实施例中,如本文中所描述的随机移位在图像渲染表面内可以是各向异性的。随机移位的幅度的概率分布在图像渲染表面中可以是有方向性的,包括定向瓣,或者有利于一个或多个特定的空间方向。具有各向异性随机移位的像素区块可以用于沿着一个或多个特定轮廓、方位、方向等的一个或多个特定边界相互接合。例如,可以沿着Y轴对通过沿着Y轴的边界接合的像素区块实现随机移位;结果,沿着Y轴的错位被改善或避免。
[0074] 如本文中所描述的随机移位可以是,但不仅限于,真随机的移位。在一些实施例中,随机移位包括伪随机移位、定向移位等,只要这些移位避免在组合多个像素区块的图像渲染表面中形成具有视觉伪像的图案即可。在一些实施例中,如本文中所描述的像素区块可以实现多于一种类型的(例如,真随机的、伪随机的、定向的、等等)移位、多于一种类型的移位概率分布等。在一些实施例中,实现如本文中所描述的随机移位的一个或多个像素区块可以与不实现如本文中所描述的随机移位的一个或多个像素区块组合到(例如,连续的、不连续的、等等)图像渲染表面。在一些实施例中,形成或提供图像渲染表面的一个或多个像素区块可以具有相同的不均匀的移位图案。附加地、可选地或可替代地,一个或多个不均匀的移位图案可以在一个区块内或者在多个区块之间重复(例如,+1、-2、-3、+1、+2…+1、-2、-3、 +1、+2等)。
[0075] 在一些实施例中,像素区块中的随机移位的(例如,概率等)分布可以有与对于像素区块设置的总移位容限所表示的组值相同的组值。在例子中,当总移位容限表示最大值时,随机移位的分布可以有与总移位容限所表示的最大值相同的最大值。在另一个例子中,当总移位容限表示平均值时,随机移位的分布可以有与总移位容限所表示的平均值相同的平均值。在一些实施例中,区块放置系统用来控制图像渲染表面的每个像素区块内的像素级或子像素级移位的总移位容限可以包括多于一个的组值、多于一种的组值类型等。相对应地,在这样的像素区块中实现的随机移位的分布可以有多于一个的组值、多于一种的组值类型等,其中的一些或全部与总移位容限所表示的组值、组值类型等是相同的。
[0076] 如本文中所描述的技术可以用于提供像素区块级、像素级、子像素级等上的视觉性质的许多不同类型的变化中的任何一个来补充或代替像素或子像素的随机移位。例如,局部密度、像素高度、像素宽度、像素直径、像素间距(例如,像素间距离等)、子像素高度、子像素宽度、子像素直径、子像素间距(例如,像素内的子像素间距离等) 等中的一个或多个的变化可以在如本文中所描述的像素区块中实现。
[0077] 在一些实施例中,如本文中所描述的像素区块的不同像素中的(不同颜色的)子像素可以按不同的空间次序布置。图4C例示说明示例像素区块402-3,其包括在像素中并排布置的子像素。像素404-5包括三个子像素410-5-1、410-5-2和410-5-3,这些子像素分别对应于按第一次序布置的红色、绿色和蓝色子像素。相反,像素404-6包括三个子像素410-6-1、410-6-2和410-6-3,这些子像素分别对应于按不同于第一次序的第二次序布置的红色、绿色和蓝色子像素。
[0078] 仅仅为了例示说明的目的,已经描述了像素包括三种原色(红色、绿色和蓝色)的子像素。应注意到,在各种实施例中,除了红色、绿色和蓝色之外的其他原色的子像素可以被用在如本文中所描述的像素中。另外,像素无需仅包括三种原色的子像素。在一些实施例中,如本文中所描述的像素可以包括更多的或更少的原色。附加地、可选地或可替代地,在一些实施例中,如本文中所描述的像素可以包括如图 4D所示的非原色的子像素,其中除了红色、绿色和蓝色(分别被表示为“R”、“G”和“B”)的子像素之外,像素还可以包括白色的子像素(被表示为“W”)。可以对于像素中的各种原色或非原色的子像素实现子像素级上的随机移位(例如,多种视觉特性的变化等)。
[0079] 如本文中所描述的技术可以与多种显示技术、放置技术等一起工作,比如以下技术中的一种或多种:基于掩模的技术、基于印刷的技术(包括但不限于3D印刷技术)、基于沉积的技术、基于半导体晶圆的技术、基于机器人臂的技术、基于隔膜的技术、基于激光器的技术、基于纳米管的技术、流控自装配(FSA)技术、卷对卷或网处理技术等。
[0080] 在一些实施例中,为了避免或减小图像渲染表面中的视觉伪像的目的,可以测量并且分析通过这些技术放置像素区块的准确度、误差等以产生总移位容限,这些总移位容限用于在像素块级、像素级、子像素级等上控制并且添加随机移位。
[0081] 附加地、可选地或可替代地,这些技术也可以与用于创建图像渲染表面的多种基板、材料等一起工作,比如玻璃、半导体晶圆、金属、透明导电膜、树脂、帆布、光学膜、光导、基板上的不规则凹陷、将被沉积到基板上的不规则凹陷中的成形组件、柔性基板(比如聚对苯二甲酸乙二醇酯或PET卷)、热塑性聚合物树脂等。
[0082] 6.不同类型的图像渲染表面
[0083] 图5A例示说明可以用于创建如本文中所描述的像素区块的至少一部分的示例阴影掩模500。阴影掩模(500)包括可以用于放置或沉积有色颜料、含磷材料、量子点等的单元(例如,502-1、502-2、502-3 等),这些单元被配置为沿着光方向504发射调制光。
[0084] 在其他方法中,像素和/或子像素被放置到(分配)由黑色矩阵(其吸收并且阻止相邻像素或子像素之间的光污染)所限定的规则图案(比如矩阵图案、对角线图案等)中的位置。
[0085] 相反,根据如本文中所描述的技术,像素和/或子像素被放置到由阴影掩模(500)中的单元(例如,502-1、502-2、502-3等)所限定的不均匀图案中的实际位置中。这些实际位置包括像素和/或子像素相对于规则图案中的相应的被分配位置的随机移位。
[0086] 图5B例示说明可以用于创建如本文中所描述的像素区块的至少一部分的示例基板510(例如,玻璃、膜、光导等)。基板(510)可以包括在其上可以被印刷含磷材料、量子点等的表面区域(例如, 512-1、512-2、512-3等),这些表面区域被配置为沿着光方向514发射调制光。
[0087] 在其他方法中,像素和/或子像素被放置到(被分配)规则图案(比如矩阵图案、对角线图案等)中的位置。
[0088] 相反,根据如本文中所描述的技术,像素和/或子像素被放置到由基板(510)中的表面区域(例如,512-1、512-2、512-3等)限定的不均匀图案中的实际位置。这些实际位置包括像素和/或子像素相对于规则图案中的相应的被分配位置的随机移位。
[0089] 图5C例示说明可以用于创建如本文中所描述的像素区块的至少一部分的示例基板520(例如,玻璃等)。纳米管(例如,522-1、522-2、 522-3等)或纳米线LED可以在基板(520)上生长或从基板(520) 生长。纳米管(例如,522-1、522-2、522-3等)可以被构造有不同的直径,以当在各纳米管(例如,522-1、522-2、522-3等)的两端之间施加电压时沿着光方向524发射不同颜色的调制光。从各纳米管(例如,522-1、522-2、522-3等)发射的光的强度可以用脉宽调制(PWM) 技术控制。在非限制性例子中,薄膜导电膜可以涂布基板(520)以提供第一极性的公共电极,而多个不相交的金属团中的一个金属团可以在各纳米管(例如,522-1、522-2、522-3等)的另一端处与薄膜相对放置,以提供与公共电极的第一极性相反的第二极性的像素电极。
[0090] 根据如本文中所描述的技术,像素和/或子像素被放置到由基板 (520)中的纳米管(例如,522-1、522-2、522-3等)限定的不均匀图案中的实际位置中。这些实际位置包括像素和/或子像素相对于规则图案中的相应的被分配位置的随机移位。
[0091] 图5D例示说明可以用于创建如本文中所描述的像素区块的至少一部分的示例背板530。具有可以在x和y方向上移动的机器人臂536 的放置设备538可以拿取、运送不同光颜色的LED组件(例如,红色 LED、绿色LED、蓝色LED等)并且将这些LED组件放置到背板(530) 上的位置(例如,532-1、532-2、532-3等)。在一些实施例中,LED 组件可以具有比如30微米×30微米、50微米×20微米等的尺寸。LED 组件可以表示被安装或安设在背板(530)上的位置(例如,532-1、 532-2、532-3等)处的、被配置为沿着光方向534发射调制光的像素和/或子像素。
[0092] 根据如本文中所描述的技术,像素和/或子像素被放置到非一致图案中的实际位置(例如,532-1、532-2、532-3等)上。这些实际位置包括像素和/或子像素相对于规则图案中的相应的被分配位置的随机移位。
[0093] 在一些实施例中,为了拿取或拾取相对微小尺寸的像素或子像素组件(例如,红色LED、绿色LED、蓝色LED等),机器人臂(336) 可以以基于隔膜的拾取机构、而不是机械臂的形式实现。拾取机构中的隔膜可以被充电有第一电荷类型(例如,正电荷等),而像素或子像素组件可以被充电有与第一电荷类型相反的第二电荷类型(例如,负电荷等)。可以使分别在拾取机构和像素或子像素组件中的相反的电荷类型相互绝缘(例如,通过绝缘材料、绝缘膜等),以防止拾取和运送步骤中放电。
[0094] 在一些实施例中,代替LED组件或者作为LED组件的补充,不同光颜色的OLED组件可以被用在如本文中所描述的图像渲染表面上。
[0095] 图5E例示说明可以用于创建如本文中所描述的像素区块的至少一部分的示例图像渲染区域部分540。图像渲染区域部分(540)可以包括被涂布光转换材料(比如含磷材料、量子点等)的单元(例如, 542-1、542-2、542-3等)。在一些实施例中,单元(例如,542-1、 542-2、542-3等)可以被分组为表示像素(例如,544等)的相应集合。
[0096] 激光器548可以发射在x和y方向上扫描的调制光546(例如,基于在显示应用运行时接收的图像数据等)。光(546)的扫描可以由被容纳在例如与迪斯科光球类似的壳体中的可移动镜提供。
[0097] 代替在形成规则图案的单元(例如,542-1、542-2、542-3等)中的像素或子像素的被分配位置处开通调制光(546),激光器(548) 可以在形成不齐图案的单元(例如,542-1、542-2、542-3等)中的实际位置处开通调制光(546)。这些实际位置包括像素和/或子像素相对于规则图案中的相应的被分配位置的随机移位。
[0098] 在一些实施例中,空间振动器550(比如声学振动器、压电振动器等)可以用于产生高达基于总移位容限确定的某个幅度的振动。为了产生像素和/或子像素相对于相应的被分配位置的随机移位的目的,可以将激光器(548)与空间振动器(550)机械地耦合。
[0099] 图像渲染表面(例如,由分别将调制光发射到它们相应的像素区块的多个激光器驱动的户外显示器等)可以通过组合多个图像渲染区域部分(比如540等)和多个激光器(比如548等)来创建。
[0100] 7.使用流控自装配的随机移位
[0101] 在一些实施例中,如本文中所描述的像素或子像素的不均匀的、不齐的或随机的移位可以使用流控自装配(FSA)技术来实现。附加地、可选地或可替代地,如本文中所描述的像素或子像素的移位可以使用卷对卷(例如,网)过程来实现,该过程可以与FSA过程联合操作以用于高产出制造。
[0102] 在一些实施例中,如本文中所描述的区块放置系统(例如,图2 的200等)可以例如在卷对卷过程中用一个或多个鼓或印模在基板上压印凹陷的一个或多个不均匀图案。有色LED芯片被定位在凹陷中时就间距间隔、密度、对齐、顺序次序等中的至少一个而言是不均匀的,以避免图像渲染表面中的像素区块之间的(例如,亚微米等)错位的视觉检测。在一些实施例中,压印在基板上的不规则凹陷可以是独特 (distinct)的形状,这些形状将被具有对应的独特形状的有色LED 芯片占据。
[0103] 图5F例示说明用于在基板562-1上压印凹陷(不管是均匀的、还是不规则的)的一个或多个不均匀图案的示例鼓560。在一些实施例中,鼓(560)可以包括腔体图案和间距变化的若干个突出形状。例如,在鼓(560)在基板(562-1)的上方(例如,在基板(562-1)的顶部、朝向图5F的右边、等等)轧制的同时,印模(560)上的突出形状可以被按压到基板(562-1)中以在基板(562-1)上创建凹陷564-1。鼓 (560)可以被安装在轴(未示出)上。在一些实施例中,例如,通过经由轴施加扭矩,通过朝向图5F的左边作用在基板562-1上的轧制 /拉力,等等,鼓(560)相对于基板(562-1)旋转。附加地、可选地或可替代地,为了在基板(562-1)上制成与鼓上的突出形状相对应的凹陷的目的,可以由作用于鼓(560)的轴上的物理力产生的特定的向下的压力可以被鼓(560)施加于基板(562-1)上。
[0104] 图5G例示说明用于在基板562-2上压印凹陷(不管是均匀的凹陷、还是不规则的凹陷)的一个或多个不均匀图案的示例印模570。在一些实施例中,印模(570)可以包括腔体图案和间距变化的数个突出形状。例如,在印模(570)正在周期性地向上移动远离基板(562-2) 并且向下按压基板(562-2)的同时,印模(570)上的突出形状可以被按压到基板(562-2)中以在基板(562-2)上创建凹陷564-2、564-3 等。当基板(562-2)在图5G中正被从右到左逐个部分地轧制时,冲压操作可以逐个部分地进行。
[0105] 如本文中所描述的基板(例如,562-1、562-2等)可以是,但不必限于,柔性基板,比如聚对苯二甲酸乙二醇酯或PET卷、热塑性聚合物树脂等。
[0106] 在一些实施例中,基板上的凹陷的一个或多个图案可以包括具有不同的独特形状的不规则凹陷的多个图案。不规则凹陷的多个图案中的每个图案可以包括具有以下的凹陷:(i)独特形状,比如三角形、四边形、五边形、六边形、圆形、不规则形状、具有特定的关键图案的形状等;(ii)大小(长度、宽度)、和/或(iii)基板内的深度(高度)。在各种实施例中,具有两种或三种不同的独特形状的凹陷可以被并行地、串行地或部分并行部分串行地压印到基板上。在一些实施例中,每个鼓、印模等可以包括特定类型的突出形状(例如,三角形等);多个鼓、印模等可以被串行地用于创建具有多种不同形状的不规则凹陷的多个图案。在一些实施例中,特定的鼓、印模等可以包括两种或更多种特定类型的突出形状(例如,矩形、六边形和圆形等的组合);该特定的鼓、印模等可以用于并发地创建具有多种不同形状的不规则凹陷的多个图案。
[0107] 在一个例子中,为了串行地执行压印操作,第一鼓/印模可以创建将被第一颜色(例如,红色等)的有色LED芯片占据的第一独特形状的第一凹陷,这些有色LED芯片是与第一凹陷的第一独特形状相对应的图5H的形状566-1;第二鼓/印模可以创建将被第二颜色(例如,绿色等)的有色LED芯片占据的第二独特形状的第二凹陷,这些有色 LED芯片是与第二凹陷的第二独特形状相对应的图5H的形状566-2;第三鼓/印模可以创建将被第三颜色(例如,蓝色等)的有色LED芯片占据的第三独特形状的第三凹陷,这些有色LED芯片是与第三凹陷的第三独特形状相对应的图5H的形状566-3。第一、第二和第三独特形状的凹陷中的每个均可以被所述形状(5661-1至566-3)中的对应 (匹配)形状的LED芯片占据,而不是被其他(不匹配)形状的LED 芯片占据。可替代地,不管形状如何,各有色LED芯片的尺寸(例如,长度、宽度和/或高度)不同,使得与不同尺寸的凹陷不匹配的有色 LED芯片将在连续流控流下被逐出。
[0108] 在另一个例子中,为了并行地执行压印操作,单个鼓/印模可以创建将被两种或更多种不同颜色的LED芯片占据的两种或更多种独特形状的凹陷。
[0109] 在一些实施例中,可以创建另外的独特形状的凹陷的另外的鼓/ 印模也可以用于并行地和/或串行地创建另外的原色(另外的原色的 LED芯片)。
[0110] 附加地、可选地或可替代地,第一鼓/印模可以创建将被一种或多种颜色的有色LED芯片占据的第一不规则图案中的第一凹陷;第二鼓 /印模可以创建将被一种或多种颜色的有色LED芯片占据的第二不规则图案中的第二凹陷;依此类推。第一、第二等不规则图案可以具有变化的图案。结果,不同的像素区块布局可以在基板被填充、装填各种有色LED芯片等之后获得。
[0111] 独特形状的有色LED芯片可以用各种方法装配到基板中的对应形状的凹陷(例如,562-1、562-2等)中。在一些实施例中,流控自装配(FSA)过程可以用于将有色LED芯片装配到基板上。例如,在如图5I所示的基板562被浸没在流体中(具有特定的浮力)的同时,特定颜色和特定形状的有色LED芯片(比如568-1、568-2等)可以被分布和重新循环布置在基板上以沉入基板(562)中的对应形状的凹陷中。每个有色LED芯片可以表示像素或子像素。因此,不规则图案的像素或子像素可以通过FSA过程与卷对卷(或网)过程相组合以用于高产出制造来创建。
[0112] 附加地、可选地或可替代地,有色LED芯片中的一些或全部置于凹陷中可以通过机器人拾取和放置技术来执行。例如,FSA过程之后的基板上的任何空缺的凹陷可以通过使用通过计算机视觉控制的机器人拾取和放置技术被用对应的有色LED芯片填充。
[0113] 在一些实施例中,在FSA过程被应用或者被覆盖以将有色LED 芯片放置到有色LED芯片卷或基板中之后,柔性的互连卷(或背板) 或基板(例如,PET卷、热塑性聚合物树脂等)被耦合到有色LED 芯片卷或基板。互连卷可以包括(例如,透明的、不透明的、金属的、非金属的、等等)用于将每个有色LED芯片电耦合到单独的控制器逻辑或开关元件的导电迹线。附加地、可选地或可替代地,激光钻孔的通孔可以用于放置导电迹线。控制单独的有色LED芯片的操作的开关元件、电极、电互连等也可以与如本文中所描述的FSA过程和/或卷对卷过程整合来产生显示卷,该显示卷可以被单颗化、切割、分割等成创建如图5J所示的像素区块的区域。这些像素区块可以被如本文中所描述的区块放置系统装配到图像渲染表面中,或者可以直接用作图像渲染表面,除了许多不同的显示器,图像渲染表面可以包括柔性显示器、移动显示器等。在一些实施例中,一个或多个通孔或开口的通路(例如,孔等)可以设有如本文中所描述的凹陷(例如,在凹陷的底部上、在凹陷的顶缘上、等等)。导电材料,比如金属导体、非金属导体(例如,透明导电材料等)等,可以沉积在具有凹陷的通孔或开口的通路中以提供供电连接进入到安设在凹陷中的有色LED芯片的进入通道。
[0114] 8.示例显示系统
[0115] 图8例示说明可以用于与如本文中所描述的一种或多种类型的图像渲染表面一起操作的示例显示系统。在一些实施例中,显示逻辑802 可以包括光控制逻辑804,其被配置为以在图像渲染表面(800)上渲染图像的目的来控制显示系统(800)中的图像渲染表面800中的调制光的产生。显示逻辑(802)可以与图像数据源806(例如,机顶盒、联网服务器、存储介质或类似物等)操作地耦合,并且被配置为从图像数据源(806)接收图像数据。图像数据可以由图像数据源(806) 以各种方式提供,包括从空中广播、或以太网、高清多媒体接口 (HDMI)、无线网络接口、装置(例如,机顶盒、服务器、存储介质等)等提供。从内部或外部源接收的图像可以被显示逻辑(802) 用于控制显示系统中的图像渲染表面800中的调制光的产生。图像帧可以被显示逻辑(802)用于在如本文中所描述的图像渲染表面上以各种分辨率得出各帧中的单独的或者聚合的像素值。
[0116] 9.示例过程流程
[0117] 图6例示说明示例过程流程。在一些实施例中,一个或多个计算装置或组件(比如图2的区块放置系统200等)可以执行该过程流程。在方框610中,区块放置系统(200)确定适用于将用作图像渲染表面的部分的多个像素区块中的每个像素区块的总移位容限。这里,所述多个像素区块中的每个像素区块包括多个子像素。
[0118] 在方框620中,区块放置系统(200)基于总移位容限来产生所述多个像素区块中的每个像素区块的随机移位。
[0119] 在方框630中,区块放置系统(200)将所述多个图像渲染区块组合到图像渲染表面中。
[0120] 在实施例中,随机移位表示像素相对于这些像素的被分配位置的移位;被分配位置形成规则图案。
[0121] 在实施例中,随机移位表示子像素相对于这些子像素的被分配位置的移位;被分配位置形成规则图案。
[0122] 在实施例中,所述多个像素区块中的至少一个像素区块中的子像素表示多个像素,其中所述多个像素中的每个像素包括所述至少一个像素区块中的子像素中的一个或多个的子集。在实施例中,所述多个像素中的像素包括多个子像素;所述多个像素中的所述像素中的多个子像素在所述像素中的子像素之间具有固定的空间关系。在实施例中,所述多个像素中的像素包括多个子像素;所述多个像素中的像素的多个子像素在所述像素的子像素之间具有可变的空间关系。
[0123] 在实施例中,所述多个像素区块中的至少一个像素区块包括所述至少一个像素区块内的密度、高度、宽度、间距等可变的像素。
[0124] 在实施例中,所述多个像素区块中的至少一个像素区块包括所述至少一个像素区块内的密度、高度、宽度、间距等可变的子像素。
[0125] 在实施例中,总移位容限表示用于将单独的子像素放置到多个像素区块中的像素区块上的物理装置的误差。在实施例中,总移位容限表示用于将单独的像素放置到多个像素区块中的像素区块上的物理装置的误差。在实施例中,如本文中所提到的物理装置是以下中的一个或多个:激光器、像素放置模块、子像素放置模块、纳米管、阴影掩模等。
[0126] 在实施例中,总移位容限表示用于将单独的像素区块放置到图像渲染表面上的区块放置系统的误差。
[0127] 在实施例中,至少一个像素区块包括以下中的一个或多个:有色颜料、含磷材料、量子点、纳米管、发光二极管、有机发光二极管等。
[0128] 在一些实施例中,涉及如本文中所描述的操作、方法等的过程流程可以通过一个或多个计算装置或单元来执行。
[0129] 在实施例中,一种设备包括处理器,并且被配置为执行这些操作、方法、过程流程等中的任何一个。
[0130] 在实施例中,一种非暂时性计算机可读存储介质存储当被一个或多个处理器执行时使得这些操作、方法、过程流程等中的任何一个被执行的软件指令。
[0131] 在实施例中,一种计算装置包括一个或多个处理器以及一个或多个存储介质,存储介质存储当被所述一个或多个处理器执行时使得这些操作、方法、过程流程等中的任何一个被执行的指令集。注意到,尽管单独的实施例在本文中被讨论,但是本文中所讨论的实施例和/ 或部分实施例的任何组合可以被组合以形成进一步的实施例。
[0132] 10.实现机制——硬件概述
[0133] 根据一个实施例,本文中所描述的技术通过一个或多个专用计算装置来实现。专用计算装置可以被硬连线来执行所述技术,或者可以包括数字电子装置,比如被持续地编程为执行所述技术的一个或多个专用集成电路(ASIC)或现场可编程阵列(FPGA),或者可以包括被编程为依照固件存储器、其他储存器或组合中的程序指令来执行所述技术的一个或多个专用硬件处理器。这样的专用计算装置还可以组合具有实现所述技术的自定义编程的自定义硬连线逻辑、ASIC 或FPGA。专用计算装置可以是台式计算机系统、便携式计算机系统、手持装置、联网装置或合并实现所述技术的硬连线和/或程序逻辑的任何其他装置。
[0134] 例如,图7是例示说明在其上可以实现本发明的实施例的计算机系统700的框图。计算机系统700包括用于传送信息的总线702或其他通信机制,以及与总线702耦合的用于对信息进行处理的硬件处理器704。硬件处理器704可以例如是通用微处理器
[0135] 计算机系统700还包括耦合到总线702的用于存储将被处理器 704执行的信息和指令的主存储器706,比如随机存取存储器(RAM) 或者其它动态存储设备。主存储器706还可以用于存储将被处理器704 执行的指令执行期间的临时变量或其他中间信息。这样的指令被存储在处理器704可访问的非暂时性存储介质中时使计算机系统700变为被定制为执行指令中所指定的操作的专用机器。
[0136] 计算机系统700进一步包括耦合到总线702的用于存储用于处理器704的静态信息和指令的只读存储器(ROM)708或其他静态存储装置。存储装置710,比如磁盘或光学盘,被提供并且被耦合到总线 702以用于存储信息和指令。
[0137] 计算机系统700可以经由总线702耦合到用于向计算机用户显示信息的显示器712,比如液晶显示器。包括字母数字键和其他键的输入装置714耦合到总线704以用于将信息和命令选集传送到处理器 704。另一种类型的用户输入装置是用于将方向信息和命令选集传送到处理器704并且用于控制显示器712上的光标移动的光标控件716,比如鼠标轨迹球或光标方向键。该输入装置通常具有使得装置可以指定平面中的位置的两个轴(第一轴(例如,x)和第二轴(例如,y)) 上的两个自由度
[0138] 计算机系统700可以使用与计算机系统组合以使得计算机系统 700成为专用机器或者将计算机系统700编程为专用机器的定制硬连线逻辑、一个或多个ASIC或FPGA、固件和/或程序逻辑来实现本文中所描述的技术。根据一个实施例,如本文中所描述的技术由计算机系统700响应于处理器704执行主存储器706中所包含的一个或多个指令的一个或多个序列来执行。这样的指令可以从另一个存储介质(比如存储装置710)被读取到主存储器706中。主存储器706中所包含的指令序列的执行使处理器704执行本文中所描述的过程步骤。在替代实施例中,硬连线电路可以用来代替软件指令或者与软件指令组合使用。
[0139] 如本文中所使用的术语“存储介质”是指存储使机器以特定方式操作的数据和/或指令的任何非暂时性介质。这样的存储介质可以包括非易失性介质和/或易失性介质。非易失性介质包括例如光学盘或磁盘,比如存储装置710。易失性介质包括动态存储器,比如主存储器 706。常见形式的存储介质包括例如软盘、柔性盘、硬盘、固态驱动器、磁带或任何其他磁性数据存储介质、CD-ROM、任何其他光学数据存储介质、具有孔图案的任何物理介质、RAM、PROM以及EPROM、 FLASH-EPROM、NVRAM、任何其他存储器芯片或盒。
[0140] 存储介质不同于传输介质,但是可以与传输介质结合使用。传输介质参与在存储介质之间传送信息。例如,传输介质包括同轴电缆线和光纤,这些包括包含总线550的导线。传输介质还可以采取声波或光波的形式,比如无线电波和红外数据通信期间产生的那些。
[0141] 各种形式的介质可以涉及将一个或多个指令的一个或多个序列传载到处理器704以供执行。例如,指令可以一开始承载于远程计算机的磁盘或固态驱动器上。远程计算机可以将指令加载到其动态存储器中,并且使用调制解调器通过电话线发送指令。计算机系统700本地的调制解调器可以接收电话线上的数据,并且使用红外发射器来将数据转换为红外信号。红外探测器可以接收红外信号中承载的数据,并且适当的电路可以将数据放置在总线702上。总线702将数据传载到主存储器706,处理器704从主存储器706检索并且执行指令。主存储器706接收的指令可以可选地在被处理器704执行之前或之后被存储在存储装置
710上。
[0142] 计算机系统700还包括耦合到总线702的通信接口718。通信接口718提供耦合到网络链路720的双向数据通信,网络链路720连接到本地网络722。例如,通信接口718可以是综合服务数字网络(ISDN) 卡、电缆调制解调器、卫星调制解调器或提供与对应类型的电话线的数据通信连接的调制解调器。作为另一个例子,通信接口718可以是提供与可兼容LAN的数据通信连接的局域网(LAN)卡。还可以实现无线链路。在任何这样的实现中,通信接口718发送和接收传载表示各种类型的信息的数字数据流的电、电磁或光学信号。
[0143] 网络链路720通常通过一个或多个网络提供与其他数据装置的数据通信。例如,网络链路720可以通过局域网722提供与主机计算机 724或由互联网服务提供商(ISP)726运营的数据设备的连接。ISP 726 继而通过万维网分组数据通信网络(现在常被称为“互联网”)728 来提供数据通信服务。局域网722和互联网728都使用传载数字数据流的电、电磁或光学信号。通过各种网络的信号以及网络链路720上的、通过通信接口718(其与计算机系统700来回传载数字数据)的信号是传输介质的示例形式。
[0144] 计算机系统700可以通过(一个或多个)网络、网络链路720和通信接口718来发送消息和接收数据(包括程序代码)。在互联网例子中,服务器730可以通过互联网728、ISP 726、局域网722和通信接口718来发送对应用程序的请求代码。
[0145] 接收的代码可以在它被接收时被处理器704执行,和/或被存储在存储装置710或其他非易失性储存器中,以供以后执行。
[0146] 11.等同、扩展、替代及其他
[0147] 在前面的说明书中,已经参照在不同实现之间可以有所变化的许多特定细节描述了本发明的实施例。因此,本发明是什么以及申请人意图什么是本发明的唯一的且排他的指示是本申请以特定形式发布的一组权利要求,包括任何后续修正,这样的权利要求以所述特定形式发布。本文中针对这样的权利要求中所包含的术语明确阐述的任何定义应决定这样的术语用在权利要求中的意义。因此,在权利要求中未明确记载的限制、元件、性质、特征、优点或属性不得以任何方式限制这样的权利要求的范围。说明书和附图因此要从说明性、而非限制性的意义上来看待。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈