首页 / 专利库 / 软件 / 命令行界面 / Command line interface for a data processing system

Command line interface for a data processing system

阅读:657发布:2020-10-15

专利汇可以提供Command line interface for a data processing system专利检索,专利查询,专利分析的服务。并且A command line interface for a data processing system includes an output facility that displays outputs to an operator, a parser that validates inputs entered a command line, a command processor that processes commands validated by the parser. The command line interface preferably supports a prompt mode in which the output facility displays an editable prompt that may be modified by the user to construct a command. In addition, the parser preferably defines separate validation and execution point inputs including at least one validation-only point input, so that inputs are permitted to span multiple input lines and so that atomic sets of commands can be constructed by entering multiple commands on a single input line. The command line interface is also equipped with an in-line help facility that, in response to the parser detecting a help request in a partial command entered at the command line, automatically presents possible input options that can be entered at the command line to complete the partial command.,下面是Command line interface for a data processing system专利的具体信息内容。

What is claimed is:1. A data processing system comprising:a processor and data storage in communication;a command line interface residing in said data storage and executable by said processor, said command line interface including:an output facility that presents outputs of said command line interface;a parser that parses inputs entered at a command line, said parser interpreting a particular input within a partial command entered at said command line as a help request;a command processor that processes commands validated by said parser; andan in-line help facility that, in response to a help request, causes said output facility to present possible input options that can be entered at said command line to complete said partial command.2. The data processing system of claim 1, wherein said particular input comprises a particular keyboard character.3. The data processing system of claim 2, wherein said partial command includes an operational directive.4. The data processing system of claim 1, wherein said possible input options presented by said output facility include names of data structure entities that can validly be entered at said command line to continue building said partial command.5. The data processing system of claim 1, wherein said possible input options presented by said output facility include operational directives that can validly be entered at said command line.6. The data processing system of claim 1, wherein said output facility, following said help request, automatically displays said partial command on said command line for completion by said operator.7. The data processing system of claim 1, wherein said parser defines an end-of-line input as a validation-only point, such that multiple lines of command line input can be received and validated by said parser without processing by command processor.8. A program product providing a command line interface for a data processing system, said program product comprising:an output facility that presents outputs of said command line interface;a parser that parses inputs entered at a command line, said parser interpreting a particular input within a partial command entered at said command line as a help request;a command processor that processes commands validated by said parser;an in-line help facility that, in response to a help request, causes said output facility to present possible input options that can be entered at said command line to complete said partial command; anda data processing system usable medium that encodes said output facility, said parser, said command processor, and said in-line help facility.9. The program product of claim 8, wherein said particular input comprises a particular keyboard character.10. The data processing system of claim 9, wherein said partial command includes an operational directive.11. The program product of claim 8, wherein said possible input options presented by said output facility include names of data structure entities that can validly be entered at said command line to continue building said partial command.12. The program product of claim 8, wherein said possible input options presented by said output facility include operational directives that can validly be entered at said command line.13. The program product of claim 8, wherein said output facility, following said help request, automatically displays said partial command on said command line for completion by said operator.14. A method of operating a command line interface for a data processing system, said method comprising:in response to entry at a command line of a partial command, parsing said partial command to determine if a help request has been made by entry of a particular input in said partial command; andin response to a determination that a help request has been made, automatically presenting possible input options that can be entered at said command line to complete said partial command.15. The method of claim 14, wherein entry of a particular input comprises entry of a particular keyboard character.16. The data processing system of claim 15, wherein said partial command includes an operational directive.17. The method of claim 14, wherein presenting possible input options comprises presenting names of data structure entities that can validly be entered at said command line to continue building said partial command.18. The method of claim 14, wherein presenting possible input options comprises presenting operational directives that can validly be entered at said command line.19. The method of claim 14, and further comprising:following said help request, automatically displaying said partial command on said command line for completion by an operator.20. A data processing system comprising:a processor and data storage in communication;a command line interface residing in said data storage and executable by said processor, said command line interface including:an output facility that presents outputs of said command line interface;a parser that parses and validates inputs entered at a command line, said parser defining one or more validation point inputs and one or more execution point inputs, wherein at least one of said one or more validation point inputs is a validation-only input; anda command processor that processes commands validated by said parser in response to receipt of an execution point input.21. The data processing system of claim 20, wherein said parser permits multiple commands to be entered on a single command line, such that said command processor processes said multiple commands atomically.22. A program product providing a command line interface for a data processing system, said program product comprising:an output facility that presents outputs of said command line interface;a parser that parses and validates inputs entered at a command line, said parser defining one or more validation point inputs and one or more execution point inputs, wherein at least one of said one or more validation point inputs is a validation-only input;a command processor that processes commands validated by said parser in response to receipt of an execution point input; anda data processing system usable medium encoding said output facility, said parser, and said command processor.23. The program product of claim 22, wherein said parser defines an end-of-line input as a validation-only point, such that multiple lines of command line input can be received and validated by said parser without processing by command processor.24. The program product of claim 22, wherein said parser permits multiple commands to be entered on a single command line, such that said command processor processes said multiple commands atomically.25. The method of claim 22, wherein said defining step comprises defining an end-of-line input as a validation-only point, such that multiple lines of command line input can be parsed and validated without performing processing indicated by any commands in said multiple lines of command line input.26. The method of claim 22, and further comprising permitting multiple commands to be entered on a single command line, such that processing indicated by multiple commands is performed atomically.27. A method of operating a command line interface for a data processing system, said method comprising:defining one or more validation point inputs and one or more execution point inputs, wherein at least one of said one or more validation point inputs is a validation-only input;in response to entry of validation point input, parsing and validating inputs entered at a command line; andin response to receipt of an execution point input, processing validated commands.

说明书全文

CROSS-REFERENCE TO RELATED APPLICATION

This application is related to U.S. application Ser. No. 09/371,446, now U.S. Pat. No. 6,625,590, which is entitled “Command Line Interface for a Network Management Platform” and is filed on even date herewith.

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates in general to data processing and, in particular, to management of a communication network. Still more particularly, the present invention relates to a command line interface for a network management platform.

2. Description of the Related Art

Data communication networks and network management platforms are well known in the art. In an effort to provide more graphical and intuitive management of data communication networks, many network management platforms have adopted menu or icon-based interfaces. Menu-based interfaces generally permit an operator to control particular network devices (e.g., computers, routers, bridges, and servers) by navigating through a series of linked menu screens and entering appropriate commands and parameter values. Icon-based interfaces, on the other hand, typically permit the operator to set parameters through dialog boxes or the like and to enter commands through the manipulation of graphical objects.

While such network management platform interfaces may provide easily-navigable and intuitive interfaces, a large amount of operator input can be required to perform conventional management functions for just one network device. Thus, the “user-friendly” characteristics that make menu and icon-based interfaces more accessible to inexperienced operators may actually hamper more experienced operators and do not easily lend themselves to automation, bundling of commands, script processing, and cut-and-paste editing operations.

SUMMARY OF THE INVENTION

The present invention addresses the above and other shortcomings in the art by providing United Command Interface (UCI), a command line and batch file interface for a network management platform.

In accordance with the present invention, UCI includes an output facility that displays outputs to an operator, a parser that validates inputs entered a command line, a command processor that processes commands validated by the parser. The command line interface preferably supports a prompt mode in which the output facility displays an editable prompt that may be modified by the user to construct a command. In addition, the parser preferably defines separate validation and execution point inputs including at least one validation-only point input, so that inputs are permitted to span multiple input lines and so that atomic sets of commands can be constructed by entering multiple commands on a single input line. The command line interface is also equipped with an in-line help facility that, in response to the parser detecting a help request in a partial command entered at the command line, automatically presents possible input options that can be entered at the command line to complete the partial command.

All objects, features, and advantages of the present invention will become apparent in the following detailed written description.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself however, as well as a preferred mode of use, further objects and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:

FIG. 1A

is a high level block diagram of a Unified Command Interface (UCI) in accordance with a preferred embodiment of the present invention;

FIG. 1B

illustrates an exemplary information hierarchy in accordance with the present invention;

FIG. 2

depicts an illustrative embodiment of a network environment with which the method and system of the present invention may advantageously be utilized;

FIG. 3

illustrates an exemplary communication interchange between an operator console and a network device via Telnet;

FIG. 4

depicts an exemplary communication interchange between an network device and a file server via TFTP (Telnet File Transfer Protocol) in which a file of UCI commands to be executed is transferred to the network device from a file server; and

FIG. 5

illustrates an exemplary communication interchange between an network device and a file server via TFTP (Telnet File Transfer Protocol) in which a file of UCI commands is created and transferred to the file server.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENT

UCI Overview

The Unified Command Interface (UCI) is a concise command interface for a network management platform that can be utilized to create, update, retrieve, and store network management information in network devices. Because UCI is an interface rather than a network management platform, UCI is not restricted to use with a particular set of underlying network management platforms and communication protocols that actually enact UCI directives. Rather, UCI is applicable to any network management platform, network hardware, and communication protocol that supports the functionality and definitions described below.

UCI is designed to permit both ASCII and National Language Support (NLS) inputs and can operate in both a command line mode (i.e., interactive) and a batch file mode. UCI provides the ability to create configuration and command scripts for editing, reuse, and execution or application to more than one network device.

With reference now to the figures and in particular with reference to

FIG. 1

, there is depicted a high level block diagram of a preferred embodiment of a UCI in accordance with the present invention. As shown, UCI

10

can receive inputs from and provide outputs to both batch files

12

and one or more concurrent interactive sessions

14

. The inputs received by UCI

10

are processed by a parser

16

that parses and validates the syntax of inputs and provides outputs to batch files

12

and sessions

14

via an output facility

18

. As shown, UCI

10

also includes an in-line help facility

20

, a prompt mode facility

22

, and an assist mode facility

23

that employ output facility

18

to provide an operator with assistance in entering proper inputs. UCI

10

further includes command processor

24

, which, following entry of an execution point, executes UCI commands validated by parser

16

through accesses to UCI information structures

26

. Finally, UCI

10

includes session environment variables

28

that govern the operation of UCI

10

in the various sessions

14

, attribute default values

30

that are employed by assist mode facility

23

to provide an operator with suggested or default input values (as discussed further below), and audit trail tables

32

that log the execution and commitment of certain UCI commands.

UCI Information Structures

UCI specifies generic and flexible information structures that organize network information for both static configuration and runtime operations of network devices. UCI introduces two organizing structures, folders and tables, which form containers for network management information and which can arranged in a hierarchical fashion. The following definitions are relevant to UCI information structures:

folder:=a container of one or more other containers, which other containers can include folders, tables, or scalar (single instance) tables;

table:=a container of a collection of one or more related leaf objects, where each table row corresponds to a leaf object and each table column corresponds to an attribute of a leaf object;

leaf object:=an object instance containing at least one attribute that an operator can create, configure, retrieve, and use to perform operations;

row (instance) name:=a user-assigned name that uniquely identifies a leaf object within a table; and

attribute:=the name of a data element (attribute value) describing the characteristics of a leaf object.

By creating containment relationships and associations between folders, tables, leaf objects, and attributes, a tree-like information hierarchy representing a unique binding of all network management information in a network device's database (e.g., Management Information Block (MIB)) can be constructed. Importantly, there is no limit to the number of tables supported for the network management configuration or realtime operational functions of each network device, but each table must be uniquely identified (e.g., by a unique logical name) at least among the tables sharing a common access path. UCI also permits each component of an information hierarchy to have multiple containment relationships (e.g., a leaf object can be grouped in different tables and a table can be contained in multiple folders), making it possible to access the same attribute via multiple different paths.

Another feature of UCI is the ability to group single instance data elements (i.e., scalars) that occur only once in a network management database to be grouped in scalar tables as if the scalars were related leaf objects in a table structure. This facilitates operational interaction with multiple scalar elements.

An example of an exemplary information hierarchy representing the network management database of a network device is shown in FIG.

1

B. As illustrated, information hierarchy

40

is logically arranged in a tree-like data structure including folders

42

-

46

and tables

48

-

54

. Folder

42

, which in this case is a root folder, contains folder

46

, folder

44

, and table

48

, which are associated with the logical names folder

1

, folder

2

and table

1

a

, respectively. Folder

44

in turn contains table

2

a

54

, which is a scalar table containing scalars sc

1

, sc

2

and sc

3

, and folder

46

, which is associated with the logical name folder

22

. Thus, as shown in

FIG. 1B

, folder

46

can be accessed by multiple paths (and multiple logical names).

Each of tables

48

-

52

includes a number of leaf objects that each have a user assigned instance name such as row

1

, row

2

, etc. Each leaf object (i.e., row) contains a number of attributes (e.g., att

1

a

1

, att

1

a

12

, etc.) that each have an associated attribute value.

The illustrated tree-like information hierarchies employed by UCI permit several different methods of organizing information according to the specific data element requirements of a networking protocol or network device setup. UCI therefore formalizes an access mechanism to attributes within the information tree in accordance with the requirements of each network, system, or configuration management activity.

UCI Command Set

UCI specifies a set of verbs, called operational directives, that specify the operations that can be performed on information structures and attributes in the static configuration and realtime operation of network devices. Since attributes are stored in a defined database schema, the operational directives themselves do not need to be tailored to specific operations or specific network devices as in conventional command interfaces. Instead, the objects to which an operational directive applies are determined by the operational scope. Therefore, a operator unfamiliar with UCI has only a small number of operational directives to learn.

The operational directives defined by UCI and recognized by parser

16

include the following:

SET:=updates attributes or performs action with the values assigned for the operational scope. Set will create a leaf object if the specified object instance does not exist in the indicated table.

CREATE:=creates a leaf object or performs action with the specified attributes and values only if the specified object instance does not exist in the indicated table;

UPDATE:=updates attributes or performs action with the values assigned for the scope only if the specified object instance already exists in the indicated table;

DELETE:=removes leaf object(s) from the table(s) defined by the operational scope;

LIST:=presents contents of folders, tables, rows and attribute values and attribute characteristics specified by the operational scope and other optional inputs;

HELP:=presents information on the permitted syntax, operational scope, and default value;

DUMP:=writes a complete copy of all of the tables, table rows, and attribute values for a specified operational scope, and if no operational scope is specified, the complete database for the operational context, to a specified network location (e.g., a remote file server);

EXTRACT:=retrieves an information structure for an operational context from a file server;

EXIT:=terminates all sessions and returns to local or remote operation console;

UCI:=enters a new session defined by the environment variables of the current session; and

RETURN:=closes only the current session.

The DUMP and LIST operational directives cause all or selected portions of a network device's information hierarchy to be extracted in a line or file format and stored for editing (e.g., using a simple ASCII editor). This allows the use of cut and paste functions to produce cookie-cutter operations for the configuration and realtime management of network devices. Furthermore, the DUMP and LIST operational directives permit network utility scripts to be written to deploy these extracted and possibly updated UCI scripts to many network devices and thereby enables network configuration and management operations to be automated.

UCI Command Syntax

UCI syntax relies on the definition and arrangement of network management information in a regular and formal notation. UCI command syntax for both command line and file modes includes up to three fields arranged as follows:

[operational directive] [operational scope] [operational target(s) or operational parameter(s)]

The operational scope defines the objects to which the operational directive applies. The operational scope can be as specific as a single leaf object but can also include larger collections of objects, such as folders or tables. The operational scope is given by a fully qualified name formed of an ordered sequence of delimited folder, table, scalar table, and/or instance logical names indicating a valid path from the root of an information hierarchy. An example of an operational scope can be expressed as:

/FolderName/TableName/RowName,

where “/” is used as the delimiter and the first occurrence of “/” indicates the root container of the information hierarchy.

Importantly, the operational directive and operational scopes are independently persistent, meaning that the operational directive and operational scope are independently carried between UCI commands unless changed. Table I below illustrates various scope designations that may be employed to change the current operational scope. An operator's use of “../” in a UCI command specifies one level up in the information hierarchy from the current operational scope.

TABLE I

current

operational

resulting

operational

scope designated

operational

scope

in UCI command

scope

/f1/f2/

/f3/f4/

/f3/f4/

/f1/f2/

f5/t1

/f1/f2/f5/t1

/f1/f2/f6/

. . . / . . . /f7/f8

/f1/f7/f8/

/f1/f2/t3/2.1.2

. . . /9.6.1

/f1/f2/t3/9.6.1

The operational target(s) or operational parameter(s) are defined as the particular leaf objects and/or attributes and attribute values within the scope to be operated upon by the operational directive. Thus, examples of valid UCI commands are as follows:

set/FolderName/TableName/RowName a

1

=value

list/FolderName/TableName/RowName a

1

a

2

a

3

where a

1

, a

2

, and a

3

are attribute names.

A command line input received by UCI is parsed by parser

16

from left to right at a validation point (e.g., when Line Feed or Enter is received). Depending upon the UCI command, the validation point may also be an execution point at which the operational directive is performed. However, in many instances, an explicit execution point designator (e.g., “;”) or implicit execution point designator (e.g., an operational directive or change in operational scope) is required. Table II summarizes preferred UCI parsing behavior for several operational directives in response to whether the operational scope and operational directive remain the same as in the previous UCI command. In Table II, “X” means that the operational directive is to be executed, and “delay” signifies that the UCI command is parsed for correctness as it is entered, but is no command processing is performed or committed until an implicit or explicit execution point designator is entered and parsed. Importantly, the HELP and UCI operational directives do not serve as implicit execution point designators, thus permitting an operator to obtain help or initiate a new session without committing a partially entered UCI command.

TABLE II

op.

same

diff.

same op.

diff.

dir.

“;”

op. dir.

op. dir.

scope

op. scope

“Enter”

set

X

delay

X

delay

X

delay

create

update

list

X

ignore

X

ignore

delay

X

help

The implementation of distinct validation and execution points permits multiple UCI commands to be entered on a single command line. Supporting different validation and execution points also permits several lines of UCI command input to be entered before an action will be committed, thereby creating an atomic unit of work that spans multiple lines of operator input.

To assist the operator in entering a valid UCI command, UCI supports an in-line help feature (implemented by in-line help facility

20

of FIG.

1

A). The operator accesses the in-line help feature simply by typing a “?” (or other designated character) at any location in a UCI command line and pressing Enter or Line Feed. UCI responds by displaying valid inputs that may be entered following the location of the “?” in the UCI command line. For example, if the operator simply types “?” at the UCI prompt and then presses Enter, UCI will display a list of all operational directives. If a portion of an operational directive is typed prior to the “?” (e.g., “up?”), UCI's in-line help feature would display the entire operational directive (e.g., update). As another example, if the operator enters “list/f

1

/f

2

/abcd?”, UCI preferably displays a response below the command line input by the operator as follows:

list /f

1

/f

2

/abcd?

abcdef/abcde/abcd abcdxyz

list/f

1

/f

2

/abcd

where boldface type designates UCI output, “_” indicates the cursor position at which the operator can continue providing input, and a “/” following a displayed choice indicates that the choice does not form a complete operational scope. In an alternative embodiment, one of the choices can be displayed completing the command line, and all the available choices can be toggled through, for example, by hitting the Tab key.

If the operator has typed an incorrect input, UCI will display valid inputs following the point in the command at which the error occurs. For example, if the operator enters “list/f

1

/t

2

/abxd” with or without a terminating “?”, UCI provides the following output (again shown in boldface type):

list/f

1

/f

2

/abxd?

{circumflex over ( )} invalid character—correct choices are: abcdef/abcde/abcd abcdxyz

list/f

1

/f

2

/ab

If the operator enters a “?” following a partial command including a valid sequence of folders terminating with a “/”, then UCI provides a list of tables contained by the folder. An example is given below.

list /f

1

/f

2

/abcd/?

table

1

/table

2

/table

3

table

4

/

list/f

1

/f

2

/abed/

In the above example, table

1

, table

2

and table

4

are non-scalar tables, and table

3

is a scalar table, as indicated by the fact that a “/” does not terminate the table name. UCI similarly displays a list of row names if a “?” is entered following a partial LIST command ending with a table name terminated by a “/” and displays a list of attributes (i.e., column names) if a “?” is entered following a partial LIST command ending with a completed scalar table name or row name. If the full scope of a command including an attribute name has been entered, UCI displays an “=”, indicating than an attribute assignment is possible, or if the partial command already includes a “=”, default, current, and/or permissible ranges of attribute values are displayed.

It is important to note that UCI provides in-line help for operational directives other than LIST. For CREATE, the syntax of folders, tables, or row names can be displayed, depending upon where in the command the “?” appears. For a partial UPDATE command terminating with a valid table name and “/”, the current row names are displayed. If no rows are yet established, an error message is displayed along with the choices SET and CREATE.

As indicated in the above examples, UCI command outputs, whether generated by the in-line help feature or otherwise, are preferably formatted as valid UCI command inputs. In this manner, UCI reduces the operator keystrokes required to perform many functions since the operator can utilize conventional cut and paste features in the UCI interface to create new UCI commands suitable for other accessing other objects in the same information hierarchy or the information hierarchies of other network devices.

UCI Operational Model

Referring now to

FIG. 2

, there is depicted an illustrative embodiment of a network environment in which UCI can advantageously be utilized. As illustrated, network environment

60

includes a network

68

and an operator console

62

, coupled to network

68

, from which an operator (e.g., a network administrator) can monitor and manage the operation of network devices, such as network device

64

, that are coupled to network

68

. Network

68

can have any topology and can include both public data networks (e.g., the Internet) and private Local Area Networks (LANs) and Wide Area Networks (WANs). The network devices coupled to network

68

, such as network device

64

, can comprise bridges, routers, computers, storage systems, etc. Network environment

60

further includes file server

66

, which in addition to storing network programs and data, can also store UCI command files that may be remotely invoked to perform network management operations.

Operator console

62

can be implemented either as an ASCII terminal or as a workstation or other computer system. If implemented as a computer system, operator console

62

will have a software configuration including UCI

70

and an operating system (OS)

72

. Network device

64

similarly has a software configuration including UCI

70

and an operating system (OS)

74

, which is not necessarily the same as OS

72

. As noted above, UCI

70

can be utilized as an interface to any network management platform (NMP), such as NMP

76

executed by network device

64

, that supports the UCI information structures and definitions described herein.

The message transport protocol employed to convey UCI commands and responses between network devices depends upon the mode of UCI operation. In command line mode in which an operator is inputting UCI commands at operator console

62

, the transport protocol utilized to convey UCI commands to a target network device and to communicate responses from the target network device to operator console

62

is preferably Telnet, a well-known protocol in the TCP/IP (Transmission Control Protocol/Internet Protocol) suite. If on the other hand, file mode UCI is utilized to convey one or more UCI commands between a file server and a target network device, Telnet File Transport Protocol (TFTP) is preferably utilized.

With reference now to

FIG. 3

, an exemplary command line mode communication interchange between operator console

62

and network device

64

is illustrated. As indicated, the operator enters a command line at the prompt displayed at operator console

62

as follows:

verb (op. directive)/folder

1

/folder

2

/tableA/row

5

The operator establishes a Telnet connection between operator console

62

and network device

64

via network

68

, if such a connection is not already active, and transmits the UCI command to network device

64

. In response to receipt of the UCI command, network device

64

executes the UCI command and provides a response echoing the original UCI command plus any additional parameters required or requested by the operational directive. Thus, as illustrated, the general format of the response(s) of network device

64

as displayed to the operator by operator console

62

is as follows:

verb/folder

1

/folder

2

/tableA/row

5

attribute

1

=value

1

attribute

2

=value

2

attribute

3

=value

3

As noted above, this response displayed at operator console

62

can conveniently be utilized to form a subsequent UCI command.

Referring now to

FIG. 4

, there is depicted an exemplary file mode communication interchange within network environment

60

. As illustrated, an operator initiates the file mode communication interchange between network device

64

and file server

66

by entering an appropriate command, in this case an EXTRACT command, at the command line of operator console

62

. The UCI EXTRACT command is then transmitted via Telnet to network device

64

, which responds with a status message such as “in progress” while the UCI file specified by the command (i.e., routerimage

5

) is retrieved from file server

66

, whose IP host name is specified in the EXTRACT command. As shown, in order to retrieve the specified UCI command file, network device

64

issues a TFTP GET command to file server

66

.

File server

66

responds to the TFTP GET command by transmitting the UCI commands contained in routerimage

5

to network device

64

. As shown, these UCI commands may include, for example, UCI SET commands that set attribute values for the attributes contained in the rows of tables 1 through N. In response to receipt of these UCI commands via TFTP, network device

64

executes the UCI commands.

As further shown in

FIG. 5

, file mode UCI commands can also be utilized to automatically create UCI command files. In the example given in

FIG. 5

, the operator enters a UCI DUMP command at operator console

62

, which transmits the UCI DUMP command to network device

64

via Telnet. The UCI DUMP command specifies the name of the file into which the network device image is to be stored and the IP hostname of fileServer

55

. As before, network device

64

provides a status response to operator console

62

via Telnet such as “in progress.” In addition, network device

64

issues a TFTP PUT command to file server

66

, which is logically identified in the UCI DUMP command as fileServer

55

. The TFTP PUT command specifies the set of attribute values comprising the image of network device

64

and the name of the file into which the image is to be stored (i.e., saveRouterImage

5

), which is also provided to file server

66

in the UCI DUMP command. File server

66

accumulates the attribute values it receives from network device

64

into the file saveRouterImage

5

as a series of UCI LIST commands. Thereafter, any text editor (e.g., Lotus WORDPRO®) can be utilized by the operator to display and/or edit the image of network device

64

stored at file server

66

in saveRouterImage

5

.

The UCI DUMP and EXTRACT commands also provide an audit trail feature that is maintained in UCI-specific audit trail tables

32

(see

FIG. 1A

) called dump and extract. These tables, which are persistent in the base UCI session and do not occur in child UCI sessions (discussed below), comprise a finite number of sequential entries that can each contain attribute value pairs (e.g., routerimage and IP hostname) logged from UCI DUMP or EXTRACT commands and a date and time stamp for the attribute value pair. In the event of a table overflow, the oldest entry in the table is overwritten.

The environment is which UCI commands are executed is called a session. The default behavior of a session is governed by an associated set of session environment variables

28

. Table III below summarizes some of the UCI session environment variables.

TABLE III

Initial value

Initial

Environment

Value

for command

value for

Variable

range

line mode

file mode

prompt

on/off

on

off

assist

of/off

on

off

op. dir.

any op. dir.

LIST

SET

op. context

config./

config.

config.

realtime

parse-only

of/off

off

off

mode

window

integer ≧ 0

24

0

scroll size

permissions

read/write/

user-

user-

read-write

dependent

dependent

username

alphanumeric

na

na

string

output

all/default

default

default

volume

The value of the prompt environmental variable determines whether the prompting provided by prompt mode facility

22

is enabled for the associated session. When prompting is enabled, the operational directive and scope are displayed at the beginning of each line and the cursor will be displayed at the end of the prompt to receive operator inputs. The operator is permitted to edit the prompt (e.g., by backspacing and retyping or entering a new scope with “../”) to form a new operational directive and/or operational scope for the next UCI command.

The assistance provided to an operator when forming a UCI command can also be selectively enhanced by enabling the assist environmental variable. When assist is enabled, the prompt for the CREATE, SET and UPDATE operational directives will also include attribute names (shown in the example as column designations) and current value or default value (if no current value is available) for the attributes. If the attribute name has an enumerated syntax, that syntax is also displayed. For example, assuming prompting is disabled, editable CREATE and UPDATE commands can be displayed as follows, where UCI output is shown in bold type for clarity:

create/f

1

/f

2

/t

2

/rn

1

column

1

[

128

]=256

column

2

=9.67.9.5

column

3

{[true]¦false}=false

column

4

{

4

M¦[

16

M]¦

100

M=default chosen

column

5

[

2056

]=4096

update/f

1

/f

2

/t

2

/rn

1

column

1

[

256

]=

column

2

[

9

.

67

.

9

.

5

]=

column

3

{true¦[false]}=true

column

4

{

4

M¦[

16

M]¦

100

M=

column

5

[

4096

]=2056

Thus, the assist feature walks the operator through a table structure, prompting the operator with each attribute name and default value and querying the operator for an attribute value for all attributes in the table without the need to enter anything but Enter for the default or override value. The assist mode can also be configured to prompt the operator for only attribute values for which no default exists, such that the operator can configure a network device using a minimum number of inputs.

The environmental variables of a session further include an operational context that defines whether the operational directives of UCI commands issued in the session target runtime or configuration information hierarchies. As noted in Table III, by default the targets for operational directives in both command line and file mode are configuration rather than runtime MIBs.

UCI environmental variables also include a parse-only mode in which UCI verifies command syntax, but does not execute any UCI commands, whether valid or not. This feature is convenient in that an operator can test the correctness of a potential UCI command prior to committing data to an network device's information hierarchy.

Advantageously, UCI supports multiple concurrent sessions that can have either peer or parent-child relationships. Child sessions inherit the environmental variables established for the parent session, but modifications to a child's environmental variables do not affect the parent's environmental variables. The operator can toggle between active sessions and can enter and exit sessions independently. In order to facilitate the operator distinguishing between sessions, UCI can be configured to display UCI commands and responses for each session in a separate window. Alternatively, the various active sessions can be distinguished by different prompts, such as “+” or “+1” for the first parent, “++” for a child of the first parent, and “+2” for a peer of the first parent. The capability of multiple sessions is useful, for example, for obtaining or otherwise manipulating information that may be affected by or needed to formulate a next UCI command without having to delete a partially entered command or exit a task already in progress.

As has been described, the present invention introduces UCI, an improved command interface for network management platforms. UCI provides a simple readable and regular syntax for creating, reading, and updating data stored in a network device MIB as well as an efficient information structures for organizing network data. While extremely user friendly because of its many operator assistance features, UCI can also be utilized to manage and manipulate large volumes of network data in response to only a small amount of operator input.

While the invention has been particularly shown and described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention. For example, although aspects of the present invention have been described with respect to a computer system executing software that directs the functions of the present invention, it should be understood that present invention may alternatively be implemented as a program product for use with a data processing system. Programs defining the functions of the present invention can be delivered to a data processing system via a variety of signal-bearing media, which include, without limitation, non-rewritable storage media (e.g., CD-ROM), rewritable storage media (e.g., a floppy diskette or hard disk drive), and communication media, such as digital and analog networks. It should be understood, therefore, that such signal-bearing media, when carrying or encoding computer readable instructions that direct the functions of the present invention, represent alternative embodiments of the present invention.

高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈