首页 / 专利库 / 人工智能 / 人工神经网络 / 前馈神经网络 / 一种基于机器学习的智能粮仓管控方法及终端

一种基于机器学习的智能粮仓管控方法及终端

阅读:83发布:2020-05-11

专利汇可以提供一种基于机器学习的智能粮仓管控方法及终端专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种基于 机器学习 的智能粮仓管控方法及终端,获取智能粮仓的待预测输入因子,将待预测输入因子发送至粮仓分析决策模型中,以得到人员调度策略,粮仓分析决策模型包括使用误差逆向传播 算法 训练的多层 前馈神经网络 所建立的前馈模型,人员调度策略包括抽检人员、抽检对象和抽检时间;本发明通过对历史数据进行学习以得到粮仓分析决策模型,采用误差逆向传播算法训练的多层前馈神经网络所建立的前馈模型,使网络的输出误差不断减小,从而呈现出更精细的预测和溯源结果;基于上述模型来找到最佳的人工调度策略,从而为政府粮食部 门 和仓储企业进行粮食管理的人员调配,提供了直观、清晰的有效手段,以实现最优化的人工调度。,下面是一种基于机器学习的智能粮仓管控方法及终端专利的具体信息内容。

1.一种基于机器学习的智能粮仓管控方法,其特征在于,包括步骤:
S1、获取智能粮仓的待预测输入因子,将所述待预测输入因子发送至粮仓分析决策模型中,以得到人员调度策略,所述粮仓分析决策模型包括使用误差逆向传播算法训练的多层前馈神经网络所建立的前馈模型,所述人员调度策略包括抽检人员、抽检对象、抽检时间以及抽检路径。
2.根据权利要求1所述的一种基于机器学习的智能粮仓管控方法,其特征在于,得到所述步骤S1中的前馈模型的具体步骤为:
S11、构建初始化BP神经网络模型,所述初始化BP神经网络模型包括输入层、隐含层和输出层
S12、获取历史数据,将所述历史数据分为训练集和测试集,使用所述训练集中的样本数据对所述初始化BP神经网络模型进行训练,得到已训练BP神经网络模型;
S13、使用所述测试集中的样本数据对已训练BP神经网络模型进行测试,在测试通过后输出为前馈模型。
3.根据权利要求2所述的一种基于机器学习的智能粮仓管控方法,其特征在于,所述BP神经网络模型的输入因子包括对象因子和人员因子,所述对象因子包括粮食品种、堆垛内部温度、堆垛外部温度、堆垛内部湿度、堆垛外部温度、大气温度、大气湿度、季节以及堆垛压,所述人员因子包括内部年龄、性别、各类型堆垛平均工作时长以及预设时间内抽检作业评率;
所述步骤S12中“使用所述训练集中的样本数据对所述初始化BP神经网络模型进行训练”包括:
S121、选用Sigmoid函数作为所述BP神经网络模型的激活函数;
S122、将输入层的第P个训练样本输入到隐含层的BP网络神经单元上,通过所述Sigmoid函数以得到隐含层第j个神经元的输出信息为:
所述Wij为输入层第i个神经元到隐含层第j个神经元的权重值,所述XP为第P个训练样本在输入层的第i个输入值,所述 为隐含层第j个神经元的阈值,所述输入层的每一个神经元对应一个输入因子,所述Wij的取值范围为(-1,1);
S123、使用所述训练集中的样本数据进行训练,对每一个样本数据执行步骤S124;
S124、将样本数据作为输入层的输入信号,依次经隐含层、输出层,以得到实际输出结果,判断所述实际输出结果与所述样本数据中所对应的期望输出结果是否存在误差,若是,则得到误差信号,将所述误差信号由输出端开始逐层回传,同时按照预设规则与所述误差信号对每一个神经单元的权重值和阈值进行调整,所述误差信号为所述实际输出结果与所述期望输出结果之间的差值。
4.根据权利要求3所述的一种基于机器学习的智能粮仓管控方法,其特征在于,所述步骤S12中“获取历史数据”还包括以下步骤:
通过SVM分类器对所述历史数据中的输入因子进行适应度评估,以得到输入因子的关键特征。
5.根据权利要求2所述的一种基于机器学习的智能粮仓管控方法,其特征在于,训练所述粮仓分析决策模型还包括以下步骤:
获取样本数据中的抽检对象、抽检时间和抽检人员,得到所有样本数据的抽检对象均值S1、抽检时间均值S2以及抽检人员均值S3;
对所述抽检对象均值S1、抽检时间均值S2以及抽检人员均值S3进行小波变换以得到小波熵,记为特征向量P1;对所述抽检对象均值S1、抽检时间均值S2以及抽检人员均值S3进行希尔伯特黄变换以得到Hilbert-Huang熵,记为特征向量P2;对所述抽检对象均值S1、抽检时间均值S2以及抽检人员均值S3进行奇异值分解得到奇异值第一主成分,记为特征向量P3;
通过Welch算法计算所述抽检对象的自功率谱密度,记为Pxx(f1),通过Welch算法计算所述抽检人员的自功率谱密度,记为Pyy(f2),通过Welch算法计算所述抽检对象与所述抽检人员的互功率谱密度,记为Pxy(f1f2),根据相干函数得到所述抽检对象与所述抽检人员的相干系数C1,依次获得所述抽检对象与所述抽检时间的相干系数C2以及所述抽检时间与所述抽检人员的相干系数C3;
结合所述特征向量P1、特征向量P2、特征向量P3、相干系数C1、相干系数C2、相干系数C3以及评分函数对每一次所述抽检对象和抽检时间进行评分;
所述相干函数为:Cohxy(f1f2)=|Pxy(f1f2)|2/[Pxx(f1)*Pyy(f2)];
所述评分函数为:
所述S1i、S2i、S3i分别为样本数据中第i个数据的抽检对象、抽检时间、抽检人员,所述N为样本数量。
6.一种基于机器学习的智能粮仓管控终端,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现以下步骤:
S1、获取智能粮仓的待预测输入因子,将所述待预测输入因子发送至粮仓分析决策模型中,以得到人员调度策略,所述粮仓分析决策模型包括使用误差逆向传播算法训练的多层前馈神经网络所建立的前馈模型,所述人员调度策略包括抽检人员、抽检对象、抽检时间以及抽检路径。
7.根据权利要求6所述的一种基于机器学习的智能粮仓管控终端,其特征在于,得到所述步骤S1中的前馈模型中,所述处理器执行所述计算机程序时具体实现以下步骤:
S11、构建初始化BP神经网络模型,所述初始化BP神经网络模型包括输入层、隐含层和输出层;
S12、获取历史数据,将所述历史数据分为训练集和测试集,使用所述训练集中的样本数据对所述初始化BP神经网络模型进行训练,得到已训练BP神经网络模型;
S13、使用所述测试集中的样本数据对已训练BP神经网络模型进行测试,在测试通过后输出为前馈模型。
8.根据权利要求7所述的一种基于机器学习的智能粮仓管控终端,其特征在于,所述BP神经网络模型的输入因子包括对象因子和人员因子,所述对象因子包括粮食品种、堆垛内部温度、堆垛外部温度、堆垛内部湿度、堆垛外部温度、大气温度、大气湿度、季节以及堆垛压力,所述人员因子包括内部年龄、性别、各类型堆垛平均工作时长以及预设时间内抽检作业评率;
所述步骤S12中“使用所述训练集中的样本数据对所述初始化BP神经网络模型进行训练”包括:
S121、选用Sigmoid函数作为所述BP神经网络模型的激活函数;
S122、将输入层的第P个训练样本输入到隐含层的BP网络神经单元上,通过所述Sigmoid函数以得到隐含层第j个神经元的输出信息为:
所述Wij为输入层第i个神经元到隐含层第j个神经元的权重值,所述XP为第P个训练样本在输入层的第i个输入值,所述 为隐含层第j个神经元的阈值,所述输入层的每一个神经元对应一个输入因子,所述Wij的取值范围为(-1,1);
S123、使用所述训练集中的样本数据进行训练,对每一个样本数据执行步骤S124;
S124、将样本数据作为输入层的输入信号,依次经隐含层、输出层,以得到实际输出结果,判断所述实际输出结果与所述样本数据中所对应的期望输出结果是否存在误差,若是,则得到误差信号,将所述误差信号由输出端开始逐层回传,同时按照预设规则与所述误差信号对每一个神经单元的权重值和阈值进行调整,所述误差信号为所述实际输出结果与所述期望输出结果之间的差值。
9.根据权利要求8所述的一种基于机器学习的智能粮仓管控终端,其特征在于,所述步骤S12中“获取历史数据”还包括以下步骤:
通过SVM分类器对所述历史数据中的输入因子进行适应度评估,以得到输入因子的关键特征。
10.根据权利要求7所述的一种基于机器学习的智能粮仓管控终端,其特征在于,训练所述粮仓分析决策模型还包括以下步骤:
获取样本数据中的抽检对象、抽检时间和抽检人员,得到所有样本数据的抽检对象均值S1、抽检时间均值S2以及抽检人员均值S3;
对所述抽检对象均值S1、抽检时间均值S2以及抽检人员均值S3进行小波变换以得到小波熵,记为特征向量P1;对所述抽检对象均值S1、抽检时间均值S2以及抽检人员均值S3进行希尔伯特黄变换以得到Hilbert-Huang熵,记为特征向量P2;对所述抽检对象均值S1、抽检时间均值S2以及抽检人员均值S3进行奇异值分解得到奇异值第一主成分,记为特征向量P3;
通过Welch算法计算所述抽检对象的自功率谱密度,记为Pxx(f1),通过Welch算法计算所述抽检人员的自功率谱密度,记为Pyy(f2),通过Welch算法计算所述抽检对象与所述抽检人员的互功率谱密度,记为Pxy(f1f2),根据相干函数得到所述抽检对象与所述抽检人员的相干系数C1,依次获得所述抽检对象与所述抽检时间的相干系数C2以及所述抽检时间与所述抽检人员的相干系数C3;
结合所述特征向量P1、特征向量P2、特征向量P3、相干系数C1、相干系数C2、相干系数C3以及评分函数对每一次所述抽检对象和抽检时间进行评分;
所述相干函数为:Cohxy(f1f2)=|Pxy(f1f2)|2/[Pxx(f1)*Pyy(f2)];
所述评分函数为:
所述S1i、S2i、S3i分别为样本数据中第i个数据的抽检对象、抽检时间、抽检人员,所述N为样本数量。

说明书全文

一种基于机器学习的智能粮仓管控方法及终端

技术领域

[0001] 本发明涉及智能粮仓管理领域,特别涉及一种基于机器学习的智能粮仓管控方法及终端。

背景技术

[0002] 粮食是国家的三大战略资源之一,维持一定数量、品种和品质粮食的储备,是保证国家粮食安全必不可少的措施,粮食仓储技术一直受国家战备物资的重视,我国目前共有各类粮库27000余家。
[0003] 储粮仓中的粮食与储粮仓外的环境气体温湿度等条件是息息相关。由于粮食具有自发热特性,粮堆的温度、湿度随外界的季节性变化,会引起粮食发热霉变,造成粮食的品质变化。而低温保存,会使得储粮仓的湿度调节功能变差。
[0004] 传统方式采用人工定期进仓检查。作业人员必须三人以上一起进仓,且每次进仓连续不能超过半个小时,在低的仓内环境下,需人工带上空气呼吸器,筛具进仓检查,这种方式不仅效率低,而且由于抽样不彻底。
[0005] 近年以来,通过温湿度传感器的智能粮仓越来越多得到应用。小的储粮设备一般采用小型测温仪检测粮温,大型储粮设备已经逐步配备微机测温系统。但是不论使用哪种系统,都无法避免如下问题:粮食是一种不良导体,测温传感器采集的环境温度是传感器周围的温度,随着季节等因素,不同类型、不同堆积密度的粮食自发热聚集程度不同,测温传感器获取的温度具有一定的滞后性。

发明内容

[0006] 本发明所要解决的技术问题是:提供一种基于机器学习的智能粮仓管控方法及终端,以实现精确的预测效果和最优化的人工调度。
[0007] 为了解决上述技术问题,本发明采用的技术方案为:
[0008] 一种基于机器学习的智能粮仓管控方法,包括步骤:
[0009] S1、获取智能粮仓的待预测输入因子,将所述待预测输入因子发送至粮仓分析决策模型中,以得到人员调度策略,所述粮仓分析决策模型包括使用误差逆向传播算法训练的多层前馈神经网络所建立的前馈模型,所述人员调度策略包括抽检人员、抽检对象、抽检时间以及抽检路径。
[0010] 为了解决上述技术问题,本发明采用的另一种技术方案为:
[0011] 一种基于机器学习的智能粮仓管控终端,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
[0012] S1、获取智能粮仓的待预测输入因子,将所述待预测输入因子发送至粮仓分析决策模型中,以得到人员调度策略,所述粮仓分析决策模型包括使用误差逆向传播算法训练的多层前馈神经网络所建立的前馈模型,所述人员调度策略包括抽检人员、抽检对象、抽检时间以及抽检路径。
[0013] 本发明的有益效果在于:一种基于机器学习的智能粮仓管控方法及终端,通过对历史数据进行学习以得到粮仓分析决策模型,采用误差逆向传播算法训练的多层前馈神经网络所建立的前馈模型,使网络的输出误差不断减小,从而呈现出更精细的预测和溯源结果;基于上述模型来找到最佳的人工调度策略,从而为政府粮食部和仓储企业进行粮食管理的人员调配,提供了直观、清晰的有效手段,以实现最优化的人工调度。附图说明
[0014] 图1为本发明实施例的一种基于机器学习的智能粮仓管控方法的流程示意图;
[0015] 图2为本发明实施例的一种基于机器学习的智能粮仓管控终端的结构示意图。
[0016] 标号说明:
[0017] 1、一种基于机器学习的智能粮仓管控终端;2、处理器;3、存储器。

具体实施方式

[0018] 为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式并配合附图予以说明。
[0019] 请参照图1,一种基于机器学习的智能粮仓管控方法,包括步骤:
[0020] S1、获取智能粮仓的待预测输入因子,将所述待预测输入因子发送至粮仓分析决策模型中,以得到人员调度策略,所述粮仓分析决策模型包括使用误差逆向传播算法训练的多层前馈神经网络所建立的前馈模型,所述人员调度策略包括抽检人员、抽检对象、抽检时间以及抽检路径。
[0021] 从上述描述可知,本发明的有益效果在于:通过对历史数据进行学习以得到粮仓分析决策模型,采用误差逆向传播算法训练的多层前馈神经网络所建立的前馈模型,使网络的输出误差不断减小,从而呈现出更精细的预测和溯源结果;基于上述模型来找到最佳的人工调度策略,从而为政府粮食部门和仓储企业进行粮食管理的人员调配,提供了直观、清晰的有效手段,以实现最优化的人工调度。
[0022] 进一步地,得到所述步骤S1中的前馈模型的具体步骤为:
[0023] S11、构建初始化BP神经网络模型,所述初始化BP神经网络模型包括输入层、隐含层和输出层
[0024] S12、获取历史数据,将所述历史数据分为训练集和测试集,使用所述训练集中的样本数据对所述初始化BP神经网络模型进行训练,得到已训练BP神经网络模型;
[0025] S13、使用所述测试集中的样本数据对已训练BP神经网络模型进行测试,在测试通过后输出为前馈模型。
[0026] 从上述描述可知,提供一种得到前馈模型的较佳实施例,通过划分测试集和训练集,使得在样本足够多的情况下不会改变训练集和测试集的数据分布,而测试集上预测准确度能够更好的衡量整个模型的准确情况。
[0027] 进一步地,所述BP神经网络模型的输入因子包括对象因子和人员因子,所述对象因子包括粮食品种、堆垛内部温度、堆垛外部温度、堆垛内部湿度、堆垛外部温度、大气温度、大气湿度、季节以及堆垛压,所述人员因子包括内部年龄、性别、各类型堆垛平均工作时长以及预设时间内抽检作业评率;
[0028] 所述步骤S12中“使用所述训练集中的样本数据对所述初始化BP神经网络模型进行训练”包括:
[0029] S121、选用Sigmoid函数作为所述BP神经网络模型的激活函数;
[0030] S122、将输入层的第P个训练样本输入到隐含层的BP网络神经单元上,通过所述Sigmoid函数以得到隐含层第j个神经元的输出信息为:
[0031]
[0032] 所述Wij为输入层第i个神经元到隐含层第j个神经元的权重值,所述XP为第P个训练样本在输入层的第i个输入值,所述 为隐含层第j个神经元的阈值,所述输入层的每一个神经元对应一个输入因子,所述Wij的取值范围为(-1,1);
[0033] S123、使用所述训练集中的样本数据进行训练,对每一个样本数据执行步骤S124;
[0034] S124、将样本数据作为输入层的输入信号,依次经隐含层、输出层,以得到实际输出结果,判断所述实际输出结果与所述样本数据中所对应的期望输出结果是否存在误差,若是,则得到误差信号,将所述误差信号由输出端开始逐层回传,同时按照预设规则与所述误差信号对每一个神经单元的权重值和阈值进行调整,所述误差信号为所述实际输出结果与所述期望输出结果之间的差值。
[0035] 从上述描述可知,对具有多因素性、不确定性、随机性、非线性的空气污染历史数据作为输入训练因子,使用误差性能函数的最速下降法,通过误差的反向传播来逐渐调整网络的权值和阈值,使网络的输出误差不断减小,从而呈现出更精细的预测和溯源结果。
[0036] 进一步地,所述步骤S12中“获取历史数据”还包括以下步骤:
[0037] 通过SVM分类器对所述历史数据中的输入因子进行适应度评估,以得到输入因子的关键特征。
[0038] 从上述描述可知,随着样本量的增加,SVM分类器能够自适应不断优化完善,每次输入新的样本,根据交叉验证法原理,计算SVM分类器识别率,进行适应度评估,不设定遗传算法的终止值,终止条件采用比高法,如果训练的识别率高于现有则设为最优参数,否则,执行选择、交叉和变异等操作进一步优化训练参数,从而在保留有效的关键特征的同时降低数据的处理量。
[0039] 进一步地,训练所述粮仓分析决策模型还包括以下步骤:
[0040] 获取样本数据中的抽检对象、抽检时间和抽检人员,得到所有样本数据的抽检对象均值S1、抽检时间均值S2以及抽检人员均值S3;
[0041] 对所述抽检对象均值S1、抽检时间均值S2以及抽检人员均值S3进行小波变换以得到小波熵,记为特征向量P1;对所述抽检对象均值S1、抽检时间均值S2以及抽检人员均值S3进行希尔伯特黄变换以得到Hilbert-Huang熵,记为特征向量P2;对所述抽检对象均值S1、抽检时间均值S2以及抽检人员均值S3进行奇异值分解得到奇异值第一主成分,记为特征向量P3;
[0042] 通过Welch算法计算所述抽检对象的自功率谱密度,记为Pxx(f1),通过Welch算法计算所述抽检人员的自功率谱密度,记为Pyy(f2),通过Welch算法计算所述抽检对象与所述抽检人员的互功率谱密度,记为Pxy(f1f2),根据相干函数得到所述抽检对象与所述抽检人员的相干系数C1,依次获得所述抽检对象与所述抽检时间的相干系数C2以及所述抽检时间与所述抽检人员的相干系数C3;
[0043] 结合所述特征向量P1、特征向量P2、特征向量P3、相干系数C1、相干系数C2、相干系数C3以及评分函数对每一次所述抽检对象和抽检时间进行评分;
[0044] 所述相干函数为:Cohxy(f1f2)=|Pxy(f1f2)|2/[Pxx(f1)*Pyy(f2)];
[0045] 所述评分函数为:
[0046]
[0047] 所述S1i、S2i、S3i分别为样本数据中第i个数据的抽检对象、抽检时间、抽检人员,所述N为样本数量。
[0048] 从上述描述可知,建立个性化的抽检对象、抽检时间与抽检人员所形成的三环境处理效率采集与评估模型,从而实现最优化的人员调度策略。
[0049] 请参照图2,一种基于机器学习的智能粮仓管控终端,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
[0050] S1、获取智能粮仓的待预测输入因子,将所述待预测输入因子发送至粮仓分析决策模型中,以得到人员调度策略,所述粮仓分析决策模型包括使用误差逆向传播算法训练的多层前馈神经网络所建立的前馈模型,所述人员调度策略包括抽检人员、抽检对象、抽检时间以及抽检路径。
[0051] 从上述描述可知,本发明的有益效果在于:通过对历史数据进行学习以得到粮仓分析决策模型,采用误差逆向传播算法训练的多层前馈神经网络所建立的前馈模型,使网络的输出误差不断减小,从而呈现出更精细的预测和溯源结果;基于上述模型来找到最佳的人工调度策略,从而为政府粮食部门和仓储企业进行粮食管理的人员调配,提供了直观、清晰的有效手段,以实现最优化的人工调度。
[0052] 进一步地,得到所述步骤S1中的前馈模型中,所述处理器执行所述计算机程序时具体实现以下步骤:
[0053] S11、构建初始化BP神经网络模型,所述初始化BP神经网络模型包括输入层、隐含层和输出层;
[0054] S12、获取历史数据,将所述历史数据分为训练集和测试集,使用所述训练集中的样本数据对所述初始化BP神经网络模型进行训练,得到已训练BP神经网络模型;
[0055] S13、使用所述测试集中的样本数据对已训练BP神经网络模型进行测试,在测试通过后输出为前馈模型。
[0056] 从上述描述可知,提供一种得到前馈模型的较佳实施例,通过划分测试集和训练集,使得在样本足够多的情况下不会改变训练集和测试集的数据分布,而测试集上预测准确度能够更好的衡量整个模型的准确情况。
[0057] 进一步地,所述BP神经网络模型的输入因子包括对象因子和人员因子,所述对象因子包括粮食品种、堆垛内部温度、堆垛外部温度、堆垛内部湿度、堆垛外部温度、大气温度、大气湿度、季节以及堆垛压力,所述人员因子包括内部年龄、性别、各类型堆垛平均工作时长以及预设时间内抽检作业评率;
[0058] 所述步骤S12中“使用所述训练集中的样本数据对所述初始化BP神经网络模型进行训练”包括:
[0059] S121、选用Sigmoid函数作为所述BP神经网络模型的激活函数;
[0060] S122、将输入层的第P个训练样本输入到隐含层的BP网络神经单元上,通过所述Sigmoid函数以得到隐含层第j个神经元的输出信息为:
[0061]
[0062] 所述Wij为输入层第i个神经元到隐含层第j个神经元的权重值,所述XP为第P个训练样本在输入层的第i个输入值,所述 为隐含层第j个神经元的阈值,所述输入层的每一个神经元对应一个输入因子,所述Wij的取值范围为(-1,1);
[0063] S123、使用所述训练集中的样本数据进行训练,对每一个样本数据执行步骤S124;
[0064] S124、将样本数据作为输入层的输入信号,依次经隐含层、输出层,以得到实际输出结果,判断所述实际输出结果与所述样本数据中所对应的期望输出结果是否存在误差,若是,则得到误差信号,将所述误差信号由输出端开始逐层回传,同时按照预设规则与所述误差信号对每一个神经单元的权重值和阈值进行调整,所述误差信号为所述实际输出结果与所述期望输出结果之间的差值。
[0065] 从上述描述可知,对具有多因素性、不确定性、随机性、非线性的空气污染历史数据作为输入训练因子,使用误差性能函数的最速下降法,通过误差的反向传播来逐渐调整网络的权值和阈值,使网络的输出误差不断减小,从而呈现出更精细的预测和溯源结果。
[0066] 进一步地,所述步骤S12中“获取历史数据”还包括以下步骤:
[0067] 通过SVM分类器对所述历史数据中的输入因子进行适应度评估,以得到输入因子的关键特征。
[0068] 从上述描述可知,随着样本量的增加,SVM分类器能够自适应不断优化完善,每次输入新的样本,根据交叉验证法原理,计算SVM分类器识别率,进行适应度评估,不设定遗传算法的终止值,终止条件采用比高法,如果训练的识别率高于现有则设为最优参数,否则,执行选择、交叉和变异等操作进一步优化训练参数,从而在保留有效的关键特征的同时降低数据的处理量。
[0069] 进一步地,训练所述粮仓分析决策模型还包括以下步骤:
[0070] 获取样本数据中的抽检对象、抽检时间和抽检人员,得到所有样本数据的抽检对象均值S1、抽检时间均值S2以及抽检人员均值S3;
[0071] 对所述抽检对象均值S1、抽检时间均值S2以及抽检人员均值S3进行小波变换以得到小波熵,记为特征向量P1;对所述抽检对象均值S1、抽检时间均值S2以及抽检人员均值S3进行希尔伯特黄变换以得到Hilbert-Huang熵,记为特征向量P2;对所述抽检对象均值S1、抽检时间均值S2以及抽检人员均值S3进行奇异值分解得到奇异值第一主成分,记为特征向量P3;
[0072] 通过Welch算法计算所述抽检对象的自功率谱密度,记为Pxx(f1),通过Welch算法计算所述抽检人员的自功率谱密度,记为Pyy(f2),通过Welch算法计算所述抽检对象与所述抽检人员的互功率谱密度,记为Pxy(f1f2),根据相干函数得到所述抽检对象与所述抽检人员的相干系数C1,依次获得所述抽检对象与所述抽检时间的相干系数C2以及所述抽检时间与所述抽检人员的相干系数C3;
[0073] 结合所述特征向量P1、特征向量P2、特征向量P3、相干系数C1、相干系数C2、相干系数C3以及评分函数对每一次所述抽检对象和抽检时间进行评分;
[0074] 所述相干函数为:Cohxy(f1f2)=|Pxy(f1f2)|2/[Pxx(f1)*Pyy(f2)];
[0075] 所述评分函数为:
[0076]
[0077] 所述S1i、S2i、S3i分别为样本数据中第i个数据的抽检对象、抽检时间、抽检人员,所述N为样本数量。
[0078] 从上述描述可知,建立个性化的抽检对象、抽检时间与抽检人员所形成的三角环境处理效率采集与评估模型,从而实现最优化的人员调度策略。
[0079] 请参照图1,本发明的实施例一为:
[0080] 一种基于机器学习的智能粮仓管控方法,包括步骤:
[0081] S1、获取智能粮仓的待预测输入因子,将待预测输入因子发送至粮仓分析决策模型中,以得到人员调度策略,粮仓分析决策模型包括使用误差逆向传播算法训练的多层前馈神经网络所建立的前馈模型,人员调度策略包括抽检人员、抽检对象、抽检时间以及抽检路径。
[0082] 其中,得到步骤S1中的前馈模型的具体步骤为:
[0083] S11、构建初始化BP神经网络模型,初始化BP神经网络模型包括输入层、隐含层和输出层;
[0084] S12、获取历史数据,将历史数据分为训练集和测试集,使用训练集中的样本数据对初始化BP神经网络模型进行训练,得到已训练BP神经网络模型;
[0085] S13、使用测试集中的样本数据对已训练BP神经网络模型进行测试,在测试通过后输出为前馈模型。
[0086] 其中,BP神经网络模型的输入因子包括对象因子和人员因子,对象因子包括粮食品种、堆垛内部温度、堆垛外部温度、堆垛内部湿度、堆垛外部温度、大气温度、大气湿度、季节以及堆垛压力,人员因子包括内部年龄、性别、各类型堆垛平均工作时长以及预设时间内抽检作业评率;
[0087] 步骤S12中“使用训练集中的样本数据对初始化BP神经网络模型进行训练”包括:
[0088] S121、选用Sigmoid函数作为BP神经网络模型的激活函数;
[0089] S122、将输入层的第P个训练样本输入到隐含层的BP网络神经单元上,通过Sigmoid函数以得到隐含层第j个神经元的输出信息为:
[0090]
[0091] Wij为输入层第i个神经元到隐含层第j个神经元的权重值,XP为第P个训练样本在输入层的第i个输入值, 为隐含层第j个神经元的阈值,输入层的每一个神经元对应一个输入因子,Wij的取值范围为(-1,1);
[0092] S123、使用训练集中的样本数据进行训练,对每一个样本数据执行步骤S124;
[0093] S124、将样本数据作为输入层的输入信号,依次经隐含层、输出层,以得到实际输出结果,判断实际输出结果与样本数据中所对应的期望输出结果是否存在误差,若是,则得到误差信号,将误差信号由输出端开始逐层回传,同时按照预设规则与误差信号对每一个神经单元的权重值和阈值进行调整,误差信号为实际输出结果与期望输出结果之间的差值。
[0094] 其中,步骤S12中“获取历史数据”还包括以下步骤:
[0095] 通过SVM分类器对历史数据中的输入因子进行适应度评估,以得到输入因子的关键特征。
[0096] 其中,步骤S12中“使用训练集中的样本数据对初始化BP神经网络模型进行训练”中还包括以下步骤:
[0097] 获取样本数据中的抽检对象、抽检时间和抽检人员,得到所有样本数据的抽检对象均值S1、抽检时间均值S2以及抽检人员均值S3;
[0098] 对抽检对象均值S1、抽检时间均值S2以及抽检人员均值S3进行小波变换以得到小波熵,记为特征向量P1;对抽检对象均值S1、抽检时间均值S2以及抽检人员均值S3进行希尔伯特黄变换以得到Hilbert-Huang熵,记为特征向量P2;对抽检对象均值S1、抽检时间均值S2以及抽检人员均值S3进行奇异值分解得到奇异值第一主成分,记为特征向量P3;
[0099] 通过Welch算法计算抽检对象的自功率谱密度,记为Pxx(f1),通过Welch算法计算抽检人员的自功率谱密度,记为Pyy(f2),通过Welch算法计算抽检对象与抽检人员的互功率谱密度,记为Pxy(f1f2),根据相干函数得到抽检对象与抽检人员的相干系数C1,依次获得抽检对象与抽检时间的相干系数C2以及抽检时间与抽检人员的相干系数C3;
[0100] 结合特征向量P1、特征向量P2、特征向量P3、相干系数C1、相干系数C2、相干系数C3以及评分函数对每一次抽检对象和抽检时间进行评分;
[0101] 相干函数为:Cohxy(f1f2)=|Pxy(f1f2)|2/[Pxx(f1)*Pyy(f2)]
[0102] 评分函数为:
[0103]
[0104] S1i、S2i、S3i分别为样本数据中第i个数据的抽检对象、抽检时间、抽检人员,N为样本数量。
[0105] 再针对评分最高的抽检对象和抽检时间的情况下,训练出评分最高的抽检路径,从而得到抽检人员最高效的抽检对象、抽检时间以及抽检路径。
[0106] 由此可见,本申请的前预模型用来预测发热预警聚类,根据发热预警聚类,进行有效合理的作业人工调度,通过误差的反向传播来逐渐调整网络的权值和阈值,使网络的输出误差不断减小,通过遗传算法进行模型的关联校正,通过呈现出更精细的预测结果;通过蚁群算法+神经网络方式,找到抽检人员最高效的抽检对象、抽检时间以及抽检路径,从而实现最优化的人员调度策略。
[0107] 请参照图2,本发明的实施例二为:
[0108] 一种基于机器学习的智能粮仓管控终端1,包括存储器3、处理器2及存储在存储器3上并可在处理器2上运行的计算机程序,处理器2执行计算机程序时实现上述实施例一中的步骤。
[0109] 综上所述,本发明提供的一种基于机器学习的智能粮仓管控方法及终端,通过对历史数据进行学习以得到粮仓分析决策模型,通过划分测试集和训练集,使得在样本足够多的情况下不会改变训练集和测试集的数据分布,而测试集上预测准确度能够更好的衡量整个模型的准确情况;对具有多因素性、不确定性、随机性、非线性的空气污染历史数据作为输入训练因子,并通过SVM分类器来实现在保留有效的关键特征的同时降低数据的处理量;使用误差性能函数的最速下降法,通过误差的反向传播来逐渐调整网络的权值和阈值,使网络的输出误差不断减小,从而呈现出更精细的预测和溯源结果;基于上述模型,通过建立个性化的抽检对象、抽检时间与抽检人员所形成的三角环境处理效率采集与评估模型,来找到最佳的人工调度策略,从而为政府粮食部门和仓储企业进行粮食管理的人员调配,提供了直观、清晰的有效手段,以实现最优化的人工调度。
[0110] 以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等同变换,或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈