首页 / 专利库 / 信号处理 / 信噪比 / 基于多频子带并发的星载滑动聚束MIMO-SAR成像方法

基于多频子带并发的星载滑动聚束MIMO-SAR成像方法

阅读:657发布:2024-02-10

专利汇可以提供基于多频子带并发的星载滑动聚束MIMO-SAR成像方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种基于多频子带并发的星载滑动聚束MIMO‑SAR成像方法,能够在降低雷达系统实现难度与成本的同时获得两维高 分辨率 、宽测绘带以及更高的 信噪比 。实现过程如下:(1)提出了一种通道 采样 位置 误差校正方法。(2)提出了一种多子带方位去斜方法。既能降低 信号 的多普勒带宽,使其小于系统的等效PRF,又能保证方位去斜后子带信号间的距离历程差异仍然可以方便地得到补偿。(3)对传统的频域子带拼接方法进行了改进,使其既能避免距离向插值,又对系统参数没有特别的要求,具有更强的适应性。,下面是基于多频子带并发的星载滑动聚束MIMO-SAR成像方法专利的具体信息内容。

1.基于多频子带并发的星载滑动聚束MIMO-SAR成像方法,其特征在于:包括w下步骤: (1) 采用一发多收的通道方式W全孔径接收原始SAR回波信号; (2) 对星载SAR回波信号进行方位带宽压缩处理和波束压缩处理; (3) 对由载体卫星运动速度的缓变性带来的通道采样位置误差进行补偿,过程如下: 3a)回波信号的表达: 回波信号可W表示为含方位时延A tnm的参考信号乘W-个通道采样位置误差相位
其中,314,*3,11,111)为回波信号,11为发射通道标号,111为接收通道标号,514,*3,片)为参 考信号,C为光速,t和ta分别表示快时间和方位慢时间,fη为信号载频,exp为W自然对数e为 底的指数函数,j为虚数单位;方位时延A tnm = Xnm/v〇,其中Xnm为收发等效相位中屯、与参考 相位中屯、的方位位置间隔,V0为方位合成孔径时间内的平均卫星速度;ARnm(ta,r)为通道 采样位置误差,r表示点目标的斜距; 3b)构建通道采样位置误差校正函数: 在距离频域,采用波束中屯、点目标的误差校正函数校正,校正函数为:
其中,fn为信号载频,f为距离频率,ta为方位慢时间,ARnm(ta,r〇)为通道采样参考位 置,ro为参考斜距; 3c)通道采样位置空变误差补偿: 在距离频域构建补偿函数,对非波束中屯、点目标的采样位置误差的空变部分进行校 正:
其中,Δ Rnm( ta,r)为通道采样位置误差,r表示点目标的斜距; (4) 多频子带方位重建: 通道采样位置误差校正后,需要对通道回波数据进行重建,过程如下: 4a)构建多子带回波多普勒带宽压缩预处理函数:
其中,Δ tnm为方位时延,fc为信号中屯、载频,Rrnt为滑动聚束模式的旋转中屯、斜距,V为 卫星速度; 4b)方位空域滤波,重建各子带信号的多普勒谱,建立方位空域滤波的权矢量: [Wn,l(fa) ,Wn,2(fa) , . . . ,Wn,N(fa) ] =A_1, 其中,矢量A=[an,l(fa),an,2(fa),...,an,N(fa)]T,(·)-哺(·)T分别表示矩阵的逆和矩 阵转置; 元素
f a为方位频 率,时RF为方位采样频率,-N时RF/2频谱,使其在相应的频率处进行相干叠加从而得到完整带宽信号; (6) 利用全孔径滑动聚束SAR成像算法进行成像处理,得到高分辨率的聚焦结果。

说明书全文

基于多频子带并发的星载滑动聚束ΜIMO-SAR成像方法

技术领域

[0001] 本发明涉及雷达成像方法领域,具体是一种基于多频子带并发的星载滑动聚束 Μ頂0-SAR成像方法。

背景技术

[0002] 分辨率和测绘带是星载SAR的最重要的两个性能指标,但是由于最小天线面积的 限制,它们构成一对矛盾。为解决这个问题,国内外学者提出了多种方案,其中方位多通道 S頂0-SAR结合数字波束形成技术是一种得到最广泛采用的解决方案。该方案在保证距离无 模糊宽测绘带的前提下,采用信号处理的方法进行多普勒模糊抑制,从而实现高分辨宽测 绘带SAR成像。为了满足SAR应用对于分辨率和测绘带的各种需求,方位多通道SM0-SAR已 经由最初的条带模式拓展到更多的SAR模式当中,如TOPS模式、滑动聚束模式和聚束模式。
[0003] 对于超高分辨星载方位多通道SM0-SAR来说,为了实现距离高分辨率,通常需要 发射带宽非常宽的信号。直接发射宽带信号对雷达系统各部分的要求都很高,当信号带宽 大于1GHz时,雷达系统的实现难度会大大增加。步进频信号将大带宽信号分解成载频步进 的几个小带宽信号发射,接收到的回波信号通过子带合成处理得到等效的大带宽信号。采 用步进频信号能够有效降低雷达发射通道的瞬时带宽和中频数字化A/D的采样带宽,大大 降低了雷达系统的实现难度与成本,因此成为宽带和超宽带成像雷达中广泛采用的信号形 式。
[0004] 多频子带并发MM0-SAR结合了方位多通道Sm〇-SAR与步进频信号的优点,采用较 小的PRF,利用方位多通道发射和接收步进频子带信号,通过步进频子带合成技术获得大带 宽信号,能够在降低雷达系统的实现难度与成本的同时获得两维高分辨率及宽测绘带。此 外由于采用了多个天线同时发射信号,增加了发射天线面积,也能够提高系统的信噪比。然 而,现有的文献只讨论了条带模式下的多频子带并发MM0-SAR。对于滑动聚束或聚束模式 的星载多频子带并发MM0-SAR,有三个关键问题需要解决:弯曲轨道造成的通道采样位置 误差,波束方位指向随方位时间变化造成的多普勒带宽急剧增加,以及由于发射通道位置 不同造成的不同子带信号之间的斜距历程差异。此外,随着分辨率和测绘带的提高,回波数 据量也越来越大,这对回波重建方法的处理效率提出了更高的要求。

发明内容

[0005] 本发明的目的是提供一种基于多频子带并发的星载滑动聚束MM0-SAR成像方法, 通过新的高效的三步重建方法来实现滑动聚束或聚束模式下的多频子带并发MM0-SAR的 信号重建,以解决现有技术存在的问题。
[0006] 为了达到上述目的,本发明所采用的技术方案为:
[0007]基于多频子带并发的星载滑动聚束MM0-SAR成像方法,其特征在于:包括以下步 骤:
[0008] (1)采用一发多收的通道方式以全孔径接收原始SAR回波信号;
[0009] (2)对星载SAR回波信号进行方位带宽压缩处理和波束压缩处理;
[0010] (3)对由载体卫星运动速度的缓变性带来的通道采样位置误差进行补偿,过程如 下:
[0011] 3a)回波信号的表达:
[0012]回波信号可以表不为含方位时延A tnm的参考信号乘以一个通道米样位置误差相 位:
[0014]其中,81(1:,1:£1,11,111)为回波信号,11为发射通道标号,1]1为接收通道标号,31(1:,1: £1,;^) 为参考信号,c为光速,1和1分别表示快时间和方位慢时间,fn为信号载频,exp为以自然对 数e为底的指数函数,j为虚数单位;方位时延△ tnm = Xnm/V(),其中Xnm为收发等效相位中心与 参考相位中心的方位位置间隔,V0为方位合成孔径时间内的平均卫星速度;A Rnm(ta,r)为 通道采样位置误差,r表示点目标的斜距;
[0015] 3b)构建通道采样位置误差校正函数:
[0016]在距离频域,采用波束中心点目标的误差校正函数校正,校正函数为:
[0018]其中,fn为信号载频,f为距离频率,1为方位慢时间,Δ Rnm( ta,ro)为通道采样参考 位置,Π )为参考斜距;
[0019] 3c)通道采样位置空变误差补偿:
[0020] 在距离频域构建补偿函数,对非波束中心点目标的采样位置误差的空变部分进行 校正:
[0022]其中,为通道采样位置误差,r表示点目标的斜距;
[0023] (4)多频子带方位重建:
[0024] 通道采样位置误差校正后,需要对通道回波数据进行重建,过程如下:
[0025] 4a)构建多子带回波多普勒带宽压缩预处理函数:
[0027]其中,Δ tnm为方位时延,fc为信号中心载频,Rrcit为滑动聚束模式的旋转中心斜距, v为卫星速度;
[0028] 4b)方位空域滤波,重建各子带信号的多普勒谱,建立方位空域滤波的权矢量:
[0029] [Wn,l(fa) ,Wn,2(fa) , . . . ,Wn,N(fa) ] =A_1,
[0030] 其中,矢量A=[an,i(fa),an,2(fa),…,a n,N(fa)]T,( ·)-1 和(· "分别表示矩阵的 逆和矩阵转置;
[0031],fa为方位 频率,fPRF为方位米样频率,-NfpRF/2
[0032] (5)频域子带拼接:
[0033]在不需要上采样的条件下,对MBTO-SAR回波进行子带拼接。构建子带频移函数:
[0034] H4(t,n) = exp( j2JTt( Δ fc,n-Kn A fr)),
[0035] 其中,Afr为频率间隔,Afc,n为第n个子带的频移量,1( 11是八匕,11/八匕的整数部分, 此时,各子带中心频率相对于完整带宽信号的中心频率的间隔都为频率单元的整数倍,在 频域移动各子带频谱,使其在相应的频率处进行相干叠加从而得到完整带宽信号;
[0036] (6)利用全孔径滑动聚束SAR成像算法进行成像处理,得到高分辨率的聚焦结果。
[0037] 本发明首先为了校正通道采样位置误差,提出了一种类似于运动误差补偿的误差 校正方法。其次提出了一种多子带方位去斜方法既能降低信号的多普勒带宽,使其小于系 统的等效PRF,又能保证方位去斜后子带信号间的距离历程差异仍然可以方便地得到补偿。 最后对传统的频域子带拼接方法进行了改进,使其既能避免距离向插值,又对系统参数没 有特别的要求,具有更强的适应性。
[0038] 本发明与现有技术相比具有如下优点:
[0039] 1)本发明是针对多频子带并发MIM0-SAR成像技术,克服了现有技术只限于条带 SAR模式,分辨率较低的问题,有效提高了分辨率。
[0040] 2)本发明通过通道采样位置误差补偿和多子带方位去斜,有效地降低了信号的多 普勒带宽,保证了方位去斜后子带信号间的距离历程差异可以方便得到补偿的问题。
[0041] 3)本发明对传统的频域子带拼接方法进行了改进,使其既能避免距离向插值,又 对系统参数没有特别的要求,具有更强的适应性。附图说明
[0042] 图1是本发明多频子带并发滑动聚束MBTO-SAR成像方法流程图
[0043]图2是本发明中第1个子带信号在多子带方位去斜前与去斜后的结果,其中:
[0044]图2a为去斜前结果图,图2b为去斜后结果图。
[0045]图3是本发明成像方法得到的实测数据处理结果图,其中:
[0046]图3a为单子带成像图,图3b为多子带成像图。

具体实施方式

[0047]如图1所示,基于多频子带并发的星载滑动聚束MIM0-SAR成像方法,包括以下步 骤:
[0048]步骤一采用一发多收的通道方式全孔径接收原始SAR回波信号,对回波信号进行 方位带宽压缩处理和波束压缩处理,得到回波信号:
[0050]其中,81(1:,1:£1,11,111)为回波信号,11为发射通道标号,1]1为接收通道标号,31(1:,1: £1, fn)为参考信号,C为光速,1和^分别表示快时间和方位慢时间,fn为信号载频,exp为以自然 对数e为底的指数函数,j为虚数单位。方位时延△ tnm = Xnm/V(),其中Xnm为收发等效相位中心 与参考相位中心的方位位置间隔,VQ为方位合成孔径时间内的平均卫星速度。△ Rnm( ta,r ) 为通道采样位置误差,r表示点目标的斜距。
[0051]步骤二对整个波束照射区域,采用波束中心点的误差校正函数校正。在距离频域 进行误差校正,误差校正函数为
[0053] 其中,fn为信号载频,f为距离频率,方位慢时间,Δ Rnm(ta,ro)为通道采样参考 位置,Π )为参考斜距。
[0054] 对于其它目标,在距离时域进行补偿,补偿函数为
[0056]其中,为通道采样位置误差,r表示点目标的斜距。
[0057]步骤三对完成误差校正的回波信号进行多频子带方位重建完成解模糊处理,得到 无模糊的信号频谱结果,过程如下:
[0058] 3a)建立多子带预处理函数与回波信号相乘
[0060]其中,Δ tnm为方位时延,fc为信号中心载频,Rrcit为滑动聚束模式的旋转中心斜距, v为卫星速度。
[0061] 3b)进行方位空域滤波,重建各子带信号的多普勒谱。方位空域滤波的权矢量:
[0062] [Wn,l(fa),Wn,2(fa),· · ·,Wn,N(fa) ] =A-1
[0063] 其中,矢量A=[an,i(fa),an,2(fa), · · ·,an,N(fa)]T,( ·)-1 和(·别表示矩阵的 逆和矩阵转置。
[0064]*fa为方位 频率,fPRF为方位米样频率,-NfpRF/2
[0065] 步骤四进行频域子带拼接处理。在时域对每个子带乘以一个频移函数,频移量为 频率单元的小数倍。对应第η个子带的频移函数为
[0066] H4(t,n) = exp( j2irt( Δ fc,n-KnA fr))
[0067] 其中,Afr为频率间隔,Afc,n为第n个子带的频移量,1( 11是八匕,11/八匕的整数部分。 此时,各子带中心频率相对于完整带宽信号的中心频率的间隔都为频率单元的整数倍。在 频域移动各子带频谱,使其在相应的频率处进行相干叠加从而得到完整带宽信号。
[0068]步骤五利用全孔径滑动聚束SAR成像算法进行成像处理。
[0069] 至此,多频子带并发滑动聚束MMO-SAR成像方法基本完成。
[0070] 以下通过仿真及实测数据实验进一步说明本发明的有效性。
[0071] -、点目标仿真实验
[0072] 1.仿真条件:
[0073]应用星载挂洞聚束MIM0-SAR进行点目标仿真,卫星平台高度为514km,倾为 97.44°,发射波长为0.03m,3个子带带宽均为333.3MHz,合成孔径时间设为12s。
[0074] 2.仿真内容:
[0075] 应用本发明对9个点目标进行成像仿真实验。
[0076] 仿真实验中9个点目标原始回波信号的二维频谱图如图2方位去斜前图2a的结果 图像所示。应用本发明对压缩后的回波信号第1个子带进行多子带方位去斜处理后的回波 信号二维频谱图如图2b所示。
[0077] 3.仿真结果分析:
[0078]从图2可以看出,应用本发明对压缩后的回波信号进行方位去斜处理之后,各子带 信号得到了有效重建,3个子带中的目标回波不再叠加在一起,可以一一区分。
[0079]二、实测数据成像处理 [0080] 1.成像处理条件:
[0081]应用本发明对构造聚束模式多频子带并发MM0-SAR数据进行成像处理,该实测数 据采集系统的中心频率为9.54GHz,3个子带带宽均为120MHz,雷达方位通道间隔为0.22m, 场景中心斜距为20km。
[0082] 2.成像处理结果分析:
[0083]应用本发明对所述实测数据进行成像处理,成像处理结果如图3所示,从图3可以 看出应用本发明进行多子带并发ΜΙΜΟ成像,可以实现更好的宽场景、高分辨成像。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈