An Earthquake Protection Pod

申请号 US14330148 申请日 2014-07-14 公开(公告)号 US20160010355A1 公开(公告)日 2016-01-14
申请人 Bruce Winston Bellve; 发明人 Bruce Winston Bellve;
摘要 An earthquake protection pod for providing a safe space primarily for office personnel has a structure which may be sized to fit beneath a desk, which can support considerable weight and which provides a small crush zone in its structure to take the initial surge of a massive overload. Legs support a frame by sockets which have a crush zone for vertical impact loads. The pod is assembled on site.
权利要求 1. A protection pod having:at least three elongate legs each with respective upper and lower ends, the legs capable of resting substantially vertically on a floor;a bracing frame including first and second frame members, the first and second frame members having respective first and second ends;each leg having at the upmost end a socket capable of receiving laterally within itself a respective one of the ends of the bracing frame, the bracing frame and legs being positioned at right angles to one another when the ends of the bracing frames are positioned substantially within respective sockets, a fastener receiving opening extending through each socket and received end for receiving a respective fastener; andeach socket being sized larger than the received end of the bracing frame to provide a clearance vertically between the socket and received end that is a crush space into which the socket will crush downwardly under loading on the upmost end of the socket.2. A protection pod as claimed in claim 1 wherein the protection pod has at least one brace extending between the lower portion of a first leg and a second leg.3. A protection pod as claimed in claim 2 wherein the braces are lateral.4. A protection pod as claimed in claim 2 wherein the braces are at an angle and in the plane between the first leg and the second leg.5. A protection pod as claimed in claim 1 wherein the protection pod has a floor plate, and wherein the protection pod is capable of being assembled with the floor plate being affixed to the lowermost end of each leg of the protection pod.6. A protection pod as claimed in claim 5 wherein the floor plate has a stub fitting within each leg of the pod.7. A protection pod as claimed in claim 1 wherein the socket at the upmost end of a leg has a lower crush resistance to vertical forces than the remainder of the substantially vertical leg of which it forms a part.8. A protection pod as claimed in claim 1 wherein the pod is dismantleable and relocatable.9. A flatpack comprising components for assembly into a protection pod as claimed in claim 1 with the legs, sockets and bracing frame being sized to fit under an office desk or similar furniture.10. A protection pod according to claim 1 having four such legs, the protection pod being assembled with each leg positioned at a respective corner of the protection pod, the protection pod including a first lower brace extending from a first to a second of the legs, a second lower brace extending from the second to a third of the legs, and a third lower brace extending between the third and a fourth of the legs, the protection pod being without any lower brace extending between the fourth and first legs so as to facilitate entry by a user into the protection pod in the lower brace free space between the fourth and first legs.11. A protection pod according to claim 10 wherein the sockets and bracing frame ends each have respective first and second side walls with a fastener receiving opening extending through the first and second side walls of each socket and first and second side walls of each of the bracing frame ends, and with respective bolts inserted through the respective fastener receiving openings of each socket and bracing frame and positioned in the socket, the bolts being under tension so as to stress the side walls of the frame sockets inward.12. A protection pod according to claim 1 wherein each end of the bracing frame has upper and lower walls and first and second side walls, and wherein each socket has upper and lower socket walls and first and second socket side walls and wherein the crush space is provided between the upper wall of the bracing frame end and the upper socket wall of the socket that receives the bracing frame end.13. A protection pod according to claim 12 wherein the crush space is also provided between the lower wall of the bracing frame end and the lower socket wall of the socket that receives the bracing frame end.14. A protection pod according to claim 1 wherein the sockets and bracing frame ends each have respective first and second side walls and wherein the fastener receiving openings extend through the side walls of the bracing frame ends and sockets.15. A protection pod for fitting under an office desk or similar furniture having at least three compression resistant elongate legs capable of resting substantially vertically on a floor, each leg having at the upmost end a socket capable of receiving laterally within itself at least one portion of a bracing frame extending between the upmost ends of all the legs, each socket and received portion of bracing frame being retainable together by a fixing such that the bracing frame is retained substantially at right angles to the legs and has a -clearance vertically between the socket and the bracing frame which provides a crush space, configured to crush down under loading on the upmost end of the socket.
说明书全文

TECHNICAL FIELD

The invention generally relates to structures to protect building occupants from earthquake effects.

More particularly the invention relates to protective structures fitting under an office desk or similar furniture and allowing an office occupant to enter the protective structure which is resistant to overhead impact.

BACKGROUND ART

Articles such as earthquake or tornado protection pods or protection structures are known.

Such a structure is known, for instance, from U.S. Pat. No. 5,662,132 entitled “Structural Protective Shelter” and granted on Sep. 2, 1997 which describes a tubular steel structure designed to be used around a bed, chair or desk. The structure is comparatively large and not easily assembled or moved.

U.S. Pat. No. 6,349,508 describes a high strength case with openings to allow a person to enter and remain within for some time, however the case is comparatively large and an integral whole and again is not easily moved.

Such structures fail to solve all the known problems of earthquake protection pods since they do not readily allow placement where an office worker can seek shelter and are not amenable to assembly on site.

Therefore a need exists for a solution to the problem of ease of access, ease of placement and ease of construction.

The present invention provides a solution to this and other problems which offers advantages over the prior art or which will at least provide the public with a useful choice.

All references, including any patents or patent applications cited in this specification are hereby incorporated by reference. No admission is made that any reference constitutes prior art. The discussion of the references states what their authors assert, and the applicants reserve the right to challenge the accuracy and pertinency of the cited documents. It will be clearly understood that, although a number of prior art publications are referred to herein, this reference does not constitute an admission that any of these documents form part of the common general knowledge in the art, in New Zealand or in any other country.

SUMMARY OF THE INVENTION

The invention consists in a protection pod having at least three compression resistant elongate legs capable of resting substantially vertically on a floor, each leg having at the upmost end a socket capable of receiving laterally within itself at least one portion of a bracing frame extending between the upmost ends of all the legs, each socket and received portion of bracing frame being retainable together by a fastening means such that the bracing frame is retained substantially at right angles to the legs and has a spacing between socket and bracing frame which will crush under loading on the upmost end of the socket.

Wherein the protection pod has at least one brace extending between the lower portion of a first leg and a second leg.

Wherein the braces are lateral.

Wherein the braces are at an angle and in the plane between the first leg and the second leg.

Wherein the pod has a floor plate, the floor plate being affixed to the lowermost end of each leg of the protection pod.

wherein the floor plate has a stub fitting within each leg of the pod.

Wherein the socket at the upmost end of a leg has a lower crush resistance to vertical forces than the remainder of the substantially vertical leg of which it forms a part.

Wherein the pod is dismantleable and relocatable.

These and other features of as well as advantages which characterise the present invention will be apparent upon reading of the following detailed description and review of the associated drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a rear perspective view of a protection pod.

FIG. 2 is a front perspective view of a similar protection pod.

FIG. 3 is a detail view of the joint at the top of each pod leg.

FIG. 4 is a view of a pod with a grid top and a base floor.

FIG. 5 is a view of the top leg joint after impact by a heavy vertical load.

DESCRIPTION OF THE INVENTION

Referring now to FIG. 1 a protection pod 101 is shown. The pod is intended to fit under an item of office furniture such as a desk and includes leg posts 102 resting on a floor with frame sockets 103 at the top of the legs, and a top frame 104 which locates into the sockets 103. The top frame is intended to clear the bottom of a desktop so that a pod may be slid under a desk, but differing dimensions may be used for differing furniture. The space within the pod is sufficient to easily accommodate a seated hunched person, and someone within the pod would be substantially protected from impacts from above.

Legs 102 may be stabilised at set distances by linking bars 106, 107 which may be secured to the legs by internal nuts, by devises, by pins, or by any other fixing method holding legs 102 a fixed distance apart at floor level. There is no linking bar along one edge to allow unimpeded access for a potential occupant. As shown there are four leg posts 102 but the pod may have three legs or more than four, provided that it provides a stable enclosure not collapsing under the unusual loads placed on it by loose furniture and parts of a building falling on it during an earthquake or tornado.

FIG. 2 shows the same enclosure of legs 102 and top frame 104 with a floor plate 202 in place. Preferably the floor plate 202 has stubs 203 as seen in FIG. 4 locating the legs in place with the aid of linking bars 107 passing within the stubs to hold the legs to the stubs. The floor plate 202 prevents the legs 102 being driven down through a wooden floor during a heavy impact from above. The floor plate may have a lip along the edges which do not face in the direction of entry to provide additional rigidity. Additionally where an earthquake involves significant lateral forces a pod with a floor plate will retain any occupant, rather than moving about independently of the occupant.

FIG. 3 shows the detail of the connection of frame sockets 103 at the top of legs 102 with the ends 301 of frame 104. Clearance holes in the frame sockets 103 and frame ends 301 receive bolts 105 and locking nuts 302. Note that there is clearance between the frame sockets 103 and the frame ends 301. This intentional clearance provides a crush space which is intended to allow the initial crushing down under overload of the top of frame socket 103 onto the frame ends 301, and after this space is taken up to allow the collapse of the side walls of both frame sockets 103 and frame ends 301 inwards where weakened by the holes receiving bolt 105. If the top loading is sufficient the socket 103 and bracing frame end 301 will collapse by a significant amount, reducing the impact loading on the leg 102 itself.

FIG. 4 shows a bottom perspective view of the pod with a top intrusion guard 401 fitted to prevent intrusion of stray items from above and to add transverse rigidity. The intrusion guard 401 may be of perforated sheet metal secured to frame 104 by tack welding or may be a steel bar grid. The figure also shows the stubs 203 typically welded to the floor plate 202 which may have a leg mounted over them to be secured by passing a linking bar 107 through leg 102 and stub 203.

FIG. 5 shows the profile of a frame socket 103 and frame end 301 which has been subjected to a 2 ton weight falling 10 feet. As can be seen the frame socket 103 has been significantly compressed, as has the frame end 301, however neither has been compressed to the extent that the side walls have caved inwards, so there is still significant resistance to compression remaining before the post beneath the frame socket is subjected to an impact rapid enough to cause failure and compression of the space within the pod.

The crushing inwards of the walls of the frame sockets 103 and frame ends 301 may be aided if packing washers (not shown) are inserted to take up the side gap between the side walls of the two tubes, and if bolt 105 and nut 302 are initially tensioned to stress the side wall of frame sockets 103 inwards.

The entire protection pod is of parts which can be assembled on site, allowing the parts to be easily carried to the desired location.

While the drawings show horizontal linking bars these may be replaced by linking bars at 45 degrees to the vertical to provide more resistance to shearing forces, or by transverse welded beams. Any linking bars may be secured by devises, by locking pins, by nuts or by some locking configuration which receives the bars during assembly to retain them once assembled.

While the pod displayed has four supporting legs a viable pod may have three or more, depending on the number of persons to be sheltered and the space available.

It is to be understood that even though numerous characteristics and advantages of the various embodiments of the present invention have been set forth in the foregoing description, together with details of the structure and functioning of various embodiments of the invention, this disclosure is illustrative only, and changes may be made in detail so long as the functioning of the invention is not adversely affected. For example the particular elements of the protection pod may vary dependent on the particular application for which it is used without variation in the spirit and scope of the present invention.

In addition, although the preferred embodiments described herein are directed to protection pods for use in an earthquake situation, it will be appreciated by those skilled in the art that variations and modifications are possible within the scope of the appended claims, for instance the pod could be used in a tornado area if grid walls are provided on the version shown in FIG. 4.

The protection pod may also be stored and transported in the form of a flatpack, the flackpack comprising all of the components ready to be assembled into the end product.

INDUSTRIAL APPLICABILITY

The protection pod of the invention is usable in the protection of life in locations in which objects damaging to a person may fall, such as buildings likely to be involved in earthquakes or tornados, mines or quarries. The present invention is therefore industrially applicable.

QQ群二维码
意见反馈